prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Plots about particles in ExaTrkX routine. For plot data requirement, detail list below: - hits: - required: hit_id, x, y, z or r, phi, z - pairs: - required: hit_id_1, hit_id_2 - edges: - required: hit_id_1, hit_id_2, - optional: score - particles: - required: particle_id - optional: vx, vy, vz, parent_pid - truth: - required: hit_id, particle_id For required columns, it use for all plot require this type of dataframe. For optional columns, it use for special purpose and not required for all plots. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.collections as mc from ExaTrkXPlotting import plot @plot('exatrkx.particles.production_vertex', ['pairs', 'hits', 'particles']) def production_vertices(ax, data): pairs = data['pairs'] hits = data['hits'] particles = data['particles'] if all(pd.Series(['x', 'y']).isin(hits.columns)): pass elif all(pd.Series(['r', 'phi']).isin(hits.columns)): # Cylindrical coord. r = hits['r'] phi = hits['phi'] # Compute cartesian coord x = r * np.cos(phi) y = r * np.sin(phi) hits = hits.assign( x=x, y=y ) else: raise KeyError('No valid coordinate data found.') hits_with_particles = pd.merge( hits, particles, how='inner' ) pairs_with_pid = pd.merge( pairs, hits_with_particles, left_on='hit_id_1', right_on='hit_id', how="inner" ) # Group by vertex. pairs_group_by_vertices = pairs_with_pid.groupby(['vx', 'vy', 'vz']) # Create color map. colors = plt.cm.get_cmap('gnuplot', len(pairs_group_by_vertices) + 1) for idx, (vertex, pairs) in enumerate(pairs_group_by_vertices): vx, vy, vz = vertex # Get color. color = colors(idx) ax.scatter( vx, vy, marker='+', color=color, label=f'({vx}, {vy})' ) @plot('exatrkx.particles.types', ['pairs', 'hits', 'particles']) def particle_types(ax, data): hits = data['hits'] pairs = data['pairs'] particles = data['particles'] if all(pd.Series(['x', 'y']).isin(hits.columns)): pass elif all(pd.Series(['r', 'phi']).isin(hits.columns)): # Cylindrical coord. r = hits['r'] phi = hits['phi'] # Compute cartesian coord x = r * np.cos(phi) y = r * np.sin(phi) hits = hits.assign( x=x, y=y ) else: raise KeyError('No valid coordinate data found.') hits_with_particles = pd.merge( hits, particles, how='inner' ) pairs_with_pid = pd.merge( pairs, hits_with_particles, left_on='hit_id_2', right_on='hit_id', how="inner" ) # Group by vertex. pairs_group_by_vertices = pairs_with_pid.groupby(['vx', 'vy', 'vz']) for idx, (vertex, pairs) in enumerate(pairs_group_by_vertices): for particle_id, tracks in pairs.groupby('particle_id'): # particle_type = particle_types[int(tracks['particle_type'].iloc[0])] particle_type = int(tracks['particle_type'].iloc[0]) if 'r_2' not in tracks.columns: tracks['r_2'] = np.sqrt(tracks['x']**2 + tracks['y']**2) x, y = tracks.loc[ tracks['r_2'].idxmax() ][['x', 'y']] ax.annotate(particle_type, (x, y)) @plot('exatrkx.particles.tracks_with_production_vertex.2d', ['pairs', 'hits', 'particles']) def particle_track_with_production_vertex(ax, data, line_width=0.1): """ Plot hit pair 2D connections. Require hits dataframe and pairs dataframe. """ hits = data['hits'] pairs = data['pairs'] particles = data['particles'] if all(pd.Series(['x', 'y']).isin(hits.columns)): pass elif all(
pd.Series(['r', 'phi'])
pandas.Series
import pandas as pd from business_rules.operators import (DataframeType, StringType, NumericType, BooleanType, SelectType, SelectMultipleType, GenericType) from . import TestCase from decimal import Decimal import sys import pandas class StringOperatorTests(TestCase): def test_operator_decorator(self): self.assertTrue(StringType("foo").equal_to.is_operator) def test_string_equal_to(self): self.assertTrue(StringType("foo").equal_to("foo")) self.assertFalse(StringType("foo").equal_to("Foo")) def test_string_not_equal_to(self): self.assertTrue(StringType("foo").not_equal_to("Foo")) self.assertTrue(StringType("foo").not_equal_to("boo")) self.assertFalse(StringType("foo").not_equal_to("foo")) def test_string_equal_to_case_insensitive(self): self.assertTrue(StringType("foo").equal_to_case_insensitive("FOo")) self.assertTrue(StringType("foo").equal_to_case_insensitive("foo")) self.assertFalse(StringType("foo").equal_to_case_insensitive("blah")) def test_string_starts_with(self): self.assertTrue(StringType("hello").starts_with("he")) self.assertFalse(StringType("hello").starts_with("hey")) self.assertFalse(StringType("hello").starts_with("He")) def test_string_ends_with(self): self.assertTrue(StringType("hello").ends_with("lo")) self.assertFalse(StringType("hello").ends_with("boom")) self.assertFalse(StringType("hello").ends_with("Lo")) def test_string_contains(self): self.assertTrue(StringType("hello").contains("ell")) self.assertTrue(StringType("hello").contains("he")) self.assertTrue(StringType("hello").contains("lo")) self.assertFalse(StringType("hello").contains("asdf")) self.assertFalse(StringType("hello").contains("ElL")) def test_string_matches_regex(self): self.assertTrue(StringType("hello").matches_regex(r"^h")) self.assertFalse(StringType("hello").matches_regex(r"^sh")) def test_non_empty(self): self.assertTrue(StringType("hello").non_empty()) self.assertFalse(StringType("").non_empty()) self.assertFalse(StringType(None).non_empty()) class NumericOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, err_string): NumericType("foo") def test_numeric_type_validates_and_casts_decimal(self): ten_dec = Decimal(10) ten_int = 10 ten_float = 10.0 if sys.version_info[0] == 2: ten_long = long(10) else: ten_long = int(10) # long and int are same in python3 ten_var_dec = NumericType(ten_dec) # this should not throw an exception ten_var_int = NumericType(ten_int) ten_var_float = NumericType(ten_float) ten_var_long = NumericType(ten_long) self.assertTrue(isinstance(ten_var_dec.value, Decimal)) self.assertTrue(isinstance(ten_var_int.value, Decimal)) self.assertTrue(isinstance(ten_var_float.value, Decimal)) self.assertTrue(isinstance(ten_var_long.value, Decimal)) def test_numeric_equal_to(self): self.assertTrue(NumericType(10).equal_to(10)) self.assertTrue(NumericType(10).equal_to(10.0)) self.assertTrue(NumericType(10).equal_to(10.000001)) self.assertTrue(NumericType(10.000001).equal_to(10)) self.assertTrue(NumericType(Decimal('10.0')).equal_to(10)) self.assertTrue(NumericType(10).equal_to(Decimal('10.0'))) self.assertFalse(NumericType(10).equal_to(10.00001)) self.assertFalse(NumericType(10).equal_to(11)) def test_numeric_not_equal_to(self): self.assertTrue(NumericType(10).not_equal_to(10.00001)) self.assertTrue(NumericType(10).not_equal_to(11)) self.assertTrue(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.1'))) self.assertFalse(NumericType(10).not_equal_to(10)) self.assertFalse(NumericType(10).not_equal_to(10.0)) self.assertFalse(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.0'))) def test_other_value_not_numeric(self): error_string = "10 is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, error_string): NumericType(10).equal_to("10") def test_numeric_greater_than(self): self.assertTrue(NumericType(10).greater_than(1)) self.assertFalse(NumericType(10).greater_than(11)) self.assertTrue(NumericType(10.1).greater_than(10)) self.assertFalse(NumericType(10.000001).greater_than(10)) self.assertTrue(NumericType(10.000002).greater_than(10)) def test_numeric_greater_than_or_equal_to(self): self.assertTrue(NumericType(10).greater_than_or_equal_to(1)) self.assertFalse(NumericType(10).greater_than_or_equal_to(11)) self.assertTrue(NumericType(10.1).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000001).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000002).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10).greater_than_or_equal_to(10)) def test_numeric_less_than(self): self.assertTrue(NumericType(1).less_than(10)) self.assertFalse(NumericType(11).less_than(10)) self.assertTrue(NumericType(10).less_than(10.1)) self.assertFalse(NumericType(10).less_than(10.000001)) self.assertTrue(NumericType(10).less_than(10.000002)) def test_numeric_less_than_or_equal_to(self): self.assertTrue(NumericType(1).less_than_or_equal_to(10)) self.assertFalse(NumericType(11).less_than_or_equal_to(10)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.1)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000001)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000002)) self.assertTrue(NumericType(10).less_than_or_equal_to(10)) class BooleanOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType("foo") err_string = "None is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType(None) def test_boolean_is_true_and_is_false(self): self.assertTrue(BooleanType(True).is_true()) self.assertFalse(BooleanType(True).is_false()) self.assertFalse(BooleanType(False).is_true()) self.assertTrue(BooleanType(False).is_false()) class SelectOperatorTests(TestCase): def test_contains(self): self.assertTrue(SelectType([1, 2]).contains(2)) self.assertFalse(SelectType([1, 2]).contains(3)) self.assertTrue(SelectType([1, 2, "a"]).contains("A")) def test_does_not_contain(self): self.assertTrue(SelectType([1, 2]).does_not_contain(3)) self.assertFalse(SelectType([1, 2]).does_not_contain(2)) self.assertFalse(SelectType([1, 2, "a"]).does_not_contain("A")) class SelectMultipleOperatorTests(TestCase): def test_contains_all(self): self.assertTrue(SelectMultipleType([1, 2]). contains_all([2, 1])) self.assertFalse(SelectMultipleType([1, 2]). contains_all([2, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). contains_all([2, 1, "A"])) def test_is_contained_by(self): self.assertTrue(SelectMultipleType([1, 2]). is_contained_by([2, 1, 3])) self.assertFalse(SelectMultipleType([1, 2]). is_contained_by([2, 3, 4])) self.assertTrue(SelectMultipleType([1, 2, "a"]). is_contained_by([2, 1, "A"])) def test_shares_at_least_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_at_least_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_at_least_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_at_least_one_element_with([4, "A"])) def test_shares_exactly_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_exactly_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_exactly_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_exactly_one_element_with([4, "A"])) self.assertFalse(SelectMultipleType([1, 2, 3]). shares_exactly_one_element_with([2, 3, "a"])) def test_shares_no_elements_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_no_elements_with([4, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_no_elements_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2, "a"]). shares_no_elements_with([4, "A"])) class DataframeOperatorTests(TestCase): def test_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ], }) result: pd.Series = DataframeType({"value": df}).exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_not_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ] }) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, "", 7, ], "var2": [3, 5, 6, "", 2, ], "var3": [1, 3, 8, "", 7, ], "var4": ["test", "issue", "one", "", "two", ] }) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to({ "target": "--r1", "comparator": "--r3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 20 }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var4", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False, False, ]))) def test_not_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": 20 }).equals(pandas.Series([True, True, True]))) def test_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "", "new", "val"], "var2": ["WORD", "", "test", "VAL"], "var3": ["LET", "", "GO", "read"] }) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "NEW" }).equals(pandas.Series([False, False, True, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False]))) def test_not_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "new", "val"], "var2": ["WORD", "test", "VAL"], "var3": ["LET", "GO", "read"], "var4": ["WORD", "NEW", "VAL"] }) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) def test_less_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than({ "target": "--r1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": 3 }).equals(pandas.Series([True, True, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than_or_equal_to({ "target": "--r1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([False, False, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 5, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than_or_equal_to({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_greater_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": 5000 }).equals(pandas.Series([False, False, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than_or_equal_to({ "target": "var1", "comparator": "--r4" }).equals(
pandas.Series([True, True, True])
pandas.Series
import os import pandas as pd import xfeat from xfeat import ArithmeticCombinations, ConcatCombination, CountEncoder, LabelEncoder from ayniy.preprocessing import xfeat_runner, xfeat_target_encoding from ayniy.utils import FeatureStore categorical_cols = [ "Type", "Breed1", "Breed2", "Gender", "Color1", "Color2", "Color3", "State", "RescuerID", ] numerical_cols = [ "Age", "Dewormed", "Fee", "FurLength", "Health", "MaturitySize", "PhotoAmt", "Quantity", "Sterilized", "Vaccinated", "VideoAmt", ] target_col = "AdoptionSpeed" def load_petfinder() -> pd.DataFrame: filepath = "../input/petfinder-adoption-prediction/train_test.ftr" if not os.path.exists(filepath): # Convert dataset into feather format. train =
pd.read_csv("../input/petfinder-adoption-prediction/train/train.csv")
pandas.read_csv
# -*- coding: utf-8 -*- import re import numpy as np import pytest from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_interval_dtype, is_period, is_period_dtype, is_string_dtype) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, registry) import pandas as pd from pandas import ( Categorical, CategoricalIndex, IntervalIndex, Series, date_range) from pandas.core.sparse.api import SparseDtype import pandas.util.testing as tm @pytest.fixture(params=[True, False, None]) def ordered(request): return request.param class Base(object): def setup_method(self, method): self.dtype = self.create() def test_hash(self): hash(self.dtype) def test_equality_invalid(self): assert not self.dtype == 'foo' assert not is_dtype_equal(self.dtype, np.int64) def test_numpy_informed(self): pytest.raises(TypeError, np.dtype, self.dtype) assert not self.dtype == np.str_ assert not np.str_ == self.dtype def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert not len(self.dtype._cache) assert result == self.dtype class TestCategoricalDtype(Base): def create(self): return CategoricalDtype() def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert result == self.dtype def test_hash_vs_equality(self): dtype = self.dtype dtype2 = CategoricalDtype() assert dtype == dtype2 assert dtype2 == dtype assert hash(dtype) == hash(dtype2) def test_equality(self): assert is_dtype_equal(self.dtype, 'category') assert is_dtype_equal(self.dtype, CategoricalDtype()) assert not is_dtype_equal(self.dtype, 'foo') def test_construction_from_string(self): result = CategoricalDtype.construct_from_string('category') assert is_dtype_equal(self.dtype, result) pytest.raises( TypeError, lambda: CategoricalDtype.construct_from_string('foo')) def test_constructor_invalid(self): msg = "Parameter 'categories' must be list-like" with pytest.raises(TypeError, match=msg): CategoricalDtype("category") dtype1 = CategoricalDtype(['a', 'b'], ordered=True) dtype2 = CategoricalDtype(['x', 'y'], ordered=False) c = Categorical([0, 1], dtype=dtype1, fastpath=True) @pytest.mark.parametrize('values, categories, ordered, dtype, expected', [ [None, None, None, None, CategoricalDtype()], [None, ['a', 'b'], True, None, dtype1], [c, None, None, dtype2, dtype2], [c, ['x', 'y'], False, None, dtype2], ]) def test_from_values_or_dtype( self, values, categories, ordered, dtype, expected): result = CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) assert result == expected @pytest.mark.parametrize('values, categories, ordered, dtype', [ [None, ['a', 'b'], True, dtype2], [None, ['a', 'b'], None, dtype2], [None, None, True, dtype2], ]) def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype): msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) def test_is_dtype(self): assert CategoricalDtype.is_dtype(self.dtype) assert CategoricalDtype.is_dtype('category') assert CategoricalDtype.is_dtype(CategoricalDtype()) assert not CategoricalDtype.is_dtype('foo') assert not CategoricalDtype.is_dtype(np.float64) def test_basic(self): assert is_categorical_dtype(self.dtype) factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) s = Series(factor, name='A') # dtypes assert is_categorical_dtype(s.dtype) assert is_categorical_dtype(s) assert not is_categorical_dtype(np.dtype('float64')) assert is_categorical(s.dtype) assert is_categorical(s) assert not is_categorical(np.dtype('float64')) assert not is_categorical(1.0) def test_tuple_categories(self): categories = [(1, 'a'), (2, 'b'), (3, 'c')] result = CategoricalDtype(categories) assert all(result.categories == categories) @pytest.mark.parametrize("categories, expected", [ ([True, False], True), ([True, False, None], True), ([True, False, "a", "b'"], False), ([0, 1], False), ]) def test_is_boolean(self, categories, expected): cat = Categorical(categories) assert cat.dtype._is_boolean is expected assert is_bool_dtype(cat) is expected assert is_bool_dtype(cat.dtype) is expected class TestDatetimeTZDtype(Base): def create(self): return DatetimeTZDtype('ns', 'US/Eastern') def test_alias_to_unit_raises(self): # 23990 with tm.assert_produces_warning(FutureWarning): DatetimeTZDtype('datetime64[ns, US/Central]') def test_alias_to_unit_bad_alias_raises(self): # 23990 with pytest.raises(TypeError, match=''): DatetimeTZDtype('this is a bad string') with pytest.raises(TypeError, match=''): DatetimeTZDtype('datetime64[ns, US/NotATZ]') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = DatetimeTZDtype('ns', 'US/Eastern') dtype3 = DatetimeTZDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype4 = DatetimeTZDtype("ns", "US/Central") assert dtype2 != dtype4 assert hash(dtype2) != hash(dtype4) def test_construction(self): pytest.raises(ValueError, lambda: DatetimeTZDtype('ms', 'US/Eastern')) def test_subclass(self): a = DatetimeTZDtype.construct_from_string('datetime64[ns, US/Eastern]') b = DatetimeTZDtype.construct_from_string('datetime64[ns, CET]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_compat(self): assert is_datetime64tz_dtype(self.dtype) assert is_datetime64tz_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_any_dtype(self.dtype) assert is_datetime64_any_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_ns_dtype(self.dtype) assert is_datetime64_ns_dtype('datetime64[ns, US/Eastern]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('datetime64[ns, US/Eastern]') def test_construction_from_string(self): result = DatetimeTZDtype.construct_from_string( 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, result) pytest.raises(TypeError, lambda: DatetimeTZDtype.construct_from_string('foo')) def test_construct_from_string_raises(self): with pytest.raises(TypeError, match="notatz"): DatetimeTZDtype.construct_from_string('datetime64[ns, notatz]') with pytest.raises(TypeError, match="^Could not construct DatetimeTZDtype$"): DatetimeTZDtype.construct_from_string(['datetime64[ns, notatz]']) def test_is_dtype(self): assert not DatetimeTZDtype.is_dtype(None) assert DatetimeTZDtype.is_dtype(self.dtype) assert DatetimeTZDtype.is_dtype('datetime64[ns, US/Eastern]') assert not DatetimeTZDtype.is_dtype('foo') assert DatetimeTZDtype.is_dtype(DatetimeTZDtype('ns', 'US/Pacific')) assert not DatetimeTZDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'US/Eastern')) assert not is_dtype_equal(self.dtype, 'foo') assert not is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'CET')) assert not is_dtype_equal(DatetimeTZDtype('ns', 'US/Eastern'), DatetimeTZDtype('ns', 'US/Pacific')) # numpy compat assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]") def test_basic(self): assert is_datetime64tz_dtype(self.dtype) dr = date_range('20130101', periods=3, tz='US/Eastern') s = Series(dr, name='A') # dtypes assert is_datetime64tz_dtype(s.dtype) assert is_datetime64tz_dtype(s) assert not is_datetime64tz_dtype(np.dtype('float64')) assert not is_datetime64tz_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s) assert is_datetimetz(s.dtype) assert not is_datetimetz(np.dtype('float64')) assert not is_datetimetz(1.0) def test_dst(self): dr1 = date_range('2013-01-01', periods=3, tz='US/Eastern') s1 = Series(dr1, name='A') assert is_datetime64tz_dtype(s1) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s1) dr2 = date_range('2013-08-01', periods=3, tz='US/Eastern') s2 = Series(dr2, name='A') assert is_datetime64tz_dtype(s2) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s2) assert s1.dtype == s2.dtype @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern']) @pytest.mark.parametrize('constructor', ['M8', 'datetime64']) def test_parser(self, tz, constructor): # pr #11245 dtz_str = '{con}[ns, {tz}]'.format(con=constructor, tz=tz) result = DatetimeTZDtype.construct_from_string(dtz_str) expected = DatetimeTZDtype('ns', tz) assert result == expected def test_empty(self): with pytest.raises(TypeError, match="A 'tz' is required."): DatetimeTZDtype() class TestPeriodDtype(Base): def create(self): return PeriodDtype('D') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = PeriodDtype('D') dtype3 = PeriodDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) def test_construction(self): with pytest.raises(ValueError): PeriodDtype('xx') for s in ['period[D]', 'Period[D]', 'D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day() assert is_period_dtype(dt) for s in ['period[3D]', 'Period[3D]', '3D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day(3) assert is_period_dtype(dt) for s in ['period[26H]', 'Period[26H]', '26H', 'period[1D2H]', 'Period[1D2H]', '1D2H']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Hour(26) assert is_period_dtype(dt) def test_subclass(self): a = PeriodDtype('period[D]') b = PeriodDtype('period[3D]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_identity(self): assert PeriodDtype('period[D]') == PeriodDtype('period[D]') assert PeriodDtype('period[D]') is PeriodDtype('period[D]') assert PeriodDtype('period[3D]') == PeriodDtype('period[3D]') assert PeriodDtype('period[3D]') is PeriodDtype('period[3D]') assert PeriodDtype('period[1S1U]') == PeriodDtype('period[1000001U]') assert PeriodDtype('period[1S1U]') is PeriodDtype('period[1000001U]') def test_compat(self): assert not is_datetime64_ns_dtype(self.dtype) assert not is_datetime64_ns_dtype('period[D]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('period[D]') def test_construction_from_string(self): result = PeriodDtype('period[D]') assert is_dtype_equal(self.dtype, result) result = PeriodDtype.construct_from_string('period[D]') assert is_dtype_equal(self.dtype, result) with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo') with pytest.raises(TypeError): PeriodDtype.construct_from_string('period[foo]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo[D]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns, US/Eastern]') def test_is_dtype(self): assert PeriodDtype.is_dtype(self.dtype) assert PeriodDtype.is_dtype('period[D]') assert PeriodDtype.is_dtype('period[3D]') assert PeriodDtype.is_dtype(PeriodDtype('3D')) assert PeriodDtype.is_dtype('period[U]') assert PeriodDtype.is_dtype('period[S]') assert PeriodDtype.is_dtype(PeriodDtype('U')) assert PeriodDtype.is_dtype(PeriodDtype('S')) assert not PeriodDtype.is_dtype('D') assert not PeriodDtype.is_dtype('3D') assert not PeriodDtype.is_dtype('U') assert not PeriodDtype.is_dtype('S') assert not PeriodDtype.is_dtype('foo') assert not PeriodDtype.is_dtype(np.object_) assert not PeriodDtype.is_dtype(np.int64) assert not PeriodDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'period[D]') assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(PeriodDtype('D'), PeriodDtype('D')) assert not is_dtype_equal(self.dtype, 'D') assert not is_dtype_equal(PeriodDtype('D'),
PeriodDtype('2D')
pandas.core.dtypes.dtypes.PeriodDtype
import pandas as pd import numpy as np import scipy import os, sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pylab import matplotlib as mpl import seaborn as sns import analysis_utils from multiprocessing import Pool sys.path.append('../utils/') from game_utils import * in_dir = '../../' out_dir = '../../plots/' #out_dir = '../../figures/' # data_names = ['Behavioral Data', 'Goal Inference Model'] # data_dirs = ['new-processed-processed-1en01','goal-inference-simulations-processed-1en01'] # nominal_dirs = ['new-synthetic-processed-1en01','synthetic-goal-inference-simulations-processed-1en01'] # matched_dirs = ['new-synthetic-score-matched-processed-1en01','synthetic-score-matched-goal-inference-simulations-processed-1en01'] # subset = '1en01' # start = 1440 # groups = ['High Scoring','Low Scoring',''] # behaviors = ['Skilled',''] # score_cutoff = 0.75 # matched = [True, False] data_names = ['Goal Inference Noise Model'] data_dirs = ['parset-simulations-processed-1en01'] nominal_dirs = ['synthetic-parset-simulations-processed-1en01'] matched_dirs = ['synthetic-score-matched-parset-simulations-processed-1en01'] subset = '1en01' # data_names = ['Goal Inference Attention Model'] # data_dirs = ['goal-inference-attention-simulations-processed-1en01'] # nominal_dirs = ['synthetic-goal-inference-attention-simulations-processed-1en01'] # matched_dirs = ['synthetic-score-matched-goal-inference-attention-simulations-processed-1en01'] # subset = '1en01' # data_names = ['Social Heuristic'] # data_dirs = ['social-heuristic-simulations-processed-1en01'] # nominal_dirs = ['synthetic-social-heuristic-simulations-processed-1en01'] # matched_dirs = ['synthetic-score-matched-social-heuristic-simulations-processed-1en01'] # subset = '1en01' # data_names = ['Unconditional Social Heuristic'] # data_dirs = ['unconditional-social-heuristic-simulations-simulations-processed-1en01'] # nominal_dirs = ['synthetic-unconditional-social-heuristic-simulations-simulations-processed-1en01'] # matched_dirs = ['synthetic-score-matched-unconditional-social-heuristic-simulations-simulations-processed-1en01'] # subset = '1en01' start = 1440 groups = [''] behaviors = [''] score_cutoff = 0.75 matched = [True, False] def score(sub): return np.mean(sub['bg_val']) def speed(sub): return sum(sub['velocity'] > 3) > 0 def spinning(sub): return sum(sub['spinning']) > 0 def dist_to_mean_others(sub): return np.mean(sub['dist_to_mean_others']) def face_towards_after_away(sub): ignore_state = lambda sub, i: sub.iloc[i]['spinning'] this_state = lambda sub, i: sub.iloc[i]['ave_dist_others'] < sub.iloc[i]['dist_to_mean_others'] next_state = lambda sub, i: sub.iloc[i]['facing'] return analysis_utils.get_value(sub, ignore_state, this_state, next_state) def face_away_when_low(sub): start_index = 1 initial_condition = lambda sub, i: (sub.iloc[i]['ave_dist_others'] > sub.iloc[i]['dist_to_mean_others']) and sub.iloc[i]['bg_val'] < 1.0 while_condition = lambda sub, i: sub.iloc[i]['bg_val'] < 1.0 final_condition = lambda sub, i: (sub.iloc[i]['ave_dist_others'] < sub.iloc[i]['dist_to_mean_others']) return analysis_utils.get_while_value(sub, initial_condition, while_condition, final_condition, start_index) def facing_spinning(sub): start_index = 1 initial_condition = lambda sub, i: ~sub.iloc[i-1]['spinning'] and ~sub.iloc[i-1]['other_spinning'] and ~sub.iloc[i]['spinning'] and sub.iloc[i]['other_spinning'] while_condition = lambda sub, i: ~sub.iloc[i-1]['facing_spinning'] final_condition = lambda sub, i: sub.iloc[i]['facing_spinning'] return analysis_utils.get_while_value(sub, initial_condition, while_condition, final_condition, start_index) function_names = ['Score','Speed','Spinning','Distance to Mean of Other Positions','Average Time Before Facing Distant Group', 'Average Time Before Facing Away From Group After Low Score', 'Average Time Before Facing Spinning Players'] functions = [score, speed, spinning, dist_to_mean_others, face_towards_after_away, face_away_when_low, facing_spinning] compares = [False, False, False, True, True, True, True] # function_names = ['Distance to Mean of Other Positions', 'Average Time Before Facing Away From Group After Low Score', 'Average Time Before Facing Spinning Players'] # functions = [dist_to_mean_others, face_away_when_low, facing_spinning] # compares = [True, True, True] def plot_synthetic(args): data_ind, func_ind, group, behavior, match = args data_dir = in_dir + data_dirs[data_ind] function = functions[func_ind] if match: synthetic_dir = in_dir + matched_dirs[data_ind] else: synthetic_dir = in_dir + nominal_dirs[data_ind] games = [] ns = [] values = [] scores = [] sources = [] lengths = [] for t,game in enumerate(os.listdir(data_dir)): if game[-4:] != '.csv': continue if game.split('_')[-2].split('-')[1] != subset: continue data = pd.io.parsers.read_csv(data_dir + '/' + game) syn_data =
pd.io.parsers.read_csv(synthetic_dir + '/' + game)
pandas.io.parsers.read_csv
from sklearn.model_selection import cross_val_score, train_test_split, GridSearchCV from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from pprint import pprint import pandas as pd from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, precision_score, recall_score from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer from sklearn.cluster import KMeans import preprocessing_permits as pr import numpy as np ############################################################################################################ # Cross Validation Modeling # ############################################################################################################ def run_decision_tree_cv(X_train, y_train): ''' Function to run a decision tree model. The function creates the model, then uses cross-validation grid search to figure out what the best parameters are. Returns a grid (object used to find best hyperparameters), df_result (holds the accuracy score for all hyperparameter values) and model (holds the model with the best hyperparameters, used to create predictions) ''' # keys are names of hyperparams, values are a list of values to try for that hyper parameter params = { 'max_depth': range(1, 11), 'criterion': ['gini', 'entropy'] } dtree = DecisionTreeClassifier() # cv=4 means 4-fold cross-validation, i.e. k = 4 grid = GridSearchCV(dtree, params, cv=3, scoring= "recall") grid.fit(X_train, y_train) model = grid.best_estimator_ results = grid.cv_results_ for score, p in zip(results['mean_test_score'], results['params']): p['score'] = score df_result =
pd.DataFrame(results['params'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np from scipy.stats import pearsonr # from mpl_toolkits.axes_grid1 import host_subplot # import mpl_toolkits.axisartist as AA # import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import netCDF4 as nc from netCDF4 import Dataset id import itertools import datetime from scipy.stats import ks_2samp Estacion = '6001' df1 = pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/6001Historico.txt', parse_dates=[2]) Theoric_rad_method = 'GIS_Model' ##-->> PARA QUE USE EL MODELO DE Gis DEBE SER 'GIS_Model' resolucion = 'diaria' ##-->> LAS OPCIONES SON 'diaria' U 'horaria' #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ## ---CALCULO DE LA RADIACIÓN TEORICA--- ## def daterange(start_date, end_date): 'Para el ajuste de las fechas en el modelo de Kumar cada 10 min. Las fechas final e inicial son en str: %Y-%m-%d' start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d') delta = timedelta(minutes=10) while start_date <= end_date: yield start_date start_date += delta def serie_Kumar_Model_hora(estacion): 'Retorna un dataframe horario con la radiacion teórico con las recomendacione de Kumar elaborado por <NAME> ' \ 'para el AMVA y su tesis. El dataframe original se le ordenan los datos a 12 meses ascendentes (2018), aunque pueden ' \ 'pertencer a años difernetes. El resultado es para el punto seleccionado y con el archivo de Total_Timeseries.csv' data_Model = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Radiacion_GIS/Teoricos_nati/Total_Timeseries.csv', sep=',') fecha_hora = [pd.to_datetime(data_Model['Unnamed: 0'], format="%Y-%m-%d %H:%M:%S")[i].to_pydatetime() for i in range(len(data_Model['Unnamed: 0']))] data_Model.index = fecha_hora data_Model = data_Model.sort_index() data_Model['Month'] = np.array(data_Model.index.month) data_Model = data_Model.sort_values(by="Month") fechas = [] for i in daterange('2018-01-01', '2019-01-01'): fechas.append(i) fechas = fechas[0:-1] if estacion == '6001': punto = data_Model['TS_kumar'] elif estacion == '6002': punto = data_Model['CI_kumar'] elif estacion == '6003': punto = data_Model['JV_kumar'] Rad_teorica = [] for i in range(len(fechas)): mes = fechas[i].month hora = fechas[i].hour mint = fechas[i].minute rad = \ np.where((data_Model.index.month == mes) & (data_Model.index.hour == hora) & (data_Model.index.minute == mint))[ 0] if len(rad) == 0: Rad_teorica.append(np.nan) else: Rad_teorica.append(punto.iloc[rad].values[0]) data_Theorical = pd.DataFrame() data_Theorical['fecha_hora'] = fechas data_Theorical['Radiacion_Teo'] = Rad_teorica data_Theorical.index = data_Theorical['fecha_hora'] df_hourly_theoric = data_Theorical.groupby(pd.Grouper(freq="H")).mean() df_hourly_theoric = df_hourly_theoric[df_hourly_theoric['Radiacion_Teo'] > 0] return df_hourly_theoric def Elevation_RadiationTA(n, lat, lon, start): 'Para obtener la radiación en W/m2 y el ángulo de elevación del sol en grados horariamente para un número "n" de ' \ 'días aun punto en una latitud y longitud determinada ( "lat-lon"como flotantes) a partir de una fecha de inicio ' \ '"start" como por ejemplo datetime.datetime(2018, 1, 1, 8).' import pysolar import pytz import datetime timezone = pytz.timezone("America/Bogota") start_aware = timezone.localize(start) # Calculate radiation every hour for 365 days nhr = 24*n dates, altitudes_deg, radiations = list(), list(), list() for ihr in range(nhr): date = start_aware + datetime.timedelta(hours=ihr) altitude_deg = pysolar.solar.get_altitude(lat, lon, date) if altitude_deg <= 0: radiation = 0. else: radiation = pysolar.radiation.get_radiation_direct(date, altitude_deg) dates.append(date) altitudes_deg.append(altitude_deg) radiations.append(radiation) days = [ihr/24 for ihr in range(nhr)] return days, altitudes_deg, radiations if Theoric_rad_method != 'GIS_Model' and Estacion == '6001': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.259, -75.588, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method != 'GIS_Model' and Estacion == '6002': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.168, -75.644, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method != 'GIS_Model' and Estacion == '6003': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.255, -75.542, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method == 'GIS_Model': Io_hora = serie_Kumar_Model_hora(Estacion) print('Teorica con el modelo de KUMAR') ############################################################################### ##--------------EFICIENCIAS TEORICAS COMO PROXI DE TRANSPARENCIA-------------## ############################################################################### 'Calculo de la eficiencias teorica como proxi de la transparencia de la atmosfera' 'Para esto se hace uso de la información del piranometro y de la radiación teórica' 'de <NAME>, con esto se prentenden obtener las caracteristicas que deriven' 'del análisis estocastico, similar al de <NAME> en su tesis de doctorado.' ##------------------LECTURA DE LOS DATOS DEL EXPERIMENTO----------------------## df_P975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df_P350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel350.txt', sep=',', index_col =0) df_P348 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel348.txt', sep=',', index_col =0) df_P975['Fecha_hora'] = df_P975.index df_P350['Fecha_hora'] = df_P350.index df_P348['Fecha_hora'] = df_P348.index df_P975.index = pd.to_datetime(df_P975.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P350.index = pd.to_datetime(df_P350.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P348.index = pd.to_datetime(df_P348.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') ## ----------------ACOTANDO LOS DATOS A VALORES VÁLIDOS---------------- ## 'Como en este caso lo que interesa es la radiacion, para la filtración de los datos, se' 'considerarán los datos de potencia mayores o iguales a 0, los que parecen generarse una' 'hora despues de cuando empieza a incidir la radiación.' df_P975 = df_P975[(df_P975['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P350 = df_P350[(df_P350['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P348 = df_P348[(df_P348['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P975_h = df_P975.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P350_h = df_P350.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P348_h = df_P348.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P975_h = df_P975_h.between_time('06:00', '17:00') df_P350_h = df_P350_h.between_time('06:00', '17:00') df_P348_h = df_P348_h.between_time('06:00', '17:00') ##----AJUSTE DE LOS DATOS DE RADIACIÓN TEORICA AL RANGO DE FECHAS DESEADO-----## def daterange(start_date, end_date): 'Para el ajuste de las fechas en el modelo de Kumar cada hora. Las fechas' 'final e inicial son en str: %Y-%m-%d' start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d') delta = timedelta(minutes=60) while start_date <= end_date: yield start_date start_date += delta Io_hora_975 = serie_Kumar_Model_hora('6001') Io_hora_350 = serie_Kumar_Model_hora('6002') Io_hora_348 = serie_Kumar_Model_hora('6003') fechas_975 = [] for i in daterange(df_P975.index[0].date().strftime("%Y-%m-%d"), (df_P975.index[-1].date() + timedelta(days=1)).strftime("%Y-%m-%d")): fechas_975.append(i) fechas_350 = [] for i in daterange(df_P350.index[0].date().strftime("%Y-%m-%d"), (df_P350.index[-1].date() + timedelta(days=1)).strftime("%Y-%m-%d")): fechas_350.append(i) fechas_348 = [] for i in daterange(df_P348.index[0].date().strftime("%Y-%m-%d"), (df_P348.index[-1].date() + timedelta(days=1)).strftime("%Y-%m-%d")): fechas_348.append(i) Io_hora_975 = Io_hora_975.loc[(Io_hora_975.index >= '2018-03-20') & (Io_hora_975.index <= '2018-'+str(df_P975.index[-1].month)+'-'+str(df_P975.index[-1].day+1))] Io_hora_350 = Io_hora_350.loc[(Io_hora_350.index >= '2018-03-22') & (Io_hora_350.index <= '2018-'+str(df_P350.index[-1].month)+'-'+str(df_P350.index[-1].day+1))] Io_hora_348 = Io_hora_348.loc[(Io_hora_348.index >= '2018-03-23') & (Io_hora_348.index <= '2018-'+str(df_P348.index[-1].month)+'-'+str(df_P348.index[-1].day+1))] Io_hora_975 = Io_hora_975.between_time('06:00', '17:00') Io_hora_975.index = [Io_hora_975.index[i].replace(year=2019) for i in range(len(Io_hora_975.index))] Io_hora_350 = Io_hora_350.between_time('06:00', '17:00') Io_hora_350.index = [Io_hora_350.index[i].replace(year=2019) for i in range(len(Io_hora_350.index))] Io_hora_348 = Io_hora_348.between_time('06:00', '17:00') Io_hora_348.index = [Io_hora_348.index[i].replace(year=2019) for i in range(len(Io_hora_348.index))] df_Rad_P975 = pd.concat([Io_hora_975, df_P975_h], axis = 1) df_Rad_P350 = pd.concat([Io_hora_350, df_P350_h], axis = 1) df_Rad_P348 = pd.concat([Io_hora_348, df_P348_h], axis = 1) df_Rad_P975 = df_Rad_P975.drop(['NI','strength'], axis=1) df_Rad_P350 = df_Rad_P350.drop(['NI','strength'], axis=1) df_Rad_P348 = df_Rad_P348.drop(['NI','strength'], axis=1) ##--------------------EFICIANCIA REAL PROXI DE TRANSPARENCIA-----------------## df_Rad_P975['Efi_Transp'] = df_Rad_P975['radiacion'] / df_Rad_P975['Radiacion_Teo'] df_Rad_P350['Efi_Transp'] = df_Rad_P350['radiacion'] / df_Rad_P350['Radiacion_Teo'] df_Rad_P348['Efi_Transp'] = df_Rad_P348['radiacion'] / df_Rad_P348['Radiacion_Teo'] ##-----------------HORAS EN LA QUE SE PRODUCE LA MAYOR EFICIENCIA Y SU HISTOGRAMA-------------## 'La frecuencia de las horas que excedieron el máximo de la eficiencia (1), se presenta en el hisograma' 'a continuación. El resultado muestra que las mayores frecuencias se presentan a als 6 y las 7 de la ma-' 'ñana, y esto es atribuible a falencias en el modelo de radiacion en condiciones de cierlo despejado' 'en esos puntos.' Hour_Max_Efi_975 = df_Rad_P975[df_Rad_P975['Efi_Transp']>1].index.hour Hour_Max_Efi_350 = df_Rad_P350[df_Rad_P350['Efi_Transp']>1].index.hour Hour_Max_Efi_348 = df_Rad_P348[df_Rad_P348['Efi_Transp']>1].index.hour fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Hour_Max_Efi_348, bins='auto', alpha = 0.5) ax1.set_title(u'Distribución horas de excedencia \n de la eficiencia en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Horas', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Hour_Max_Efi_350, bins='auto', alpha = 0.5) ax2.set_title(u'Distribución horas de excedencia \n de la eficiencia en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Horas', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Hour_Max_Efi_975, bins='auto', alpha = 0.5) ax3.set_title(u'Distribución horas de excedencia \n de la eficiencia en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Horas', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoHoraExceEfi.png') plt.show() ##-------DISCRIMINACION ENTRE DIAS LLUVIOSOS Y SECOS POR PERCENTILES DE RADIACION--------## 'Para lidiar cno la situación en que pueden haber dias en los que los piranometros solo midieron' 'durante una fracción del día por posibles daños y alteraciones, se deben considerar los dias que' 'al menos tuvieron 6 horas de medicion.' df_Rad_P975_count_h_pira = df_Rad_P975.groupby(pd.Grouper(freq="D")).count()['radiacion']>6 df_Rad_P350_count_h_pira = df_Rad_P350.groupby(pd.Grouper(freq="D")).count()['radiacion']>6 df_Rad_P348_count_h_pira = df_Rad_P348.groupby(pd.Grouper(freq="D")).count()['radiacion']>6 days_P975_count_h_pira = df_Rad_P975_count_h_pira.index[df_Rad_P975_count_h_pira == True] days_P350_count_h_pira = df_Rad_P350_count_h_pira.index[df_Rad_P350_count_h_pira == True] days_P348_count_h_pira = df_Rad_P348_count_h_pira.index[df_Rad_P348_count_h_pira == True] 'Se establecieron umbrales empiricamente para la seleccion de los dias marcadamente nubados y' 'marcadamente despejados dentro el periodo de registro, de acuerdo a los procedimentos en el' 'programa Umbrales_Radiacion_Piranometro.py' Sum_df_Rad_P975 = df_Rad_P975.groupby(pd.Grouper(freq='1D')).sum() Sum_df_Rad_P350 = df_Rad_P350.groupby(pd.Grouper(freq='1D')).sum() Sum_df_Rad_P348 = df_Rad_P348.groupby(pd.Grouper(freq='1D')).sum() Sum_df_Rad_P975 = Sum_df_Rad_P975[Sum_df_Rad_P975['radiacion']>0] Sum_df_Rad_P350 = Sum_df_Rad_P350[Sum_df_Rad_P350['radiacion']>0] Sum_df_Rad_P348 = Sum_df_Rad_P348[Sum_df_Rad_P348['radiacion']>0] lista_days_975 = [] for i in range(len(Sum_df_Rad_P975)): if Sum_df_Rad_P975.index[i] in days_P975_count_h_pira: lista_days_975.append(1) else: lista_days_975.append(0) Sum_df_Rad_P975['days'] = lista_days_975 Sum_df_Rad_P975 = Sum_df_Rad_P975[Sum_df_Rad_P975['days'] == 1] Sum_df_Rad_P975 = Sum_df_Rad_P975.drop(['days'], axis = 1) lista_days_350 = [] for i in range(len(Sum_df_Rad_P350)): if Sum_df_Rad_P350.index[i] in days_P350_count_h_pira: lista_days_350.append(1) else: lista_days_350.append(0) Sum_df_Rad_P350['days'] = lista_days_350 Sum_df_Rad_P350 = Sum_df_Rad_P350[Sum_df_Rad_P350['days'] == 1] Sum_df_Rad_P350 = Sum_df_Rad_P350.drop(['days'], axis = 1) lista_days_348 = [] for i in range(len(Sum_df_Rad_P348)): if Sum_df_Rad_P348.index[i] in days_P348_count_h_pira: lista_days_348.append(1) else: lista_days_348.append(0) Sum_df_Rad_P348['days'] = lista_days_348 Sum_df_Rad_P348 = Sum_df_Rad_P348[Sum_df_Rad_P348['days'] == 1] Sum_df_Rad_P348 = Sum_df_Rad_P348.drop(['days'], axis = 1) Desp_Pira_975 = Sum_df_Rad_P975[Sum_df_Rad_P975.radiacion>=(Sum_df_Rad_P975.Radiacion_Teo)*0.85] Desp_Pira_350 = Sum_df_Rad_P350[Sum_df_Rad_P350.radiacion>=(Sum_df_Rad_P350.Radiacion_Teo)*0.78] Desp_Pira_348 = Sum_df_Rad_P348[Sum_df_Rad_P348.radiacion>=(Sum_df_Rad_P348.Radiacion_Teo)*0.80] Nuba_Pira_975 = Sum_df_Rad_P975[Sum_df_Rad_P975.radiacion<=(Sum_df_Rad_P975.Radiacion_Teo)*0.25] Nuba_Pira_350 = Sum_df_Rad_P350[Sum_df_Rad_P350.radiacion<=(Sum_df_Rad_P350.Radiacion_Teo)*0.25] Nuba_Pira_348 = Sum_df_Rad_P348[Sum_df_Rad_P348.radiacion<=(Sum_df_Rad_P348.Radiacion_Teo)*0.22] Appended_data_desp_975 = [] for i in range(len(Desp_Pira_975.index.values)): Appended_data_desp_975.append(df_P975_h[df_P975_h.index.date == Desp_Pira_975.index.date[i]]) Appended_data_desp_975 = pd.concat(Appended_data_desp_975) Appended_data_desp_350 = [] for i in range(len(Desp_Pira_350.index.values)): Appended_data_desp_350.append(df_P350_h[df_P350_h.index.date == Desp_Pira_350.index.date[i]]) Appended_data_desp_350 = pd.concat(Appended_data_desp_350) Appended_data_desp_348 = [] for i in range(len(Desp_Pira_348.index.values)): Appended_data_desp_348.append(df_P348_h[df_P348_h.index.date == Desp_Pira_348.index.date[i]]) Appended_data_desp_348 = pd.concat(Appended_data_desp_348) Appended_data_nuba_975 = [] for i in range(len(Nuba_Pira_975.index.values)): Appended_data_nuba_975.append(df_P975_h[df_P975_h.index.date == Nuba_Pira_975.index.date[i]]) Appended_data_nuba_975 = pd.concat(Appended_data_nuba_975) Appended_data_nuba_350 = [] for i in range(len(Nuba_Pira_350.index.values)): Appended_data_nuba_350.append(df_P350_h[df_P350_h.index.date == Nuba_Pira_350.index.date[i]]) Appended_data_nuba_350 = pd.concat(Appended_data_nuba_350) Appended_data_nuba_348 = [] for i in range(len(Nuba_Pira_348.index.values)): Appended_data_nuba_348.append(df_P348_h[df_P348_h.index.date == Nuba_Pira_348.index.date[i]]) Appended_data_nuba_348 = pd.concat(Appended_data_nuba_348) #------------------HISTOGRAMAS DE RADIACION PARA CADA PUNTO EN LOS DOS CASOS----------------## fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Appended_data_desp_348['radiacion'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax1.hist(Appended_data_nuba_348['radiacion'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax1.set_title(u'Distribución de la radiación \n en dias dispejados y nublados en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Radiación $[W/m^{2}]$', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Appended_data_desp_350['radiacion'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax2.hist(Appended_data_nuba_350['radiacion'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax2.set_title(u'Distribución de la radiación \n en dias dispejados y nublados en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Radiación $[W/m^{2}]$', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Appended_data_desp_975['radiacion'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax3.hist(Appended_data_nuba_975['radiacion'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax3.set_title(u'Distribución de la radiación \n en dias dispejados y nublados en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Radiación $[W/m^{2}]$', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoRadiacionNubaDespTotal.png') plt.show() #------------------PRUEBA DE KOLMOGOROV-SMIRNOV PARA LA BONDAD DE AJUSTE ----------------## 'Se aplica la prueba de bondad KOLMOGOROV-SMIRNOV sobre los datos de los dias nublados y los' 'despejados con respecto a la serie general de los datos, para evaluar si pertenecen a la ' 'funcion de distribución de probabilidad. Se usa un nivel de significancia del 5%. Esta prueba es' 'mas sensible a los valores cercanos a la media que a los extremos, por lo que en general puede' 'usarse para evitar los outliers. La hipotesis nula, será que los datos de ambas series siguen' 'una misma distribución. La hipotesis alternativa sugiere que no sigen la misma distribución.' Significancia = 0.05 SK_desp_348 = ks_2samp(Appended_data_desp_348['radiacion'].values,df_P348_h['radiacion'].values) stat_348_desp = SK_desp_348[0] pvalue_348_desp = SK_desp_348[1] SK_nuba_348 = ks_2samp(Appended_data_nuba_348['radiacion'].values,df_P348_h['radiacion'].values) stat_348_nuba = SK_nuba_348[0] pvalue_348_nuba = SK_nuba_348[1] if pvalue_348_nuba <= Significancia: print ('los dias nublados en JV no pertenecen a la misma distribución') else: print ('los dias nublados en JV pertenecen a la misma distribución') if pvalue_348_desp <= Significancia: print ('los dias despejados en JV no pertenecen a la misma distribución') else: print ('los dias despejados en JV pertenecen a la misma distribución') SK_desp_350 = ks_2samp(Appended_data_desp_350['radiacion'].values,df_P350_h['radiacion'].values) stat_350_desp = SK_desp_350[0] pvalue_350_desp = SK_desp_350[1] SK_nuba_350 = ks_2samp(Appended_data_nuba_350['radiacion'].values,df_P350_h['radiacion'].values) stat_350_nuba = SK_nuba_350[0] pvalue_350_nuba = SK_nuba_350[1] if pvalue_350_nuba <= Significancia: print ('los dias nublados en CI no pertenecen a la misma distribución') else: print ('los dias nublados en CI pertenecen a la misma distribución') if pvalue_350_desp <= Significancia: print ('los dias despejados en CI no pertenecen a la misma distribución') else: print ('los dias despejados en CI pertenecen a la misma distribución') SK_desp_975 = ks_2samp(Appended_data_desp_975['radiacion'].values,df_P975_h['radiacion'].values) stat_975_desp = SK_desp_975[0] pvalue_975_desp = SK_desp_975[1] SK_nuba_975 = ks_2samp(Appended_data_nuba_975['radiacion'].values,df_P975_h['radiacion'].values) stat_975_nuba = SK_nuba_975[0] pvalue_975_nuba = SK_nuba_975[1] if pvalue_975_nuba <= Significancia: print ('los dias nublados en TS no pertenecen a la misma distribución') else: print ('los dias nublados en TS pertenecen a la misma distribución') if pvalue_975_desp <= Significancia: print ('los dias despejados en TS no pertenecen a la misma distribución') else: print ('los dias despejados en TS pertenecen a la misma distribución') #------------------HISTOGRAMAS DE EFICIENCIA PARA CADA PUNTO EN LOS DOS CASOS----------------## Desp_Efi_348 = [] for i in range(len(Desp_Pira_348.index.values)): Desp_Efi_348.append(df_Rad_P348[df_Rad_P348.index.date == Desp_Pira_348.index.date[i]]) Desp_Efi_348 = pd.concat(Desp_Efi_348) Desp_Efi_350 = [] for i in range(len(Desp_Pira_350.index.values)): Desp_Efi_350.append(df_Rad_P350[df_Rad_P350.index.date == Desp_Pira_350.index.date[i]]) Desp_Efi_350 = pd.concat(Desp_Efi_350) Desp_Efi_975 = [] for i in range(len(Desp_Pira_975.index.values)): Desp_Efi_975.append(df_Rad_P975[df_Rad_P975.index.date == Desp_Pira_975.index.date[i]]) Desp_Efi_975 = pd.concat(Desp_Efi_975) Nuba_Efi_348 = [] for i in range(len(Nuba_Pira_348.index.values)): Nuba_Efi_348.append(df_Rad_P348[df_Rad_P348.index.date == Nuba_Pira_348.index.date[i]]) Nuba_Efi_348 = pd.concat(Nuba_Efi_348) Nuba_Efi_350 = [] for i in range(len(Nuba_Pira_350.index.values)): Nuba_Efi_350.append(df_Rad_P350[df_Rad_P350.index.date == Nuba_Pira_350.index.date[i]]) Nuba_Efi_350 = pd.concat(Nuba_Efi_350) Nuba_Efi_975 = [] for i in range(len(Nuba_Pira_975.index.values)): Nuba_Efi_975.append(df_Rad_P975[df_Rad_P975.index.date == Nuba_Pira_975.index.date[i]]) Nuba_Efi_975 = pd.concat(Nuba_Efi_975) fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Desp_Efi_348['Efi_Transp'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax1.hist(Nuba_Efi_348['Efi_Transp'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax1.set_title(u'Distribución de la eficiencia \n en dias despejados y nublados en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Eficiencia', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Desp_Efi_350['Efi_Transp'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax2.hist(Nuba_Efi_350['Efi_Transp'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax2.set_title(u'Distribución de la eficiencia \n en dias despejados y nublados en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Eficiencia', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Desp_Efi_975['Efi_Transp'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax3.hist(Nuba_Efi_975['Efi_Transp'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax3.set_title(u'Distribución de la eficiencia \n en dias despejados y nublados en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Eficiencia', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoEficiencianNubaDespTotal.png') plt.show() SK_desp_Efi_348 = ks_2samp(Desp_Efi_348['radiacion'].values,df_P348_h['radiacion'].values) Efi_348_desp = SK_desp_Efi_348[0] Efi_348_desp = SK_desp_Efi_348[1] SK_nuba_Efi_348 = ks_2samp(Nuba_Efi_348['radiacion'].values,df_P348_h['radiacion'].values) Efi_348_nuba = SK_nuba_Efi_348[0] Efi_348_nuba = SK_nuba_Efi_348[1] if Efi_348_nuba <= Significancia: print ('los dias nublados en JV no pertenecen a la misma distribución') else: print ('los dias nublados en JV pertenecen a la misma distribución') if Efi_348_desp <= Significancia: print ('los dias despejados en JV no pertenecen a la misma distribución') else: print ('los dias despejados en JV pertenecen a la misma distribución') SK_desp_Efi_350 = ks_2samp(Desp_Efi_350['radiacion'].values,df_P350_h['radiacion'].values) Efi_350_desp = SK_desp_Efi_350[0] Efi_350_desp = SK_desp_Efi_350[1] SK_nuba_Efi_350 = ks_2samp(Nuba_Efi_350['radiacion'].values,df_P350_h['radiacion'].values) Efi_350_nuba = SK_nuba_Efi_350[0] Efi_350_nuba = SK_nuba_Efi_350[1] if Efi_350_nuba <= Significancia: print ('los dias nublados en CI no pertenecen a la misma distribución') else: print ('los dias nublados en CI pertenecen a la misma distribución') if Efi_350_desp <= Significancia: print ('los dias despejados en CI no pertenecen a la misma distribución') else: print ('los dias despejados en CI pertenecen a la misma distribución') SK_desp_Efi_975 = ks_2samp(Desp_Efi_975['radiacion'].values,df_P975_h['radiacion'].values) Efi_975_desp = SK_desp_Efi_975[0] Efi_975_desp = SK_desp_Efi_975[1] SK_nuba_Efi_975 = ks_2samp(Nuba_Efi_975['radiacion'].values,df_P975_h['radiacion'].values) Efi_975_nuba = SK_nuba_Efi_975[0] Efi_975_nuba = SK_nuba_Efi_975[1] if Efi_975_nuba <= Significancia: print ('los dias nublados en TS no pertenecen a la misma distribución') else: print ('los dias nublados en TS pertenecen a la misma distribución') if Efi_975_desp <= Significancia: print ('los dias despejados en TS no pertenecen a la misma distribución') else: print ('los dias despejados en TS pertenecen a la misma distribución') #------------------ESTIMACIÓN DE LA AUTOCORRELACIÓN EN CADA PUNTO----------------## def estimated_autocorrelation(x): """ http://stackoverflow.com/q/14297012/190597 http://en.wikipedia.org/wiki/Autocorrelation#Estimation """ n = len(x) variance = x.var() x = x-x.mean() r = np.correlate(x, x, mode = 'full')[-n:] assert np.allclose(r, np.array([(x[:n-k]*x[-(n-k):]).sum() for k in range(n)])) result = r/(variance*(np.arange(n, 0, -1))) return result Auto_corr_975 = estimated_autocorrelation(df_P975_h['radiacion'].values) X = df_P975_h[df_P975_h['radiacion'].values>0]['radiacion'].values lag = [1, 6, 12, 24] AutoCorr_lag = [] for j in range(1, len(lag)+1): print(j) c = [] for i in range(0,len(X)-j, j): c.append(pearsonr(X[i:], X[:-(i -len(X))])[1]) AutoCorr_lag.append(sum(c)) ############################################################################### ##-------------------RADIACION TEORICA PARA UN AÑO DE DATOS------------------## ############################################################################### 'Se espera encontrar con una año de datos de radiacion teorica para el estable-' 'cimiento de los escenario de prediccion y de los rendimentos teoricos. Pensado' 'para los datos de 2018.' ## ---LECTURA DE DATOS DE PIRANÓMETRO --- ## df1 = df1.set_index(["fecha_hora"]) df1.index = df1.index.tz_localize('UTC').tz_convert('America/Bogota') df1.index = df1.index.tz_localize(None) ## ---AGRUPACION DE LOS DATOS HORARIOS A UN AÑO--- ## df1_hora = df1.groupby(pd.Grouper(freq="H")).mean() df1_hora = df1_hora[(df1_hora.index >= '2018-01-01 00:00:00') & (df1_hora.index <= '2018-12-31 23:59:00')] df1_hora = df1_hora.between_time('06:00', '17:00') ##--> Seleccionar solo los datos de horas del dia ## ---CREACIÓN DE LA RADIACIÓN EN SUPERFICIE POR DIA Y AGRUPACION DE LOS DATOS DIARIOS A UN AÑO--- ## Io_dia = Io.groupby(pd.Grouper(freq="D")).mean() df1_dia = df1.groupby(pd.Grouper(freq="D")).mean() df1_dia = df1_dia[(df1_dia.index >= '2018-01-01') & (df1_dia.index <= '2018-12-31')] ## ---CONDICIONANDO LA RESOLUCIÓN TEMPORAL CON LA QUE SE TRABAJARÁ--- ## if resolucion == 'diaria': Io = Io_dia df1_rad = df1_dia elif resolucion == 'horaria': Io = Io_hora df1_rad = df1_hora ## ---CREACIÓN DE LOS ESCENARIOS DE ANÁLISIS EFICIENCIA TEÓRICA--- ## if len(Io)==len(df1_rad): df1_rad['TAR'] = Io df1_rad = df1_rad.drop([u'Unnamed: 0', u'idestacion'], axis=1) df1_rad['Efi_Teorica'] = df1_rad[u'radiacion']/df1_rad[u'TAR'] else: print (u'No hay un año de datos con el piranometro') ## --Máximo absosluto df1_radr_max = df1_rad.loc[lambda df_hora: df_hora['Efi_Teorica'] == np.nanmax(df1_rad.Efi_Teorica)] ## -- Percentil 90 absoluto df1_rad90 = df1_rad.quantile(0.90) ## -- Percentil 50 absoluto df1_rad50 = df1_rad.quantile(0.50) ## -- Percentil 10 absoluto df1_rad10 = df1_rad.quantile(0.10) ## -----MENSUAL----- ## df1_hm_mean = df1_rad.Efi_Teorica.groupby(
pd.Grouper(freq="M")
pandas.Grouper
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng =
date_range('1/1/2012', freq='23Min', periods=384)
pandas.date_range
# -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd import platform import unittest from itertools import combinations, combinations_with_replacement, product from numba.core.config import IS_32BITS from numba.core.errors import TypingError from sdc.tests.test_base import TestCase from sdc.tests.test_utils import (skip_numba_jit, _make_func_from_text, gen_frand_array) def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) class TestSeries_ops(TestCase): def test_series_operators_int(self): """Verifies using all various Series arithmetic binary operators on two integer Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): # integers to negative powers are not allowed if (operator == '**' and np.any(data_right < 0)): data_right = np.abs(data_right) with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_int_scalar(self): """Verifies using all various Series arithmetic binary operators on an integer Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] scalar_values = [1, -1, 0, 3, 7, -5] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) # integers to negative powers are not allowed if (operator == '**' and np.any(right < 0)): right = abs(right) with self.subTest(left=left, right=right, operator=operator): # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(left, right), test_impl(left, right), check_dtype=False) def test_series_operators_float(self): """Verifies using all various Series arithmetic binary operators on two float Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_float_scalar(self): """Verifies using all various Series arithmetic binary operators on a float Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] scalar_values = [1., -1., 0., -0., 7., -5.] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) with self.subTest(left=left, right=right, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar), check_dtype=False) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 A1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') A2 = A1.copy(deep=True) B = pd.Series(np.ones(n - 1), name='B') hpat_func(A1, B) test_impl(A2, B) pd.testing.assert_series_equal(A1, A2) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace_scalar(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 S1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') S2 = S1.copy(deep=True) hpat_func(S1, 1) test_impl(S2, 1) pd.testing.assert_series_equal(S1, S2) @skip_numba_jit('operator.neg for SeriesType is not implemented in yet') def test_series_operator_neg(self): def test_impl(A): return -A hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_operators_comp_numeric(self): """Verifies using all various Series comparison binary operators on two integer Series with various indexes""" n = 11 data_left = [1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0] data_right = [3, 2, -2, 1, 4, 1, -5, 6, 6, 3, -1] dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]} comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for dtype, index_data in dtype_to_index.items(): with self.subTest(operator=operator, index_dtype=dtype, index=index_data): A = pd.Series(data_left, index=index_data) B = pd.Series(data_right, index=index_data) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operators_comp_numeric_scalar(self): """Verifies using all various Series comparison binary operators on an integer Series and scalar values""" S = pd.Series([1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0]) scalar_values = [2, 2.0, -3, np.inf, -np.inf, np.PZERO, np.NZERO] comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for scalar in scalar_values: with self.subTest(left=S, right=scalar, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar)) def test_series_operators_comp_str_scalar(self): """Verifies using all various Series comparison binary operators on an string Series and scalar values""" S = pd.Series(['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]) scalar_values = ['a', 'aa', 'ab', 'ba', ''] comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for scalar in scalar_values: with self.subTest(left=S, right=scalar, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar)) @skip_numba_jit def test_series_operators_inplace_array(self): def test_impl(A, B): A += B return A hpat_func = self.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) @skip_numba_jit('Functionally test passes, but in old-style it checked fusion of parfors.\n' 'TODO: implement the same checks in new-pipeline') def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) # self.assertEqual(count_parfor_REPs(), 1) @skip_numba_jit('Functionally test passes, but in old-style it checked fusion of parfors.\n' 'TODO: implement the same checks in new-pipeline') def test_series_fusion2(self): def test_impl(A, B): S = B + 2 if A.iat[0] == 0: S = A + 1 return S + B hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) # self.assertEqual(count_parfor_REPs(), 3) def test_series_operator_add_numeric_scalar(self): """Verifies Series.operator.add implementation for numeric series and scalar second operand""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', 'b', 'b', 'cccc', 'dd', 'ddd']} int_scalar = 24 for dtype, index_data in dtype_to_index.items(): with self.subTest(index_dtype=dtype, index=index_data): if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n, dtype=np.int64), index=index_data) else: A = pd.Series(np.arange(n), index=index_data) result = hpat_func(A, int_scalar) result_ref = test_impl(A, int_scalar) pd.testing.assert_series_equal(result, result_ref, check_dtype=False, check_names=False) float_scalar = 24.0 for dtype, index_data in dtype_to_index.items(): with self.subTest(index_dtype=dtype, index=index_data): if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n, dtype=np.int64), index=index_data) else: A = pd.Series(np.arange(n), index=index_data) ref_result = test_impl(A, float_scalar) result = hpat_func(A, float_scalar) pd.testing.assert_series_equal(result, ref_result, check_dtype=False, check_names=False) def test_series_operator_add_numeric_same_index_default(self): """Verifies implementation of Series.operator.add between two numeric Series with default indexes and same size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), dtype=dtype_left) B = pd.Series(np.arange(n)**2, dtype=dtype_right) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) @skip_numba_jit def test_series_operator_add_numeric_same_index_numeric(self): """Verifies implementation of Series.operator.add between two numeric Series with the same numeric indexes of different dtypes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), index=np.arange(n, dtype=dtype_left)) B = pd.Series(np.arange(n)**2, index=np.arange(n, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) def test_series_operator_add_numeric_same_index_numeric_fixme(self): """ Same as test_series_operator_add_same_index_numeric but with w/a for the problem. Can be deleted when the latter is fixed """ def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 index_dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(index_dtypes_to_test, 2): # FIXME: skip the sub-test if one of the dtypes is float and the other is integer if not (np.issubdtype(dtype_left, np.integer) and np.issubdtype(dtype_right, np.integer) or np.issubdtype(dtype_left, np.float) and np.issubdtype(dtype_right, np.float)): continue with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), index=np.arange(n, dtype=dtype_left)) B = pd.Series(np.arange(n)**2, index=np.arange(n, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) def test_series_operator_add_numeric_same_index_str(self): """Verifies implementation of Series.operator.add between two numeric Series with the same string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 A = pd.Series(np.arange(n), index=['a', 'c', 'e', 'c', 'b', 'a', 'o']) B = pd.Series(np.arange(n)**2, index=['a', 'c', 'e', 'c', 'b', 'a', 'o']) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_int(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal integer indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_str(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = ['', '', 'aa', 'aa', 'ae', 'ae', 'b', 'ccc', 'cccc', 'oo', 's'] index_B = ['', '', 'aa', 'aa', 'cc', 'cccc', 'e', 'f', 'h', 'oo', 's'] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) @skip_numba_jit('TODO: fix Series.sort_values to handle both None and '' in string series') def test_series_operator_add_numeric_align_index_str_fixme(self): """Same as test_series_operator_add_align_index_str but with None values in string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = ['', '', 'aa', 'aa', 'ae', 'b', 'ccc', 'cccc', 'oo', None, None] index_B = ['', '', 'aa', 'aa', 'cccc', 'f', 'h', 'oo', 's', None, None] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_other_dtype(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal integer indexes of different dtypes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 A = pd.Series(np.arange(3*n), index=np.arange(-n, 2*n, 1, dtype=np.int64)) B = pd.Series(np.arange(3*n)**2, index=np.arange(0, 3*n, 1, dtype=np.float64)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_diff_series_sizes(self): """Verifies implementation of Series.operator.add between two numeric Series with different sizes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) size_A, size_B = 7, 25 A = pd.Series(np.arange(size_A)) B = pd.Series(np.arange(size_B)**2) result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref, check_dtype=False, check_names=False) def test_series_operator_add_align_index_int_capacity(self): """Verifies implementation of Series.operator.add and alignment of numeric indexes of large size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 20000 np.random.seed(0) index1 = np.random.randint(-30, 30, n) index2 = np.random.randint(-30, 30, n) A = pd.Series(np.random.ranf(n), index=index1) B = pd.Series(np.random.ranf(n), index=index2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_align_index_str_capacity(self): """Verifies implementation of Series.operator.add and alignment of string indexes of large size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 2000 np.random.seed(0) valid_ids = ['', 'aaa', 'a', 'b', 'ccc', 'ef', 'ff', 'fff', 'fa', 'dddd'] index1 = [valid_ids[i] for i in np.random.randint(0, len(valid_ids), n)] index2 = [valid_ids[i] for i in np.random.randint(0, len(valid_ids), n)] A = pd.Series(np.random.ranf(n), index=index1) B = pd.Series(np.random.ranf(n), index=index2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_str_same_index_default(self): """Verifies implementation of Series.operator.add between two string Series with default indexes and same size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) A = pd.Series(['a', '', 'ae', 'b', 'cccc', 'oo', None]) B = pd.Series(['b', 'aa', '', 'b', 'o', None, 'oo']) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_str_align_index_int(self): """Verifies implementation of Series.operator.add between two string Series with non-equal integer indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) np.random.seed(0) index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) data = ['', '', 'aa', 'aa', None, 'ae', 'b', 'ccc', 'cccc', None, 'oo'] A = pd.Series(data, index=index_A) B = pd.Series(data, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_result_name1(self): """Verifies name of the Series resulting from appying Series.operator.add to different arguments""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 series_names = ['A', '', None, 'B'] for left_name, right_name in combinations(series_names, 2): S1 = pd.Series(np.arange(n), name=left_name) S2 = pd.Series(np.arange(n, 0, -1), name=right_name) with self.subTest(left_series_name=left_name, right_series_name=right_name): # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) # also verify case when second operator is scalar scalar = 3.0 with self.subTest(scalar=scalar): S1 = pd.Series(np.arange(n), name='A') pd.testing.assert_series_equal(hpat_func(S1, scalar), test_impl(S1, scalar), check_dtype=False) @unittest.expectedFailure def test_series_operator_add_result_name2(self): """Verifies implementation of Series.operator.add differs from Pandas in returning unnamed Series when both operands are named Series with the same name""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 S1 = pd.Series(np.arange(n), name='A') S2 = pd.Series(np.arange(n, 0, -1), name='A') result = hpat_func(S1, S2) result_ref = test_impl(S1, S2) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(result, result_ref, check_dtype=False) @unittest.expectedFailure def test_series_operator_add_series_dtype_promotion(self): """Verifies implementation of Series.operator.add differs from Pandas in dtype of resulting Series that is fixed to float64""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.array(np.arange(n), dtype=dtype_left)) B = pd.Series(np.array(np.arange(n)**2, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operator_add_str_scalar(self): def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) series_data = ['a', '', 'ae', 'b', 'cccc', 'oo', None] S = pd.Series(series_data) values_to_test = [' ', 'wq', '', '23'] for scalar in values_to_test: with self.subTest(left=series_data, right=scalar): result_ref = test_impl(S, scalar) result = hpat_func(S, scalar) pd.testing.assert_series_equal(result, result_ref) with self.subTest(left=scalar, right=series_data): result_ref = test_impl(scalar, S) result = hpat_func(scalar, S) pd.testing.assert_series_equal(result, result_ref) def test_series_operator_add_str_unsupported(self): def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 series_data = ['a', '', 'ae', 'b', 'cccc', 'oo', None] S = pd.Series(series_data) other_operands = [ 1, 3.0, pd.Series(np.arange(n)), pd.Series([True, False, False, True, False, True, True]), ] for operand in other_operands: with self.subTest(right=operand): with self.assertRaises(TypingError) as raises: hpat_func(S, operand) expected_msg = 'Operator add(). Not supported for not-comparable operands.' self.assertIn(expected_msg, str(raises.exception)) def test_series_operator_mul_str_scalar(self): def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) series_data = ['a', '', 'ae', 'b', ' ', 'cccc', 'oo', None] S = pd.Series(series_data) values_to_test = [-1, 0, 2, 5] for scalar in values_to_test: with self.subTest(left=series_data, right=scalar): result_ref = test_impl(S, scalar) result = hpat_func(S, scalar) pd.testing.assert_series_equal(result, result_ref) with self.subTest(left=scalar, right=series_data): result_ref = test_impl(scalar, S) result = hpat_func(scalar, S) pd.testing.assert_series_equal(result, result_ref) def test_series_operator_mul_str_same_index_default(self): """Verifies implementation of Series.operator.add between two string Series with default indexes and same size""" def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) A = pd.Series(['a', '', 'ae', 'b', 'cccc', 'oo', None]) B = pd.Series([-1, 2, 0, 5, 3, -5, 4]) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operator_mul_str_align_index_int1(self): """ Verifies implementation of Series.operator.add between two string Series with integer indexes containg same unique values (so alignment doesn't produce NaNs) """ def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) shuffled_data = np.arange(n, dtype=np.int) np.random.shuffle(shuffled_data) index_A = shuffled_data np.random.shuffle(shuffled_data) index_B = shuffled_data str_series_values = ['', '', 'aa', 'aa', None, 'ae', 'b', 'ccc', 'cccc', None, 'oo'] int_series_values = np.random.randint(-5, 5, n) A = pd.Series(str_series_values, index=index_A) B = pd.Series(int_series_values, index=index_B) for swap_operands in (False, True): if swap_operands: A, B = B, A with self.subTest(left=A, right=B): result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref) @unittest.expectedFailure # pandas can't calculate this due to adding NaNs to int series during alignment def test_series_operator_mul_str_align_index_int2(self): """ Verifies implementation of Series.operator.add between two string Series with integer indexes that cannot be aligned without NaNs """ def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) str_series_values = ['', '', 'aa', 'aa', None, 'ae', 'b', 'ccc', 'cccc', None, 'oo'] int_series_values = np.random.randint(-5, 5, n) A = pd.Series(str_series_values, index=index_A) B = pd.Series(int_series_values, index=index_B) for swap_operands in (False, True): if swap_operands: A, B = B, A with self.subTest(left=A, right=B): result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref) def test_series_operator_mul_str_unsupported(self): def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) series_data = ['a', '', 'ae', 'b', 'cccc', 'oo', None] S =
pd.Series(series_data)
pandas.Series
import numpy as np import pandas as pd import pytest from rayml.objectives import SensitivityLowAlert from rayml.tests.objective_tests.test_binary_classification_objective import ( TestBinaryObjective, ) class TestSLA(TestBinaryObjective): __test__ = True def assign_objective(self, alert_rate): self.objective = SensitivityLowAlert(alert_rate) def test_sla_objective(self, X_y_binary): self.assign_problem_type() self.assign_objective(0.1) self.run_pipeline(X_y_binary) @pytest.mark.parametrize("alert_rate", [0.01, 0.99]) def test_valid_alert_rate(self, alert_rate): obj = SensitivityLowAlert(alert_rate) assert obj.alert_rate == alert_rate @pytest.mark.parametrize("alert_rate", [-1, 1.5]) def test_invalid_alert_rate(self, alert_rate): with pytest.raises(ValueError): SensitivityLowAlert(alert_rate) @pytest.mark.parametrize( "alert_rate, ypred_proba, high_risk", [ (0.1, pd.Series([0.5, 0.5, 0.5]), [True, True, True]), (0.1, list(range(10)), [False if i != 9 else True for i in range(10)]), ], ) def test_high_risk_output(self, alert_rate, ypred_proba, high_risk): self.assign_objective(alert_rate) assert self.objective.decision_function(ypred_proba).tolist() == high_risk @pytest.mark.parametrize( "y_true, y_predicted, expected_score", [ (pd.Series([False, False, False]), pd.Series([True, True, False]), np.nan), ( pd.Series([True, True, True, True]),
pd.Series([True, True, False, False])
pandas.Series
import codecs import datetime import functools import json import os import re import shutil import pandas as pd from dateutil.relativedelta import relativedelta from requests.exceptions import ConnectionError from utils_pandas import add_data from utils_pandas import cut_ages from utils_pandas import export from utils_pandas import fuzzy_join from utils_pandas import import_csv from utils_scraping import logger from utils_scraping import s from utils_scraping import web_files from utils_thai import DISTRICT_RANGE from utils_thai import join_provinces from utils_thai import to_thaiyear from utils_thai import today ################################# # Cases Apis ################################# def get_cases_old(): logger.info("========Covid19 Timeline==========") # https://covid19.th-stat.com/json/covid19v2/getTimeline.json # https://covid19.ddc.moph.go.th/api/Cases/round-1to2-all # https://covid19.ddc.moph.go.th/api/Cases/timeline-cases-all # {"Date":"01\/01\/2020","NewConfirmed":0,"NewRecovered":0,"NewHospitalized":0,"NewDeaths":0,"Confirmed":0,"Recovered":0,"Hospitalized":0,"Deaths":0} # {"txn_date":"2021-03-31","new_case":42,"total_case":28863,"new_case_excludeabroad":24,"total_case_excludeabroad":25779,"new_death":0,"total_death":94,"new_recovered":47,"total_recovered":27645} # "txn_date":"2021-04-01","new_case":26,"total_case":28889,"new_case_excludeabroad":21,"total_case_excludeabroad":25800,"new_death":0,"total_death":94,"new_recovered":122,"total_recovered":27767,"update_date":"2021-09-01 07:40:49"} try: file, text, url = next( web_files("https://covid19.th-stat.com/json/covid19v2/getTimeline.json", dir="inputs/json", check=True)) except ConnectionError: # I think we have all this data covered by other sources. It's a little unreliable. return pd.DataFrame() data = pd.DataFrame(json.loads(text)['Data']) data['Date'] = pd.to_datetime(data['Date']) data = data.set_index("Date") cases = data[["NewConfirmed", "NewDeaths", "NewRecovered", "Hospitalized"]] cases = cases.rename(columns=dict(NewConfirmed="Cases", NewDeaths="Deaths", NewRecovered="Recovered")) cases["Source Cases"] = url return cases def get_cases(): logger.info("========Covid19 Timeline==========") # https://covid19.th-stat.com/json/covid19v2/getTimeline.json # https://covid19.ddc.moph.go.th/api/Cases/round-1to2-all # https://covid19.ddc.moph.go.th/api/Cases/timeline-cases-all # {"Date":"01\/01\/2020","NewConfirmed":0,"NewRecovered":0,"NewHospitalized":0,"NewDeaths":0,"Confirmed":0,"Recovered":0,"Hospitalized":0,"Deaths":0} # {"txn_date":"2021-03-31","new_case":42,"total_case":28863,"new_case_excludeabroad":24,"total_case_excludeabroad":25779,"new_death":0,"total_death":94,"new_recovered":47,"total_recovered":27645} # "txn_date":"2021-04-01","new_case":26,"total_case":28889,"new_case_excludeabroad":21,"total_case_excludeabroad":25800,"new_death":0,"total_death":94,"new_recovered":122,"total_recovered":27767,"update_date":"2021-09-01 07:40:49"} url1 = "https://covid19.ddc.moph.go.th/api/Cases/round-1to2-all" url2 = "https://covid19.ddc.moph.go.th/api/Cases/timeline-cases-all" try: _, json1, url = next(web_files(url1, dir="inputs/json", check=False)) _, json2, url = next(web_files(url2, dir="inputs/json", check=True)) except ConnectionError: # I think we have all this data covered by other sources. It's a little unreliable. return pd.DataFrame() data = pd.read_json(json1).append(pd.read_json(json2)) data['Date'] = pd.to_datetime(data['txn_date']) data = data.set_index("Date") data = data.rename(columns=dict(new_case="Cases", new_death="Deaths", new_recovered="Recovered")) cases = data[["Cases", "Deaths", "Recovered"]] cases["Source Cases"] = url # 2021-12-28 had duplicate because cases went up 4610 from 2305. Why? Google says 4610 cases = cases[~cases.index.duplicated(keep='first')] return cases @functools.lru_cache(maxsize=100, typed=False) def get_case_details_csv(): if False: return get_case_details_api() cols = "No.,announce_date,Notified date,sex,age,Unit,nationality,province_of_isolation,risk,province_of_onset,district_of_onset".split( ",") url = "https://data.go.th/dataset/covid-19-daily" file, text, _ = next(web_files(url, dir="inputs/json", check=True)) data = re.search(r"packageApp\.value\('meta',([^;]+)\);", text.decode("utf8")).group(1) apis = json.loads(data) links = [api['url'] for api in apis if "รายงานจำนวนผู้ติดเชื้อ COVID-19 ประจำวัน" in api['name']] # get earlier one first links = sorted([link for link in links if '.php' not in link and '.xlsx' not in link], reverse=True) # 'https://data.go.th/dataset/8a956917-436d-4afd-a2d4-59e4dd8e906e/resource/be19a8ad-ab48-4081-b04a-8035b5b2b8d6/download/confirmed-cases.csv' cases = pd.DataFrame() for link, check in zip(links, ([False] * len(links))[:-1] + [True]): for file, _, _ in web_files(link, dir="inputs/json", check=check, strip_version=True, appending=True): if file.endswith(".xlsx"): continue #cases = pd.read_excel(file) elif file.endswith(".csv"): confirmedcases = pd.read_csv(file) if "risk" not in confirmedcases.columns: confirmedcases.columns = cols if '�' in confirmedcases.loc[0]['risk']: # bad encoding with codecs.open(file, encoding="tis-620") as fp: confirmedcases = pd.read_csv(fp) first, last, ldate = confirmedcases["No."].iloc[0], confirmedcases["No."].iloc[-1], confirmedcases["announce_date"].iloc[-1] logger.info("Covid19daily: rows={} {}={} {} {}", len(confirmedcases), last - first, last - first, ldate, file) cases = cases.combine_first(confirmedcases.set_index("No.")) else: raise Exception(f"Unknown filetype for covid19daily {file}") cases = cases.reset_index("No.") cases['announce_date'] = pd.to_datetime(cases['announce_date'], dayfirst=True) cases['Notified date'] = pd.to_datetime(cases['Notified date'], dayfirst=True, errors="coerce") cases = cases.rename(columns=dict(announce_date="Date")) cases['age'] = pd.to_numeric(cases['age'], downcast="integer", errors="coerce") #assert cases.index.max() < # Fix typos in Nationality columns # This won't include every possible misspellings and need some further improvement mapping = pd.DataFrame([['Thai', 'Thailand'], ['Thai', 'Thai'], ['Thai', 'India-Thailand'], ['Thai', 'ไทยใหญ่'], ['Lao', 'laotian / Lao'], ['Lao', 'Lao'], ['Lao', 'Laotian/Lao'], ['Lao', 'Laotian / Lao'], ['Lao', 'laos'], ['Lao', 'Laotian'], ['Lao', 'Laos'], ['Lao', 'ลาว'], ['Indian', 'Indian'], ['Indian', 'India'], ['Indian', 'indian'], ['Cambodian', 'Cambodian'], ['Cambodian', 'cambodian'], ['Cambodian', 'Cambodia'], ['South Korean', 'South Korean'], ['South Korean', 'Korea, South'], ['South Korean', 'Korean'], ['Burmese', 'Burmese'], ['Burmese', 'พม่า'], ['Burmese', 'burmese'], ['Burmese', 'Burma'], ['Chinese', 'Chinese'], ['Chinese', 'จีน'], ['Chinese', 'China'], ], columns=['Nat Main', 'Nat Alt']).set_index('Nat Alt') cases = fuzzy_join(cases, mapping, 'nationality') cases['nationality'] = cases['Nat Main'].fillna(cases['nationality']) return cases def get_case_details_api(): rid = "67d43695-8626-45ad-9094-dabc374925ab" chunk = 10000 url = f"https://data.go.th/api/3/action/datastore_search?resource_id={rid}&limit={chunk}&q=&offset=" records = [] cases = import_csv("covid-19", ["_id"], dir="inputs/json") lastid = cases.last_valid_index() if cases.last_valid_index() else 0 data = None while data is None or len(data) == chunk: r = s.get(f"{url}{lastid}") data = json.loads(r.content)['result']['records'] df = pd.DataFrame(data) df['announce_date'] = pd.to_datetime(df['announce_date'], dayfirst=True) df['Notified date'] =
pd.to_datetime(df['Notified date'], dayfirst=True, errors="coerce")
pandas.to_datetime
""" This code translates .mdl files and produces - csv file: detailed descriptives of all variables - doc file: file with information used later in the testing battery - equi file: creates file for user input for equilibrium test - py file: translated .mdl file using pysd - model stats: model statistics of all files translated - word analysis files: experimental code for later use - other testing files: collecting functions, gathering errors, etc. The descriptives add additional detail compared to pysd and permit a quick review of the variables in an excel file Some sections are closely mirrored from pysd This needs to be drastically improved 30.07.18/sk version 0.2 30.07.18/sk """ import os import pysd import pandas as pd import re from timeit import default_timer as timer from collections import Counter from tb.tb_backend import fileops as fops def constant(expr): """ testing if an expression is numeric :param expr: any expression to be tested :return: true if numeric, false if not numeric """ try: float(expr) return True except ValueError: return False def flow_split(expr): """ splitting the stock expressions to extract the flow namespace expr is INTEG (inflow-outflow,init stock) returns: - flows: ['inflow', 'outflow'] - flow: inflow-outflow - init: init stock) :param expr: expr expression from translation routine (everything right of the equation sign) :return: list of flows, flow expression and init expression """ # eliminating the INTEG ( part expr = expr.split('(', 1)[-1] # splitting the init off the expression flow, init = expr.rsplit(',', 1) # splitting the flows off, but avoiding splits between parentheses flows = re.split('(".*?")|[+-/*]', flow) # removing empty strings in flows flows = [x for x in flows if x is not None] flows = [x for x in flows if x != ''] flows = [x.strip() for x in flows] # removing the closing parenthesis from the init expression init = init.replace(')', '') return flows, flow, init def get_sections(textstring): """ splitting the text string and returning the equation string (uncleaned) for both builtin and elements the text string is split in three parts (elements, builtins, garbage) garbage is split off based on the string 'Sketch information' builtins are split off by string '.Control' however, sometimes elements are listed below the .Control split, thus this needs to be cleaned afterwards input is: {UTF-8} exo BL1= 3 ~ Month ~ | exo BL2= 0.5 ~ 1/Month ~ | output is: ['exo BL1=3~Month~', 'exo BL2=0.5~1/Month~', :param textstring: text version of a Vensim model :return: list of equation strings (unclean) """ # removing charset info basetext = textstring.replace('{UTF-8}', '') # replace new line and tab characters wtext = basetext.replace('\n', '').replace('\t', '') # replace backslashes text = wtext.replace('\\', '') # split off garbage text = text.split('Sketch information')[0] # split elements and builtin sections sections = text.split('.Control') # split elements section into each element elements = sections[0].split('|') # remove the last element as it is empty elements = elements[:-1] # the same is done with builtins, but this is done in a try block because for some reason the # .Control splitter could not exist (this case actually is in the sample) try: built_ins = sections[1].split('|') built_ins = built_ins[1:-1] except: # if there is no section, the builtins are empty built_ins = [] return elements, built_ins def get_vars(varlist): """ splitting the equations and creating the varlist info input is: ['exo BL1=3~Month~', 'exo BL2=0.5~1/Month~', output is: [{'eqn': 'exo BL1=3', 'unit': 'Month', 'comment': '', 'name': 'exo BL1', 'expr': '3'}, is run for both the elements and the builtins the inner try except block ensures that table functions are also read in :param varlist: list of equation strings (unclean) :return: list of dicts with elements and builtins """ components = [] for element in varlist: try: eqn, unit, comment = element.split('~', 2) eqn = eqn.strip() unit = unit.strip() comment = comment.strip() # name is left of =, expr on the right try: name, expr = eqn.split('=', 1) except ValueError: name = eqn expr = eqn components.append({'eqn': eqn, 'unit': unit, 'comment': comment, 'name': name.strip(), 'expr': expr.strip()}) except ValueError: pass return components def corr_lists(varlist, builtins): """ this corrects list in case the split with .Control didn't split correctly this could be much easier if we hadn't split for sections before, but this has to be revisited at some other point, right now I'm just happy this works :param varlist: list of dict with variables :param builtins: list of dict with builtins :return: clean list of dict with variables and builtins (of which there are 4) """ # is used to ensure that there is no infinite loop, two iterations are enough # it is for example possible that (BI = builtin): # builtins = [var1] and varlist = [var2, var3, BI1, BI2, BI3, BI4] # in that case the function will first move the builtins to the builtin list with the result that # builtins = [var1, BI1, BI2, BI3, BI4] and varlist = [var2, var3] # now in the second iteration the elif condition applies and the var1 is moved to the varlist, resulting # builtins = [BI1, BI2, BI3, BI4] and varlist = [var1, var2, var3] i = 0 while len(builtins) != 4 and i <= 2: if len(builtins) < 4: translist = [x for x in varlist if x['name'] in ['FINAL TIME', 'INITIAL TIME', 'TIME STEP', 'SAVEPER']] varlist = [x for x in varlist if x['name'] not in ['FINAL TIME', 'INITIAL TIME', 'TIME STEP', 'SAVEPER']] for item in translist: builtins.append(item) elif len(builtins) > 4: translist = [x for x in builtins if x['name'] not in ['FINAL TIME', 'INITIAL TIME', 'TIME STEP', 'SAVEPER']] builtins = [x for x in builtins if x['name'] in ['FINAL TIME', 'INITIAL TIME', 'TIME STEP', 'SAVEPER']] for item in translist: varlist.append(item) i = i + 1 return varlist, builtins def id_tables(var, tbl_functions): """ This identifies tables and replaces the table information with the string '(table_expr)' to facilitate calculating statistics input is: {'eqn': 'exo BL1=3', 'unit': 'Month', 'comment': '', 'name': 'exo BL1', 'expr': '3', 'type': 'constant', 'flow expr': 'NA', 'init expr': 'NA', 'table expr': 'NA'} :param var: dict for each variable :param tbl_functions: list of tbl_functions :return: corrected variable dict """ # function list are put in tuple to be used here if var['expr'].startswith(tuple(tbl_functions)): # this is the routine if tables are introduced with functions var['type'] = 'table function' # in this case the table expression is after the last comma c = re.split(',', var['expr'], 1) c = [x for x in c if x != ''] var['table expr'] = c[-1] var['expr'] = var['expr'].replace(c[-1], '(table_expr))') # if tables are introduced without a function it's a bit more complicated # the identifiers are that the eqn string does not have an equal sign and # that either no : exists (which would be for :AND:) OR the string ([( exists, # which is the opening bracket of the table expression elif len(var['eqn'].split('=')) == 1 and len(var['eqn'].split(':')) == 1 or len(var['eqn'].split('=')) == 1 \ and len(var['eqn'].split('([(')) > 1: var['type'] = 'table function' # in this case the table expression is between two non-greedy parantheses c = re.split('(\(.*\))', var['expr']) c = [x for x in c if x != ''] var['table expr'] = c[-1] var['expr'] = var['expr'].replace(c[-1], '(table_expr)') var['name'] = var['name'].replace(c[-1], '') # test with without parentheses 30.07.18/sk return var def get_types(components, tbl_functions, c_functions, s_functions, t_functions): """ defining types for the variables input is: [{'eqn': 'exo BL1=3', 'unit': 'Month', 'comment': '', 'name': 'exo BL1', 'expr': '3'},... [{'eqn': 'exo BL1=3', 'unit': 'Month', 'comment': '', 'name': 'exo BL1', 'expr': '3', 'type': 'constant', 'flow expr': 'NA', 'init expr': 'NA', 'table expr': 'NA', 'math type': 'regular', 'function': 'NA'},... :param components: list of dict with the variables :param tbl_functions: list of functions that are used for tables :param c_functions: list of complicated functions :param s_functions: list of simple functions :param t_functions: list of testing functions :return: """ flows_list = [] for entry in components: # if the expression is a constant, the type is always constant if constant(entry['expr']): entry['type'] = 'constant' entry['flow expr'] = 'NA' entry['init expr'] = 'NA' entry['table expr'] = 'NA' # if the expression starts with INTEG, it's always a stock elif entry['expr'].startswith('INTEG') and not entry['expr'].startswith('INTEGER'): entry['type'] = 'stock' # flows differ from other auxiliaries that they are the only ones that can impact a stock # thus the flow names are saved in a list and changed later flows, flow_expr, init_expr = flow_split(entry['expr']) for flow in flows: if flow not in flows_list and len(flow) > 0: flows_list.append(flow) # an init variable list could be created here and init variables could be classified different # than constants 06.07.18/sk entry['flow expr'] = flow_expr entry['init expr'] = init_expr entry['table expr'] = 'NA' else: # everything that is not a constant or a stock, is first typed as an auxiliary entry['type'] = 'auxiliary' entry['flow expr'] = 'NA' entry['init expr'] = 'NA' entry['table expr'] = 'NA' for entry in components: # if the name is in the flow list, it's a flow, the split on [ is just if there are subscripts if entry['name'].split('[')[0] in flows_list or entry['name'] in flows_list: entry['type'] = 'flow' # then tables are identified with the ID tables function entry = id_tables(entry, tbl_functions) # subscripts need to be named subscripts in this one for entry in components: # split should be on elements, not on the entire equation # this is to define the math types and separate the function types for statistics # this only works for functions that are at the beginning of the expression try: func, expr = entry['expr'].split('(', 1) except ValueError: func = '' expr = '' func = func.strip() # removing the closing bracket expr = expr.rsplit(')', 1)[0] # The code below splits first level commas, but not commas within brackets, such as in MAX ( X , Y ) # and returns 3 or 4 elements depending on which function # This is separated in order to be able to replace the init element and put it back together expr_split = re.split(',\s*(?![^()]*\))', expr) if func == 'A FUNCTION OF': entry['math type'] = 'incomplete equation' entry['function'] = func elif func in c_functions: entry['math type'] = 'complicated function' entry['function'] = func if func in regfunc_lst: pos = -1 elif func in nfunc_lst: pos = -2 else: pos = None if pos is not None: entry['init expr'] = expr_split[pos] elif func in s_functions: entry['math type'] = 'simple function' entry['function'] = func elif func in t_functions: entry['math type'] = 'testing function' entry['function'] = func else: entry['math type'] = 'regular' entry['function'] = 'NA' return components # handling the subscripts def rem_subscripts(components): """ this removes the subscript brackets and adds them to the sub_expr and subs column in the doc this function has to be reviewed and better documented :param components: list of dict of the variables :return: list of dict of the variables with subscript elements added """ sublist = [] subdict = {} for entry in components: if len(entry['eqn'].split('=')) == 1 and len(entry['eqn'].split(':')) > 1: subs = re.split(':', entry['expr']) entry['expr'] = subs[0] entry['sub_expr'] = subs[-1] sub_ins = re.split(',', subs[-1]) ins = len(sub_ins) if ins == 1: ex = subs[-1].replace('(', '').replace(')', '') bounds = re.split('([0-9]*)', ex) bounds = [x for x in bounds if constant(x)] try: ins = int(bounds[-1]) - int(bounds[0]) + 1 except: ins = 1 entry['no of sub_ins'] = ins entry['no of subs'] = 1 entry['type'] = 'subscript list' if subs[0] not in sublist: sublist.append(subs[0]) subdict[subs[0]] = len(sub_ins) else: entry['subs'] = 'NA' entry['no of subs'] = 'NA' entry['no of sub_ins'] = 1 entry['sub_expr'] = 'NA' for entry in components: if len(re.split('(\[.*?\])', entry['name'])) > 1: subexpr = re.split('(\[.*?\])', entry['name'])[1] subexpr = subexpr.replace('[', '').replace(']', '') subs = subexpr.split(',') ins = 1 if set(subs).issubset(sublist): entry['subs'] = subs entry['no of subs'] = len(subs) for sub in subs: ins = ins * subdict.get(sub) entry['no of sub_ins'] = ins temp_expr = entry['expr'].replace(';', ',') temp_els = re.split(',', temp_expr) temp_els = [x for x in temp_els if x != ''] i = 0 for el in temp_els: if constant(el): i = i + 1 if len(temp_els) == ins and ins == i: entry['type'] = 'subscripted constant' for entry in components: if entry['no of subs'] != 'NA': # should probably remove emtpies here if entry['no of subs'] == 1 and entry['math type'] == 'regular' and len(entry['expr'].split(',')) > 1: entry['det_sub_ins'] = len(entry['expr'].split(',')) elif entry['no of subs'] > 1 and entry['math type'] == 'regular' and len(entry['expr'].split(';')) > 1: entry['det_sub_ins'] = len(entry['expr'].split(';')) else: entry['det_sub_ins'] = 'NA' else: entry['det_sub_ins'] = 'NA' return components def collect_functions(components, collection, missing): """ collects additional functions that haven't been sorted also collects garbage, but it's good enough this could potentially be eliminated as the collection happens better in equation split :param components: list of dict with variables :param collection: list of functions that have been sorted :param missing: list of functions that haven't been sorted from previous iterations :return: list of functions updated with new functions """ for entry in components: func = entry['expr'].split('(')[0].strip() func = re.split("[+-/*]", func)[-1].strip() if func.isupper(): if len(func) < len(entry['expr'].strip()) and func not in collection and func not in missing: missing.append(func) return missing def equation_split(varlist, funclist, missing, t_function): """ this splits the equation into its elements and counts them and saves some information based on types to the varlist :param varlist: list of dict of the variables :param funclist: list, combined with all functions :param missing: list, missing functions :param t_function: list, testing functions :return: list of dict with updated information """ for var in varlist: e = re.split('(".*?")|\+|-|\*|/|\(|\)|\^|,|>|<', var['expr']) e = [x for x in e if x is not None] e = [x.strip() for x in e] e = [x for x in e if x != ''] # m collects the missing functions (statements in upper case) that are not at the beginning of the expression m = [x for x in e if x.isupper()] # f collects functions even if they are not upper case f = [x for x in e if x.upper() in funclist] e = [x for x in e if x.upper() not in funclist] for func in m: # the functions that are not already in the list or already collected in missing are added if func not in funclist and func not in missing: missing.append(func) # types and subscripted constants don't need further information if var['type'] == 'constant' or var['type'] == 'subscripted constant': nbr, e, hasinit = 0, [], 'NA' # stocks have additional information here (number of elements and hasinit) elif var['type'] == 'stock': e = [x for x in e if x != 'INTEG'] nbr = len(e) - 1 if constant(var['init expr']): hasinit = 'no' else: hasinit = 'yes' else: nbr = len(e) hasinit = 'NA' var['Number of elements'] = nbr var['INIT'] = hasinit var['elements'] = e var['function list'] = f funcs = len(f) if funcs > 0 and var['math type'] == 'regular': var['function'] = f[0] if f[0] in t_function: var['math type'] = 'testing function' else: var['math type'] = 'simple function' var['no of functions'] = funcs # splitting the elements in the init expression because we need them for the loop recognition if var['init expr'] != 'NA': ie = re.split('(".*?")|\+|-|\*|/|\(|\)|\^|,|>|<', var['init expr']) ie = [x for x in ie if x is not None] ie = [x.strip() for x in ie] ie = [x for x in ie if x != ''] var['init elements'] = ie else: var['init elements'] = [] return varlist def add_builtin(varlist, builtin, model_name): """ this adds the builtin information to the variables for statistical purposes :param varlist: list of dicts with variables :param builtin: list with builtins :param model_name: str with model name :return: list of dicts with builtin information added """ # bunit: base unit is interesting when other time units are in the model # SAVEPER is irrelevant and thus ignored ftime, bunit, itime, tstep = '', '', '', '' for item in builtin: if item['name'] == 'FINAL TIME': ftime = item['expr'] bunit = item['unit'] elif item['name'] == 'INITIAL TIME': itime = item['expr'] elif item['name'] == 'TIME STEP': tstep = item['expr'] for var in varlist: var['FINAL TIME'] = ftime var['Base Unit'] = bunit var['INITIAL TIME'] = itime var['TIME STEP'] = tstep var['Model name'] = model_name return varlist def corr_units(varlist): """ The unit correction is necessary as in the case when there are subscripts, the units are not associated correctly with all the subscript instances therefore the same unit needs to be passed down to other instances unit_dict is not used anywhere else, but could be: {'exo BL1': 'Month', 'exo BL2': '1/Month', 'exo RL1': 'Month', ... :param varlist: list of dict of the variables :return: list of dict of the variables with corrected units """ unit_dict = {} for var in varlist: if var['unit'] != '': unit_dict[var['name'].split('[')[0]] = var['unit'] for var in varlist: if var['type'] != 'subscript list' and var['unit'] == '': var['unit'] = unit_dict.get(var['name'].split('[')[0]) return varlist def calc_avg(varlist): """ Collecting the statistics for descriptives, including number of elements, number of functions, number of variables, number of constants :param varlist: list of dict of the variables :return: total variables, average elements per equation, number of functions and average, constants, empty units """ tot, els, avg, funcs, cons, e_unit, sl_tot = 0, 0, 0, 0, 0, 0, 0 # two different count types, once with subscript and once without (i.e. number of elements with # and without subscripts) for var in varlist: if var['type'] != 'constant' and var['type'] != 'subscripted constant': tot = tot + 1 * var['no of sub_ins'] els = els + var['Number of elements'] * var['no of sub_ins'] funcs = funcs + var['no of functions'] * var['no of sub_ins'] if var['type'] == 'constant' or var['type'] == 'subscripted constant': cons = cons + 1 * var['no of sub_ins'] if var['type'] != 'subscript list': sl_tot = sl_tot + 1 if var['unit'] is None: e_unit = e_unit + 1 try: avg = els / tot f_avg = funcs / tot unit_per = e_unit / sl_tot except ZeroDivisionError: avg = 0 f_avg = 0 unit_per = 1 return tot, avg, funcs, f_avg, cons, unit_per def word_analysis(varlist, worddict, wordlist): """ Function to collect word use in models, collects a stream of words and a dictionary with number of uses :param varlist: list of dict of the variables :param worddict: dictionary with the word counts :param wordlist: used words in the models :return: word data """ for var in varlist: w_name = re.sub('\[.*?\]', ' ', var['name']) w_name = re.sub('\"', ' ', w_name) w_name = re.sub(':', ' ', w_name) w_name = re.sub('\(table_expr\)', ' ', w_name) w_list = w_name.split() for w in w_list: w = w.strip() # all words are capitalized to make sure no double counting happens w = w.upper() if w in worddict: worddict[w] = worddict[w] + 1 else: worddict[w] = 1 if var['unit'] is not None: # btu = base time unit, this is to indicate that when a time unit is used, it's not the base # and multiple time units are used in the model w_unit = var['unit'].replace(var['Base Unit'], 'btu') else: w_unit = None wordlist.append({'unit': w_unit, 'words': w_list}) return worddict, wordlist def flagging(type_counter, func_counter, empty_stocks, varlist, builtins): """ This function flags models with obvious errors and codifies the error :param type_counter: collections.counter object with the type information of the model :param func_counter: collections.counter object with the function information of the model :param empty_stocks: int, count of empty stocks from collect stats :param varlist: list of dict of the variables :param builtins: list of dict of the builtins :return: flag and code for the """ flag = 'No' code = 'None' # if the length of the varlist is 0, the model is empty if len(varlist) == 0: flag = 'Yes' code = 'Empty' # if the length of the builtin is not 4, there is a problem with the builtin elif len(builtins) != 4: flag = 'Yes' code = 'Builtin' # if the count of functions with 'A FUNCTION OF' is higher than 0, there is a problem with some equations elif func_counter['A FUNCTION OF'] > 0: flag = 'Yes' code = 'incomplete equations' # if there are empty stocks (i.e. stocks with a constant in it and nothing else), there is a problem elif empty_stocks > 0: flag = 'Yes' code = 'constant stocks' try: # if the number of flows is smaller than 0.5, the model is obviously wrong # (there needs to be at least 0.5 flows per stock) # could be replaced with fs ratio from collect stats, but would require a # division by zero check anyway for next flag, so why bother? if type_counter['flow'] / type_counter['stock'] < 0.5: flag = 'Yes' code = 'flow recognition' # if the previous test returns a zerodivision error, then there are no stocks in the model except ZeroDivisionError: flag = 'Yes' code = 'No Stocks' return flag, code def doc(doc_name, doc_vars, model_doc): """ this creates the doc folder with all the information that is used in further tests and is a selection of the descriptives The doc file uses the following columns: - Base Unit: for the x axis of plots - flow expr: for the equilibrium function - type: for the different type df (switches are not a type here) - Real Name: For output lists - Py Name: For input dicts - elements: for distance calculations - TIME STEP: for the integration test - function: used for init replacement in doc file - Unit: used for plots :param doc_name: name of the doc file :param doc_vars: full descriptive database :param model_doc: doc from pysd :return: saved doc file """ def fill_blanks(row): """ Function to fill the blanks for the builtin variables coming from model.doc() :param row: row to fill with NA where empty :return: row: NA filled row """ # the builtins and init variables need to be added back to the list now for the doc, # they are coming from the model.doc() from pysd because init variables are only created there builtin_list = ['FINAL TIME', 'INITIAL TIME', 'TIME STEP', 'SAVEPER'] if pd.isnull(row['type']): if row['Real Name'] in builtin_list: row['type'] = 'builtin' elif row['Real Name'].startswith('init'): row['type'] = 'constant' else: # if there is an undef type, something is wrong row['type'] = 'undef' # here we just fill the remaining columns as they are irrelevant for both the builtins and the row['flow expr'] = 'NA' row['elements'] = [] row['init elements'] = [] row['function list'] = [] row['expr'] = 'NA' row['table expr'] = 'NA' row['Base Unit'] = doc_vars.iloc[0]['Base Unit'] return row # these are the dropped columns because they are not used from descriptives # last line is used for testing the _doc columns drop_cols = ['INIT', 'eqn', 'unit', 'comment', 'init expr', 'math type', 'subs', 'no of subs', 'no of sub_ins', 'sub_expr', 'det_sub_ins', 'Number of elements', 'no of functions', 'FINAL TIME', 'INITIAL TIME', 'Model name', 'TIME STEP', 'function'] doc_vars.drop(drop_cols, axis=1, inplace=True) # merge with model.doc() from pysd to get the py names in the doc doc_vars = pd.merge(left=doc_vars, right=model_doc, how='outer', left_on='name', right_on='<NAME>') # drop columns that are not used from model.doc() drop_cols = ['Type', 'Comment', 'name'] doc_vars.drop(drop_cols, axis=1, inplace=True) doc_vars.apply(fill_blanks, axis=1) fops.save_csv(doc_vars, doc_name, test) return doc_vars def collect_stats(model_vars): """ Collecting the model stats for current model This function creates counters for: - type: type of variable (i.e. constant, auxiliary, etc.) - math type: math type of variable (i.e. regular, simple function, etc.) - INIT: whether or not a stock has an init variable - function: which function is used (only first in the equation) it also checks for empty stocks, i.e. when the flow expression of a stock is a constant then it also collects the number of subscript instances, i.e. if a subscript has 10 instances, an auxiliary with that subscript counts for 10 variables also checks the flow stock ratio :param model_vars: list of dict of the variables :return: counters, number of empty stocks, subscript counts for stocks, auxiliaries and flows, flow stock ratio """ # counter for types c = Counter() # counter for math types d = Counter() # counter for INIT e = Counter() # counter for functions f = Counter() emstocks = 0 for var in model_vars: c[var['type']] += 1 d[var['math type']] += 1 e[var['INIT']] += 1 f[var['function']] += 1 if constant(var['flow expr']): emstocks += 1 s_stocks = sum(x['no of sub_ins'] for x in model_vars if x['type'] == 'stock') s_aux = sum(x['no of sub_ins'] for x in model_vars if x['type'] == 'auxiliary') s_flow = sum(x['no of sub_ins'] for x in model_vars if x['type'] == 'flow') try: fs_ratio = c['flow'] / c['stock'] except ZeroDivisionError: fs_ratio = 0 return c, d, e, f, emstocks, s_stocks, s_aux, s_flow, fs_ratio def list_combine(): """ combining the lists of functions for general function list checks :return: combined list of functions """ for f in tbl_func_list: comb_func_list.append(f) for f in comp_func_list: comb_func_list.append(f) for f in simp_func_list: comb_func_list.append(f) for f in test_func_list: comb_func_list.append(f) def init(folder): """ Creates the globals for descriptives and handles preparatory file operations in the base and report folder :param folder: string, path to the base folder coming from the testingbattery :return: """ fops.init(folder) # defining the target folder # current directories are test and models global test test = 'doc' global source_folder source_folder = folder # clear and create structure of the report folder, happens in fileops fops.initiate_report_folder() # then we remove the .py files from the source folder # could potentially be an append function, but this is going to be run after hopefully extensive model changes, # so why bother? fops.clear_files_type('source', '.py') # then we remove the .csv files, mainly time tracking files fops.clear_files_type('source', '.csv') # combine the lists list_combine() def descriptives(mdl_file, flag_count, word_dict, word_list, mis_func_list, rep_type='work'): """ This function runs the descriptives for an individual file and is called from the full translate outputs are: - descriptive file - list of dict with variables - flag related information - word analysis information - missing function collection :param rep_type: :param mdl_file: string, .mdl file to be run through descriptives :param flag_count: int, number of flagged models previous to this one :param word_dict: dict, word dictionary with words previous to this one :param word_list: list, words used previous to this one :param mis_func_list: list, missing functions previous to this one :return: list of dict with vars, flag count, word files, missing functions list """ model_name = mdl_file.split('.')[0] # code specific to the ISDC sample, returns garbage in other cases year = re.split('_', model_name)[0] ind_start = timer() with open(os.path.join(source_folder, mdl_file), 'r', encoding='utf8', errors='replace') as in_file: text = in_file.read() # extracting the sections from the text string and get the variables in two sets, model vars and builtins # builtins may fail or contain also model vars var_list, built_ins = get_sections(text) model_vars = get_vars(var_list) built_ins = get_vars(built_ins) # correct the lists, builtins should end up being 4 variables model_vars, built_ins = corr_lists(model_vars, built_ins) # determining the typology of the variables model_vars = get_types(model_vars, tbl_func_list, comp_func_list, simp_func_list, test_func_list) # removing subscripts from the expr model_vars = rem_subscripts(model_vars) # split the equations to get the elements of the equation model_vars = equation_split(model_vars, comb_func_list, mis_func_list, test_func_list) # collect missing functions to be added to the function list # currently collects lots of garbage and misses functions that are not in first place of the eqn string mis_func_list = collect_functions(model_vars, comb_func_list, mis_func_list) # add builtins to model vars to save space (builtins only relevant with values, not name) model_vars = add_builtin(model_vars, built_ins, model_name) # correcting units if subscripts are involved model_vars = corr_units(model_vars) # word analysis word_dict, word_list = word_analysis(model_vars, word_dict, word_list) # model_vars operations need to be done here tot, avg, funcs, f_avg, cons, unit_per = calc_avg(model_vars) c, d, e, f, emstocks, s_stocks, s_aux, s_flow, fs_ratio = collect_stats(model_vars) # finishing the documentation of current model # csv file contains all descriptive information about the variables in the model fops.save_lst_csv(model_vars, model_name, test, append=False) # adding the current variables to the global variable collection for var in model_vars: vardb.append(var) # flagging for data integrity # parking for debug in debug folder flag, code = flagging(c, f, emstocks, model_vars, built_ins) if flag == 'Yes': flag_count += 1 fops.move_mdl_debug(mdl_file, 'flag') # individual operation of model is done here ind_end = timer() # adding the model stats to the stats file model_stat_vars.append({'Name': model_name, 'Variables': len(model_vars), 'sub_Variables': tot + cons, 'Constants': c['constant'], 'sub_Constants': cons, 'Auxiliaries': c['auxiliary'], 'sub_Auxiliaries': s_aux, 'Flows': c['flow'], 'sub_Flows': s_flow, 'Stocks': c['stock'], 'sub_Stocks': s_stocks, 'Flow/Stock Ratio': fs_ratio, 'Empty units percentage': unit_per, 'Table Functions': c['table function'], 'Subscripts': c['subscript list'], 'math_Simple Functions': d['simple function'], 'math_Complicated functions': d['complicated function'], 'math_Testing functions': d['testing function'], 'math_Incomplete equations': d['incomplete equation'], 'Non-constant variables': tot, 'Number of functions': funcs, 'Elements per equation': avg, 'Functions per equation': f_avg, 'Built-ins': len(built_ins), 'Stocks with INIT': e['yes'], 'Stocks without INIT': e['no'], 'Year': year, 'Flag': flag, 'Code': code, 'Time': ind_end - ind_start, 'Timestamp': ind_start}) # doing the reporting for the html file if rep_type == 'orig': title = 'Original Model' else: title = 'Working Model' orig_df = pd.DataFrame(model_vars) sel = orig_df[orig_df['Number of elements'] == 1].count()['Number of elements'] base_lst = [orig_df['Base Unit'][0], orig_df['INITIAL TIME'][0], orig_df['FINAL TIME'][0], orig_df['TIME STEP'][0]] cnt_lst = [len(model_vars), c['auxiliary'], c['constant'], c['flow'], c['stock'], c['table function']] ind_lst = [avg, unit_per, fs_ratio, f_avg, e['no'] / (e['no'] + e['yes']), sel] rep_tpl = (title, base_lst, cnt_lst, ind_lst) return model_vars, flag_count, word_dict, word_list, mis_func_list, rep_tpl # Functions are above # initializing the output files dbname = 'Var_DB' model_stat_file = 'Model_Stats' # These are for word analysis which is currently not further developed word_dict_file = 'word_dict' word_list_file = 'word_list' # These are more for testing mis_name = 'missing_functions' track_name = 'tracking' err_name_adj = 'translation_errors_adjusted.txt' err_name_std = 'translation_errors_standard.txt' # initializing the collection lists for output files vardb = [] track_lst = [] model_stat_vars = [] comb_func_list = [] # initilialzing the function list # list is static and needs to be completed manually # level of detail to be discussed # currently no clear separation # table function list tbl_func_list = ['WITH LOOKUP', 'LOOKUP INVERT'] # complicated function list, roughly functions that add structure comp_func_list = ['DELAY N', 'DELAY3', 'DELAY3I', 'DELAY FIXED', 'DELAY1', 'DELAY1I', 'DELAY MATERIAL', 'IF THEN ELSE', 'SAMPLE IF TRUE', 'SMOOTH', 'SMOOTHI', 'SMOOTH3', 'SMOOTH3I', 'SMOOTH N', 'FORECAST', 'TREND', 'NPV'] # simple functions that roughly don't add structure simp_func_list = ['MIN', 'VMIN', 'MAX', 'VMAX', 'SIN', 'INITIAL', 'SQRT', 'ACTIVE INITIAL', 'INITIAL TIME', 'ZIDZ', 'XIDZ', 'SUM', 'MODULO', 'ABS', 'LN', 'SIMULTANEOUS', ':AND:', ':IMPLIES:', ':OR:', 'INTEGER'] # functions that are/should only be used for model testing, should probably be ignored in the testing suite # (currently is not ignored) test_func_list = ['RANDOM UNIFORM', 'RANDOM 0 1' 'RANDOM NORMAL', 'STEP', 'PULSE', 'PULSE TRAIN', 'RAMP', 'RND'] # documenting the init expr for all functions that have init variables regfunc_lst = ['INTEG', 'DELAY1I', 'DELAY3I', 'SMOOTHI', 'SMOOTH3I'] nfunc_lst = ['DELAY N', 'SMOOTH N'] def full_translate(first_file=None, last_file=None): """ This function runs the descriptives and translation part for all the models in the testing folder Output is: - descriptives - .py file of the models - doc file - statistic collections :param first_file: first file to be tested (index on list), defaults to None, meaning the first file in the list :param last_file: last file to be tested (index on list), defaults to None, meaning the last file in the list :return: time elapsed for the entire test as float """ # initializing the counts model_count = 0 flag_count = 0 err_adj = 0 err_std = 0 # explorative collection for word analysis word_dict = {} word_list = [] # missing function list mis_func_list = [] total_start = timer() # selecting the files files = fops.load_files('mdl') for mdl_file in files[first_file:last_file]: print('Translating', mdl_file) model_count += 1 model_name = mdl_file.split('.')[0] fops.output_folder(model_name, active='doc') # doc file contains all the information needed for further steps in the testing battery doc_name = mdl_file.replace('.mdl', '_doc') # ind_track is to keep an overview of the created documents that are necessary for next steps ind_track = [mdl_file, 'no', 'no', 'no'] err_rep_adj = True err_rep_std = True # adjusted translate for descriptives if err_rep_adj: try: model_vars, flag_count, word_dict, word_list, mis_func_list, rep_tpl = \ descriptives(mdl_file, flag_count, word_dict, word_list, mis_func_list) ind_track[1] = 'yes' doc_vars = pd.DataFrame(model_vars) except Exception as e: fops.write_error_file(model_name, e, err_name_adj) err_adj += 1 rep_tpl = ('Working Model', [], [], []) model_vars = [] doc_vars = pd.DataFrame(model_vars) else: model_vars, flag_count, word_dict, word_list, mis_func_list, rep_tpl = \ descriptives(mdl_file, flag_count, word_dict, word_list, mis_func_list) ind_track[1] = 'yes' doc_vars =
pd.DataFrame(model_vars)
pandas.DataFrame
# -*- coding: utf-8 -*- import re import numpy as np import pytest from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_interval_dtype, is_period, is_period_dtype, is_string_dtype) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, registry) import pandas as pd from pandas import ( Categorical, CategoricalIndex, IntervalIndex, Series, date_range) from pandas.core.sparse.api import SparseDtype import pandas.util.testing as tm @pytest.fixture(params=[True, False, None]) def ordered(request): return request.param class Base(object): def setup_method(self, method): self.dtype = self.create() def test_hash(self): hash(self.dtype) def test_equality_invalid(self): assert not self.dtype == 'foo' assert not is_dtype_equal(self.dtype, np.int64) def test_numpy_informed(self): pytest.raises(TypeError, np.dtype, self.dtype) assert not self.dtype == np.str_ assert not np.str_ == self.dtype def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert not len(self.dtype._cache) assert result == self.dtype class TestCategoricalDtype(Base): def create(self): return CategoricalDtype() def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert result == self.dtype def test_hash_vs_equality(self): dtype = self.dtype dtype2 = CategoricalDtype() assert dtype == dtype2 assert dtype2 == dtype assert hash(dtype) == hash(dtype2) def test_equality(self): assert is_dtype_equal(self.dtype, 'category') assert is_dtype_equal(self.dtype, CategoricalDtype()) assert not is_dtype_equal(self.dtype, 'foo') def test_construction_from_string(self): result = CategoricalDtype.construct_from_string('category') assert is_dtype_equal(self.dtype, result) pytest.raises( TypeError, lambda: CategoricalDtype.construct_from_string('foo')) def test_constructor_invalid(self): msg = "Parameter 'categories' must be list-like" with pytest.raises(TypeError, match=msg): CategoricalDtype("category") dtype1 = CategoricalDtype(['a', 'b'], ordered=True) dtype2 = CategoricalDtype(['x', 'y'], ordered=False) c = Categorical([0, 1], dtype=dtype1, fastpath=True) @pytest.mark.parametrize('values, categories, ordered, dtype, expected', [ [None, None, None, None, CategoricalDtype()], [None, ['a', 'b'], True, None, dtype1], [c, None, None, dtype2, dtype2], [c, ['x', 'y'], False, None, dtype2], ]) def test_from_values_or_dtype( self, values, categories, ordered, dtype, expected): result = CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) assert result == expected @pytest.mark.parametrize('values, categories, ordered, dtype', [ [None, ['a', 'b'], True, dtype2], [None, ['a', 'b'], None, dtype2], [None, None, True, dtype2], ]) def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype): msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) def test_is_dtype(self): assert CategoricalDtype.is_dtype(self.dtype) assert CategoricalDtype.is_dtype('category') assert CategoricalDtype.is_dtype(CategoricalDtype()) assert not CategoricalDtype.is_dtype('foo') assert not CategoricalDtype.is_dtype(np.float64) def test_basic(self): assert is_categorical_dtype(self.dtype) factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) s = Series(factor, name='A') # dtypes assert is_categorical_dtype(s.dtype) assert is_categorical_dtype(s) assert not is_categorical_dtype(np.dtype('float64')) assert is_categorical(s.dtype) assert is_categorical(s) assert not is_categorical(np.dtype('float64')) assert not is_categorical(1.0) def test_tuple_categories(self): categories = [(1, 'a'), (2, 'b'), (3, 'c')] result = CategoricalDtype(categories) assert all(result.categories == categories) @pytest.mark.parametrize("categories, expected", [ ([True, False], True), ([True, False, None], True), ([True, False, "a", "b'"], False), ([0, 1], False), ]) def test_is_boolean(self, categories, expected): cat = Categorical(categories) assert cat.dtype._is_boolean is expected assert is_bool_dtype(cat) is expected assert is_bool_dtype(cat.dtype) is expected class TestDatetimeTZDtype(Base): def create(self): return DatetimeTZDtype('ns', 'US/Eastern') def test_alias_to_unit_raises(self): # 23990 with tm.assert_produces_warning(FutureWarning): DatetimeTZDtype('datetime64[ns, US/Central]') def test_alias_to_unit_bad_alias_raises(self): # 23990 with pytest.raises(TypeError, match=''): DatetimeTZDtype('this is a bad string') with pytest.raises(TypeError, match=''): DatetimeTZDtype('datetime64[ns, US/NotATZ]') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = DatetimeTZDtype('ns', 'US/Eastern') dtype3 = DatetimeTZDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype4 = DatetimeTZDtype("ns", "US/Central") assert dtype2 != dtype4 assert hash(dtype2) != hash(dtype4) def test_construction(self): pytest.raises(ValueError, lambda: DatetimeTZDtype('ms', 'US/Eastern')) def test_subclass(self): a = DatetimeTZDtype.construct_from_string('datetime64[ns, US/Eastern]') b = DatetimeTZDtype.construct_from_string('datetime64[ns, CET]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_compat(self): assert is_datetime64tz_dtype(self.dtype) assert is_datetime64tz_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_any_dtype(self.dtype) assert is_datetime64_any_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_ns_dtype(self.dtype) assert is_datetime64_ns_dtype('datetime64[ns, US/Eastern]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('datetime64[ns, US/Eastern]') def test_construction_from_string(self): result = DatetimeTZDtype.construct_from_string( 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, result) pytest.raises(TypeError, lambda: DatetimeTZDtype.construct_from_string('foo')) def test_construct_from_string_raises(self): with pytest.raises(TypeError, match="notatz"): DatetimeTZDtype.construct_from_string('datetime64[ns, notatz]') with pytest.raises(TypeError, match="^Could not construct DatetimeTZDtype$"): DatetimeTZDtype.construct_from_string(['datetime64[ns, notatz]']) def test_is_dtype(self): assert not DatetimeTZDtype.is_dtype(None) assert DatetimeTZDtype.is_dtype(self.dtype) assert DatetimeTZDtype.is_dtype('datetime64[ns, US/Eastern]') assert not DatetimeTZDtype.is_dtype('foo') assert DatetimeTZDtype.is_dtype(DatetimeTZDtype('ns', 'US/Pacific')) assert not DatetimeTZDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'US/Eastern')) assert not is_dtype_equal(self.dtype, 'foo') assert not is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'CET')) assert not is_dtype_equal(DatetimeTZDtype('ns', 'US/Eastern'), DatetimeTZDtype('ns', 'US/Pacific')) # numpy compat assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]") def test_basic(self): assert is_datetime64tz_dtype(self.dtype) dr = date_range('20130101', periods=3, tz='US/Eastern') s = Series(dr, name='A') # dtypes assert is_datetime64tz_dtype(s.dtype) assert is_datetime64tz_dtype(s) assert not is_datetime64tz_dtype(np.dtype('float64')) assert not is_datetime64tz_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s) assert is_datetimetz(s.dtype) assert not is_datetimetz(np.dtype('float64')) assert not is_datetimetz(1.0) def test_dst(self): dr1 = date_range('2013-01-01', periods=3, tz='US/Eastern') s1 = Series(dr1, name='A') assert is_datetime64tz_dtype(s1) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s1) dr2 = date_range('2013-08-01', periods=3, tz='US/Eastern') s2 = Series(dr2, name='A') assert is_datetime64tz_dtype(s2) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s2) assert s1.dtype == s2.dtype @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern']) @pytest.mark.parametrize('constructor', ['M8', 'datetime64']) def test_parser(self, tz, constructor): # pr #11245 dtz_str = '{con}[ns, {tz}]'.format(con=constructor, tz=tz) result = DatetimeTZDtype.construct_from_string(dtz_str) expected = DatetimeTZDtype('ns', tz) assert result == expected def test_empty(self): with pytest.raises(TypeError, match="A 'tz' is required."): DatetimeTZDtype() class TestPeriodDtype(Base): def create(self): return PeriodDtype('D') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = PeriodDtype('D') dtype3 = PeriodDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) def test_construction(self): with pytest.raises(ValueError): PeriodDtype('xx') for s in ['period[D]', 'Period[D]', 'D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day() assert is_period_dtype(dt) for s in ['period[3D]', 'Period[3D]', '3D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day(3) assert is_period_dtype(dt) for s in ['period[26H]', 'Period[26H]', '26H', 'period[1D2H]', 'Period[1D2H]', '1D2H']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Hour(26) assert is_period_dtype(dt) def test_subclass(self): a = PeriodDtype('period[D]') b = PeriodDtype('period[3D]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_identity(self): assert PeriodDtype('period[D]') == PeriodDtype('period[D]') assert PeriodDtype('period[D]') is PeriodDtype('period[D]') assert PeriodDtype('period[3D]') == PeriodDtype('period[3D]') assert PeriodDtype('period[3D]') is PeriodDtype('period[3D]') assert PeriodDtype('period[1S1U]') == PeriodDtype('period[1000001U]') assert PeriodDtype('period[1S1U]') is PeriodDtype('period[1000001U]') def test_compat(self): assert not is_datetime64_ns_dtype(self.dtype) assert not is_datetime64_ns_dtype('period[D]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('period[D]') def test_construction_from_string(self): result = PeriodDtype('period[D]') assert is_dtype_equal(self.dtype, result) result = PeriodDtype.construct_from_string('period[D]') assert is_dtype_equal(self.dtype, result) with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo') with pytest.raises(TypeError): PeriodDtype.construct_from_string('period[foo]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo[D]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns, US/Eastern]') def test_is_dtype(self): assert PeriodDtype.is_dtype(self.dtype) assert PeriodDtype.is_dtype('period[D]') assert PeriodDtype.is_dtype('period[3D]') assert PeriodDtype.is_dtype(PeriodDtype('3D')) assert PeriodDtype.is_dtype('period[U]') assert PeriodDtype.is_dtype('period[S]') assert PeriodDtype.is_dtype(PeriodDtype('U')) assert PeriodDtype.is_dtype(PeriodDtype('S')) assert not PeriodDtype.is_dtype('D') assert not PeriodDtype.is_dtype('3D') assert not PeriodDtype.is_dtype('U') assert not PeriodDtype.is_dtype('S') assert not PeriodDtype.is_dtype('foo') assert not PeriodDtype.is_dtype(np.object_) assert not PeriodDtype.is_dtype(np.int64) assert not PeriodDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'period[D]') assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(PeriodDtype('D'), PeriodDtype('D')) assert not is_dtype_equal(self.dtype, 'D') assert not is_dtype_equal(PeriodDtype('D'), PeriodDtype('2D')) def test_basic(self): assert is_period_dtype(self.dtype) pidx = pd.period_range('2013-01-01 09:00', periods=5, freq='H') assert is_period_dtype(pidx.dtype) assert is_period_dtype(pidx) with tm.assert_produces_warning(FutureWarning): assert is_period(pidx) s = Series(pidx, name='A') assert is_period_dtype(s.dtype) assert is_period_dtype(s) with tm.assert_produces_warning(FutureWarning): assert is_period(s) assert not is_period_dtype(np.dtype('float64')) assert not is_period_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert not is_period(np.dtype('float64')) with tm.assert_produces_warning(FutureWarning): assert not is_period(1.0) def test_empty(self): dt = PeriodDtype() with pytest.raises(AttributeError): str(dt) def test_not_string(self): # though PeriodDtype has object kind, it cannot be string assert not is_string_dtype(PeriodDtype('D')) class TestIntervalDtype(Base): def create(self): return IntervalDtype('int64') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = IntervalDtype('int64') dtype3 = IntervalDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype3 assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype1 = IntervalDtype('interval') dtype2 = IntervalDtype(dtype1) dtype3 = IntervalDtype('interval') assert dtype2 == dtype1 assert dtype2 == dtype2 assert dtype2 == dtype3 assert dtype2 is dtype1 assert dtype2 is dtype2 assert dtype2 is dtype3 assert hash(dtype2) == hash(dtype1) assert hash(dtype2) == hash(dtype2) assert hash(dtype2) == hash(dtype3) @pytest.mark.parametrize('subtype', [ 'interval[int64]', 'Interval[int64]', 'int64', np.dtype('int64')]) def test_construction(self, subtype): i = IntervalDtype(subtype) assert i.subtype == np.dtype('int64') assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_construction_generic(self, subtype): # generic i = IntervalDtype(subtype) assert i.subtype is None assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [ CategoricalDtype(list('abc'), False), CategoricalDtype(list('wxyz'), True), object, str, '<U10', 'interval[category]', 'interval[object]']) def test_construction_not_supported(self, subtype): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalDtype') with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) @pytest.mark.parametrize('subtype', ['xx', 'IntervalA', 'Interval[foo]']) def test_construction_errors(self, subtype): msg = 'could not construct IntervalDtype' with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) def test_construction_from_string(self): result = IntervalDtype('interval[int64]') assert is_dtype_equal(self.dtype, result) result = IntervalDtype.construct_from_string('interval[int64]') assert is_dtype_equal(self.dtype, result) @pytest.mark.parametrize('string', [ 0, 3.14, ('a', 'b'), None]) def test_construction_from_string_errors(self, string): # these are invalid entirely msg = 'a string needs to be passed, got type' with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) @pytest.mark.parametrize('string', [ 'foo', 'foo[int64]', 'IntervalA']) def test_construction_from_string_error_subtype(self, string): # this is an invalid subtype msg = ("Incorrectly formatted string passed to constructor. " r"Valid formats include Interval or Interval\[dtype\] " "where dtype is numeric, datetime, or timedelta") with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) def test_subclass(self): a = IntervalDtype('interval[int64]') b = IntervalDtype('interval[int64]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_is_dtype(self): assert IntervalDtype.is_dtype(self.dtype) assert IntervalDtype.is_dtype('interval') assert IntervalDtype.is_dtype(IntervalDtype('float64')) assert IntervalDtype.is_dtype(IntervalDtype('int64')) assert IntervalDtype.is_dtype(IntervalDtype(np.int64)) assert not IntervalDtype.is_dtype('D') assert not IntervalDtype.is_dtype('3D') assert not IntervalDtype.is_dtype('U') assert not IntervalDtype.is_dtype('S') assert not IntervalDtype.is_dtype('foo') assert not IntervalDtype.is_dtype('IntervalA') assert not IntervalDtype.is_dtype(np.object_) assert not IntervalDtype.is_dtype(np.int64) assert not IntervalDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'interval[int64]') assert is_dtype_equal(self.dtype, IntervalDtype('int64')) assert is_dtype_equal(IntervalDtype('int64'), IntervalDtype('int64')) assert not is_dtype_equal(self.dtype, 'int64') assert not is_dtype_equal(IntervalDtype('int64'), IntervalDtype('float64')) # invalid subtype comparisons do not raise when directly compared dtype1 = IntervalDtype('float64') dtype2 = IntervalDtype('datetime64[ns, US/Eastern]') assert dtype1 != dtype2 assert dtype2 != dtype1 @pytest.mark.parametrize('subtype', [ None, 'interval', 'Interval', 'int64', 'uint64', 'float64', 'complex128', 'datetime64', 'timedelta64', PeriodDtype('Q')]) def test_equality_generic(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) assert is_dtype_equal(dtype, 'interval') assert is_dtype_equal(dtype, IntervalDtype()) @pytest.mark.parametrize('subtype', [ 'int64', 'uint64', 'float64', 'complex128', 'datetime64', 'timedelta64', PeriodDtype('Q')]) def test_name_repr(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) expected = 'interval[{subtype}]'.format(subtype=subtype) assert str(dtype) == expected assert dtype.name == 'interval' @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_name_repr_generic(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) assert str(dtype) == 'interval' assert dtype.name == 'interval' def test_basic(self): assert is_interval_dtype(self.dtype) ii = IntervalIndex.from_breaks(range(3)) assert is_interval_dtype(ii.dtype) assert is_interval_dtype(ii) s = Series(ii, name='A') assert is_interval_dtype(s.dtype) assert is_interval_dtype(s) def test_basic_dtype(self): assert is_interval_dtype('interval[int64]') assert is_interval_dtype(IntervalIndex.from_tuples([(0, 1)])) assert is_interval_dtype(IntervalIndex.from_breaks(np.arange(4))) assert is_interval_dtype(IntervalIndex.from_breaks( date_range('20130101', periods=3))) assert not is_interval_dtype('U') assert not is_interval_dtype('S') assert not is_interval_dtype('foo') assert not is_interval_dtype(np.object_) assert not is_interval_dtype(np.int64) assert not is_interval_dtype(np.float64) def test_caching(self): IntervalDtype.reset_cache() dtype = IntervalDtype("int64") assert len(IntervalDtype._cache) == 1 IntervalDtype("interval") assert len(IntervalDtype._cache) == 2 IntervalDtype.reset_cache() tm.round_trip_pickle(dtype) assert len(IntervalDtype._cache) == 0 class TestCategoricalDtypeParametrized(object): @pytest.mark.parametrize('categories', [ list('abcd'), np.arange(1000), ['a', 'b', 10, 2, 1.3, True], [True, False], pd.date_range('2017', periods=4)]) def test_basic(self, categories, ordered): c1 = CategoricalDtype(categories, ordered=ordered) tm.assert_index_equal(c1.categories, pd.Index(categories)) assert c1.ordered is ordered def test_order_matters(self): categories = ['a', 'b'] c1 = CategoricalDtype(categories, ordered=True) c2 = CategoricalDtype(categories, ordered=False) c3 = CategoricalDtype(categories, ordered=None) assert c1 is not c2 assert c1 is not c3 @pytest.mark.parametrize('ordered', [False, None]) def test_unordered_same(self, ordered): c1 = CategoricalDtype(['a', 'b'], ordered=ordered) c2 = CategoricalDtype(['b', 'a'], ordered=ordered) assert hash(c1) == hash(c2) def test_categories(self): result = CategoricalDtype(['a', 'b', 'c']) tm.assert_index_equal(result.categories, pd.Index(['a', 'b', 'c'])) assert result.ordered is None def test_equal_but_different(self, ordered): c1 = CategoricalDtype([1, 2, 3]) c2 = CategoricalDtype([1., 2., 3.]) assert c1 is not c2 assert c1 != c2 @pytest.mark.parametrize('v1, v2', [ ([1, 2, 3], [1, 2, 3]), ([1, 2, 3], [3, 2, 1]), ]) def test_order_hashes_different(self, v1, v2): c1 = CategoricalDtype(v1, ordered=False) c2 = CategoricalDtype(v2, ordered=True) c3 = CategoricalDtype(v1, ordered=None) assert c1 is not c2 assert c1 is not c3 def test_nan_invalid(self): with pytest.raises(ValueError): CategoricalDtype([1, 2, np.nan]) def test_non_unique_invalid(self): with pytest.raises(ValueError): CategoricalDtype([1, 2, 1]) def test_same_categories_different_order(self): c1 = CategoricalDtype(['a', 'b'], ordered=True) c2 = CategoricalDtype(['b', 'a'], ordered=True) assert c1 is not c2 @pytest.mark.parametrize('ordered1', [True, False, None]) @pytest.mark.parametrize('ordered2', [True, False, None]) def test_categorical_equality(self, ordered1, ordered2): # same categories, same order # any combination of None/False are equal # True/True is the only combination with True that are equal c1 = CategoricalDtype(list('abc'), ordered1) c2 = CategoricalDtype(list('abc'), ordered2) result = c1 == c2 expected = bool(ordered1) is bool(ordered2) assert result is expected # same categories, different order # any combination of None/False are equal (order doesn't matter) # any combination with True are not equal (different order of cats) c1 = CategoricalDtype(list('abc'), ordered1) c2 = CategoricalDtype(list('cab'), ordered2) result = c1 == c2 expected = (bool(ordered1) is False) and (bool(ordered2) is False) assert result is expected # different categories c2 = CategoricalDtype([1, 2, 3], ordered2) assert c1 != c2 # none categories c1 = CategoricalDtype(list('abc'), ordered1) c2 = CategoricalDtype(None, ordered2) c3 = CategoricalDtype(None, ordered1) assert c1 == c2 assert c2 == c1 assert c2 == c3 @pytest.mark.parametrize('categories', [list('abc'), None]) @pytest.mark.parametrize('other', ['category', 'not a category']) def test_categorical_equality_strings(self, categories, ordered, other): c1 = CategoricalDtype(categories, ordered) result = c1 == other expected = other == 'category' assert result is expected def test_invalid_raises(self): with pytest.raises(TypeError, match='ordered'): CategoricalDtype(['a', 'b'], ordered='foo') with pytest.raises(TypeError, match="'categories' must be list-like"): CategoricalDtype('category') def test_mixed(self): a = CategoricalDtype(['a', 'b', 1, 2]) b = CategoricalDtype(['a', 'b', '1', '2']) assert hash(a) != hash(b) def test_from_categorical_dtype_identity(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # Identity test for no changes c2 = CategoricalDtype._from_categorical_dtype(c1) assert c2 is c1 def test_from_categorical_dtype_categories(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # override categories result = CategoricalDtype._from_categorical_dtype( c1, categories=[2, 3]) assert result == CategoricalDtype([2, 3], ordered=True) def test_from_categorical_dtype_ordered(self): c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True) # override ordered result = CategoricalDtype._from_categorical_dtype( c1, ordered=False) assert result == CategoricalDtype([1, 2, 3], ordered=False) def test_from_categorical_dtype_both(self): c1 =
Categorical([1, 2], categories=[1, 2, 3], ordered=True)
pandas.Categorical
from copy import deepcopy import numpy as np import pandas as pd import pytest from Bio import Alphabet from Bio.Seq import reverse_complement, Seq from Bio.SeqRecord import SeqRecord from pandas.util.testing import assert_series_equal, assert_index_equal from sklearn.pipeline import Pipeline from crseek import estimators from crseek import evaluators from crseek import preprocessing from crseek import utils from test.test_preprocessing import make_random_seq def build_estimator(): mod = Pipeline(steps=[('transform', preprocessing.MatchingTransformer()), ('predict', estimators.MismatchEstimator())]) return mod def do_rev_comp(seqs): ndata = [] for seqR in seqs: ndata.append(deepcopy(seqR)) ndata[-1].seq = reverse_complement(ndata[-1].seq) ndata[-1].id = ndata[-1].id + '-R' return ndata @pytest.mark.skipif(utils._missing_casoffinder(), reason="Need CasOff installed") class TestCheckgRNA(object): def get_basic_info(self): spacer = Seq('A' * 20, alphabet=Alphabet.generic_rna) loci = [SeqRecord(Seq('T' * 10 + str(spacer) + 'TGG' + 'T' * 5, alphabet=Alphabet.generic_dna), id='Seq1'), SeqRecord(Seq('T' * 15 + str(spacer) + 'TGG' + 'T' * 5, alphabet=Alphabet.generic_dna), id='Seq2'), SeqRecord(Seq('C' * 30, alphabet=Alphabet.generic_dna), id='Seq3') ] corr = pd.Series([True, True, np.nan], index=[s.id + ' ' + s.description for s in loci]) return spacer, loci, corr def test_basic(self): spacer, loci, corr = self.get_basic_info() est = build_estimator() res = evaluators.check_spacer_across_loci(spacer, loci, est) assert list(res.columns) == ['left', 'strand', 'spacer', 'target', 'score'] assert_series_equal(corr, res['score'], check_names=False) assert_series_equal(pd.Series([10, 15], index=corr.index[:2]), res['left'].iloc[:2], check_dtype=False, check_names=False) assert_series_equal(pd.Series([1, 1], index=corr.index[:2]), res['strand'].iloc[:2], check_dtype=False, check_names=False) def test_basic_RC(self): spacer, loci, _ = self.get_basic_info() loci += do_rev_comp(loci) corr = pd.Series([True, True, np.nan] * 2, [s.id + ' ' + s.description for s in loci]) est = build_estimator() res = evaluators.check_spacer_across_loci(spacer, loci, est) assert_series_equal(corr, res['score'], check_names=False, check_dtype=False) def test_accepts_short_seqs(self): spacer, loci, _ = self.get_basic_info() loci.append(SeqRecord(Seq('G' * 12, alphabet=Alphabet.generic_dna), id='Seq4')) loci += do_rev_comp(loci) corr = pd.Series([True, True, np.nan, np.nan] * 2, index=[s.id + ' ' + s.description for s in loci]) est = build_estimator() res = evaluators.check_spacer_across_loci(spacer, loci, est) assert_series_equal(corr, res['score'], check_dtype=False, check_names=False) def test_carries_series_index(self): spacer, loci, _ = self.get_basic_info() loci.append(SeqRecord(Seq('G' * 12, alphabet=Alphabet.generic_dna), id='Seq4')) loci += do_rev_comp(loci) index = pd.Index(['Seq%i' % i for i in range(len(loci))], name='SeqIndex') loci = pd.Series(loci, index=index) corr = pd.Series([True, True, np.nan, np.nan] * 2, index=index) est = build_estimator() res = evaluators.check_spacer_across_loci(spacer, loci, est) assert_series_equal(corr, res['score'], check_names=False, check_dtype=False) assert_index_equal(corr.index, res.index) def test_accepts_index(self): spacer, loci, _ = self.get_basic_info() loci.append(SeqRecord(Seq('G' * 12, alphabet=Alphabet.generic_dna), id='Seq4')) loci += do_rev_comp(loci) index = pd.Index(['Seq%i' % i for i in range(len(loci))], name='SeqIndex') loci =
pd.Series(loci, index=index)
pandas.Series
""" This module provides the functionality to calculate ephemeris for two bodies problem also in the case of perturbed methods. More advance pertubed methods will be handled in other module """ # Standard library imports import logging from math import isclose from typing import ForwardRef # Third party imports import pandas as pd import numpy as np from numpy.linalg import norm from toolz import pipe # Local application imports from myorbit.util.general import my_range, NoConvergenceError, my_isclose import myorbit.data_catalog as dc from myorbit.util.timeut import mjd2str_date from myorbit.planets import g_xyz_equat_sun_j2000 from myorbit.kepler.keplerian import KeplerianStateSolver, ParabolicalStateSolver, EllipticalStateSolver from myorbit.kepler.ellipitical import calc_rv_for_elliptic_orbit, calc_M from myorbit.lagrange.lagrange_coeff import calc_rv_from_r0v0 from myorbit.util.general import mu_Sun, calc_eccentricity_vector, angle_between_vectors from myorbit.pert_cowels import calc_eph_by_cowells from myorbit.two_body import calc_eph_planet from myorbit.util.timeut import EQX_B1950, EQX_J2000 from myorbit.ephemeris_input import EphemrisInput from myorbit.pert_enckes import calc_eph_by_enckes from myorbit.two_body import calc_eph_twobody from myorbit.util.constants import * logger = logging.getLogger(__name__) def calc_tp(M0, a, epoch): deltaT = TWOPI*np.sqrt(pow(a,3)/GM)*(1-M0/TWOPI) return deltaT + epoch def calc_comets_that_no_converge(delta_days): """The orbit of all comets is studied around the perihelion [-days, +days] Parameters ---------- delta_days : int [description] """ df = dc.DF_COMETS not_converged=[] for idx, name in enumerate(df['Name']): obj = dc.read_comet_elms_for(name,df) msg = f'Testing Object: {obj.name}' print (msg) logger.info(msg) if hasattr(obj,'M0') : M_at_epoch = obj.M0 else : M_at_epoch = None # from 20 days before perihelion passage to 20 days after 20 days perihelion passage solver = KeplerianStateSolver.make(e=obj.e, a=obj.a, tp_mjd=obj.tp_mjd, q=obj.q, epoch=obj.epoch_mjd, M_at_epoch=M_at_epoch) T0_MJD = obj.tp_mjd-delta_days r0_xyz, rdot0_xyz, r0, h0_xyz, _ , f0 = solver.calc_rv(T0_MJD) hs = [] es = [] for dt in range(2,delta_days*2,2): clock_mjd = T0_MJD + dt try : r_xyz, rdot_xyz, h_xyz, f = calc_rv_from_r0v0(mu_Sun, r0_xyz, rdot0_xyz, dt, f0) hs.append(np.linalg.norm(h_xyz)) es.append(np.linalg.norm(calc_eccentricity_vector(r_xyz, rdot_xyz,h_xyz))) except NoConvergenceError : print (f"===== Object {name} doest not converged at {clock_mjd} MJD") not_converged.append(name) if not all(isclose(h, hs[0], abs_tol=1e-12) for h in hs): msg = f'The angular momentum is NOT constant in the orbit' print (msg) logger.error(msg) if not all(isclose(ec, es[0], abs_tol=1e-12) for ec in es): msg = f'The eccentric vector is NOT constant in the orbit' print (msg) logger.error(msg) print (not_converged) def test_all_bodies(delta_days): df = dc.DF_BODIES not_converged=[] for idx, name in enumerate(df['Name']): body = dc.read_body_elms_for(name,df) msg = f'Testing Object: {body.name}' solver = KeplerianStateSolver.make(e=body.e, a=body.a, epoch=body.epoch_mjd, M_at_epoch=body.M0) tp = calc_tp(body.M0, body.a, body.epoch_mjd) hs = [] try : for clock_mjd in my_range(tp-delta_days, tp+delta_days, 2): r_xyz, rdot_xyz, r, h = solver.calc_rv(clock_mjd) hs.append(h) if not all(isclose(h, hs[0], abs_tol=1e-12) for h in hs): msg = f'The angular momentum is NOT constant in the orbit' print (msg) logger.error(msg) except NoConvergenceError : print (f"===========> NOT converged for object {name}") not_converged.append(name) if idx % 1000 == 0 : print (f"================================================>> {idx}") print (not_converged) def test_almost_parabolical(delta_days): df = dc.DF_COMETS not_converged=[] names = ['C/1680 V1', 'C/1843 D1 (Great March comet)', 'C/1882 R1-A (Great September comet)', 'C/1882 R1-B (Great September comet)', 'C/1882 R1-C (Great September comet)', 'C/1882 R1-D (Great September comet)', 'C/1963 R1 (Pereyra)', 'C/1965 S1-A (Ikeya-Seki)', 'C/1965 S1-B (Ikeya-Seki)', 'C/1967 C1 (Seki)', 'C/1970 K1 (White-Ortiz-Bolelli)', 'C/2004 V13 (SWAN)', 'C/2011 W3 (Lovejoy)', 'C/2013 G5 (Catalina)', 'C/2020 U5 (PANSTARRS)'] #names = ['C/2020 U5 (PANSTARRS)'] df = df[df.Name.isin(names)] for idx, name in enumerate(df['Name']): if name not in names : continue obj = dc.read_comet_elms_for(name,df) msg = f'Testing Object: {obj.name} with Tp:{mjd2str_date(obj.tp_mjd)}' print (msg) logger.info(msg) if hasattr(obj,'M0') : M_at_epoch = obj.M0 else : M_at_epoch = None # from 20 days before perihelion passage to 20 days after 20 days perihelion passage #solver = ParabolicalStateSolver(obj.tp_mjd, obj.q, obj.e) solver = EllipticalStateSolver(q=obj.q, a=obj.a, e=obj.e, tp_mjd=obj.tp_mjd, epoch_mjd=obj.epoch_mjd) hs = [] for clock_mjd in my_range(obj.tp_mjd-delta_days, obj.tp_mjd+delta_days, 2): r_xyz, rdot_xyz, r, h_xyz, *others = solver.calc_rv(clock_mjd) hs.append(h_xyz) print(mjd2str_date(clock_mjd)) if not all(np.allclose(h_xyz, hs[0], atol=1e-12) for h_xyz in hs): msg = f'The angular momentum is NOT constant in the orbit' print (msg) logger.error(msg) print (not_converged) def test_comets_convergence(delta_days=50): df = dc.DF_COMETS #FILTERED_OBJS = ['C/1680 V1', 'C/1843 D1 (Great March comet)', 'C/1882 R1-A (Great September comet)', 'C/1882 R1-B (Great September comet)', 'C/1882 R1-C (Great September comet)', 'C/1882 R1-D (Great September comet)', 'C/1963 R1 (Pereyra)', 'C/1965 S1-A (Ikeya-Seki)', 'C/1965 S1-B (Ikeya-Seki)', 'C/1967 C1 (Seki)', 'C/1970 K1 (White-Ortiz-Bolelli)', 'C/2004 V13 (SWAN)', 'C/2011 W3 (Lovejoy)', 'C/2013 G5 (Catalina)', 'C/2020 U5 (PANSTARRS)'] #FILTERED_OBJS=['C/1827 P1 (Pons)'] FILTERED_OBJS=[] if len(FILTERED_OBJS) != 0: df = df[df.Name.isin(FILTERED_OBJS)] result = [] df = df.sort_values('e', ascending=False) for idx, name in enumerate(df['Name']): obj = dc.read_comet_elms_for(name,df) solver = KeplerianStateSolver.make(e=obj.e, a=obj.a, tp_mjd=obj.tp_mjd, q=obj.q, epoch=obj.epoch_mjd) T0_MJD = obj.tp_mjd-delta_days r0_xyz, rdot0_xyz, r0, h0_xyz, _ , f0 = solver.calc_rv(T0_MJD) kep_nc = uni_nc = 0 #print (f"Object {name} with e={obj.e}") for dt in range(2,delta_days*2,2): r1_xyz = rdot1_xyz = f1 = None try : r1_xyz, rdot1_xyz, r1, h1_xyz, _ , f1 = solver.calc_rv(T0_MJD+dt) except NoConvergenceError : kep_nc += 1 r2_xyz = rdot2_xyz = f2 = None try : r2_xyz, rdot2_xyz, h_xyz, f2 = calc_rv_from_r0v0(mu_Sun, r0_xyz, rdot0_xyz, dt, f0) except NoConvergenceError : uni_nc += 1 print (f"The noconvergence was with e: {obj.e}") if (kep_nc >0) or (uni_nc > 0) : row = {} row['name'] = name row['e'] = obj.e row['kep_nc'] = kep_nc row['uni_nc'] = uni_nc result.append(row) df_out = pd.DataFrame(result) if len(df_out) > 0: print (f'There are {len(df_out)} comets with convergence problems') df_out = df_out.sort_values(by=['uni_nc','kep_nc'],ascending=False) df_out.to_csv('convergence_problems.csv',index=False,header=True) else : print ("Undetected no-convergences") def test_universal_kepler(delta_days=50): df = dc.DF_COMETS FILTERED_OBJS=[] #FILTERED_OBJS=['C/1933 D1 (Peltier)','C/1989 R1 (Helin-Roman)','C/2007 M5 (SOHO)','C/1988 M1 (SMM)','C/2008 C5 (SOHO)'] #FILTERED_OBJS=['C/2007 M5 (SOHO)'] # C/2000 O1 (Koehn) # This one has high nonconverence with 500 C/2000 O1 (Koehn) if len(FILTERED_OBJS) != 0: df = df[df.Name.isin(FILTERED_OBJS)] df = df.sort_values('e', ascending=False) result = [] for idx, name in enumerate(df['Name']): obj = dc.read_comet_elms_for(name,df) #print (name) solver = KeplerianStateSolver.make(e=obj.e, a=obj.a, tp_mjd=obj.tp_mjd, q=obj.q, epoch=obj.epoch_mjd) T0_MJD = obj.tp_mjd-delta_days r0_xyz, rdot0_xyz, r0, h0_xyz, _ , f0 = solver.calc_rv(T0_MJD) r_failed = v_failed = f_failed = nc_failed= 0 for dt in range(2,delta_days*2,2): try : r1_xyz, rdot1_xyz, r1, h1_xyz, _ , f1 = solver.calc_rv(T0_MJD+dt) r2_xyz, rdot2_xyz, h2_xyz, f2 = calc_rv_from_r0v0(mu_Sun, r0_xyz, rdot0_xyz, dt, f0) e_xyz = calc_eccentricity_vector(r1_xyz, rdot1_xyz, h1_xyz) f3 = angle_between_vectors(e_xyz, r1_xyz) if not isclose(f1,f2,rel_tol=0, abs_tol=1e-03): f_failed += 1 msg=f"name: {obj.name}, TWOPI - f univ: {TWOPI-f2} f Universal: {f2} f Kepler: {f1} e:{obj.e} f Excentricity: {f3} f Excentricity: {TWOPI-f3}" logger.error(msg) if not my_isclose(r1_xyz, r2_xyz, abs_tol=1e-03): msg = f"name: {obj.name}, e: {obj.e}, diff_rxyz ={np.linalg.norm(r1_xyz- r2_xyz)} diff_rdotxyz: {np.linalg.norm(rdot1_xyz- rdot2_xyz)}" logger.error(msg) r_failed += 1 if not my_isclose (rdot1_xyz, rdot2_xyz, abs_tol=1e-03) : v_failed += 1 except NoConvergenceError : nc_failed += 1 if (f_failed >0) or (r_failed > 0) or (v_failed > 0) or (nc_failed > 0): row = {} row['name'] = name row['e'] = obj.e row['f_failed'] = f_failed row['r_failed'] = r_failed row['v_failed'] = v_failed row['nc_failed'] = nc_failed result.append(row) df_out =
pd.DataFrame(result)
pandas.DataFrame
#! /usr/bin/env python3 import argparse import re,sys,os,math,gc import numpy as np import pandas as pd import matplotlib as mpl import copy import math from math import pi mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches from mpl_toolkits.axes_grid1.inset_locator import inset_axes from scipy import sparse from mpl_toolkits.axes_grid1.inset_locator import inset_axes import copy import math import seaborn as sns #from scipy.interpolate import BSpline, make_interp_spline plt.rcParams.update({'figure.max_open_warning': 100000}) plt.style.use('seaborn-colorblind') mpl.rcParams['ytick.direction'] = 'out' mpl.rcParams['savefig.dpi'] = 300 #图片像素 mpl.rcParams['figure.dpi'] = 300 mpl.rcParams['pdf.fonttype']=42 mpl.rcParams['ps.fonttype']=42 __author__ ='赵玥' __mail__ ='<EMAIL>' _data__ ='20191101' def draw_boundaries(ax,Boundary_dict,start,end,samplelist,str_x,sam_x): ax.tick_params(top='off',bottom='off',left='on',right='off') for loc in ['top','left','right','bottom']: ax.spines[loc].set_visible(False) #ax.spines['left'].set_color('k') #ax.spines['left'].set_linewidth(2) #ax.spines['left'].set_smart_bounds(True) #ax.spines['left'].set_linewidth(1) #ax.spines['right'].set_visible(False) #ax.spines['bottom'].set_visible(False) ax.set_axis_bgcolor('w') ax.set(xticks=[]) ax.set(yticks=[]) sample1 = samplelist[0] sample2 = samplelist[1] boundary_mid1 = Boundary_dict[sample1]['mid'].tolist() boundary_mid2 = Boundary_dict[sample2]['mid'].tolist() bound_y1min = [1.25 for i in boundary_mid1] bound_y1max = [1.75 for i in boundary_mid1] bound_y2min = [0.25 for i in boundary_mid2] bound_y2max = [0.75 for i in boundary_mid2] ax.set_ylim(0,2) ax.vlines(boundary_mid1,bound_y1min,bound_y1max,lw=2,color='red') ax.vlines(boundary_mid2,bound_y2min,bound_y2max,lw=2,color='green') ax.set_xlim(start,end) ax.text(str_x,0.5,'bound',horizontalalignment='right',verticalalignment='center',rotation='vertical',transform=ax.transAxes,fontsize=8) ax.text(sam_x,0.75,sample1,horizontalalignment='right',verticalalignment='center',rotation='horizontal',transform=ax.transAxes,color="red",fontsize=8) ax.text(sam_x,0.25,sample2,horizontalalignment='right',verticalalignment='center',rotation='horizontal',transform=ax.transAxes,color="green",fontsize=8) def cut_boundaries(Boundary_dict,sample,boundaryPath,chrom,start,end): Boundary_df = pd.read_table(boundaryPath,header=0,index_col=None,encoding='utf-8') Boundary_df = Boundary_df.fillna(0) Boundary_df = Boundary_df[['start','end']] Boundary_df['mid'] = (Boundary_df['start'] + Boundary_df['end'])/2 Boundary_df = Boundary_df[Boundary_df['mid']>=start] Boundary_df = Boundary_df[Boundary_df['mid']<=end] Boundary_df.reset_index(drop=True) Boundary_dict[sample] = Boundary_df return Boundary_dict def draw_insulation(ax,insu,chrs,start,end,color): #df_insu=cut_insulation(insu,chrs,start,end) df_insu=pd.read_table(insu,sep='\t',names=['chrs','start','end','insu']) ax.tick_params(top='off',bottom='off',left='on',right='off') line=ax.plot(df_insu['start'],df_insu['insu'], color=color, linewidth=0.8, label="insulation") ax.set_xlim(start,end) ax.set_xticks([]) ax.set_ylim(df_insu['insu'].min(),df_insu['insu'].max()) #ax.set_yticks([df_insu['insu'].min(),df_insu['insu'].max()]) for loc in ['left','top','bottom']: ax.spines[loc].set_linewidth(0) ax.spines[loc].set_color('black') ax.spines['right'].set_linewidth(0) ax.spines[loc].set_color('black') def draw_SV(files,ax,chrom,start,end,sample,color,types): markdf=pd.read_table(files,sep='\t') markdf=markdf[markdf['types']==types] markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] markdf['sign']=[1]*len(markdf) #vectorf = np.vectorize(np.float) #vectori = np.vectorize(np.int) #starts=list(markdf['start']) #hight=list(markdf['sign']) #width=(markdf['width']) ax.bar(x=list(markdf['start']),height=list(markdf['sign']),bottom=0, width = list(markdf['width']),color=color,linewidth=0,align='edge') ax.set_xlim([start,end]) ax.set_ylim([0,1]) xts = np.linspace(start,end,2) yts = np.linspace(0,1,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.set_yticks([]) #ax.set_yticklabels(ytkls,fontsize=5) ax.text(-0.11,0.0,sample,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='vertical',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) ax.spines['bottom'].set_linewidth(0) ax.spines['left'].set_linewidth(0) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=12) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def cut_insulation(insu,chrs,start,end): file=open(insu) file_list=[] for i in file: i=i.strip() file_list.append(i) insu_list=[] for i in range(len(file_list)): x=file_list[i].split('/') insu_list.append([x[-2],file_list[i]]) list_df=pd.DataFrame(insu_list,columns=['chrs','insu']) list_df=list_df[list_df['chrs']==chrs] list_df=list_df.reset_index(drop=True) df_insu=pd.read_table(list_df['insu'][0],sep='\t',names=['chrs','start','end','insu'],comment='t') df_insu['mid']=(df_insu['start']+df_insu['end'])/2 df_insu=df_insu.fillna(0) df_insu=df_insu[(df_insu['start']>start)&(df_insu['end']<end)] return df_insu def draw_AB(files,res,chrom,start,end,sample,ax): compartdf = pd.read_table(files,sep='\t',names=['chrom','start','end','eigen1']) compartdf = compartdf[compartdf['chrom']==chrom] compartdf = compartdf.reset_index(drop=True) df = compartdf df=df[df['end']>=start] df=df[df['start']<=end] df=df.reset_index(drop=True) ax.tick_params(top='off',bottom='on',left='off',right='off') for loc in ['left','right','top','bottom']: ax.spines[loc].set_visible(False) df['width']=df['end']-df['start'] #ax.axis([start, end, min,max]) for i in range(len(df)): if df['eigen1'][i]>0: ax.bar(x=df['start'][i],height=df['eigen1'][i],bottom=0, width = df['width'][i],color='#E7605B',linewidth=0,align='edge') else: ax.bar(x=df['start'][i],height=df['eigen1'][i],bottom=0, width = df['width'][i],color='#3B679E',linewidth=0,align='edge') ax.set_ylim(-0.1,0.1) ax.set_ylabel(sample) ax.set_yticks([]) ax.set_xticks([]) def Express_Swith(Epipath,chrom,start,end): Expressdf = pd.read_table(Epipath,header=None,index_col=False,sep='\t') Expressdf.columns = ['chrom','start','end','sign'] Expressdf = Expressdf[Expressdf['chrom']==chrom] Expressdf = Expressdf[Expressdf['start']>=int(start)] Expressdf = Expressdf[Expressdf['end']<=int(end)] Expressdf = Expressdf.reset_index(drop=True) return Expressdf def draw_epigenetic(file,ax,chrom,start,end,sample,color,MaxYlim,type,mins): markdf=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] recs = ax.bar(x=list(markdf['start']),height=list(markdf['sign']),bottom=0, width = list(markdf['width']),color=color,linewidth=0,align='edge') if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(mins) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,5) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(float(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=5) ax.text(-0.11,0.4,sample,fontsize=6,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=8) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def draw_epigenetic2(file,ax,chrom,start,end,sample,color,MaxYlim,type,mins): markdf=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) #print (markdf.head()) markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] markdf['width'] = markdf['end'] - markdf['start'] x = np.linspace(start,end,int(len(markdf)/8)) a_BSpline=make_interp_spline(markdf['start'],markdf['sign'],k=3) y_new=a_BSpline(x) ax.plot(x, y_new, color=color,linewidth=2) ax.fill_between(x,y_new ,0,facecolor=color,linewidth=0,label=sample) if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(mins) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,4) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) ax.tick_params(top=False,right=False,width=1,colors='black',direction='out') ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=12) ax.text(-0.11,0.0,sample,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='vertical',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=12) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def draw_RNA(file,ax,chrom,start,end,sample,color,MaxYlim,type,mins): markdf=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) #print (markdf.head()) markdf=markdf[markdf['chrs']==chrom] markdf=markdf[markdf['start']>start] markdf=markdf[markdf['end']<end] ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] vectorf = np.vectorize(np.float) vectori = np.vectorize(np.int) starts=vectori(markdf['start']) hight=vectorf(markdf['sign']) width=vectori(markdf['width']) ax.bar(x=starts,height=hight,bottom=0,width=width,color=color,linewidth=0,align='edge') if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(mins) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,5) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=12) ax.text(-0.11,0.4,sample,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='vertical',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=12) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=12,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() gc.collect() def Express_Swith(Epipath,chrs,start,end): Expressdf = pd.read_table(Epipath,header=None,index_col=False,sep='\t') Expressdf.columns = ['chrs','start','end','sign'] Expressdf = Expressdf[Expressdf['chrs']==chrs] Expressdf = Expressdf[Expressdf['start']>=int(start)] Expressdf = Expressdf[Expressdf['end']<=int(end)] Expressdf = Expressdf.reset_index(drop=True) return Expressdf def draw_diff_epigenetic(file1,file2,ax,chrs,start,end,color,MaxYlim,MinYlim,type): df1=Express_Swith(file1,chrs,start,end) df2=Express_Swith(file2,chrs,start,end) markdf = pd.merge(df1,df2,on='start',how='inner') markdf['sign'] = np.log2(markdf['sign_x']) - np.log2(markdf['sign_y']) markdf = markdf[['chrs_x','start','end_x','sign']] markdf.columns = ['chrs','start','end','sign'] markdf = markdf.reset_index(drop=True) ax.tick_params(left='on',right='off',top='off',bottom='on') markdf['width'] = markdf['end'] - markdf['start'] recs = ax.bar(markdf['start'],markdf['sign'],bottom=0, width = markdf['width'],color=color,linewidth=0) if MaxYlim == 'None': ymaxlim = markdf['sign'].max() yminlim = markdf['sign'].min() else: ymaxlim = float(MaxYlim) yminlim = float(MinYlim) ax.set_xlim([start,end]) ax.set_ylim([yminlim,ymaxlim]) xts = np.linspace(start,end,5) yts = np.linspace(yminlim,ymaxlim,2) xtkls = ['{:,}'.format(int(i)) for i in xts] ytkls = ['{:,}'.format(int(j)) for j in yts] ax.tick_params(direction='out',pad=1) ax.set_yticks(yts) ax.set_yticklabels(ytkls,fontsize=5) #ax.text(-0.11,0.4,sample,fontsize=6,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) #ax.set_title("{}_{}_{}_{}".format(sample,chrom,start,end),fontsize=10) if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=8) ax.spines['bottom'].set_linewidth(0.5) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrs,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.set_xticklabels('') markdf = pd.DataFrame() ax.spines['bottom'].set_linewidth(0) ax.spines['left'].set_linewidth(1) ax.spines['top'].set_linewidth(0) ax.spines['right'].set_linewidth(0) gc.collect() def draw_bar(ax,file,chrom,start,end,max,min): df=pd.read_table(file,sep='\t',names=['chrs','start','end','sign']) df=df[df['chrs']==chrom] df=df[df['start']>start] df=df[df['end']<end] df=df.reset_index(drop=True) ax.tick_params(top='off',bottom='on',left='off',right='off') for loc in ['left','right','top']: ax.spines[loc].set_visible(False) df['width']=df['end']-df['start'] #ax.axis([start, end, min,max]) for i in range(len(df)): if df['sign'][i]>0: ax.bar(df['start'][i],df['sign'][i],bottom=0, width = df['width'][i],color='#E7605B',linewidth=0) else: ax.bar(df['start'][i],df['sign'][i],bottom=0, width = df['width'][i],color='#3B679E',linewidth=0) ax.set_ylim(min,max) ax.set_yticks([]) ax.set_xticks([]) def get_4C_data(matrix,tstart,tend,binsize,start,end): print (binsize) t=int((tstart-start)/int(binsize)) print ('t',t,'matrix',len(matrix)) datalist=matrix.loc[:,[t]] return datalist from statsmodels.nonparametric.smoothers_lowess import lowess def draw_4C_module(ax,df_list,chrs,start,end,color_list,ymin,ymax,sample_list): ax.tick_params(top='off',bottom='off',left='on',right='off') i=0 for df in df_list: x = np.linspace(start,end,len(df)) df['width']=df['end']-df['start'] df_loess = pd.DataFrame(lowess(df['sign'], np.arange(len(df['sign'])), frac=0.05)[:, 1], index=df.index, columns=['sign']) ax.plot(x,df_loess['sign'], color=color_list[i], linewidth=2,label=sample_list[i],alpha=0.3) i+=1 #ax.legend(handles2, labels2) ax.set_xlim(start,end) ax.set_ylim(ymin,ymax) ax.set_yticks([ymin,ymax]) ax.legend(loc='right',bbox_to_anchor=(1.05,0.3),handlelength=1,handleheight=0.618,fontsize=6,frameon=False) for loc in ['left']: ax.spines[loc].set_linewidth(0.6) ax.spines[loc].set_color('gray') #ax.tick_params(top=False,right=False,width=1,colors='black',direction='out') ax.spines['bottom'].set_linewidth(1) ax.spines['left'].set_linewidth(1) ax.spines['right'].set_linewidth(0) ax.spines['top'].set_linewidth(0) ax.tick_params(top=False,right=False,bottom=False,width=1,colors='black',direction='out') def draw_4C(ax,chrs,start,end,matrix_list,samples,binsize,tstart,tend,colors,ymax): sample_list=samples.split(',') bed_list=[] for sample in sample_list: matrix,min=extract_raw_matrix(matrix_list,sample,chrs,start,end,binsize) datalist=get_4C_data(matrix,int(tstart),int(tend),binsize,int(start),int(end)) bed_list.append(datalist) starts=[] for i in range(start,end,int(binsize)): starts.append(i) df_list=[] for i in bed_list: df=pd.DataFrame({'start':starts}) df['chrs']=[chrs]*len(df) df['end']=df['start']+int(binsize) df['sign']=i df_list.append(df) color_list=colors.split(',') draw_4C_module(ax,df_list,chrs,start,end,color_list,0,int(ymax),sample_list) def draw_compartment(ax,sample,compmergedf,chrom,start,end,type='top'): ax.tick_params(top='off',bottom='on',left='off',right='off') for loc in ['left','right','top']: ax.spines[loc].set_visible(False) mat = compmergedf[sample] #print(mat) s = compmergedf['start'] colors = ['red','blue','#458B00','#B9BBF9','black'] ax.set_xlim(start,end) if sample == 'Merge': ax.fill_between(s, 0, 0.25,where=mat==1, facecolor=colors[0],linewidth=0,label='CompartmentA') ax.fill_between(s, 0.25, 0.5,where=mat==2, facecolor=colors[2],linewidth=0,label='A Switch B') ax.fill_between(s, 0, -0.25,where=mat==-1,facecolor=colors[1],linewidth=0,label='CompartmentB') ax.fill_between(s, -0.25,-0.5,where=mat==-2,facecolor=colors[3],linewidth=0,label='B Switch A') legend = ax.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.,prop={'size':4},ncol=1) legend.get_frame().set_facecolor('white') else: ax.fill_between(s, 0, mat,where=mat>= 0, facecolor=colors[0],linewidth=0,label='CompartmentA') ax.fill_between(s, 0, mat,where=mat< 0, facecolor=colors[1],linewidth=0,label='CompartmentB') #ax.text(max(mat)/4,-5,'A');ax.text(max(mat)/2,-5,'B') ax.text(-0.11,0.4,sample,fontsize=6,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) ymax = mat.max()+0.005 ymin = mat.min()-0.005 xts = np.linspace(start,end,5) xtkls = ['{:,}'.format(int(i)) for i in xts] ax.set_ylim(ymin,ymax) ax.set_yticks([]) #ax.set_ylabel(sample,rotation='vertical',fontsize='small') #compmergedf = pd.DataFrame() if type =='bottom': ax.set_xticks(xts) ax.set_xticklabels(xtkls,fontsize=8) ax.spines['bottom'].set_linewidth(1) ax.spines['bottom'].set_color('k') ax.text(-0.11,-0.7,chrom,fontsize=8,color='k',horizontalalignment='left',verticalalignment='bottom',rotation='horizontal',transform=ax.transAxes) else: ax.set_xticks([]) ax.spines['bottom'].set_visible(False) gc.collect() def colorbar(ax,im,vmin,vmax): axins1 = inset_axes(ax, width=0.1,height=0.6,loc=3, bbox_to_anchor=(0, 0.2, 0.5, 1), bbox_transform=ax.transAxes,borderpad=0) print (vmin,vmax) cbar=plt.colorbar(im, cax=axins1, orientation='vertical',ticks=[math.ceil(vmin),int(vmax)]) axins1.tick_params(left='on',right='off',top='off',bottom='off',labelsize=12) axins1.yaxis.set_ticks_position('left') return cbar import math from matplotlib import pyplot as plt plt.style.use('seaborn-colorblind') pd.set_option('display.precision',2) from scipy import sparse import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1.inset_locator import inset_axes #from annotation_GenePred import Gene_annotation def cut_mat(mat,start,end,resolution,min): start = int(int(start)/resolution) end = math.ceil(int(end)/resolution) start = int(start - min) end = int(end - min) mat = mat.fillna(0) mat = mat.iloc[start:end+1,start:end+1] gc.collect() return mat,start,end def self_zscore(df): dsc = pd.DataFrame(np.ravel(df)).describe(include=[np.number]) df = (df - dsc.loc['mean',0])/dsc.loc['std',0] return df from scipy.ndimage import gaussian_filter def get_matrix(mat_path,binsize,start,end): binsize=int(binsize) mat=pd.read_table(mat_path,names=['b1','b2','contacts']) mat=mat[(mat['b1']>=start-3000000) & (mat['b2']>=start-3000000)] mat=mat[(mat['b1']<=end+3000000) & (mat['b2']<=end+3000000)] #-----------xlim genome start genome end------------------------------- min=mat['b1'].min() max=mat['b1'].max() min=math.ceil(int(min)/binsize)*binsize max=int(int(max)/binsize)*binsize N=int(max/binsize)-math.ceil(min/binsize)+1 mat['b1']=mat['b1'].apply(lambda x: (x-min-1)/binsize) mat['b2']=mat['b2'].apply(lambda x: (x-min-1)/binsize) #-----------coo matrix----------------------------------------------- counts=sparse.coo_matrix((mat['contacts'],(mat['b1'],mat['b2'])),shape=(N, N),dtype=float).toarray() diag_matrix=np.diag(np.diag(counts)) counts=counts.T + counts #counts=counts-diag_matrix counts=counts-diag_matrix-diag_matrix df=pd.DataFrame(counts) #----------zscore minus --------------------------------- df=self_zscore(df) min=int(min/binsize) df,min,max=cut_mat(df,start,end,binsize,min) np.fill_diagonal(df.values, 0) return df,min def get_matrix_df(lists,sample,chrs): df=
pd.read_table(lists,sep='\t',names=['sample','chrs','matrix'])
pandas.read_table
# coding: utf-8 # NIDEM LiDAR tidal tagging # # This script imports multiple xyz .csv files for each LiDAR validation site, converts GPS timestamps to UTC, then # uses these to compute tide heights at the exact moment each point was acquired during the LiDAR survey. # Non-inundated points are then identified by selecting points located above the water's surface at the time # each point was acquired. These non-inundated points (representing intertidal and terrestrial locations) # are then exported as a single .csv. # # Date: January 2019 # Author: <NAME>, <NAME>, <NAME> import glob import os import pandas as pd import numpy as np import datetime as dt from otps.predict_wrapper import predict_tide from otps import TimePoint from pytz import timezone def gps_week(input_datetime): """ Computes GPS week number since start of GPS time epoch (6 Jan 1980). Currently does not account for leap seconds (only affects 10-15 second window around midnight Saturday night/Sunday morning each week) :param input_datetime: Datetime object used to identify GPS week :return: GPS weeks since start of GPS epoch (6 Jan 1980) """ # Identify GPS week from GPS epoch using floor division gps_epoch = dt.datetime(1980, 1, 6) delta = input_datetime - gps_epoch gps_week_num = int(np.floor(delta.total_seconds() / 86400 / 7)) return gps_week_num def gps_adj_utc(gps_adj, leap_seconds=10): """ Converts between adjusted GPS time and UTC, returning a datetime object. This assumes adjusted GPS time has already had - 1 billion subtracted from it; if you have unadjusted GPS time instead, subtract 1 billion before inputting it into this function. :param gps_adj: Adjusted GPS time :param leap_seconds: Leap seconds since start of GPS epoch; default 10 :return: Datetime object with converted time in UTC """ # Identify UTC and GPS epochs and compute offset between them utc_epoch = dt.datetime(1970, 1, 1) gps_epoch = dt.datetime(1980, 1, 6) utc_offset = (gps_epoch - utc_epoch).total_seconds() - leap_seconds # Convert to unix time then UTC by adding 1 billion + UTC offset to GPS time unix_timestamp = utc_offset + (int(gps_adj) + 1000000000) utc_time = dt.datetime.utcfromtimestamp(unix_timestamp) # Set UTC timezone info utc_time = utc_time.replace(tzinfo=timezone('UTC')) return utc_time def gps_sotw_utc(gps_sotw, reference_date, leap_seconds=10): """ Computes UTC time from GPS Seconds of Week format time :param gps_sotw: GPS seconds-of-the-week value :param reference_date: Date used to compute current GPS week number :param leap_seconds: Leap seconds since start of GPS epoch; default 10 :return: Datetime object with converted time in UTC """ # First test if GPS seconds-of-week fall within 0 and 604800 seconds if 0 <= int(gps_sotw) <= dt.timedelta(days=7).total_seconds(): # Identify UTC and GPS epochs and compute offset between them utc_epoch = dt.datetime(1970, 1, 1) gps_epoch = dt.datetime(1980, 1, 6) utc_offset = (gps_epoch - utc_epoch).total_seconds() - leap_seconds # Identify GPS week gps_week_num = gps_week(reference_date) # Compute difference between UTC epoch and GPS time, then add GPS week days unix_timestamp = utc_offset + int(gps_sotw) utc_basetime = dt.datetime.utcfromtimestamp(unix_timestamp) utc_time = utc_basetime + dt.timedelta(days=gps_week_num * 7) # Set UTC timezone info utc_time = utc_time.replace(tzinfo=timezone('UTC')) return utc_time else: print("GPS seconds-of-week must be between 0 and 604800 seconds") return None ######### # Setup # ######### # User input to read in setup parameters from file os.chdir('/g/data/r78/rt1527/nidem') # Dict of study areas and files to process study_areas_df = pd.read_csv('lidar_study_areas.csv', index_col=0) study_areas = study_areas_df.to_dict('index') # Iterate through each study area # for name in study_areas.keys(): for name in ['SAcoastal']: # Read in study area details input_location = study_areas[name]['input_loc'] # Test if tidal tagging is required for area if not pd.isnull(input_location): print(name) ############### # Import data # ############### # Iterate through each file and merge list of dataframes into single dataframe point_files = glob.glob('raw_data/validation/*{}*.csv'.format(name)) df_list = [pd.read_csv(input_file, sep=",") for input_file in point_files] points_df =
pd.concat(df_list)
pandas.concat
from __future__ import absolute_import, division, unicode_literals import unittest import jsonpickle from helper import SkippableTest try: import pandas as pd import numpy as np from pandas.testing import assert_series_equal from pandas.testing import assert_frame_equal from pandas.testing import assert_index_equal except ImportError: np = None class PandasTestCase(SkippableTest): def setUp(self): if np is None: self.should_skip = True return self.should_skip = False import jsonpickle.ext.pandas jsonpickle.ext.pandas.register_handlers() def tearDown(self): if self.should_skip: return import jsonpickle.ext.pandas jsonpickle.ext.pandas.unregister_handlers() def roundtrip(self, obj): return jsonpickle.decode(jsonpickle.encode(obj)) def test_series_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') ser = pd.Series( { 'an_int': np.int_(1), 'a_float': np.float_(2.5), 'a_nan': np.nan, 'a_minus_inf': -np.inf, 'an_inf': np.inf, 'a_str': np.str_('foo'), 'a_unicode': np.unicode_('bar'), 'date': np.datetime64('2014-01-01'), 'complex': np.complex_(1 - 2j), # TODO: the following dtypes are not currently supported. # 'object': np.object_({'a': 'b'}), } ) decoded_ser = self.roundtrip(ser) assert_series_equal(decoded_ser, ser) def test_dataframe_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') df = pd.DataFrame( { 'an_int': np.int_([1, 2, 3]), 'a_float': np.float_([2.5, 3.5, 4.5]), 'a_nan': np.array([np.nan] * 3), 'a_minus_inf': np.array([-np.inf] * 3), 'an_inf': np.array([np.inf] * 3), 'a_str': np.str_('foo'), 'a_unicode': np.unicode_('bar'), 'date': np.array([np.datetime64('2014-01-01')] * 3), 'complex': np.complex_([1 - 2j, 2 - 1.2j, 3 - 1.3j]), # TODO: the following dtypes are not currently supported. # 'object': np.object_([{'a': 'b'}]*3), } ) decoded_df = self.roundtrip(df) assert_frame_equal(decoded_df, df) def test_multindex_dataframe_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') df = pd.DataFrame( { 'idx_lvl0': ['a', 'b', 'c'], 'idx_lvl1': np.int_([1, 1, 2]), 'an_int': np.int_([1, 2, 3]), 'a_float': np.float_([2.5, 3.5, 4.5]), 'a_nan': np.array([np.nan] * 3), 'a_minus_inf': np.array([-np.inf] * 3), 'an_inf': np.array([np.inf] * 3), 'a_str': np.str_('foo'), 'a_unicode': np.unicode_('bar'), } ) df = df.set_index(['idx_lvl0', 'idx_lvl1']) decoded_df = self.roundtrip(df) assert_frame_equal(decoded_df, df) def test_dataframe_with_interval_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') df = pd.DataFrame( {'a': [1, 2], 'b': [3, 4]}, index=pd.IntervalIndex.from_breaks([1, 2, 4]) ) decoded_df = self.roundtrip(df) assert_frame_equal(decoded_df, df) def test_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx = pd.Index(range(5, 10)) decoded_idx = self.roundtrip(idx) assert_index_equal(decoded_idx, idx) def test_datetime_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx = pd.date_range(start='2019-01-01', end='2019-02-01', freq='D') decoded_idx = self.roundtrip(idx) assert_index_equal(decoded_idx, idx) def test_ragged_datetime_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx = pd.DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-05']) decoded_idx = self.roundtrip(idx) assert_index_equal(decoded_idx, idx) def test_timedelta_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx = pd.timedelta_range(start='1 day', periods=4, closed='right') decoded_idx = self.roundtrip(idx) assert_index_equal(decoded_idx, idx) def test_period_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx =
pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
pandas.period_range
## TECHNICHAL ANALYSIS import pandas as pd import numpy as np # import talib from plotly.graph_objs import Figure from .utils import make_list class StudyError(Exception): pass def _ohlc_dict(df_or_figure,open='',high='',low='',close='',volume='', validate='',**kwargs): """ Returns a dictionary with the actual column names that correspond to each of the OHLCV values. df_or_figure : DataFrame or Figure open : string Column name to be used for OPEN values high : string Column name to be used for HIGH values low : string Column name to be used for LOW values close : string Column name to be used for CLOSE values volume : string Column name to be used for VOLUME values validate : string Validates that the stated column exists Example: validate='ohv' | Will ensure Open, High and close values exist. """ c_dir={} ohlcv=['open','high','low','close','volume'] if type(df_or_figure)==pd.DataFrame: cnames=df_or_figure.columns elif type(df_or_figure)==Figure or type(df_or_figure) == dict: cnames=df_or_figure.axis['ref'].keys() elif type(df_or_figure)==pd.Series: cnames=[df_or_figure.name] c_min=dict([(v.lower(),v) for v in cnames]) for _ in ohlcv: if _ in c_min.keys(): c_dir[_]=c_min[_] else: for c in cnames: if _ in c.lower(): c_dir[_]=c if open: c_dir['open']=open if high: c_dir['high']=high if low: c_dir['low']=low if close: c_dir['close']=close if volume: c_dir['volume']=volume for v in list(c_dir.values()): if v not in cnames: raise StudyError('{0} is not a valid column name'.format(v)) if validate: errs=[] val=validate.lower() s_names=dict([(_[0],_) for _ in ohlcv]) cols=[_[0] for _ in c_dir.keys()] for _ in val: if _ not in cols: errs.append(s_names[_]) if errs: raise StudyError('Missing Columns: {0}'.format(', '.join(errs))) return c_dir def get_column_name(name,study=None,str=None,period=None,column=None,period_dict=None): if str: if period_dict: if name in period_dict: period=period_dict[name] study='' if name.lower()==study.lower() else study return str.format(study=study,period=period,column=column,name=name) else: return name def validate(df,column=None): if isinstance(df,pd.DataFrame): if column is not None: df=pd.DataFrame(df[column]) _df=pd.DataFrame() elif len(df.columns)>1: raise StudyError("DataFrame needs to be a single column \n" "Or the column name needs to be specified") else: df=df.copy() _df=pd.DataFrame() column=df.columns[0] else: df=pd.DataFrame(df) _df=pd.DataFrame() column=df.columns[0] return df,_df,column def rename(df,_df,study,periods,column,include,str,detail,output=None,period_dict=None): d_name=dict([(i,get_column_name(i,study=study,str=str, period=periods,column=column,period_dict=period_dict)) for i in _df.columns]) _df=_df.rename(columns=d_name) if detail: __df=_df elif output: __df=_df[[d_name[_] for _ in output]] else: __df=_df[d_name[study]] if include: return
pd.concat([df,__df],axis=1)
pandas.concat
import os import fnmatch import calendar import numpy as np import pandas as pd import xarray as xr from itertools import product from util import month_num_to_string import xesmf as xe """ Module contains several functions for preprocessing S2S hindcasts. Author: <NAME>, NCAR (<EMAIL>) Contributions from <NAME>, NCAR """ def regrid_mask(ds, variable, reuse_weights=False): """ Function to regrid mcs obs mask onto coarser ERA5 grid (0.25-degree). Args: ds (xarray dataset): Mask file. variable (str): variable. reuse_weights (boolean): Whether to use precomputed weights to speed up calculation. Defaults to ``False``. Returns: Regridded mask file for use with machine learning model. """ ds_out = xe.util.grid_2d(lon0_b=0-0.5, lon1_b=360-0.5, d_lon=1., lat0_b=-90-0.5, lat1_b=90, d_lat=1.) regridder = xe.Regridder(ds, ds_out, method='nearest_s2d', reuse_weights=reuse_weights) return regridder(ds[variable]) def create_cesm2_folders(variable, parent_directory, start='1999-01-01', end='2019-12-31', freq='W-MON'): """ Create folders to place new variable files that were not preprocessed p1 (or other SubX priority). Args: variable (str): Name of variable (e.g., 'sst'). parent_directory (str): Directory to place files (e.g., '/glade/scratch/$USER/s2s/'). start (str): Start of hindcasts. Defaults to '1999-01-01' for CESM2. end (str): End of hindcasts. Defaults to '2019-12-31' for CESM2. freq (str): Frequency of hindcast starts. Defaults to 'W-MON' for CESM2. """ d1 = pd.date_range(start=start, end=end, freq=freq) if os.path.exists(parent_directory): for yr, mo in product(np.unique(d1.strftime("%Y")), np.unique(d1.strftime("%m"))): new_directory = 'CESM2/'+variable+'/'+yr+'/'+mo path = os.path.join(parent_directory, new_directory) try: os.makedirs(path, exist_ok = True) print("Directory '%s' created successfully" % new_directory) except OSError as error: print("Directory '%s' cannot be created" % new_directory) if not os.path.exists(parent_directory): print('Parent directory does not exist.') return def create_cesm2_files(variable, parent_directory, ensemble, start='1999-01-01', end='2019-12-31', freq='W-MON'): """ Create CESM2 variable files that were not preprocessed p1 (or other SubX priority) variables. Here we extract variable from daily file containing many variables to reduce memory usage. Contain daily files in ``/temp/`` sub-folder. Args: variable (str): Name of variable in lower case (e.g., 'sst'). parent_directory (str): Directory where files are located (e.g., '/glade/scratch/$USER/s2s/'). ensemble (str): Two digit ensemble member of hindcast (e.g., '09'). start (str): Start of hindcasts. Defaults to '1999-01-01' for CESM2. end (str): End of hindcasts. Defaults to '2019-12-31' for CESM2. freq (str): Frequency of hindcast starts. Defaults to 'W-MON' for CESM2. """ d1 = pd.date_range(start=start, end=end, freq=freq) for root, dirnames, filenames in os.walk(f'{parent_directory}CESM2/temp/'): for num, (yr, mo, dy) in enumerate(zip(d1.strftime("%Y"), d1.strftime("%m"), d1.strftime("%d"))): if yr == '2016' and mo == '02' and dy == '29': dy = '28' for filename in fnmatch.filter(filenames, f'cesm2cam6v2*{yr}-{mo}-{dy}.{ensemble}.cam.h2.{yr}-{mo}-{dy}-00000.nc'): ds = xr.open_dataset(root+filename)[variable.upper()] ds.to_dataset(name=variable.upper()).to_netcdf( f'{parent_directory}CESM2/{variable}/{yr}/{mo}/{variable}_cesm2cam6v2_{dy}{month_num_to_string(mo)}{yr}_00z_d01_d46_m{ensemble}.nc') return def create_cesm2_pressure_files(filelist, variable, pressure=300.): """ Create CESM2 variable files that were not preprocessed p1 (or other SubX priority) variables. Here we extract variables on a pressure level from files containing many pressure levels to reduce memory usage. Args: filelist (list of str): List of file names and directory locations. variable (str): Name of variable in lower case (e.g., 'sst'). pressure (float): Pressure level. Defaults to ``300.`` """ for fil in filelist: ds = xr.open_dataset(fil).sel(lev_p=pressure).drop('lev_p') ds.to_netcdf(f"{fil.split(variable)[0]}{variable}_temp{fil.split(variable)[1]}{fil.split('/')[-1]}") return def gpcp_filelist(parent_directory, variable='precip', start='1999-01-01', end='2019-12-31', freq='D'): """ Create list of daily GPCP Version 2.3 Combined Precipitation Data Set files. https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/access/ Args: parent_directory (str): Directory where files are located (e.g., '/glade/scratch/$USER/s2s/'). variable (str): Name of GPCP variable (e.g., 'precip'). start (str): Start of hindcasts. Defaults to '1999-01-01' for CESM2. end (str): End of hindcasts. Defaults to '2019-12-31' for CESM2. freq (str): Frequency of hindcast starts. Defaults to 'D' for daily. """ d1 = pd.date_range(start=start, end=end, freq=freq) matches = [] for num, (yr, mo, dy) in enumerate(zip(d1.strftime("%Y"), d1.strftime("%m"), d1.strftime("%d"))): if mo == '02' and dy == '29': continue # skip leap years for root, dirnames, filenames in os.walk(f'{parent_directory}/'): for filename in fnmatch.filter(filenames, f'*_daily_d{yr}{mo}{dy}_c*.nc'): thefile = os.path.join(root, filename) if os.access(thefile, os.R_OK): matches.append(thefile) if not os.access(thefile, os.R_OK): matches.append(np.nan) return matches def cesm2_filelist(variable, parent_directory, ensemble, start='1999-01-01', end='2019-12-31', freq='W-MON'): """ Create list of variable files. Args: variable (str): Name of variable (e.g., 'zg_200'). parent_directory (str): Directory where files are located (e.g., '/glade/scratch/$USER/s2s/'). ensemble (str or list of str): Two digit ensemble member of hindcast (e.g., '09') or list (e.g., ['00', '01']). start (str): Start of hindcasts. Defaults to '1999-01-01' for CESM2. end (str): End of hindcasts. Defaults to '2019-12-31' for CESM2. freq (str): Frequency of hindcast starts. Defaults to 'W-MON' for CESM2. """ d1 = pd.date_range(start=start, end=end, freq=freq) matches = [] for num, (yr, mo, dy) in enumerate(zip(d1.strftime("%Y"), d1.strftime("%m"), d1.strftime("%d"))): if mo == '02' and dy == '29': dy = '28' for root, dirnames, filenames in os.walk(f'{parent_directory}CESM2/{variable}/{yr}/{mo}/'): if isinstance(ensemble, str): for filename in fnmatch.filter(filenames, f'*_cesm2cam6v2_{dy}*_m{ensemble}.nc'): thefile = os.path.join(root, filename) if os.access(thefile, os.R_OK): matches.append(thefile) if not os.access(thefile, os.R_OK): matches.append(np.nan) if isinstance(ensemble, list): for ens in ensemble: for filename in fnmatch.filter(filenames, f'*_cesm2cam6v2_{dy}*_m{ens}.nc'): thefile = os.path.join(root, filename) if os.access(thefile, os.R_OK): matches.append(thefile) if not os.access(thefile, os.R_OK): matches.append(np.nan) return matches def gpcp_climatology(filelist, variable='precip', save=False, author=None, parent_directory=None): """ Create GPCP Version 2.3 Combined Precipitation Data Set climatology. Args: filelist (list of str): List of file names and directory locations. save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. parent_directory (str): Directory where files are located (e.g., '/glade/scratch/$USER/s2s/'). Defaults to None. """ if save: assert isinstance(author, str), "Please set author for file saving." assert isinstance(parent_directory, str), "Please set parent_directory to save file to." clim = np.zeros((int(len(filelist)/365), 365, 180, 360)) doy = 0 yr = 0 dates = [] years = [] for num, file in enumerate(filelist): ds = xr.open_dataset(file) ds = ds[variable].isel(time=0) dates.append(pd.Timestamp(ds.time.values)) ds = ds.where(ds>=0.,0.) # valid range: [0.,100.] ds = ds.where(ds<=100.,100.) if num == 0: lats = ds.latitude.values lons = ds.longitude.values clim[yr,doy,:,:] = ds.values doy += 1 if doy == 365: doy = 0 yr += 1 years.append(int(ds.time.dt.strftime('%Y').values)) data_assemble = xr.Dataset({ 'clim': (['time','lat','lon'], np.nanmean(clim, axis=0)), }, coords = {'date_range': (['date_range'], pd.to_datetime(dates)), 'time': (['time'], np.arange(1,365 + 1,1)), 'lat' : (['lat'], lats), 'lon' : (['lon'], lons) }, attrs = {'File Author' : author, 'Years' : np.array(years)}) if not save: return data_assemble if save: data_assemble.to_netcdf(f'{parent_directory}CESM2_OBS/{variable.lower()}_clim_gpcp_data.nc') def cesm2_hindcast_climatology(filelist, variable, save=False, author=None, parent_directory=None): """ Create CESM2 hindcast climatology. Outputs array (lon, lat, lead, 365). Translated from MATLAB (provided by <NAME>, NCAR). Args: filelist (list of str): List of file names and directory locations. variable (str): Name of variable (e.g., 'zg_200'). save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. parent_directory (str): Directory where files are located (e.g., '/glade/scratch/$USER/s2s/'). Defaults to None. """ if save: assert isinstance(author, str), "Please set author for file saving." assert isinstance(parent_directory, str), "Please set parent_directory to save file to." dateStrPrevious = '01jan1000' # just a random date index_help = 0 char_1 = "cesm2cam6v2_" char_2 = "_00z_d01_d46" grab_ensembles = True for fil in filelist: dateStr = fil[fil.find(char_1)+12 : fil.find(char_2)] starttime = pd.to_datetime(dateStr) doy = starttime.dayofyear if (starttime.year % 4) == 0 and starttime.month > 2: doy = doy - 1 var = xr.open_dataset(fil)[variable].transpose('lon','lat','time').values # (lon,lat,lead); load file and grab variable varChosen = var if variable == 'pr' or variable == 'pr_sfc': varChosen = varChosen * 84600 # convert kg/m2/s to mm/day if variable == 'tas_2m': varChosen = varChosen - 273.15 # convert K to C if varChosen.shape[2] != 46: varChosen = np.ones((ensAvg.shape)) * np.nan if index_help == 0: climBin = np.zeros((varChosen.shape[0], varChosen.shape[1], varChosen.shape[2], 365)) # (lon, lat, lead, 365 days) climBinDays = np.zeros((varChosen.shape[0], varChosen.shape[1], varChosen.shape[2], 365)) lon = xr.open_dataset(fil)[variable].coords['lon'].values # grab lon and lat arrays lat = xr.open_dataset(fil)[variable].coords['lat'].values if grab_ensembles: all_ensembles = [] all_ensembles.append(fil[fil.find('_m')+2:fil.find('_m')+4]) # saving ensemble members for attrs if dateStr == dateStrPrevious: # if dates match, means you are on next ensemble member x += 1 # to compute ensemble mean ensAvg = (ensAvg * (x - 1) + varChosen) / x if grab_ensembles: all_ensembles.append(fil[fil.find('_m')+2:fil.find('_m')+4]) else: if index_help != 0: # if dates don't match, but make sure we are past the first file and ensAvg has data if not np.all(ensAvg == 0): climBin[:,:,:,doyPrevious - 1] = climBin[:,:,:,doyPrevious - 1] + ensAvg # doyPrevious - 1 bc 0-based index climBinDays[:,:,:,doyPrevious - 1] = climBinDays[:,:,:,doyPrevious - 1] + 1 grab_ensembles = False ensAvg = varChosen x = 1 dateStrPrevious = dateStr doyPrevious = doy index_help += 1 climBin[:,:,:,doyPrevious - 1] = climBin[:,:,:,doyPrevious - 1] + ensAvg climBinDays[:,:,:,doyPrevious - 1] = climBinDays[:,:,:,doyPrevious - 1] + 1 clim = climBin / climBinDays dates_array = pd.to_datetime(np.array([file[file.find(char_1)+12:file.find(char_2)] for file in filelist])).unique() data_assemble = xr.Dataset({ 'clim': (['lon','lat','lead','time'], clim), 'date_range': (['date_range'], dates_array), }, coords = {'lead': (['lead'], np.arange(0,clim.shape[2],1)), 'time': (['time'], np.arange(1,clim.shape[3]+1,1)), 'lat' : (['lat'], lat), 'lon' : (['lon'], lon) }, attrs = {'File Author' : author, 'Ensembles' : all_ensembles}) if not save: return data_assemble if save: if len(all_ensembles) > 1: data_assemble.to_netcdf(f'{parent_directory}CESM2/{variable.lower()}_clim_cesm2cam6v2_{str(len(all_ensembles))}members_s2s_data.nc') if len(all_ensembles) == 1: data_assemble.to_netcdf(f'{parent_directory}CESM2/{variable.lower()}_clim_cesm2cam6v2_{str(all_ensembles[0])}member_s2s_data.nc') def cesm2_total_ensemble(filelist): """ Extract the total number of ensembles contained in the list of CESM2 hindcast files. Returns an integer type scalar. Args: filelist (list of str): List of file names and directory locations. """ dateStrPrevious = '01jan1000' # just a random date index_help = 0 char_1 = "cesm2cam6v2_" char_2 = "_00z_d01_d46" grab_ensembles = True for fil in filelist: dateStr = fil[fil.find(char_1)+12 : fil.find(char_2)] if index_help == 0: if grab_ensembles: all_ensembles = [] all_ensembles.append(fil[fil.find('_m')+2:fil.find('_m')+4]) if dateStr == dateStrPrevious: if grab_ensembles: all_ensembles.append(fil[fil.find('_m')+2:fil.find('_m')+4]) else: if index_help != 0: if not np.all(ensAvg == 0): grab_ensembles = False ensAvg = 1 dateStrPrevious = dateStr index_help += 1 if not grab_ensembles: return int(len(all_ensembles)) def cesm2_hindcast_anomalies(filelist, variable, parent_directory, save=False, author=None): """ Create CESM2 hindcast anomalies. Outputs array (lon, lat, lead, number of forecasts). Number of forecasts is equal to the length of ``filelist`` divided by ``total ensembles``. Translated from MATLAB (provided by <NAME>, NCAR). Args: filelist (list of str): List of file names and directory locations. variable (str): Name of variable (e.g., 'zg_200'). parent_directory (str): Directory where climatology is located and where to save anomalies (e.g., '/glade/scratch/$USER/s2s/'). save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. """ if save: assert isinstance(author, str), "Please set author for file saving." assert isinstance(parent_directory, str), "Please set parent_directory to save file to." if str(cesm2_total_ensemble(filelist)) != str(11): import warnings warnings.warn("Using climatology computed from 11 ensemble members!") clima = xr.open_dataset(f'{parent_directory}CESM2/{variable.lower()}_clim_cesm2cam6v2_11members_s2s_data.nc') # open climo climCyclical = xr.concat([clima['clim'], clima['clim'], clima['clim']], dim='time') # stack 3x's time for smoothing # smooth time with 31 days 2x's (31 day window to copy Lantao, but maybe it should be 16) climSmooth = climCyclical.rolling(time=31, min_periods=1, center=True).mean(skipna=True).rolling( time=31, min_periods=1, center=True).mean(skipna=True) climSmooth = climSmooth.isel(time=slice(365,365 * 2)) # choose the middle year (smoothed) climSmooth = climSmooth.transpose('lon','lat','lead','time').values # extract array for loop del climCyclical # delete previous arrays del clima dateStrPrevious = '01jan1000' # just a random date index_help = 0 forecastCounter = 0 char_1 = "cesm2cam6v2_" char_2 = "_00z_d01_d46" grab_ensembles = True for fil in filelist: # loop through list of hindcast files dateStr = fil[fil.find(char_1)+12 : fil.find(char_2)] starttime = pd.to_datetime(dateStr) doy = starttime.dayofyear if (starttime.year % 4) == 0 and starttime.month > 2: doy = doy - 1 var = xr.open_dataset(fil)[variable].transpose('lon','lat','time').values # (lon,lat,lead); load file and grab variable varChosen = var if variable == 'pr' or variable == 'pr_sfc': varChosen = varChosen * 84600 # convert kg/m2/s to mm/day if variable == 'tas_2m': varChosen = varChosen - 273.15 # convert K to C if varChosen.shape[2] != 46: varChosen = np.ones((ensAvg.shape)) * np.nan if index_help == 0: dim_last = int(len(filelist)/cesm2_total_ensemble(filelist)) anom = np.empty((varChosen.shape[0], varChosen.shape[1], varChosen.shape[2], dim_last)) starttimeBin = np.empty((dim_last), dtype="S10") # (lon, lat, lead, num of forecasts) lon = xr.open_dataset(fil)[variable].coords['lon'].values # grab lon and lat arrays lat = xr.open_dataset(fil)[variable].coords['lat'].values if grab_ensembles: all_ensembles = [] all_ensembles.append(fil[fil.find('_m')+2:fil.find('_m')+4]) # saving ensemble members for attrs if dateStr == dateStrPrevious: # if dates match, means you are on next ensemble member x += 1 # to compute ensemble mean ensAvg = (ensAvg * (x - 1) + varChosen) / x if grab_ensembles: all_ensembles.append(fil[fil.find('_m')+2:fil.find('_m')+4]) else: if index_help != 0: # if dates don't match, but make sure we are past the first file and ensAvg has data if not np.all(ensAvg == 0): forecastCounter += 1 anom[:,:,:,forecastCounter - 1] = ensAvg - np.squeeze(climSmooth[:,:,:,doyPrevious - 1]) starttimeBin[forecastCounter - 1] = str(starttimePrevious) grab_ensembles = False ensAvg = varChosen x = 1 dateStrPrevious = dateStr starttimePrevious = starttime doyPrevious = doy index_help += 1 forecastCounter += 1 anom[:,:,:,forecastCounter - 1] = ensAvg - np.squeeze(climSmooth[:,:,:,doyPrevious - 1]) starttimeBin[forecastCounter - 1] = starttimePrevious dates_array = pd.to_datetime(np.array([file[file.find(char_1)+12:file.find(char_2)] for file in filelist])).unique() data_assemble = xr.Dataset({ 'anom': (['lon','lat','lead','time'], anom), 'fcst': (['time'], starttimeBin), 'date_range': (['date_range'], dates_array), }, coords = {'lead': (['lead'], np.arange(0,anom.shape[2],1)), 'time': (['time'], np.arange(1,anom.shape[3]+1,1)), 'lat' : (['lat'], lat), 'lon' : (['lon'], lon) }, attrs = {'File Author' : author, 'Ensembles' : all_ensembles}) if not save: return data_assemble if save: if len(all_ensembles) > 1: data_assemble.to_netcdf(f'{parent_directory}CESM2/{variable.lower()}_anom_cesm2cam6v2_{str(len(all_ensembles))}members_s2s_data.nc') if len(all_ensembles) == 1: data_assemble.to_netcdf(f'{parent_directory}CESM2/{variable.lower()}_anom_cesm2cam6v2_{str(all_ensembles[0])}member_s2s_data.nc') def gpcp_hindcast_anomalies(parent_directory, variable='precip', start_range='1999-01-01', end_range='2019-12-31', save=False, author=None,): """ Create GPCP Version 2.3 Combined Precipitation Data Set anomalies. Args: parent_directory (str): Directory where climatology is located and where to save anomalies (e.g., '/glade/scratch/$USER/s2s/'). variable (str): Name of variable. Defaults to precip for GPCP. start_range (str): Start range of analysis. Defaults to '1999-01-01'. end_range (str): End range of analysis. Defaults to '2019-12-31'. save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. """ if save: assert isinstance(author, str), "Please set author for file saving." assert isinstance(parent_directory, str), "Please set parent_directory to save file to." # -- open and smooth obs climo clima = xr.open_dataset(f'{parent_directory}CESM2_OBS/{variable.lower()}_clim_gpcp_data.nc') climCyclical = xr.concat([clima['clim'], clima['clim'], clima['clim']], dim='time') climSmooth = climCyclical.rolling(time=31, min_periods=1, center=True).mean(skipna=True).rolling( time=31, min_periods=1, center=True).mean(skipna=True) climSmooth = climSmooth.isel(time=slice(365,365 * 2)) climSmooth = climSmooth.transpose('time','lat','lon') # -- reduce mem usage del climCyclical del clima # -- add lead time to climo climCyclicalObs = xr.concat([climSmooth, climSmooth, climSmooth], dim='time') climFinal = np.zeros((climSmooth.shape[0],45,climSmooth.shape[1],climSmooth.shape[2])) for i in range(365): climFinal[i,:,:,:] = climCyclicalObs[365+i:365+i+45,:,:] # -- create time arrays for subsequent indexing d_mon = pd.date_range(start=start_range, end=end_range, freq='W-MON') d_dly = pd.date_range(start=start_range, end=end_range, freq='D') for num, (yr, mo, day) in enumerate(zip(d_dly.strftime("%Y"),d_dly.strftime("%m"),d_dly.strftime("%d"))): if calendar.isleap(int(yr)): if mo == '02' and day == '29': d_dly = d_dly.drop(f'{yr}-02-29') for num, (yr, mo, day) in enumerate(zip(d_mon.strftime("%Y"),d_mon.strftime("%m"),d_mon.strftime("%d"))): if calendar.isleap(int(yr)): if mo == '02' and day == '29': d_mon = d_mon.drop(f'{yr}-02-29') # -- create daily obs for final anom computation filelist2 = gpcp_filelist(parent_directory='/glade/work/molina/GPCP', start=start_range, end=str(int((end_range)[:4])+1)+'-12-31') varObs = np.zeros((len(filelist2), 180, 360)) for num, file in enumerate(filelist2): ds = xr.open_dataset(file) ds = ds[variable].isel(time=0) ds = ds.where(ds>=0.,0.) # valid range: [0.,100.] ds = ds.where(ds<=100.,100.) if num == 0: lats = ds.latitude.values lons = ds.longitude.values varObs[num,:,:] = ds.values # -- add lead time to daily obs varFinal = np.zeros((int(len(d_mon)), 45, 180, 360)) for num, i in enumerate(d_mon): varFinal[num,:,:,:] = varObs[int(np.argwhere(d_dly==np.datetime64(i))[0]):int(np.argwhere(d_dly==np.datetime64(i))[0])+45,:,:] # -- compute obs anomalies anom = np.zeros((int(len(d_mon)), 45, 180, 360)) for num, i in enumerate(d_mon): doy_indx = i.dayofyear - 1 if calendar.isleap(int(i.year)) and i.month > 2: doy_indx = doy_indx - 1 anom[num,:,:,:] = varFinal[num,:,:,:] - climFinal[doy_indx,:,:,:] # -- data_assemble = xr.Dataset({ 'anom': (['time','lead','lat','lon'], anom), 'date_range': (['date_range'], d_mon), }, coords = {'lead': (['lead'], np.arange(0,anom.shape[1],1)), 'time': (['time'], np.arange(1,anom.shape[0]+1,1)), 'lat' : (['lat'], lats), 'lon' : (['lon'], lons) }, attrs = {'File Author' : author}) if not save: return data_assemble if save: data_assemble.to_netcdf(f'{parent_directory}CESM2_OBS/{variable.lower()}_anom_gpcp_data.nc') def era5_temp_regrid(obs_directory, start_range='1999-01-01', end_range='2020-12-31'): """ Regridding of ERA5 temperatures. Args: obs_directory (str): Directory where files are located. start_range (str): Start of hindcasts. Defaults to '1999-01-01'. end_range (str): End of hindcasts. Defaults to '2020-12-31'. """ d_daily = pd.date_range(start=start_range, end=end_range, freq='D') d_daily = d_daily[~((d_daily.day==29)&(d_daily.month==2))] for num, t in enumerate(d_daily): tmax = xr.open_dataset( f"{obs_directory}era5_tmax/e5.oper.fc.sfc.minmax.128_201_mx2t.ll025sc.{t.strftime('%Y%m%d')}.nc") tmax = regrid_mask(tmax, 'MX2T') tmax.to_dataset(name='MX2T').to_netcdf( f"{obs_directory}era5_tmax_regrid/e5.oper.fc.sfc.minmax.128_201_mx2t.ll025sc.{t.strftime('%Y%m%d')}.nc") tmin = xr.open_dataset( f"{obs_directory}era5_tmin/e5.oper.fc.sfc.minmax.128_202_mn2t.ll025sc.{t.strftime('%Y%m%d')}.nc") tmin = regrid_mask(tmin, 'MN2T') tmin.to_dataset(name='MN2T').to_netcdf( f"{obs_directory}era5_tmin_regrid/e5.oper.fc.sfc.minmax.128_202_mn2t.ll025sc.{t.strftime('%Y%m%d')}.nc") def era5_temp_climatology(obs_directory, save_directory, start='1999-01-01', end='2020-12-31', save=False, author=None): """ Create ERA5 temperature hindcast climatology. Outputs array (365, lat, lon). Args: obs_directory (str): Directory where files are located. save_directory (str): Directory where to save files. start (str): Start of hindcasts. Defaults to '1999-01-01'. end (str): End of hindcasts. Defaults to '2020-12-31'. save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. """ td = pd.date_range(start=start, end=end, freq='D') td = td[~((td.day==29)&(td.month==2))] doy = 0 yr = 0 dates = [] years = [] for num, t in enumerate(td): tmax = xr.open_dataset( f"{obs_directory}era5_tmax_regrid/e5.oper.fc.sfc.minmax.128_201_mx2t.ll025sc.{t.strftime('%Y%m%d')}.nc")['MX2T'] tmin = xr.open_dataset( f"{obs_directory}era5_tmin_regrid/e5.oper.fc.sfc.minmax.128_202_mn2t.ll025sc.{t.strftime('%Y%m%d')}.nc")['MN2T'] avg_temp = (tmin + tmax) / 2 dates.append(pd.Timestamp(t.strftime('%Y%m%d'))) if num == 0: clim = np.zeros((td.year.unique().shape[0],365,avg_temp.shape[0],avg_temp.shape[1])) lats = tmin.y.values lons = tmin.x.values clim[yr,doy,:,:] = avg_temp doy += 1 if doy == 365: doy = 0 yr += 1 years.append(int(t.strftime('%Y'))) data_assemble = xr.Dataset({ 'clim': (['time','lat','lon'], np.nanmean(clim, axis=0)), }, coords = {'date_range': (['date_range'], pd.to_datetime(dates)), 'time': (['time'], np.arange(1,365 + 1,1)), 'lat' : (['lat'], lats), 'lon' : (['lon'], lons) }, attrs = {'File Author' : author, 'Years' : np.array(years)}) if not save: return data_assemble if save: data_assemble.to_netcdf(f'{save_directory}era5_temp_clim_gpcp_data.nc') def era5_temp_anomalies(obs_directory, save_directory, start_range='1999-01-01', end_range='2019-12-31', save=False, author=None): """ Create ERA5 temperature hindcast anomalies. Args: obs_directory (str): Directory where files are located. save_directory (str): Directory where to save files. start (str): Start of hindcasts. Defaults to '1999-01-01'. end (str): End of hindcasts. Defaults to '2020-12-31'. save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. """ # -- open and smooth obs climo clima = xr.open_dataset(f'{save_directory}era5_temp_clim_gpcp_data.nc') climCyclical = xr.concat([clima['clim'], clima['clim'], clima['clim']], dim='time') climSmooth = climCyclical.rolling(time=31, min_periods=1, center=True).mean(skipna=True).rolling( time=31, min_periods=1, center=True).mean(skipna=True) climSmooth = climSmooth.isel(time=slice(365,365 * 2)) climSmooth = climSmooth.transpose('time','lat','lon') # -- reduce mem usage del climCyclical del clima # -- add lead time to climo climCyclicalObs = xr.concat([climSmooth, climSmooth, climSmooth], dim='time') climFinal = np.zeros((climSmooth.shape[0],45,climSmooth.shape[1],climSmooth.shape[2])) for i in range(365): climFinal[i,:,:,:] = climCyclicalObs[365+i:365+i+45,:,:] # -- create time arrays for subsequent indexing d_mon = pd.date_range(start=start_range, end=end_range, freq='W-MON') d_dly =
pd.date_range(start=start_range, end=end_range, freq='D')
pandas.date_range
import pathlib import datetime import time import uuid import pandas as pd import numpy as np import simpy import dill as pickle import openclsim.model def save_logs(simulation, location, file_prefix): # todo add code to LogSaver to allow adding a file_prefix to each file site_logs = list(simulation.sites.values()) equipment_logs = list(simulation.equipment.values()) activity_logs = [ activity["activity_log"] for activity in simulation.activities.values() ] logsaver = LogSaver( site_logs, equipment_logs, activity_logs, location=location, file_prefix=file_prefix, overwrite=True, append_to_existing=False, ) logsaver.save_all_logs() class ToSave: """ Class that defines objects that have to be saved. data_type is the object type: ship, site, crane, etc. data: is the dictionary that is used to fill the data_type """ def __init__(self, data_type, data, *args, **kwargs): # This is the case for activities if data_type == openclsim.model.Activity: self.data_type = "Activity" self.data = { "name": data["name"], "id": data["id"], "mover": data["mover"].name, "loader": data["loader"].name, "unloader": data["unloader"].name, "origin": data["origin"].name, "destination": data["destination"].name, "stop_event": None, # data["stop_event"], "start_event": None, } # data["start_event"] # This is the case for equipment and sites elif type(data_type) == type: self.data_type = [] for subclass in data_type.__mro__: if ( subclass.__module__ == "openclsim.core" and subclass.__name__ not in ["Identifiable", "Log", "SimpyObject"] ): self.data_type.append(subclass.__name__) self.data = data self.data["env"] = None class SimulationSave: """ SimulationSave allows save all obtained data. Environment: The simpy environment Activities: List element with 'ToSave' classes of all unique activities Equipment: List element with 'ToSave' classes of all unique pieces of equipment Sites: List element with 'ToSave' classes of all unique sites """ def __init__(self, environment, activities, equipment, sites, *args, **kwargs): """ Initialization """ # Generate unique ID for the simulation self.id = str(uuid.uuid1()) # Save the environment # assert type(environment) == simpy.core.Environment self.simulation_start = environment.now # Save all properties assert type(activities) == list self.activities = activities assert type(equipment) == list self.equipment = equipment assert type(sites) == list self.sites = sites # Save the initialization properties self.init = self.init_properties @property def init_properties(self): """ Save all properties of the simulation """ return { "ID": self.id, "Simulation start": self.simulation_start, "Activities": self.activities, "Equipment": self.equipment, "Sites": self.sites, } def save_ini_file(self, filename, location=""): """ For all items of the simulation, save the properties and generate an initialization file. This file should be a JSON format and readable to start a new simulation. If location is "", the init will be saved in the current working directory. """ # assure location is a path location = pathlib.Path(location) file_name = location / (filename + ".pkl") with open(file_name, "wb") as file: pickle.dump(self.init, file) class SimulationOpen: """ SimulationOpen allows to define simulations from .pkl files. If location is "", the init will be saved in the current working directory. """ def __init__(self, file_name): """ Initialization """ self.simulation = self.open_ini_file(file_name) def open_ini_file(self, file_name): """ For all items of the simulation, save the properties and generate an initialization file. This file should be a JSON format and readable to start a new simulation. If location is "", the init will be saved in the current working directory. """ with open(file_name, "rb") as file: return pickle.load(file) def extract_files(self): environment = simpy.Environment( initial_time=self.simulation["Simulation start"] ) environment.epoch = time.mktime( datetime.datetime.fromtimestamp( self.simulation["Simulation start"] ).timetuple() ) sites = [] equipment = [] for site in self.simulation["Sites"]: site_object = openclsim.model.get_class_from_type_list( "Site", site.data_type ) site.data["env"] = environment sites.append(site_object(**site.data)) for ship in self.simulation["Equipment"]: ship_object = openclsim.model.get_class_from_type_list( "Ship", ship.data_type ) ship.data["env"] = environment equipment.append(ship_object(**ship.data)) activities = [] for activity in self.simulation["Activities"]: data = activity.data mover = [i for i in equipment if i.name == data["mover"]][0] loader = [i for i in equipment if i.name == data["loader"]][0] unloader = [i for i in equipment if i.name == data["unloader"]][0] origin = [i for i in sites if i.name == data["origin"]][0] destination = [i for i in sites if i.name == data["destination"]][0] activities.append( openclsim.model.Activity( env=environment, # The simpy environment defined in the first cel name=data["name"], # We are moving soil ID=data["id"], # The id origin=origin, # We originate from the from_site destination=destination, # And therefore travel to the to_site loader=loader, # The benefit of a TSHD, all steps can be done mover=mover, # The benefit of a TSHD, all steps can be done unloader=unloader, ) ) # The benefit of a TSHD, all steps can be done return sites, equipment, activities, environment class LogSaver: """ LogSaver allow saving all logs as .csv files. Objects should be a list containing the activities, sites and equipment. The ID could be the ID that is saved to the .pkl file, entering an ID is optional. If location is "", the files will be saved in the current working directory. """ def __init__( self, sites, equipment, activities, simulation_id="", simulation_name="", location="", file_prefix="", overwrite=False, append_to_existing=True, ): """ Initialization """ # Save all properties assert type(activities) == list self.activities = activities assert type(equipment) == list self.equipment = equipment assert type(sites) == list self.sites = sites # Save simulation id and simulation name self.id = simulation_id if simulation_id else str(uuid.uuid1()) self.name = simulation_name if simulation_name else self.id # Define location to save files self.location = location if len(self.location) != 0 and self.location[-1] != "/": self.location += "/" self.location += file_prefix # Finally save all items self.overwrite = overwrite self.append_to_existing = append_to_existing def save_all_logs(self): """ Save all logs to a specified location. If location is "", the logs will be saved in the current working directory. A file is saved with unique events -- events.csv A file is saved with unique location objects -- locations.csv A file is saved with unique equipment objects -- equipment.csv A file is saved with unique activity objects -- activities.csv A file is saved with unique simulations -- simulations.csv A file is saved with equipment logs -- equipment_log.csv A file is saved with energy use -- energy_use.csv A file is saved with dredging spill info -- dredging_spill.csv A file is saved with simulation properties -- generic_results.csv """ # First get all unique properties # Obtain information on simulations simulation_dict = {"SimulationID": [], "SimulationName": []} self.get_unique_properties("simulations", simulation_dict) # Obtain information on activities activity_dict = { "ActivityID": [], "ActivityName": [], "EquipmentID": [], "ActivityFunction": [], } self.get_unique_properties("activities", activity_dict) # Obtain information on equipment equipment_dict = {"EquipmentID": [], "EquipmentName": []} self.get_unique_properties("equipment", equipment_dict) # Obtain information on locations location_dict = { "LocationID": [], "LocationName": [], "Longitude": [], "Latitude": [], } self.get_unique_properties("location", location_dict) # Obtain information on events event_dict = {"EventID": [], "EventName": []} self.get_unique_properties("events", event_dict) # Continue with obtaining the logs, energy use and dredging spill self.get_equipment_log() self.get_energy() self.get_spill() self.get_results() # Save all as csv files self.generic_results.to_csv(self.location + "generic_results.csv", index=False) self.dredging_spill.to_csv(self.location + "dredging_spill.csv", index=False) self.energy_use.to_csv(self.location + "energy_use.csv", index=False) self.equipment_log.to_csv(self.location + "equipment_log.csv", index=False) self.unique_events.to_csv(self.location + "events.csv", index=False) self.unique_activities.to_csv(self.location + "activities.csv", index=False) self.unique_equipment.to_csv(self.location + "equipment.csv", index=False) self.unique_locations.to_csv(self.location + "locations.csv", index=False) self.unique_simulations.to_csv(self.location + "simulations.csv", index=False) def get_unique_properties(self, object_type, object_dict): """ Obtain unique properties for the given list """ if self.append_to_existing: try: unique_df = pd.read_csv(self.location + object_type + ".csv") except FileNotFoundError: unique_df = pd.DataFrame.from_dict(object_dict) else: unique_df = pd.DataFrame.from_dict(object_dict) if object_type == "simulations": self.unique_simulations = self.append_dataframe( unique_df, self, "Simulation" ) elif object_type == "activities": for activity in self.activities: unique_df = self.append_dataframe(unique_df, activity, "Activity") self.unique_activities = unique_df elif object_type == "equipment": for piece in self.equipment: unique_df = self.append_dataframe(unique_df, piece, "Equipment") self.unique_equipment = unique_df elif object_type == "events": for piece in self.equipment: unique_df = self.event_dataframe(unique_df, piece) self.unique_events = unique_df elif object_type == "location": for site in self.sites: unique_df = self.append_dataframe(unique_df, site, "Location") self.unique_locations = unique_df def append_dataframe(self, existing_df, object_id, object_type): """ Check if dataframe is alfready filled with information, if not append. If it is filled with similar values, raise an error unless self.overwrite == True. """ if object_id.id not in list(existing_df[object_type + "ID"]): if object_type != "Location" and object_type != "Activity": existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, }, ignore_index=True, ) elif object_type == "Activity": # lookup the equipment # TODO: clean this up, it's now not filled in for move activities loader_id = "" if hasattr(object_id, "loader"): loader_id = object_id.loader.id existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "EquipmentID": loader_id, "ActivityFunction": "Loader", }, ignore_index=True, ) mover_id = "" if hasattr(object_id, "mover"): mover_id = object_id.mover.id existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "EquipmentID": mover_id, "ActivityFunction": "Mover", }, ignore_index=True, ) unloader_id = "" if hasattr(object_id, "unloader"): unloader_id = object_id.unloader.id existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "EquipmentID": unloader_id, "ActivityFunction": "Unloader", }, ignore_index=True, ) elif object_type == "Location": existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "Longitude": object_id.geometry.x, "Latitude": object_id.geometry.y, }, ignore_index=True, ) elif self.overwrite == True: existing_df = existing_df[existing_df[object_type + "ID"] != object_id.id] if object_type != "Location": existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, }, ignore_index=True, ) else: existing_df = existing_df.append( { object_type + "ID": object_id.id, object_type + "Name": object_id.name, "Longitude": object_id.geometry.x, "Latitude": object_id.geometry.y, }, ignore_index=True, ) else: raise KeyError( "Simulation ID or simulation name already exist. " + "If you wish to overwrite the existing data, set overwrite to True" ) return existing_df def event_dataframe(self, existing_df, piece): """ Check if dataframe is alfready filled with information, if not append. If it is filled with similar values, raise an error unless self.overwrite == True. """ log = pd.DataFrame.from_dict(piece.log) events = list(log["Message"].unique()) for event in events: if "start" in event or "stop" in event: event = event.replace(" start", "") event = event.replace(" stop", "") if event not in list(existing_df["EventName"]): existing_df = existing_df.append( {"EventID": str(uuid.uuid1()), "EventName": event}, ignore_index=True, ) return existing_df def get_equipment_log(self): """ Create a dataframe from all equipment logs """ object_dict = { "SimulationID": [], "ObjectID": [], "EventID": [], "ActivityID": [], "LocationID": [], "EventStart": [], "EventStop": [], } try: unique_df = pd.read_csv(self.location + "equipment_log.csv") except FileNotFoundError: unique_df = pd.DataFrame.from_dict(object_dict) for piece in self.equipment: object_log = pd.DataFrame.from_dict(piece.log) for i, message in enumerate(object_log["Message"]): for j, event in enumerate(self.unique_events["EventName"]): if message == event + " start": object_dict["SimulationID"].append(self.id) object_dict["ObjectID"].append(piece.id) object_dict["EventID"].append(self.unique_events["EventID"][j]) object_dict["ActivityID"].append(object_log["ActivityID"][i]) object_dict["EventStart"].append(object_log["Timestamp"][i]) x, y = object_log["Geometry"][i].x, object_log["Geometry"][i].y for k, LocationID in enumerate( self.unique_locations["LocationID"] ): if ( x == self.unique_locations["Longitude"][k] and y == self.unique_locations["Latitude"][k] ): object_dict["LocationID"].append(LocationID) elif message == event + " stop": object_dict["EventStop"].append(object_log["Timestamp"][i]) # Create durations column object_df = pd.DataFrame.from_dict(object_dict) durations = object_df["EventStop"] - object_df["EventStart"] durations_days = [] for event in durations: durations_days.append(event.total_seconds() / 3600 / 24) object_df["EventDuration"] = durations_days # Check if combination of simulation ID and object ID already exists if len(unique_df["SimulationID"]) == 0: unique_df = object_df elif not (unique_df["SimulationID"] == self.id).any(): unique_df = pd.concat([unique_df, object_df], ignore_index=True) elif self.overwrite == True: drop_rows = [] for i, row in enumerate(unique_df["SimulationID"] == self.id): if row == True: drop_rows.append(i) unique_df = unique_df.drop(drop_rows, axis=0) unique_df = pd.concat([unique_df, object_df], ignore_index=True) else: raise KeyError( "Simulation ID or simulation name already exist. " + "If you wish to overwrite the existing data, set overwrite to True" ) self.equipment_log = unique_df def get_spill(self): """ Obtain a log of all dreding spill """ object_dict = { "SimulationID": [], "ObjectID": [], "EventID": [], "ActivityID": [], "LocationID": [], "SpillStart": [], "SpillStop": [], "SpillDuration": [], "Spill": [], } try: unique_df = pd.read_csv(self.location + "dredging_spill.csv") except FileNotFoundError: unique_df = pd.DataFrame.from_dict(object_dict) for piece in self.equipment: object_log = pd.DataFrame.from_dict(piece.log) for i, message in enumerate(object_log["Message"]): if message == "fines released": loop_list = list(object_log["Message"][0:i]) for j, event_message in enumerate(loop_list[::-1]): if "start" in event_message: event_start_time = object_log["Timestamp"][i - j - 1] event_start_msg = event_message.replace(" start", "") break loop_list = list(object_log["Message"][i::]) for j, event_message in enumerate(loop_list): if "stop" in event_message: event_stop_time = object_log["Timestamp"][i + j] event_stop_msg = event_message.replace(" stop", "") break assert event_start_msg == event_stop_msg for j, event in enumerate(self.unique_events["EventName"]): if event_start_msg == event: object_dict["SimulationID"].append(self.id) object_dict["ObjectID"].append(piece.id) object_dict["EventID"].append( self.unique_events["EventID"][j] ) object_dict["ActivityID"].append( object_log["ActivityID"][i] ) object_dict["SpillStart"].append(event_start_time) object_dict["SpillStop"].append(event_stop_time) object_dict["SpillDuration"].append( (event_stop_time - event_start_time).total_seconds() / 3600 / 24 ) object_dict["Spill"].append(object_log["Value"][i]) x, y = ( object_log["Geometry"][i].x, object_log["Geometry"][i].y, ) for k, LocationID in enumerate( self.unique_locations["LocationID"] ): if ( x == self.unique_locations["Longitude"][k] and y == self.unique_locations["Latitude"][k] ): object_dict["LocationID"].append(LocationID) object_df = pd.DataFrame.from_dict(object_dict) if len(unique_df["SimulationID"]) == 0: unique_df = object_df elif not (unique_df["SimulationID"] == self.id).any(): unique_df =
pd.concat([unique_df, object_df], ignore_index=True)
pandas.concat
import numpy as np import pandas as pd import datetime as dt import pickle import bz2 from .analyzer import summarize_returns DATA_PATH = '../backtest/' class Portfolio(): """ Portfolio is the core class for event-driven backtesting. It conducts the backtesting in the following order: 1. Initialization: Set the capital base we invest and the securities we want to trade. 2. Receive the price information with .receive_price(): Insert the new price information of each securities so that the Portfolio class will calculated and updated the relevant status such as the portfolio value and position weights. 3. Rebalance with .rebalance(): Depending on the signal, we can choose to change the position on each securities. 4. Keep position with .keep_position(): If we don't rebalance the portfolio, we need to tell it to keep current position at the end of the market. Example ------- see Vol_MA.ipynb, Vol_MA_test_robustness.ipynb Parameters ---------- capital: numeric capital base we put into the porfolio inception: datetime.datetime the time when we start backtesting components: list of str tikers of securities to trade, such as ['AAPL', 'MSFT', 'AMZN] name: str name of the portfolio is_share_integer: boolean If true, the shares of securities will be rounded to integers. """ def __init__(self, capital, inception, components, name='portfolio', is_share_integer=False): # ----------------------------------------------- # initialize parameters # ----------------------------------------------- self.capital = capital # initial money invested if isinstance(components, str): components = [components] # should be list self.components = components # equities in the portfolio # self.commission_rate = commission_rate self.inception = inception self.component_prices = pd.DataFrame(columns=self.components) self.name = name self.is_share_integer = is_share_integer # self.benchmark = benchmark # ----------------------------------------------- # record portfolio status to series and dataFrames # ----------------------------------------------- # temoprary values self._nav = pd.Series(capital,index=[inception]) self._cash = pd.Series(capital,index=[inception]) self._security = pd.Series(0,index=[inception]) self._component_prices = pd.DataFrame(columns=self.components) # empty self._shares = pd.DataFrame(0, index=[inception], columns=self.components) self._positions = pd.DataFrame(0, index=[inception], columns=self.components) self._weights = pd.DataFrame(0, index=[inception], columns=self.components) self._share_changes = pd.DataFrame(columns=self.components) # empty self._now = self.inception self._max_nav = pd.Series(capital,index=[inception]) self._drawdown = pd.Series(0, index=[inception]) self._relative_drawdown = pd.Series(0, index=[inception]) # series self.nav_open = pd.Series() self.nav_close = pd.Series() self.cash_open = pd.Series() self.cash_close = pd.Series() self.security_open = pd.Series() self.security_close = pd.Series() self.max_nav = pd.Series() self.drawdown_open = pd.Series() self.drawdown_close = pd.Series() self.relative_drawdown_open = pd.Series() self.relative_drawdown_close =
pd.Series()
pandas.Series
"""Tests for climTrend. Author: <NAME> """ from climvis import climtrend import numpy as np import pandas as pd import pandas.util.testing as pdt import bokeh def test_get_lat_lon(): city = 'Innsbruck' city_2 = climtrend.cities_list[1] lat_corr = 47.2666667 lon_corr = 11.4 lat, lon = climtrend.get_lat_lon(city) lat2, lon2 = climtrend.get_lat_lon(city_2) np.testing.assert_almost_equal(lat, lat_corr, decimal=4) np.testing.assert_almost_equal(lon, lon_corr, decimal=4) def test_resample_data(): # Some dummy data. data = np.arange(24) index = pd.date_range('2017-01-01', periods=24, freq='MS').tolist() df = pd.DataFrame(data, index) method = 'Yearly' variable = 'Temperature' lat = 15 df_resample = climtrend.resample_data(df, method, variable, lat) # What the returned data is supposed to look like. index_corr = pd.date_range('2017-12-31', periods=2, freq='12M').tolist() data_corr = [data[:12].mean(), data[12:].mean()] df_corr = pd.DataFrame(data_corr, index_corr) pdt.assert_frame_equal(df_resample, df_corr) # Case using summer period. method = 'Summer' variable = 'Temperature' df_resample_summer = climtrend.resample_data(df, method, variable, lat) # Maybe this is a bit too lazy. df_corr_summer = df['2017-04':].resample('6M', closed='left').mean()[0::2] pdt.assert_frame_equal(df_resample_summer, df_corr_summer) # Case using winter period. method = 'Winter' variable = 'Temperature' df_resample_winter = climtrend.resample_data(df, method, variable, lat) df_corr_winter = df['2017-04':].resample('6M', closed='left').mean()[1::2]
pdt.assert_frame_equal(df_resample_winter, df_corr_winter)
pandas.util.testing.assert_frame_equal
""" Additional tests for PandasArray that aren't covered by the interface tests. """ import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.arrays import PandasArray from pandas.core.arrays.numpy_ import PandasDtype @pytest.fixture( params=[ np.array(["a", "b"], dtype=object), np.array([0, 1], dtype=float), np.array([0, 1], dtype=int), np.array([0, 1 + 2j], dtype=complex), np.array([True, False], dtype=bool), np.array([0, 1], dtype="datetime64[ns]"), np.array([0, 1], dtype="timedelta64[ns]"), ] ) def any_numpy_array(request): """ Parametrized fixture for NumPy arrays with different dtypes. This excludes string and bytes. """ return request.param # ---------------------------------------------------------------------------- # PandasDtype @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", True), ("uint", True), ("float", True), ("complex", True), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_numeric(dtype, expected): dtype = PandasDtype(dtype) assert dtype._is_numeric is expected @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", False), ("uint", False), ("float", False), ("complex", False), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_boolean(dtype, expected): dtype = PandasDtype(dtype) assert dtype._is_boolean is expected def test_repr(): dtype = PandasDtype(np.dtype("int64")) assert repr(dtype) == "PandasDtype('int64')" def test_constructor_from_string(): result = PandasDtype.construct_from_string("int64") expected = PandasDtype(np.dtype("int64")) assert result == expected # ---------------------------------------------------------------------------- # Construction def test_constructor_no_coercion(): with pytest.raises(ValueError, match="NumPy array"): PandasArray([1, 2, 3]) def test_series_constructor_with_copy(): ndarray = np.array([1, 2, 3]) ser = pd.Series(PandasArray(ndarray), copy=True) assert ser.values is not ndarray def test_series_constructor_with_astype(): ndarray = np.array([1, 2, 3]) result = pd.Series(PandasArray(ndarray), dtype="float64") expected = pd.Series([1.0, 2.0, 3.0], dtype="float64") tm.assert_series_equal(result, expected) def test_from_sequence_dtype(): arr = np.array([1, 2, 3], dtype="int64") result = PandasArray._from_sequence(arr, dtype="uint64") expected = PandasArray(np.array([1, 2, 3], dtype="uint64")) tm.assert_extension_array_equal(result, expected) def test_constructor_copy(): arr = np.array([0, 1]) result = PandasArray(arr, copy=True) assert np.shares_memory(result._ndarray, arr) is False def test_constructor_with_data(any_numpy_array): nparr = any_numpy_array arr = PandasArray(nparr) assert arr.dtype.numpy_dtype == nparr.dtype # ---------------------------------------------------------------------------- # Conversion def test_to_numpy(): arr = PandasArray(np.array([1, 2, 3])) result = arr.to_numpy() assert result is arr._ndarray result = arr.to_numpy(copy=True) assert result is not arr._ndarray result = arr.to_numpy(dtype="f8") expected = np.array([1, 2, 3], dtype="f8") tm.assert_numpy_array_equal(result, expected) # ---------------------------------------------------------------------------- # Setitem def test_setitem_series(): ser =
pd.Series([1, 2, 3])
pandas.Series
import json import numpy as np import random, csv, math from collections import OrderedDict from queue import PriorityQueue import argparse, os import time from textwrap import wrap import subprocess import os, sys import libs.inputs as inputs import shutil import random from shutil import copyfile import libs.query_json as query_json import configparser import libs.definition as definition from copy import deepcopy import pandas as pd from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import random import logging import libs.search_common as search_common from nltk.cluster import KMeansClusterer, euclidean_distance def align_fields(dict_to_align, field_info): lst = [] for fid, f_metadata in field_info.items(): lst.append(dict_to_align[fid] ) return lst def parse_json(f, field_info, minAF): json_data = query_json.read_json(f) data_list = [] amp_list = [] for entry in json_data: fv = align_fields(entry["fields"], field_info) amp_factor = round(float(entry["amp_factor"]), 4) server_ip = entry["server_ip"] if amp_factor >= minAF: data_list.append(fv) amp_list.append(amp_factor) #:qprint(fv) return data_list, amp_list def iterate_files(base_dir, minAF, field_info ): lol = [] feature_id = [] print(base_dir) data_list = [] amp_list = [] for root, dirs, files in os.walk(base_dir): for sub_dir in dirs: path = os.path.join( root, sub_dir ) json_files = os.listdir(path) for f in json_files: file_path = os.path.join( path, f ) data, amp = parse_json(file_path, field_info, minAF) data_list = data_list + data amp_list = amp_list + amp assert(len(amp_list) == len(data_list)) return data_list, amp_list def parse_data(ampdata , proto_fields, minAF): data_list = [] amp_list = [] for server_ip, server_data in ampdata.items(): for entry in server_data: amp_factor = round(float(entry["amp_factor"]), 4) #server_data["amp_factor"] fv = align_fields(entry["fields"], proto_fields) if amp_factor >= minAF: data_list.append(fv) amp_list.append(amp_factor) assert(len(amp_list) == len(data_list)) return data_list, amp_list def convert_dataframe_to_list(df ): data = [] for index, row in df.iterrows(): data.append(row.tolist() ) return data ''' Normalizing each field as some are large vs. small, discrete vs. continuous ''' def normalize_field(df, proto_fields, numBin = 10 ): print("proto fields ", proto_fields) for c in df.columns: print("c is " , c , " and df.columns is ", df.columns) logging.info("\nFIELD c is {} and and df.columns is {}".format(c,df.columns)) f_metadata = proto_fields[c] ''' Field only takes one value so normalize to all 1 ''' if len(f_metadata.accepted_range) == 1: print("Field type 0 ", c , type(f_metadata.accepted_range)) val_max = 1 logging.info("\tvalue max is {}".format(val_max)) df[c] = pd.Series(df[c]).astype('category') df[c] = df[c].cat.codes # Field takes a set of discrete values # Then it is a categorical field elif f_metadata.is_int == False or type(f_metadata.accepted_range) != range : print("Field type 1 ", c , type(f_metadata.accepted_range)) logging.info("Field type 1 {} : {}".format(c, type(f_metadata.accepted_range))) val_max = len(f_metadata.accepted_range) - 1 df[c] = pd.Series(df[c]).astype('category') df[c] = df[c].cat.codes # For field that takes a range of contiguous values, accordingly bin the values elif len(f_metadata.accepted_range) > definition.SMALL_FIELD_THRESHOLD: print("Large range is ", c) print("Field type 2 ", c , type(f_metadata.accepted_range)) logging.info("Field type 2 {} : {}".format(c, type(f_metadata.accepted_range))) bin_size = math.ceil(f_metadata.accepted_range[-1] / numBin) logging.info("Bin size is {}".format(bin_size)) print("bin size ", bin_size) df[c] = df[c]//bin_size val_max = max(df[c]) logging.info("\tvalue max is {}".format(val_max)) print("\tvalue max is {}".format(val_max)) # For all others, else: print("Field type 3 ", c , type(f_metadata.accepted_range)) logging.info("Field type 3 {} : {}".format(c, type(f_metadata.accepted_range))) val_max = max(f_metadata.accepted_range) #print(df[c]) df[c] = df[c].astype(float) # Corner case: a field takes a value of 0 only if len(f_metadata.accepted_range) == 1 and f_metadata.accepted_range[0] == 0: print("Field ", c , " is NOT normalized ") continue # Make the range betwen n 0 to 1 if val_max != 0: df[c] = df[c]/val_max * 1 return df def pick_representative_queries_weight_based(query_to_cluster, num_probe, num_cluster): num_cluster = len(query_to_cluster) num_spent = 0 cluster_ids = list(query_to_cluster.keys()) queries_final = [] ''' If size of cluster is greater than probe, then make sure we pick one sampel from each cluster ''' while num_spent < num_probe and len(query_to_cluster) > 0 : cluster_ids = list(query_to_cluster.keys()) weights, scaled_weights = compute_weights(query_to_cluster) cid = random.choices( cluster_ids, weights=weights , k=1)[0] rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] query_to_cluster[cid].pop(rand_index) queries_final.append(picked_query) num_spent = num_spent + 1 if len(query_to_cluster[cid]) == 0: del query_to_cluster[cid] if len(query_to_cluster) == 0: print("Exising as all queries used") break return queries_final def pick_representative_queries_hybrid_weight(query_to_cluster, num_probe, num_cluster): num_spent = 0 cluster_ids = list(query_to_cluster.keys()) queries_final = [] ''' If size of cluster is greater than probe, then we pick X from the first NUM_PROBE clusters ''' if num_cluster >= num_probe: print("Num cluster > Num Probe so pick random cluster .. ") # sample WITHOUT replacement chosen_cids = random.sample(cluster_ids, num_probe) for cid in chosen_cids: rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] queries_final.append(picked_query) query_to_cluster[cid].pop(rand_index) print("picked 1 from each cluster") return queries_final ''' Sample based on the weight (size) of each cluster ''' #WEIGHT BASED print('WEIGHT based') while num_spent < num_probe and len(query_to_cluster) > 0 : cluster_ids = list(query_to_cluster.keys()) weights, scaled_weights = compute_weights(query_to_cluster) cid = random.choices( cluster_ids, weights=weights , k=1)[0] rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] query_to_cluster[cid].pop(rand_index) queries_final.append(picked_query) num_spent = num_spent + 1 if len(query_to_cluster[cid]) == 0: del query_to_cluster[cid] if len(query_to_cluster) == 0: print("Exising as all queries used") break return queries_final ''' Pick samples and give equal weight to each cluster ''' def pick_representative_queries_equal_weight(query_to_cluster, num_probe, num_cluster): num_spent = 0 cluster_ids = list(query_to_cluster.keys()) queries_final = [] ''' If size of cluster is greater than probe, then we pick X from the first NUM_PROBE clusters ''' if num_cluster >= num_probe: print("Num cluster > Num Probe so pick random cluster .. ") #sample WITHOUT replacement chosen_cids = random.sample(cluster_ids, num_probe) for cid in chosen_cids: rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] queries_final.append(picked_query) query_to_cluster[cid].pop(rand_index) return queries_final ''' Pick one from each other .. ''' del_keys = set() for cid, queries in query_to_cluster.items() : rand_index = random.randint(0, len(queries) -1 ) picked_query = query_to_cluster[cid][rand_index] queries_final.append(picked_query) query_to_cluster[cid].pop(rand_index) num_spent = num_spent + 1 if len(query_to_cluster[cid]) == 0: del_keys.add(cid ) if num_spent >= num_probe: break print("picked {} so far ".format(num_spent) ) print("Deleting cluster IDs that are empty {} ".format(del_keys) ) # Delete cluster ID if we picked all from that cluster for cid in del_keys: del query_to_cluster[cid] while num_spent < num_probe and len(query_to_cluster) > 0 : cluster_ids = list(query_to_cluster.keys()) cid = random.choice( cluster_ids ) rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] query_to_cluster[cid].pop(rand_index) queries_final.append(picked_query) num_spent = num_spent + 1 if len(query_to_cluster[cid]) == 0: del query_to_cluster[cid] if len(query_to_cluster) == 0: print("Exising as all queries used") break return queries_final def compute_weights(query_to_cluster): weights = [] total_weight = 0 for cid, queries in query_to_cluster.items(): weights.append(len(queries)) #print(len(queries)) total_weight = total_weight + len(queries) scaled_weights = [] for w in weights: scaled_weights.append( w/total_weight ) return weights, scaled_weights def pick_representative_queries_new(query_to_cluster, num_probe): num_spent = 0 cluster_ids = list(query_to_cluster.keys()) queries_final = [] ''' if size of cluster is greater than probe, then we pick X from the first NUM_PROBE clusters ''' if num_cluster >= num_probe: print("Num cluster > Num Probe SO pick at least one sample ") chosen_cids = random.sample(cluster_ids, num_probe) #print(sorted(chosen_cids) ) # len(chosen_cid), len(set(chosen_cid))) for cid in chosen_cids: rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] queries_final.append(picked_query) #Debugged this problem -- May 29, <NAME> #queries_final.append(picked_query[0]) #Delete the picked queries query_to_cluster[cid].pop(rand_index) return queries_final ''' If num_cluster < num_probe : Pick one from each other .. ''' for cid, queries in query_to_cluster.items() : rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] queries_final.append(picked_query) #Delete the chosen queries query_to_cluster[cid].pop(rand_index) num_spent = num_spent + 1 if num_spent >= num_probe: break print("picked {} so far ".format(num_spent) ) while num_spent < num_probe: cluster_ids = list(query_to_cluster.keys()) weights, scaled_weights = compute_weights(query_to_cluster) cid = np.random.choice( cluster_ids, 1, p=scaled_weights)[0] rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] query_to_cluster[cid].pop(rand_index) queries_final.append(picked_query) num_spent = num_spent + 1 if len(query_to_cluster[cid]) == 0: del query_to_cluster[cid] if len(query_to_cluster) == 0: print("Exising as all queries used") break return queries_final def pick_representative_queries(query_to_cluster, num_probe): num_cluster = len(query_to_cluster) num_spent = 0 queries_final = [] ''' If size of cluster is greater than probe, then we pick one sampel from each cluster ''' if num_cluster >= num_probe: print("Num cluster > Num Probe SO pick at least one sample ") #pick at least print(query_to_cluster) for cid, queries in query_to_cluster.items() : #print(query_to_cluster) rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] queries_final.append(picked_query) #Delete the picked queries query_to_cluster[cid].pop(rand_index) print(" Picked id ", num_spent , ":" ,picked_query[0], picked_query[2], "with cid ", cid ) num_spent = num_spent + 1 while num_spent < num_probe: cluster_ids = list(query_to_cluster.keys()) weights, scaled_weights = compute_weights(query_to_cluster) cid = np.random.choice( cluster_ids, 1, p=scaled_weights)[0] rand_index = random.randint(0, len(query_to_cluster[cid]) -1 ) picked_query = query_to_cluster[cid][rand_index] print(" ID " , num_spent , ":" , picked_query[0] , picked_query[2], "with cid ", cid ) query_to_cluster[cid].pop(rand_index) queries_final.append(picked_query) num_spent = num_spent + 1 if len(query_to_cluster[cid]) == 0: del query_to_cluster[cid] if len(query_to_cluster) == 0: print("Exising as all queries used") break return queries_final def convert_to_dict(chosen_queries, proto_fields): field_names = list(proto_fields.keys()) queries_dict = [] for entry in chosen_queries: #print("entry " ,entry) q = deepcopy(entry) #print("q is ", q) #print("field name is ", field_names) q_dict = OrderedDict() for i in range(len(field_names)): # Yucheng: 2/4/2019, maybe buggy #print("q is ", q) q_dict[field_names[i]] = q[0][i] # q_dict[field_names[i]] = q[i] queries_dict.append(q_dict) return queries_dict ''' Clustering queries with above minAF AFs Returns the chosen queries used for probing ''' def cluster(ampdata, proto_fields, num_cluster, minAF, num_queries, is_measurement, args, config, log_file=None): minAF = float(minAF) ''' Logging features ''' print("In clustering") if log_file == None: log_file = os.path.join( config["common_path"]["log_out_dir"], "cluster.log") logging.basicConfig(filename=log_file,format='%(levelname)s : %(asctime)s \t %(message)s', \ datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG) logging.info("In clustering") ''' Only fetch those queries with AF >= minAF ''' data_list, amp_list = parse_data(ampdata , proto_fields, minAF) assert(len(data_list) == len(amp_list)) print("Length of data is {}".format(len(data_list))) logging.info("Length of data is ", len(data_list)) if len(data_list) == 0: return [] amp_data_frame =
pd.DataFrame(data_list)
pandas.DataFrame
import eikon as ek # the Eikon Python wrapper package import numpy as np # NumPy import pandas as pd # pandas import configparser as cp import warnings import sys # underlying use case warnings.filterwarnings("ignore") df = pd.read_csv(r'C:\Users\segul\OneDrive\Documents\ReutersTickers.csv', header=None) ek.set_app_key('a17f5ab013e449cc86857ecbfe62f4c96577df86') tickers = list(df[0]) data, error = ek.get_data(tickers,'TR.CDSPrimaryCDSRic') data.dropna(inplace=True) data = data[data['Primary CDS RIC']!=''] data.to_csv(r'C:\Users\segul\OneDrive\Documents\ReutersTickersData.csv') cdsIdList = [str(cdsId) for cdsId in data.ix[:,1].values] result, err = ek.get_data(cdsIdList, ['PRIMACT_1']) result.to_csv(r'C:\Users\segul\OneDrive\Documents\ReutersTickersOutput2.csv') dfFinal =
pd.merge(data, result, left_on='Primary CDS RIC', right_on='Instrument', how='left')
pandas.merge
""" The TypedDict class """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np def _columndict_to_dataframe(columns, seriestypes): import pandas as _pandas columns_as_series = {} for colname, lst in columns.items(): seriestype = seriestypes[colname] if seriestype == 'float': s = _np.array(lst, dtype='d') elif seriestype == 'int': s = _np.array(lst, dtype=int) # or pd.Series w/dtype? elif seriestype == 'category': if len(lst) > 0 and isinstance(lst[0], tuple): # special case when the values for a category are tuples. Often they're different lengths # (e.g. qubit labels) and we want the Categorical to use an object-type numpy array to # avoid any "ragged nested sequences" warnings, so do this: lst = _pandas.Series(lst, dtype=object) s = _pandas.Categorical(lst) elif seriestype == 'object': s =
_pandas.Series(lst, dtype=object)
pandas.Series
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12:
pd.Timestamp("2012-05-14 00:00:00")
pandas.Timestamp
import os import tempfile import unittest import numpy as np import pandas as pd from sqlalchemy import create_engine from tests.settings import POSTGRESQL_ENGINE, SQLITE_ENGINE from tests.utils import get_repository_path, DBTest from ukbrest.common.pheno2sql import Pheno2SQL class Pheno2SQLTest(DBTest): @unittest.skip('sqlite being removed') def test_sqlite_default_values(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check table exists tmp = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_00'), create_engine(db_engine)) assert not tmp.empty ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[1, 'c31_0_0'] == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'] == '2011-08-14' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[2, 'c31_0_0'] == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'] == '2010-03-29' def test_postgresql_default_values(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check table exists table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-03-29' def test_exit(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE temp_dir = tempfile.mkdtemp() # Run with Pheno2SQL(csv_file, db_engine, tmpdir=temp_dir) as p2sql: p2sql.load_data() # Validate ## Check table exists table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 ## Check that temporary files were deleted assert len(os.listdir(temp_dir)) == 0 @unittest.skip('sqlite being removed') def test_sqlite_less_columns_per_table(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check tables exist table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_00'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_01'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_02'), create_engine(db_engine)) assert not table.empty ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c31_0_0'] == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'] == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'] == '2011-08-14' assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'] == '2010-03-29' def test_postgresql_less_columns_per_table(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_01'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_02'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-03-29' def test_custom_tmpdir(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE with Pheno2SQL(csv_file, db_engine, tmpdir='/tmp/custom/directory/here', delete_temp_csv=False) as p2sql: # Run p2sql.load_data() # Validate ## Check table exists table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 ## Check that temporary are still there assert len(os.listdir('/tmp/custom/directory/here')) > 0 ## Check that temporary is now clean assert len(os.listdir('/tmp/custom/directory/here')) == 0 @unittest.skip('sqlite being removed') def test_sqlite_auxiliary_table_is_created(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check tables exist table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_00'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_01'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_02'), create_engine(db_engine)) assert not table.empty ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check auxiliary table existance table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('fields'), create_engine(db_engine)) assert not table.empty ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "table_name"] assert len(tmp.columns) >= len(expected_columns) assert all(x in tmp.columns for x in expected_columns) ## Check data is correct tmp = pd.read_sql('select * from fields', create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['c21_0_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_1_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_2_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c31_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c34_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c46_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c47_0_0', 'table_name'] == 'ukb_pheno_0_02' assert tmp.loc['c48_0_0', 'table_name'] == 'ukb_pheno_0_02' def test_postgresql_auxiliary_table_is_created_and_has_minimum_data_required(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_01'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_02'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check auxiliary table existance table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('fields'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "table_name"] assert len(tmp.columns) >= len(expected_columns) assert all(x in tmp.columns for x in expected_columns) ## Check data is correct tmp = pd.read_sql('select * from fields', create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['c21_0_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_1_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_2_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c31_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c34_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c46_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c47_0_0', 'table_name'] == 'ukb_pheno_0_02' assert tmp.loc['c48_0_0', 'table_name'] == 'ukb_pheno_0_02' def test_postgresql_auxiliary_table_with_more_information(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_01'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_02'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check auxiliary table existance table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('fields'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "field_id", "inst", "arr", "coding", "table_name", "type", "description"] assert len(tmp.columns) == len(expected_columns), len(tmp.columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from fields', create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['c21_0_0', 'field_id'] == '21' assert tmp.loc['c21_0_0', 'inst'] == 0 assert tmp.loc['c21_0_0', 'arr'] == 0 assert tmp.loc['c21_0_0', 'coding'] == 100261 assert tmp.loc['c21_0_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_0_0', 'type'] == 'Categorical (single)' assert tmp.loc['c21_0_0', 'description'] == 'An string value' assert tmp.loc['c21_1_0', 'field_id'] == '21' assert tmp.loc['c21_1_0', 'inst'] == 1 assert tmp.loc['c21_1_0', 'arr'] == 0 assert tmp.loc['c21_1_0', 'coding'] == 100261 assert tmp.loc['c21_1_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_1_0', 'type'] == 'Categorical (single)' assert tmp.loc['c21_1_0', 'description'] == 'An string value' assert tmp.loc['c21_2_0', 'field_id'] == '21' assert tmp.loc['c21_2_0', 'inst'] == 2 assert tmp.loc['c21_2_0', 'arr'] == 0 assert tmp.loc['c21_2_0', 'coding'] == 100261 assert tmp.loc['c21_2_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_2_0', 'type'] == 'Categorical (single)' assert tmp.loc['c21_2_0', 'description'] == 'An string value' assert tmp.loc['c31_0_0', 'field_id'] == '31' assert tmp.loc['c31_0_0', 'inst'] == 0 assert tmp.loc['c31_0_0', 'arr'] == 0 assert pd.isnull(tmp.loc['c31_0_0', 'coding']) assert tmp.loc['c31_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c31_0_0', 'type'] == 'Date' assert tmp.loc['c31_0_0', 'description'] == 'A date' assert tmp.loc['c34_0_0', 'field_id'] == '34' assert tmp.loc['c34_0_0', 'inst'] == 0 assert tmp.loc['c34_0_0', 'arr'] == 0 assert tmp.loc['c34_0_0', 'coding'] == 9 assert tmp.loc['c34_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c34_0_0', 'type'] == 'Integer' assert tmp.loc['c34_0_0', 'description'] == 'Some integer' assert tmp.loc['c46_0_0', 'field_id'] == '46' assert tmp.loc['c46_0_0', 'inst'] == 0 assert tmp.loc['c46_0_0', 'arr'] == 0 assert pd.isnull(tmp.loc['c46_0_0', 'coding']) assert tmp.loc['c46_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c46_0_0', 'type'] == 'Integer' assert tmp.loc['c46_0_0', 'description'] == 'Some another integer' assert tmp.loc['c47_0_0', 'field_id'] == '47' assert tmp.loc['c47_0_0', 'inst'] == 0 assert tmp.loc['c47_0_0', 'arr'] == 0 assert pd.isnull(tmp.loc['c47_0_0', 'coding']) assert tmp.loc['c47_0_0', 'table_name'] == 'ukb_pheno_0_02' assert tmp.loc['c47_0_0', 'type'] == 'Continuous' assert tmp.loc['c47_0_0', 'description'] == 'Some continuous value' assert tmp.loc['c48_0_0', 'field_id'] == '48' assert tmp.loc['c48_0_0', 'inst'] == 0 assert tmp.loc['c48_0_0', 'arr'] == 0 assert pd.isnull(tmp.loc['c48_0_0', 'coding']) assert tmp.loc['c48_0_0', 'table_name'] == 'ukb_pheno_0_02' assert tmp.loc['c48_0_0', 'type'] == 'Time' assert tmp.loc['c48_0_0', 'description'] == 'Some time' def test_postgresql_auxiliary_table_check_types(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check auxiliary table existance table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('fields'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "field_id", "inst", "arr", "coding", "table_name", "type", "description"] assert len(tmp.columns) == len(expected_columns), len(tmp.columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct sql_types = """ select column_name, data_type from information_schema.columns where table_name = 'fields'; """ tmp = pd.read_sql(sql_types, create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['field_id', 'data_type'] == 'text' assert tmp.loc['inst', 'data_type'] == 'bigint' assert tmp.loc['arr', 'data_type'] == 'bigint' assert tmp.loc['coding', 'data_type'] == 'bigint' assert tmp.loc['table_name', 'data_type'] == 'text' assert tmp.loc['type', 'data_type'] == 'text' assert tmp.loc['description', 'data_type'] == 'text' def test_postgresql_auxiliary_table_constraints(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check auxiliary table existance table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('fields'), create_engine(db_engine)) assert table.iloc[0, 0] # primary key constraint_sql = self._get_table_contrains('fields', column_query='column_name', relationship_query='pk_%%') constraints_results = pd.read_sql(constraint_sql, create_engine(db_engine)) assert constraints_results is not None assert not constraints_results.empty # index on 'event' column constraint_sql = self._get_table_contrains('fields', relationship_query='ix_%%') constraints_results = pd.read_sql(constraint_sql, create_engine(db_engine)) assert constraints_results is not None assert not constraints_results.empty columns = constraints_results['column_name'].tolist() assert len(columns) == 6 assert 'arr' in columns assert 'field_id' in columns assert 'inst' in columns assert 'table_name' in columns assert 'type' in columns assert 'coding' in columns def test_postgresql_two_csv_files(self): # Prepare csv01 = get_repository_path('pheno2sql/example08_01.csv') csv02 = get_repository_path('pheno2sql/example08_02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL((csv01, csv02), db_engine) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_1_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_1_00', create_engine(db_engine)) expected_columns = ["eid","c100_0_0", "c100_1_0", "c100_2_0", "c110_0_0", "c120_0_0", "c130_0_0", "c140_0_0", "c150_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 5 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2011-03-07' assert int(tmp.loc[1, 'c34_0_0']) == -33 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[1, 'c47_0_0'].round(5) == 41.55312 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-07-14' assert tmp.loc[5, 'c21_0_0'] == 'Option number 5' assert tmp.loc[5, 'c21_1_0'] == 'Maybe' assert tmp.loc[5, 'c21_2_0'] == 'Probably' assert pd.isnull(tmp.loc[5, 'c31_0_0']) assert int(tmp.loc[5, 'c34_0_0']) == -4 assert int(tmp.loc[5, 'c46_0_0']) == 1 assert pd.isnull(tmp.loc[5, 'c47_0_0']) assert tmp.loc[5, 'c48_0_0'].strftime('%Y-%m-%d') == '1999-10-11' tmp = pd.read_sql('select * from ukb_pheno_1_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 3 assert int(tmp.loc[1, 'c100_0_0']) == -9 assert int(tmp.loc[1, 'c100_1_0']) == 3 assert pd.isnull(tmp.loc[1, 'c100_2_0']) assert tmp.loc[1, 'c110_0_0'].round(5) == 42.55312 assert int(tmp.loc[1, 'c120_0_0']) == -33 assert tmp.loc[1, 'c130_0_0'] == 'Option number 1' assert tmp.loc[1, 'c140_0_0'].strftime('%Y-%m-%d') == '2011-03-07' assert tmp.loc[1, 'c150_0_0'].strftime('%Y-%m-%d') == '2010-07-14' assert pd.isnull(tmp.loc[3, 'c100_0_0']) assert int(tmp.loc[3, 'c100_1_0']) == -4 assert int(tmp.loc[3, 'c100_2_0']) == -10 assert tmp.loc[3, 'c110_0_0'].round(5) == -35.31471 assert int(tmp.loc[3, 'c120_0_0']) == 0 assert tmp.loc[3, 'c130_0_0'] == 'Option number 3' assert tmp.loc[3, 'c140_0_0'].strftime('%Y-%m-%d') == '1997-04-15' assert pd.isnull(tmp.loc[3, 'c150_0_0']) @unittest.skip('sqlite being removed') def test_sqlite_query_single_table(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=999999) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 4 assert all(x in query_result.index for x in range(1, 4 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 4 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c48_0_0'] == '2011-08-14' assert query_result.loc[2, 'c48_0_0'] == '2016-11-30' assert query_result.loc[3, 'c48_0_0'] == '2010-01-01' assert query_result.loc[4, 'c48_0_0'] == '2011-02-15' def test_postgresql_query_single_table(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=999999) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 4 assert all(x in query_result.index for x in range(1, 4 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 4 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert query_result.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2016-11-30' assert query_result.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-01-01' assert query_result.loc[4, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-02-15' def test_postgresql_two_csv_files_query_single_table(self): # Prepare csv01 = get_repository_path('pheno2sql/example08_01.csv') csv02 = get_repository_path('pheno2sql/example08_02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL((csv01, csv02), db_engine, n_columns_per_table=999999) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 5 assert all(x in query_result.index for x in range(1, 5 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 5 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[5, 'c21_0_0'] == 'Option number 5' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[5, 'c21_2_0'] == 'Probably' assert query_result.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-07-14' assert query_result.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2017-11-30' assert query_result.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2020-01-01' assert query_result.loc[4, 'c48_0_0'].strftime('%Y-%m-%d') == '1990-02-15' assert query_result.loc[5, 'c48_0_0'].strftime('%Y-%m-%d') == '1999-10-11' @unittest.skip('sqlite being removed') def test_sqlite_query_multiple_tables(self): # RIGHT and FULL OUTER JOINs are not currently supported # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = p2sql.query(columns) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 4 assert all(x in query_result.index for x in range(1, 4 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 4 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c48_0_0'] == '2011-08-14' assert query_result.loc[2, 'c48_0_0'] == '2016-11-30' assert query_result.loc[3, 'c48_0_0'] == '2010-01-01' assert query_result.loc[4, 'c48_0_0'] == '2011-02-15' def test_postgresql_query_multiple_tables(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 4 assert all(x in query_result.index for x in range(1, 4 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 4 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert query_result.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2016-11-30' assert query_result.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-01-01' assert query_result.loc[4, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-02-15' def test_postgresql_two_csv_files_query_multiple_tables(self): # Prepare csv01 = get_repository_path('pheno2sql/example08_01.csv') csv02 = get_repository_path('pheno2sql/example08_02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL((csv01, csv02), db_engine, n_columns_per_table=999999) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c110_0_0', 'c150_0_0'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 5 assert all(x in query_result.index for x in range(1, 5 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 5 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[5, 'c21_0_0'] == 'Option number 5' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[5, 'c21_2_0'] == 'Probably' assert query_result.loc[1, 'c110_0_0'].round(5) == 42.55312 assert pd.isnull(query_result.loc[2, 'c110_0_0']) assert query_result.loc[3, 'c110_0_0'].round(5) == -35.31471 assert pd.isnull(query_result.loc[4, 'c110_0_0']) assert pd.isnull(query_result.loc[5, 'c110_0_0']) assert query_result.loc[1, 'c150_0_0'].strftime('%Y-%m-%d') == '2010-07-14' assert query_result.loc[2, 'c150_0_0'].strftime('%Y-%m-%d') == '2017-11-30' assert pd.isnull(query_result.loc[3, 'c150_0_0']) assert pd.isnull(query_result.loc[4, 'c150_0_0']) assert pd.isnull(query_result.loc[5, 'c150_0_0']) def test_postgresql_two_csv_files_flipped_query_multiple_tables(self): # Prepare # In this test the files are just flipped csv01 = get_repository_path('pheno2sql/example08_01.csv') csv02 = get_repository_path('pheno2sql/example08_02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL((csv02, csv01), db_engine, n_columns_per_table=999999) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c110_0_0', 'c150_0_0'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 5 assert all(x in query_result.index for x in range(1, 5 + 1)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 5 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[5, 'c21_0_0'] == 'Option number 5' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[5, 'c21_2_0'] == 'Probably' assert query_result.loc[1, 'c110_0_0'].round(5) == 42.55312 assert pd.isnull(query_result.loc[2, 'c110_0_0']) assert query_result.loc[3, 'c110_0_0'].round(5) == -35.31471 assert pd.isnull(query_result.loc[4, 'c110_0_0']) assert pd.isnull(query_result.loc[5, 'c110_0_0']) assert query_result.loc[1, 'c150_0_0'].strftime('%Y-%m-%d') == '2010-07-14' assert query_result.loc[2, 'c150_0_0'].strftime('%Y-%m-%d') == '2017-11-30' assert pd.isnull(query_result.loc[3, 'c150_0_0']) assert pd.isnull(query_result.loc[4, 'c150_0_0']) assert pd.isnull(query_result.loc[5, 'c150_0_0']) @unittest.skip('sqlite being removed') def test_sqlite_query_custom_columns(self): # SQLite is very limited when selecting variables, renaming, doing math operations, etc pass def test_postgresql_query_custom_columns(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c47_0_0', '(c47_0_0 ^ 2.0) as c47_squared'] query_result = next(p2sql.query(columns)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 4 assert all(x in query_result.index for x in range(1, 4 + 1)) assert len(query_result.columns) == len(columns) assert all(x in ['c21_0_0', 'c21_2_0', 'c47_0_0', 'c47_squared'] for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 4 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[3, 'c21_0_0'] == 'Option number 3' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c47_0_0'].round(5) == 45.55412 assert query_result.loc[2, 'c47_0_0'].round(5) == -0.55461 assert query_result.loc[3, 'c47_0_0'].round(5) == -5.32471 assert query_result.loc[4, 'c47_0_0'].round(5) == 55.19832 assert query_result.loc[1, 'c47_squared'].round(5) == round(45.55412 ** 2, 5) assert query_result.loc[2, 'c47_squared'].round(5) == round((-0.55461) ** 2, 5) assert query_result.loc[3, 'c47_squared'].round(5) == round((-5.32471) ** 2, 5) assert query_result.loc[4, 'c47_squared'].round(5) == round(55.19832 ** 2, 5) @unittest.skip('sqlite being removed') def test_sqlite_query_single_filter(self): # RIGHT and FULL OUTER JOINs are not currently supported # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c47_0_0'] filter = ['c47_0_0 > 0'] query_result = p2sql.query(columns, filter) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 2 assert all(x in query_result.index for x in (1, 4)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 2 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c47_0_0'].round(5) == 45.55412 assert query_result.loc[4, 'c47_0_0'].round(5) == 55.19832 def test_postgresql_query_single_filter(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c47_0_0'] filter = ['c47_0_0 > 0'] query_result = next(p2sql.query(columns, filterings=filter)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 2 assert all(x in query_result.index for x in (1, 4)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 2 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[4, 'c21_0_0'] == 'Option number 4' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert pd.isnull(query_result.loc[4, 'c21_2_0']) assert query_result.loc[1, 'c47_0_0'].round(5) == 45.55412 assert query_result.loc[4, 'c47_0_0'].round(5) == 55.19832 @unittest.skip('sqlite being removed') def test_sqlite_query_multiple_and_filter(self): # 'RIGHT and FULL OUTER JOINs are not currently supported' # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c47_0_0', 'c48_0_0'] filter = ["c48_0_0 > '2011-01-01'", "c21_2_0 <> ''"] query_result = p2sql.query(columns, filter) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 2 assert all(x in query_result.index for x in (1, 2)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 2 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[1, 'c47_0_0'].round(5) == 45.55412 assert query_result.loc[2, 'c47_0_0'].round(5) == -0.55461 def test_postgresql_query_multiple_and_filter(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c47_0_0', 'c48_0_0'] filter = ["c48_0_0 > '2011-01-01'", "c21_2_0 <> ''"] query_result = next(p2sql.query(columns, filterings=filter)) # Validate assert query_result is not None assert query_result.index.name == 'eid' assert len(query_result.index) == 2 assert all(x in query_result.index for x in (1, 2)) assert len(query_result.columns) == len(columns) assert all(x in columns for x in query_result.columns) assert not query_result.empty assert query_result.shape[0] == 2 assert query_result.loc[1, 'c21_0_0'] == 'Option number 1' assert query_result.loc[2, 'c21_0_0'] == 'Option number 2' assert query_result.loc[1, 'c21_2_0'] == 'Yes' assert query_result.loc[2, 'c21_2_0'] == 'No' assert query_result.loc[1, 'c47_0_0'].round(5) == 45.55412 assert query_result.loc[2, 'c47_0_0'].round(5) == -0.55461 assert query_result.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert query_result.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2016-11-30' @unittest.skip('sqlite being removed') def test_sqlite_float_is_empty(self): # Prepare csv_file = get_repository_path('pheno2sql/example03.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[3, 'c21_0_0'] == 'Option number 3' assert tmp.loc[3, 'c21_1_0'] == 'Of course' assert tmp.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(tmp.loc[4, 'c21_2_0']) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c31_0_0'] == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'] == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[3, 'c31_0_0'] == '2007-03-19' assert int(tmp.loc[3, 'c34_0_0']) == 1 assert int(tmp.loc[3, 'c46_0_0']) == -7 tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 # FIXME: this is strange, data type in this particular case needs np.round assert np.round(tmp.loc[1, 'c47_0_0'], 5) == 45.55412 assert tmp.loc[1, 'c48_0_0'] == '2011-08-14' assert tmp.loc[2, 'c47_0_0'] == -0.55461 assert tmp.loc[2, 'c48_0_0'] == '2016-11-30' assert pd.isnull(tmp.loc[3, 'c47_0_0']) assert tmp.loc[3, 'c48_0_0'] == '2010-01-01' def test_postgresql_float_is_empty(self): # Prepare csv_file = get_repository_path('pheno2sql/example03.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[3, 'c21_0_0'] == 'Option number 3' assert tmp.loc[3, 'c21_1_0'] == 'Of course' assert tmp.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(tmp.loc[4, 'c21_2_0']) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[3, 'c31_0_0'].strftime('%Y-%m-%d') == '2007-03-19' assert int(tmp.loc[3, 'c34_0_0']) == 1 assert int(tmp.loc[3, 'c46_0_0']) == -7 tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2016-11-30' assert pd.isnull(tmp.loc[3, 'c47_0_0']) assert tmp.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-01-01' def test_postgresql_timestamp_is_empty(self): # Prepare csv_file = get_repository_path('pheno2sql/example04.csv') db_engine = 'postgresql://test:test@localhost:5432/ukb' p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[3, 'c21_0_0'] == 'Option number 3' assert tmp.loc[3, 'c21_1_0'] == 'Of course' assert tmp.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(tmp.loc[4, 'c21_2_0']) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[3, 'c31_0_0'].strftime('%Y-%m-%d') == '2007-03-19' assert int(tmp.loc[3, 'c34_0_0']) == 1 assert int(tmp.loc[3, 'c46_0_0']) == -7 assert pd.isnull(tmp.loc[4, 'c31_0_0']) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert pd.isnull(tmp.loc[2, 'c48_0_0']) assert tmp.loc[3, 'c47_0_0'].round(5) == -5.32471 assert tmp.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-01-01' def test_postgresql_integer_is_nan(self): # Prepare csv_file = get_repository_path('pheno2sql/example06_nan_integer.csv') db_engine = 'postgresql://test:test@localhost:5432/ukb' p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 pd.isnull(tmp.loc[2, 'c46_0_0']) assert tmp.loc[3, 'c31_0_0'].strftime('%Y-%m-%d') == '2007-03-19' assert int(tmp.loc[3, 'c34_0_0']) == 1 assert int(tmp.loc[3, 'c46_0_0']) == -7 assert pd.isnull(tmp.loc[4, 'c31_0_0']) def test_postgresql_first_row_is_nan_integer(self): # Prepare csv_file = get_repository_path('pheno2sql/example07_first_nan_integer.csv') db_engine = 'postgresql://test:test@localhost:5432/ukb' p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 4 assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert pd.isnull(tmp.loc[1, 'c46_0_0']) assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 pd.isnull(tmp.loc[2, 'c46_0_0']) assert tmp.loc[3, 'c31_0_0'].strftime('%Y-%m-%d') == '2007-03-19' assert int(tmp.loc[3, 'c34_0_0']) == 1 assert int(tmp.loc[3, 'c46_0_0']) == -7 assert pd.isnull(tmp.loc[4, 'c31_0_0']) def test_postgresql_sql_chunksize01(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, sql_chunksize=2) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = p2sql.query(columns) # Validate assert query_result is not None import collections assert isinstance(query_result, collections.Iterable) index_len_sum = 0 for chunk_idx, chunk in enumerate(query_result): assert chunk.index.name == 'eid' index_len_sum += len(chunk.index) assert len(chunk.index) == 2 if chunk_idx == 0: indexes = (1, 2) assert all(x in chunk.index for x in indexes) else: indexes = (3, 4) assert all(x in chunk.index for x in indexes) assert len(chunk.columns) == len(columns) assert all(x in columns for x in chunk.columns) assert not chunk.empty assert chunk.shape[0] == 2 if chunk_idx == 0: assert chunk.loc[1, 'c21_0_0'] == 'Option number 1' assert chunk.loc[2, 'c21_0_0'] == 'Option number 2' assert chunk.loc[1, 'c21_2_0'] == 'Yes' assert chunk.loc[2, 'c21_2_0'] == 'No' assert chunk.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert chunk.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2016-11-30' else: assert chunk.loc[3, 'c21_0_0'] == 'Option number 3' assert chunk.loc[4, 'c21_0_0'] == 'Option number 4' assert chunk.loc[3, 'c21_2_0'] == 'Maybe' assert pd.isnull(chunk.loc[4, 'c21_2_0']) assert chunk.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-01-01' assert chunk.loc[4, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-02-15' assert index_len_sum == 4 def test_postgresql_sql_chunksize02(self): # Prepare csv_file = get_repository_path('pheno2sql/example02.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, sql_chunksize=3) p2sql.load_data() # Run columns = ['c21_0_0', 'c21_2_0', 'c48_0_0'] query_result = p2sql.query(columns) # Validate assert query_result is not None import collections assert isinstance(query_result, collections.Iterable) index_len_sum = 0 for chunk_idx, chunk in enumerate(query_result): assert chunk.index.name == 'eid' index_len_sum += len(chunk.index) if chunk_idx == 0: assert len(chunk.index) == 3 indexes = (1, 2, 3) assert all(x in chunk.index for x in indexes) else: assert len(chunk.index) == 1 indexes = (4,) assert all(x in chunk.index for x in indexes) assert len(chunk.columns) == len(columns) assert all(x in columns for x in chunk.columns) assert not chunk.empty if chunk_idx == 0: assert chunk.shape[0] == 3 assert chunk.loc[1, 'c21_0_0'] == 'Option number 1' assert chunk.loc[2, 'c21_0_0'] == 'Option number 2' assert chunk.loc[3, 'c21_0_0'] == 'Option number 3' assert chunk.loc[1, 'c21_2_0'] == 'Yes' assert chunk.loc[2, 'c21_2_0'] == 'No' assert chunk.loc[3, 'c21_2_0'] == 'Maybe' assert chunk.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert chunk.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2016-11-30' assert chunk.loc[3, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-01-01' else: assert chunk.shape[0] == 1 assert chunk.loc[4, 'c21_0_0'] == 'Option number 4' assert
pd.isnull(chunk.loc[4, 'c21_2_0'])
pandas.isnull
from ast import parse from operator import indexOf from typing import OrderedDict import numpy as np from numpy.lib.function_base import rot90 from pandas.io.parsers import read_csv import torch.utils.data as data_utils import pandas as pd import matplotlib.pyplot as plt from torch.utils.data.dataset import Subset import seaborn as sns from datetime import datetime, timedelta import matplotlib.dates as mdates import torch from sklearn import preprocessing from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import roc_curve, roc_auc_score import sys from adtk.data import validate_series from adtk.visualization import plot from adtk.detector import SeasonalAD def seqLabel_2_WindowsLabels(window_size, labels): # 將seq label 變成windows_labels windows_labels = [] for i in range(len(labels)-window_size+1): windows_labels.append(list(np.int_(labels[i:i+window_size]))) # 這邊就是windows裡面只要有一個是anomaly整段windows都標記成anomaly y_True = [1.0 if (np.sum(window) > 0) else 0 for window in windows_labels] return y_True def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list, tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) def plot_history(history, modelName): losses1 = [x['val_loss1'] for x in history] if modelName == "USAD": losses2 = [x['val_loss2'] for x in history] plt.plot(losses2, '-x', label="loss2") plt.plot(losses1, '-x', label="loss1") plt.xlabel('epoch') plt.ylabel('loss') plt.legend() plt.title('Losses vs. No. of epochs') plt.grid() plt.savefig("result/"+modelName+"/history") def histogram(y_test, y_pred): plt.figure(figsize=(12, 6)) plt.hist([y_pred[y_test == 0], y_pred[y_test == 1]], bins=20, color=['#82E0AA', '#EC7063'], stacked=True) plt.title("Results", size=20) plt.grid() plt.savefig("histogram") def ROC(y_test, y_pred, modelName): fpr, tpr, tr = roc_curve(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) idx = np.argwhere(np.diff(np.sign(tpr-(1-fpr)))).flatten() plt.figure() plt.xlabel("FPR") plt.ylabel("TPR") plt.plot(fpr, tpr, label="AUC="+str(auc)) plt.plot(fpr, 1-fpr, 'r:') plt.plot(fpr[idx], tpr[idx], 'ro') plt.legend(loc=4) plt.grid() plt.show() plt.savefig("result/"+modelName+"/ROC") plt.clf() return tr[idx] def printDataInfo(dataset): abnormalCount = 0 normalCount = 0 for label in dataset["Normal/Attack"]: if label == "Normal": normalCount += 1 else: abnormalCount += 1 print("#####data info########") print("number of anomaly :", abnormalCount) print("number of normal :", normalCount) print("################") def evaluateResult(y_True, y_pred, threshold, modelName): y_pred_anomaly = [1 if(x >= threshold) else 0 for x in y_pred] TP = 0 TN = 0 FP = 0 FN = 0 for index, item in enumerate(y_pred_anomaly): if y_pred_anomaly[index] == 1 and y_True[index] == 1: TP += 1 elif y_pred_anomaly[index] == 0 and y_True[index] == 0: TN += 1 elif y_pred_anomaly[index] == 1 and y_True[index] == 0: FP += 1 elif y_pred_anomaly[index] == 0 and y_True[index] == 1: FN += 1 recall = float(TP/(TP+FN)) precision = float(TP/(TP+FP)) if recall == 0 and precision ==0: return with open("result/"+modelName+"/result.txt", 'a') as resultFile: print("-------------------", file=resultFile) print("TP:", TP, "TN:", TN, "FP:", FP, "FN:", FN, file=resultFile) print("precision:", precision, file=resultFile) print("recall:", recall, file=resultFile) print("F1 score", 2*precision*recall / (precision+recall), file=resultFile) print("TPR", TP/(TP+FN), file=resultFile) print("FPR", FP/(TN+FP), file=resultFile) print("-------------------", file=resultFile) def printResult(y_True, y_pred, threshold, modelName): y_pred_anomaly = [1 if(x >= threshold) else 0 for x in y_pred] precision, recall, fscore, support = score(y_True, y_pred_anomaly) # caculate recall print("============== result ==================") evaluateResult(y_True, y_pred, threshold, modelName) print('precision: {}'.format(precision[0])) print('recall: {}'.format(recall[0])) print('f1score: {}'.format(fscore[0])) print("============== result ==================") def confusion_matrix(target, predicted, perc=False): data = {'y_Actual': target, 'y_Predicted': predicted } df =
pd.DataFrame(data, columns=['y_Predicted', 'y_Actual'])
pandas.DataFrame
import statsmodels.api as sm from statsmodels.sandbox.nonparametric import kernels import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() '''特征空间解析 我们将特征类型分为如下四种 - numeric:连续的特征,表现为可以定义序关系且唯一值可以有无数个 - category:类别型特征 - Multi-category:多类别 - object:无结构数据,暂不提供任何解析 ''' def describe_numeric_1d(series,quantiles=None,missing_value = None): """Describe a numeric series. Args: series: The Series to describe. quantiles: list,like [0.25,0.75]. Returns: A dict containing calculated series description values. """ if quantiles is None: quantiles = [0.005,0.01,0.05,0.25,0.5,0.75,0.95,0.99,0.995] n = len(series) if missing_value: series = series.replace({missing_value:np.NaN}) stats = { "mean": series.mean(), "std": series.std(), "variance": series.var(), "min": series.min(), "max": series.max(), "kurtosis": series.kurt(), "skewness": series.skew(), "zeros": (n - np.count_nonzero(series))/n, "missing":np.sum(series.isna())/n } stats.update({ "{:.1%}".format(percentile).replace('.0',''): value for percentile, value in series.quantile(quantiles).to_dict().items() }) stats["iqr"] = stats["75%"] - stats["25%"] stats["cv"] = stats["std"] / stats["mean"] if stats["mean"] else np.NaN return stats def _get_distrbution(x,x_lim=None,gridsize=None,bw=None,bw_method='scott',eta=1): ''' ## brandwidth select A = min(std(x, ddof=1), IQR/1.349) Scott's rule: 1.059 * A * n ** (-1/5.) Silverman's Rule: .9 * A * n ** (-1/5.) ''' x = pd.Series(x) stats = describe_numeric_1d(x) x_mean_fix = x[(x>=stats['5%'])&(x<=stats['95%'])].mean() # 截断数据用于分析合理的密度函数 if x_lim is None: cv_lower,cv_upper = x[x<=stats['5%']].std()/(abs(x_mean_fix)+1e-14), x[x>=stats['95%']].std()/(abs(x_mean_fix)+1e-14) x_lim = [stats['5%'] if cv_lower>=eta else stats['min'],stats['95%'] if cv_upper>=eta else stats['max']] domain = [stats['min'],stats['max']] if cv_lower>=eta: domain[0] = -np.inf if cv_upper>=eta: domain[1] = np.inf # 选择绘图和计算需要的网格大小 try: bw = float(bw) except: bw = sm.nonparametric.bandwidths.select_bandwidth(x,bw=bw_method,kernel = None) # 特征的样本数一般较大,这里规定gridsize最小为 128 n_fix = len(x[(x>=x_lim[0])&(x<=x_lim[1])]) if gridsize is None: gridsize=max(128,min(int(np.round((x_lim[1] - x_lim[0])/bw)),n_fix)) if bw>=1e-7 else None dens = sm.nonparametric.KDEUnivariate(x.dropna().astype(np.double).values) dens.fit(gridsize=gridsize,bw=bw,clip=x_lim) # 获取最新的 brandwidth 等数据 bw = dens.bw # bw_method = bw_method if dens.bw_method = 'user-given' else dens.bw_method gridsize = len(dens.support) result = stats result.update({'key_dist':['bw','bw_method','support','density','x_lim','cdf','icdf','domain','gridsize','evaluate'] ,'bw':bw ,'bw_method':bw_method ,'support':dens.support ,'density':dens.density ,'x_lim':x_lim ,'cdf':dens.cdf ,'icdf':dens.icdf ,'domain':domain ,'gridsize':gridsize ,'evaluate':dens.evaluate }) return result class feature_numeric(object): def __init__(self,name=None): self.name = name self.dtype = 'numeric' self.stats = None self.dist = None self.cross_proba=None self.cross_stats=None # 随机取样 def sample(self,n): return self.dist['icdf'][np.random.randint(low=0,high = self.dist['gridsize'] -1,size=n)] def pdf(self,x): return self.dist['evaluate'](x) def describe(self): return self.stats def get_values(self,key): if key in self.dist: return self.dist[key] elif key in self.stats: return self.stats[key] elif key in self.cross_proba: return self.cross_proba[key] elif key in self.cross_stats: return self.cross_stats[key] else: return None def fit(self,x,y=None,**arg): result = _get_distrbution(x,**arg) self.stats = {key:value for key,value in result.items() if key not in result['key_dist']+['key_dist']} self.dist = {key:value for key,value in result.items() if key in result['key_dist']} if y is not None and len(x) == len(y): cross_proba,cross_stats = self.crosstab_bin(x,y) self.cross_proba = cross_proba self.cross_stats = cross_stats def crosstab_bin(self,x,y): x = pd.Series(x) y = pd.Series(y) n = len(y) dist_y = y.value_counts()/n bw = self.dist['bw'] support = self.dist['support'] domain = self.dist['domain'] q995 = self.stats['99.5%'] gridsize = self.dist['gridsize'] seq = np.mean(support[1:] - support[0:-1]) # 添加额外的支撑集,便于分析合理的泛化方法 if domain[1] == np.inf: n_add = np.ceil((q995 - support[-1])/seq) support_add = [support[-1] + seq*(i+1) for i in range(int(n_add))] support_new = np.concatenate((support,support_add)) else: support_new = support.copy() p_y1_x = np.zeros_like(support_new) cumulative = np.zeros_like(support_new) for i,xi in enumerate(support_new): ind =(x<=xi+bw)&(x>=xi-bw) tmp = y[ind].value_counts().to_dict() cnt = {0:dist_y[0],1:dist_y[1]} cnt[0] += tmp.get(0,0) cnt[1] += tmp.get(1,0) p_y1_x[i] = cnt[1]/(cnt[0]+cnt[1]) cumulative[i] = np.sum(x<=xi)/n # 根据贝叶斯法则可以求出 p_x_y1 = self.dist['density']*p_y1_x[:gridsize]/dist_y[1] p_x_y0 = self.dist['density']*(1-p_y1_x[:gridsize])/dist_y[0] iv =np.sum((p_x_y1 - p_x_y0)*np.log2((1e-14+p_x_y1)/(p_x_y0+1e-14)))*seq cross_proba = { "p(y=1|x)":p_y1_x ,"p(x|y=1)":p_x_y1 ,"p(x|y=0)":p_x_y0 ,"woe(x)":np.log2(p_x_y0/p_x_y1) ,"cumulative":cumulative ,"support_x":support_new ,"support_y":support } cross_stats = { "iv":iv ,"p(y=1)":dist_y[1] ,"p(y=0)":dist_y[0] } return cross_proba,cross_stats def plot_pdf(self): x_min,x_max = self.stats['min'],self.stats['max'] bw = self.dist['bw'] if self.name: title = 'density curve of {}'.format(self.name) else: title = 'density curve' fig,ax=plt.subplots(figsize=[10,6.6]) support = self.dist['support'] #seq = np.mean(support[1:]-support[0:-1]) #ind = (support>=x_min-3*seq)&(support<=x_max+3*seq) ax.plot(support,self.dist['density']); ax.set_title(title); ax.set_xlabel('range = [{},{}]'.format(x_min,x_max)); fig.show() return None def summary(self): # 区分两个版本,一个有y 一个没 y tmp = pd.DataFrame(index=range(0,10),columns=['name1','value1','name2','value2','name3','value3']) tmp.name1 = ['missing','zeros','min','max','mean','std','skewness','kurtosis','cv','iqr'] tmp.value1 = [self.stats[k] for k in tmp['name1'].values] tmp.name2 = ['0.5%','1%','5%','25%','50%','75%','95%','99%','99.5%','domain'] tmp.value2 = [self.stats[k] for k in tmp['name2'][:-1].values]+[str(self.dist['domain'])] tmp.loc[0,'name3'] = 'iv' tmp.loc[0,'value3'] = self.cross_stats['iv'] tmp.loc[1,'name3'] = 'p(y=1)' tmp.loc[1,'value3'] = self.cross_stats['p(y=1)'] display(tmp) support_new = self.cross_proba['support_x'] ind1 = (self.cross_proba['support_x']>=self.stats['min'])&(self.cross_proba['support_x']<=self.stats['max']) p_y1 = self.cross_stats['p(y=1)'] fig,[ax1,ax2]=plt.subplots(2,1,figsize=[10,13]) ax1.plot(support_new[ind1],self.cross_proba['p(y=1|x)'][ind1] ,'.'); ax1.plot([support_new[0],support_new[-1]] ,[p_y1,p_y1],label = 'baseline') ax1_ = ax1.twinx() ax1_.plot(support_new[ind1],self.cross_proba['cumulative'][ind1],label = 'cumulative',color='red') ax1_.legend(loc = 'center left') ax1.set_title(r'$p(y=1|x)$'); ax1.legend() ind2 = (self.cross_proba['support_y']>=self.stats['min'])&(self.cross_proba['support_y']<=self.stats['max']) ax2.plot(self.cross_proba['support_y'],self.cross_proba['p(x|y=1)'],label=r'$p(x|y=1)$') ax2.plot(self.cross_proba['support_y'],self.cross_proba['p(x|y=0)'],label=r'$p(x|y=0)$') ax2.plot(self.cross_proba['support_y'],self.dist['density'],label=r'$p(x)$',color = '0.5',linestyle='--') ax2_ = ax2.twinx() ax2_.plot(self.cross_proba['support_y'][ind2],self.cross_proba['woe(x)'][ind2],label = 'woe(x)',color='red') ax2_.legend(loc = 'center right') ax2.legend() ax2.set_title(r'$p(x|y=1)$ vs $p(x|y=0)$') ax2.set_xlabel('iv = {:.2f}'.format(self.cross_stats['iv'])) fig.show() def sample_size_cal(p,alpha=0.05,e=0.05): import scipy.stats as stats z=stats.norm.ppf(1-alpha/2) return int(np.ceil(z**2*p*(1-p)/e**2)) def describe_categorical(x ,missing_value = None ,pct_pos = 0.5 ,backoff_p = 0.05 ,backoff_rnk = 30 ,backoff_n = None ,alpha=0.05 ,e=0.05): x = pd.Series(x) if missing_value: x = x.replace({str(missing_value):np.nan}) n = len(x) missing = np.sum(x.isnull()) p_x = x.value_counts().sort_values(ascending=False)/n itemlist = p_x.index.tolist() # 识别稀有类 if backoff_n is None: backoff_n = sample_size_cal(pct_pos,alpha=alpha,e=e) x_base = pd.DataFrame(x.value_counts().sort_values(ascending=False),index=itemlist) x_base.columns = ['cnt'] x_base['proba'] = x_base['cnt']/n x_base['type'] = 'normal' x_base['rnk'] = range(1,len(x_base)+1) x_base.loc[((x_base.proba<backoff_p)&(x_base.cnt<backoff_n))|(x_base.rnk>=backoff_rnk),'type'] = 'rare' stats = { "missing": missing/n, "distinct_count":len(itemlist), "n":n, "entropy":-1*np.sum(p_x*np.log2(p_x)) } dist = { "itemlist":itemlist, "p(x)":p_x, "type":x_base['type'].to_dict(), "itemlist_rare":x_base[x_base.type=='rare'].index.tolist(), "data":x_base } return stats,dist class feature_categorical(object): def __init__(self,name=None): self.name = name self.dtype = 'categorical' self.stats = None self.dist = None self.cross_proba=None self.cross_stats=None def crosstab_bin(self,x,y): x = pd.Series(x) y =
pd.Series(y)
pandas.Series
# -*- coding: utf-8 -*- try: import json except ImportError: import simplejson as json import math import pytz import locale import pytest import time import datetime import calendar import re import decimal import dateutil from functools import partial from pandas.compat import range, StringIO, u from pandas._libs.tslib import Timestamp import pandas._libs.json as ujson import pandas.compat as compat import numpy as np from pandas import DataFrame, Series, Index, NaT, DatetimeIndex, date_range import pandas.util.testing as tm json_unicode = (json.dumps if compat.PY3 else partial(json.dumps, encoding="utf-8")) def _clean_dict(d): """ Sanitize dictionary for JSON by converting all keys to strings. Parameters ---------- d : dict The dictionary to convert. Returns ------- cleaned_dict : dict """ return {str(k): v for k, v in compat.iteritems(d)} @pytest.fixture(params=[ None, # Column indexed by default. "split", "records", "values", "index"]) def orient(request): return request.param @pytest.fixture(params=[None, True]) def numpy(request): return request.param class TestUltraJSONTests(object): @pytest.mark.skipif(compat.is_platform_32bit(), reason="not compliant on 32-bit, xref #15865") def test_encode_decimal(self): sut = decimal.Decimal("1337.1337") encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert decoded == 1337.1337 sut = decimal.Decimal("0.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.94") encoded = ujson.encode(sut, double_precision=1) assert encoded == "0.9" decoded = ujson.decode(encoded) assert decoded == 0.9 sut = decimal.Decimal("1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "2.0" decoded = ujson.decode(encoded) assert decoded == 2.0 sut = decimal.Decimal("-1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "-2.0" decoded = ujson.decode(encoded) assert decoded == -2.0 sut = decimal.Decimal("0.995") encoded = ujson.encode(sut, double_precision=2) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.9995") encoded = ujson.encode(sut, double_precision=3) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.99999999999999944") encoded = ujson.encode(sut, double_precision=15) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 @pytest.mark.parametrize("ensure_ascii", [True, False]) def test_encode_string_conversion(self, ensure_ascii): string_input = "A string \\ / \b \f \n \r \t </script> &" not_html_encoded = ('"A string \\\\ \\/ \\b \\f \\n ' '\\r \\t <\\/script> &"') html_encoded = ('"A string \\\\ \\/ \\b \\f \\n \\r \\t ' '\\u003c\\/script\\u003e \\u0026"') def helper(expected_output, **encode_kwargs): output = ujson.encode(string_input, ensure_ascii=ensure_ascii, **encode_kwargs) assert output == expected_output assert string_input == json.loads(output) assert string_input == ujson.decode(output) # Default behavior assumes encode_html_chars=False. helper(not_html_encoded) # Make sure explicit encode_html_chars=False works. helper(not_html_encoded, encode_html_chars=False) # Make sure explicit encode_html_chars=True does the encoding. helper(html_encoded, encode_html_chars=True) @pytest.mark.parametrize("long_number", [ -4342969734183514, -12345678901234.56789012, -528656961.4399388 ]) def test_double_long_numbers(self, long_number): sut = {u("a"): long_number} encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert sut == decoded def test_encode_non_c_locale(self): lc_category = locale.LC_NUMERIC # We just need one of these locales to work. for new_locale in ("it_IT.UTF-8", "Italian_Italy"): if tm.can_set_locale(new_locale, lc_category): with tm.set_locale(new_locale, lc_category): assert ujson.loads(ujson.dumps(4.78e60)) == 4.78e60 assert ujson.loads("4.78", precise_float=True) == 4.78 break def test_decimal_decode_test_precise(self): sut = {u("a"): 4.56} encoded = ujson.encode(sut) decoded = ujson.decode(encoded, precise_float=True) assert sut == decoded @pytest.mark.skipif(compat.is_platform_windows() and not compat.PY3, reason="buggy on win-64 for py2") def test_encode_double_tiny_exponential(self): num = 1e-40 assert num == ujson.decode(ujson.encode(num)) num = 1e-100 assert num == ujson.decode(ujson.encode(num)) num = -1e-45 assert num == ujson.decode(ujson.encode(num)) num = -1e-145 assert np.allclose(num, ujson.decode(ujson.encode(num))) @pytest.mark.parametrize("unicode_key", [ u("key1"), u("بن") ]) def test_encode_dict_with_unicode_keys(self, unicode_key): unicode_dict = {unicode_key: u("value1")} assert unicode_dict == ujson.decode(ujson.encode(unicode_dict)) @pytest.mark.parametrize("double_input", [ math.pi, -math.pi # Should work with negatives too. ]) def test_encode_double_conversion(self, double_input): output = ujson.encode(double_input) assert round(double_input, 5) == round(json.loads(output), 5) assert round(double_input, 5) == round(ujson.decode(output), 5) def test_encode_with_decimal(self): decimal_input = 1.0 output = ujson.encode(decimal_input) assert output == "1.0" def test_encode_array_of_nested_arrays(self): nested_input = [[[[]]]] * 20 output = ujson.encode(nested_input) assert nested_input == json.loads(output) assert nested_input == ujson.decode(output) nested_input = np.array(nested_input) tm.assert_numpy_array_equal(nested_input, ujson.decode( output, numpy=True, dtype=nested_input.dtype)) def test_encode_array_of_doubles(self): doubles_input = [31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10 output = ujson.encode(doubles_input) assert doubles_input == json.loads(output) assert doubles_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(doubles_input), ujson.decode(output, numpy=True)) def test_double_precision(self): double_input = 30.012345678901234 output = ujson.encode(double_input, double_precision=15) assert double_input == json.loads(output) assert double_input == ujson.decode(output) for double_precision in (3, 9): output = ujson.encode(double_input, double_precision=double_precision) rounded_input = round(double_input, double_precision) assert rounded_input == json.loads(output) assert rounded_input == ujson.decode(output) @pytest.mark.parametrize("invalid_val", [ 20, -1, "9", None ]) def test_invalid_double_precision(self, invalid_val): double_input = 30.12345678901234567890 expected_exception = (ValueError if isinstance(invalid_val, int) else TypeError) with pytest.raises(expected_exception): ujson.encode(double_input, double_precision=invalid_val) def test_encode_string_conversion2(self): string_input = "A string \\ / \b \f \n \r \t" output = ujson.encode(string_input) assert string_input == json.loads(output) assert string_input == ujson.decode(output) assert output == '"A string \\\\ \\/ \\b \\f \\n \\r \\t"' @pytest.mark.parametrize("unicode_input", [ "Räksmörgås اسامة بن محمد بن عوض بن لادن", "\xe6\x97\xa5\xd1\x88" ]) def test_encode_unicode_conversion(self, unicode_input): enc = ujson.encode(unicode_input) dec = ujson.decode(enc) assert enc == json_unicode(unicode_input) assert dec == json.loads(enc) def test_encode_control_escaping(self): escaped_input = "\x19" enc = ujson.encode(escaped_input) dec = ujson.decode(enc) assert escaped_input == dec assert enc == json_unicode(escaped_input) def test_encode_unicode_surrogate_pair(self): surrogate_input = "\xf0\x90\x8d\x86" enc = ujson.encode(surrogate_input) dec = ujson.decode(enc) assert enc == json_unicode(surrogate_input) assert dec == json.loads(enc) def test_encode_unicode_4bytes_utf8(self): four_bytes_input = "\xf0\x91\x80\xb0TRAILINGNORMAL" enc = ujson.encode(four_bytes_input) dec = ujson.decode(enc) assert enc == json_unicode(four_bytes_input) assert dec == json.loads(enc) def test_encode_unicode_4bytes_utf8highest(self): four_bytes_input = "\xf3\xbf\xbf\xbfTRAILINGNORMAL" enc = ujson.encode(four_bytes_input) dec = ujson.decode(enc) assert enc == json_unicode(four_bytes_input) assert dec == json.loads(enc) def test_encode_array_in_array(self): arr_in_arr_input = [[[[]]]] output = ujson.encode(arr_in_arr_input) assert arr_in_arr_input == json.loads(output) assert output == json.dumps(arr_in_arr_input) assert arr_in_arr_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(arr_in_arr_input), ujson.decode(output, numpy=True)) @pytest.mark.parametrize("num_input", [ 31337, -31337, # Negative number. -9223372036854775808 # Large negative number. ]) def test_encode_num_conversion(self, num_input): output = ujson.encode(num_input) assert num_input == json.loads(output) assert output == json.dumps(num_input) assert num_input == ujson.decode(output) def test_encode_list_conversion(self): list_input = [1, 2, 3, 4] output = ujson.encode(list_input) assert list_input == json.loads(output) assert list_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(list_input), ujson.decode(output, numpy=True)) def test_encode_dict_conversion(self): dict_input = {"k1": 1, "k2": 2, "k3": 3, "k4": 4} output = ujson.encode(dict_input) assert dict_input == json.loads(output) assert dict_input == ujson.decode(output) @pytest.mark.parametrize("builtin_value", [None, True, False]) def test_encode_builtin_values_conversion(self, builtin_value): output = ujson.encode(builtin_value) assert builtin_value == json.loads(output) assert output == json.dumps(builtin_value) assert builtin_value == ujson.decode(output) def test_encode_datetime_conversion(self): datetime_input = datetime.datetime.fromtimestamp(time.time()) output = ujson.encode(datetime_input, date_unit="s") expected = calendar.timegm(datetime_input.utctimetuple()) assert int(expected) == json.loads(output) assert int(expected) == ujson.decode(output) def test_encode_date_conversion(self): date_input = datetime.date.fromtimestamp(time.time()) output = ujson.encode(date_input, date_unit="s") tup = (date_input.year, date_input.month, date_input.day, 0, 0, 0) expected = calendar.timegm(tup) assert int(expected) == json.loads(output) assert int(expected) == ujson.decode(output) @pytest.mark.parametrize("test", [ datetime.time(), datetime.time(1, 2, 3), datetime.time(10, 12, 15, 343243), ]) def test_encode_time_conversion_basic(self, test): output = ujson.encode(test) expected = '"{iso}"'.format(iso=test.isoformat()) assert expected == output def test_encode_time_conversion_pytz(self): # see gh-11473: to_json segfaults with timezone-aware datetimes test = datetime.time(10, 12, 15, 343243, pytz.utc) output = ujson.encode(test) expected = '"{iso}"'.format(iso=test.isoformat()) assert expected == output def test_encode_time_conversion_dateutil(self): # see gh-11473: to_json segfaults with timezone-aware datetimes test = datetime.time(10, 12, 15, 343243, dateutil.tz.tzutc()) output = ujson.encode(test) expected = '"{iso}"'.format(iso=test.isoformat()) assert expected == output @pytest.mark.parametrize("decoded_input", [ NaT, np.datetime64("NaT"), np.nan, np.inf, -np.inf ]) def test_encode_as_null(self, decoded_input): assert ujson.encode(decoded_input) == "null", "Expected null" def test_datetime_units(self): val = datetime.datetime(2013, 8, 17, 21, 17, 12, 215504) stamp = Timestamp(val) roundtrip = ujson.decode(ujson.encode(val, date_unit='s')) assert roundtrip == stamp.value // 10**9 roundtrip = ujson.decode(ujson.encode(val, date_unit='ms')) assert roundtrip == stamp.value // 10**6 roundtrip = ujson.decode(ujson.encode(val, date_unit='us')) assert roundtrip == stamp.value // 10**3 roundtrip = ujson.decode(ujson.encode(val, date_unit='ns')) assert roundtrip == stamp.value pytest.raises(ValueError, ujson.encode, val, date_unit='foo') def test_encode_to_utf8(self): unencoded = "\xe6\x97\xa5\xd1\x88" enc = ujson.encode(unencoded, ensure_ascii=False) dec = ujson.decode(enc) assert enc == json_unicode(unencoded, ensure_ascii=False) assert dec == json.loads(enc) def test_decode_from_unicode(self): unicode_input = u("{\"obj\": 31337}") dec1 = ujson.decode(unicode_input) dec2 = ujson.decode(str(unicode_input)) assert dec1 == dec2 def test_encode_recursion_max(self): # 8 is the max recursion depth class O2(object): member = 0 pass class O1(object): member = 0 pass decoded_input = O1() decoded_input.member = O2() decoded_input.member.member = decoded_input with pytest.raises(OverflowError): ujson.encode(decoded_input) def test_decode_jibberish(self): jibberish = "fdsa sda v9sa fdsa" with pytest.raises(ValueError): ujson.decode(jibberish) @pytest.mark.parametrize("broken_json", [ "[", # Broken array start. "{", # Broken object start. "]", # Broken array end. "}", # Broken object end. ]) def test_decode_broken_json(self, broken_json): with pytest.raises(ValueError): ujson.decode(broken_json) @pytest.mark.parametrize("too_big_char", [ "[", "{", ]) def test_decode_depth_too_big(self, too_big_char): with pytest.raises(ValueError): ujson.decode(too_big_char * (1024 * 1024)) @pytest.mark.parametrize("bad_string", [ "\"TESTING", # Unterminated. "\"TESTING\\\"", # Unterminated escape. "tru", # Broken True. "fa", # Broken False. "n", # Broken None. ]) def test_decode_bad_string(self, bad_string): with pytest.raises(ValueError): ujson.decode(bad_string) @pytest.mark.parametrize("broken_json", [ '{{1337:""}}', '{{"key":"}', '[[[true', ]) def test_decode_broken_json_leak(self, broken_json): for _ in range(1000): with pytest.raises(ValueError): ujson.decode(broken_json) @pytest.mark.parametrize("invalid_dict", [ "{{{{31337}}}}", # No key. "{{{{\"key\":}}}}", # No value. "{{{{\"key\"}}}}", # No colon or value. ]) def test_decode_invalid_dict(self, invalid_dict): with pytest.raises(ValueError): ujson.decode(invalid_dict) @pytest.mark.parametrize("numeric_int_as_str", [ "31337", "-31337" # Should work with negatives. ]) def test_decode_numeric_int(self, numeric_int_as_str): assert int(numeric_int_as_str) == ujson.decode(numeric_int_as_str) @pytest.mark.skipif(compat.PY3, reason="only PY2") def test_encode_unicode_4bytes_utf8_fail(self): with pytest.raises(OverflowError): ujson.encode("\xfd\xbf\xbf\xbf\xbf\xbf") def test_encode_null_character(self): wrapped_input = "31337 \x00 1337" output = ujson.encode(wrapped_input) assert wrapped_input == json.loads(output) assert output == json.dumps(wrapped_input) assert wrapped_input == ujson.decode(output) alone_input = "\x00" output = ujson.encode(alone_input) assert alone_input == json.loads(output) assert output == json.dumps(alone_input) assert alone_input == ujson.decode(output) assert '" \\u0000\\r\\n "' == ujson.dumps(u(" \u0000\r\n ")) def test_decode_null_character(self): wrapped_input = "\"31337 \\u0000 31337\"" assert ujson.decode(wrapped_input) == json.loads(wrapped_input) def test_encode_list_long_conversion(self): long_input = [9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807] output = ujson.encode(long_input) assert long_input == json.loads(output) assert long_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(long_input), ujson.decode(output, numpy=True, dtype=np.int64)) def test_encode_long_conversion(self): long_input = 9223372036854775807 output = ujson.encode(long_input) assert long_input == json.loads(output) assert output == json.dumps(long_input) assert long_input == ujson.decode(output) @pytest.mark.parametrize("int_exp", [ "1337E40", "1.337E40", "1337E+9", "1.337e+40", "1.337E-4" ]) def test_decode_numeric_int_exp(self, int_exp): assert ujson.decode(int_exp) == json.loads(int_exp) def test_dump_to_file(self): f = StringIO() ujson.dump([1, 2, 3], f) assert "[1,2,3]" == f.getvalue() def test_dump_to_file_like(self): class FileLike(object): def __init__(self): self.bytes = '' def write(self, data_bytes): self.bytes += data_bytes f = FileLike() ujson.dump([1, 2, 3], f) assert "[1,2,3]" == f.bytes def test_dump_file_args_error(self): with pytest.raises(TypeError): ujson.dump([], "") def test_load_file(self): data = "[1,2,3,4]" exp_data = [1, 2, 3, 4] f = StringIO(data) assert exp_data == ujson.load(f) f = StringIO(data) tm.assert_numpy_array_equal(np.array(exp_data), ujson.load(f, numpy=True)) def test_load_file_like(self): class FileLike(object): def read(self): try: self.end except AttributeError: self.end = True return "[1,2,3,4]" exp_data = [1, 2, 3, 4] f = FileLike() assert exp_data == ujson.load(f) f = FileLike() tm.assert_numpy_array_equal(np.array(exp_data), ujson.load(f, numpy=True)) def test_load_file_args_error(self): with pytest.raises(TypeError): ujson.load("[]") def test_version(self): assert re.match(r'^\d+\.\d+(\.\d+)?$', ujson.__version__), \ "ujson.__version__ must be a string like '1.4.0'" def test_encode_numeric_overflow(self): with pytest.raises(OverflowError): ujson.encode(12839128391289382193812939) def test_encode_numeric_overflow_nested(self): class Nested(object): x = 12839128391289382193812939 for _ in range(0, 100): with pytest.raises(OverflowError): ujson.encode(Nested()) @pytest.mark.parametrize("val", [ 3590016419, 2**31, 2**32, (2**32) - 1 ]) def test_decode_number_with_32bit_sign_bit(self, val): # Test that numbers that fit within 32 bits but would have the # sign bit set (2**31 <= x < 2**32) are decoded properly. doc = '{{"id": {val}}}'.format(val=val) assert ujson.decode(doc)["id"] == val def test_encode_big_escape(self): # Make sure no Exception is raised. for _ in range(10): base = '\u00e5'.encode("utf-8") if compat.PY3 else "\xc3\xa5" escape_input = base * 1024 * 1024 * 2 ujson.encode(escape_input) def test_decode_big_escape(self): # Make sure no Exception is raised. for _ in range(10): base = '\u00e5'.encode("utf-8") if compat.PY3 else "\xc3\xa5" quote = compat.str_to_bytes("\"") escape_input = quote + (base * 1024 * 1024 * 2) + quote ujson.decode(escape_input) def test_to_dict(self): d = {u("key"): 31337} class DictTest(object): def toDict(self): return d o = DictTest() output = ujson.encode(o) dec = ujson.decode(output) assert dec == d def test_default_handler(self): class _TestObject(object): def __init__(self, val): self.val = val @property def recursive_attr(self): return _TestObject("recursive_attr") def __str__(self): return str(self.val) pytest.raises(OverflowError, ujson.encode, _TestObject("foo")) assert '"foo"' == ujson.encode(_TestObject("foo"), default_handler=str) def my_handler(_): return "foobar" assert '"foobar"' == ujson.encode(_TestObject("foo"), default_handler=my_handler) def my_handler_raises(_): raise TypeError("I raise for anything") with pytest.raises(TypeError, match="I raise for anything"): ujson.encode(_TestObject("foo"), default_handler=my_handler_raises) def my_int_handler(_): return 42 assert ujson.decode(ujson.encode(_TestObject("foo"), default_handler=my_int_handler)) == 42 def my_obj_handler(_): return datetime.datetime(2013, 2, 3) assert (ujson.decode(ujson.encode(datetime.datetime(2013, 2, 3))) == ujson.decode(ujson.encode(_TestObject("foo"), default_handler=my_obj_handler))) obj_list = [_TestObject("foo"), _TestObject("bar")] assert (json.loads(json.dumps(obj_list, default=str)) == ujson.decode(ujson.encode(obj_list, default_handler=str))) class TestNumpyJSONTests(object): @pytest.mark.parametrize("bool_input", [True, False]) def test_bool(self, bool_input): b = np.bool(bool_input) assert ujson.decode(ujson.encode(b)) == b def test_bool_array(self): bool_array = np.array([ True, False, True, True, False, True, False, False], dtype=np.bool) output = np.array(ujson.decode( ujson.encode(bool_array)), dtype=np.bool) tm.assert_numpy_array_equal(bool_array, output) def test_int(self, any_int_dtype): klass = np.dtype(any_int_dtype).type num = klass(1) assert klass(ujson.decode(ujson.encode(num))) == num def test_int_array(self, any_int_dtype): arr = np.arange(100, dtype=np.int) arr_input = arr.astype(any_int_dtype) arr_output = np.array(ujson.decode(ujson.encode(arr_input)), dtype=any_int_dtype) tm.assert_numpy_array_equal(arr_input, arr_output) def test_int_max(self, any_int_dtype): if any_int_dtype in ("int64", "uint64") and compat.is_platform_32bit(): pytest.skip("Cannot test 64-bit integer on 32-bit platform") klass = np.dtype(any_int_dtype).type # uint64 max will always overflow, # as it's encoded to signed. if any_int_dtype == "uint64": num = np.iinfo("int64").max else: num = np.iinfo(any_int_dtype).max assert klass(ujson.decode(ujson.encode(num))) == num def test_float(self, float_dtype): klass = np.dtype(float_dtype).type num = klass(256.2013) assert klass(ujson.decode(ujson.encode(num))) == num def test_float_array(self, float_dtype): arr = np.arange(12.5, 185.72, 1.7322, dtype=np.float) float_input = arr.astype(float_dtype) float_output = np.array(ujson.decode( ujson.encode(float_input, double_precision=15)), dtype=float_dtype) tm.assert_almost_equal(float_input, float_output) def test_float_max(self, float_dtype): klass = np.dtype(float_dtype).type num = klass(np.finfo(float_dtype).max / 10) tm.assert_almost_equal(klass(ujson.decode( ujson.encode(num, double_precision=15))), num) def test_array_basic(self): arr = np.arange(96) arr = arr.reshape((2, 2, 2, 2, 3, 2)) tm.assert_numpy_array_equal( np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode( ujson.encode(arr), numpy=True), arr) @pytest.mark.parametrize("shape", [ (10, 10), (5, 5, 4), (100, 1), ]) def test_array_reshaped(self, shape): arr = np.arange(100) arr = arr.reshape(shape) tm.assert_numpy_array_equal( np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode( ujson.encode(arr), numpy=True), arr) def test_array_list(self): arr_list = ["a", list(), dict(), dict(), list(), 42, 97.8, ["a", "b"], {"key": "val"}] arr = np.array(arr_list) tm.assert_numpy_array_equal( np.array(ujson.decode(ujson.encode(arr))), arr) def test_array_float(self): dtype = np.float32 arr = np.arange(100.202, 200.202, 1, dtype=dtype) arr = arr.reshape((5, 5, 4)) arr_out = np.array(ujson.decode(ujson.encode(arr)), dtype=dtype) tm.assert_almost_equal(arr, arr_out) arr_out = ujson.decode(ujson.encode(arr), numpy=True, dtype=dtype) tm.assert_almost_equal(arr, arr_out) def test_0d_array(self): with pytest.raises(TypeError): ujson.encode(np.array(1)) @pytest.mark.parametrize("bad_input,exc_type,kwargs", [ ([{}, []], ValueError, {}), ([42, None], TypeError, {}), ([["a"], 42], ValueError, {}), ([42, {}, "a"], TypeError, {}), ([42, ["a"], 42], ValueError, {}), (["a", "b", [], "c"], ValueError, {}), ([{"a": "b"}], ValueError, dict(labelled=True)), ({"a": {"b": {"c": 42}}}, ValueError, dict(labelled=True)), ([{"a": 42, "b": 23}, {"c": 17}], ValueError, dict(labelled=True)) ]) def test_array_numpy_except(self, bad_input, exc_type, kwargs): with pytest.raises(exc_type): ujson.decode(ujson.dumps(bad_input), numpy=True, **kwargs) def test_array_numpy_labelled(self): labelled_input = {"a": []} output = ujson.loads(ujson.dumps(labelled_input), numpy=True, labelled=True) assert (np.empty((1, 0)) == output[0]).all() assert (np.array(["a"]) == output[1]).all() assert output[2] is None labelled_input = [{"a": 42}] output = ujson.loads(ujson.dumps(labelled_input), numpy=True, labelled=True) assert (np.array([u("a")]) == output[2]).all() assert (np.array([42]) == output[0]).all() assert output[1] is None # see gh-10837: write out the dump explicitly # so there is no dependency on iteration order input_dumps = ('[{"a": 42, "b":31}, {"a": 24, "c": 99}, ' '{"a": 2.4, "b": 78}]') output = ujson.loads(input_dumps, numpy=True, labelled=True) expected_vals = np.array( [42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2)) assert (expected_vals == output[0]).all() assert output[1] is None assert (np.array([u("a"), "b"]) == output[2]).all() input_dumps = ('{"1": {"a": 42, "b":31}, "2": {"a": 24, "c": 99}, ' '"3": {"a": 2.4, "b": 78}}') output = ujson.loads(input_dumps, numpy=True, labelled=True) expected_vals = np.array( [42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2)) assert (expected_vals == output[0]).all() assert (np.array(["1", "2", "3"]) == output[1]).all() assert (np.array(["a", "b"]) == output[2]).all() class TestPandasJSONTests(object): def test_dataframe(self, orient, numpy): if orient == "records" and numpy: pytest.skip("Not idiomatic pandas") df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[ "a", "b"], columns=["x", "y", "z"]) encode_kwargs = {} if orient is None else dict(orient=orient) decode_kwargs = {} if numpy is None else dict(numpy=numpy) output = ujson.decode(ujson.encode(df, **encode_kwargs), **decode_kwargs) # Ensure proper DataFrame initialization. if orient == "split": dec = _clean_dict(output) output = DataFrame(**dec) else: output = DataFrame(output) # Corrections to enable DataFrame comparison. if orient == "values": df.columns = [0, 1, 2] df.index = [0, 1] elif orient == "records": df.index = [0, 1] elif orient == "index": df = df.transpose() tm.assert_frame_equal(output, df, check_dtype=False) def test_dataframe_nested(self, orient): df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[ "a", "b"], columns=["x", "y", "z"]) nested = {"df1": df, "df2": df.copy()} kwargs = {} if orient is None else dict(orient=orient) exp = {"df1": ujson.decode(ujson.encode(df, **kwargs)), "df2": ujson.decode(ujson.encode(df, **kwargs))} assert ujson.decode(ujson.encode(nested, **kwargs)) == exp def test_dataframe_numpy_labelled(self, orient): if orient in ("split", "values"): pytest.skip("Incompatible with labelled=True") df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[ "a", "b"], columns=["x", "y", "z"], dtype=np.int) kwargs = {} if orient is None else dict(orient=orient) output = DataFrame(*ujson.decode(ujson.encode(df, **kwargs), numpy=True, labelled=True)) if orient is None: df = df.T elif orient == "records": df.index = [0, 1] tm.assert_frame_equal(output, df) def test_series(self, orient, numpy): s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6, 7, 8, 9, 10, 15]).sort_values() encode_kwargs = {} if orient is None else dict(orient=orient) decode_kwargs = {} if numpy is None else dict(numpy=numpy) output = ujson.decode(ujson.encode(s, **encode_kwargs), **decode_kwargs) if orient == "split": dec = _clean_dict(output) output = Series(**dec) else: output = Series(output) if orient in (None, "index"): s.name = None output = output.sort_values() s.index = ["6", "7", "8", "9", "10", "15"] elif orient in ("records", "values"): s.name = None s.index = [0, 1, 2, 3, 4, 5] tm.assert_series_equal(output, s, check_dtype=False) def test_series_nested(self, orient): s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6, 7, 8, 9, 10, 15]).sort_values() nested = {"s1": s, "s2": s.copy()} kwargs = {} if orient is None else dict(orient=orient) exp = {"s1": ujson.decode(ujson.encode(s, **kwargs)), "s2": ujson.decode(ujson.encode(s, **kwargs))} assert ujson.decode(ujson.encode(nested, **kwargs)) == exp def test_index(self): i = Index([23, 45, 18, 98, 43, 11], name="index") # Column indexed. output = Index(ujson.decode(ujson.encode(i)), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i), numpy=True), name="index") tm.assert_index_equal(i, output) dec = _clean_dict(ujson.decode(ujson.encode(i, orient="split"))) output = Index(**dec) tm.assert_index_equal(i, output) assert i.name == output.name dec = _clean_dict(ujson.decode(ujson.encode(i, orient="split"), numpy=True)) output = Index(**dec) tm.assert_index_equal(i, output) assert i.name == output.name output = Index(ujson.decode(
ujson.encode(i, orient="values")
pandas._libs.json.encode
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right) tm.assert_series_equal(result, expected) result = left | Series(right) tm.assert_series_equal(result, expected) expected = Series([False, True, True, True, True]) result = left ^ right tm.assert_series_equal(result, expected) result = left ^ np.array(right) tm.assert_series_equal(result, expected) result = left ^ Index(right) tm.assert_series_equal(result, expected) result = left ^ Series(right) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): # GH#9016: support bitwise op for integer types # with non-matching indexes, logical operators will cast to object # before operating index = list("bca") s_tft = Series([True, False, True], index=index) s_tft = Series([True, False, True], index=index) s_tff = Series([True, False, False], index=index) s_0123 = Series(range(4), dtype="int64") # s_0123 will be all false now because of reindexing like s_tft expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_tft & s_0123 tm.assert_series_equal(result, expected) expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"]) result = s_0123 & s_tft tm.assert_series_equal(result, expected) s_a0b1c0 = Series([1], list("b")) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list("abc")) tm.assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list("abc")) tm.assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) tm.assert_series_equal(result, expected) def test_scalar_na_logical_ops_corners_aligns(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan d = DataFrame({"A": s}) expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9))) result = s & d tm.assert_frame_equal(result, expected) result = d & s tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) tm.assert_series_equal(result, expected) def test_reversed_xor_with_index_returns_index(self): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Index.symmetric_difference(idx1, ser) with tm.assert_produces_warning(FutureWarning): result = idx1 ^ ser tm.assert_index_equal(result, expected) expected = Index.symmetric_difference(idx2, ser) with tm.assert_produces_warning(FutureWarning): result = idx2 ^ ser tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "op", [ pytest.param( ops.rand_, marks=pytest.mark.xfail( reason="GH#22092 Index __and__ returns Index intersection", raises=AssertionError, strict=True, ), ), pytest.param( ops.ror_, marks=pytest.mark.xfail( reason="GH#22092 Index __or__ returns Index union", raises=AssertionError, strict=True, ), ), ], ) def test_reversed_logical_op_with_index_returns_series(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series(op(idx1.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx1) tm.assert_series_equal(result, expected) expected = Series(op(idx2.values, ser.values)) with tm.assert_produces_warning(FutureWarning): result = op(ser, idx2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "op, expected", [ (ops.rand_, Index([False, True])), (ops.ror_, Index([False, True])), (ops.rxor, Index([])), ], ) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # behaving as set ops is deprecated, will become logical ops result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list("bca")) b = Series([False, True, False], list("abc")) expected = Series([False, True, False], list("abc")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False], list("abc")) result = a | b tm.assert_series_equal(result, expected) expected = Series([True, False, False], list("abc")) result = a ^ b tm.assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list("bca")) b = Series([False, True, False, True], list("abcd")) expected = Series([False, True, False, False], list("abcd")) result = a & b tm.assert_series_equal(result, expected) expected = Series([True, True, False, False], list("abcd")) result = a | b tm.assert_series_equal(result, expected) # filling # vs empty empty = Series([], dtype=object) result = a & empty.copy() expected = Series([False, False, False], list("bca")) tm.assert_series_equal(result, expected) result = a | empty.copy() expected = Series([True, False, True], list("bca")) tm.assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ["z"]) expected = Series([False, False, False, False], list("abcz")) tm.assert_series_equal(result, expected) result = a | Series([1], ["z"]) expected = Series([True, True, False, False], list("abcz")) tm.assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [ empty.copy(), Series([1], ["z"]), Series(np.nan, b.index), Series(np.nan, a.index), ]: result = a[a | e] tm.assert_series_equal(result, a[a]) for e in [Series(["z"])]: result = a[a | e]
tm.assert_series_equal(result, a[a])
pandas._testing.assert_series_equal
import logging, os, sys, pickle, json, time, yaml from datetime import datetime as dt import warnings warnings.filterwarnings('ignore') from tqdm import tqdm tqdm.pandas() import pandas as pd import geopandas as gpd from geopandas.plotting import _plot_linestring_collection, _plot_point_collection import numpy as np from shapely import geometry, wkt, ops import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib as mpl from matplotlib.colors import LinearSegmentedColormap from matplotlib.patches import FancyBboxPatch from ffsc.pipeline.nodes.utils import V_inv import networkx as nx logging.basicConfig(stream=sys.stdout, level=logging.INFO) import multiprocessing as mp N_WORKERS=6 def visualise_gpd(params, gdfs, ne, logger): fig, ax = plt.subplots(1,1,figsize=params['figsize']) ne.plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*params['vis_colors']['ne']), **params['type_style']['ne']) for dd in gdfs: logger.info(f'plotting {dd["type"]} {dd["color_key"]}') if dd['type']=='lin_asset': dd['gdf']['len'] = dd['gdf']['geometry'].apply(lambda geom: geom.length) dd['gdf'] = dd['gdf'][dd['gdf']['len']<345] dd['gdf'].plot( ax=ax, color='#{:02x}{:02x}{:02x}'.format(*params['vis_colors'][dd['color_key']]), **params['type_style'][dd['type']] ) plt.savefig(params['path']) def visualise_assets_simplified_coal(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): params['path'] = os.path.join(os.getcwd(),'results','figures','assets_simplified_coal.png') visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne) return [] def visualise_assets_simplified_oil(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): params['path'] = os.path.join(os.getcwd(),'results','figures','assets_simplified_oil.png') visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne) return [] def visualise_assets_simplified_gas(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): params['path'] = os.path.join(os.getcwd(),'results','figures','assets_simplified_gas.png') visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne) return [] def visualise_assets_coal(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): params['path'] = os.path.join(os.getcwd(),'results','figures','assets_coal.png') visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne) return [] def visualise_assets_oil(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): params['path'] = os.path.join(os.getcwd(),'results','figures','assets_oil.png') visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne) return [] def visualise_assets_gas(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): params['path'] = os.path.join(os.getcwd(),'results','figures','assets_gas.png') visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne) return [] def visualise_all_assets(vis_params): ne = kedro_catalog.load('ne') gdfs = {} gdfs['SHIPPINGROUTE'] = kedro_catalog.load('raw_shippingroutes_data') gdfs['PORT'] = kedro_catalog.load('raw_ports_data') gdfs['LNGTERMINAL'] = kedro_catalog.load('raw_lngterminals_data') gdfs['COALMINE'] = kedro_catalog.load('raw_coalmines_data') gdfs['OILFIELD'] = kedro_catalog.load('raw_oilfields_data') gdfs['OILWELL'] = kedro_catalog.load('raw_oilwells_data') gdfs['REFINERY'] = kedro_catalog.load('raw_processingplants_data') gdfs['RAILWAY'] = kedro_catalog.load('raw_railways_data') gdfs['RAILWAY'] = gpd.GeoDataFrame.from_features(gdfs['RAILWAY']['features']) gdfs['PIPELINE'] = kedro_catalog.load('raw_pipelines_data') gdfs['PIPELINE'] = gpd.GeoDataFrame.from_features(gdfs['PIPELINE']['features']) gdfs['CITY'] = kedro_catalog.load('raw_cities_energy_data') gdfs['CITY']['orig_geom'] = gdfs['CITY']['geom_gj'].apply(lambda el: geometry.shape(el)) gdfs['CITY'] = gdfs['CITY'].set_geometry('orig_geom') gdfs['POWERSTATION'] = kedro_catalog.load('raw_pipelines_data') gdfs['POWERSTATION'] = gpd.GeoDataFrame.from_features(gdfs['POWERSTATION']['features']) fig, ax = plt.subplots(1,1,figsize=(36,36)) ne.boundary.plot(ax=ax,color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['ne']),zorder=0) gdfs['SHIPPINGROUTE'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['SHIPPINGROUTE']), lw=0.5, zorder=1) gdfs['PORT'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['PORT']), markersize=5, zorder=1) gdfs['LNGTERMINAL'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['LNGTERMINAL']), markersize=13, zorder=1) gdfs['COALMINE'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['COALMINE']), markersize=8, zorder=1) gdfs['OILFIELD'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['OILFIELD']),alpha=0.5, zorder=1) gdfs['OILWELL'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['OILWELL']),markersize=5, zorder=1) gdfs['REFINERY'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['REFINERY']),markersize=5, zorder=1) gdfs['PIPELINE'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['PIPELINE']),lw=0.3, zorder=1) gdfs['RAILWAY'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['RAILWAY']),lw=0.5, zorder=1) gdfs['CITY'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['CITY']), zorder=2) gdfs['POWERSTATION'].plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*vis_params['vis_colors']['POWERSTATION']),markersize=8,alpha=0.5, zorder=2) ax.set_aspect(1.2) plt.savefig('./all_assets_vis.png', bbox_inches='tight') def prep_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): logger = logging.getLogger('Prep assets') df_ptassets = pd.concat([refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations]) df_linassets = pd.concat([railways, shippingroutes,pipelines]) ### filter all dfs all_nodes = list(set(df_edges['source'].unique().tolist() + df_edges['target'].unique().tolist())) #all_nodes = all_nodes + [n+'_B' for n in all_nodes] # drop the lin assets logger.info('Dropping nodes not in edges') df_edges['source_type'] = df_edges['source'].str.split('_').str[0] df_edges['target_type'] = df_edges['target'].str.split('_').str[0] for lin_asset in ['RAILWAY','PIPELINE','SHIPPINGROUTE']: df_edges = df_edges[~((df_edges['source_type']==lin_asset) & (df_edges['target_type']==lin_asset))] df_edges = df_edges[df_edges['source_type']!='supersource'] # drop any '_B' assets df_edges['source'] = df_edges['source'].str.replace('_B','') df_edges['target'] = df_edges['target'].str.replace('_B','') # join geometries for missing df_missing_cities = pd.merge(df_missing_cities, df_ptassets[['unique_id','geometry']], how='left',on='unique_id') #print ('missing') #print (df_missing_cities) #print (df_missing_powerstations) # drop non-nodes df_ptassets = df_ptassets[df_ptassets['unique_id'].isin(all_nodes)] df_linassets = df_linassets[df_linassets['START'].isin(all_nodes)] # map geoms on ptassets logger.info('mapping geometries') df_ptassets['geometry'] = df_ptassets['geometry'].apply(wkt.loads) # do polygon assets df_ptassets.loc[df_ptassets['unique_id'].str.split('_').str[0]=='OILFIELD','geometry'] = df_ptassets.loc[df_ptassets['unique_id'].str.split('_').str[0]=='OILFIELD','geometry'].apply(lambda el: el.representative_point()) df_ptassets.loc[df_ptassets['unique_id'].str.split('_').str[0]=='CITY','geometry'] = df_ptassets.loc[df_ptassets['unique_id'].str.split('_').str[0]=='CITY','geometry'].apply(lambda el: el.representative_point()) # map geoms on remaining edges df_edges = pd.merge(df_edges, df_ptassets[['unique_id','geometry']], how='left',left_on='source',right_on='unique_id').rename(columns={'geometry':'geometry_source'}).drop(columns=['unique_id']) df_edges = pd.merge(df_edges, df_ptassets[['unique_id','geometry']], how='left',left_on='target',right_on='unique_id').rename(columns={'geometry':'geometry_target'}).drop(columns=['unique_id']) df_edges.loc[df_edges['source_type'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE']),'geometry_source'] = df_edges.loc[df_edges['source_type'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE']),'source'].apply(lambda el: geometry.Point([float(cc) for cc in el.split('_')[2:4]])) df_edges.loc[df_edges['target_type'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE']),'geometry_target'] = df_edges.loc[df_edges['target_type'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE']),'target'].apply(lambda el: geometry.Point([float(cc) for cc in el.split('_')[2:4]])) print ('bork') print (df_edges.loc[df_edges['target_type'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE'])]) df_edges['geometry'] = df_edges.apply(lambda row: geometry.LineString([row['geometry_source'],row['geometry_target']]), axis=1) print ('IDL') pos_idl = ((df_linassets['START'].str.split('_').str[0]=='SHIPPINGROUTE') &(df_linassets['END'].str.split('_').str[0]=='SHIPPINGROUTE')&(df_linassets['START'].str.split('_').str[2].astype(float)<-175)&(df_linassets['END'].str.split('_').str[2].astype(float)>175)) neg_idl =((df_linassets['START'].str.split('_').str[0]=='SHIPPINGROUTE') &(df_linassets['END'].str.split('_').str[0]=='SHIPPINGROUTE')&(df_linassets['START'].str.split('_').str[2].astype(float)>175)&(df_linassets['END'].str.split('_').str[2].astype(float)<-175)) print (pos_idl.sum(), neg_idl.sum()) # remove IDL from linassets df_linassets = df_linassets[~pos_idl] df_linassets = df_linassets[~neg_idl] # map geoms on linassets (LSS) df_linassets['start_geometry'] = df_linassets['START'].apply(lambda el: geometry.Point([float(cc) for cc in el.split('_')[2:4]])) df_linassets['end_geometry'] = df_linassets['END'].apply(lambda el: geometry.Point([float(cc) for cc in el.split('_')[2:4]])) df_linassets['geometry'] = df_linassets.apply(lambda row: geometry.LineString([row['start_geometry'],row['end_geometry']]),axis=1) # map geoms on missing df_missing_cities['geometry'] = df_missing_cities['geometry'].apply(wkt.loads) df_missing_cities['geometry'] = df_missing_cities['geometry'].apply(lambda el: el.representative_point()) df_missing_powerstations['geometry'] = df_missing_powerstations['geometry'].apply(wkt.loads) print ('edges') print (df_edges) print ('assets') print (df_ptassets) print ('linassets') print (df_linassets) print ('tuples') print (set([tuple(el) for el in df_edges[['source_type','target_type']].values.tolist()])) # get color keys df_edges['color_key'] = 'FINALMILE' for kk in ['RAILWAY','PIPELINE','SHIPPINGROUTE']: df_edges.loc[((df_edges['source_type']==kk) | (df_edges['target_type']==kk)),'color_key'] = kk df_linassets['color_key'] = df_linassets['START'].str.split('_').str[0] df_ptassets['color_key'] = df_ptassets['unique_id'].str.split('_').str[0] return df_edges, df_linassets, df_ptassets, df_missing_cities, df_missing_powerstations def visualise_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways,shippingroutes, pipelines, ne): logger=logging.getLogger('Visualising') df_edges, df_linassets, df_ptassets, df_missing_cities, df_missing_powerstations = prep_assets(params, df_edges, refineries, oilfields, oilwells, coalmines, lngterminals, ports, cities, powerstations, df_missing_cities, df_missing_powerstations, railways, shippingroutes, pipelines, ne) # prep gdfs logger.info('Prepping geodataframes') gdfs = [] for kk in df_ptassets['color_key'].unique(): gdfs.append( { 'gdf':gpd.GeoDataFrame(df_ptassets[df_ptassets['color_key']==kk], geometry='geometry'), 'color_key':kk, 'type':'pt_asset' } ) for kk in df_linassets['color_key'].unique(): gdfs.append( { 'gdf':gpd.GeoDataFrame(df_linassets[df_linassets['color_key']==kk], geometry='geometry'), 'color_key':kk, 'type':'lin_asset' } ) for kk in df_edges['color_key'].unique(): gdfs.append( { 'gdf':gpd.GeoDataFrame(df_edges[df_edges['color_key']==kk], geometry='geometry'), 'color_key':kk, 'type':'edges' } ) # missing gdfs += [ { 'gdf':gpd.GeoDataFrame(df_missing_cities, geometry='geometry'), 'color_key':'MISSING_CITY', 'type':'missing_city', }, { 'gdf':gpd.GeoDataFrame(df_missing_powerstations, geometry='geometry'), 'color_key':'MISSING_POWERSTATION', 'type':'missing_powerstation', }, ] params['figsize'] = (72,48) logger.info('Callign mpl') visualise_gpd(params, gdfs, ne, logger) return [] def visualise_flow(params, ne, df_flow, df_community_edges, df_community_nodes): # get carrier if 'COALMINE' in df_community_nodes['NODETYPE'].unique(): carrier='coal' carrier_supplytypes = ['COALMINE'] elif 'LNGTERMINAL' in df_community_nodes['NODETYPE'].unique(): carrier='gas' carrier_supplytypes = ['OILFIELD','OILWELL'] else: carrier='oil' carrier_supplytypes = ['OILFIELD','OILWELL'] logger = logging.getLogger(f'visualise flow: {carrier}') logger.info('prepping DFs') df_community_nodes = df_community_nodes[~df_community_nodes['NODETYPE'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE'])] print ('nodes') print (df_community_nodes) df_flow = df_flow.rename(columns={'SOURCE':'source','TARGET':'target'}) df_flow = df_flow.set_index(['source','target']) print ('df_flow') print (df_flow) df_community_edges['source_type'] = df_community_edges['source'].str.split('_').str[0] df_community_edges['target_type'] = df_community_edges['target'].str.split('_').str[0] df_community_edges = df_community_edges.set_index(['source','target']) print ('df edges') print (df_community_edges) df_community_edges = pd.merge(df_community_edges, df_flow[['flow']], how='left', left_index=True, right_index=True) logger.info('mapping geometries') df_community_edges['geometry'] = df_community_edges['geometry'].apply(wkt.loads) df_community_nodes['geometry'] = df_community_nodes['geometry'].apply(wkt.loads) logger.info('doing colors and weights') #df_colors = pd.DataFrame.from_dict({kk:"#{:02x}{:02x}{:02x}".format(*vv) for kk,vv in params['vis_colors'].items()}, orient='index').rename(columns={0:'hex'}) colormap = {kk:"#{:02x}{:02x}{:02x}".format(*vv) for kk,vv in params['vis_colors'].items()} df_community_edges['color_key'] = 'FINALMILE' for kk in ['RAILWAY','PIPELINE','SHIPPINGROUTE']: df_community_edges.loc[((df_community_edges['source_type']==kk) | (df_community_edges['target_type']==kk)),'color_key'] = kk df_community_edges['color_hex'] = df_community_edges['color_key'].map(colormap) df_community_nodes['color_hex'] = df_community_nodes['NODETYPE'].map(colormap) MIN_EDGE = 1 MAX_EDGE = 10 MIN_NODE = 1 MAX_NODE = 25 df_community_nodes = pd.merge(df_community_nodes, df_flow.reset_index()[['target','flow']], how='left',left_on='NODE',right_on='target') # do demand and supply separately df_community_nodes['s'] = (np.log10(df_community_nodes['D']+1) - np.log10(df_community_nodes['D']+1).min())/(np.log10(df_community_nodes['D']+1).max() - np.log10(df_community_nodes['D']+1).min())*(MAX_NODE-MIN_NODE)+MIN_NODE df_community_nodes['s_flow'] = (np.log10(df_community_nodes['flow']+1) - np.log10(df_community_nodes['D']+1).min())/(np.log10(df_community_nodes['flow']+1).max() - np.log10(df_community_nodes['flow']+1).min())*(MAX_NODE-MIN_NODE)+MIN_NODE df_community_nodes.loc[df_community_nodes['NODETYPE'].isin(carrier_supplytypes),'s'] = df_community_nodes.loc[df_community_nodes['NODETYPE'].isin(carrier_supplytypes),'s_flow'] #df_community_edges['s'] = (np.log(df_community_edges['flow']+1) - np.log(df_community_edges['flow']+1).min())/(np.log(df_community_edges['flow']+1).max() - np.log(df_community_edges['flow']+1).min())*(MAX_EDGE-MIN_EDGE)+MIN_EDGE df_community_edges['s'] = (df_community_edges['flow'] - df_community_edges['flow'].min())/(df_community_edges['flow'].max() - df_community_edges['flow'].min())*(MAX_EDGE-MIN_EDGE)+MIN_EDGE df_community_edges = df_community_edges[df_community_edges['flow']>0] # get rid of the ones that are super long df_community_edges['len'] = df_community_edges['geometry'].apply(lambda geom: geom.length) df_community_edges = df_community_edges[df_community_edges['len']<350] #cast to gdf df_community_nodes = gpd.GeoDataFrame(df_community_nodes, geometry='geometry') df_community_edges = gpd.GeoDataFrame(df_community_edges, geometry='geometry') fig, ax = plt.subplots(1,1,figsize=(48,60)) ne.plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*params['vis_colors']['ne']), **params['type_style']['ne']) _plot_point_collection( ax=ax, geoms=df_community_nodes['geometry'], color=df_community_nodes['color_hex'].values.tolist(), markersize=df_community_nodes['s'].values.tolist() ) _plot_linestring_collection( ax=ax, geoms=df_community_edges['geometry'], color=df_community_edges['color_hex'].values.tolist(), linewidth=df_community_edges['s'].values.tolist() ) ax.set_aspect(1.5) #ax.set_position([0,0,1,1]) plt.savefig(os.path.join(os.getcwd(),'results','figures',f'flow_{carrier}.png')) return [] def compare_flow(params, ne, df_flow_bl, df_flow_cf, df_community_edges, df_community_nodes): # get carrier if 'COALMINE' in df_community_nodes['NODETYPE'].unique(): carrier='coal' carrier_supplytypes = ['COALMINE'] elif 'LNGTERMINAL' in df_community_nodes['NODETYPE'].unique(): carrier='gas' carrier_supplytypes = ['OILFIELD','OILWELL'] else: carrier='oil' carrier_supplytypes = ['OILFIELD','OILWELL'] logger = logging.getLogger(f'visualise flow: {carrier}') writer = logging.getLogger(f'writer_{carrier}') fh = logging.FileHandler(f'compare_{carrier}.log') fh.setLevel(logging.INFO) writer.addHandler(fh) logger.info('prepping DFs') df_community_nodes = df_community_nodes[~df_community_nodes['NODETYPE'].isin(['RAILWAY','PIPELINE','SHIPPINGROUTE'])] df_flow_bl = df_flow_bl.rename(columns={'SOURCE':'source','TARGET':'target'}) df_flow_bl = df_flow_bl.set_index(['source','target']) df_flow_cf = df_flow_cf.rename(columns={'SOURCE':'source','TARGET':'target'}) df_flow_cf = df_flow_cf.set_index(['source','target']) df_community_edges['source_type'] = df_community_edges['source'].str.split('_').str[0] df_community_edges['target_type'] = df_community_edges['target'].str.split('_').str[0] df_community_edges = df_community_edges.set_index(['source','target']) print ('edges') print (df_community_edges) print ('flow_bl') print(df_flow_bl) print ('flow_cf') print(df_flow_cf) df_community_edges = pd.merge(df_community_edges, df_flow_bl[['flow']], how='left', left_index=True, right_index=True).rename(columns={'flow':'bl_flow'}) df_community_edges = pd.merge(df_community_edges, df_flow_cf[['flow']], how='left', left_index=True, right_index=True).rename(columns={'flow':'cf_flow'}) logger.info('mapping geometries') df_community_edges['geometry'] = df_community_edges['geometry'].apply(wkt.loads) df_community_nodes['geometry'] = df_community_nodes['geometry'].apply(wkt.loads) logger.info('doing colors and weights') #df_colors = pd.DataFrame.from_dict({kk:"#{:02x}{:02x}{:02x}".format(*vv) for kk,vv in params['vis_colors'].items()}, orient='index').rename(columns={0:'hex'}) colormap = {kk:"#{:02x}{:02x}{:02x}".format(*vv) for kk,vv in params['vis_colors'].items()} #df_community_edges['color_key'] = 'FINALMILE' #for kk in ['RAILWAY','PIPELINE','SHIPPINGROUTE']: # df_community_edges.loc[((df_community_edges['source_type']==kk) | (df_community_edges['target_type']==kk)),'color_key'] = kk #df_community_edges['color_hex'] = df_community_edges['color_key'].map(colormap) df_community_nodes['color_hex'] = df_community_nodes['NODETYPE'].map(colormap) MIN_EDGE = 1 MAX_EDGE = 10 MIN_NODE = 1 MAX_NODE = 25 df_community_nodes = pd.merge(df_community_nodes, df_flow_bl.reset_index()[['target','flow']], how='left',left_on='NODE',right_on='target') # do demand and supply separately df_community_nodes['s'] = (np.log10(df_community_nodes['D']+1) - np.log10(df_community_nodes['D']+1).min())/(np.log10(df_community_nodes['D']+1).max() - np.log10(df_community_nodes['D']+1).min())*(MAX_NODE-MIN_NODE)+MIN_NODE df_community_nodes['s_flow'] = (np.log10(df_community_nodes['flow']+1) - np.log10(df_community_nodes['D']+1).min())/(np.log10(df_community_nodes['flow']+1).max() - np.log10(df_community_nodes['flow']+1).min())*(MAX_NODE-MIN_NODE)+MIN_NODE df_community_nodes.loc[df_community_nodes['NODETYPE'].isin(carrier_supplytypes),'s'] = df_community_nodes.loc[df_community_nodes['NODETYPE'].isin(carrier_supplytypes),'s_flow'] #df_community_edges['s'] = (np.log(df_community_edges['flow']+1) - np.log(df_community_edges['flow']+1).min())/(np.log(df_community_edges['flow']+1).max() - np.log(df_community_edges['flow']+1).min())*(MAX_EDGE-MIN_EDGE)+MIN_EDGE df_community_edges['s'] = (df_community_edges['bl_flow'] - df_community_edges['bl_flow'].min())/(df_community_edges['bl_flow'].max() - df_community_edges['bl_flow'].min())*(MAX_EDGE-MIN_EDGE)+MIN_EDGE print('new edges') print (df_community_edges.loc[(df_community_edges['cf_flow']>0) & (df_community_edges['bl_flow']==0)]) df_community_edges['difference'] = df_community_edges['bl_flow'] - df_community_edges['cf_flow'] df_community_edges['reduction'] = df_community_edges['difference']/df_community_edges['bl_flow'] cm = LinearSegmentedColormap.from_list('GrayRd', [(0,1,0),(.63,.63,.63),(1, 0, 0)], N=255) df_community_edges = df_community_edges[(df_community_edges['bl_flow']>0) | (df_community_edges['cf_flow'])>0] def apply_colmap(row): if row['bl_flow']>0: cm_val = (row['reduction']+1.)*128 # between 0 and 255 with 128 as neutral return '#{:02x}{:02x}{:02x}'.format(*[int(il*255) for il in cm(int(cm_val))[0:3]]) else: return '#{:02x}{:02x}{:02x}'.format(0,0,255) df_community_edges['color_hex'] = df_community_edges.apply(lambda row: apply_colmap(row), axis=1) # filter IDL -> just use euclidean length logger.info('remove idl edges') df_community_edges['len'] = df_community_edges['geometry'].apply(lambda el: el.length) df_community_edges = df_community_edges[df_community_edges['len']<=350] df_community_edges = df_community_edges.reset_index() # get top changes and add write them to file # want: top/bottom 10 reduced sources logger.info('writing differences to file') for idx, val in df_community_edges.loc[df_community_edges['source_type'].isin(carrier_supplytypes),['source','difference','bl_flow']].groupby('source').sum().sort_values('difference').iloc[:10].iterrows(): writer.info(f'idx:{idx}\t difference:{val["difference"]}\t bl_flow:{val["bl_flow"]}') for idx, val in df_community_edges.loc[df_community_edges['source_type'].isin(carrier_supplytypes),['source','difference','bl_flow']].groupby('source').sum().sort_values('difference').iloc[-10:].iterrows(): writer.info(f'idx:{idx}\t difference:{val["difference"]}\t bl_flow:{val["bl_flow"]}') # want: top/bottom 10 reduced transmission for idx, val in df_community_edges.loc[~df_community_edges['source_type'].isin(carrier_supplytypes),['source','target','difference', 'reduction']].sort_values('difference').iloc[:10].iterrows(): writer.info(f'src:{val["source"]}\t target:{val["target"]}\t difference:{val["difference"]}\t reduction: {val["reduction"]}') for idx, val in df_community_edges.loc[~df_community_edges['source_type'].isin(carrier_supplytypes),['source','target','difference','reduction']].sort_values('difference').iloc[-10:].iterrows(): writer.info(f'src:{val["source"]}\t target:{val["target"]}\t difference:{val["difference"]}\t reduction: {val["reduction"]}') #cast to gdf df_community_nodes = gpd.GeoDataFrame(df_community_nodes, geometry='geometry') df_community_edges = gpd.GeoDataFrame(df_community_edges, geometry='geometry') fig, ax = plt.subplots(1,1,figsize=(48,60)) ne.plot(ax=ax, color='#{:02x}{:02x}{:02x}'.format(*params['vis_colors']['ne']), **params['type_style']['ne']) _plot_point_collection( ax=ax, geoms=df_community_nodes['geometry'], color=df_community_nodes['color_hex'].values.tolist(), markersize=df_community_nodes['s'].values.tolist() ) _plot_linestring_collection( ax=ax, geoms=df_community_edges['geometry'], color=df_community_edges['color_hex'].values.tolist(), linewidth=df_community_edges['s'].values.tolist() ) ax.set_aspect(1.5) #ax.set_position([0,0,1,1]) plt.savefig(os.path.join(os.getcwd(),'results','figures',f'flow_sds_{carrier}.png')) return [] def node_iso2(iso2,ne,df_coal_nodes,df_oil_nodes,df_gas_nodes,df_raw_oilfields,df_raw_oilwells): logger=logging.getLogger('do iso2s') logger.info('Doing oilfields and oilwells which might be offshore') map_dict = iso2[['country','iso2']].set_index('country').to_dict()['iso2'] oilwells_map = {'congo':'CG',"cote d''ivoire":'CI','iran (islamic republic of)':'IR'} oilfields_map = { 'venezuela, bolivarian republic of':'VE', 'syrian arab republic':'SY', 'democratic republic of the congo':'CD', 'republic of korea':'KR', "democratic people''s republic of korea":'KP', 'united republic of tanzania':'TZ', 'republic of korea':'KR', 'guinea bissau':'GW', 'bolivia (plurinational state of)':'BO', 'republic of moldova':'MD', 'the former yugoslav republic of macedonia':'MK', "lao people''s democratic republic":'LA', } map_dict.update(oilwells_map) map_dict.update(oilfields_map) df_raw_oilfields['md_country'] = df_raw_oilfields['md_country'].str.lower() df_raw_oilwells['md_country'] = df_raw_oilwells['md_country'].str.lower() iso2['country'] = iso2['country'].str.lower() df_raw_oilfields = pd.merge(df_raw_oilfields, iso2[['country','iso2']], how='left',left_on='md_country',right_on='country') #df_raw_oilfields.loc[df_raw_oilfields['iso2'].isna(),'iso2'] = df_raw_oilfields.loc[df_raw_oilfields['iso2'].isna(),'md_country'].str.split(';').apply(lambda ll: ','.join([map_dict[el.strip()] if el.strip() in map_dict.keys() else el for el in ll])) df_raw_oilwells =
pd.merge(df_raw_oilwells, iso2[['country','iso2']], how='left',left_on='md_country',right_on='country')
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- """Description""" import logging import flask import numpy as np import pandas as pd logger = logging.getLogger(__name__) serve_app = flask.Flask(__name__) @serve_app.route("/ping", methods=["GET"]) def ping(): return flask.Response(response="\n", status=status, mimetype="application/json") @serve_app.route("/invocations", methods=["POST"]) def invocations(): payload if flask.request.content_type == "text/csv": data = flask.request.data.decode("utf-8") s = io.StringIO(data) data =
pd.read_csv(s, header=None)
pandas.read_csv
import pandas as pd import seaborn as sns from etherscan import Etherscan import streamlit as st import matplotlib import matplotlib.pyplot as plt matplotlib.style.use('ggplot') def without_hue( plot, feature, title, criteria, x_axis_rotation=0, _format=None): sns.set(rc={'figure.figsize':(11.7,8.27)}) plot.set_xticklabels(plot.get_xticklabels(), rotation=x_axis_rotation) for p in plot.patches: if p.get_height() > 0.01: if _format: final_p = "{:.2f}".format(p.get_height()) else: final_p = p.get_height() x = p.get_x() + p.get_width() / 2 - 0.1 y = p.get_y() + p.get_height() + 0.50 plot.annotate(final_p, (x, y), size = 12) plot.set_title(title, fontsize=20, weight='bold') plot.set_xlabel(criteria, fontsize=14) plot.set_ylabel("Events Total", fontsize=14) plt.show() def fmt(x): print(x) total = len(values) return '{:.4f}%\n({:.0f})'.format(x, total*x/100) st.title('Piano king NFT Dashboards') st.subheader('Distribution of events over 1,000 Piano King NFTs') path_raw_data = "resources/output/pianoking_data.csv" path_transac_history = "resources/output/transac_history_by_PK_NFT_ID.csv" st.set_option('deprecation.showPyplotGlobalUse', False) df = pd.read_csv(path_raw_data , sep=',') # Import du csv en ométtant la première colonne d'index df_transac_hist =
pd.read_csv(path_transac_history, index_col=[0])
pandas.read_csv
# from warnings import warn # from faps.alogsumexp import alogsumexp from operator import pos import numpy as np import pandas as pd import faps as fp from glob import glob from tqdm import tqdm import os def import_mcmc(folder, burnin): """ Import files with MCMC output for A. majus mating parameters Glob a set of files with the output of amajusmating.mating.run_MCMC(), import each and remove the first rows of each as burn-in, then concatenate into a single dataframe. Parameters ========== folder: str Path to a directory containing one or more files from amajusmating.mating.run_MCMC ending with the suffix `.out` burnin: int Integer number of rows to remove from each chain as burnin Returns ======= A single dataframe concatenating data from the imported chains. Since we are interested in dispersal parameters, the `mixture` parameter is set to 1 for all rows. """ # Import MCMC chains chains = glob(folder+"/*out") posterior = {} for chain in chains: k = os.path.basename(chain) posterior[k] = pd.read_csv(chain, sep="\t").loc[lambda x: x.iter >= burnin] posterior = pd.concat(posterior).reset_index() # For this script we are only interested in the generalised-Gaussian part # of the dispersal kernel, so set `mixture` to 1 for all rows. posterior['mixture'] = 1 return posterior def simulate_mating(data, model, ndraws = 1000, max_distance = np.inf): """ Posterior samples of mating events. Draw a sample of mating events from the posterior distributions of sibship stuctures and paternity, given observed genotype and dispersal data. Also draw a sample of mating events based on dispersal only, to simulate what would be 'expected' if mating was random, and based only on distance. Finally, merge the two datasets with GPS and phenotype data. Parameters ========== data: `faps_data` class object Data about the population. model: dict Dictionary of starting model parameters. Keys should be a subset of ['missing', 'shape', 'scale', 'mixture', 'assortment'] and values floats giving initial values for those parameters, within appropriate boundaries. ndraws: int, optional Number of Monte Carlo draws to perform for sibship clustering. Defaults to 1000. max_distance: float, int Maximum distance from the mother a candidate may be. Candidates further than this value will have their posterior probability of paternity set to zero. This is equivalent to setting a threshold prior on distance. Returns ======= A dictionary of two dataframes showing the output of faps.posterior_mating() for observed data ('obs'; based on genotypic and covariates) and expected data ('exp'; based on covariates only). This includes columns for flower colours and GPS. """ # Update data with parameter values data.update_covariate_probs(model = model, max_distance = max_distance) # We need to set dispersal probabilities for mothers to zero # Otherwise the mother would be drawn many times when drawing from the dispersal # kernel only, and cause many invalid partitions. jx = [np.where(x == np.array(data.candidates))[0][0] for x in data.mothers] for i,j in zip(range(len(data.paternity)), jx): data.covariates['dispersal'][i, j] = -np.inf # Cluster into sibships, if not already done. data.sibship_clustering(ndraws = 1000, use_covariates = True) # Draw a posterior data set for observed data, and expected under dispersal only obs = fp.posterior_mating(data.sibships, covariates_only=False, ndraws=ndraws) exp = fp.posterior_mating(data.sibships, covariates_only=True, ndraws=ndraws) # Add data on distance between mother and father and flower colours. # Turn distance matrix into a data frame so we can use .loc on it. distance_df = pd.DataFrame({ 'mother' : np.repeat(list(data.mothers), data.n_candidates), 'father' : np.tile(data.candidates, len(data.mothers)), 'distance' : data.distances.flatten() }) # Merge siring events with distances and phenotypes. # Observed mating events obs = obs.\ merge(data.gps['Easting'], how='left', left_on='mother', right_index=True) .\ merge(distance_df, how="left", on=['mother', 'father']).\ merge(data.flower_colours, how="left", left_on="mother", right_index=True).\ merge(data.flower_colours, how="left", left_on="father", right_index=True, suffixes = ['_mother', "_father"]) # Random mating exp = exp.\ merge(data.gps['Easting'], how='left', left_on='mother', right_index=True).\ merge(distance_df, how="left", on=['mother', 'father']).\ merge(data.flower_colours, how="left", left_on="mother", right_index=True).\ merge(data.flower_colours, how="left", left_on="father", right_index=True, suffixes = ['_mother', "_father"]) return { 'obs' : obs, 'exp' : exp } def summarise_families(obs): """ Summarise mating events and dispersal Parameters ========== obs: pandas.DataFrame Observed mating events given dispersal and genetic data. This should be the output from `amajus.mating.simulate_mating()`. Returns ======= A list giving: * Number of mating events, excluding those with missing fathers. * Number of mating events with unsampled candidates. Note that if several sires for a half-sib array are missing FAPS lumps these together, so the actual number could be higher. * Estimated number of 'orphans'; offspring with an unsampled father. * Number of half-sibships for which all fathers were unsampled. * Median pollen dispersal distance * Number of dispersal events > 100m * Number of dispersal events > 500m * Number of dispersal events > 1000m """ return [ np.sum(obs['father'] != "missing"), np.sum(obs['father'] == "missing"), obs.loc[obs['father'] == "missing"]['offspring_sired'].sum(), (obs.loc[obs['father'] == "missing"]['frequency'] == 1).sum(), np.median(obs['distance'].dropna()), np.sum(obs['distance'] > 100), np.sum(obs['distance'] > 500), np.sum(obs['distance'] > 1000), ] def relative_fitness(obs, exp, column, geno, boundaries = None): """ Relative fitness of genotypes across the whole hybrid zone, and in individual spatial bins. Relative fitness for the whole population is the absolute number of mating events sired by males of each genotype, divided by the maximum of those counts. This is run for the whole population. In addition, if a list of Easting positions is given, the mothers are divided into spatial bins, and relative fitnesses of sires is calculated separately for each bin. This is done separately for observed and expected datasets Parameters ========== obs: pandas.DataFrame Observed mating events given dispersal and genetic data. This should be the output from `amajus.mating.simulate_mating()`. exp: pandas.DataFrame Expected mating events under dispersal only. This should be the output from `amajus.mating.simulate_mating()`. column: str Column name shared by data.mating['obs'] and data.mating['exp'] giving genotypes for which relative fitnesses should be estimated geno: list List of possible genotypes to identify in `column`. boundaries: list or int, optional List giving Easting positions to divide mothers into spatial bins. This is passed to the `bins` argument of `pandas.cut()`; see that function for details. Returns ======= A dataframe giving relative fitnesses for each genotype overall and in each spatial bin in observed and expected datasets. Columns indicate: - 'dataset': Observed vs expected datasets - 'bin': Label for the spatial bin. 'all' indicates rows for the whole hybrid zone - 'start': Western-most boundary of the bin - 'stop' Eastern-most boundary of the bin - 'n_sires': Number of sires - Subsequent columns : relative fitnesses of each genotype """ # Fathers with missing data mess up relative fitnesses # Pull out only those rows with phenotype data obs = obs.query(column + ' in ' + str(geno)) exp = exp.query(column + ' in ' + str(geno)) # Divide mothers into spatial bins if boundaries: # Create a Series with an integer label for each bin. I used integers # instead of the standard output of pd.cut because it was easier to loop over. region_obs = pd.cut(obs['Easting'], bins = boundaries, labels = np.arange(1, len(boundaries))) region_exp = pd.cut(exp['Easting'], bins = boundaries, labels = np.arange(1, len(boundaries))) # Empty list to store relative fitnesses rel_fitness = [] # Absolute fitness each genotype across the whole hybrid zone. # Sum mating events from sires of each genotype abs_obs = [(obs[column] == g).sum() for g in geno] abs_exp = [(exp[column] == g).sum() for g in geno] # Relative fitness of each genotype rel_obs = abs_obs / np.max(abs_obs) rel_exp = abs_exp / np.max(abs_exp) # Send to rel_fitness. NaNs are for bin start and stop, which aren't relevant here rel_fitness = rel_fitness + [['obs', 'all', np.nan, np.nan, np.sum(abs_obs)] + list(rel_obs)] rel_fitness = rel_fitness + [['exp', 'all', np.nan, np.nan, np.sum(abs_exp)] + list(rel_exp)] if boundaries: # Relative fitnesses in each spatial bin. for r in range(1, len(boundaries)): # Absolute fitness each genotype (= sum mating events from sires of each genotype) abs_obs = [(obs.loc[region_obs == r][column] == g).sum() for g in geno] abs_exp = [(exp.loc[region_exp == r][column] == g).sum() for g in geno] # Relative fitness of each genotype rel_obs = abs_obs / np.max(abs_obs) rel_exp = abs_exp / np.max(abs_exp) # Send to rel_fitness, along with bin label, and start and stop for each bin rel_fitness = rel_fitness + [['obs', r, boundaries[r-1], boundaries[r], np.sum(abs_obs)] + list(rel_obs)] rel_fitness = rel_fitness + [['exp', r, boundaries[r-1], boundaries[r], np.sum(abs_exp)] + list(rel_exp)] return pd.DataFrame(rel_fitness, columns=['dataset', 'bin', 'start', 'stop', 'n_sires'] + geno) def assortative_mating(obs, exp, col_x, col_y, boundaries = None): """ Assortative mating between genotypes across the hybrid zone, and within spatial bins. Assortment probabilities for the whole population are calculated as the mean number of mating events between individuals of the same genotype. This is run for the whole population. In addition, if a list of Easting positions is given, the mothers are divided into spatial bins, and assortment probabilities are calculated separately for each bin. This is done separately for observed and expected datasets. Parameters ========== obs: pandas.DataFrame Observed mating events given dispersal and genetic data. This should be the output from `amajus.mating.simulate_mating()`. exp: pandas.DataFrame Expected mating events under dispersal only. This should be the output from `amajus.mating.simulate_mating()`. col_x, col_y: str The pair of column names shared by data.mating['obs'] and data.mating['exp'] giving genotypes for which assortment probabilities should be estimated. boundaries: list or int, optional List giving Easting positions to divide mothers into spatial bins. This is passed to the `bins` argument of `pandas.cut()`; see that function for details. Returns ======= A dataframe giving relative fitnesses for each genotype overall and in each spatial bin in observed and expected datasets. Columns indicate: - 'dataset': Observed vs expected datasets - 'bin': Label for the spatial bin. 'all' indicates rows for the whole hybrid zone - 'start': Western-most boundary of the bin - 'stop' Eastern-most boundary of the bin - 'n_sires': Number of sires - 'assortment : Mean mating events between individuals of the same genotype. """ # Remove rows with missing data for one or both parents obs = obs.copy().loc[obs[col_x].notna() & obs[col_y].notna()] exp = exp.copy().loc[exp[col_x].notna() & exp[col_y].notna()] # Create a column stating whether genotypes match or not obs['match'] = obs[col_x] == obs[col_y] exp['match'] = exp[col_x] == exp[col_y] # Divide mothers into spatial bins if boundaries: # Create a Series with an integer label for each bin. I used integers # instead of the standard output of pd.cut because it was easier to loop # over. region_obs = pd.cut(obs['Easting'], bins = boundaries, labels = np.arange(1, len(boundaries))) region_exp = pd.cut(exp['Easting'], bins = boundaries, labels = np.arange(1, len(boundaries))) # Empty list to store assortment probabilities assortment = [] # Assortative mating for the whole hybrid zone ass_obs = obs['match'].mean() ass_exp = exp['match'].mean() # Send to assortment. NaNs are for bin start and stop, which aren't relevant here assortment = assortment + [['obs', 'all', np.nan, np.nan, obs.shape[0], ass_obs]] assortment = assortment + [['exp', 'all', np.nan, np.nan, exp.shape[0], ass_exp]] # Assortative mating in each spatial bin. if boundaries: for r in range(1, len(boundaries)): # Assortment probabilities in each dataset ass_obs = obs.loc[region_obs == r]['match'].mean() ass_exp = exp.loc[region_exp == r]['match'].mean() # Send to assortment, along with bin label, start and stop, and sample sizes for each bin assortment = assortment + [['obs', r, boundaries[r-1], boundaries[r], (region_obs == r).sum(), ass_obs]] assortment = assortment + [['exp', r, boundaries[r-1], boundaries[r], (region_exp == r).sum(), ass_exp]] return pd.DataFrame( assortment, columns=['dataset', 'bin', 'start', 'stop', 'n_sires', 'assortment'] ) def mating_over_chains(data, folder, boundaries, burnin = 500, ndraws = 1000): """ Summarise number of mating events, relative fitness and assortment for each iteration of a set of MCMC files. Parameters ========== data: `faps_data` class object Data about the population. folder: str Path to a directory containing one or more files from amajusmating.mating.run_MCMC ending with the suffix `.out` boundaries: list or int, optional List giving Easting positions to divide mothers into spatial bins. This is passed to the `bins` argument of `pandas.cut()`; see that function for details. burnin: int Integer number of rows to remove from each chain as burnin ndraws: int, optional Number of Monte Carlo draws to perform for sibship clustering. Defaults to 1000. Returns ======= Saves CSV files for the outputs of * mating.summarise_mating() * mating.relative_fitness() for phenotype data (full red, hybrid, yellow), plus Rosea and Sulfurea genotypes * assortment() for phenotypes (full red, hybrid, yellow) Also saves all mating events as `sires.csv` """ # Import MCMC results mcmc = import_mcmc(folder, burnin = burnin) # Empty dictionaries to store the output of each iteration sires = {} summarise = {} phenotype = {} rosea = {} sulf = {} assortment = {} # Loop over steps in the MCMC chain and get siring events for each. for i in tqdm(mcmc.index): model = mcmc.loc[i] # Simulate mating events, and include GPS and phentoype information about mother and sire data.mating = simulate_mating(data, model, ndraws=ndraws) # Full list of mothers, fathers and distances between them. sires[i] = data.mating['obs'][['mother','father','distance']] # Summarise mating events and missing fathers. summarise[i] = summarise_families(data.mating['obs']) # Relative fitness of full red, hybrid and yellow plants phenotype[i] = relative_fitness( obs = data.mating['obs'], exp = data.mating['exp'], column = "simple_colour_father", geno = ["FR", "hybrid", "Ye"], boundaries = boundaries ) # Relative fitness of Rosea genotypes rosea[i] = relative_fitness( obs = data.mating['obs'], exp = data.mating['exp'], column = "rosea_father", geno = ["R/R", "R/r", "r/r"], boundaries = boundaries ) # Relative fitness of Sulfurea genotypes sulf[i] = relative_fitness( obs = data.mating['obs'], exp = data.mating['exp'], column = "sulfurea_father", geno = ["S/+", "s/s"], boundaries = boundaries ) # Assortative mating. assortment[i] = assortative_mating( obs = data.mating['obs'], exp = data.mating['exp'], col_x = 'simple_colour_mother', col_y = 'simple_colour_father', boundaries = boundaries ) # Concatenate output for each iteration into single dataframes sires = pd.concat(sires) phenotype = pd.concat(phenotype) rosea = pd.concat(rosea) sulf = pd.concat(sulf) assortment = pd.concat(assortment) # Concatenate `summarise`, and also add column names. summarise =
pd.DataFrame(summarise)
pandas.DataFrame
import pandas as pd import numpy as np from prettytable import PrettyTable def delete_na(dataframes, dtypes): ''' Objective: - Delete all NA's from the dataframes passed Input: - dataframes : String of the tables and their selected columns - dtypes : Numerical types Output: - Dataframe with the deleted values. ''' for i in range(len(dataframes)): dataframe_numerical = dataframes[i].select_dtypes(include=dtypes) total_rows = dataframe_numerical.shape[0] # Delete rows that contain na's dataframe_numerical = dataframe_numerical.dropna() dataframes[i] = dataframe_numerical return dataframes def analyse_categorical_variables(table_names, variable_names, dataframes): ''' Objective: - Analyse the categorical variables to be encoded Input: - Table_names : String of the names of the tables - Variable_names : String of the categorical variables corresponding to the table - Dataframes : String of the tables and their selected columns Output: - Table with the categorical variables levels ["Table name", "Variable name", "Number of levels", "Types"] ''' table = PrettyTable() table.field_names = ["Table name", "Variable name", "Number of levels", "Types"] for i in range(len(table_names)): for j in range(len(variable_names[i])): table.add_row([table_names[i], variable_names[i][j], len(dataframes[i][variable_names[i][j]].unique()), dataframes[i][variable_names[i][j]].unique()]) print(table) def one_hot_encoding(table, variable): ''' Objective: - Encode the categorical variable passed from the table to one-hot encoding. If the categorical variable only has one level, the column is deleted. Input: - Table : String of the table name - Variable : String of the categorical variable corresponding to the table Output: For categorical variables with more than one level: - Table with the categorical variable encoded to one-hot ["Table name", "Variable name", "Number of levels", "Types"] For categorical variables with less than one level: -String indicating so. ''' # The column contain more than one level. if len(table[variable].unique()) > 1: variable_dummies =
pd.get_dummies(table[variable])
pandas.get_dummies
import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import librosa import keras from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Embedding from keras.layers import LSTM from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.layers import Input, Flatten, Dropout, Activation from keras.layers import Conv1D, MaxPooling1D, AveragePooling1D from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.callbacks import ModelCheckpoint from keras import regularizers from keras.utils import np_utils from keras.optimizers import Adam import pandas as pd import numpy as np from sklearn.preprocessing import LabelBinarizer, normalize from sklearn.metrics import confusion_matrix from sklearn.utils import shuffle from models.conv1d import Conv1DNN import argparse import pickle import os ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="path to input dataset (i.e., directory of sound files)") ap.add_argument("-m", "--model", default="nn.model", help="path to output model") ap.add_argument("-l", "--labelbin", default="lb.pickle", help="path to output label binarizer") args = vars(ap.parse_args()) KERNEL_SIZE = 12 BATCH_SIZE = 32 EPOCHS = 500 LR = 1.e-6 DATASET = args['dataset'] OPTIMIZER = 'ADAM' SOUND_PICKLE = 'sound_data.pickle' EMOTION_LABEL_PICKLE = 'emotion_labels.pickle' fileList = os.listdir(args['dataset']) if (not os.path.isfile(SOUND_PICKLE)) or (not os.path.isfile(EMOTION_LABEL_PICKLE)): feeling_list=[] for item in fileList: if item[6:8]=='03' and int(item[18:20])%2==0 or (item[:3]=='gio' and item[4]=='f'): feeling_list.append('female_happy') elif (item[6:8]=='03' and int(item[18:20])%2==1) or item[:1]=='h' or (item[:3]=='gio' and item[4]=='m'): feeling_list.append('male_happy') elif item[6:8]=='04' and int(item[18:20])%2==0 or (item[:3]=='tri' and item[4]=='f'): feeling_list.append('female_sad') elif (item[6:8]=='04' and int(item[18:20])%2==1) or item[:2]=='sa' or (item[:3]=='tri' and item[4]=='m'): feeling_list.append('male_sad') elif (item[6:8]=='05' and int(item[18:20])%2==0) or (item[:3]=='rab' and item[4]=='f'): feeling_list.append('female_angry') elif (item[6:8]=='05' and int(item[18:20])%2==1) or item[:1]=='a' or (item[:3]=='rab' and item[4]=='m'): feeling_list.append('male_angry') elif (item[6:8]=='06' and int(item[18:20])%2==0) or (item[:3]=='pau' and item[4]=='f'): feeling_list.append('female_fearful') elif (item[6:8]=='06' and int(item[18:20])%2==1) or item[:1]=='f' or (item[:3]=='pau' and item[4]=='m'): feeling_list.append('male_fearful') elif ((item[6:8]=='02' or item[6:8]=='01') and int(item[18:20])%2==1) or item[:1]=='n' or (item[:3]=='neu' and item[4]=='m'): feeling_list.append('male_neutral') elif ((item[6:8]=='02' or item[6:8]=='01') and int(item[18:20])%2==0) or (item[:3]=='neu' and item[4]=='f'): feeling_list.append('female_neutral') elif (item[6:8]=='08' and int(item[18:20])%2==1) or item[:2] == 'su' or (item[:3]=='sor' and item[4]=='m'): feeling_list.append('male_surprised') elif (item[6:8]=='08' and int(item[18:20])%2==0) or (item[:3]=='sor' and item[4]=='f'): feeling_list.append('female_surprised') elif item[:1] == 'd' or (item[:3]=='dis' and item[4]=='m') or (item[6:8]=='07' and int(item[18:20])%2==1): feeling_list.append('male_disgust') elif (item[:3]=='dis' and item[4]=='f') or (item[6:8]=='07' and int(item[18:20])%2==0): feeling_list.append('female_disgust') labels = pd.DataFrame(feeling_list) labels.to_pickle(EMOTION_LABEL_PICKLE) soundData = pd.DataFrame(columns=['feature']) bookmark=0 for index,y in enumerate(fileList): X, sample_rate = librosa.load(args['dataset'] + '/' +y, res_type='kaiser_fast',sr=22050*2, duration=3.5) sample_rate = np.array(sample_rate) mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0) feature = mfccs normalized = normalize([feature], norm='l1') soundData.loc[bookmark] = [normalized[0]] bookmark=bookmark+1 soundData.to_pickle(SOUND_PICKLE) else: soundData = pd.read_pickle(SOUND_PICKLE) labels =
pd.read_pickle(EMOTION_LABEL_PICKLE)
pandas.read_pickle
""" The BIGMACC script. """ import os import pandas as pd import numpy as np import logging import xarray as xr import zarr from itertools import repeat import time import cea.utilities.parallel logging.getLogger('numba').setLevel(logging.WARNING) import cea.config import cea.utilities import cea.inputlocator import cea.demand.demand_main import cea.resources.radiation_daysim.radiation_main import cea.bigmacc.bigmacc_rules import cea.bigmacc.wesbrook_DH_single import cea.bigmacc.wesbrook_DH_multi import cea.utilities.dbf import cea.datamanagement.archetypes_mapper import cea.datamanagement.data_initializer import cea.analysis.costs.system_costs import cea.analysis.lca.main import cea.bigmacc.bigmacc_util as util __author__ = "<NAME>" __copyright__ = "" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "" __email__ = "" __status__ = "" def generate_building_list(config): locator = cea.inputlocator.InputLocator(config.scenario) data = pd.read_csv(locator.get_total_demand()) return np.array(data['Name']) def hourly_xr_get_hourly_results(config, bldg): locator = cea.inputlocator.InputLocator(config.scenario) return pd.read_csv(locator.get_demand_results_file(bldg)) def hourly_xr_create_hourly_results_df(config): buildings = generate_building_list(config) interior_temp_dict = dict() pv_gen_dict = dict() operative_temp_dict = dict() district_dhw_dict = dict() district_heat_dict = dict() district_cool_dict = dict() electrical_aux_dict = dict() electrical_dhw_dict = dict() electrical_heat_dict = dict() electrical_cool_dict = dict() heatloss_rad_dict = dict() heatgain_solar_dict = dict() grid_dict = dict() electrical_appliances_dict = dict() electrical_ev_dict = dict() electrical_refrig_dict = dict() electrical_data_cool_dict = dict() electrical_ind_process_dict = dict() electrical_data_dict = dict() ng_dhw_dict = dict() ng_heat_dict = dict() heat_enduse_sys_dict = dict() heat_enduse_dict = dict() dhw_enduse_sys_dict = dict() dhw_enduse_dict = dict() cool_enduse_sys_dict = dict() cool_enduse_dict = dict() for bldg in buildings.tolist(): print(f' - Adding {bldg} to the dataarray.') data = hourly_xr_get_hourly_results(config, bldg) interior_temp_dict[bldg] = data['T_int_C'] # 0 pv_gen_dict[bldg] = data['PV_kWh'] # 1 operative_temp_dict[bldg] = data['theta_o_C'] # 2 district_dhw_dict[bldg] = data['DH_ww_kWh'] # 3 district_heat_dict[bldg] = data['DH_hs_kWh'] # 4 district_cool_dict[bldg] = data['DC_cs_kWh'] # 5 electrical_aux_dict[bldg] = data['Eaux_kWh'] # 6 electrical_dhw_dict[bldg] = data['E_ww_kWh'] # 7 electrical_heat_dict[bldg] = data['E_hs_kWh'] # 8 electrical_cool_dict[bldg] = data['E_cs_kWh'] # 9 heatloss_rad_dict[bldg] = data['I_rad_kWh'] # 10 heatgain_solar_dict[bldg] = data['I_sol_kWh'] # 11 grid_dict[bldg] = data['GRID_kWh'] # 12 electrical_appliances_dict[bldg] = data['Eal_kWh'] # 13 electrical_ev_dict[bldg] = data['Ev_kWh'] # 14 electrical_refrig_dict[bldg] = data['E_cre_kWh'] # 15 electrical_data_cool_dict[bldg] = data['E_cdata_kWh'] # 16 electrical_ind_process_dict[bldg] = data['Epro_kWh'] # 17 electrical_data_dict[bldg] = data['Edata_kWh'] # 18 ng_dhw_dict[bldg] = data['NG_ww_kWh'] # 19 ng_heat_dict[bldg] = data['NG_hs_kWh'] # 20 heat_enduse_sys_dict[bldg] = data['Qhs_sys_kWh'] # 21 heat_enduse_dict[bldg] = data['Qhs_kWh'] # 22 dhw_enduse_sys_dict[bldg] = data['Qww_sys_kWh'] # 23 dhw_enduse_dict[bldg] = data['Qww_kWh'] # 24 cool_enduse_sys_dict[bldg] = data['Qcs_sys_kWh'] # 25 cool_enduse_dict[bldg] = data['Qcs_kWh'] # 26 return [interior_temp_dict, pv_gen_dict, operative_temp_dict, district_dhw_dict, district_heat_dict, district_cool_dict, electrical_aux_dict, electrical_dhw_dict, electrical_heat_dict, electrical_cool_dict, heatloss_rad_dict, heatgain_solar_dict, grid_dict, electrical_appliances_dict, electrical_ev_dict, electrical_refrig_dict, electrical_data_cool_dict, electrical_ind_process_dict, electrical_data_dict, ng_dhw_dict, ng_heat_dict, heat_enduse_sys_dict, heat_enduse_dict, dhw_enduse_sys_dict, dhw_enduse_dict, cool_enduse_sys_dict, cool_enduse_dict] def hourly_xr_get_annual_results(config): locator = cea.inputlocator.InputLocator(config.scenario) embodied_carbon_path = locator.get_lca_embodied() operational_carbon_path = locator.get_lca_operation() building_tac_path = locator.get_building_tac_file() supply_syst_path = locator.get_costs_operation_file() emb_carbon = pd.read_csv(embodied_carbon_path)['GHG_sys_embodied_tonCO2'].sum() op_carbon_district = pd.read_csv(operational_carbon_path)['GHG_sys_district_scale_tonCO2'].sum() op_carbon_building = pd.read_csv(operational_carbon_path)['GHG_sys_building_scale_tonCO2'].sum() build_costs_opex = pd.read_csv(building_tac_path)['opex_building_systems'].sum() build_costs_capex = pd.read_csv(building_tac_path)['capex_building_systems'].sum() supply_costs_opex = pd.read_csv(supply_syst_path)['Opex_sys_USD'].sum() supply_costs_capex = pd.read_csv(supply_syst_path)['Capex_total_sys_USD'].sum() return [emb_carbon, op_carbon_district, op_carbon_building, build_costs_opex, build_costs_capex, supply_costs_opex, supply_costs_capex] def hourly_xr_create_hourly_dataset(config): scenario = config.general.parent strategy = config.bigmacc.key time_arr = pd.date_range("{}-01-01".format(scenario.split('_')[1]), periods=8760, freq="h") data = hourly_xr_create_hourly_results_df(config) annual_results = hourly_xr_get_annual_results(config) print(' - Creating dataset.') d = xr.Dataset( data_vars=dict( interior_temp_C=(["times", "buildings"], pd.DataFrame.from_dict(data[0]).to_numpy()), pv_generated_kwh=(["times", "buildings"],
pd.DataFrame.from_dict(data[1])
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from constants import * from datetime import datetime import lightgbm as lgb import numpy as np from sklearn.model_selection import KFold import pandas as pd import utils import os import ndcg_tools import math import gc import sys seed = SEED cur_stage = CUR_STAGE version = datetime.now().strftime("%m%d%H%M%S") print('Version: ', version) weights = [6.5,1] print('Now using weight: ', weights) LR = '0.005' load_model = "" if len(sys.argv)>0: LR = sys.argv[1] load_model = sys.argv[2] print('LR Status: ', LR, ' load_model: ', load_model) def modeling(train_X, train_Y, test_X, test_Y, categoricals, mode, OPT_ROUNDS=600, weight=None): EARLY_STOP = 300 OPT_ROUNDS = OPT_ROUNDS MAX_ROUNDS = 10000 params = { 'boosting': 'gbdt', 'metric' : 'binary_logloss', #'metric' : 'auc', 'objective': 'binary', 'learning_rate': float(LR), 'max_depth': -1, 'min_child_samples': 20, 'max_bin': 255, 'subsample': 0.85, 'subsample_freq': 10, 'colsample_bytree': 0.8, 'min_child_weight': 0.001, 'subsample_for_bin': 200000, 'min_split_gain': 0, 'reg_alpha': 0, 'reg_lambda': 0, 'num_leaves':63, 'seed': seed, 'nthread': 16, 'scale_pos_weight': 1.5 #'is_unbalance': True, } print(f'Now Version {version}') if mode == 'valid': print('Start train and validate...') print('feature number:', len(train_X.columns)) feat_cols = list(train_X.columns) dtrain = lgb.Dataset(data=train_X, label=train_Y, feature_name=feat_cols,weight=weight) dvalid = lgb.Dataset(data=test_X, label=test_Y, feature_name=feat_cols) model = lgb.train(params, dtrain, categorical_feature=categoricals, num_boost_round=MAX_ROUNDS, early_stopping_rounds=EARLY_STOP, verbose_eval=50, valid_sets=[dtrain, dvalid], valid_names=['train', 'valid'] ) importances = pd.DataFrame({'features':model.feature_name(), 'importances':model.feature_importance()}) importances.sort_values('importances',ascending=False,inplace=True) importances.to_csv( (feat_imp_dir+'{}_imp.csv').format(version), index=False ) return model else: print('Start training... Please set OPT-ROUNDS.') feat_cols = list(train_X.columns) dtrain = lgb.Dataset(data=train_X, label=train_Y, feature_name=feat_cols,weight=weight) print('feature number:', len(train_X.columns)) print('feature :', train_X.columns) model = lgb.train(params, dtrain, categorical_feature=categoricals, num_boost_round=OPT_ROUNDS, verbose_eval=50, valid_sets=[dtrain], valid_names='train' ) importances = pd.DataFrame({'features':model.feature_name(), 'importances':model.feature_importance()}) importances.sort_values('importances',ascending=False,inplace=True) importances.to_csv( (feat_imp_dir+'{}_imp.csv').format(version), index=False ) model.save_model( lgb_model_dir+'{}.model'.format(version) ) return model def predict(test_X, model): print('Start Predict ...') print('Num of features: ', len(test_X.columns)) print(test_X.columns) block_len = len(test_X)//block_num predicts = [] for block_id in range(block_num): l = block_id * block_len r = (block_id+1) * block_len if block_id == block_num - 1: predict = model.predict( test_X.iloc[l:], num_iteration=model.best_iteration) else: predict = model.predict( test_X.iloc[l:r], num_iteration=model.best_iteration) predicts.append(predict) predict = np.concatenate( predicts ) return predict def get_scores(ans=None,shift=0.0,bottom=0.25,after_deal=True): phase_item_degree = utils.load_pickle(phase_full_item_degree_path.format(cur_stage)) df_valid_stage = utils.load_pickle(all_valid_stage_data_path.format(cur_stage)) df_valid = utils.load_pickle(all_valid_stage_data_path.format(cur_stage)) phase2valid_item_degree = {} phase2median = {} for sta in range(cur_stage+1): cur_df_valid = df_valid[df_valid['stage']==sta] items = cur_df_valid['item_id'].values item_degree = phase_item_degree[sta] list_item_degress = [] for item_id in items: list_item_degress.append(item_degree[item_id]) list_item_degress.sort() median_item_degree = list_item_degress[len(list_item_degress) // 2] phase2median[sta] = median_item_degree for item in items: phase2valid_item_degree[(sta,item)] = item_degree[item] old = False if after_deal: ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() if old: user_item_label = ans[ ['user','item','label'] ].values user2stage = df_valid_stage[ ['user_id','stage'] ] user2stage['user'] = user2stage['user_id'] user2stage = user2stage.drop('user_id', axis=1) ans = pd.merge( ans, user2stage, how='left', on='user' ) sta_list = [] item_list = [] degree_list = [] for sta in range(cur_stage+1): item_degrees = phase_item_degree[sta] for item in item_degrees.keys(): sta_list.append(sta) item_list.append(item) degree_list.append( item_degrees[item] ) df_degree = pd.DataFrame( {'stage':sta_list, 'item':item_list, 'degree':degree_list} ) ans = pd.merge( ans, df_degree, how='left', on=['stage','item'] ) phase_median = ans.groupby('stage')['degree'].median().reset_index() phase_median['median_degree'] = phase_median['degree'] phase_median = phase_median.drop('degree', axis=1) ans = pd.merge(ans, phase_median, how='left', on ='stage') ans['is_rare'] = ans['degree'] <= (ans['median_degree']+shift) else: user2stage = df_valid_stage[ ['user_id','stage'] ] user2stage['user'] = user2stage['user_id'] user2stage = user2stage.drop('user_id', axis=1) ans = pd.merge( ans, user2stage, how='left', on='user' ) vals = ans[ ['item','stage'] ].values is_rare = [] for val in vals: is_rare.append( phase_item_degree[ val[1] ][ val[0] ] <= phase2median[ val[1] ] ) ans['is_rare'] = is_rare ans['is_rare'] = ans['is_rare'].astype('float') / bottom ans['is_rare'] = ans['is_rare']+1.0 ans['label'] = ans['label'] * ans['is_rare'] else: ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() ans['label'] = -ans['label'] ans = ans.sort_values( by=['user','label'] ) user2recall = ans.groupby('user')['item'].agg(list) user2pos = df_valid_stage[ ['user_id','item_id'] ].set_index('user_id') all_scores = [] all_pred_items = {} pickup = 500 for sta in range(cur_stage+1): predictions = [] item_degree = phase_item_degree[sta] now_users = df_valid_stage[ df_valid_stage['stage']==sta ]['user_id'].tolist() answers = [] for now_user in now_users: pos = user2pos.loc[now_user].values[0] pred = user2recall.loc[now_user] new_pred = [] for j in pred: if len(new_pred) < pickup: flag = 0 for k in new_pred: if j == k: flag = 1 break if flag==0: new_pred.append( j ) answers.append( ( pos, item_degree[ pos ] ) ) all_pred_items[now_user] = [] for pred in new_pred[:pickup]: all_pred_items[now_user].append( pred ) predictions.append(new_pred[:50]+[0]*(50-len(new_pred))) scores = ndcg_tools.evaluate_each_phase(predictions, answers, at=50) all_scores.append(scores) utils.dump_pickle(all_pred_items, rerank_path.format(pickup, mode)) for scores in all_scores: print(scores) print('all_scores_sum',np.array(all_scores).sum(axis=0)) print('7_9_all_scores_sum',np.array(all_scores[-3:]).sum(axis=0)) print('0_6_all_scores_sum',np.array(all_scores[0:7]).sum(axis=0)) return all_scores def get_result(ans=None,shift=0.0,bottom=0.7,after_deal=True): print(f'using bottom: {bottom}') phase_item_degree = utils.load_pickle(phase_full_item_degree_path.format(cur_stage)) df_test_stage = utils.load_pickle(online_all_test_data_path.format(cur_stage)) df_valid = utils.load_pickle(all_valid_stage_data_path.format(cur_stage)) phase2valid_item_degree = {} phase2median = {} for sta in range(cur_stage+1): cur_df_valid = df_valid[df_valid['stage']==sta] items = cur_df_valid['item_id'].values item_degree = phase_item_degree[sta] list_item_degress = [] for item_id in items: list_item_degress.append(item_degree[item_id]) list_item_degress.sort() median_item_degree = list_item_degress[len(list_item_degress) // 2] phase2median[sta] = median_item_degree for item in items: phase2valid_item_degree[(sta,item)] = item_degree[item] old = False if after_deal: ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() if old: user_item_label = ans[ ['user','item','label'] ].values user2stage = df_test_stage[ ['user_id','stage'] ] user2stage['user'] = user2stage['user_id'] user2stage = user2stage.drop('user_id', axis=1) ans = pd.merge( ans, user2stage, how='left', on='user' ) sta_list = [] item_list = [] degree_list = [] for sta in range(cur_stage+1): item_degrees = phase_item_degree[sta] for item in item_degrees.keys(): sta_list.append(sta) item_list.append(item) degree_list.append( item_degrees[item] ) df_degree = pd.DataFrame( {'stage':sta_list, 'item':item_list, 'degree':degree_list} ) ans = pd.merge( ans, df_degree, how='left', on=['stage','item'] ) phase_median = ans.groupby('stage')['degree'].median().reset_index() phase_median['median_degree'] = phase_median['degree'] phase_median = phase_median.drop('degree', axis=1) ans = pd.merge(ans, phase_median, how='left', on ='stage') ans['is_rare'] = ans['degree'] <= (ans['median_degree']+shift) else: user2stage = df_test_stage[ ['user_id','stage'] ] user2stage['user'] = user2stage['user_id'] user2stage = user2stage.drop('user_id', axis=1) ans = pd.merge( ans, user2stage, how='left', on='user' ) vals = ans[ ['item','stage'] ].values is_rare = [] for val in vals: is_rare.append( phase_item_degree[ val[1] ][ val[0] ] <= phase2median[ val[1] ] ) ans['is_rare'] = is_rare ans['is_rare'] = ans['is_rare'].astype('float') / bottom ans['is_rare'] = ans['is_rare']+1.0 ans['label'] = ans['label'] * ans['is_rare'] else: ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() ans['label'] = -ans['label'] ans = ans.sort_values( by=['user','label'] ) user2recall = ans.groupby('user')['item'].agg(list) df_train_stage = utils.load_pickle(online_all_train_stage_data_path.format(cur_stage)) all_scores = [] all_pred_items = {} pickup = 500 predictions = {} for sta in range(cur_stage+1): now_users = df_test_stage[ df_test_stage['stage'] == sta ]['user_id'].tolist() df_train = df_train_stage[ df_train_stage['stage'] == sta ] hot_items = df_train['item_id'].value_counts().index.tolist() answers = [] for now_user in now_users: pred = user2recall.loc[now_user] new_pred = [] for j in pred: if (len(new_pred) < pickup) and (j not in new_pred): new_pred.append( j ) all_pred_items[now_user] = [] for pred in new_pred[:pickup]: all_pred_items[now_user].append(pred) new_pred = new_pred[:50] for j in hot_items: if (len(new_pred) < 50) and (j not in new_pred): new_pred.append( j ) predictions[now_user] = new_pred utils.dump_pickle(all_pred_items, rerank_path.format(pickup, mode)) #check with open(prediction_result+f'{version}_{LR}_result.csv','w') as file: for idx,user in enumerate(predictions.keys()): file.write(str(user)+','+','.join([str(p) for p in predictions[user]])+'\n') def debug_scores(ans,shift=0.0, bottom=0.25,after_deal=True): #1) #count_info = ans.groupby( ['user', 'item'] )['label'].count().reset_index() #def func(s): # return math.log(1 + s) #count_info['label'] = count_info['label'].apply( func ) #ans = ans.groupby( ['user', 'item'] )['label'].sum().reset_index() #ans['label'] = ans['label'] / count_info['label'] #2) #ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() #3) #ans = ans.groupby( ['user', 'item'] )['label'].mean().reset_index() #4) #ans = ans.groupby( ['user', 'item'] )['label'].sum().reset_index() #5) df_valid_stage = utils.load_pickle(all_valid_stage_data_path.format(cur_stage)) phase_item_degree = utils.load_pickle(phase_full_item_degree_path.format(cur_stage)) df_valid = utils.load_pickle(all_valid_stage_data_path.format(cur_stage)) phase2valid_item_degree = {} phase2median = {} for sta in range(cur_stage+1): cur_df_valid = df_valid[df_valid['stage']==sta] items = cur_df_valid['item_id'].values item_degree = phase_item_degree[sta] list_item_degress = [] for item_id in items: list_item_degress.append(item_degree[item_id]) list_item_degress.sort() median_item_degree = list_item_degress[len(list_item_degress) // 2] phase2median[sta] = median_item_degree for item in items: phase2valid_item_degree[(sta,item)] = item_degree[item] old = False if after_deal: ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() if old: user_item_label = ans[ ['user','item','label'] ].values user2stage = df_valid_stage[ ['user_id','stage'] ] user2stage['user'] = user2stage['user_id'] user2stage = user2stage.drop('user_id', axis=1) ans = pd.merge( ans, user2stage, how='left', on='user' ) sta_list = [] item_list = [] degree_list = [] for sta in range(cur_stage+1): item_degrees = phase_item_degree[sta] for item in item_degrees.keys(): sta_list.append(sta) item_list.append(item) degree_list.append( item_degrees[item] ) df_degree = pd.DataFrame( {'stage':sta_list, 'item':item_list, 'degree':degree_list} ) ans = pd.merge( ans, df_degree, how='left', on=['stage','item'] ) phase_median = ans.groupby('stage')['degree'].median().reset_index() phase_median['median_degree'] = phase_median['degree'] phase_median = phase_median.drop('degree', axis=1) ans = pd.merge(ans, phase_median, how='left', on ='stage') ans['is_rare'] = ans['degree'] <= (ans['median_degree']+shift) else: user2stage = df_valid_stage[ ['user_id','stage'] ] user2stage['user'] = user2stage['user_id'] user2stage = user2stage.drop('user_id', axis=1) ans = pd.merge( ans, user2stage, how='left', on='user' ) vals = ans[ ['item','stage'] ].values is_rare = [] for val in vals: is_rare.append( phase_item_degree[ val[1] ][ val[0] ] <= phase2median[ val[1] ] ) ans['is_rare'] = is_rare ans['is_rare'] = ans['is_rare'].astype('float') / bottom ans['is_rare'] = ans['is_rare']+1.0 ans['label'] = ans['label'] * ans['is_rare'] else: ans = ans.groupby( ['user', 'item'] )['label'].max().reset_index() ans['label'] = -ans['label'] ans = ans.sort_values( by=['user','label'] ) user2recall = ans.groupby('user')['item'].agg(list) user2pos = df_valid_stage[ ['user_id','item_id'] ].set_index('user_id') all_scores = [] for sta in range(cur_stage+1): predictions = [] item_degree = phase_item_degree[sta] now_users = df_valid_stage[ df_valid_stage['stage']==sta ]['user_id'].tolist() answers = [] for now_user in now_users: pos = user2pos.loc[now_user].values[0] pred = user2recall.loc[now_user] new_pred = [] for j in pred: if len(new_pred) < 50: flag = 0 for k in new_pred: if j == k: flag = 1 break if flag==0: new_pred.append( j ) answers.append( ( pos, item_degree[ pos ] ) ) predictions.append(new_pred+[0]*(50-len(new_pred))) scores = ndcg_tools.evaluate_each_phase(predictions, answers, at=50) all_scores.append(scores) for scores in all_scores: print(scores) print('all_scores_sum',np.array(all_scores).sum(axis=0)) print('7_9_all_scores_sum',np.array(all_scores[-3:]).sum(axis=0)) print('0_6_all_scores_sum',np.array(all_scores[0:7]).sum(axis=0)) return all_scores def calculate_user2degree( ans, df_valid_stage, phase_item_degree, top=50 ): count_info = ans.groupby( ['user', 'item'] )['label'].count().reset_index() def func(s): return s-0.2 count_info['label'] = count_info['label'].apply( func ) ans = ans.groupby( ['user', 'item'] )['label'].sum().reset_index() ans['label'] = ans['label'] / count_info['label'] ans['label'] = -ans['label'] ans = ans.sort_values( by=['user','label'] ) user2recall = ans.groupby('user')['item'].agg(list) user2pos = df_valid_stage[ ['user_id','item_id'] ].set_index('user_id') all_scores = [] user2degree = {} user2stage = {} for sta in range(cur_stage+1): predictions = [] item_degree = phase_item_degree[sta] now_users = df_valid_stage[ df_valid_stage['stage']==sta ]['user_id'].tolist() answers = [] for now_user in now_users: pos = user2pos.loc[now_user].values[0] pred = user2recall.loc[now_user] new_pred = [] for j in pred: if len(new_pred) < 50: flag = 0 for k in new_pred: if j == k: flag = 1 break if flag==0: new_pred.append( j ) answers.append( ( pos, item_degree[ pos ] ) ) degrees = [] for j in new_pred[:50]: if j in item_degree: degrees.append( item_degree[j] ) else: print('no') print(1/0) user2degree[now_user] = np.mean( degrees ) user2stage[now_user] = sta predictions.append(new_pred+[0]*(50-len(new_pred))) return user2degree, user2stage def model_merge_scores(): full = utils.load_pickle( lgb_ans_dir+ ('{}_{}_{}_ans.pkl').format('0529094924', mode, cur_stage ) ) rare = utils.load_pickle( lgb_ans_dir+ ('{}_{}_{}_ans.pkl').format('0529095003', mode, cur_stage ) ) df_valid_stage = utils.load_pickle(all_valid_stage_data_path.format(cur_stage)) phase_item_degree = utils.load_pickle(phase_full_item_degree_path.format(cur_stage)) use_gt = False if use_gt: user2degree = {} for i in range( df_valid_stage.shape[0] ): r = df_valid_stage.iloc[i] user2degree[ r['user_id'] ] = phase_item_degree[r['stage']][ r['item_id'] ] data = df_valid_stage.copy() data['degree'] = data['user_id'].map( user2degree ) data['median_degree'] = data['stage'].map( data.groupby('stage')['degree'].quantile(0.5) ) data['is_rare'] = data['degree']<=data['median_degree'] data['user'] = data['user_id'] full = pd.merge( full, data[ ['user', 'is_rare'] ], how='left', on='user' ) rare = pd.merge( rare, data[ ['user', 'is_rare'] ], how='left', on='user' ) ans = full.copy() #ans = ans.groupby( ['user', 'item'] )['label'].quantile(0.25).reset_index() ans['label'] = full['label']*(1-full['is_rare']) + rare['label']*rare['is_rare'] else: user2degree, user2stage = calculate_user2degree( rare.copy(), df_valid_stage, phase_item_degree, 50 ) data = pd.concat( [pd.Series(user2degree),
pd.Series(user2stage)
pandas.Series
import string import pandas as pd import numpy as np import doctest from texthero import preprocessing, stopwords from . import PandasTestCase """ Test doctest """ def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(preprocessing)) return tests class TestPreprocessing(PandasTestCase): """ Test remove digits. """ def test_remove_digits_only_block(self): s = pd.Series("remove block of digits 1234 h1n1") s_true = pd.Series("remove block of digits h1n1") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_any(self): s = pd.Series("remove block of digits 1234 h1n1") s_true = pd.Series("remove block of digits h n ") self.assertEqual(preprocessing.remove_digits(s, only_blocks=False), s_true) def test_remove_digits_brackets(self): s = pd.Series("Digits in bracket (123 $) needs to be cleaned out") s_true = pd.Series("Digits in bracket ( $) needs to be cleaned out") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_start(self): s = pd.Series("123 starting digits needs to be cleaned out") s_true = pd.Series(" starting digits needs to be cleaned out") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_end(self): s = pd.Series("end digits needs to be cleaned out 123") s_true = pd.Series("end digits needs to be cleaned out ") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_phone(self): s = pd.Series("+41 1234 5678") s_true = pd.Series("+ ") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_punctuation(self): s = pd.Series(string.punctuation) s_true = pd.Series(string.punctuation) self.assertEqual(preprocessing.remove_digits(s), s_true) """ Test replace digits """ def test_replace_digits(self): s = pd.Series("1234 falcon9") s_true = pd.Series("X falcon9") self.assertEqual(preprocessing.replace_digits(s, "X"), s_true) def test_replace_digits_any(self): s = pd.Series("1234 falcon9") s_true = pd.Series("X falconX") self.assertEqual( preprocessing.replace_digits(s, "X", only_blocks=False), s_true ) """ Remove punctuation. """ def test_remove_punctation(self): s = pd.Series("Remove all! punctuation!! ()") s_true = pd.Series( "Remove all punctuation " ) # TODO maybe just remove space? self.assertEqual(preprocessing.remove_punctuation(s), s_true) """ Remove diacritics. """ def test_remove_diactitics(self): s = pd.Series("Montréal, über, 12.89, Mère, Françoise, noël, 889, اِس, اُس") s_true = pd.Series("Montreal, uber, 12.89, Mere, Francoise, noel, 889, اس, اس") self.assertEqual(preprocessing.remove_diacritics(s), s_true) """ Remove whitespace. """ def test_remove_whitespace(self): s = pd.Series("hello world hello world ") s_true = pd.Series("hello world hello world") self.assertEqual(preprocessing.remove_whitespace(s), s_true) """ Test pipeline. """ def test_pipeline_stopwords(self): s = pd.Series("E-I-E-I-O\nAnd on") s_true = pd.Series("e-i-e-i-o\n ") pipeline = [preprocessing.lowercase, preprocessing.remove_stopwords] self.assertEqual(preprocessing.clean(s, pipeline=pipeline), s_true) """ Test stopwords. """ def test_remove_stopwords(self): text = "i am quite intrigued" text_default_preprocessed = " quite intrigued" text_spacy_preprocessed = " intrigued" text_custom_preprocessed = "i quite " self.assertEqual( preprocessing.remove_stopwords(pd.Series(text)), pd.Series(text_default_preprocessed), ) self.assertEqual( preprocessing.remove_stopwords( pd.Series(text), stopwords=stopwords.SPACY_EN ), pd.Series(text_spacy_preprocessed), ) self.assertEqual( preprocessing.remove_stopwords( pd.Series(text), stopwords={"am", "intrigued"} ), pd.Series(text_custom_preprocessed), ) def test_stopwords_are_set(self): self.assertEqual(type(stopwords.DEFAULT), set) self.assertEqual(type(stopwords.NLTK_EN), set) self.assertEqual(type(stopwords.SPACY_EN), set) """ Test remove html tags """ def test_remove_html_tags(self): s = pd.Series("<html>remove <br>html</br> tags<html> &nbsp;") s_true = pd.Series("remove html tags ") self.assertEqual(preprocessing.remove_html_tags(s), s_true) """ Text tokenization """ def test_tokenize(self): s = pd.Series("text to tokenize") s_true = pd.Series([["text", "to", "tokenize"]]) self.assertEqual(preprocessing.tokenize(s), s_true) def test_tokenize_multirows(self): s = pd.Series(["first row", "second row"]) s_true = pd.Series([["first", "row"], ["second", "row"]]) self.assertEqual(preprocessing.tokenize(s), s_true) def test_tokenize_split_punctuation(self): s = pd.Series(["ready. set, go!"]) s_true = pd.Series([["ready", ".", "set", ",", "go", "!"]]) self.assertEqual(preprocessing.tokenize(s), s_true) def test_tokenize_not_split_in_between_punctuation(self): s = pd.Series(["don't say hello-world"]) s_true = pd.Series([["don't", "say", "hello-world"]]) self.assertEqual(preprocessing.tokenize(s), s_true) """ Has content """ def test_has_content(self): s = pd.Series(["c", np.nan, "\t\n", " ", "", "has content", None]) s_true = pd.Series([True, False, False, False, False, True, False]) self.assertEqual(preprocessing.has_content(s), s_true) """ Test remove urls """ def test_remove_urls(self): s = pd.Series("http://tests.com http://www.tests.com") s_true = pd.Series(" ") self.assertEqual(preprocessing.remove_urls(s), s_true) def test_remove_urls_https(self): s = pd.Series("https://tests.com https://www.tests.com") s_true = pd.Series(" ") self.assertEqual(preprocessing.remove_urls(s), s_true) def test_remove_urls_multiline(self): s =
pd.Series("https://tests.com \n https://tests.com")
pandas.Series
# -*- coding: UTF-8 -*- """ Created by louis at 2021/9/13 Description: """ import os import gc import glob import torch from torch import nn import torch.nn.functional as F import torch.optim as optim import numpy as np import pandas as pd import time from itertools import islice from torch.utils.data import Dataset, DataLoader from multiprocessing import Pool from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split from torch.utils.tensorboard import SummaryWriter from tqdm.auto import tqdm import logging import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (2048, rlimit[1])) datefmt = '%Y-%m-%d %H:%M:%S' logging.basicConfig(filename='pytorch-baseline.log', filemode='w', format='%(asctime)s - %(levelname)s - %(message)s', datefmt=datefmt, level=logging.DEBUG) # import tqdm tqdm.pandas() import warnings from multiprocessing import cpu_count def get_path_dict(f, v): f_dict = {} for i in tqdm(v): fpath = f'{f}/stock_id={i}' flist = glob.glob(os.path.join(fpath, '*.parquet')) if len(flist) > 0: f_dict[i] = flist[0] return f_dict # train_idx, valid_idx = train_test_split(train_ds['row_id'], shuffle=True, test_size=0.1, random_state=SEED) # ds: train.csv里面的数据 f_dict:是 book_train.parquet 里面的数据 def process_optiver_ds(ds, f_dict, skip_cols, t_dict): x = [] y = [] full_seconds_in_bucket = {'seconds_in_bucket': np.arange(600)} full_seconds_in_bucket = pd.DataFrame(full_seconds_in_bucket) for stock_id, stock_fnmame in tqdm(f_dict.items()): trade_train_ = t_dict.get(stock_id) trade_train_ = pd.read_parquet(trade_train_) optiver_ds = pd.read_parquet(stock_fnmame) time_ids = optiver_ds['time_id'].unique() for time_id in time_ids: optiver_ds_ = optiver_ds[optiver_ds['time_id'] == time_id] optiver_ds_ = pd.merge(full_seconds_in_bucket, optiver_ds_, how='left', on='seconds_in_bucket') optiver_ds_ = pd.merge(optiver_ds_, trade_train_[trade_train_['time_id'] == time_id], how='left', on='seconds_in_bucket') # optiver_ds_.drop(skip_cols) optiver_ds_.drop(['time_id_x', 'time_id_y'], axis=1) optiver_ds_ = np.nan_to_num(optiver_ds_) row_id = str(stock_id) + '-' + time_id.astype(str) r = ds[ds['row_id'] == row_id]['target'] x.append(optiver_ds_) y.append(r) return x, y def chunks(data, SIZE=10000): it = iter(data) for i in range(0, len(data), SIZE): yield {k: data[k] for k in islice(it, SIZE)} def process_book_train_chunk(chunk_ds): return process_optiver_ds(train_ds, chunk_ds, book_skip_columns, trade_train_dict) def process_book_test_chunk(chunk_ds): return process_optiver_ds(test_ds, chunk_ds, book_skip_columns, trade_test_dict) ''' # 将样本分成4块,每块里面有28条数据 book_train_chunks = [i for i in chunks(book_train_dict, int(len(book_train_dict) / NTHREADS))] # trade_train_chunks = [i for i in chunks(trade_train_dict, int(len(trade_train_dict) / NTHREADS))] z = 1 if len(book_test_dict) < NTHREADS else NTHREADS book_test_chunks = [i for i in chunks(book_test_dict, int(len(book_test_dict) / z))] # trade_test_chunks = [i for i in chunks(trade_test_dict, int(len(trade_test_dict) / z))] pool = Pool(NTHREADS) # 创建进程池,最大进程数为 NTHREADS r = pool.map(process_book_train_chunk, book_train_chunks) pool.close() a1, a2 = zip(*r) pool = Pool(NTHREADS) # 创建进程池,最大进程数为 NTHREADS r = pool.map(process_book_test_chunk, book_test_chunks) pool.close() t_a1, t_a2 = zip(*r) np_train = a1 np_target = a2''' # Scaler # transformers = [] # for i in tqdm(range(np_train.shape[1])): # a = np.nan_to_num(np_train[train_idx]) # b = np.nan_to_num(np_train[valid_idx]) # # transformer = StandardScaler() # StandardScaler is very useful! # np_train[train_idx] = transformer.fit_transform(a) # np_train[valid_idx] = transformer.transform(b) # transformers.append(transformer) # Save Scalers for the inference stage class LSTMModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.1): super(LSTMModel, self).__init__() # self.drop = nn.Dropout(dropout) # self.encoder = nn.Embedding(ntoken, ninp) self.rnn = nn.LSTM(ninp + input_features_num, nhid + input_features_num, nlayers, dropout=dropout, batch_first=True, bidirectional=True) self.regress_rnn = nn.Sequential( nn.BatchNorm1d(2 * nhid + 2 * input_features_num), nn.Linear(2 * nhid + 2 * input_features_num, 1), nn.Sigmoid() ) self.decoder = nn.Sequential( nn.BatchNorm1d(3 * nhid + 2 * input_features_num), nn.Linear(3 * nhid + 2 * input_features_num, nhid + input_features_num), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(nhid + input_features_num), nn.Linear(nhid + input_features_num, ntoken), nn.ReLU(), nn.Dropout(0.1), nn.BatchNorm1d(ntoken), nn.Linear(ntoken, 1), nn.Sigmoid() ) self.self_attention = nn.Sequential( nn.Linear(3 * nhid + 2 * input_features_num, 10 * (nhid + input_features_num)), nn.ReLU(), nn.Dropout(0.2), nn.Linear(10 * (nhid + input_features_num), 10 * (nhid + input_features_num)), nn.ReLU(), nn.Dropout(0.2), nn.Linear(10 * (nhid + input_features_num), 3 * nhid + 2 * input_features_num), nn.Softmax(dim=1) ) # self.decoder_1 = nn.Linear(nhid, ntoken) # self.decoder_2 = nn.Linear(ntoken, 1) self.conv1d_relu_stack = nn.Sequential( nn.Conv1d(in_channels=600, out_channels=1200, kernel_size=3), nn.Dropout(0.1), nn.ReLU(), # 9 nn.Conv1d(in_channels=1200, out_channels=1200, kernel_size=3), nn.Dropout(0.2), nn.ReLU(), # 7 nn.Conv1d(in_channels=1200, out_channels=1200, kernel_size=3), nn.Dropout(0.2), nn.ReLU(), # 5 nn.Conv1d(in_channels=1200, out_channels=600, kernel_size=3), nn.Dropout(0.1), nn.ReLU(), # 3 nn.Conv1d(in_channels=600, out_channels=nhid, kernel_size=3), nn.ReLU(), # 1 ) self.regress_conv = nn.Sequential( nn.BatchNorm1d(nhid), nn.Linear(nhid, 1), nn.Sigmoid() ) self.linear_relu_stack = nn.Sequential( nn.Linear(input_features_num, ntoken), nn.Dropout(0.1), nn.ReLU(), nn.Linear(ntoken, ninp), nn.Dropout(0.2), nn.ReLU(), nn.Linear(ninp, ninp), nn.Dropout(0.2), nn.ReLU(), ) self.ninp = ninp self.nhid = nhid self.nlayers = nlayers def forward(self, input): # emb = self.drop(self.encoder(input)) cov_logits = self.conv1d_relu_stack(input) cov_logits = cov_logits.view(cov_logits.shape[0], cov_logits.shape[1]) regress_conv_out = self.regress_conv(cov_logits) logits = self.linear_relu_stack(input) logits = torch.cat((logits, input), 2) # logits = logits.view(1, len(logits), -1) output, hidden = self.rnn(logits) output = output[:, -1, :] regress_rnn_out = self.regress_rnn(output) new_logits = torch.cat((cov_logits, output), 1) # attention_output = self.self_attention(new_logits) # output = self.drop(output) new_logits = torch.mul(new_logits, self.self_attention(new_logits)) # decoded_out = self.decoder(new_logits) decoded_out = self.decoder(new_logits) # decoded_2 = self.decoder_2(decoded_1) return regress_conv_out, regress_rnn_out, decoded_out def init_hidden(self, bsz): weight = next(self.parameters()) return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) # dataloader = DataLoader(transformed_dataset, batch_size=4, # shuffle=True, num_workers=0) def rmspe(y_pred,y_true): rms = np.sqrt(np.mean(np.square((y_true - y_pred) / y_true))) return rms def RMSPELoss(y_pred, y_true): return torch.sqrt(torch.mean(((y_true - y_pred) / y_true) ** 2)).clone() def do_process(optiver_ds, full_seconds_in_bucket, trade__, time_id): optiver_ds_ = optiver_ds[optiver_ds['time_id'] == time_id] if optiver_ds_.size == 0: return None optiver_ds_ = pd.merge(full_seconds_in_bucket, optiver_ds_, how='left', on='seconds_in_bucket') optiver_ds_ = pd.merge(optiver_ds_, trade__[trade__['time_id'] == time_id], how='left', on='seconds_in_bucket') # optiver_ds_.drop(skip_cols) optiver_ds_ = optiver_ds_.drop(['time_id_x', 'time_id_y', 'seconds_in_bucket'], axis=1) optiver_ds_ = np.nan_to_num(optiver_ds_) # TODO 将每一列进行标准化 for i in range(optiver_ds_.shape[1]): if np.sum(optiver_ds_[:, i]) != 0 and np.std(optiver_ds_[:, i]) != 0: optiver_ds_[:, i] = (optiver_ds_[:, i] - np.mean(optiver_ds_[:, i])) / np.std(optiver_ds_[:, i]) return optiver_ds_ def process_train_bach(arg): # input_0 = [] # target_0 = [] stock_id = arg['stock_id'] time_id = arg['time_id'] # optiver_ds = arg['optiver_ds'] # full_seconds_in_bucket = arg['full_seconds_in_bucket'] # trade_train_ = arg['trade_train_'] path = f"{DATA_PATH}formated_data/{stock_id}/" optiver_ds_ = pd.read_parquet(f'{path}{time_id}.parquet').to_numpy() # row_id = str(stock_id) + '-' + time_id.astype(str) np_target = pd.read_parquet(f'{path}{time_id}_target.parquet')['target'].to_numpy() return optiver_ds_, np_target[0] def process_test_bach(time_id, ARGS): optiver_ds = ARGS['optiver_ds'] full_seconds_in_bucket = ARGS['full_seconds_in_bucket'] trade_test_ = ARGS['trade_test_'] optiver_ds_ = do_process(optiver_ds, full_seconds_in_bucket, trade_test_, time_id) return optiver_ds_ def train_bach(epoch): # lstmmodel.load_state_dict(torch.load('train_out/model_weights_240.pth')) full_seconds_in_bucket = {'seconds_in_bucket': np.arange(600)} # seconds_in_bucket最大是600,训练数据中不连续,这里将他们连起来 full_seconds_in_bucket = pd.DataFrame(full_seconds_in_bucket) # lstmmodel.zero_grad() # pool = Pool(30) # 创建进程池,最大进程数为 NTHREADS for stock_id, stock_fnmame in book_train_dict.items(): trade_train_parquet = trade_train_dict.get(stock_id) trade_train_ = pd.read_parquet(trade_train_parquet) book_train = pd.read_parquet(stock_fnmame) loss_0_each_stock = [] loss_1_each_stock = [] loss_2_each_stock = [] loss_each_stock = [] output_each_stock = [] target_each_stock = [] each_stock_train_data = {} time_ids = book_train['time_id'].unique() params = [] # time_ids=time_ids[1:20] # 每次将已经格式化好了的一个stock中的数据全部取出 for time_id in tqdm(time_ids): ARGS_ = dict(optiver_ds=book_train, full_seconds_in_bucket=full_seconds_in_bucket, trade_train_=trade_train_, stock_id=stock_id, time_id=time_id) params.append(ARGS_) # input_, target_ = process_train_bach(ARGS_) # each_stock_train_data[time_id] = dict(input_=input_, target_=target_) with Pool(8) as p: r = p.map(process_train_bach, params) input_, target_ = zip(*r) for i in range(len(time_ids)): each_stock_train_data[time_ids[i]] = dict(input_=input_[i], target_=target_[i]) # 每次取一个小bach,分多次取 for i in tqdm(range(int(len(time_ids) / 20))): time_ids = np.random.choice(time_ids, 50) input_0 = [] target_0 = [] for time_id in time_ids: input_0.append(each_stock_train_data[time_id]['input_']) target_0.append([each_stock_train_data[time_id]['target_']]) input_1 = torch.tensor(input_0, dtype=torch.float32, requires_grad=True).to(device) target_ = torch.tensor(target_0, dtype=torch.float32).to(device) conv_out, rnn_out, output_2 = lstmmodel(input_1) loss_0 = criterion(conv_out, target_) loss_1 = criterion(rnn_out, target_) loss_2 = RMSPELoss(output_2, target_) loss_ = torch.mul(0.1, loss_0) + torch.mul(0.1, loss_1) + loss_2 optimizer_2.zero_grad() loss_.backward(retain_graph=True) optimizer_2.step() output_each_stock.append(output_2.cpu().detach().numpy().ravel()) target_each_stock.append(np.array(target_0).ravel()) loss_0_each_stock.append(loss_0.item()) loss_1_each_stock.append(loss_1.item()) loss_2_each_stock.append(loss_2.item()) loss_each_stock.append(loss_.item()) mean_loss_0 = np.mean(loss_0_each_stock) mean_loss_1 = np.mean(loss_1_each_stock) mean_loss_2 = np.mean(loss_2_each_stock) mean_loss = np.mean(loss_each_stock) logging.debug(f'epoch = {epoch} , stock_id = {stock_id} , loss_each_stock : {mean_loss}') rmspe_ = rmspe(np.array(output_each_stock), np.array(target_each_stock)) logging.debug( f'epoch = {epoch} , stock_id = {stock_id} , rmspe each stock : {rmspe_}') # loss_all.append(np.mean(loss_each_stock)) writer.add_scalar('V2-LOSS_0', mean_loss_0, writer.count) writer.add_scalar('V2-LOSS_1', mean_loss_1, writer.count) writer.add_scalar('V2-LOSS_2', mean_loss_2, writer.count) writer.add_scalar('V2-LOSS', mean_loss, writer.count) writer.add_scalar('V2-rmspe', rmspe_, writer.count) writer.count += 1 torch.save(lstmmodel.state_dict(), 'train_out/model_weights_' + str(epoch) + '.pth') # 每一个epoch之后就测试一下验证集 # with torch.no_grad(): # test() # idx = np.arange(np_train.shape[0]) # train_idx, valid_idx = train_test_split(idx, shuffle=True, test_size=0.1, random_state=SEED) def start_train(): for epoch in range(1, EPOCH_ACCOUNT): train_bach(epoch) def predict(): full_seconds_in_bucket = {'seconds_in_bucket': np.arange(600)} full_seconds_in_bucket =
pd.DataFrame(full_seconds_in_bucket)
pandas.DataFrame
# pylint: disable=redefined-outer-name,protected-access # pylint: disable=missing-function-docstring,missing-module-docstring,missing-class-docstring """This module contains tests of the tabulator Data Grid""" # http://tabulator.info/docs/4.7/quickstart # https://github.com/paulhodel/jexcel import pandas as pd import panel as pn import param import pytest from _pytest._code.code import TerminalRepr from bokeh.models import ColumnDataSource from awesome_panel_extensions.developer_tools.designer import Designer from awesome_panel_extensions.developer_tools.designer.services.component_reloader import ( ComponentReloader, ) from awesome_panel_extensions.widgets.tabulator import CSS_HREFS, Tabulator, TabulatorStylesheet def _data_records(): return [ {"id": 1, "name": "<NAME>", "age": 12, "col": "red", "dob": pd.Timestamp("14/05/1982")}, {"id": 2, "name": "<NAME>", "age": 1, "col": "blue", "dob": pd.Timestamp("14/05/1982")}, { "id": 3, "name": "<NAME>", "age": 42, "col": "green", "dob": pd.Timestamp("22/05/1982"), }, { "id": 4, "name": "<NAME>", "age": 125, "col": "orange", "dob": pd.Timestamp("01/08/1980"), }, { "id": 5, "name": "<NAME>", "age": 16, "col": "yellow", "dob": pd.Timestamp("31/01/1999"), }, ] @pytest.fixture() def data_records(): return _data_records() @pytest.fixture() def dataframe(data_records): return pd.DataFrame(data=data_records) @pytest.fixture() def data_list(dataframe): return dataframe.to_dict("list") @pytest.fixture() def column_data_source(data_list): return ColumnDataSource(data_list) @pytest.fixture() def columns(): return [ { "title": "Id", "field": "id", "sorter": "number", "formatter": "money", "hozAlign": "right", }, { "title": "Name", "field": "name", "sorter": "string", "formatter": "plaintext", "hozAlign": "left", }, { "title": "Age", "field": "age", "sorter": "number", "formatter": "money", "hozAlign": "right", }, { "title": "Col", "field": "col", "sorter": "string", "formatter": "plaintext", "hozAlign": "left", }, { "title": "Dob", "field": "dob", "sorter": "datetime", "formatter": "datetime", "hozAlign": "left", }, ] @pytest.fixture() def configuration(): # http://tabulator.info/docs/4.7/quickstart return {"autoColumns": True} @pytest.fixture def tabulator(configuration, dataframe): return Tabulator(configuration=configuration, value=dataframe) def test_constructor(): # When tabulator = Tabulator() # Then assert not tabulator.value assert isinstance(tabulator._source, ColumnDataSource) assert tabulator.configuration == {"autoColumns": True} assert tabulator.selection == [] assert tabulator.selected_values is None def test_tabulator_from_dataframe(dataframe, configuration): tabulator = Tabulator(value=dataframe, configuration=configuration) assert isinstance(tabulator._source, ColumnDataSource) def test_tabulator_from_column_data_source(column_data_source, configuration): tabulator = Tabulator(value=column_data_source, configuration=configuration) assert tabulator._source == tabulator.value def test_dataframe_to_columns_configuration(dataframe, columns): # Given value = dataframe # When actual = Tabulator.to_columns_configuration(value) # Then assert actual == columns def test_config_default(): # When Tabulator.config() # Then assert CSS_HREFS["default"] in pn.config.css_files def test_config_none(): # Given css_count = len(pn.config.css_files) pn.config.js_files.clear() # When Tabulator.config(css=None) # Then assert len(pn.config.css_files) == css_count def test_config_custom(): # When Tabulator.config(css="materialize") # Then assert CSS_HREFS["materialize"] in pn.config.css_files def test_selection_dataframe(data_records, dataframe): # Given tabulator = Tabulator(value=dataframe) # When tabulator.selection = [0, 1, 2] actual = tabulator.selected_values # Then expected = pd.DataFrame(data=data_records[0:3]) pd.testing.assert_frame_equal(actual, expected) def test_selection_column_data_source(data_records, column_data_source): # Given tabulator = Tabulator(value=column_data_source) # When tabulator.selection = [0, 1, 2] actual = tabulator.selected_values # Then # I could not find a more direct way to test this. expected_as_df = pd.DataFrame(data=data_records[0:3]) pd.testing.assert_frame_equal(actual.to_df().drop(columns="index"), expected_as_df) @pytest.mark.parametrize( ["field", "expected"], [ ("name", "Name"), ("cheese cake", "Cheese Cake"), ("cheese_cake", "Cheese Cake"), ], ) def test_to_title(field, expected): assert Tabulator._to_title(field) == expected def test_tabulator_comms(document, comm, column_data_source, configuration): # Given tabulator = Tabulator(value=column_data_source, configuration=configuration) widget = tabulator.get_root(document, comm=comm) # Then assert isinstance(widget, tabulator._widget_type) assert widget.source == column_data_source assert widget.configuration == configuration # When with param.edit_constant(tabulator): tabulator._process_events( { "configuration": {"a": 1}, } ) # Then assert tabulator.configuration == {"a": 1} def test_selected_change(tabulator): # When tabulator.selection = [2, 4, 6] # Then assert tabulator._source.selected.indices == [2, 4, 6] def test_source_selection_change(tabulator): # When tabulator._process_events({"indices": [2, 4, 6]}) # Then assert tabulator.selection == [2, 4, 6] def test_tabulator_style_sheet(): # When stylesheet = TabulatorStylesheet(theme="materialize") # Then assert stylesheet.object.startswith("<link rel=") assert CSS_HREFS["materialize"] in stylesheet.object assert stylesheet.object.endswith(">") # When stylesheet.theme = "site" assert CSS_HREFS["site"] in stylesheet.object def test_cell_change_when_dataframe(): # Given value = pd.DataFrame({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) original_data = tabulator._source.data # When tabulator._cell_change = {"c": "x", "i": 1, "v": 3} # Then assert tabulator.value.loc[1, "x"] == 3 # And the tabulator._source.data shall not have been updated # We currently use the _pause_cds_updates parameter to avoid reupdating the _source.data assert tabulator._source.data is original_data def test_cell_change_when_column_data_source(): # Given value = ColumnDataSource(pd.DataFrame({"x": [1, 2], "y": ["a", "b"]})) tabulator = Tabulator(value=value) # When tabulator._cell_change = {"c": "x", "i": 1, "v": 3} # Then we assume the columndatasource has been update on the js side # and therefore don't update on the python side assert tabulator.value.to_df().loc[1, "x"] == 2 # region stream VALUE_CHANGED_COUNT = 0 def test_stream_dataframe_dataframe_value(): # Given value = pd.DataFrame({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) stream_value = pd.DataFrame({"x": [3, 4], "y": ["c", "d"]}) # Used to test that value event is triggered global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT = 0 @param.depends(tabulator.param.value, watch=True) def _inc(*events): global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT += 1 # When tabulator.stream(stream_value) # Then tabulator_source_df = tabulator._source.to_df().drop(columns=["index"]) expected = pd.DataFrame({"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]}) pd.testing.assert_frame_equal(tabulator.value, expected) pd.testing.assert_frame_equal(tabulator_source_df, expected) assert VALUE_CHANGED_COUNT == 1 def test_stream_dataframe_series_value(): # Given value = pd.DataFrame({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) stream_value = pd.DataFrame({"x": [3, 4], "y": ["c", "d"]}).loc[1] # Used to test that value event is triggered global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT = 0 @param.depends(tabulator.param.value, watch=True) def _inc(*events): global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT += 1 # When tabulator.stream(stream_value) # Then tabulator_source_df = tabulator._source.to_df().drop(columns=["index"]) expected = pd.DataFrame({"x": [1, 2, 4], "y": ["a", "b", "d"]}) pd.testing.assert_frame_equal(tabulator.value, expected) pd.testing.assert_frame_equal( tabulator_source_df, expected, check_column_type=False, check_dtype=False ) assert VALUE_CHANGED_COUNT == 1 def test_stream_dataframe_dictionary_value_multi(): # Given value = pd.DataFrame({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) stream_value = {"x": [3, 4], "y": ["c", "d"]} # Used to test that value event is triggered global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT = 0 @param.depends(tabulator.param.value, watch=True) def _inc(*events): global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT += 1 # When PROVIDING A DICTIONARY OF COLUMNS tabulator.stream(stream_value) # Then tabulator_source_df = tabulator._source.to_df().drop(columns=["index"]) expected = pd.DataFrame({"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]}) pd.testing.assert_frame_equal(tabulator.value, expected) pd.testing.assert_frame_equal( tabulator_source_df, expected, check_column_type=False, check_dtype=False ) assert VALUE_CHANGED_COUNT == 1 def test_stream_dataframe_dictionary_value_single(): # Given value = pd.DataFrame({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) stream_value = {"x": 4, "y": "d"} # Used to test that value event is triggered global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT = 0 @param.depends(tabulator.param.value, watch=True) def _inc(*events): global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT += 1 # When PROVIDING A DICTIONARY ROW tabulator.stream(stream_value) # Then tabulator_source_df = tabulator._source.to_df().drop(columns=["index"]) expected = pd.DataFrame({"x": [1, 2, 4], "y": ["a", "b", "d"]}) pd.testing.assert_frame_equal(tabulator.value, expected) pd.testing.assert_frame_equal( tabulator_source_df, expected, check_column_type=False, check_dtype=False ) assert VALUE_CHANGED_COUNT == 1 def test_stream_cds_dictionary_value(): # Given value = ColumnDataSource({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) stream_value = {"x": [3, 4], "y": ["c", "d"]} # Used to test that value event is triggered global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT = 0 @param.depends(tabulator.param.value, watch=True) def _inc(*events): global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT += 1 # When tabulator.stream(stream_value) # Then tabulator_source_json = tabulator._source.to_json(include_defaults=False)["data"] expected = {"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]} assert tabulator.value is value assert tabulator_source_json == expected assert VALUE_CHANGED_COUNT == 1 # endregion Stream # region Patch def test_stream_dataframe_dataframe_value(): # Given value = pd.DataFrame({"x": [1, 2], "y": ["a", "b"]}) tabulator = Tabulator(value=value) stream_value = pd.DataFrame({"x": [3, 4], "y": ["c", "d"]}) # Used to test that value event is triggered global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT = 0 @param.depends(tabulator.param.value, watch=True) def _inc(*events): global VALUE_CHANGED_COUNT VALUE_CHANGED_COUNT += 1 # When tabulator.stream(stream_value) # Then tabulator_source_df = tabulator._source.to_df().drop(columns=["index"]) expected = pd.DataFrame({"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]}) pd.testing.assert_frame_equal(tabulator.value, expected) pd.testing.assert_frame_equal(tabulator_source_df, expected) assert VALUE_CHANGED_COUNT == 1 # endregion Patch def test_patch_from_partial_dataframe(): data = pd.DataFrame({"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]}) data1 = data.loc[ 0:1, ] data2 = data.loc[2:4] # When tabulator = Tabulator(value=data1) tabulator.value = data2.reset_index(drop=True) patch_value = tabulator.value["x"] + 2 tabulator.patch(patch_value) # Then expected = pd.DataFrame({"x": [5, 6], "y": ["c", "d"]}) pd.testing.assert_frame_equal(tabulator.value, expected) def test_range_index_of_dataframe_value(): # Given data = pd.DataFrame({"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]}) data2 = data.loc[2:4] # When with pytest.raises(ValueError) as e: Tabulator(value=data2) assert ( str(e.value) == "Please provide a DataFrame with RangeIndex starting at 0 and with step 1" ) def test_patch_and_reset(): """I experienced some strange behaviour which I test below. The code actually worked as it should. The problem was that I patched the original data so I could never "reset" back to the original data """ # Given data = pd.DataFrame({"x": [1, 2, 3, 4], "y": ["a", "b", "c", "d"]}) data_copy = data.copy(deep=True) tabulator = Tabulator(value=data_copy) patch = tabulator.value["x"] + 2 # When patch Then tabulator.patch(patch_value=patch) assert set(tabulator._source.data["x"]) == {3, 4, 5, 6} # When reset Then tabulator.value = data assert set(tabulator._source.data["x"]) == {1, 2, 3, 4} def test_replace_stream_and_reset(): # Given data =
pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": ["a", "b", "c", "d", "e"]})
pandas.DataFrame
import os # Reduce CPU load. Need to perform BEFORE import numpy and some other libraries. os.environ['MKL_NUM_THREADS'] = '2' os.environ['OMP_NUM_THREADS'] = '2' os.environ['NUMEXPR_NUM_THREADS'] = '2' import gc import math import copy import json import numpy as np import pandas as pd import torch as th import torch.nn as nn import torch.optim as optim import torch.utils.data as data_utils from torch.nn.utils.rnn import pad_sequence from typing import Optional, Sequence, List, Tuple, Union, Dict import requests from tqdm import tqdm import re from sklearn.model_selection import train_test_split from sklearn.metrics import log_loss # Setup logging import logging logging.basicConfig( format='%(asctime)s [%(levelname)s] %(name)s %(message)s', datefmt='%y-%m-%d %H:%M:%S', level=logging.DEBUG, ) log = logging.getLogger('agro') RANDOM_SEED = 2021 """ # Общая идея Эта задача по смыслу сходна с задачей Sentiment Analysis. То есть, когда тексту в соответствие ставится один или несколько классов, например: (положительный, негативный, нейтральный) В данном случае: несколько классов может быть присвоено одновременно (MultiLabel Classification) Я решил, что для этой цели подойдёт архитектура Transformers. Точнее, её первая половина: TransformerEncoder. На вход вместо слов подаётся последовательность эмбедингов (Embeddings). То есть, каждому слову ставится в соответствие точка в N-мерном пространстве. Обычно N: от 100 до 300. Для каждого `embedding` добавляем информацию о положении слова в тексте: `PositionalEncoding`. Далее несколько слоёв TransformerEncoder обрабатывают всю последовательность сразу, усиляя одни блоки и ослабляя другие, выделяя, таким образом, важную информацию. Затем обработанная последовательность сравнивается с некими целевыми эмбедингами (Target Embeddings), которые описывают то или иное заболевание. При сравнении вся последовательность сливается в некий единый эмбединг, по одному для каждого класса. Финальный этап, получившийся набор эмбеддингов (фиксированного размера) пропускается через Linear слой, чтобы создать вероятности для каждого заболевания. """ """ # Словарь Embeddings для русского языка Для работы нам потребуются готовые `embeddings` для русских слов. Есть некоторые доступные для скачивания словари на [RusVectores](https://rusvectores.org/ru/) Но размер словарей в них: от 150 до 300 тысяч слов, что довольно мало. Также, не совсем понятны условия их лицензии. Есть проект ["Наташа"](https://github.com/natasha/navec). Размер словаря: 500k слов. Существует также другой интересный проект: [DeepPavlov](https://docs.deeppavlov.ai/en/0.0.7/intro/pretrained_vectors.html), содержащий около 1.5 млн. слов. Его лицензия: **Apache 2.0** - позволяет как свободное, так и коммерческое использование. С последним я и буду работать. Нам потребуется скачать весь словарь, размером 4.14Гб, а затем загрузить его в память. """ class GloveModel(): """ For a given text returns a list of embeddings """ Pat_Split_Text = re.compile(r"[\w']+|[.,!?;]", flags=re.RegexFlag.MULTILINE) Unk_Tag: int = -1 Num_Tag: int = -1 def __init__(self, substitutions: Optional[str] = None, log: Optional[logging.Logger] = None): if log is None: log = logging.getLogger() # Load Glove Model. Download and convert from text to .feather format (which is much faster) glove_file_feather = 'ft_native_300_ru_wiki_lenta_lower_case.feather' if not os.path.exists(glove_file_feather): glove_file_vec = glove_file_feather.rsplit(os.extsep, 1)[0] + '.vec' if not os.path.exists(glove_file_vec): log.info('Downloading glove model for russia language from DeepPavlov...') self.download_file( 'http://files.deeppavlov.ai/embeddings/ft_native_300_ru_wiki_lenta_lower_case/' 'ft_native_300_ru_wiki_lenta_lower_case.vec' ) log.info('Done') # Load model from .vec file log.info('Loading Glove Model from .vec format...') self.glove = self.load_glove_model(glove_file_vec, size=300) log.info(f'{len(self.glove)} words loaded!') log.info('Saving Glove Model to .feather format...') self.glove.reset_index().to_feather(glove_file_feather) else: log.info('Loading Glove Model from .feather format...') self.glove = pd.read_feather(glove_file_feather) log.info(f'{len(self.glove)} words loaded!') log.info('Sorting glove dataframe by words...') self.glove.sort_values('word', axis=0, ignore_index=True, inplace=True) log.info('Done') self.subs_tab = {} if isinstance(substitutions, str): for line in substitutions.splitlines(): words = line.strip().lower().split() if len(words) < 2: continue self.subs_tab[words[0]] = words[1:] log.info(f'Using the substitutions table of {len(self.subs_tab)} records') """ Для неизвестных слов я буду использовать embedding слова 'unk'. А для чисел - embedding слова 'num'. Я не уверен, что авторы DeepPavlov именно так и планировали. Но стандартных '<unk>' или '<num>' я там не обнаружил. """ self.Unk_Tag = int(self.glove.word.searchsorted('unk')) self.Num_Tag = int(self.glove.word.searchsorted('num')) assert self.glove.word[self.Unk_Tag] == 'unk', 'Failed to find "unk" token in Glove' assert self.glove.word[self.Num_Tag] == 'num', 'Failed to find "num" token in Glove' def __len__(self): return len(self.glove) def __getitem__(self, text: str) -> List[np.ndarray]: tags = self.text2tags(text, return_offsets=False) embeddings = [self.tag2embedding(tag) for tag in tags] return embeddings @staticmethod def download_file(url: str, block_size=4096, file_name: Optional[str] = None): """Downloads file and saves it to local file, displays progress bar""" with requests.get(url, stream=True) as response: if file_name is None: if 'Content-Disposition' in response.headers.keys(): file_name = re.findall('filename=(.+)', response.headers['Content-Disposition'])[0] if file_name is None: file_name = url.split('/')[-1] expected_size_in_bytes = int(response.headers.get('content-length', 0)) received_size_in_bytes = 0 with tqdm(total=expected_size_in_bytes, unit='iB', unit_scale=True, position=0, leave=True) as pbar: with open(file_name, 'wb') as file: for data in response.iter_content(block_size): file.write(data) pbar.update(len(data)) received_size_in_bytes += len(data) if (expected_size_in_bytes != 0) and (expected_size_in_bytes != received_size_in_bytes): raise UserWarning(f'Incomplete download: {received_size_in_bytes} of {expected_size_in_bytes}') @staticmethod def load_glove_model(file_name: str, encoding: str = 'utf-8', size: Optional[int] = None) -> pd.DataFrame: """ Loads glove model from text file into pandas DataFrame Returns ------- df : pd.DataFrame A dataframe with two columns: 'word' and 'embedding'. The order of words is preserved as in the source file. Thus it may be unsorted! """ words, embeddings = [], [] with tqdm(total=os.path.getsize(file_name), unit='iB', unit_scale=True, position=0, leave=True) as pbar: with open(file_name, 'r', encoding=encoding) as f: first_line = True line = f.readline() while line: split_line = line.split() line = f.readline() if first_line: first_line = False if len(split_line) == 2: if size is None: size = int(split_line[1]) else: assert size == int(split_line[1]), \ f'Size specified at the first line: {int(split_line[1])} does not match: {size}' continue if size is not None: word = ' '.join(split_line[0:-size]) embedding = np.array(split_line[-size:], dtype=np.float32) assert len(embedding) == size, f'{line}' else: word = split_line[0] embedding = np.array(split_line[1:], dtype=np.float32) size = len(embedding) words.append(word) embeddings.append(embedding) pbar.update(f.tell() - pbar.n) return
pd.DataFrame({'word': words, 'embedding': embeddings})
pandas.DataFrame
""" Short summary. Extract the features of the ego-noise data... """ import os import shutil from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import librosa import matplotlib.pyplot as plt from aircraft_detector.utils.utils import ( retrieve_files, get_feature_directory_name, refresh_directory, print_verbose, load_spectrum_settings, ) import aircraft_detector.utils.feature_helper as fh import aircraft_detector.utils.plot_helper as ph class FeatureExtraction: def __init__(self, root_directory, feature_settings=None): # set root directory self._dir_root = root_directory # set the missing feature settings to their defaults if feature_settings is None: feature_settings = {} self._feature = load_spectrum_settings(feature_settings) # derive root output directory (feature dataset) from parameters self._dir_root_set = os.path.join( self._dir_root, "Ego-Noise Prediction", "Parameter Sets", get_feature_directory_name(self._feature), ) # verbosity self.verbose = True # print when method is finished self.super_verbose = False # print for every single file def split_mav_data(self, train_test_ratio=0.8, train_val_ratio=0.8): # get files dir_audio = os.path.join(self._dir_root, "Raw", "Mav", "Audio") files_audio = [ os.path.join(dir_audio, f) for f in sorted(os.listdir(dir_audio)) ] dir_states = os.path.join(self._dir_root, "Raw", "Mav", "States") files_states = [ os.path.join(dir_states, f) for f in sorted(os.listdir(dir_states)) ] # split files into train-val-test audio_train, audio_test, states_train, states_test = train_test_split( files_audio, files_states, train_size=train_test_ratio, random_state=42 ) audio_train, audio_val, states_train, states_val = train_test_split( audio_train, states_train, train_size=train_val_ratio, random_state=42 ) # Group the files files_train = [audio_train, states_train] files_val = [audio_val, states_val] files_test = [audio_test, states_test] files = [files_train, files_val, files_test] # Output directory for the split dir_root_out = os.path.join(self._dir_root, "Ego-Noise Prediction", "Dataset") # Loop over subsets and data types for i, subset in enumerate(["Train", "Val", "Test"]): for j, data in enumerate(["Audio", "States"]): # Output directory for subset, data dir_dest = os.path.join(dir_root_out, subset, data) refresh_directory(dir_dest) # Copy to destination for f in files[i][j]: shutil.copy(f, dir_dest) def extract_spectra(self, offset=50, scaling=80): # Loop over subsets for subset in ["Train", "Val", "Test"]: # Get audio files dir_audio = os.path.join( self._dir_root, "Ego-Noise Prediction", "Dataset", subset, "Audio" ) files_audio = retrieve_files(dir_audio) # directory for the unsynchronized spectra dir_output = os.path.join( self._dir_root_set, "Unsynchronized", subset, "Spectra" ) # Refresh directory refresh_directory(dir_output) # Loop through files in set for f in files_audio: # Extract spectrum Z = fh.extract_spectrum(f, self._feature) # Scale spectrum Z += offset Z /= scaling # Save to appropriate directory fn = os.path.split(f)[-1].replace(".wav", ".csv") fp = os.path.join(dir_output, fn) pd.DataFrame(Z).to_csv(fp, index=False, header=False) print_verbose( self.super_verbose, "Finished extracting feature for '%s' set." % subset, ) def extract_states(self): # Loop over subsets for subset in ["Train", "Val", "Test"]: # Get states files dir_states = os.path.join( self._dir_root, "Ego-Noise Prediction", "Dataset", subset, "States" ) files_states = retrieve_files(dir_states) # Directory for the unsynchronized states dir_output = os.path.join( self._dir_root_set, "Unsynchronized", subset, "States" ) refresh_directory(dir_output) # Loop through files in set for f in files_states: # xyz in NED frame # Read in as dataframe df = pd.read_csv(f, header=0) # Add delta-rpm df["rpm_1_delta"] = np.diff(df["rpm_1"].to_numpy(), prepend=0) df["rpm_2_delta"] = np.diff(df["rpm_2"].to_numpy(), prepend=0) df["rpm_3_delta"] = np.diff(df["rpm_3"].to_numpy(), prepend=0) df["rpm_4_delta"] = np.diff(df["rpm_4"].to_numpy(), prepend=0) # Add delta-cmd df["cmd_thrust_delta"] = np.diff(df["cmd_thrust"].to_numpy(), prepend=0) df["cmd_roll_delta"] = np.diff(df["cmd_roll"].to_numpy(), prepend=0) df["cmd_pitch_delta"] = np.diff(df["cmd_pitch"].to_numpy(), prepend=0) df["cmd_yaw_delta"] = np.diff(df["cmd_yaw"].to_numpy(), prepend=0) # Prune horizontal position df.drop(columns=["pos_x", "pos_y"], inplace=True) # Negate vertical position to get height df.rename(columns={"pos_z": "height"}, inplace=True) df["height"] *= -1 # Replace north- and east velocities with magnitude (horizontal) df["vel_hor"] = np.sqrt(df["vel_x"] ** 2 + df["vel_y"] ** 2) df.drop(columns=["vel_x", "vel_y"], inplace=True) # Negate downwards velocity go get vertical velocity df.rename(columns={"vel_z": "vel_ver"}, inplace=True) df["vel_ver"] *= -1 # Replace north- and east accelerations with magnitude (horizontal) df["acc_hor"] = np.sqrt(df["acc_x"] ** 2 + df["acc_y"] ** 2) df.drop(columns=["acc_x", "acc_y"], inplace=True) # Negate downwards velocity go get vertical acceleration df.rename(columns={"acc_z": "acc_ver"}, inplace=True) df["acc_ver"] *= -1 # Re-order the frame cols = [ "delta_t", "rpm_1", "rpm_2", "rpm_3", "rpm_4", "rpm_1_delta", "rpm_2_delta", "rpm_3_delta", "rpm_4_delta", "cmd_thrust", "cmd_roll", "cmd_pitch", "cmd_yaw", "cmd_thrust_delta", "cmd_roll_delta", "cmd_pitch_delta", "cmd_yaw_delta", "height", "vel_hor", "vel_ver", "acc_hor", "acc_ver", "angle_phi", "angle_theta", "angle_psi", "rate_p", "rate_q", "rate_r", ] df = df[cols] # Export fn = os.path.split(f)[-1] df.to_csv(os.path.join(dir_output, fn), header=True, index=False) def synchronize_data(self, skip_takeoff=True): # Loop over subsets for subset in ["Train", "Val", "Test"]: # list unsynchronized spectra dir_spectra = os.path.join( self._dir_root_set, "Unsynchronized", subset, "Spectra" ) files_spectra = retrieve_files(dir_spectra) # list unsynchronized states dir_states = os.path.join( self._dir_root_set, "Unsynchronized", subset, "States" ) files_states = retrieve_files(dir_states) # set the root output directory and refresh the output directories dir_root_output = os.path.join(self._dir_root_set, "Dataset", subset) refresh_directory(os.path.join(dir_root_output, "Spectra")) refresh_directory(os.path.join(dir_root_output, "States")) # synchronize each pair of files for i in range(len(files_spectra)): self._synchronize_pair( files_spectra[i], files_states[i], dir_root_output, skip_takeoff ) def _synchronize_pair( self, file_spectrum, file_states, dir_root_output, skip_takeoff ): # load spectrum Z = pd.read_csv(file_spectrum, header=None).to_numpy() # get time vector from the spectrum t_mic = librosa.times_like( Z, sr=self._feature["fft_sample_rate"], hop_length=self._feature["stft_hop_length"], ) # load states S =
pd.read_csv(file_states, header=0)
pandas.read_csv
# encode=utf-8 """ 一维数组 """ import numpy as np ndarry = np.array([[35, 20, 66], [23, 67, 89], [13, 244, 67]], np.int32) print(ndarry.shape, ndarry.size) print(ndarry.dtype) print(ndarry[1:2, 1:2]) import pandas as pd stocks = pd.Series([20.1, 100.0, 66.5], index=['tx', 'tobao', 'apple']) stocks2 =
pd.Series([23.1, 95, 88], index=['tx', 'tobao', 'google'])
pandas.Series
#!/usr/bin/env python3 import glob import os import pprint import traceback import pandas as pd from tensorboard.backend.event_processing.event_accumulator import EventAccumulator # Extraction function def tflog2pandas(path: str) -> pd.DataFrame: """convert single tensorflow log file to pandas DataFrame Parameters ---------- path : str path to tensorflow log file Returns ------- pd.DataFrame converted dataframe """ DEFAULT_SIZE_GUIDANCE = { "compressedHistograms": 1, "images": 1, "scalars": 0, # 0 means load all "histograms": 1, } runlog_data = pd.DataFrame({"metric": [], "value": [], "step": []}) try: event_acc = EventAccumulator(path, DEFAULT_SIZE_GUIDANCE) event_acc.Reload() tags = event_acc.Tags()["scalars"] event_list = event_acc.Scalars('Eval_Reward/Mean') values = list(map(lambda x: x.value, event_list)) step = list(map(lambda x: x.step, event_list)) r = {"metric": ['Eval_Reward/Mean'] * len(step), "value": values, "step": step} r = pd.DataFrame(r) runlog_data =
pd.concat([runlog_data, r])
pandas.concat
import scipy.io.wavfile as wav from python_speech_features import mfcc import numpy as np import os import pandas as pd CLASSICAL_DIR = "C:\\Users\\<NAME>\\Music\\Classical\\" METAL_DIR = "C:\\Users\\<NAME>\\Music\\Metal\\" JAZZ_DIR = "C:\\Users\\<NAME>\\Music\\Jazz\\" POP_DIR = "C:\\Users\\<NAME>\\Music\\Pop\\" PATH = "E:\\git\\python_speech_features\\covariance\\" x = [CLASSICAL_DIR, METAL_DIR, JAZZ_DIR, POP_DIR] t = 100 columns = ['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5', 'Feature6', 'Feature7', 'Feature8', 'Feature9', 'Feature10', 'Feature11', 'Feature12', 'Feature13'] dataset = [] genre = [] for i in x: if i == CLASSICAL_DIR: for index in range(0, t): genre.append(0) file_name = "classical.000"+str(index).zfill(2) file = file_name+".wav" (rate, signal) = wav.read(CLASSICAL_DIR+file) mfcc_feat = mfcc(signal, rate) cov = np.cov(mfcc_feat, rowvar=0) mean = np.mean(mfcc_feat, axis=0) # if not os.path.exists(PATH+file_name): # os.makedirs(PATH+file_name)
pd.DataFrame(cov)
pandas.DataFrame
import os import sys import datetime import numpy as np import scipy.signal import pandas as pd import yfinance as yf from contextlib import contextmanager from src.utils_date import add_days from src.utils_date import prev_weekday #from pandas_datareader.nasdaq_trader import get_nasdaq_symbols ERROR_NO_MINUTE_DATA_YTD = 'Skip: Missing minute-level data for yesterday' ERROR_NO_MINUTE_DATA_TDY = 'Skip: Missing minute-level data for today' ERROR_CANDLES_PER_DAY = 'Skip: Insufficient candles today ({} less than {})' ERROR_NULL_COL = 'Skip: NULL value in df_i columns ({})' ERROR_NULL_DAY_LEVEL_IND = 'Skip: NULL value in day-level indicators' ERROR_PRICES_D_NOT_UPDATE = 'Error: prices_d not updated, latest date found: {}' @contextmanager def suppress_stdout(): '''Decorator to supress function output to sys.stdout''' with open(os.devnull, "w") as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def get_ls_sym(): '''Returns list of tickers from nasdaqtrader.com Duplicates and strings with length > 5 are removed Returns: ls_sym (List of str) ''' #df_symbols = get_nasdaq_symbols() #ls_sym = df_symbols.index.to_list() ls_urls = [ 'http://ftp.nasdaqtrader.com/dynamic/SymDir/nasdaqlisted.txt' ,'http://ftp.nasdaqtrader.com/dynamic/SymDir/otherlisted.txt' ] ls_sym = [] for i, url in enumerate(ls_urls): df = pd.read_csv(url, sep='|') for col in list(df): if col in ['ACT Symbol', 'Symbol']: df['sym'] = df[col] ls_sym+=df[df['sym'].str.len()<=5]['sym'].to_list() ls_sym = list(set(ls_sym)) # remove duplicates return ls_sym def get_df_prices(sym, start_str, end_str): '''Return dataframe with minute-level stock price data from start date to end date (inclusive). Args: sym (str): Ticker symbol e.g. 'BYND' start_str (str): Start date string e.g. '2020-07-18' end_str (str): End date string e.g. '2020-07-18' Returns: df (pandas.Dataframe) ''' assert start_str <= end_str end_str_mod=add_days(end_str, 3) with suppress_stdout(): df = yf.download(sym, start=start_str, end=end_str_mod, interval='1m', progress=0, prepost=True).reset_index() is_date_range = ((df['Datetime'].dt.date.astype('str')>=start_str) &(df['Datetime'].dt.date.astype('str')<=end_str)) df = df[is_date_range] df['Datetime'] = df['Datetime'].dt.tz_localize(None) #remove timezone is_reg_hours = ((df['Datetime'].dt.time.astype('str')>='09:30:00') &(df['Datetime'].dt.time.astype('str')<='15:59:00')) df['is_reg_hours'] = np.where(is_reg_hours, 1, 0) df['sym'] = sym df = df.rename(columns={ 'Datetime':'datetime', 'Open':'open', 'High':'high', 'Low':'low', 'Adj Close':'adj_close', 'Volume':'volume' }) ls_col = [ 'sym', 'datetime', 'open', 'high', 'low', 'adj_close', 'volume', 'is_reg_hours', ] return df[ls_col] def add_rsi(df, rsi_period): '''Returns dataframe with additional columns: rsi (float) Args: df (pandas.DataFrame): Must be index sorted by datetime: adj_close (float) rsi_period (int): Number of rsi periods Returns: df (pandas.DataFrame) ''' chg = df['adj_close'].diff(1) gain = chg.mask(chg<0,0) loss = chg.mask(chg>0,0) avg_gain = gain.ewm(com=rsi_period-1, min_periods=rsi_period).mean() avg_loss = loss.ewm(com=rsi_period-1, min_periods=rsi_period).mean() rs = abs(avg_gain/avg_loss) rsi = 100 - (100/(1+rs)) df['rsi14'] = rsi return df def add_vwap(df): '''Returns dataframe with additional columns: vwap (float): Volume Weighted Average Price vwap_var (float): % variance of close from vwap Args: df (pandas.DataFrame): Dataframe with at least columns: datetime open high low adj_close volume Returns: df (pandas.DataFrame) ''' df['vwap'] = (df['volume']*(df['high']+df['low']+df['adj_close'])/3).cumsum()/df['volume'].cumsum() df['vwap'] = df['vwap'].fillna(df['adj_close']) df['vwap_var'] = (df['adj_close']/df['vwap'])-1 return df def get_df_i(sym, date_str, live_data, db, num_candles_min = 200): '''Returns interim dataframe with price data and trading indicators for input symbol and date Args: sym (str) date_str (str) live_data (int) db (Database object) num_candles_min (int) Returns: df_i (pandas.Dataframe) ''' start_str = prev_weekday(date_str) #start 1 day early to get prev day data for rsi etc end_str = add_days(date_str, 3) #extend end date string due to bug if live_data: with suppress_stdout(): df = yf.download(sym, start=start_str, end=end_str, interval='1m', prepost = False, progress=0).reset_index() df['Datetime'] = df['Datetime'].dt.tz_localize(None) #remove timezone df = df.rename(columns={'Adj Close':'adj_close', 'Datetime':'datetime', 'Open':'open', 'High':'high', 'Low':'low', 'Volume':'volume'}) else: q = ''' SELECT * FROM prices_m WHERE is_reg_hours = 1 AND sym='{}' AND DATE(datetime)>='{}' AND DATE(datetime)<='{}' ORDER BY datetime '''.format(sym, start_str, date_str) df = pd.read_sql(q, db.conn) df['datetime'] =
pd.to_datetime(df['datetime'])
pandas.to_datetime
import pandas as pd import pytest import woodwork as ww from woodwork.logical_types import Boolean, Double, Integer from rayml.exceptions import MethodPropertyNotFoundError from rayml.pipelines.components import ( ComponentBase, FeatureSelector, RFClassifierSelectFromModel, RFRegressorSelectFromModel, ) def make_rf_feature_selectors(): rf_classifier = RFClassifierSelectFromModel( number_features=5, n_estimators=10, max_depth=7, percent_features=0.5, threshold=0, ) rf_regressor = RFRegressorSelectFromModel( number_features=5, n_estimators=10, max_depth=7, percent_features=0.5, threshold=0, ) return rf_classifier, rf_regressor def test_init(): rf_classifier, rf_regressor = make_rf_feature_selectors() assert rf_classifier.name == "RF Classifier Select From Model" assert rf_regressor.name == "RF Regressor Select From Model" def test_component_fit(X_y_binary, X_y_multi, X_y_regression): X_binary, y_binary = X_y_binary X_multi, y_multi = X_y_multi X_reg, y_reg = X_y_regression rf_classifier, rf_regressor = make_rf_feature_selectors() assert isinstance(rf_classifier.fit(X_binary, y_binary), ComponentBase) assert isinstance(rf_classifier.fit(X_multi, y_multi), ComponentBase) assert isinstance(rf_regressor.fit(X_reg, y_reg), ComponentBase) def test_feature_selector_missing_component_obj(): class MockFeatureSelector(FeatureSelector): name = "Mock Feature Selector" def fit(self, X, y): return self mock_feature_selector = MockFeatureSelector() mock_feature_selector.fit(pd.DataFrame(), pd.Series()) with pytest.raises( MethodPropertyNotFoundError, match="Feature selector requires a transform method or a component_obj that implements transform", ): mock_feature_selector.transform(pd.DataFrame()) with pytest.raises( MethodPropertyNotFoundError, match="Feature selector requires a transform method or a component_obj that implements transform", ): mock_feature_selector.fit_transform(pd.DataFrame()) def test_feature_selector_component_obj_missing_transform(): class MockFeatureSelector(FeatureSelector): name = "Mock Feature Selector" def __init__(self): self._component_obj = None def fit(self, X, y): return self mock_feature_selector = MockFeatureSelector() mock_feature_selector.fit(pd.DataFrame(), pd.Series()) with pytest.raises( MethodPropertyNotFoundError, match="Feature selector requires a transform method or a component_obj that implements transform", ): mock_feature_selector.transform(pd.DataFrame()) with pytest.raises( MethodPropertyNotFoundError, match="Feature selector requires a transform method or a component_obj that implements transform", ): mock_feature_selector.fit_transform(pd.DataFrame()) def test_feature_selectors_drop_columns_maintains_woodwork(): X = pd.DataFrame({"a": [1, 2, 3], "b": [2, 4, 6], "c": [1, 2, 3], "d": [1, 2, 3]}) X.ww.init(logical_types={"a": "double", "b": "categorical"}) y = pd.Series([0, 1, 1]) rf_classifier, rf_regressor = make_rf_feature_selectors() rf_classifier.fit(X, y) X_t = rf_classifier.transform(X, y) assert len(X_t.columns) == 2 rf_regressor.fit(X, y) X_t = rf_regressor.transform(X, y) assert len(X_t.columns) == 2 @pytest.mark.parametrize( "X_df", [ pd.DataFrame( pd.to_datetime(["20190902", "20200519", "20190607"], format="%Y%m%d") ), pd.DataFrame(pd.Series([1, 2, 3], dtype="Int64")), pd.DataFrame(pd.Series([1.0, 2.0, 3.0], dtype="float")), pd.DataFrame(pd.Series(["a", "b", "a"], dtype="category")), pd.DataFrame(pd.Series([True, False, True], dtype="boolean")), pd.DataFrame( pd.Series( ["this will be a natural language column because length", "yay", "hay"], dtype="string", ) ), ], ) def test_feature_selectors_woodwork_custom_overrides_returned_by_components(X_df): rf_classifier, rf_regressor = make_rf_feature_selectors() y =
pd.Series([1, 2, 1])
pandas.Series
# pylint:disable=missing-docstring,redefined-outer-name import pytest import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal from survey_toolkit.core import MultipleChoiceQuestion @pytest.fixture def question(): return MultipleChoiceQuestion('favouritePhones', 'What are your favourite phone brands?') def test_add_answer_when_no_choices_given(question): question.add_answer(['Windows Phone', 'Nokia']) question.add_answer(None) assert question.answers[-2] == ['Windows Phone', 'Nokia'] assert question.answers[-1] is None def test_add_noniterable_answer(question): question.add_answer('Windows Phone') question.add_answer(None) assert question.answers[-2] == ['Windows Phone'] assert question.answers[-1] is None def test_add_answer_when_choices_given_as_list(question): question.choices = ['Huawei', 'iPhone', 'Nokia', 'Samsung', 'Xiaomi'] question.add_answer(['Huawei', 'iPhone']) question.add_answer(None) assert question.answers[-2] == ['Huawei', 'iPhone'] assert question.answers[-1] is None def test_add_answer_not_in_choices(question): with pytest.raises(ValueError): question.choices = ['Huawei', 'iPhone', 'Nokia', 'Samsung', 'Xiaomi'] question.add_answer('Windows Phone') def test_add_answer_when_choices_given_as_dict(question): question.choices = {1: 'iPhone', 2: 'Samsung', 3: 'Huawei', 4: 'Xiaomi', 5: 'Nokia'} question.add_answer([1, 2]) question.add_answer(None) assert question.answers[-2] == [1, 2] assert question.answers[-1] is None def test_to_series(question): answers = [['Samsung', 'iPhone'], None, ['Nokia'], ['Huawei', 'Xiaomi']] question.choices = ['Huawei', 'iPhone', 'Nokia', 'Samsung', 'Xiaomi'] question.answers = answers series = question.to_series() expected =
pd.Series(answers, name='favouritePhones')
pandas.Series
# import libraries that we need import glob, os, re import pandas as pd from lib.export import export_files from lib.filesearch import find_participants, find_highest_export # import custom-made functions that we'll need from lib.sorting import Sorting, process_surfaces, merge_all_dataframes, extract_survey # set root to current path location top_root = os.path.join(os.getcwd(), 'data') # set or create directory for saving logs savelogs_directory = os.path.join(os.getcwd(), 'data', 'analysis') if not os.path.exists(savelogs_directory): os.makedirs(top_root + "/processed") os.makedirs(top_root + "/analysis") # keeps track of any issues and saves to file at end issues = pd.DataFrame(columns=['participant', 'error']) # read in survey key survey_key = pd.read_csv('./lib/survey_key-SA.csv') # figure out the participants in each sub-directory # each participant = full path to their datafolder included_participants = find_participants(os.path.join(top_root, "raw")) # cycle through participants for next_participant in included_participants: # set participant's working directories root = next_participant containing_directory = os.path.abspath(os.path.join(root, "../")) # sets participant info for documentation purposes participant_info = re.sub("_pupil", "", os.path.split(containing_directory)[1]) # identify log file path try: logfile_path = glob.glob(containing_directory + '/*.log')[0] except IndexError: # a .log file wasn't found in the participants directory # aka index [0] doesn't exist, so document issue and continue to next? issues.append( {'participant': participant_info, 'error': 'logfile not found/glob list empty'}, ignore_index=True) continue try: infofile_path = glob.glob(containing_directory + './info.csv')[0] except IndexError: issues.append( {'participant': participant_info, 'error': 'info.csv not found/glob list empty'}, ignore_index=True) continue # look for the exports folder exportfolder_path = find_highest_export(os.path.join(root, 'exports')) # gaze/position file paths full_gaze_path = glob.glob(exportfolder_path + '/gaze_positions.csv')[0] gazesurface_path = glob.glob(exportfolder_path + '/surfaces/gaze_positions*.csv')[0] surfaceevents_path = os.path.join(exportfolder_path, 'surfaces', 'surface_events.csv') # initialize the Sort class sort = Sorting(savelogs_directory) # process the surface file processed_surfaces = process_surfaces(surfaceevents_path, full_gaze_path) # process the logfile [full_logfile, processed_img_logs] = sort.logsort(logfile_path, infofile_path) # adjust the timestamps for gaze on recognized surfaces gaze_surface_df =
pd.read_csv(gazesurface_path)
pandas.read_csv
from itertools import combinations import numpy as np import pandas as pd import pytest from synthesized_insight.check import ColumnCheck from synthesized_insight.metrics import ( CramersV, DistanceCNCorrelation, DistanceNNCorrelation, EarthMoversDistance, EarthMoversDistanceBinned, HellingerDistance, JensenShannonDivergence, KendallTauCorrelationTest, KullbackLeiblerDivergence, Mean, Norm, R2Mcfadden, StandardDeviation, ) mean = Mean() std_dev = StandardDeviation() cramers_v = CramersV() emd = EarthMoversDistance() kendell_tau_correlation_test = KendallTauCorrelationTest() hellinger_distance = HellingerDistance() distance_nn_corr = DistanceNNCorrelation() distance_cn_corr = DistanceCNCorrelation() kl_divergence = KullbackLeiblerDivergence() js_divergence = JensenShannonDivergence() r2_mcfadden = R2Mcfadden() norm = Norm() norm_ord1 = Norm(ord=1) @pytest.fixture(scope='module') def df(): df = pd.read_csv("tests/datasets/mini_compas.csv") return df @pytest.fixture(scope='module') def group1(df): pred1 = df["Ethnicity"] == "Caucasian" target_attr = "RawScore" group1 = df[pred1][target_attr] return group1 @pytest.fixture(scope='module') def group2(df): pred2 = df["Ethnicity"] == "African-American" target_attr = "RawScore" group2 = df[pred2][target_attr] return group2 @pytest.fixture(scope='module') def group3(group2): group3 = group2.sort_values()[len(group2) // 2:] return group3 @pytest.fixture def data1(): return np.random.normal(0, 1, 1000) @pytest.fixture def data2(): return np.random.normal(1, 1, 1000) def test_mean(): sr_a = pd.Series(np.arange(100), name='a') val_a = mean(sr=sr_a) assert val_a == 49.5 sr_b = pd.Series(np.datetime64('2020-01-01') + np.arange(0, 3, step=1).astype('m8[D]'), name='b') val_b = mean(sr=sr_b) assert val_b == np.datetime64('2020-01-02') sr_c = pd.Series(['a', 'b', 'c', 'd'], name='c') val_c = mean(sr=sr_c) assert val_c is None def test_standard_deviation(): sr_a = pd.Series(np.random.normal(0, 1, 100), name='a') val_a = std_dev(sr=sr_a) assert val_a is not None sr_b = pd.Series(np.datetime64('2020-01-01') + np.arange(0, 20, step=1).astype('m8[D]'), name='b') val_b = std_dev(sr=sr_b) assert val_b is not None sr_c = pd.Series(['a', 'b', 'c', 'd'], name='c') val_c = std_dev(sr=sr_c) assert val_c is None def test_em_distance(): sr_a = pd.Series(np.random.normal(0, 1, 100), name='a') sr_b = pd.Series(['a', 'b', 'c', 'd'], name='b') assert emd(sr_a, sr_a) is None assert emd(sr_b, sr_b) is not None def test_cramers_v_basic(): sr_a =
pd.Series([1, 2, 3, 1, 2, 3, 1, 2, 3] * 100, name='a')
pandas.Series
import json import os import pickle import boto3 import numpy as np import pandas as pd from ticket_closure_lib.transformers import DateColTransformer # noqa from ticket_closure_lib.transformers import FeatureRemover # noqa from ticket_closure_lib.transformers import OrdinalConverter # noqa class TicketPredictor: def __init__(self, model_file="model.pkl"): self.mod = pickle.load(open(model_file, "rb")) self.columns = [ "reassignment_count", "reopen_count", "sys_mod_count", "opened_at", "sys_created_at", "sys_updated_at", "contact_type", "location", "category", "subcategory", "u_symptom", "cmdb_ci", "impact", "urgency", "priority", "assignment_group", "u_priority_confirmation", "notify", "problem_id", ] def predict_json(self, in_data): if isinstance(in_data, dict): in_data = [in_data] assert isinstance(in_data, list), "Input data should be a list of dictionaries" in_df = pd.DataFrame.from_records(in_data) # make sure column order is right in_df = in_df[self.columns] for date_col in ["opened_at", "sys_created_at", "sys_updated_at"]: in_df[date_col] =
pd.to_datetime(in_df[date_col], format="%d/%m/%Y %H:%M")
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Combined scheduling and planning models (deterministic and robust). ''' import pyomo.environ as pyomo from pyomo.opt import SolverStatus, TerminationCondition import numpy as np import time import pandas as pd import dill import collections from stn.deg import degradationModel, calc_p_fail from stn.blocks import (blockScheduling, blockSchedulingRobust, blockPlanning, blockPlanningRobust) class stnModel(object): """Deterministic model of the STN.""" def __init__(self, stn=None): self.Demand = {} # demand for products if stn is None: self.stn = stnStruct() # contains STN architecture else: self.stn = stn self.m_list = [] self.gapmin = 100 self.gapmax = 0 self.gapmean = 0 self.alpha = 0.5 self.rid = 0 self.prefix = '' self.rdir = 'results' def solve(self, T_list, periods=1, solver='cplex', solverparams=None, save=False, trace=False, gantt=True, **kwargs): """ Solves the model T_list: [] periods: number of rolling horizon periods solver: specifies which solver to use prefix: added to all file names rdir: directory for result files solverparams: dictionary of solver parameters save: save results as .pyomo? trace: generate trace? gantt: generate gantt graphs? """ # Initialize solver and set parameters ts = time.time() self.solver = pyomo.SolverFactory(solver) if solverparams is not None: for key, value in solverparams.items(): self.solver.options[key] = value # Rolling horizon for period in range(0, periods): if periods > 1: rolling = True else: rolling = False # Build model self.build(T_list, period=period, rolling=rolling, **kwargs) logfile = self.prfx + "STN.log" # Solve model results = self.solver.solve(self.model, tee=True, keepfiles=True, symbolic_solver_labels=True, logfile=logfile) results.write() # Check if solver exited normally if ((results.solver.status == SolverStatus.ok) and (results.solver.termination_condition == TerminationCondition.optimal or results.solver.termination_condition == TerminationCondition.maxTimeLimit)): # Calculate MIP Gap obj = self.model.Obj() gap = self.solver._gap if gap is None: gap = 0.0 self.gapmin = min(self.gapmin, gap/obj*100) self.gapmax = max(self.gapmax, gap/obj*100) self.gapmean = (self.gapmean * period/(period+1) + (1 - period/(period + 1)) * gap/obj*100) # Save results if save: with open(self.prfx+'output.txt', 'w') as f: f.write("STN Output:") self.model.display(ostream=f) with open(self.prfx+'STN.pyomo', 'wb') as dill_file: dill.dump(self.model, dill_file) if gantt: self.sb.gantt() self.pb.gantt() if trace: self.sb.trace() self.pb.trace() if periods > 1: self.transfer_next_period(**kwargs) # Add current model to list self.m_list.append(self.model) else: break self.ttot = time.time() - ts def build(self, T_list, objective="terminal", period=None, alpha=0.5, extend=False, rdir='results', prefix='', rolling=False, rid=None, **kwargs): """Build STN model.""" assert period is not None self.rdir = rdir self.prefix = prefix if rid is not None: self.rid = rid else: try: df = pd.read_pickle(self.rdir+"/"+self.prefix+"results.pkl") self.rid = max(df["id"]) + 1 except IOError: pass self.prfx = self.rdir + "/" + self.prefix + str(self.rid) if rolling: self.prfx += "_" + str(period) self.model = pyomo.ConcreteModel() m = self.model stn = self.stn m.cons = pyomo.ConstraintList() m.ptransfer = pyomo.Var(stn.tasks, stn.units, stn.opmodes, domain=pyomo.NonNegativeReals) m.Btransfer = pyomo.Var(stn.tasks, stn.units, stn.opmodes, domain=pyomo.NonNegativeReals) m.tautransfer = pyomo.Var(stn.units, domain=pyomo.NonNegativeReals) m.Dslack = pyomo.Var(stn.states, domain=pyomo.NonNegativeReals) m.TotSlack = pyomo.Var(domain=pyomo.NonNegativeReals) # replace D by Dmax if alpha != self.alpha if alpha != self.alpha: for j in stn.units: for i in stn.I[j]: for k in stn.O[j]: tm = i + "-" + k p = stn.p[i, j, k] D = stn.deg[j].get_mu(tm, p) eps = stn.deg[j].get_eps(alpha, tm, p) # X = stn.deg[j].get_quantile(alpha, tm, p) # stn.D[i, j, k] = 2*D - X stn.D[i, j, k] = D*(1 + eps) self.alpha = alpha # scheduling and planning block Ts = T_list[0] dTs = T_list[1] Tp = T_list[2] dTp = T_list[3] Ts_start = period * Ts Tp_start = (period + 1) * Ts Ts = Ts_start + Ts if extend: Tp = Ts_start + Tp self.add_blocks([Ts_start, Ts, dTs], [Tp_start, Tp, dTp], objective=objective, **kwargs) # add continuity constraints to model self.add_unit_constraints() self.add_state_constraints() self.add_deg_constraints(**kwargs) # add objective function to model self.add_objective() def add_blocks(self, TIMEs, TIMEp, **kwargs): """Add scheduling and planning block to model.""" stn = self.stn m = self.model m.sb = pyomo.Block() self.sb = blockScheduling(stn, TIMEs, self.Demand, prfx=self.prfx, **kwargs) self.sb.define_block(m.sb, **kwargs) m.pb = pyomo.Block() self.pb = blockPlanning(stn, TIMEp, self.Demand, prfx=self.prfx, **kwargs) self.pb.define_block(m.pb, **kwargs) def add_unit_constraints(self): """Add unit allocation continuity constraints to model.""" m = self.model stn = self.stn # continuity of allocation for j in stn.units: rhs = 0 for i in stn.I[j]: for k in stn.O[j]: # Add processing time of tasks started in scheduling # horizon rhs2 = 0 rhs3 = 0 for tprime in self.sb.TIME[self.sb.TIME >= self.sb.T - stn.p[i, j, k] + self.sb.dT]: rhs2 += (m.sb.W[i, j, k, tprime] * (stn.p[i, j, k] - (self.sb.T - tprime))) rhs += rhs2 rhs3 += m.sb.B[i, j, k, tprime] m.cons.add(m.ptransfer[i, j, k] == rhs2) m.cons.add(m.Btransfer[i, j, k] == rhs3) # Add time for maintenance started in scheduling horizon rhs2 = 0 for tprime in self.sb.TIME[(self.sb.TIME >= self.sb.T - stn.tau[j] + self.sb.dT)]: rhs2 += m.sb.M[j, tprime]*(stn.tau[j] - (self.sb.T - tprime)) rhs += rhs2 m.cons.add(m.pb.Ntransfer[j] == rhs) # TODO: should this time? m.cons.add(m.tautransfer[j] == rhs2) def add_state_constraints(self): """Add state continuity constraints to model.""" m = self.model stn = self.stn for s in stn.states: # Calculate states at end of scheduling horizon rhs = m.sb.S[s, self.sb.T - self.sb.dT] for i in stn.T_[s]: for j in stn.K[i]: for k in stn.O[j]: rhs += (stn.rho_[(i, s)] * m.sb.B[i, j, k, self.sb.T - stn.p[i, j, k]]) # Subtract demand from last scheduling period if (s, self.sb.TIME[0]) in self.Demand: rhs -= self.Demand[s, self.sb.TIME[0]] rhs += m.Dslack[s] m.cons.add(m.sb.Sfin[s] == rhs) m.cons.add(0 <= m.sb.Sfin[s] <= stn.C[s]) # Calculate amounts transfered into planning period for i in stn.T_[s]: for j in stn.K[i]: for k in stn.O[j]: for tprime in self.sb.TIME[self.sb.TIME >= self.sb.T - stn.p[i, j, k] + self.sb.dT]: rhs += stn.rho_[(i, s)] * m.sb.B[i, j, k, tprime] m.cons.add(m.pb.Stransfer[s] == rhs) def add_deg_constraints(self, **kwargs): """Add residual life continuity constraints to model.""" stn = self.stn m = self.model for j in stn.units: m.cons.add(m.pb.Rtransfer[j] == m.sb.R[j, self.sb.T - self.sb.dT]) def add_objective(self): """Add objective function.""" m = self.model stn = self.stn totslack = 0 for s in stn.states: totslack += m.Dslack[s] for t in m.sb.TIME: totslack += m.sb.Sslack[s, t] for t in m.pb.TIME: totslack += m.pb.Dslack[s, t] m.cons.add(m.TotSlack == totslack) m.Obj = pyomo.Objective(expr=m.sb.Cost # cost scheduling blk + m.pb.Cost # cost planning blk + m.TotSlack*10000, # penalize slack vars sense=pyomo.minimize) def demand(self, state, time, Demand): """Add demand to model.""" self.Demand[state, time] = Demand def uncertainty(self, alpha): """Set uncertainty set size parameter.""" self.alpha = alpha def transfer_next_period(self, **kwargs): """ Transfer results from previous scheduling period to next (rolling horizon). """ m = self.model stn = self.stn for s in stn.states: stn.init[s] = m.sb.Sfin[s]() for j in stn.units: for i in stn.I[j]: for k in stn.O[j]: stn.pinit[i, j, k] = m.ptransfer[i, j, k]() stn.Binit[i, j, k] = m.Btransfer[i, j, k]() stn.tauinit[j] = m.tautransfer[j]() if m.ptransfer[i, j, k]() < self.sb.dT/2: stn.pinit[i, j, k] = 0 stn.Binit[i, j, k] = 0 if m.tautransfer[j]() < self.sb.dT/2: stn.tauinit[j] = 0 stn.Rinit[j] = m.sb.R[j, self.sb.T - self.sb.dT]() def loadres(self, prefix="", f="STN.pyomo", periods=0): if periods == 0: with open(prefix + f, 'rb') as dill_file: self.model = dill.load(dill_file) else: for period in range(0, periods): with open(prefix + str(period) + f, 'rb') as dill_file: m = dill.load(dill_file) self.m_list.append(m) self.model = m self.sb.b = m.sb self.pb.b = m.pb def get_gap(self): return self.gapmax, self.gapmean, self.gapmin def calc_p_fail(self, units=None, TP=None, periods=0, pb=True, save=True): assert TP is not None if units is None: units = self.stn.units elif type(units) == str: units = set([units]) df =
pd.DataFrame(columns=units)
pandas.DataFrame
from unittest.mock import patch import pytest from AWS_AACT_Pipeline.categorize_driver import Driver from AWS_AACT_Pipeline.mock_db_manager import MockDatabaseManager from AWS_AACT_Pipeline.categorizer import Categorizer from AWS_AACT_Pipeline.mock_db import MockDatabase import pandas as pd def test_missing_json_file(): categorizer = Categorizer() pytest.raises(Exception, categorizer.read_file_conditions, "fake_json") def test_misformatted_json_file(): categorizer = Categorizer() pytest.raises(Exception, categorizer.read_file_conditions, "misformatted_json") def test_good_driver_call(): og_df = pd.DataFrame(columns=['color', 'nct_id'], index=['kylie','willy', 'riley', 'ben', 'jonah']) og_df.loc['kylie'] = pd.Series({'color': "yellow", 'nct_id': 1}) og_df.loc['willy'] = pd.Series({'color': "turquoise", 'nct_id': 2}) og_df.loc['riley'] = pd.Series({'color': "blue", 'nct_id': 3}) og_df.loc['ben'] = pd.Series({'color': "blue", 'nct_id': 4}) og_df.loc['jonah'] = pd.Series({'color': "blue", 'nct_id': 5}) end_df =
pd.DataFrame(columns=['nct_id', 'color_category'], index=['kylie', 'willy', 'riley', 'ben', 'jonah'])
pandas.DataFrame
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([pd.NaT]), [False, True]) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(expected, idx.isin(values, level=0)) self.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) self.assertRaises(IndexError, idx.isin, values, level=1) self.assertRaises(IndexError, idx.isin, values, level=10) self.assertRaises(IndexError, idx.isin, values, level=-2) self.assertRaises(KeyError, idx.isin, values, level=1.0) self.assertRaises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' self.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) self.assertRaises(KeyError, idx.isin, values, level='xyzzy') self.assertRaises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) self.assert_numpy_array_equal(res,np.array([True,True,True,True],dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) self.assertTrue(result.equals(self.strIndex)) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') self.assertEqual(idx.name, idx[1:].name) def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) self.assertIs(res, joined) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) self.assertTrue(idx[1:3].identical( pd.Index([2, 3], dtype=np.object_))) self.assertTrue(idx[[0,1]].identical( pd.Index([1, 2], dtype=np.object_))) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None self.assertEqual(idx.reindex([])[0].name, None) self.assertEqual(idx.reindex(np.array([]))[0].name, None) self.assertEqual(idx.reindex(idx.tolist())[0].name, None) self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, None) self.assertEqual(idx.reindex(idx.values)[0].name, None) self.assertEqual(idx.reindex(idx.values[:-1])[0].name, None) # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, None) self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, None) idx.name = 'foobar' self.assertEqual(idx.reindex([])[0].name, 'foobar') self.assertEqual(idx.reindex(np.array([]))[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist())[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values[:-1])[0].name, 'foobar') # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, 'foobar') def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type([]), np.object_) self.assertEqual(get_reindex_type(np.array([])), np.object_) self.assertEqual(get_reindex_type(np.array([], dtype=np.int64)), np.object_) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type(pd.Int64Index([])), np.int64) self.assertEqual(get_reindex_type(pd.Float64Index([])), np.float64) self.assertEqual(get_reindex_type(pd.DatetimeIndex([])), np.datetime64) reindexed = idx.reindex(pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] self.assertEqual(reindexed.levels[0].dtype.type, np.int64) self.assertEqual(reindexed.levels[1].dtype.type, np.float64) class Numeric(Base): def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx * idx tm.assert_index_equal(result, didx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * date_range('20130101',periods=5)) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_explicit_conversions(self): # GH 8608 # add/sub are overriden explicity for Float/Int Index idx = self._holder(np.arange(5,dtype='int64')) # float conversions arr = np.arange(5,dtype='int64')*3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx,expected) fidx = 3.2 * idx tm.assert_index_equal(fidx,expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5,dtype='float64') result = fidx - a tm.assert_index_equal(result,expected) expected = Float64Index(-arr) a = np.zeros(5,dtype='float64') result = a - fidx tm.assert_index_equal(result,expected) def test_ufunc_compat(self): idx = self._holder(np.arange(5,dtype='int64')) result = np.sin(idx) expected = Float64Index(np.sin(np.arange(5,dtype='int64'))) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric, tm.TestCase): _holder = Float64Index _multiprocess_can_split_ = True def setUp(self): self.mixed = Float64Index([1.5, 2, 3, 4, 5]) self.float = Float64Index(np.arange(5) * 2.5) def create_index(self): return Float64Index(np.arange(5,dtype='float64')) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.float).__name__): hash(self.float) def test_repr_roundtrip(self): for ind in (self.mixed, self.float): tm.assert_index_equal(eval(repr(ind)), ind) def check_is_index(self, i): self.assertIsInstance(i, Index) self.assertNotIsInstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): self.assertTrue(a.equals(b)) if is_float_index: self.assertIsInstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1,2,3,4,5]) self.assertIsInstance(index, Float64Index) self.assertTrue((index.values == np.array([1,2,3,4,5],dtype='float64')).all()) index = Float64Index(np.array([1,2,3,4,5])) self.assertIsInstance(index, Float64Index) index = Float64Index([1.,2,3,4,5]) self.assertIsInstance(index, Float64Index) index = Float64Index(np.array([1.,2,3,4,5])) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, float) index = Float64Index(np.array([1.,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) index = Float64Index(np.array([1,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) # nan handling result = Float64Index([np.nan, np.nan]) self.assertTrue(pd.isnull(result.values).all()) result = Float64Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) result = Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) def test_constructor_invalid(self): # invalid self.assertRaises(TypeError, Float64Index, 0.) self.assertRaises(TypeError, Float64Index, ['a','b',0.]) self.assertRaises(TypeError, Float64Index, [Timestamp('20130101')]) def test_constructor_coerce(self): self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5])) self.check_coerce(self.float,Index(np.arange(5) * 2.5)) self.check_coerce(self.float,Index(np.array(np.arange(5) * 2.5, dtype=object))) def test_constructor_explicit(self): # these don't auto convert self.check_coerce(self.float,Index((np.arange(5) * 2.5), dtype=object), is_float_index=False) self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5],dtype=object), is_float_index=False) def test_astype(self): result = self.float.astype(object) self.assertTrue(result.equals(self.float)) self.assertTrue(self.float.equals(result)) self.check_is_index(result) i = self.mixed.copy() i.name = 'foo' result = i.astype(object) self.assertTrue(result.equals(i)) self.assertTrue(i.equals(result)) self.check_is_index(result) def test_equals(self): i = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i2)) i = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i2)) def test_get_loc_na(self): idx = Float64Index([np.nan, 1, 2]) self.assertEqual(idx.get_loc(1), 1) self.assertEqual(idx.get_loc(np.nan), 0) idx = Float64Index([np.nan, 1, np.nan]) self.assertEqual(idx.get_loc(1), 1) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_contains_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(np.nan in i) def test_contains_not_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(1.0 in i) def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) self.assertFalse(i.isin([0]).item()) self.assertFalse(i.isin([1]).item()) self.assertTrue(i.isin([np.nan]).item()) def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) np.testing.assert_array_equal(i.isin([1.0]), np.array([True, False])) np.testing.assert_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, True])) np.testing.assert_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, False])) def test_astype_from_object(self): index = Index([1.0, np.nan, 0.2], dtype='object') result = index.astype(float) expected = Float64Index([1.0, np.nan, 0.2]) tm.assert_equal(result.dtype, expected.dtype) tm.assert_index_equal(result, expected) class TestInt64Index(Numeric, tm.TestCase): _holder = Int64Index _multiprocess_can_split_ = True def setUp(self): self.index = Int64Index(np.arange(0, 20, 2)) def create_index(self): return Int64Index(np.arange(5,dtype='int64')) def test_too_many_names(self): def testit(): self.index.names = ["roger", "harold"] assertRaisesRegexp(ValueError, "^Length", testit) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = np.array([-5, 0, 1, 2], dtype=np.int64) self.assert_numpy_array_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) self.assert_numpy_array_equal(index, expected) # scalar raise Exception self.assertRaises(TypeError, Int64Index, 5) # copy arr = self.index.values new_index = Int64Index(arr, copy=True) self.assert_numpy_array_equal(new_index, self.index) val = arr[0] + 3000 # this should not change index arr[0] = val self.assertNotEqual(new_index[0], val) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) self.assertEqual(index.values.dtype, np.int64) self.assertTrue(index.equals(arr)) # preventing casting arr = np.array([1, '2', 3, '4'], dtype=object) with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr_with_floats) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_copy(self): i = Int64Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Int64Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_coerce_list(self): # coerce things arr = Index([1, 2, 3, 4]) tm.assert_isinstance(arr, Int64Index) # but not if explicit dtype passed arr = Index([1, 2, 3, 4], dtype=object) tm.assert_isinstance(arr, Index) def test_dtype(self): self.assertEqual(self.index.dtype, np.int64) def test_is_monotonic(self): self.assertTrue(self.index.is_monotonic) self.assertTrue(self.index.is_monotonic_increasing) self.assertFalse(self.index.is_monotonic_decreasing) index = Int64Index([4, 3, 2, 1]) self.assertFalse(index.is_monotonic) self.assertTrue(index.is_monotonic_decreasing) index = Int64Index([1]) self.assertTrue(index.is_monotonic) self.assertTrue(index.is_monotonic_increasing) self.assertTrue(index.is_monotonic_decreasing) def test_is_monotonic_na(self): examples = [Index([np.nan]), Index([np.nan, 1]), Index([1, 2, np.nan]), Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT']), ] for index in examples: self.assertFalse(index.is_monotonic_increasing) self.assertFalse(index.is_monotonic_decreasing) def test_equals(self): same_values = Index(self.index, dtype=object) self.assertTrue(self.index.equals(same_values)) self.assertTrue(same_values.equals(self.index)) def test_identical(self): i = Index(self.index.copy()) self.assertTrue(i.identical(self.index)) same_values_different_type = Index(i, dtype=object) self.assertFalse(i.identical(same_values_different_type)) i = self.index.copy(dtype=object) i = i.rename('foo') same_values = Index(i, dtype=object) self.assertTrue(same_values.identical(self.index.copy(dtype=object))) self.assertFalse(i.identical(self.index)) self.assertTrue(Index(same_values, name='foo', dtype=object ).identical(i)) self.assertFalse( self.index.copy(dtype=object) .identical(self.index.copy(dtype='int64'))) def test_get_indexer(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_pad(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) self.assert_numpy_array_equal(indexer, expected) def test_get_indexer_backfill(self): target = Int64Index(np.arange(10)) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5]) self.assert_numpy_array_equal(indexer, expected) def test_join_outer(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic # guarantee of sortedness res, lidx, ridx = self.index.join(other, how='outer', return_indexers=True) noidx_res = self.index.join(other, how='outer') self.assertTrue(res.equals(noidx_res)) eres = Int64Index([0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 25]) elidx = np.array([0, -1, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, 9, -1], dtype=np.int64) eridx = np.array([-1, 3, 4, -1, 5, -1, 0, -1, -1, 1, -1, -1, -1, 2], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='outer', return_indexers=True) noidx_res = self.index.join(other_mono, how='outer') self.assertTrue(res.equals(noidx_res)) eridx = np.array([-1, 0, 1, -1, 2, -1, 3, -1, -1, 4, -1, -1, -1, 5], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_inner(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='inner', return_indexers=True) # no guarantee of sortedness, so sort for comparison purposes ind = res.argsort() res = res.take(ind) lidx = lidx.take(ind) ridx = ridx.take(ind) eres = Int64Index([2, 12]) elidx = np.array([1, 6]) eridx = np.array([4, 1]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='inner', return_indexers=True) res2 = self.index.intersection(other_mono) self.assertTrue(res.equals(res2)) eridx = np.array([1, 4]) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) def test_join_left(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) eres = self.index eridx = np.array([-1, 4, -1, -1, -1, -1, 1, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='left', return_indexers=True) eridx = np.array([-1, 1, -1, -1, -1, -1, 4, -1, -1, -1], dtype=np.int64) tm.assert_isinstance(res, Int64Index) self.assertTrue(res.equals(eres)) self.assertIsNone(lidx) self.assert_numpy_array_equal(ridx, eridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx2.join(idx, how='left', return_indexers=True) eres = idx2 eridx = np.array([0, 2, 3, -1, -1]) elidx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) """ def test_join_right(self): other = Int64Index([7, 12, 25, 1, 2, 5]) other_mono = Int64Index([1, 2, 5, 7, 12, 25]) # not monotonic res, lidx, ridx = self.index.join(other, how='right', return_indexers=True) eres = other elidx = np.array([-1, 6, -1, -1, 1, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='right', return_indexers=True) eres = other_mono elidx = np.array([-1, 1, -1, -1, 6, -1], dtype=np.int64) tm.assert_isinstance(other, Int64Index) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assertIsNone(ridx) # non-unique """ idx = Index([1,1,2,5]) idx2 = Index([1,2,5,7,9]) res, lidx, ridx = idx.join(idx2, how='right', return_indexers=True) eres = idx2 elidx = np.array([0, 2, 3, -1, -1]) eridx = np.array([0, 1, 2, 3, 4]) self.assertTrue(res.equals(eres)) self.assert_numpy_array_equal(lidx, elidx) self.assert_numpy_array_equal(ridx, eridx) idx = Index([1,1,2,5]) idx2 = Index([1,2,5,9,7]) res = idx.join(idx2, how='right', return_indexers=False) eres = idx2 self.assert(res.equals(eres)) """ def test_join_non_int_index(self): other = Index([3, 6, 7, 8, 10], dtype=object) outer = self.index.join(other, how='outer') outer2 = other.join(self.index, how='outer') expected = Index([0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 18], dtype=object) self.assertTrue(outer.equals(outer2)) self.assertTrue(outer.equals(expected)) inner = self.index.join(other, how='inner') inner2 = other.join(self.index, how='inner') expected = Index([6, 8, 10], dtype=object) self.assertTrue(inner.equals(inner2)) self.assertTrue(inner.equals(expected)) left = self.index.join(other, how='left') self.assertTrue(left.equals(self.index)) left2 = other.join(self.index, how='left') self.assertTrue(left2.equals(other)) right = self.index.join(other, how='right') self.assertTrue(right.equals(other)) right2 = other.join(self.index, how='right') self.assertTrue(right2.equals(self.index)) def test_join_non_unique(self): left = Index([4, 4, 3, 3]) joined, lidx, ridx = left.join(left, return_indexers=True) exp_joined = Index([3, 3, 3, 3, 4, 4, 4, 4]) self.assertTrue(joined.equals(exp_joined)) exp_lidx = np.array([2, 2, 3, 3, 0, 0, 1, 1], dtype=np.int64) self.assert_numpy_array_equal(lidx, exp_lidx) exp_ridx = np.array([2, 3, 2, 3, 0, 1, 0, 1], dtype=np.int64) self.assert_numpy_array_equal(ridx, exp_ridx) def test_join_self(self): kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = self.index.join(self.index, how=kind) self.assertIs(self.index, joined) def test_intersection(self): other = Index([1, 2, 3, 4, 5]) result = self.index.intersection(other) expected = np.sort(np.intersect1d(self.index.values, other.values)) self.assert_numpy_array_equal(result, expected) result = other.intersection(self.index) expected = np.sort(np.asarray(np.intersect1d(self.index.values, other.values))) self.assert_numpy_array_equal(result, expected) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) res = i2.intersection(i1) self.assertEqual(len(res), 0) def test_union_noncomparable(self): from datetime import datetime, timedelta # corner case, non-Int64Index now = datetime.now() other = Index([now + timedelta(i) for i in range(4)], dtype=object) result = self.index.union(other) expected = np.concatenate((self.index, other)) self.assert_numpy_array_equal(result, expected) result = other.union(self.index) expected = np.concatenate((other, self.index)) self.assert_numpy_array_equal(result, expected) def test_cant_or_shouldnt_cast(self): # can't data = ['foo', 'bar', 'baz'] self.assertRaises(TypeError, Int64Index, data) # shouldn't data = ['0', '1', '2'] self.assertRaises(TypeError, Int64Index, data) def test_view_Index(self): self.index.view(Index) def test_prevent_casting(self): result = self.index.astype('O') self.assertEqual(result.dtype, np.object_) def test_take_preserve_name(self): index = Int64Index([1, 2, 3, 4], name='foo') taken = index.take([3, 0, 1]) self.assertEqual(index.name, taken.name) def test_int_name_format(self): from pandas import Series, DataFrame index = Index(['a', 'b', 'c'], name=0) s = Series(lrange(3), index) df = DataFrame(lrange(3), index=index) repr(s) repr(df) def test_print_unicode_columns(self): df = pd.DataFrame( {u("\u05d0"): [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): r = repr(pd.Index(np.arange(1000))) self.assertTrue(len(r) < 100) self.assertTrue("..." in r) def test_repr_roundtrip(self): tm.assert_index_equal(eval(repr(self.index)), self.index) def test_unicode_string_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): idx = Index(lrange(1000)) if compat.PY3: bytes(idx) else: str(idx) def test_slice_keep_name(self): idx = Int64Index([1, 2], name='asdf') self.assertEqual(idx.name, idx[1:].name) class TestDatetimeIndex(Base, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def create_index(self): return date_range('20130101',periods=5) def test_pickle_compat_construction(self): pass def test_numeric_compat(self): super(TestDatetimeIndex, self).test_numeric_compat() if not compat.PY3_2: for f in [lambda : np.timedelta64(1, 'D').astype('m8[ns]') * pd.date_range('2000-01-01', periods=3), lambda : pd.date_range('2000-01-01', periods=3) * np.timedelta64(1, 'D').astype('m8[ns]') ]: self.assertRaises(TypeError, f) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index=date_range('20130101',periods=3,tz='US/Eastern',name='foo') unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): # GH7774 index = date_range('20130101', periods=3, tz='US/Eastern') self.assertEqual(str(index.reindex([])[0].tz), 'US/Eastern') self.assertEqual(str(index.reindex(np.array([]))[0].tz), 'US/Eastern') class TestPeriodIndex(Base, tm.TestCase): _holder = PeriodIndex _multiprocess_can_split_ = True def create_index(self): return period_range('20130101',periods=5,freq='D') def test_pickle_compat_construction(self): pass class TestTimedeltaIndex(Base, tm.TestCase): _holder = TimedeltaIndex _multiprocess_can_split_ = True def create_index(self): return pd.to_timedelta(range(5),unit='d') + pd.offsets.Hour(1) def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * idx) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_pickle_compat_construction(self): pass class TestMultiIndex(Base, tm.TestCase): _holder = MultiIndex _multiprocess_can_split_ = True _compat_props = ['shape', 'ndim', 'size', 'itemsize'] def setUp(self): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=self.index_names, verify_integrity=False) def create_index(self): return self.index def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) self.assertTrue(i.labels[0].dtype == 'int8') self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(40)]) self.assertTrue(i.labels[1].dtype == 'int8') i = MultiIndex.from_product([['a'],range(400)]) self.assertTrue(i.labels[1].dtype == 'int16') i = MultiIndex.from_product([['a'],range(40000)]) self.assertTrue(i.labels[1].dtype == 'int32') i = pd.MultiIndex.from_product([['a'],range(1000)]) self.assertTrue((i.labels[0]>=0).all()) self.assertTrue((i.labels[1]>=0).all()) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_set_names_and_rename(self): # so long as these are synonyms, we don't need to test set_names self.assertEqual(self.index.rename, self.index.set_names) new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) with assertRaisesRegexp(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, [new_names[0], self.index_names[1]]) res = ind.set_names(new_names2[0], level=0, inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, [new_names2[0], self.index_names[1]]) # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) self.assertEqual(self.index.names, self.index_names) self.assertEqual(ind.names, new_names) res = ind.set_names(new_names2, level=[0, 1], inplace=True) self.assertIsNone(res) self.assertEqual(ind.names, new_names2) def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels, labels = self.index.levels, self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible self.assertEqual(len(actual), len(expected)) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) assert_almost_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) self.assertIsNone(inplace_return) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assertRaisesRegexp(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assertRaisesRegexp(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assertRaisesRegexp(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assertRaisesRegexp(TypeError, 'string'): self.index.set_names(names, level=0) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with assertRaisesRegexp(TypeError, mutable_regex): levels[0] = levels[0] with assertRaisesRegexp(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with assertRaisesRegexp(TypeError, mutable_regex): labels[0] = labels[0] with assertRaisesRegexp(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with assertRaisesRegexp(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() self.assertIsNotNone(mi1._tuples) # make sure level setting works new_vals = mi1.set_levels(levels2).values assert_almost_equal(vals2, new_vals) # non-inplace doesn't kill _tuples [implementation detail] assert_almost_equal(mi1._tuples, vals) # and values is still same too assert_almost_equal(mi1.values, vals) # inplace should kill _tuples mi1.set_levels(levels2, inplace=True) assert_almost_equal(mi1.values, vals2) # make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.array([(long(1), 'a')] * 6, dtype=object) new_values = mi2.set_labels(labels2).values # not inplace shouldn't change assert_almost_equal(mi2._tuples, vals2) # should have correct values assert_almost_equal(exp_values, new_values) # and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) self.assertEqual(mi.labels[0][0], val) labels[0] = 15 self.assertEqual(mi.labels[0][0], val) val = levels[0] levels[0] = "PANDA" self.assertEqual(mi.levels[0][0], val) def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays( [lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sortlevel() self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) df = df.set_value(('grethe', '4'), 'one', 99.34) self.assertIsNone(df.is_copy) self.assertEqual(df.index.names, ('Name', 'Number')) def test_names(self): # names are assigned in __init__ names = self.index_names level_names = [level.name for level in self.index.levels] self.assertEqual(names, level_names) # setting bad names on existing index = self.index assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) assertRaisesRegexp(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) assertRaisesRegexp(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] self.assertEqual(ind_names, level_names) def test_reference_duplicate_name(self): idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'x']) self.assertTrue(idx._reference_duplicate_name('x')) idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['x', 'y']) self.assertFalse(idx._reference_duplicate_name('x')) def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with assertRaisesRegexp(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) def test_constructor_single_level(self): single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) tm.assert_isinstance(single_level, Index) self.assertNotIsInstance(single_level, MultiIndex) self.assertEqual(single_level.name, 'first') single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]]) self.assertIsNone(single_level.name) def test_constructor_no_levels(self): assertRaisesRegexp(ValueError, "non-zero number of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(levels=[]) with tm.assertRaisesRegexp(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] assertRaisesRegexp(ValueError, "Length of levels and labels must be" " the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assertRaisesRegexp(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assertRaisesRegexp(ValueError, label_error):
MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]])
pandas.core.index.MultiIndex
#!/usr/bin/env python ''' <NAME> October 2018 Scripts for looking at and evaluating input data files for dvmdostem. Generally data has been prepared by M. Lindgren of SNAP for the IEM project and consists of directories of well labled .tif images, with one image for each timestep. This script has (or will have) a variety of routines for summarizing the data and displaying plots that will let us look for problems, missing data, or anomolies. ''' import os import sys import subprocess import glob import pickle import multiprocessing import datetime as dt from osgeo import gdal import numpy as np import pandas as pd import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.ticker as ticker TMP_DATA = 'climatology-intermediate-data' def timeseries_summary_stats_and_plots(base_path, secondary_path_list): ''' ''' # Decades for projected, truncated first fx_periods = [ (2006,2010),(2010,2020),(2020,2030),(2030,2040),(2040,2050), (2050,2060),(2060,2070),(2070,2080),(2080,2090),(2090,2100) ] # Decades for historic, truncated at end hist_periods = [ (1901,1911),(1911,1921),(1921,1931),(1931,1941),(1941,1951), (1951,1961),(1961,1971),(1971,1981),(1981,1991),(1991,2001), (2001,2011),(2011,2015) ] procs = [] for i in secondary_path_list: if 'pr_total' in i.lower(): units = 'mm month-1' elif 'tas_mean' in i.lower(): units = 'degrees C' elif 'vap_mean' in i.lower(): units = 'hPa' elif 'rsds_mean' in i.lower(): units = 'MJ-m2-d1' elif 'hurs_mean' in i.lower(): units = 'percent' else: print("ERROR! hmmm can't find variable in {}".format(i)) if '_cru' in i.lower(): periods = hist_periods elif '_mri' in i.lower(): periods = fx_periods elif '_ncar' in i.lower(): periods = fx_periods secondary_path = i print("MAIN PROCESS! [{}] Starting worker...".format(os.getpid())) p = multiprocessing.Process(target=worker_func, args=(base_path, secondary_path, units, periods)) procs.append(p) p.start() print("Done starting processes. Looping to set join on each process...") for p in procs: p.join() print("DONE! Plots should be saved...") def worker_func(base_path, secondary_path, units, periods): ''' ''' print("worker function! pid:{}".format(os.getpid())) print(" [{}] {}".format(os.getpid(), base_path)) print(" [{}] {}".format(os.getpid(), secondary_path)) print(" [{}] {}".format(os.getpid(), units)) monthlies_figure = get_monthlies_figure( base_path, secondary_path, title='\n'.join((base_path, secondary_path)), units=units, src='fresh', save_intermediates=False, madata=None ) overveiw_figure, period_averages = get_overview_figure( periods, base_path, secondary_path, title='\n'.join((base_path, secondary_path)), units=units, src='fresh', # can be: fresh, pickle, or passed save_intermediates=False, padata=None ) individual_figs, _ = get_period_avg_figures( periods, base_path, secondary_path, title=os.path.dirname(secondary_path), units=units, src='passed', padata=period_averages ) # Create multi-page pdf document import matplotlib.backends.backend_pdf ofname = "climatology_{}.pdf".format(secondary_path.split("/")[0]) print("Building PDF with many images: {}".format(ofname)) pdf = matplotlib.backends.backend_pdf.PdfPages(ofname) pdf.savefig(monthlies_figure) pdf.savefig(overveiw_figure) for f in individual_figs: pdf.savefig(f) pdf.close() print("Done saving pdf: {}".format(ofname)) def create_vrt(filelist, ofname): ''' Creates a GDAL vrt (virtual file format) for a series of input files. Expects the each of the files in the filelist to be a single band GeoTiff. The files will be combined into a single .vrt file with one Band for each of the input files. The single VRT file may then be further manipulated with GDAL (i.e take the average over all the bands). Parameters ---------- filelist : list of strings (paths) to files that will be combined ofname : string for a filename that will be written Returns ------- None Use Cases, Examples ------------------- - Create a monthly or decadal summary file for a set of images representing a timeseries (e.g. tifs that will be pre-processed and turned to netcdf files for dvmdostem runs). ''' basename = os.path.basename(ofname) basename_noext, ext = os.path.splitext(basename) temporary_filelist_file = os.path.join("/tmp/", "filelist-pid-{}-{}.txt".format(os.getpid(), basename_noext)) with open(temporary_filelist_file, 'w') as f: f.write("\n".join(filelist)) result = subprocess.check_call([ 'gdalbuildvrt', '-overwrite', '-separate', ofname, '-input_file_list', temporary_filelist_file ]) os.remove(temporary_filelist_file) def average_over_bands(ifname, bands='all'): ''' Given an input file (`ifname`), this function computes the average over all the bands and returns the result. Assumes the bands are named Band1, Band2, etc. Parameters ---------- ifname : str A multi-band file that can be opened and read with GDAL. Expects that all bands have data and are the same spatial extents. Ignored data less than -9999. bands : str One of 'all', 'first10', or 'first3'. Selects a subset of bands for faster processing for testing and development. Returns ------- avg : numpy masked array Returned array is the same shape as an individual band in the input file, and with each pixel being the average of the pixel values in all of the input file's bands. ''' ds = gdal.Open(ifname) print(" [ DESCRIPTION ]: ", ds.GetDescription()) print(" [ RASTER BAND COUNT ]: ", ds.RasterCount) print(" [ RASTER Y SIZE ]: ", ds.RasterYSize) print(" [ RASTER X SIZE ]: ", ds.RasterXSize) if bands == 'all': band_range = list(range(1, ds.RasterCount+1)) elif bands == 'first10': band_range = list(range(1, 10+1)) elif bands == 'first3': band_range = list(range(1, 3+1)) print(" [ AVERAGE OVER BANDS ]: {}".format(len(band_range))) print(" [ START BAND ]: {}".format(band_range[0])) print(" [ END BAND ]: {}".format(band_range[-1])) # allocate a storage location running_sum = np.ma.masked_less_equal(np.zeros((ds.RasterYSize, ds.RasterXSize)), -9999) for band in band_range: dsb = ds.GetRasterBand(band) if dsb is None: print("huh??") # continue (? as per example here: https://pcjericks.github.io/py-gdalogr-cookbook/raster_layers.html) masked_data = np.ma.masked_less_equal(dsb.ReadAsArray(), -9999) running_sum += masked_data print("adding band: {} band min/max: {}/{} running_sum min/max: {}/{}".format( band, masked_data.min(), masked_data.max(), running_sum.min(), running_sum.max() )) # Compute average avg = running_sum / float(len(band_range)+1) # Close gdal file ds = None return avg def read_period_averages(periods): ''' Reads pickled period average data from the TMP_DATA directory. Expects files to be in a further sub-directory, period-averages, and have names like: "pa-{start}-{end}.pickle". Parameters ---------- periods : list of tuples Each tuple should have values (start, end) that are used to define the period. Returns ------- period_averages : list A list of (masked) numpy arrays that have been un-pickled from the TMP_DATA directory. The pickles are expected to be the period averages built using other routines in this script. ''' print("Reading period average pickles into list...") period_averages = [] for i, (start, end) in enumerate(periods): path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), 'pa-{}-{}.pickle'.format(start, end)) pa = pickle.load(file(path)) period_averages.append(pa) print("Done reading period average pickles into list.") return period_averages def read_monthly_pickles(months=list(range(1,13))): print("reading monthly pickle files for months {}...".format(months)) mavgs = [] for m in months: path = os.path.join( TMP_DATA, 'month-averages-pid{}'.format(os.getpid()), 'month-{:02d}.pickle'.format(m) ) ma = pickle.load(file(path)) mavgs.append(ma) print("Returning monthly averages list..") return mavgs def calculate_period_averages(periods, base_path, secondary_path, save_intermediates=False): '''Given a stack of tif files, one file for each month, this routine will calculate the averages for the supplied periods. Periods are expected to be selections of years, i.e. 1901 to 1911. Parameters ---------- periods : list of tuples each tuple has a start and end year for the period base_path : str path on the file system where files are located secondary_path : str remainder of path on file system where files will be found. The secondary path string is expected to be somethign like this: "ar5_MRI-CGCM3_rcp85_{month:}_{year:}.tif" with the one set of braces for the month one set of braces for the year. This function will fill the braces to match any month and the years specified in the periods tuples save_intermediates : bool when true, period average array will be pickled for each period. Will be saved like so 'climatology/period-averages/pa-{}-{}.pickle' Returns ------- list of 2D masked numpy arrays ''' # Ensure there is a place to put the vrt files path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise # Make the VRTs for the periods for i, (start, end) in enumerate(periods): print("[ period {} ] Making vrt for period {} to {} (range {})".format(i, start, end, list(range(start, end)))) filelist = [] for year in range(start, end): final_secondary_path = secondary_path.format(month="*", year="{:04d}") #print os.path.join(base_path, final_secondary_path.format(year)) single_year_filelist = sorted(glob.glob(os.path.join(base_path, final_secondary_path.format(year)))) #print "Length of single year filelist {}".format(len(single_year_filelist)) filelist += single_year_filelist print("Length of full filelist: {} ".format(len(filelist))) vrtp = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), "period-{}-{}.vrt".format(start, end)) create_vrt(filelist, vrtp) # Calculate the period averages from the VRT files period_averages = [] for i, (start, end) in enumerate(periods): # Find the average over the selected range vrtp = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), "period-{}-{}.vrt".format(start, end)) pa = average_over_bands(vrtp, bands='all') period_averages.append(pa) if save_intermediates: # Make sure there is a place to put our pickles path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise print("Dumping pickle for period {} to {}".format(start, end)) pickle.dump(pa, file(os.path.join(path, "pa-{}-{}.pickle".format(start, end)), 'wb')) # Clean up any intermediate files. if not save_intermediates: papath = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) for f in os.listdir(papath): os.remove(os.path.join(papath, f)) os.rmdir(papath) print("Returning period averages list...") return period_averages def calculate_monthly_averages(months, base_path, secondary_path, save_intermediates=False): ''' ''' # Make sure there is a place to put our pickles and vrt files intermediates_path = os.path.join(TMP_DATA, 'month-averages-pid{}'.format(os.getpid())) try: os.makedirs(intermediates_path) except OSError: if not os.path.isdir(intermediates_path): raise # Build the vrt files print("Creating monthly VRT files...") for im, MONTH in enumerate(months[:]): final_secondary_path = secondary_path.format(month="{:02d}", year="*").format(im+1) filelist = sorted(glob.glob(os.path.join(base_path, final_secondary_path))) if len(filelist) < 1: print("ERROR! No files found in {}".format( os.path.join(base_path, final_secondary_path) )) vrt_path = os.path.join(intermediates_path,"month-{:02d}.vrt".format(im+1)) create_vrt(filelist, vrt_path) print("Computing monthly averages from monthly VRT files...") # make list of expected input vrt paths ivp_list = [os.path.join(intermediates_path,"month-{:02d}.vrt".format(im)) for im in range(1, len(months)+1)] monthly_averages = [average_over_bands(ivp, bands='all') for ivp in ivp_list] if save_intermediates: print("Saving pickles...") for im, ma in enumerate(monthly_averages): pp = os.path.join(intermediates_path, "month-{:02d}.pickle".format(im+1)) pickle.dump(ma, file(pp, 'wb')) print("Done saving pickles...") # Clean up any intermediate files. if not save_intermediates: mapath = os.path.join(TMP_DATA, 'month-averages-pid{}'.format(os.getpid())) for f in os.listdir(mapath): os.remove(os.path.join(mapath, f)) os.rmdir(mapath) print("Returning monthly_averages list...") return monthly_averages def get_monthlies_figure(base_path, secondary_path, title, units, src='fresh', save_intermediates=True, madata=None ): ''' Creates a single figure with 12 subplots, each showing the average for that month across the timeseries. ''' months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'] if src == 'fresh': monthly_averages = calculate_monthly_averages(months, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': monthly_averages = read_monthly_pickles(months=list(range(1,13))) elif src == 'passed': monthly_averages = madata else: print("Invalid argument for src! '{}'".format(src)) vmax = np.max([avg.max() for avg in monthly_averages]) vmin = np.min([avg.min() for avg in monthly_averages]) print("vmax: {} vmin: {}".format(vmax, vmin)) print("Creating monthlies figure...") fig, axes = plt.subplots(figsize=(11,8.5), nrows=3, ncols=4, sharex=True, sharey=True) imgs = [] for ax, avg, month in zip(axes.flat, monthly_averages, months): im = ax.imshow(avg, vmin=vmin, vmax=vmax, cmap='gist_ncar') imgs.append(im) ax.set_title(month) cbar = fig.colorbar(imgs[0], ax=axes.ravel().tolist()) cbar.set_label(units) fig.suptitle(title) print("Done creating monthlies figure.") return fig def get_overview_figure(periods, base_path, secondary_path, title='', units='', src='fresh', save_intermediates=True, padata=None): ''' Creates and returns a matplotlib figure that has ?? Parameters ---------- Returns ------- fig : matplotlib figure instance ''' if src == 'fresh': period_averages = calculate_period_averages(periods, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': period_averages = read_period_averages(periods) elif src == 'passed': period_averages = padata else: print("Invalid argument for src! '{}'".format(src)) print("Converting to stacked masked array...") pa2 = np.ma.stack(period_averages) vmax = pa2.max() vmin = pa2.min() print("vmax: {} vmin: {}".format(vmax, vmin)) NCOLS = 4 # fixed number of cols, may add more rows NROWS = len(period_averages)/NCOLS if (len(period_averages) % NCOLS) > 0: NROWS += 1 if len(period_averages) < NCOLS: NCOLS = len(period_averages) NROWS = 1 overview_fig, axes = plt.subplots(nrows=NROWS, ncols=NCOLS, sharex=True, sharey=True) overview_fig.set_size_inches((11, 8.5), forward=True) imgs = [] # in case we need to manipulate the images all at once for ax, avg, period in zip(axes.flat, period_averages, periods): print("plotting image for period:", period) # Setting vmax and vmin normalized the colorbars across all images im = ax.imshow(avg, vmin=vmin, vmax=vmax, cmap='gist_ncar') ax.set_title('{} to {}'.format(period[0], period[1])) imgs.append(im) # set a colorbar on the first axes cbar = overview_fig.colorbar(imgs[0], ax=axes.ravel().tolist()) cbar.set_label(units) overview_fig.suptitle(title) return overview_fig, period_averages def get_period_avg_figures(periods, base_path, secondary_path, title='', units='', src='fresh', save_intermediates=True, padata=None): ''' Parameters ---------- Returns ------- ''' if src == 'fresh': period_averages = calculate_period_averages(periods, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': period_averages = read_period_averages(periods) elif src == 'passed': period_averages = padata else: print("Invalid argument for src! '{}'".format(src)) print("Converting to stacked masked array...") pa2 = np.ma.stack(period_averages) vmax = pa2.max() vmin = pa2.min() print("vmax: {} vmin: {}".format(vmax, vmin)) ind_figures = [] for i, ((start,end), periodavg) in enumerate(zip(periods, pa2)): fig = plt.figure() fig.suptitle(title) #fontsize=8 im = plt.imshow(periodavg, vmin=vmin, vmax=vmax, cmap='gist_ncar') ax = fig.axes[0] ax.set_title('Average, {} to {}'.format(start, end)) cbar = plt.colorbar() cbar.set_label(units) ind_figures.append(fig) return ind_figures, padata def worker_func2(f): if f == 'file3': time.sleep(1) if f == 'file7': time.sleep(5) print("will open, read, average {}".format(f)) return f def worker_func3(in_file_path): ''' ''' # Deduce month and year from file name bname = os.path.basename(in_file_path) n, ext = os.path.splitext(bname) parts = n.split('_') month, year = [int(p) for p in parts[-2:]] date = dt.date(year=year, month=month, day=1) # Open the file, get some stats ds = gdal.Open(in_file_path) ds_array = ds.ReadAsArray() ds_m = np.ma.masked_less_equal(ds_array, -9999) data_dict = dict( fname=bname, date=date, statewide_mean=ds_m.mean(), statewide_min=ds_m.min(), statewide_max=ds_m.max(), statewide_std=ds_m.std() ) return data_dict def generate_spatial_summary_stats(base_path, secondary_path): ''' ''' # This produces a bunch of csv files with statewide averages for sec_path in secondary_path_list[0:]: files = sorted(glob.glob(os.path.join(base_path, sec_path.format(month='*', year='*')))) p = multiprocessing.Pool() results = p.map(worker_func3, files[0:]) p.close() p.join() s_results = sorted(results, key=lambda k: k['date']) stats_path = "SPATIAL_SUMMARY_STATS_{}.csv".format(sec_path.split('/')[0]) import pandas as pd df = pd.DataFrame(s_results) df.to_csv(stats_path) def plot_timeseries_of_spatial_summary_stats(): ''' ''' # Build this automatically: # - look for SPATIAL_SUMMARY_STATS_* ss_file_list = [ 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_iem_CRU-TS40_historical_1901_2015_fix.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_ar5_MRI-CGCM3_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_ar5_NCAR-CCSM4_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_iem_cru_TS40_1901_2015.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_iem_CRU-TS40_historical_1901_2015_fix.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_ar5_MRI-CGCM3_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_ar5_NCAR-CCSM4_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_iem_cru_TS40_1901_2015.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_iem_CRU-TS40_historical_1901_2015_fix.csv', ] # Create multi-page pdf document import matplotlib.backends.backend_pdf ofname = "climatology_statewide_averages.pdf".format() print("Saving PDF: {}".format(ofname)) pdf = matplotlib.backends.backend_pdf.PdfPages(ofname) var_list = ['tas_mean','pr_total','rsds_mean','vap_mean','hurs_mean'] unit_list = ['celsius', 'mm month-1', 'MJ-m2-d1','hPa', 'percent'] for var, units in zip(var_list, unit_list): # Figure out the right files to work on var_files = [x for x in ss_file_list if var in x.lower()] print(var_files) print() h_file = [x for x in var_files if 'cru' in x.lower()] pmri_file = [x for x in var_files if 'mri' in x.lower()] pncar_file = [x for x in var_files if 'ncar' in x.lower()] # Filtering above should result in single item lists, unpack for convenience. h_file = h_file[0] pmri_file = pmri_file[0] pncar_file = pncar_file[0] print("var: ", var) print("hfile: ", h_file) print("pmri_file: ", pmri_file) print("pncar_file: ", pncar_file) print() # Read data into DataFrames hdf = pd.read_csv( h_file ) hdf.set_index( pd.to_datetime(hdf['date']), inplace=True ) pmri_df = pd.read_csv( pmri_file ) pmri_df.set_index( pd.to_datetime(pmri_df['date']), inplace=True ) pncar_df = pd.read_csv( pncar_file ) pncar_df.set_index( pd.to_datetime(pncar_df['date']), inplace=True ) # build an index for the whole range, historic & projected full_index =
pd.DatetimeIndex(start=hdf.index[0], end=pncar_df.index[-1], freq="MS")
pandas.DatetimeIndex
# -*- coding: utf-8 -*- """ Created on Sat Oct 13 17:45:11 2018 @author: <NAME> @e-mail: <EMAIL> Program for analysis and creation of fragmentation diagrams in mass spectrometry out of .csv files """ import os import time from tkinter import filedialog import pandas as pd import numpy as np from numpy import trapz from scipy.signal import savgol_filter from sklearn.svm import SVR import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import axes3d import pickle as pl xMin = 15 xMax = 30 stepWidth = 1 def prepare_data(ms_info): global filepath data = pd.io.parsers.read_csv(filepath) data.drop(data[data.m > (ms_info + 2)].index, inplace=True) data.drop(data[data.m < (ms_info - 1)].index, inplace=True) #data.intensity = savgol_filter(data.intensity, 23, 6, mode='wrap') #data.intensity = savgol_filter(data.intensity, 21, 7, mode='nearest') global highest_value_overall global ms_info_overall highest_value = 0 scan = 0 index = 0 d = {'scan': [scan], 'intensity': [highest_value]} data_new = pd.DataFrame(d) data_new_scaled = pd.DataFrame(d) for index, row in data.iterrows(): scan_new = row['scan'] if scan_new == scan: highest_value_new = row['intensity'] if highest_value_new > highest_value: highest_value = highest_value_new else: d = {'scan': [scan], 'intensity': [highest_value]} data_new = data_new.append(pd.DataFrame(d)) scan = scan_new highest_value = 0 data_new = data_new.iloc[2:] data_new.intensity = savgol_filter(data_new.intensity, 11, 6, mode='nearest') if ms_info < ms_info_overall: data_new['intensity'].iloc[0] = 0 for index, row in data_new.iterrows(): highest_value = row['intensity'] if highest_value >= highest_value_overall: highest_value_overall = highest_value for i, row in data_new.iterrows(): scan = row['scan'] highest_value = row['intensity'] d = {'scan': [scan], 'intensity': [(highest_value/highest_value_overall)*100]} data_new_scaled = data_new_scaled.append(pd.DataFrame(d)) data_new_scaled = data_new_scaled.iloc[2:] if ms_info < ms_info_overall: data_new_scaled['intensity'].iloc[0] = 0 return data_new, data_new_scaled def plot_diag(catab, plant, category, version, catabolite, fragmentation_mode): global time fig_1 = plt.figure(1) ax = plt.axes() ax.yaxis.grid() overall_length = 0 dataframe = pd.DataFrame() dataframe_scaled = pd.DataFrame() for i in catab: data_to_draw, data_to_draw_scaled = prepare_data(int(i)) length = data_to_draw.scan.size if length > overall_length: overall_length = length for i in catab: data_to_draw, data_to_draw_scaled = prepare_data(int(i)) length = data_to_draw.scan.size #x = np.arange(0, (length/(overall_length+1)*100), ((length/(overall_length+1)*100)/length)) #x = np.arange(0, ((length/overall_length)*100), (((length/overall_length)*100)/length)) #x = np.arange(20,45,1) #x = np.arange(0,100,4) #x = np.arange(15,30,1) x = np.arange(xMin, xMax, stepWidth) plt.plot(x, data_to_draw.intensity, label = i + ' Da') plt.suptitle(plant+' - '+category+'-'+catabolite+fragmentation_mode) plt.title(version) plt.xlabel('normalised collision energy (in %)') plt.ylabel('intensity (arbitrary unit)') plt.legend() ax.set_ylim(ymin=0) #ax.set_xlim([0,96]) #ax.set_xlim([20,44]) #ax.set_xlim([15,29]) ax.set_xlim([xMin,xMax-stepWidth]) directory = 'diagrams_output/'+plant+'/'+category+'/'+catabolite+'/'+time+'/'+fragmentation_mode+'/'+version+'/' diag_name = directory+catabolite+fragmentation_mode+'-'+version if not os.path.exists(directory): os.makedirs(directory) lines = len(catab) index = 0 while index <= lines - 1: data = fig_1.axes[0].lines[index].get_data() if index == 0: dataframe_two = pd.DataFrame(data[0]) dataframe = pd.concat([dataframe, dataframe_two], axis=1) dataframe_two = pd.DataFrame(data[1]) dataframe = pd.concat([dataframe, dataframe_two], axis=1) else: dataframe_two = pd.DataFrame(data[1]) dataframe = pd.concat([dataframe, dataframe_two], axis=1) index = index + 1 dataframe.to_csv(diag_name+'.csv') plt.savefig(diag_name+'.png') pl.dump(fig_1, open(diag_name+'.pickle','wb')) plt.show() choice = '200' while choice != '0': print("---------------------") print("create diagram <1>") print("view diagram <2>") print("calc. derivatives <3>") print("total ion current <4>") print("Exit <0>") choice = input("Enter: ") if choice == '1': print(" ") time = input("time of measurement (DDMMYYYY): ") filename = input("filename (.csv file - without last number): ") plant = input("plant: ") category = input("catabolite type: ") catabolite = input("fragmented mass: ") fragmentation_mode = input("fragmentation mode: ") catabolites_string = input("[M]-fragments of above catabolite: ") catabolites = catabolites_string.split(",") highest_value_overall = 0 ms_info_overall = int(catabolites[0]) xMin = int(input("minimum collision energy: ")) xMax = int(input("maximum collision energy: ")) stepWidth = int(input("step width: ")) versions = input("number of versions: ") print("<<info - close window for next to appear>>") i = 1 while i <= int(versions): filepath = 'RawFiles/'+time+'/'+plant+'/'+filename+str(i)+'.csv' version = 'Version'+str(i) print('...'+version) plot_diag(catabolites, plant, category, version, catabolite, fragmentation_mode) i = i+1 if choice == '2': pathname = filedialog.askopenfilename(title = "Select file",filetypes = (("pickle files","*.pickle"),("all files","*.*"))) fig = pl.load(open(pathname, 'rb')) fig.show() if choice == '3': pathname = filedialog.askopenfilename(title = "Select file",filetypes = (("pickle files","*.pickle"),("all files","*.*"))) fig_1 = pl.load(open(pathname, 'rb')) dataframe = pd.DataFrame() lines = 3 index = 0 while index <= lines - 1: data = fig_1.axes[0].lines[index].get_data() if index == 0: dataframe_two = pd.DataFrame(data[0]) dataframe = pd.concat([dataframe, dataframe_two], axis=1) dataframe_two =
pd.DataFrame(data[1])
pandas.DataFrame
# coding: utf-8 from collections import OrderedDict import pandas as pd from czsc.objects import Signal, Factor, Event, Freq, Operate, PositionLong, PositionShort def test_signal(): s = Signal(k1="1分钟", k3="倒1形态", v1="类一买", v2="七笔", v3="基础型", score=3) assert str(s) == "Signal('1分钟_任意_倒1形态_类一买_七笔_基础型_3')" assert s.key == "1分钟_倒1形态" s1 = Signal(signal='1分钟_任意_倒1形态_类一买_七笔_基础型_3') assert s == s1 assert s.is_match({"1分钟_倒1形态": "类一买_七笔_基础型_3"}) assert not s.is_match({"1分钟_倒1形态": "类一买_七笔_特例一_3"}) assert not s.is_match({"1分钟_倒1形态": "类一买_九笔_基础型_3"}) s = Signal(k1="1分钟", k2="倒1形态", k3="类一买", score=3) assert str(s) == "Signal('1分钟_倒1形态_类一买_任意_任意_任意_3')" assert s.key == "1分钟_倒1形态_类一买" try: s = Signal(k1="1分钟", k2="倒1形态", k3="类一买", score=101) except ValueError as e: assert str(e) == 'score 必须在0~100之间' def test_factor(): freq = Freq.F15 s = OrderedDict() default_signals = [ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="三K形态", v1="顶分型", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒1笔", k3="RSQ状态", v1="小于0.2", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value factor = Factor( name="单测", signals_all=[ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他') ] ) assert factor.is_match(s) factor = Factor( name="单测", signals_all=[ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他') ], signals_any=[ Signal(k1=str(freq.value), k2="倒1笔", k3="RSQ状态", v1="小于0.2", v2='其他', v3='其他') ] ) assert factor.is_match(s) factor = Factor( name="单测", signals_all=[ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他') ], signals_any=[ Signal(k1=str(freq.value), k2="倒1笔", k3="RSQ状态", v1="小于0.8", v2='其他', v3='其他') ] ) assert not factor.is_match(s) factor = Factor( name="单测", signals_all=[ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他') ], signals_any=[ Signal(k1=str(freq.value), k2="倒1笔", k3="RSQ状态", v1="小于0.2", v2='其他', v3='其他') ], signals_not=[ Signal(k1=str(freq.value), k2="倒0笔", k3="三K形态", v1="顶分型", v2='其他', v3='其他'), ] ) assert not factor.is_match(s) def test_event(): freq = Freq.F15 s = OrderedDict() default_signals = [ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="三K形态", v1="顶分型", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒1笔", k3="RSQ状态", v1="小于0.2", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value event = Event(name="单测", operate=Operate.LO, factors=[ Factor( name="测试", signals_all=[ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="大于5", v2='其他', v3='其他')] ) ]) m, f = event.is_match(s) assert m and f event = Event(name="单测", operate=Operate.LO, factors=[ Factor( name="测试", signals_all=[ Signal('15分钟_倒0笔_方向_向上_其他_其他_0'), Signal('15分钟_倒0笔_长度_任意_其他_其他_0') ] ) ]) m, f = event.is_match(s) assert m and f event = Event(name="单测", operate=Operate.LO, factors=[ Factor( name="测试", signals_all=[ Signal('15分钟_倒0笔_方向_向上_其他_其他_20'), Signal('15分钟_倒0笔_长度_任意_其他_其他_0') ] ) ]) m, f = event.is_match(s) assert not m and not f event = Event(name="单测", operate=Operate.LO, factors=[ Factor( name="测试", signals_all=[ Signal('15分钟_倒0笔_方向_向下_其他_其他_0'), Signal('15分钟_倒0笔_长度_任意_其他_其他_0') ] ) ]) m, f = event.is_match(s) assert not m and not f def test_position_long(): pos_long = PositionLong(symbol="000001.XSHG") pos_long.update(dt=pd.to_datetime('2021-01-01'), op=Operate.HO, price=100, bid=0) assert not pos_long.pos_changed and pos_long.pos == 0 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LO, price=100, bid=1, op_desc="首次开仓测试") assert pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-03'), op=Operate.LO, price=100, bid=2, op_desc="首次开仓测试") assert not pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-04'), op=Operate.LA1, price=100, bid=3) assert pos_long.pos_changed and pos_long.pos == 0.8 pos_long.update(dt=pd.to_datetime('2021-01-05'), op=Operate.LA1, price=100, bid=4) assert not pos_long.pos_changed and pos_long.pos == 0.8 pos_long.update(dt=pd.to_datetime('2021-01-06'), op=Operate.LA2, price=100, bid=5) assert pos_long.pos_changed and pos_long.pos == 1 pos_long.update(dt=pd.to_datetime('2021-01-07'), op=Operate.LR1, price=100, bid=6) assert pos_long.pos_changed and pos_long.pos == 0.8 pos_long.update(dt=pd.to_datetime('2021-01-08'), op=Operate.LR2, price=100, bid=7) assert pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-08'), op=Operate.LR2, price=100, bid=7) assert not pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-09'), op=Operate.LA2, price=100, bid=8) assert not pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-10'), op=Operate.LA1, price=100, bid=9) assert pos_long.pos_changed and pos_long.pos == 0.8 pos_long.update(dt=pd.to_datetime('2021-01-11'), op=Operate.LE, price=100, bid=10) assert pos_long.pos_changed and pos_long.pos == 0 assert len(pos_long.pairs) == 1 assert pos_long.pairs[0]['持仓天数'] == 9 pos_long.evaluate_operates() def test_position_long_t0(): """测试T0逻辑""" pos_long = PositionLong(symbol="000001.XSHG", T0=False) pos_long.update(dt=pd.to_datetime('2021-01-01'), op=Operate.HO, price=100, bid=0) assert not pos_long.pos_changed and pos_long.pos == 0 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LO, price=100, bid=1, op_desc="首次开仓测试") assert pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LA1, price=100, bid=3) assert pos_long.pos_changed and pos_long.pos == 0.8 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LA2, price=100, bid=5) assert pos_long.pos_changed and pos_long.pos == 1 # T0 平仓信号不生效 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LE, price=100, bid=8) assert not pos_long.pos_changed and pos_long.pos == 1 pos_long.update(dt=pd.to_datetime('2021-01-03'), op=Operate.LE, price=100, bid=10) assert pos_long.pos_changed and pos_long.pos == 0 try: pos_long.update(dt=pd.to_datetime('2021-01-03'), op=Operate.SO, price=100, bid=11) except AssertionError as e: print(e) assert len(pos_long.pairs) == 1 pos_long.evaluate_operates() def test_position_long_min_interval(): """测试T0逻辑""" pos_long = PositionLong(symbol="000001.XSHG", T0=False, long_min_interval=3600*72) pos_long.update(dt=pd.to_datetime('2021-01-01'), op=Operate.HO, price=100, bid=0) assert not pos_long.pos_changed and pos_long.pos == 0 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LO, price=100, bid=1, op_desc="首次开仓测试") assert pos_long.pos_changed and pos_long.pos == 0.5 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LA1, price=100, bid=3) assert pos_long.pos_changed and pos_long.pos == 0.8 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LA2, price=100, bid=5) assert pos_long.pos_changed and pos_long.pos == 1 # T0 平仓信号不生效 pos_long.update(dt=pd.to_datetime('2021-01-02'), op=Operate.LE, price=100, bid=8) assert not pos_long.pos_changed and pos_long.pos == 1 pos_long.update(dt=
pd.to_datetime('2021-01-03')
pandas.to_datetime
from visions.core.model import VisionsBaseType, VisionsTypeset from visions.core.implementations.types import visions_generic from visions.core.model.relations import IdentityRelation import pandas.api.types as pdt import matplotlib.pyplot as plt import pandas as pd import numpy as np class visions_statistical_set(VisionsTypeset): """Typeset that exclusively supports time related types Includes support for the following types: - visions_binary - visions_nominal - visions_ordinal - visions_interval - visions_ratio """ def __init__(self): types = { visions_binary, visions_nominal, visions_ordinal, visions_interval, visions_ratio, } super().__init__(types) class visions_binary(VisionsBaseType): @classmethod def get_relations(cls): return [IdentityRelation(visions_binary, visions_nominal)] @classmethod def contains_op(cls, series: pd.Series) -> bool: return pdt.is_bool_dtype(series) class visions_nominal(VisionsBaseType): @classmethod def get_relations(cls): return [IdentityRelation(visions_nominal, visions_generic)] @classmethod def contains_op(cls, series: pd.Series) -> bool: return (pdt.is_categorical_dtype(series) and not series.cat.ordered) or pdt.is_bool_dtype(series) class visions_ordinal(VisionsBaseType): @classmethod def get_relations(cls): return [IdentityRelation(visions_ordinal, visions_generic)] @classmethod def contains_op(cls, series: pd.Series) -> bool: return pdt.is_categorical_dtype(series) and series.cat.ordered class visions_interval(VisionsBaseType): """ Aliases """ @classmethod def get_relations(cls): return [IdentityRelation(visions_interval, visions_generic)] @classmethod def contains_op(cls, series: pd.Series) -> bool: return
pdt.is_numeric_dtype(series)
pandas.api.types.is_numeric_dtype
# -------------- #Importing header files import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #Code starts here data = pd.read_csv(path) data['Rating'].hist() data = data[data['Rating']<=5] data['Rating'].hist() #Code ends here # -------------- # code starts here total_null = data.isnull().sum() percent_null = total_null/data.isnull().count() missing_data = pd.concat([total_null,percent_null],axis=1,keys=['Total','Percent']) print(missing_data) data.dropna(inplace=True) total_null_1 = data.isnull().sum() percent_null_1 = total_null_1/data.isnull().count() missing_data_1 = pd.concat([total_null_1,percent_null_1],axis=1,keys=['Total','Percent']) print(missing_data_1) # code ends here # -------------- #Code starts here sns.catplot(x='Category',y='Rating',data=data,kind='box') plt.xticks(rotation=90) plt.show() #Code ends here # -------------- #Importing header files from sklearn.preprocessing import MinMaxScaler, LabelEncoder #Code starts here print(data.Installs.value_counts()) data['Installs'] = (data['Installs'].str.replace(',','')).str.replace('+','') data['Installs'] = data['Installs'].astype(int) le = LabelEncoder() data['Installs'] = le.fit(data['Installs']).transform(data['Installs']) sns.regplot(x='Installs',y='Rating',data=data) plt.title('Rating vs Installs [RegPlot]') plt.show() #Code ends here # -------------- #Code starts here print(data['Price'].value_counts()) data['Price'] = (data['Price'].str.replace('$','')).astype(float) sns.regplot(x='Price',y='Rating',data=data) plt.title('Rating vs Price [RegPlot]') plt.show() #Code ends here # -------------- #Code starts here print(data['Genres'].unique()) data['Genres'] = (data['Genres'].str.split(";", n = 1, expand = True))[0] gr_mean = data[['Genres','Rating']].groupby('Genres',as_index=False).mean() print(gr_mean.describe()) gr_mean = gr_mean.sort_values(by='Rating') print(gr_mean.head(1)) print(gr_mean.tail(1)) #Code ends here # -------------- #Code starts here data['Last Updated'] =
pd.to_datetime(data['Last Updated'])
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import stats from sklearn.linear_model import Ridge, RidgeCV from sklearn.model_selection import cross_val_score, train_test_split from sklearn.metrics import mean_squared_error, make_scorer # In[2]: def calculate_pearson(df): correlations = {} numerical_features = df.select_dtypes(exclude = ["object"]).columns numerical_features = numerical_features.drop("cod_municipio") for i in numerical_features: corr = stats.pearsonr(df[i], df['ideb'])[0] correlations[i] = corr df_corr = pd.DataFrame(list(correlations.items()), columns=['feature', 'correlation_with_ideb']) df_corr = df_corr.dropna() return df_corr # In[3]: def calculate_categorical_correlation(df): categorical_features = df.select_dtypes(include = ["object"]).columns return categorical_features # # Puxa dados do CSV de cada integrante do grupo # ### Dados Alexandre # In[4]: path = '../../data/' # In[5]: #Dados iniciais alexandre_inicio_2015 = pd.read_csv(path + 'bases_ale/anos_iniciais/ideb_municipios_2015_ai.csv') alexandre_inicio_2017 = pd.read_csv(path + 'bases_ale/anos_iniciais/ideb_municipios_2017_ai.csv') # Dados finais alexandre_final_2015 = pd.read_csv(path + 'bases_ale/anos_finais/ideb_municipios_2015_af.csv') alexandre_final_2017 = pd.read_csv(path + 'bases_ale/anos_finais/ideb_municipios_2017_af.csv') # ### Dados Lidia # In[6]: #Dados iniciais lidia_inicio_2007 =
pd.read_csv(path + 'bases_lidia/anos_iniciais/ideb_escola_2007_ai.csv')
pandas.read_csv
import os import sys import numpy as np import pytest import pandas as pd from pandas import DataFrame, compat from pandas.util import testing as tm class TestToCSV: @pytest.mark.xfail((3, 6, 5) > sys.version_info >= (3, 5), reason=("Python csv library bug " "(see https://bugs.python.org/issue32255)")) def test_to_csv_with_single_column(self): # see gh-18676, https://bugs.python.org/issue32255 # # Python's CSV library adds an extraneous '""' # before the newline when the NaN-value is in # the first row. Otherwise, only the newline # character is added. This behavior is inconsistent # and was patched in https://bugs.python.org/pull_request4672. df1 = DataFrame([None, 1]) expected1 = """\ "" 1.0 """ with tm.ensure_clean('test.csv') as path: df1.to_csv(path, header=None, index=None) with open(path, 'r') as f: assert f.read() == expected1 df2 = DataFrame([1, None]) expected2 = """\ 1.0 "" """ with tm.ensure_clean('test.csv') as path: df2.to_csv(path, header=None, index=None) with open(path, 'r') as f: assert f.read() == expected2 def test_to_csv_defualt_encoding(self): # GH17097 df = DataFrame({'col': ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]}) with tm.ensure_clean('test.csv') as path: # the default to_csv encoding is uft-8. df.to_csv(path) tm.assert_frame_equal(pd.read_csv(path, index_col=0), df) def test_to_csv_quotechar(self): df = DataFrame({'col': [1, 2]}) expected = """\ "","col" "0","1" "1","2" """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1) # 1=QUOTE_ALL with open(path, 'r') as f: assert f.read() == expected expected = """\ $$,$col$ $0$,$1$ $1$,$2$ """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1, quotechar="$") with open(path, 'r') as f: assert f.read() == expected with tm.ensure_clean('test.csv') as path: with pytest.raises(TypeError, match='quotechar'): df.to_csv(path, quoting=1, quotechar=None) def test_to_csv_doublequote(self): df = DataFrame({'col': ['a"a', '"bb"']}) expected = '''\ "","col" "0","a""a" "1","""bb""" ''' with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1, doublequote=True) # QUOTE_ALL with open(path, 'r') as f: assert f.read() == expected from _csv import Error with tm.ensure_clean('test.csv') as path: with pytest.raises(Error, match='escapechar'): df.to_csv(path, doublequote=False) # no escapechar set def test_to_csv_escapechar(self): df = DataFrame({'col': ['a"a', '"bb"']}) expected = '''\ "","col" "0","a\\"a" "1","\\"bb\\"" ''' with tm.ensure_clean('test.csv') as path: # QUOTE_ALL df.to_csv(path, quoting=1, doublequote=False, escapechar='\\') with open(path, 'r') as f: assert f.read() == expected df = DataFrame({'col': ['a,a', ',bb,']}) expected = """\ ,col 0,a\\,a 1,\\,bb\\, """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=3, escapechar='\\') # QUOTE_NONE with open(path, 'r') as f: assert f.read() == expected def test_csv_to_string(self): df = DataFrame({'col': [1, 2]}) expected_rows = [',col', '0,1', '1,2'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv() == expected def test_to_csv_decimal(self): # see gh-781 df = DataFrame({'col1': [1], 'col2': ['a'], 'col3': [10.1]}) expected_rows = [',col1,col2,col3', '0,1,a,10.1'] expected_default = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv() == expected_default expected_rows = [';col1;col2;col3', '0;1;a;10,1'] expected_european_excel = tm.convert_rows_list_to_csv_str( expected_rows) assert df.to_csv(decimal=',', sep=';') == expected_european_excel expected_rows = [',col1,col2,col3', '0,1,a,10.10'] expected_float_format_default = tm.convert_rows_list_to_csv_str( expected_rows) assert df.to_csv(float_format='%.2f') == expected_float_format_default expected_rows = [';col1;col2;col3', '0;1;a;10,10'] expected_float_format = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv(decimal=',', sep=';', float_format='%.2f') == expected_float_format # see gh-11553: testing if decimal is taken into account for '0.0' df = pd.DataFrame({'a': [0, 1.1], 'b': [2.2, 3.3], 'c': 1}) expected_rows = ['a,b,c', '0^0,2^2,1', '1^1,3^3,1'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv(index=False, decimal='^') == expected # same but for an index assert df.set_index('a').to_csv(decimal='^') == expected # same for a multi-index assert df.set_index(['a', 'b']).to_csv(decimal="^") == expected def test_to_csv_float_format(self): # testing if float_format is taken into account for the index # GH 11553 df = pd.DataFrame({'a': [0, 1], 'b': [2.2, 3.3], 'c': 1}) expected_rows = ['a,b,c', '0,2.20,1', '1,3.30,1'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(float_format='%.2f') == expected # same for a multi-index assert df.set_index(['a', 'b']).to_csv( float_format='%.2f') == expected def test_to_csv_na_rep(self): # see gh-11553 # # Testing if NaN values are correctly represented in the index. df = DataFrame({'a': [0, np.NaN], 'b': [0, 1], 'c': [2, 3]}) expected_rows = ['a,b,c', '0.0,0,2', '_,1,3'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(na_rep='_') == expected assert df.set_index(['a', 'b']).to_csv(na_rep='_') == expected # now with an index containing only NaNs df = DataFrame({'a': np.NaN, 'b': [0, 1], 'c': [2, 3]}) expected_rows = ['a,b,c', '_,0,2', '_,1,3'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(na_rep='_') == expected assert df.set_index(['a', 'b']).to_csv(na_rep='_') == expected # check if na_rep parameter does not break anything when no NaN df = DataFrame({'a': 0, 'b': [0, 1], 'c': [2, 3]}) expected_rows = ['a,b,c', '0,0,2', '0,1,3'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(na_rep='_') == expected assert df.set_index(['a', 'b']).to_csv(na_rep='_') == expected def test_to_csv_date_format(self): # GH 10209 df_sec = DataFrame({'A': pd.date_range('20130101', periods=5, freq='s') }) df_day = DataFrame({'A': pd.date_range('20130101', periods=5, freq='d') }) expected_rows = [',A', '0,2013-01-01 00:00:00', '1,2013-01-01 00:00:01', '2,2013-01-01 00:00:02', '3,2013-01-01 00:00:03', '4,2013-01-01 00:00:04'] expected_default_sec = tm.convert_rows_list_to_csv_str(expected_rows) assert df_sec.to_csv() == expected_default_sec expected_rows = [',A', '0,2013-01-01 00:00:00', '1,2013-01-02 00:00:00', '2,2013-01-03 00:00:00', '3,2013-01-04 00:00:00', '4,2013-01-05 00:00:00'] expected_ymdhms_day = tm.convert_rows_list_to_csv_str(expected_rows) assert (df_day.to_csv(date_format='%Y-%m-%d %H:%M:%S') == expected_ymdhms_day) expected_rows = [',A', '0,2013-01-01', '1,2013-01-01', '2,2013-01-01', '3,2013-01-01', '4,2013-01-01'] expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows) assert df_sec.to_csv(date_format='%Y-%m-%d') == expected_ymd_sec expected_rows = [',A', '0,2013-01-01', '1,2013-01-02', '2,2013-01-03', '3,2013-01-04', '4,2013-01-05'] expected_default_day = tm.convert_rows_list_to_csv_str(expected_rows) assert df_day.to_csv() == expected_default_day assert df_day.to_csv(date_format='%Y-%m-%d') == expected_default_day # see gh-7791 # # Testing if date_format parameter is taken into account # for multi-indexed DataFrames. df_sec['B'] = 0 df_sec['C'] = 1 expected_rows = ['A,B,C', '2013-01-01,0,1'] expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows) df_sec_grouped = df_sec.groupby([pd.Grouper(key='A', freq='1h'), 'B']) assert (df_sec_grouped.mean().to_csv(date_format='%Y-%m-%d') == expected_ymd_sec) def test_to_csv_multi_index(self): # see gh-6618 df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]])) exp_rows = [',1', ',2', '0,1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv() == exp exp_rows = ['1', '2', '1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv(index=False) == exp df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]]), index=pd.MultiIndex.from_arrays([[1], [2]])) exp_rows = [',,1', ',,2', '1,2,1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv() == exp exp_rows = ['1', '2', '1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv(index=False) == exp df = DataFrame( [1], columns=
pd.MultiIndex.from_arrays([['foo'], ['bar']])
pandas.MultiIndex.from_arrays
#!/usr/bin/python3 # -*- coding: utf-8 -*- # # This file contains functions used to analyse data sets for a single # test case. import sys import argparse import glob import os import pandas as pd # Data manipulation and analysis import datetime as dt from StatisticsFunctions import StatisticsFunctions as sf import plotly import numpy from TSVContainer import TSVContainer from PrintFuncs import * RESULTS_SUBDIRNAME = "result_data" EVAL_PERIODS = "EvaluationPeriods.tsv" class CaseResults: def __init__(self): self.score = 0 self.norms = dict() self.simQbadge = 0 # means failed self.ToolID = "" self.TestCase = "" self.Variable = "" self.ErrorCode = -10 # no data/dataset broken self.Editor = "" self.Version = "" self.DisplayName = "" self.DisplayColor = "#ffc120" self.Unit = "" self.Reference = False self.Data = pd.DataFrame self.RefData = pd.DataFrame def appendErrorResults(tsvData, testCaseName, toolID, errorCode, variables): cr = CaseResults() cr.TestCase = testCaseName cr.ToolID = toolID cr.ErrorCode = errorCode for v in variables: cr.Variable = v tsvData.append(cr) def listsEqual(list1, list2): if len(list1) != len(list2): return False for i in range(len(list1)): if list1[i] != list2[i]: return False return True def evaluateVariableResults(variable, timeColumnRef, timeColumnData, refData, testData, starts, ends, weightFactors, timeIndicator): """ Performance difference calculation between variable data sets. we use different statistical metrics to perform deep comparisions of the different datasets. """ printNotification(" {}".format(variable)) cr = CaseResults() pdTime = pd.DataFrame() pdRef = pd.DataFrame() pdData = pd.DataFrame() cr.RefData = pd.DataFrame() # initialize all statistical methods in cr.norms for key in weightFactors: cr.norms[key] = -99 for i in range(len(starts)): start = starts[i] end = ends[i] try: split = 1 if timeIndicator == "min": split = 60 tempTimeColumnData = [x / split for x in timeColumnData] cr.Data = pd.DataFrame(data=testData, index=tempTimeColumnData, columns=["Data"]) except Exception as e: printError(str(e)) raise Exception("Could not convert data to case result object.") try: # Check if time columns are equal. Some tools cannot produce output in under hourly mannor. # For this we are nice and try to convert our reference results. if not listsEqual(timeColumnData, timeColumnRef): printWarning(f" Mismatching time columns in data set file and reference data set. " f"Could be due to Numerical inaccuracy.") printWarning(f" Trying to compare with numerical tolerance.") if not numpy.allclose(timeColumnData, timeColumnRef): printWarning(f" Yep, that was the case. We can continue ;)") except Exception as e: printWarning(f" Nope, still quite a mass. :(") printWarning(f" Trying to convert reference results for our tool with less time steps.") if len(timeColumnData) < len(timeColumnRef): newRefData = [] for i in range(len(timeColumnData)): if timeColumnData[i] not in timeColumnRef: printWarning(f" Could not be converted unfortunately. Sorry. :(") return cr index = timeColumnRef.index(timeColumnData[i]) newRefData.append(refData[index]) # time column data from tool data set is now set for reference data set timeColumnRef = timeColumnData refData = newRefData elif len(timeColumnData) > len(timeColumnRef): newTestData = [] for i in range(len(timeColumnRef)): if timeColumnRef[i] not in timeColumnData: printWarning(f" Could not be converted unfortunately. Sorry. :(") return cr index = timeColumnData.index(timeColumnRef[i]) newTestData.append(testData[index]) # time column data from tool data set is now set for reference data set timeColumnData = timeColumnRef testData = newTestData # We first convert our data to pandas try: split = 1 if timeIndicator == "min": split = 60 # Convert all the data to hourly indexes start = float(start) / split end = float(end) / split tempTimeColumnData = [x / split for x in timeColumnData] tempTimeColumnRef = [x / split for x in timeColumnRef] startDate = dt.datetime(2021, 1, 1) + dt.timedelta(hours=tempTimeColumnData[0]) pdT = pd.DataFrame(data=pd.date_range(start=startDate, periods=len(tempTimeColumnRef), freq=timeIndicator), index=tempTimeColumnRef, columns=["Date and Time"]) pdD = pd.DataFrame(data=testData, index=tempTimeColumnData, columns=["Data"]) pdR = pd.DataFrame(data=refData, index=tempTimeColumnRef, columns=["Data"]) # cr.Data = pd.DataFrame(data=testData, index=tempTimeColumnData, columns=["Data"]) cr.RefData = pd.concat([cr.RefData, pd.DataFrame(data=refData, index=tempTimeColumnData, columns=["Data"]).loc[start:end]]) except ValueError as e: printWarning(str(e)) printWarning(f" Could not convert given data of file to pandas dataframe.") cr.ErrorCode = -15 return cr # We only use data between out start and end point pdTime = pd.concat([pdTime, pdT.loc[start:end]]) pdData = pd.concat([pdData, pdD.loc[start:end]]) pdRef = pd.concat([pdRef, pdR.loc[start:end]]) ####### MAXIMUM ####### try: # we evaluate the results cr.norms['Maximum'] = sf.function_Maximum(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate Maximum for variable '{variable}'") ####### MINUMUM ####### try: cr.norms['Minimum'] = sf.function_Minimum(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate Minimum for variable '{variable}'") ####### Average ####### try: cr.norms['Average'] = sf.function_Average(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate Average for variable '{variable}'") ####### CVRMSE ####### try: cr.norms['CVRMSE'] = sf.function_CVRMSE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate CVRMSE for variable '{variable}'") ####### Daily Amplitude CVRMSE ####### try: cr.norms['Daily Amplitude CVRMSE'] = sf.function_Daily_Amplitude_CVRMSE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate Daily Amplitude CVRMSE for variable '{variable}'") ####### MBE ####### try: cr.norms['MBE'] = sf.function_MBE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate MBE for variable '{variable}'") try: cr.norms['RMSEIQR'] = sf.function_RMSEIQR(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate RMSIQR for variable '{variable}'") try: cr.norms['MSE'] = sf.function_MSE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate MSE for variable '{variable}'") try: cr.norms['NMBE'] = sf.function_NMBE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate NMBE for variable '{variable}'") try: cr.norms['NRMSE'] = sf.function_NRMSE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate NRMSE for variable '{variable}'") try: cr.norms['RMSE'] = sf.function_RMSE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate RMSE for variable '{variable}'") try: cr.norms['RMSLE'] = sf.function_RMSLE(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate RMSLE for variable '{variable}'") try: cr.norms['R squared'] = sf.function_R_squared_coeff_determination(pdRef["Data"],pdData["Data"],pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate R squared for variable '{variable}'") try: cr.norms['std dev'] = sf.function_std_dev(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate std dev for variable '{variable}'") try: cr.norms['Max Difference'] = sf.function_max_difference(pdRef["Data"], pdData["Data"], pdTime["Date and Time"]) except (RuntimeError, RuntimeWarning) as e: printNotification(f" {str(e)}") printNotification(f" Cannot calculate Max Difference for variable '{variable}'") # TODO : Wichtung if (abs(cr.norms['Average']) < 1e-4): cr.score = 0 # prevent division by zero error else: sum = 999999 if weightFactors['Sum'] > 0: sum = weightFactors['Sum'] if 'Max Difference' in weightFactors.keys(): if sum == 999999: sum = 1 else: sum = sum + 1 maxDiff = 0 if "Max Difference" in weightFactors.keys(): maxDiff = 80.0 + \ 20.0 * (weightFactors.get('Max Difference', 0) - abs(cr.norms['Max Difference'])) / weightFactors.get('Max Difference', 0) cr.score = cr.score + \ (weightFactors.get('CVRMSE', 0) * (100.0 - abs(cr.norms['CVRMSE'])) + # in % weightFactors.get('Daily Amplitude CVRMSE', 0) * ( 100.0 - abs(cr.norms['Daily Amplitude CVRMSE'])) + # in % weightFactors.get('MBE', 0) * (100.0 - 100.0 * abs(cr.norms['MBE']) / cr.norms['Average']) + weightFactors.get('RMSEIQR', 0) * (100.0 - abs(cr.norms['RMSEIQR'])) + # in % weightFactors.get('MSE', 0) * (100.0 - 100 * abs(cr.norms['MSE']) / cr.norms['Average']) + weightFactors.get('NMBE', 0) * (100.0 - abs(cr.norms['NMBE'])) + # in % weightFactors.get('NRMSE', 0) * (100.0 - abs(cr.norms['NRMSE'])) + # in % weightFactors.get('RMSE', 0) * (100.0 - 100.0 * abs(cr.norms['RMSE']) / cr.norms['Average']) + weightFactors.get('RMSLE', 0) * (100.0 - abs(cr.norms['RMSLE']) / cr.norms['Average']) + weightFactors.get('R squared', 0) * (cr.norms['R squared']) + # in % weightFactors.get('std dev', 0) * (100.0 - abs(cr.norms['std dev']) / cr.norms['Average']) + maxDiff) / sum cr.score = cr.score / len(starts) # normation # scoring caluclation --> >95% : Gold | >90% : Silver | >80% : Bronze badge = 0 if (cr.score >= 90): badge = 1 elif (cr.score >= 80): badge = 2 # now set the final SimQuality Badge cr.simQbadge = badge cr.score = max(round(cr.score, 2), 0) return cr # all the data is stored in a dictionary with tool-specific data def processDirectory(path): """ Processes a test case directory, i.e. path = "data/TF03-Waermeleitung". It then reads data from the subdirectory 'Auswertung/Ergebnisse' and calculates the validation score. Returns a CaseResults object with data for all test variables. 'None' indicates entirely invalid/missing test data or reference data. """ # test case name testCaseName = os.path.split(path)[1] testCaseName = testCaseName[2:] # result dir exists? tsvPath = os.path.join(path, RESULTS_SUBDIRNAME) if not os.path.exists(tsvPath): printError(" Missing test result directory '{}'.".format(tsvPath)) return None # None indicates entirely invalid/missing test data. tsvFiles = [o for o in os.listdir(tsvPath) if o.endswith("tsv")] evalFiles = [o for o in os.listdir(path) if o.endswith("tsv")] if not "Reference.tsv" in evalFiles: printError(" Missing 'Reference.tsv' file.") return None if not "EvaluationPeriods.tsv" in evalFiles: printError(" Missing 'EvaluationPeriods.tsv' file.") return None tsvFiles = sorted(tsvFiles) # read evaluation periods evalData = TSVContainer() evalData.readAsStrings(os.path.join(path, "EvaluationPeriods.tsv")) if True in evalData.emptyColumn: printError(" 'EvaluationPeriods.tsv' contains empty columns.") return None # read reference file refData = TSVContainer() refData.readAsStrings(os.path.join(path, "Reference.tsv")) if True in refData.emptyColumn: printError(" 'Reference.tsv' contains empty columns.") return None if not refData.convert2Double(): printError(" 'Reference.tsv' contains invalid numbers.") return None # read reference specification try: with open(os.path.join(path,'References.txt')) as f: lines = f.readlines() references = lines[0].split(",") except RuntimeError as e: printError(e) printError(f"References.txt needs to be specified. Separated by ','") # read Weight factors try: weightFactorsTSV = TSVContainer() weightFactorsTSV.readAsStrings(os.path.join(path, "WeightFactors.tsv")) except RuntimeError as e: printError(e) printError(f"At least one weight factor has to be specified in 'WeightFactors.tsv'.") exit(1) weightFactors = dict() diffFactor = 0 for i in range(len(weightFactorsTSV.data[0])): if weightFactorsTSV.data[0][i] == "Max Difference": diffFactor = - float(weightFactorsTSV.data[1][i]) weightFactors[weightFactorsTSV.data[0][i]] = float(weightFactorsTSV.data[1][i]) weightFactors['Sum'] = diffFactor + sum(map(float, weightFactorsTSV.data[1])) # convert to int and then sum it up # read Weight factors ToolData = [] try: toolData = pd.read_csv(os.path.join(path, "ToolSpecifications.tsv"), encoding='utf-8', sep="\t", engine="pyarrow") # toolData = toolData.set_index(['Tool']) # toolData = toolData.to_dict('records') except RuntimeError as e: print(e) print(f"Tool Data '{str(ToolData)}' is not specified in directory {path}.") exit(1) # extract variable names variables = [] rawVariables = [] for v in refData.headers[1:]: rawVariables.append(v) # remove unit and optional '(mean)' identifier p = v.find("(mean)") if p == -1: p = v.find("[") if p == -1: printError(" Missing unit in header label '{}' of 'Reference.tsv'".format(v)) return None v = v[0:p].strip() variables.append(v) printNotification(" {}".format(v)) # extract variable names evaluationVariables = [] for e in evalData.data[0]: evaluationVariables.append(e) printNotification(" {}".format(e)) ############################################################### referenceDf =
pd.DataFrame()
pandas.DataFrame
import pyaniasetools as aat import pyanitools as ant import hdnntools as hdt import pandas as pd import sys import numpy as np import re import os import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.colors import LogNorm import matplotlib.cm as cm from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset from matplotlib.backends.backend_pdf import PdfPages #import seaborn as sns pd.options.display.float_format = '{:.2f}'.format # ---------------------------------- # Plot force histogram # ---------------------------------- def plot_corr_dist_axes(ax, Xp, Xa, cmap, labelx, labely, plabel, vmin=0, vmax=0, inset=True): Fmx = Xa.max() Fmn = Xa.min() # Plot ground truth line ax.plot([Fmn, Fmx], [Fmn, Fmx], '--', c='red', linewidth=3) # Set labels ax.set_xlabel(labelx, fontsize=26) ax.set_ylabel(labely, fontsize=26) # Plot 2d Histogram if vmin == 0 and vmax ==0: bins = ax.hist2d(Xp, Xa, bins=200, norm=LogNorm(), range=[[Fmn, Fmx], [Fmn, Fmx]], cmap=cmap) else: bins = ax.hist2d(Xp, Xa, bins=200, norm=LogNorm(), range=[[Fmn, Fmx], [Fmn, Fmx]], cmap=cmap, vmin=vmin, vmax=vmax) # Build color bar #cbaxes = fig.add_axes([0.91, 0.1, 0.03, 0.8]) # Annotate with label ax.text(0.25*((Fmx-Fmn))+Fmn, 0.06*((Fmx-Fmn))+Fmn, plabel, fontsize=26) # Annotate with errors PMAE = hdt.calculatemeanabserror(Xa, Xp) PRMS = hdt.calculaterootmeansqrerror(Xa, Xp) ax.text(0.6*((Fmx-Fmn))+Fmn, 0.2*((Fmx-Fmn))+Fmn, 'MAE='+"{:.3f}".format(PMAE)+'\nRMSE='+"{:.3f}".format(PRMS), fontsize=30, bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 5}) if inset: axins = zoomed_inset_axes(ax, 2., loc=2) # zoom = 6 sz = 0.1*(Fmx-Fmn) axins.hist2d(Xp, Xa, bins=50, range=[[Xa.mean() - sz, Xa.mean() + sz], [Xp.mean() - sz, Xp.mean() + sz]], norm=LogNorm(), cmap=cmap) axins.plot([Xp.mean() - sz, Xp.mean() + sz], [Xp.mean() - sz, Xp.mean() + sz], '--', c='r', linewidth=3) # sub region of the original image x1, x2, y1, y2 = Xa.mean() - sz, Xa.mean() + sz, Xp.mean() - sz, Xp.mean() + sz axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) axins.yaxis.tick_right() mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec="1.5") plt.xticks(visible=True) plt.yticks(visible=True) return bins def add_inset_histogram(Xa, Xp, pos, ylim, xlim): Ferr = Xa - Xp std = np.std(Ferr) men = np.mean(Ferr) axh = plt.axes(pos) axh.hist(Ferr, bins=75, range=[men - 4 * std, men + 4 * std], normed=False) axh.set_ylim(ylim) axh.set_xlim(xlim) #axh.set_title('Difference distribution') # ---------------------------------- # Plot force histogram # ---------------------------------- def plot_corr_dist(Xa, Xp, inset=True, xlabel='$F_{dft}$' + r' $(kcal \times mol^{-1} \times \AA^{-1})$', ylabel='$F_{dft}$' + r' $(kcal \times mol^{-1} \times \AA^{-1})$', figsize=[13,10], cmap=mpl.cm.viridis): Fmx = Xa.max() Fmn = Xa.min() label_size = 14 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size fig, ax = plt.subplots(figsize=figsize) # Plot ground truth line ax.plot([Fmn, Fmx], [Fmn, Fmx], '--', c='r', linewidth=3) # Set labels ax.set_xlabel(xlabel, fontsize=22) ax.set_ylabel(ylabel, fontsize=22) #cmap = mpl.cm.viridis #cmap = mpl.cm.brg # Plot 2d Histogram bins = ax.hist2d(Xa, Xp, bins=200, norm=LogNorm(), range= [[Xa.min(), Xa.max()], [Xp.min(), Xp.max()]], cmap=cmap) # Build color bar #cbaxes = fig.add_axes([0.91, 0.1, 0.03, 0.8]) cb1 = fig.colorbar(bins[-1], cmap=cmap) cb1.set_label('Count', fontsize=16) # Annotate with errors PMAE = hdt.calculatemeanabserror(Xa, Xp) PRMS = hdt.calculaterootmeansqrerror(Xa, Xp) ax.text(0.75*((Fmx-Fmn))+Fmn, 0.43*((Fmx-Fmn))+Fmn, 'MAE='+"{:.3f}".format(PMAE)+'\nRMSE='+"{:.3f}".format(PRMS), fontsize=20, bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 5}) if inset: axins = zoomed_inset_axes(ax, 2.2, loc=2) # zoom = 6 sz = 6 axins.hist2d(Xa, Xp,bins=50, range=[[Fmn/sz, Fmx/sz], [Fmn/sz, Fmx/sz]], norm=LogNorm(), cmap=cmap) axins.plot([Xa.min(), Xa.max()], [Xa.min(), Xa.max()], '--', c='r', linewidth=3) # sub region of the original image x1, x2, y1, y2 = Fmn/sz, Fmx/sz, Fmn/sz, Fmx/sz axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) axins.yaxis.tick_right() plt.xticks(visible=True) plt.yticks(visible=True) mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec="0.5") Ferr = Xa - Xp std = np.std(Ferr) men = np.mean(Ferr) axh = plt.axes([.49, .16, .235, .235]) axh.hist(Ferr, bins=75, range=[men-4*std, men+4*std], normed=True) axh.set_title('Difference distribution') #plt.draw() plt.show() class generate_ensemble_data(aat.anicrossvalidationconformer): '''Constructor''' def __init__(self, networks, tsfiles, gpu=0): super().__init__(networks['cns'], networks['sae'], networks['nnf'], networks['nts'], gpu ) self.tsfiles = tsfiles self.Nn = networks['nts'] '''Stat generator''' def generate_stats(self, maxe=sys.float_info.max, forces=True, grad=False): self.tdata = dict() for key in self.tsfiles.keys(): print(' -Working on',key,'...') cdata = dict({'Eani': [], 'Edft': [], 'Erel': [], 'Fani': [], 'Fdft': [], 'dEani': [], 'dEdft': [], 'Na': [], 'Na2': [],}) for file in self.tsfiles[key]: print(key,file) adl = ant.anidataloader(file) for i, data in enumerate(adl): #if i > 5: # break if data['coordinates'].shape[0] != 0: Eani, Fani, sig = self.compute_energyandforce_conformations(np.array(data['coordinates'],dtype=np.float64), data['species'], ensemble=False) midx = np.where( data['energies'] - data['energies'].min() < maxe/hdt.hatokcal )[0] Eani = Eani[:,midx] Edft = data['energies'][midx] Erel = (data['energies'] - data['energies'].min())[midx] Fani = Fani[:,midx,:,:] if forces: if grad: Fdft = -data['forces'][midx] else: Fdft = data['forces'][midx] else: Fdft = 0.0*data['coordinates'][midx] #Eestd = np.std(Eani, axis=0)/np.sqrt(len(data['species'])) Eeani = np.mean(Eani, axis=0).reshape(1,-1) Feani = np.mean(Fani, axis=0).flatten().reshape(1,-1) Fani = Fani.reshape(Fani.shape[0],-1) Eani = np.vstack([Eani, Eeani]) Fani = np.vstack([Fani, Feani]) Edft = hdt.hatokcal * Edft Fdft = hdt.hatokcal * Fdft.flatten() cdata['Na'].append(np.full(Edft.size, len(data['species']), dtype=np.int32)) cdata['Eani'].append(Eani) cdata['Edft'].append(Edft) cdata['Erel'].append(Erel) cdata['Fani'].append(Fani) cdata['Fdft'].append(Fdft) #cdata['Frmse'].append(np.sqrt(np.mean((Fani-Fdft).reshape(Fdft.shape[0], -1)**2, axis=1))) #cdata['Frmae'].append(np.sqrt(np.mean(np.abs((Fani - Fdft).reshape(Fdft.shape[0], -1)), axis=1))) cdata['dEani'].append(hdt.calculateKdmat(self.Nn+1, Eani)) cdata['dEdft'].append(hdt.calculatedmat(Edft)) cdata['Na2'].append(np.full(cdata['dEdft'][-1].size, len(data['species']), dtype=np.int32)) #cdata['Erani'].append(Eani-Eani.min()) #cdata['Erdft'].append(Edft-Edft.min()) for k in ['Na', 'Na2', 'Edft', 'Fdft', 'dEdft', 'Erel']: cdata[k] = np.concatenate(cdata[k]) for k in ['Eani', 'Fani', 'dEani']: cdata[k] = np.hstack(cdata[k]) self.tdata.update({key: cdata}) ''' Generate total errors ''' def store_data(self, filename): if os.path.exists(filename): os.remove(filename) dpack = ant.datapacker(filename) for k in self.tdata.keys(): dpack.store_data(k,**(self.tdata[k])) dpack.cleanup() names = ['E$_\mathrm{MAE}$$\mu$', 'E$_\mathrm{MAE}$$\sigma$', 'E$_\mathrm{RMS}$$\mu$', 'E$_\mathrm{RMS}$$\sigma$', '$\Delta$E$_\mathrm{MAE}$$\mu$', '$\Delta$E$_\mathrm{MAE}$$\sigma$', '$\Delta$E$_\mathrm{RMS}$$\mu$', '$\Delta$E$_\mathrm{RMS}$$\sigma$', 'F$_\mathrm{MAE}$$\mu$', 'F$_\mathrm{MAE}$$\sigma$', 'F$_\mathrm{RMS}$$\mu$', 'F$_\mathrm{RMS}$$\sigma$', ] class evaluate_ensemble_data(aat.anicrossvalidationconformer): '''Constructor''' def __init__(self, datafile): self.fdata = dict() for df in datafile: adl = ant.anidataloader(df) tdata = dict() for data in adl: tdata.update({data['path'].split('/')[-1] : data}) adl.cleanup() self.fdata[df.split('tsdata_')[-1].split('.h5')[0]] = tdata ''' Generate total errors ''' def generate_fullset_errors(self, ntkey, tslist): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) #tskeys = self.fdata[ntkey].keys() if not tslist: tskeys = self.fdata[ntkey].keys() else: tskeys = tslist Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 #print(self.fdata[ntkey][tskey]['Fdft'].shape) return {names[0]: hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn,:] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys])), names[1]: np.std(hdt.calculatemeanabserror( np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn,:] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]), axis=1)), names[2]: hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys])), names[3]: np.std(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]), axis=1)), names[4]: hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys])), names[5]: np.std(hdt.calculatemeanabserror( np.hstack([self.fdata[ntkey][tskey]['dEani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys]), axis=1)), names[6]: hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys])), names[7]: np.std(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['dEani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys]), axis=1)), names[8]: hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['Fani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys])), names[9]: np.std(hdt.calculatemeanabserror( np.hstack([self.fdata[ntkey][tskey]['Fani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys]), axis=1)), names[10]: hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Fani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys])), names[11]: np.std(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Fani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys]), axis=1)), #'FMAEm': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), #'FMAEs': np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][0:Nn,:], self.fdata[ntkey][tskey]['Fdft'], axis=1)), #'FRMSm': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), #'FRMSs': np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][0:Nn, :],self.fdata[ntkey][tskey]['Fdft'], axis=1)), #'dEMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'dERMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'ERMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['Erdft'][idx]), #'ERRMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['rdft'][idx]), } ''' Generate total errors ''' def get_range_stats(self, tslist, dkey): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) ntkey = list(self.fdata.keys())[0] if not tslist: tskeys = self.fdata[ntkey].keys() else: tskeys = tslist Nn = self.fdata[ntkey][list(tskeys)[0]][dkey].shape[0]-1 return np.concatenate([self.fdata[ntkey][tskey][dkey] for tskey in tskeys]) ''' Generate total errors ''' def generate_fullset_peratom_errors(self, ntkey, tslist): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) if not tslist: tskeys = self.fdata[ntkey].keys() else: tskeys = tslist Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 #print(self.fdata[ntkey]['GDB07to09']['Eani'][Nn,:]) #print(self.fdata[ntkey]['GDB07to09']['Na']) #print(self.fdata[ntkey]['GDB07to09']['Eani'][Nn,:]/self.fdata[ntkey]['GDB07to09']['Na']) return {names[0]: 1000*hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn,:]/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft']/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys])), names[2]: 1000*hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn, :]/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft']/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys])), names[4]: 1000*hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys])), names[6]: 1000*hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys])), } ''' Generate total errors ''' def generate_fullset_mean_errors(self, ntkey): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) tskeys = self.fdata[ntkey].keys() Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 return {names[2]+'E': hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn,:] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys])), names[2]+'M': np.mean(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]),axis=1)), names[6]+'E': hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys])), names[6]+'M': np.mean(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['dEani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys]),axis=1)), names[10]+'E': hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Fani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys])), names[10]+'M': np.mean(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Fani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys]),axis=1)), } ''' Generate total errors ''' def generate_total_errors(self, ntkey, tskey): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) Nn = self.fdata[ntkey][tskey]['Eani'].shape[0]-1 return {names[0]: hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Eani'][Nn,:], self.fdata[ntkey][tskey]['Edft']), names[1]: np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Eani'][0:Nn,:], self.fdata[ntkey][tskey]['Edft'], axis=1)), names[2]: hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Eani'][Nn,:], self.fdata[ntkey][tskey]['Edft']), names[3]: np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Eani'][0:Nn,:], self.fdata[ntkey][tskey]['Edft'], axis=1)), names[4]: hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'][Nn,:], self.fdata[ntkey][tskey]['dEdft']), names[5]: np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'][0:Nn,:], self.fdata[ntkey][tskey]['dEdft'], axis=1)), names[6]: hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'][Nn,:], self.fdata[ntkey][tskey]['dEdft']), names[7]: np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'][0:Nn,:], self.fdata[ntkey][tskey]['dEdft'], axis=1)), names[8]: hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), names[9]: np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][0:Nn,:], self.fdata[ntkey][tskey]['Fdft'], axis=1)), names[10]: hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), names[11]: np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][0:Nn, :],self.fdata[ntkey][tskey]['Fdft'], axis=1)), #'dEMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'dERMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'ERMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['Erdft'][idx]), #'ERRMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['rdft'][idx]), } def determine_min_error_by_sigma(self, ntkey, minerror, percent, tskeys = ['GDB07to09'], figsize=(15.0, 12.0), labelx='', labely='', xyrange=(0.0,10.0,0.0,10.0), storepath='', cmap=mpl.cm.viridis): #tskeys = self.fdata[ntkey].keys() mpl.rcParams['xtick.labelsize'] = 18 mpl.rcParams['ytick.labelsize'] = 18 Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 Eani = np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn, :] for tskey in tskeys]) Eanimu = np.hstack([self.fdata[ntkey][tskey]['Eani'][Nn, :] for tskey in tskeys]) #Eani = np.hstack([self.fdata[ntkey][tskey]['Eani'][Nn, :] for tskey in tskeys]) Edft = np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]) #print(Eani.shape, Edft.shape, ) #print(np.max(Eerr.shape, axis=0)) Sani = np.concatenate([np.std(self.fdata[ntkey][tskey]['Eani'][0:Nn, :], axis=0) for tskey in tskeys]) Na = np.concatenate([self.fdata[ntkey][tskey]['Na'] for tskey in tskeys]) #print(Sani.shape, Na.shape) Sani = Sani / np.sqrt(Na) Eerr = np.max(np.abs(Eani - Edft),axis=0) / np.sqrt(Na) #Eerr = np.abs(np.mean(Eani,axis=0) - Edft) / np.sqrt(Na) #Eerr = np.abs(Eani - Edft) / np.sqrt(Na) #print(Eerr) #print(Sani) Nmax = np.where(Eerr > minerror)[0].size perc = 0 dS = Sani.max() step = 0 while perc < percent: S = dS - step*0.001 Sidx = np.where(Sani > S) step += 1 perc = 100.0*np.where(Eerr[Sidx] > minerror)[0].size/(Nmax+1.0E-7) #print(step,perc,S,Sidx) #print('Step:',step, 'S:',S,' -Perc over:',perc,'Total',100.0*Sidx[0].size/Edft.size) #dE = np.max(Eerr, axis=0) / np.sqrt(Na) #print(Eerr.shape,Eerr) So = np.where(Sani > S) Su = np.where(Sani <= S) print('RMSE Over: ', hdt.calculaterootmeansqrerror(Eanimu[So],Edft[So])) print('RMSE Under: ', hdt.calculaterootmeansqrerror(Eanimu[Su],Edft[Su])) fig, ax = plt.subplots(figsize=figsize) poa = np.where(Eerr[So] > minerror)[0].size / So[0].size pob = np.where(Eerr > minerror)[0].size / Eerr.size ax.text(0.57*(xyrange[1]), 0.04*(xyrange[3]), 'Total Captured: ' + str(int(100.0 * Sidx[0].size / Edft.size)) + '%' + '\n' + r'($\mathrm{\mathcal{E}>}$'+ "{:.1f}".format(minerror) + r'$\mathrm{) \forall \rho}$: ' + str(int(100*pob)) + '%' + '\n' + r'($\mathrm{\mathcal{E}>}$'+ "{:.1f}".format(minerror) + r'$\mathrm{) \forall \rho >}$' + "{:.2f}".format(S) + ': ' + str(int(100*poa)) + '%' + '\n' + r'$\mathrm{E}$ RMSE ($\mathrm{\rho>}$'+ "{:.2f}".format(S) + r'$\mathrm{)}$: ' + "{:.1f}".format(hdt.calculaterootmeansqrerror(Eanimu[So],Edft[So])) + '\n' + r'$\mathrm{E}$ RMSE ($\mathrm{\rho\leq}$' + "{:.2f}".format(S) + r'$\mathrm{)}$: ' + "{:.1f}".format(hdt.calculaterootmeansqrerror(Eanimu[Su], Edft[Su])), bbox={'facecolor':'grey', 'alpha':0.5, 'pad':10}, fontsize=18) plt.axvline(x=S,linestyle='--',color='r',linewidth=5, label=r"$\mathrm{\rho=}$"+"{:.2f}".format(S) + ' is the value that captures\n'+ str(int(percent)) + '% of errors over ' + r"$\mathrm{\mathcal{E}=}$" + "{:.1f}".format(minerror)) #) # Set labels ax.set_xlabel(labelx, fontsize=24) ax.set_ylabel(labely, fontsize=24) # Plot 2d Histogram bins = ax.hist2d(Sani, Eerr, bins=400, norm=LogNorm(), range=[[xyrange[0], xyrange[1]], [xyrange[2], xyrange[3]]], cmap=cmap) # Build color bar # cbaxes = fig.add_axes([0.91, 0.1, 0.03, 0.8]) cb1 = fig.colorbar(bins[-1], cmap=cmap) cb1.set_label('Count', fontsize=20) cb1.ax.tick_params(labelsize=18) plt.legend(loc='upper center',fontsize=18) if storepath: pp = PdfPages(storepath) pp.savefig(fig) pp.close() else: plt.show() def get_net_keys(self): return self.fdata.keys() def get_totalerror_table(self, tslist = []): errors = dict() for k in self.fdata.keys(): errors[k] = pd.Series(self.generate_fullset_errors(k, tslist)) pd.set_option('expand_frame_repr', False) edat = pd.DataFrame(errors).transpose() return edat def get_totalerrorperatom_table(self, tslist = []): errors = dict() for k in self.fdata.keys(): errors[k] = pd.Series(self.generate_fullset_peratom_errors(k, tslist)) pd.set_option('expand_frame_repr', False) edat = pd.DataFrame(errors).transpose() return edat def get_totalmeanerror_table(self): errors = dict() for k in self.fdata.keys(): errors[k] = pd.Series(self.generate_fullset_mean_errors(k)) pd.set_option('expand_frame_repr', False) edat = pd.DataFrame(errors).transpose() return edat def get_error_table(self, tskey): errors = dict() for k in self.fdata.keys(): errors[k] = pd.Series(self.generate_total_errors(k,tskey)) pd.set_option('expand_frame_repr', False) edat = pd.DataFrame(errors).transpose() return edat def get_ntwrk_error_table(self, ntkey): errors = dict() for k in self.fdata[ntkey].keys(): errors[k] = pd.Series(self.generate_total_errors(ntkey, k))
pd.set_option('expand_frame_repr', False)
pandas.set_option
import numpy as np import pandas as pd from datetime import datetime from functools import partial import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Layer, Input, Dense, Dropout, BatchNormalization from tensorflow.keras import metrics from sklearn import preprocessing from sklearn.metrics import confusion_matrix, roc_curve, auc import os import gc from .. import utils from ..config import cfg from .base_model import BaseModel class FFNModel(BaseModel): def __init__(self, X_train, y_train, X_test, params_file=None, folds_lookup=None, prefix=None, weights=None, tf_path=None, logger=None): BaseModel.__init__(self, X_train, y_train, X_test, params_file, folds_lookup, prefix, logger) self.model = None self.sess = None self.history = None self.weights = weights self.n_inputs = None self.initializer = None self.regularizer = None self.activation = None self.tf_path = tf_path self.logdir = None self.output_suffix = '_keras_pred' def init_hparams(self): '''interpret params.yaml file to set tf.Graph params ''' self.n_inputs = self.X_train.shape[1] self.initializer = tf.keras.initializers.VarianceScaling( scale=1.0, mode=self.params['init_mode'], distribution=self.params['init_distribution'], seed=None) l1_reg=float(self.params.get('l1_reg_weight', 0.0)) l2_reg=float(self.params.get('l2_reg_weight', 0.0)) reg={'None': None, 'l1': tf.keras.regularizers.l1(l1_reg), 'l2': tf.keras.regularizers.l2(l2_reg), 'l1-l2': tf.keras.regularizers.l1_l2(l1=l1_reg, l2=l2_reg)} self.regularizer = reg.get(self.params['regularizer'], None) eta = float(self.params.get('eta', 0.001)) momentum=float(self.params.get('momentum', 0.0)) beta_1=float(self.params.get('beta1', 0.9)) beta_2=float(self.params.get('beta2', 0.999)) epsilon=float(self.params.get('epsilon', 1e-08)) decay=float(self.params.get('decay', 0.0)) amsgrad=self.params.get('amsgrad', False) optimizers = { 'sgd': tf.keras.optimizers.SGD(lr=eta, momentum=momentum, decay=decay), 'adam': tf.keras.optimizers.Adam(lr=eta, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, decay=decay, amsgrad=amsgrad), 'adagrad': tf.keras.optimizers.Adagrad(lr=eta, epsilon=epsilon, decay=decay), 'adadelta': tf.keras.optimizers.Adadelta(lr=eta, epsilon=epsilon, decay=decay)} self.optimizer = optimizers[self.params.get('optimizer', 'sgd')] def get_sample_weights(self, fold): idx, _ = self._get_fold_indices(fold) return self.weights[idx.values.astype(int)] def init_tensorboard(self, fold='', param_set=''): '''Set directory and filename for tensorboard logs and checkpoint file ''' now = datetime.now().strftime("%m%d-%H%M") comment = '' self.logdir = f'{self.tf_path}/tensorboard_logs/{now}-{fold}-{param_set}{comment}/' self.ckpt_file = f'{self.tf_path}/sessions/mlp.ckpt' def feedforward_layers(self, final_activation=None): '''Iterate layers of dropout-dense-batch norm''' X = Input(shape=(self.X_train.shape[1], )) layer = Layer(name='identity')(X) n_layers = len(self.params['layers']) for i, units in enumerate(self.params['layers']): drop_rate = self.params.get('drop_rates', [0.0] * n_layers)[i] if drop_rate > 0.0: layer = Dropout(drop_rate, noise_shape=None, seed=None, name='drop_' + str(i+1))(layer) layer = Dense(units, activation=self.params.get('activation', None), kernel_initializer=self.initializer, bias_initializer='zeros', kernel_regularizer=self.regularizer, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name='dense_' + str(i+1))(layer) if self.params.get('use_batch_norm', [False] * n_layers)[i]: layer = BatchNormalization(axis=-1, momentum=self.params.get('batch_norm_momentum', 0.99), epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, name='bn_'+str(i+1))(layer) outputs = Dense(1, activation=final_activation, kernel_initializer=self.initializer, bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name='outputs')(layer) return X, outputs def find_lr(self, epoch, lr): '''Learning rate (eta) finder''' factor = float(self.params.get('find_eta_factor', 1.3)) start_eta = float(self.params.get('find_eta_start', 1e-08)) return factor ** (epoch) * start_eta def clr(self, epoch, lr): '''Cyclical learning rate''' eta_min = float(self.params.get('clr_min', 1e-05)) eta_max = float(self.params.get('clr_max', 1e-02)) clr_period = self.params.get('clr_period', 15) assert clr_period >= 4 assert eta_min < eta_max if int(clr_period) % 2 > 0: clr_period = int(clr_period + 1) eta_range = eta_max - eta_min step = epoch % clr_period factor = abs( (clr_period // 2) - step) / (clr_period // 2) return eta_max - eta_range * factor def train_eval(self, X_train, y_train, X_val, y_val=None, weights=None, return_preds=False, save_ckpt=False, fold=None, plot_n_samples=None): '''Core training and evals routine. Args: X_train, y_train, X_val, y_val: train and validation datasets weights: per-instance weighting factor for each instance in X_train return_preds: bool, False for train/eval, True to generate predictions (without evals) save_ckpt: bool, not implemented fold: integer fold number plot_n_samples: integer, number of samples for plot_regression_preds Returns: if return_preds, returns model predictions for X_val ''' self.build_model(enable_metrics=not return_preds) callbacks = [] if self.params.get('use_clr', False): callbacks.append(tf.keras.callbacks.LearningRateScheduler( self.clr, verbose=0)) if (self.params.get('reduce_eta', False) and not self.params.get('find_eta', False) and not self.params.get('use_clr', False)): callbacks.append(tf.keras.callbacks.ReduceLROnPlateau( monitor='loss', factor=self.params['reduce_eta_factor'], patience=self.params['reduce_eta_steps'], verbose=1, mode='auto', min_delta=0.0001, cooldown=0, min_lr=1e-08)) if not return_preds: # metrics callbacks, disabled for predictions-only mode epoch_begin = lambda epoch, logs: self.epoch_begin() epoch_end = lambda epoch, logs: self.epoch_end( epoch, logs, X_train, y_train, X_val, y_val) train_end = lambda logs: self.train_end( X_val, y_val, plot_n_samples, fold) if self.params.get('find_eta', False): callbacks.append(tf.keras.callbacks.LearningRateScheduler( self.find_lr, verbose=0)) if self.params.get('use_tensorboard', False): callbacks.append(tf.keras.callbacks.TensorBoard( log_dir=self.logdir, histogram_freq=0, batch_size=self.params['val_batch_size'], write_graph=True, write_grads=False, write_images=False, update_freq='epoch')) if self.params.get('early_stop_rounds', False): callbacks.append(tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=0, patience=self.params['early_stop_rounds'], verbose=1, mode='auto', baseline=None, restore_best_weights=False)) callbacks.append(tf.keras.callbacks.LambdaCallback( on_epoch_begin=self.epoch_begin, on_epoch_end=epoch_end, on_batch_begin=None, on_batch_end=None, on_train_begin=self.train_begin, on_train_end=train_end)) validation_data = (X_val, y_val) elif return_preds: validation_data=None train_batch_size = self.params.get('train_batch_size', 32) mode = self.params.get('train_mode', 'minibatch_gd') if mode == 'minibatch_gd': steps_per_epoch = None validation_steps = None n_batches = X_train.shape[0] // train_batch_size self.logger.info(f'training {n_batches} iterations per epoch') elif mode == 'sgd': steps_per_epoch = self.params.get('epoch_train_batches', 10) validation_steps = self.params.get('epoch_val_batches', None) # ignore class weights for regression if self.params['loss_fn'] in ['mean_squared_error', 'mean_absolute_error']: class_weight = None else: class_weight = {0: 1, 1: self.params.get('pos_weight', 1.0)} with self.sess.as_default(): self.model.fit(X_train, y_train, batch_size=train_batch_size, epochs=self.params['n_epochs'], verbose=self.params['verbose'], callbacks=callbacks, validation_data=validation_data, shuffle=True, class_weight=class_weight, sample_weight=weights, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) if return_preds: chunk_size = int(self.params['predict_chunk_size']) fold_preds = self.model.predict(X_val, batch_size=chunk_size, verbose=0).ravel() return fold_preds def _grid_cv_fold(self, fold, plot_n_samples): '''Single-fold CV on permutations of cv_grid params''' params_grid, keys = self._get_cv_params_grid() columns_list = ['fold_no', *keys] for met in self.metrics: columns_list.extend(['best_' + met, 'rnd_' + met]) fold_results_list = [] X_train, y_train, X_val, y_val = self._get_fold_data(fold) if self.weights is not None: weights = self.get_sample_weights(fold) else: weights = None for i, param_set in enumerate(params_grid): params_str = '' for j in range(len(param_set)): self.params[keys[j]] = param_set[j] params_str += f'{keys[j]}={self.params[keys[j]]} ' self.logger.info(params_str) self.init_hparams() self.init_tensorboard(fold, i+1) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.train_eval(X_train, y_train, X_val, y_val, weights, fold=fold, plot_n_samples=plot_n_samples) tf.reset_default_graph() best_evals = self.best_eval_multi() for eval in best_evals: self.logger.info(f' best val {eval[0]}: {eval[1]:.4f}, ' + f'round {eval[2]}') self.logger.info('') results_row = [fold, *(str(k) for k in param_set)] for eval in best_evals: results_row.extend([eval[1], eval[2]]) round_results = pd.DataFrame([results_row], columns=columns_list, index=[i]) fold_results_list.append(round_results) return pd.concat(fold_results_list, axis=0) def grid_cv(self, val_rounds, plot_n_samples=None): '''Grid cross-valdidation. Permutes params/values in self.cv_grid (dict). Args: val_rounds, integer: number of CV rounds (mimimum: 1, maximum: number of folds) Returns: no return; updates self.cv_results with grid CV results ''' self.load_hparams() keys = [*self.cv_grid.keys()] columns = [] for met in self.metrics: columns.extend(['best_' + met, 'rnd_' + met]) results_list = [] self.log_hparams() for fold in range(1, val_rounds + 1): self.logger.info(f'------------------------ FOLD {fold} OF {val_rounds} ------------------------') fold_results = self._grid_cv_fold(fold, plot_n_samples) results_list.append(fold_results) self.cv_results = pd.concat(results_list, axis=0) self.logger.info('grid CV complete.') if plot_n_samples is not None: self.plot_regression_preds() # display/log grid CV summary groupby = [self.cv_results[key] for key in keys] summ_df = self.cv_results[columns].groupby(groupby).mean() self.logger.info(self.parse_summ_df(summ_df)) # reset/reload all params from params file self.load_hparams() def cv_predictions(self): '''Generate fold-by-fold predictions. For each fold k, train on all other folds and make predictions for k. Returns: pandas DataFrame with predictions for each fold in the training set. ''' self.load_hparams() self.logger.info(f'starting predictions for CV outputs...') train_preds = [] for fold in range(1, self.n_folds + 1): _, val_idx = self._get_fold_indices(fold) X_train, y_train, X_val, y_val = self._get_fold_data(fold) if self.weights is not None: weights = self.get_sample_weights(fold) else: weights = None self.init_hparams() self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) fold_preds = self.train_eval(X_train, y_train, X_val, y_val, return_preds=True, fold=fold) tf.reset_default_graph() fold_preds = pd.Series(fold_preds, index=val_idx) train_preds.append(fold_preds) self.logger.info(f'fold {fold} CV outputs complete.') train_preds = pd.concat(train_preds) return train_preds.rename(self.prefix + self.output_suffix, inplace=True) def test_predictions(self): '''Train on full X_train/y_train and return predictions for X_test ''' if self.weights is not None: weights = self.weights else: weights = None self.load_hparams() self.init_hparams() self.logger.info(f'starting predictions for test outputs...') self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) test_preds = self.train_eval(self.X_train, self.y_train, self.X_test, return_preds=True, weights=weights) tf.reset_default_graph() test_preds =
pd.Series(test_preds, index=self.X_test.index)
pandas.Series
import unittest import pandas as pd import numpy as np class TestNumpyJSONEncoder(unittest.TestCase): def setUp(self): from bokeh.protocol import NumpyJSONEncoder self.encoder = NumpyJSONEncoder() def test_fail(self): self.assertRaises(TypeError, self.encoder.default, {'testing': 1}) def test_panda_series(self): s =
pd.Series([1, 3, 5, 6, 8])
pandas.Series
import pandas as pd import re default_units = {'speed': 'km/h', 'distance': 'km', 'weight': 'kg', 'height': 'cm'} units_conversions = {} # Team 2 def convert_time(time: str, time_format: str = None, mode: str = 'flag'): """ Converts string with time into pd.Timedelta object Parameters ---------- time: string time_format: string if mode = flag : valid flags for pd.to_datetime function if mode = regex : raw string with regex. Each unit of time to be included in the result should be named group of regex. One of the following values should be used as a key: {'days', 'seconds', 'microseconds', 'milliseconds', 'minutes', 'hours', 'weeks'} Example of valid regex: r"(?P<hours>[\d]{0,2})\:?(?P<minutes>[\d]{2})\:(?P<seconds>[\d]{2}).[\d]{3}" default = None : Default call of to_timedelta function without flags mode: string with value 'flag' or 'regex' flag for using flag mode (matching time using flags recognised by pd.to_datetime), regex for using regex patterns matching time Returns ------- pd.Timedelta object if operation was successful, else returns time parameter as a string. """ possible_keys = {'days', 'seconds', 'microseconds', 'milliseconds', 'minutes', 'hours', 'weeks'} if mode == 'flag': try: dt_time = pd.to_datetime(time, 'ignore', format=time_format) try: return pd.to_timedelta(dt_time) except ValueError: return pd.to_timedelta(str(dt_time.time())) except (TypeError, AttributeError): return str(time) elif mode == 'regex': if re_compiler(time_format) is True: try: time_dict = re.search(time_format, time).groupdict() time_dict = dict_comprehension(possible_keys, time_dict) return pd.Timedelta(**time_dict) except (AttributeError, KeyError): return str(time) else: return str(time) # Team 2 def convert_date(date: str, date_format: str = None, mode: str = 'flag'): """ Parameters ---------- date : date in string format date_format: string if mode = flag : valid flags for pd.to_datetime function if mode = regex : raw string with regex. Each unit of date to be included in the result should be named group of regex. One of the following values should be used as a key: {'year', 'month', 'day', 'hour', 'minute', 'second', 'time_zone'} Example of valid regex: r"(?P<day>[\d]{2}) (?P<month>[\w]{3}) (?P<year>[\d]{2})" default = None : Default call of to_datetime function without flags mode : string flag for using flag mode (matching date using flags recognised by pd.to_datetime), regex for using regex patterns matching date Returns ------- pd.Timestamp object if operation was successful, else returns date parameter as a string. """ possible_keys = {'year', 'month', 'day', 'hour', 'minute', 'second', 'time_zone'} if mode == 'flag': try: return
pd.to_datetime(date, 'ignore', format=date_format)
pandas.to_datetime
from pathlib import Path import pandas as pd import numpy as np from matplotlib.font_manager import FontProperties import os, sys, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) grandpadir = os.path.dirname(os.path.dirname(currentdir)) sys.path.insert(0, grandpadir) from collections import OrderedDict from utils.helper_functions import read_nav_files, sort_files_by_dim from analysis.comparison.comparison_utils import get_dataset_name, read_proteus_files, read_baseline_files, reform_pseudo_samples_dict from utils.pseudo_samples import PseudoSamplesMger from utils.shared_names import FileKeys, FileNames import matplotlib.pyplot as plt import statsmodels.api as sm pipeline_grouping = 'results_predictive_grouping' pipeline_no_grouping = 'results_predictive' expl_size = 10 noise_level = None keep_only_prot_fs = False datasets = { 'wbc', 'ionosphere', 'arrhythmia' } # test_confs = [ # {'path': Path('..', pipeline, 'loda'), 'detector': 'loda', 'type': 'test'}, # # {'path': Path('..', pipeline, 'iforest'), 'detector': 'iforest', 'type': 'test'} # ] synth_confs =[ {'path': Path('..', pipeline_grouping, 'iforest'), 'detector': 'iforest', 'type': 'synthetic'}, {'path': Path('..', pipeline_grouping, 'lof'), 'detector': 'lof', 'type': 'synthetic'}, {'path': Path('..', pipeline_grouping, 'loda'), 'detector': 'loda', 'type': 'synthetic'} ] real_confs = [ {'path': Path('..', pipeline_grouping, 'iforest'), 'detector': 'iforest', 'type': 'real'}, {'path': Path('..', pipeline_grouping, 'lof'), 'detector': 'lof', 'type': 'real'}, {'path': Path('..', pipeline_grouping, 'loda'), 'detector': 'loda', 'type': 'real'} ] synth_confs_no_grouping = [ {'path': Path('..', pipeline_no_grouping, 'iforest'), 'detector': 'iforest', 'type': 'synthetic'}, {'path': Path('..', pipeline_no_grouping, 'lof'), 'detector': 'lof', 'type': 'synthetic'}, {'path': Path('..', pipeline_no_grouping, 'loda'), 'detector': 'loda', 'type': 'synthetic'} ] confs_to_analyze = synth_confs def plot_panels(): synth_no_grouping = unstructured_perfs(synth_confs_no_grouping) synth_grouping = structured_perfs(synth_confs) real_grouping = unstructured_perfs(real_confs) bias_plot(synth_grouping, real_grouping, synth_no_grouping) # test_auc_plot(pred_perfs_dict, 0) # test_auc_plot(pred_perfs_dict, 1) def best_models(conf): best_models_perf_in_sample = pd.DataFrame() cv_estimates = pd.DataFrame() ci_in_sample = pd.DataFrame() error_in_sample = pd.DataFrame() best_models_perf_out_of_sample = pd.DataFrame() dataset_names = [] nav_files_json = sort_files_by_dim(read_nav_files(conf['path'], conf['type'])) for dim, nav_file in nav_files_json.items(): real_dims = dim - 1 - (conf['type'] == 'synthetic') dname = get_dataset_name(nav_file[FileKeys.navigator_original_dataset_path], conf['type'] != 'real') print(dname + ' ' + str(real_dims) + 'd') rel_fratio = '(' + str(int(round((dim-5)/dim, 2) * 100)) + '%)' if conf['type'] != 'real' else '' dataset_names.append(dname + ' ' + str(real_dims) + 'd ' + rel_fratio) # time_df = pd.concat([time_df, get_time_per_method(nav_file)], axis=1) best_models_perf_in_sample_curr, ci_in_sample_curr, err_in_sample_curr, cv_estimates_curr = \ get_best_models_perf_per_method(nav_file, True) best_models_perf_in_sample =
pd.concat([best_models_perf_in_sample, best_models_perf_in_sample_curr], axis=1)
pandas.concat
import pandas import glob daily_report_files = glob.glob('data/daily_reports/*.csv') all_data = pandas.DataFrame({'Kommune': [], 'Last Update Day': [], 'Last Update Time': [], 'Confirmed': [], 'Deaths': [], 'Recovered': [], 'Quarantine': [], 'Source (Link)': [] }) for f in daily_report_files: all_data = pandas.concat([pandas.read_csv(f), all_data], sort=False) all_data['Last Update Day'] = pandas.to_datetime(all_data['Last Update Day']) all_data['Last Update Time'] = pandas.to_datetime(all_data['Last Update Time']) all_data['Confirmed'] = all_data['Confirmed'].astype(int) all_data['Recovered'] = all_data['Recovered'].astype(int) all_data['Deaths'] = all_data['Deaths'].astype(int) # ~ all_data['Deaths'] = all_data['Quarantine'].astype(int) all_data = all_data.sort_values(by='Last Update Day') confirmed_df = pandas.DataFrame({'Kommune': all_data['Kommune'].unique()}) recovered_df = pandas.DataFrame({'Kommune': all_data['Kommune'].unique()}) deaths_df = pandas.DataFrame({'Kommune': all_data['Kommune'].unique()}) confirmed_df = confirmed_df.set_index('Kommune', drop=True) recovered_df = recovered_df.set_index('Kommune', drop=True) deaths_df = deaths_df.set_index('Kommune', drop=True) for day in all_data['Last Update Day'].dt.date.unique(): for kommune in all_data['Kommune'].unique(): all_data_kommune = all_data[all_data['Kommune'] == kommune] c = all_data_kommune[all_data_kommune['Last Update Day'] == pandas.Timestamp(day)]['Confirmed'].values r = all_data_kommune[all_data_kommune['Last Update Day'] ==
pandas.Timestamp(day)
pandas.Timestamp
# -------------- # Importing header files import numpy as np import pandas as pd from scipy.stats import mode import warnings warnings.filterwarnings('ignore') #Reading file bank_data = pd.read_csv(path) bank =
pd.DataFrame(bank_data)
pandas.DataFrame
import pandas as pd import dataset import albumentations as A import time import torch import numpy as np from torch.utils.data import DataLoader from albumentations.pytorch.transforms import ToTensorV2 from tqdm import tqdm from albumentations import ( HorizontalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose ) """ Complete mAP code here => https://gist.github.com/tarlen5/008809c3decf19313de216b9208f3734 """ def calculate_image_precision(gts, preds, thresholds = (0.5, ), form = 'coco') -> float: # https://www.kaggle.com/sadmanaraf/wheat-detection-using-faster-rcnn-train """Calculates image precision. Args: gts: (List[List[Union[int, float]]]) Coordinates of the available ground-truth boxes preds: (List[List[Union[int, float]]]) Coordinates of the predicted boxes, sorted by confidence value (descending) thresholds: (float) Different thresholds form: (str) Format of the coordinates Return: (float) Precision """ n_threshold = len(thresholds) image_precision = 0.0 ious = np.ones((len(gts), len(preds))) * -1 # ious = None for threshold in thresholds: precision_at_threshold = calculate_precision(gts.copy(), preds, threshold=threshold, form=form, ious=ious) image_precision += precision_at_threshold / n_threshold return image_precision def calculate_iou(gt, pr, form='pascal_voc') -> float: # https://www.kaggle.com/sadmanaraf/wheat-detection-using-faster-rcnn-train """Calculates the Intersection over Union. Args: gt: (np.ndarray[Union[int, float]]) coordinates of the ground-truth box pr: (np.ndarray[Union[int, float]]) coordinates of the prdected box form: (str) gt/pred coordinates format - pascal_voc: [xmin, ymin, xmax, ymax] - coco: [xmin, ymin, w, h] Returns: (float) Intersection over union (0.0 <= iou <= 1.0) """ if form == 'coco': gt = gt.copy() pr = pr.copy() gt[2] = gt[0] + gt[2] gt[3] = gt[1] + gt[3] pr[2] = pr[0] + pr[2] pr[3] = pr[1] + pr[3] # Calculate overlap area dx = min(gt[2], pr[2]) - max(gt[0], pr[0]) + 1 if dx < 0: return 0.0 dy = min(gt[3], pr[3]) - max(gt[1], pr[1]) + 1 if dy < 0: return 0.0 overlap_area = dx * dy # Calculate union area union_area = ( (gt[2] - gt[0] + 1) * (gt[3] - gt[1] + 1) + (pr[2] - pr[0] + 1) * (pr[3] - pr[1] + 1) - overlap_area ) return overlap_area / union_area def find_best_match(gts, pred, pred_idx, threshold = 0.5, form = 'pascal_voc', ious=None) -> int: # https://www.kaggle.com/sadmanaraf/wheat-detection-using-faster-rcnn-train """Returns the index of the 'best match' between the ground-truth boxes and the prediction. The 'best match' is the highest IoU. (0.0 IoUs are ignored). Args: gts: (List[List[Union[int, float]]]) Coordinates of the available ground-truth boxes pred: (List[Union[int, float]]) Coordinates of the predicted box pred_idx: (int) Index of the current predicted box threshold: (float) Threshold form: (str) Format of the coordinates ious: (np.ndarray) len(gts) x len(preds) matrix for storing calculated ious. Return: (int) Index of the best match GT box (-1 if no match above threshold) """ best_match_iou = -np.inf best_match_idx = -1 for gt_idx in range(len(gts)): if gts[gt_idx][0] < 0: # Already matched GT-box continue iou = -1 if ious is None else ious[gt_idx][pred_idx] if iou < 0: iou = calculate_iou(gts[gt_idx], pred, form=form) if ious is not None: ious[gt_idx][pred_idx] = iou if iou < threshold: continue if iou > best_match_iou: best_match_iou = iou best_match_idx = gt_idx return best_match_idx def calculate_precision(gts, preds, threshold = 0.5, form = 'coco', ious=None) -> float: # https://www.kaggle.com/sadmanaraf/wheat-detection-using-faster-rcnn-train """Calculates precision for GT - prediction pairs at one threshold. Args: gts: (List[List[Union[int, float]]]) Coordinates of the available ground-truth boxes preds: (List[List[Union[int, float]]]) Coordinates of the predicted boxes, sorted by confidence value (descending) threshold: (float) Threshold form: (str) Format of the coordinates ious: (np.ndarray) len(gts) x len(preds) matrix for storing calculated ious. Return: (float) Precision """ n = len(preds) tp = 0 fp = 0 for pred_idx in range(n): best_match_gt_idx = find_best_match(gts, preds[pred_idx], pred_idx, threshold=threshold, form=form, ious=ious) if best_match_gt_idx >= 0: # True positive: The predicted box matches a gt box with an IoU above the threshold. tp += 1 # Remove the matched GT box gts[best_match_gt_idx] = -1 else: # No match # False positive: indicates a predicted box had no associated gt box. fp += 1 # False negative: indicates a gt box had no associated predicted box. fn = (gts.sum(axis=1) > 0).sum() return tp / (tp + fp + fn) # Albumentations def get_train_transform(): return A.Compose([ A.Flip(0.5), A.RandomRotate90(0.5), MotionBlur(p=0.2), MedianBlur(blur_limit=3, p=0.1), Blur(blur_limit=3, p=0.1), ToTensorV2(p=1.0) ], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']}) def get_valid_transform(): return A.Compose([ ToTensorV2(p=1.0) ], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']}) def collate_fn(batch): return tuple(zip(*batch)) def prepare_data(): DIR_INPUT = '../input/rsna-pneumonia-detection-2018/input' DIR_TRAIN = f"{DIR_INPUT}/images/" train_df = pd.read_csv(f"{DIR_INPUT}/stage_2_train_labels.csv") print(train_df.shape) train_df.head() train_df_pos =
pd.DataFrame(columns=['patientId', 'x', 'y', 'width', 'height'])
pandas.DataFrame
#!/usr/bin/env python import os import sys import datetime from pathlib import Path from functools import partial import numpy as np import pandas as pd from tqdm import tqdm from scipy import optimize from tqdm.contrib import concurrent from lib.io import read_file from lib.utils import ROOT def _get_outbreak_mask(data: pd.DataFrame, threshold: int = 10): """ Returns a mask for > N confirmed cases. Used to filter out uninteresting dates """ return data["Confirmed"] > threshold def _logistic_function(X: float, a: float, b: float, c: float): """ Used for prediction model. Uses the function: `f(x) = a * e^(-b * e^(-cx))` """ return a * np.exp(-b * np.exp(-c * X)) def _forward_indices(indices: list, window: int): """ Adds `window` indices to a list of dates """ date_indices = [datetime.date.fromisoformat(idx) for idx in indices] for _ in range(window): date_indices.append(date_indices[-1] + datetime.timedelta(days=1)) return [idx.isoformat() for idx in date_indices] def _compute_forecast(data: pd.Series, window: int): """ Perform a forecast of `window` days past the last day of `data`, including a model estimate of all days already existing in `data`. """ # Some of the parameter fittings result in overflow np.seterr(all="ignore") # Perform a simple fit of all available data up to this date X, y = list(range(len(data))), data.tolist() # Providing a reasonable initial guess is crucial for this model params, _ = optimize.curve_fit( _logistic_function, X, y, maxfev=int(1e6), p0=[max(y), np.median(X), 0.1] ) # Append N new days to our indices date_indices = _forward_indices(data.index, window) # Perform projection with the previously estimated parameters projected = [_logistic_function(x, *params) for x in range(len(X) + window)] return
pd.Series(projected, index=date_indices, name="Estimated")
pandas.Series
from itertools import product as it_product from typing import List, Dict import numpy as np import os import pandas as pd from scipy.stats import spearmanr, wilcoxon from provided_code.constants_class import ModelParameters from provided_code.data_loader import DataLoader from provided_code.dose_evaluation_class import EvaluateDose from provided_code.general_functions import get_paths, get_predictions_to_optimize def consolidate_data_for_analysis(cs: ModelParameters, force_new_consolidate: bool = False) \ -> [pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: """ Consolidated data of all reference plans, dose predictions, and KBP plans. This may take about an hour to run, but only needs to be run once for a given set of experiments. Args: cs: A constants object. force_new_consolidate: Flag that will force consolidating data, which will overwrite previous data that was consolidated in previous iterations. Returns: df_dose_error: Summary of dose error df_dvh_metrics: Summary of DVH metric performance (can be converted to DVH error later) df_clinical_criteria: Summary of clinical criteria performance df_ref_dvh_metrics: Summary of reference dose DVH metrics df_ref_clinical_criteria: Summary of reference dose clinical criteria performance df_objective_data: The data from the objective functions (e.g., weights, objective function values) df_solve_time: The time it took to solve models """ # Run consolidate_data_for_analysis when new predictions or plans consolidate_data_paths = {'dose': f'{cs.results_data_dir}/dose_error_df.csv', 'dvh': f'{cs.results_data_dir}/dvh_metric_df.csv', 'clinical_criteria': f'{cs.results_data_dir}/clinical_criteria_df.csv', 'ref_dvh': f'{cs.results_data_dir}/reference_metrics.csv', 'ref_clinical_criteria': f'{cs.results_data_dir}/reference_criteria.csv', 'weights': f'{cs.results_data_dir}/weights_df.csv', 'solve_time': f'{cs.results_data_dir}/solve_time_df.csv' } # Check if consolidated data already exists no_consolidated_date = False for p in consolidate_data_paths.values(): if not os.path.isfile(p): print(p) no_consolidated_date = True os.makedirs(cs.results_data_dir, exist_ok=True) # Make dir for results # Consolidate data if it doesn't exist yet or force flag is True if no_consolidated_date or force_new_consolidate: # Prepare strings for data that will be evaluated predictions_to_optimize, prediction_names = get_predictions_to_optimize(cs) patient_names = os.listdir(cs.reference_data_dir) hold_out_plan_paths = get_paths(cs.reference_data_dir, ext='') # list of paths used for held out testing # Evaluate dose metrics patient_data_loader = DataLoader(hold_out_plan_paths, mode_name='evaluation') # Set data loader dose_evaluator_sample = EvaluateDose(patient_data_loader) # Make reference dose DVH metrics and clinical criteria dose_evaluator_sample.make_metrics() dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_dose_metric_df').to_csv( consolidate_data_paths['ref_dvh']) dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_criteria_df').to_csv( consolidate_data_paths['ref_clinical_criteria']) # Initialize DataFrames for all scores and errors optimizer_names = os.listdir(cs.plans_dir) # Get names of all optimizers dose_error_index_dict, dvh_metric_index_dict = make_error_and_metric_indices(patient_names, dose_evaluator_sample, optimizer_names) df_dose_error_indices = pd.MultiIndex.from_product(**dose_error_index_dict) df_dvh_error_indices = pd.MultiIndex.from_arrays(**dvh_metric_index_dict) # Make DataFrames df_dose_error = pd.DataFrame(columns=prediction_names, index=df_dose_error_indices) df_solve_time = pd.DataFrame(columns=prediction_names, index=df_dose_error_indices) df_dvh_metrics = pd.DataFrame(columns=prediction_names, index=df_dvh_error_indices) df_clinical_criteria = pd.DataFrame(columns=prediction_names, index=df_dvh_error_indices) weights_list = [] weight_columns = [] # Iterate through each prediction in the list of prediction_names for prediction in prediction_names: # Make a dataloader that loads predicted dose distributions prediction_paths = get_paths(f'{cs.prediction_dir}/{prediction}', ext='csv') prediction_dose_loader = DataLoader(prediction_paths, mode_name='predicted_dose') # Set prediction loader # Evaluate predictions and plans with respect to ground truth dose_evaluator = EvaluateDose(patient_data_loader, prediction_dose_loader) populate_error_dfs(dose_evaluator, df_dose_error, df_dvh_metrics, df_clinical_criteria, prediction, 'Prediction') # Make dataloader for plan dose distributions for opt_name in optimizer_names: print(opt_name) # Get the paths of all optimized plans for prediction cs.get_optimization_directories(prediction, opt_name) weights_list, weight_columns = populate_weights_df(cs, weights_list) populate_solve_time_df(cs, df_solve_time) # Make data loader to load plan doses plan_paths = get_paths(cs.plan_dose_from_pred_dir, ext='csv') # List of all plan dose paths plan_dose_loader = DataLoader(plan_paths, mode_name='predicted_dose') # Set plan dose loader plan_evaluator = EvaluateDose(patient_data_loader, plan_dose_loader) # Make evaluation object # Ignore prediction name if no data exists, o/w populate DataFrames if not patient_data_loader.file_paths_list: print('No patient information was given to calculate metrics') else: # Evaluate prediction errors populate_error_dfs(plan_evaluator, df_dose_error, df_dvh_metrics, df_clinical_criteria, prediction, opt_name) # Clean up weights weights_df = pd.DataFrame(weights_list, columns=weight_columns) weights_df.set_index(['Objective', 'Structure', 'Patients', 'Dose_type', 'Prediction'], inplace=True) weights_df = weights_df.unstack('Prediction') # Save dose and DVH error DataFrames df_dose_error.to_csv(consolidate_data_paths['dose']) df_dvh_metrics.to_csv(consolidate_data_paths['dvh']) df_clinical_criteria.to_csv(consolidate_data_paths['clinical_criteria']) weights_df.to_csv(consolidate_data_paths['weights']) df_solve_time.to_csv(consolidate_data_paths['solve_time']) # Loads the DataFrames that contain consolidated data df_dose_error = pd.read_csv(consolidate_data_paths['dose'], index_col=[0, 1]) df_dvh_metrics = pd.read_csv(consolidate_data_paths['dvh'], index_col=[0, 1, 2, 3]) df_clinical_criteria = pd.read_csv(consolidate_data_paths['clinical_criteria'], index_col=[0, 1, 2, 3]) df_ref_dvh_metrics =
pd.read_csv(consolidate_data_paths['ref_dvh'], index_col=[0, 1, 2, 3], squeeze=True)
pandas.read_csv
import numpy as np import pandas as pd import pandas.testing as pdt import pyarrow as pa import pytest from pandas.arrays import SparseArray from kartothek.core.cube.constants import ( KTK_CUBE_DF_SERIALIZER, KTK_CUBE_METADATA_DIMENSION_COLUMNS, KTK_CUBE_METADATA_KEY_IS_SEED, KTK_CUBE_METADATA_PARTITION_COLUMNS, KTK_CUBE_METADATA_SUPPRESS_INDEX_ON, ) from kartothek.core.cube.cube import Cube from kartothek.core.dataset import DatasetMetadata from kartothek.core.index import ExplicitSecondaryIndex, PartitionIndex from kartothek.io.testing.utils import assert_num_row_groups from kartothek.io_components.cube.write import MultiTableCommitAborted from kartothek.io_components.metapartition import SINGLE_TABLE from kartothek.serialization._parquet import ParquetSerializer __all__ = ( "test_accept_projected_duplicates", "test_distinct_branches", "test_do_not_modify_df", "test_empty_df", "test_fail_all_empty", "test_fail_duplicates_global", "test_fail_duplicates_local", "test_fail_no_store_factory", "test_fail_nondistinc_payload", "test_fail_not_a_df", "test_fail_partial_build", "test_fail_partial_overwrite", "test_fail_partition_on_1", "test_fail_partition_on_3", "test_fail_partition_on_4", "test_fail_partition_on_nondistinc_payload", "test_fail_sparse", "test_fail_wrong_dataset_ids", "test_fail_wrong_types", "test_fails_duplicate_columns", "test_fails_metadata_nested_wrong_type", "test_fails_metadata_unknown_id", "test_fails_metadata_wrong_type", "test_fails_missing_dimension_columns", "test_fails_missing_partition_columns", "test_fails_missing_seed", "test_fails_no_dimension_columns", "test_fails_null_dimension", "test_fails_null_index", "test_fails_null_partition", "test_fails_projected_duplicates", "test_indices", "test_metadata", "test_nones", "test_overwrite", "test_overwrite_rollback_ktk_cube", "test_parquet", "test_partition_on_enrich_extra", "test_partition_on_enrich_none", "test_partition_on_index_column", "test_projected_data", "test_regression_pseudo_duplicates", "test_rowgroups_are_applied_when_df_serializer_is_passed_to_build_cube", "test_simple_seed_only", "test_simple_two_datasets", "test_single_rowgroup_when_df_serializer_is_not_passed_to_build_cube", "test_split", ) def test_simple_seed_only(driver, function_store): """ Simple integration test w/ a seed dataset only. This is the most simple way to create a cube. """ df = pd.DataFrame({"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v": [10, 11, 12, 13]}) cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube") result = driver(data=df, cube=cube, store=function_store) assert set(result.keys()) == {cube.seed_dataset} ds = list(result.values())[0] ds = ds.load_all_indices(function_store()) assert ds.uuid == cube.ktk_dataset_uuid(cube.seed_dataset) assert len(ds.partitions) == 2 assert set(ds.indices.keys()) == {"p", "x"} assert isinstance(ds.indices["p"], PartitionIndex) assert isinstance(ds.indices["x"], ExplicitSecondaryIndex) assert ds.table_name == SINGLE_TABLE def test_simple_two_datasets(driver, function_store): """ Simple intergration test w/ 2 datasets. """ df_source = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13]} ) df_enrich = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v2": [20, 21, 22, 23]} ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) result = driver( data={"source": df_source, "enrich": df_enrich}, cube=cube, store=function_store ) assert set(result.keys()) == {cube.seed_dataset, "enrich"} ds_source = result[cube.seed_dataset].load_all_indices(function_store()) ds_enrich = result["enrich"].load_all_indices(function_store()) assert ds_source.uuid == cube.ktk_dataset_uuid(cube.seed_dataset) assert ds_enrich.uuid == cube.ktk_dataset_uuid("enrich") assert len(ds_source.partitions) == 2 assert len(ds_enrich.partitions) == 2 assert set(ds_source.indices.keys()) == {"p", "x"} assert isinstance(ds_source.indices["p"], PartitionIndex) assert isinstance(ds_source.indices["x"], ExplicitSecondaryIndex) assert set(ds_enrich.indices.keys()) == {"p"} assert isinstance(ds_enrich.indices["p"], PartitionIndex) assert ds_source.table_name == SINGLE_TABLE assert ds_enrich.table_name == SINGLE_TABLE def test_indices(driver, function_store): """ Test that index structures are created correctly. """ df_source = pd.DataFrame( { "x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13], "i1": [100, 101, 102, 103], } ) df_enrich = pd.DataFrame( { "x": [0, 1, 4, 5], "p": [0, 0, 2, 2], "v2": [20, 21, 22, 23], "i2": [200, 201, 202, 203], } ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", index_columns=["i1", "i2"], ) result = driver( data={"source": df_source, "enrich": df_enrich}, cube=cube, store=function_store ) assert set(result.keys()) == {cube.seed_dataset, "enrich"} ds_source = result[cube.seed_dataset].load_all_indices(function_store()) ds_enrich = result["enrich"].load_all_indices(function_store()) assert set(ds_source.indices.keys()) == {"p", "x", "i1"} assert isinstance(ds_source.indices["p"], PartitionIndex) assert isinstance(ds_source.indices["x"], ExplicitSecondaryIndex) assert isinstance(ds_source.indices["i1"], ExplicitSecondaryIndex) assert set(ds_enrich.indices.keys()) == {"p", "i2"} assert isinstance(ds_enrich.indices["p"], PartitionIndex) assert isinstance(ds_enrich.indices["i2"], ExplicitSecondaryIndex) def test_dimension_index_suppression(driver, function_store): """ Test that suppress_index_on works as expected """ df_source = pd.DataFrame( { "x": [0, 0, 1, 1], "y": [10, 11, 12, 13], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13], "i1": [100, 101, 102, 103], } ) cube = Cube( dimension_columns=["x", "y"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", index_columns=["i1", "i2"], suppress_index_on=["x"], ) result = driver(data={"source": df_source}, cube=cube, store=function_store) ds_source = result[cube.seed_dataset].load_all_indices(function_store()) assert set(ds_source.indices.keys()) == {"p", "i1", "y"} assert isinstance(ds_source.indices["p"], PartitionIndex) assert isinstance(ds_source.indices["i1"], ExplicitSecondaryIndex) assert isinstance(ds_source.indices["y"], ExplicitSecondaryIndex) def test_do_not_modify_df(driver, function_store): """ Functions should not modify their inputs. """ df = pd.DataFrame({"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v": [10, 11, 12, 13]}) df_backup = df.copy() cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube") driver(data=df, cube=cube, store=function_store) pdt.assert_frame_equal(df, df_backup) @pytest.mark.filterwarnings("ignore::UnicodeWarning") def test_parquet(driver, function_store): """ Ensure the parquet files we generate are properly normalized. """ df = pd.DataFrame( data={ "x": [10, 1, 1, 0, 0], "y": [10, 0, 1, 1, 0], "p": [0, 1, 1, 1, 1], "föö".encode("utf8"): [100, 10, 11, 12, 13], "v": np.nan, }, index=[0, 1000, 1001, 1002, 1003], columns=["x", "y", "p", "föö".encode("utf8"), "v"], ) cube = Cube( dimension_columns=["x", "y"], partition_columns=["p"], uuid_prefix="cube" ) result = driver(data=df, cube=cube, store=function_store) assert set(result.keys()) == {cube.seed_dataset} ds = list(result.values())[0] ds = ds.load_all_indices(function_store()) assert len(ds.partitions) == 2 for p in (0, 1): part_key = ds.indices["p"].index_dct[p][0] part = ds.partitions[part_key] key = part.files[SINGLE_TABLE] df_actual = KTK_CUBE_DF_SERIALIZER.restore_dataframe(function_store(), key) df_expected = ( df.loc[df["p"] == p] .sort_values(["x", "y"]) .reset_index(drop=True) .drop(columns=["p"]) .rename(columns={"föö".encode("utf8"): "föö"}) ) pdt.assert_frame_equal(df_actual.reset_index(drop=True), df_expected) @pytest.mark.parametrize("chunk_size", [None, 2]) def test_rowgroups_are_applied_when_df_serializer_is_passed_to_build_cube( driver, function_store, chunk_size ): """ Test that the dataset is split into row groups depending on the chunk size """ df = pd.DataFrame(data={"x": [0, 1, 2, 3], "p": [0, 1, 1, 1]}, columns=["x", "p"],) cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="rg-cube") result = driver( data=df, cube=cube, store=function_store, df_serializer=ParquetSerializer(chunk_size=chunk_size), ) dataset = result["seed"].load_all_indices(function_store()) part_num_rows = {0: 1, 1: 3} part_chunk_size = {0: chunk_size, 1: chunk_size} assert len(dataset.partitions) == 2 assert_num_row_groups(function_store(), dataset, part_num_rows, part_chunk_size) def test_single_rowgroup_when_df_serializer_is_not_passed_to_build_cube( driver, function_store ): """ Test that the dataset has a single row group as default path """ df = pd.DataFrame(data={"x": [0, 1, 2, 3], "p": [0, 1, 1, 1]}, columns=["x", "p"],) cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="rg-cube") result = driver(data=df, cube=cube, store=function_store,) dataset = result["seed"].load_all_indices(function_store()) part_num_rows = {0: 1, 1: 3} part_chunk_size = {0: None, 1: None} assert len(dataset.partitions) == 2 assert_num_row_groups(function_store(), dataset, part_num_rows, part_chunk_size) def test_fail_sparse(driver, driver_name, function_store): """ Ensure that sparse dataframes are rejected. """ df = pd.DataFrame( data={ "x": SparseArray([10, 1, 1, 0, 0]), "y": SparseArray([10, 0, 1, 1, 0]), "p": SparseArray([0, 1, 1, 1, 1]), "v": SparseArray([np.nan] * 5), } ) cube = Cube( dimension_columns=["x", "y"], partition_columns=["p"], uuid_prefix="cube" ) with pytest.raises(TypeError, match="Sparse data is not supported."): driver(data=df, cube=cube, store=function_store) def test_metadata(driver, function_store): """ Test auto- and user-generated metadata. """ df_source = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13]} ) df_enrich = pd.DataFrame( {"x": [0, 1, 4, 5], "p": [0, 0, 2, 2], "v2": [20, 21, 22, 23]} ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) result = driver( data={"source": df_source, "enrich": df_enrich}, cube=cube, store=function_store, metadata={"enrich": {"foo": 1}}, ) assert set(result.keys()) == {cube.seed_dataset, "enrich"} ds_source = result[cube.seed_dataset] assert set(ds_source.metadata.keys()) == { "creation_time", KTK_CUBE_METADATA_DIMENSION_COLUMNS, KTK_CUBE_METADATA_KEY_IS_SEED, KTK_CUBE_METADATA_PARTITION_COLUMNS, KTK_CUBE_METADATA_SUPPRESS_INDEX_ON, } assert ds_source.metadata[KTK_CUBE_METADATA_DIMENSION_COLUMNS] == list( cube.dimension_columns ) assert ds_source.metadata[KTK_CUBE_METADATA_KEY_IS_SEED] is True assert ds_source.metadata[KTK_CUBE_METADATA_PARTITION_COLUMNS] == list( cube.partition_columns ) assert ds_source.metadata[KTK_CUBE_METADATA_SUPPRESS_INDEX_ON] == [] ds_enrich = result["enrich"] assert set(ds_enrich.metadata.keys()) == { "creation_time", KTK_CUBE_METADATA_DIMENSION_COLUMNS, KTK_CUBE_METADATA_KEY_IS_SEED, KTK_CUBE_METADATA_PARTITION_COLUMNS, KTK_CUBE_METADATA_SUPPRESS_INDEX_ON, "foo", } assert ds_enrich.metadata[KTK_CUBE_METADATA_DIMENSION_COLUMNS] == list( cube.dimension_columns ) assert ds_enrich.metadata[KTK_CUBE_METADATA_KEY_IS_SEED] is False assert ds_enrich.metadata[KTK_CUBE_METADATA_PARTITION_COLUMNS] == list( cube.partition_columns ) assert ds_enrich.metadata["foo"] == 1 assert ds_source.metadata[KTK_CUBE_METADATA_SUPPRESS_INDEX_ON] == [] def test_fails_metadata_wrong_type(driver, function_store): df_source = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13]} ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) with pytest.raises( TypeError, match="Provided metadata should be a dict but is int" ): driver(data={"source": df_source}, cube=cube, store=function_store, metadata=1) def test_fails_metadata_unknown_id(driver, function_store): df_source = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13]} ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) with pytest.raises( ValueError, match="Provided metadata for otherwise unspecified ktk_cube_dataset_ids: bar, foo", ): driver( data={"source": df_source}, cube=cube, store=function_store, metadata={"source": {}, "foo": {}, "bar": {}}, ) def test_fails_metadata_nested_wrong_type(driver, function_store): df_source = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13]} ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) with pytest.raises( TypeError, match="Provided metadata for dataset source should be a dict but is int", ): driver( data={"source": df_source}, cube=cube, store=function_store, metadata={"source": 1}, ) def test_fails_missing_seed(driver, function_store): """ A cube must contain its seed dataset, check this constraint as early as possible. """ df = pd.DataFrame({"x": [0, 1], "p": [0, 0], "v": [10, 11]}) cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube") with pytest.raises(ValueError) as exc: driver(data={"foo": df}, cube=cube, store=function_store) assert 'Seed data ("seed") is missing.' in str(exc.value) assert list(function_store().keys()) == [] def test_fails_missing_dimension_columns(driver, function_store): """ Ensure that we catch missing dimension columns early. """ df_source = pd.DataFrame({"x": [0, 1], "p": 0}) cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) with pytest.raises(ValueError) as exc: driver(data=df_source, cube=cube, store=function_store) assert 'Missing dimension columns in seed data "source": y, z' in str(exc.value) assert list(function_store().keys()) == [] def test_fails_no_dimension_columns(driver, function_store): """ Ensure that we catch missing dimension columns early. """ df_source = pd.DataFrame({"x": [0, 1], "y": [0, 1], "z": [0, 1], "p": 0}) df_enrich = pd.DataFrame({"p": [0], "v1": 0}) cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p"], uuid_prefix="cube", seed_dataset="source", ) with pytest.raises(ValueError) as exc: driver( data={"source": df_source, "enrich": df_enrich}, cube=cube, store=function_store, ) assert ( 'Dataset "enrich" must have at least 1 of the following dimension columns: x, y' in str(exc.value) ) assert not DatasetMetadata.exists(cube.ktk_dataset_uuid("enrich"), function_store()) def test_fails_duplicate_columns(driver, function_store, driver_name): """ Catch weird pandas behavior. """ if driver_name == "dask_dataframe": pytest.skip("already detected by dask.dataframe") df = pd.DataFrame( {"x": [0, 1], "p": 0, "a": 1, "b": 2}, columns=["x", "p", "a", "b"] ).rename(columns={"b": "a"}) assert len(df.columns) == 4 cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube") with pytest.raises(ValueError) as exc: driver(data=df, cube=cube, store=function_store) assert 'Duplicate columns found in dataset "seed": x, p, a, a' in str(exc.value) assert list(function_store().keys()) == [] def test_fails_missing_partition_columns(driver, function_store): """ Just make the Kartothek error nicer. """ df = pd.DataFrame({"x": [0, 1], "p": 0}) cube = Cube( dimension_columns=["x"], partition_columns=["p", "q", "r"], uuid_prefix="cube" ) with pytest.raises(ValueError) as exc: driver(data=df, cube=cube, store=function_store) assert 'Missing partition columns in dataset "seed": q, r' in str(exc.value) assert list(function_store().keys()) == [] def test_overwrite(driver, function_store): """ Test overwrite behavior aka call the build function if the cube already exists. """ df1 = pd.DataFrame({"x": [0, 1], "p": [0, 0], "v": [10, 11]}) df2 =
pd.DataFrame({"x": [2, 3], "p": [1, 1], "v": [12, 13]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat May 9 19:30:38 2020 @author: aletu """ import numpy as np import pandas as pd import random import datetime def generateWarehouseData(num_SKUs: int = 100, nodecode: int = 1, idwh: list = ['LOGICAL_WH1', 'LOGICAL_WH2', 'FAKE'], whsubarea: list = ['AREA 1'], num_aisles: int = 5, num_bays: int = 66, num_levels: int = 5, level_height: int = 1200, bay_width: int = 800, aisle_width: int = 4000, num_movements: int = 1000, num_ordercode: int = 800, average_time_between_movements: float = 1 / 24, # days first_day: datetime.datetime = datetime.datetime(year=2020, month=1, day=2), ): """ Generate sample warehouse picking data Args: num_SKUs (int, optional): Number of SKUs of the Warehouse. Defaults to 100. nodecode (int, optional): Nodecode of the Warehouse. Defaults to 1. idwh (list, optional): List of logical clusters of the warehouse. Defaults to ['LOGICAL_WH1', 'LOGICAL_WH2', 'FAKE']. whsubarea (list, optional): List of physical areas of the warehouse. Defaults to ['AREA 1']. num_aisles (int, optional): Number of aisles of the warehouse. Defaults to 5. num_bays (int, optional): Number of bays pof the warheouse. Defaults to 66. num_levels (int, optional): Number of levels of the warehouse. Defaults to 5. level_height (int, optional): Height of a level. Defaults to 1200. bay_width (int, optional): Width of a bay. Defaults to 800. aisle_width (int, optional): Width of an Aisle. Defaults to 4000. num_movements (int, optional): Number of movements to generate. Defaults to 1000. num_ordercode (int, optional): Number of picking lists to generate. Defaults to 800. average_time_between_movements (float, optional): Average waiting time between movements. Defaults to 1 / 24. first_day (datetime.datetime, optional): First day of the picking list. Defaults to datetime.datetime(year=2020, month=1, day=2). Returns: D_locations (pd.dataFrame): Output DataFrame with storage locations. D_SKUs (pd.dataFrame): Output DataFrame with SKUs. D_movements (pd.dataFrame): Output DataFrame with movements. D_inventory (pd.dataFrame): Output DataFrame with inventory values. """ class SKU(): def __init__(self, itemcode: str): self.ITEMCODE = itemcode self.DESCRIPTION = f"PRODOTTO_{itemcode}" self.VOLUME = np.random.uniform(0.1, 100) # volume in dm3 self.WEIGHT = np.random.uniform(0.1, 10) # weigth in Kg class STORAGE_LOCATION(): def __init__(self, nodecode, idwh, whsubarea, idlocation, loccodex, loccodey, loccodez, rack, bay, level): self.NODECODE = nodecode self.IDWH = idwh self.WHSUBAREA = whsubarea self.IDLOCATION = idlocation self.LOCCODEX = loccodex self.LOCCODEY = loccodey self.LOCCODEZ = loccodez self.RACK = rack self.BAY = bay self.LEVEL = level class MOVEMENTS(): def __init__(self, itemcode, volume, weight, nodecode, idwh, whsubarea, idlocation, rack, bay, level, loccodex, loccodey, loccodez, ordercode, quantity, timestamp, inout, ordertype): self.ITEMCODE = itemcode self.NODECODE = nodecode self.IDWH = idwh self.WHSUBAREA = whsubarea self.IDLOCATION = idlocation self.RACK = rack self.BAY = bay self.LEVEL = level self.LOCCODEX = loccodex self.LOCCODEY = loccodey self.LOCCODEZ = loccodez self.ORDERCODE = ordercode self.PICKINGLIST = ordercode self.QUANTITY = quantity self.VOLUME = volume * quantity self.WEIGHT = weight * quantity self.TIMESTAMP_IN = timestamp self.INOUT = inout self.ORDERTYPE = ordertype class INVENTORY(): def __init__(self, itemcode, nodecode, idwh, idlocation, quantity, timestamp): self.NODECODE = nodecode self.IDWH = idwh self.ITEMCODE = itemcode self.IDLOCATION = idlocation self.QUANTITY = quantity self.TIMESTAMP = timestamp dict_SKUs = {} itemcodes = np.arange(0, num_SKUs) for itemcode in itemcodes: dict_SKUs[itemcode] = SKU(itemcode) # % CREATE WH LAYOUT dict_locations = {} idlocation = 0 for corsia in range(0, num_aisles): for campata in range(0, num_bays): for livello in range(0, num_levels): idlocation = idlocation + 1 # create a new location index # save parameters NODECODE = nodecode IDWH = random.choice(idwh) WHSUBAREA = random.choice(whsubarea) IDLOCATION = idlocation LOCCODEX = corsia * aisle_width LOCCODEY = campata * bay_width LOCCODEZ = livello * level_height # create storage location dict_locations[idlocation] = STORAGE_LOCATION(NODECODE, IDWH, WHSUBAREA, IDLOCATION, LOCCODEX, LOCCODEY, LOCCODEZ, corsia, campata, livello) # create movements dict_movements = {} num_creati = 0 ordercodes = np.arange(0, num_ordercode) while num_creati < num_movements: num_creati = num_creati + 1 # random select sku sku = random.choice(dict_SKUs) itemcode = sku.ITEMCODE volume = sku.VOLUME weight = sku.WEIGHT # random select storage location loc_key = random.choice(list(dict_locations.keys())) loc = dict_locations[loc_key] nodecode = loc.NODECODE idwh = loc.IDWH whsubarea = loc.WHSUBAREA idlocation = loc.IDLOCATION loccodex = loc.LOCCODEX loccodey = loc.LOCCODEY loccodez = loc.LOCCODEZ rack = loc.RACK bay = loc.BAY level = loc.LEVEL # generates movements data ordercode = random.choice(ordercodes) quantity = np.random.lognormal(mean=2, sigma=1) wait = np.random.exponential(average_time_between_movements) if num_creati == 1: timestamp = first_day + datetime.timedelta(wait) else: timestamp = dict_movements[num_creati - 1].TIMESTAMP_IN + datetime.timedelta(wait) inout = random.choice(['+', '-', ' ']) ordertype = random.choice(['PICKING', 'PUTAWAY', ' OTHER ']) dict_movements[num_creati] = MOVEMENTS(itemcode, volume, weight, nodecode, idwh, whsubarea, idlocation, rack, bay, level, loccodex, loccodey, loccodez, ordercode, quantity, timestamp, inout, ordertype) # create inventory dict_inventory = {} for itemcode in dict_SKUs: # sku = dict_SKUs[itemcode] loc_key = random.choice(list(dict_locations.keys())) loc = dict_locations[loc_key] nodecode = loc.NODECODE idwh = loc.IDWH idlocation = loc.IDLOCATION quantity = np.random.lognormal(mean=2, sigma=1) dict_inventory[itemcode] = INVENTORY(itemcode, nodecode, idwh, idlocation, quantity, first_day) # save locations and export D_locations =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Nov 30 15:15:03 2016 @author: Manuel """ from C45Tree_own import branchingCriterion from C45Tree_own import split import pandas as pa def fit(X,y, branching = "gainRatio", splitCriterion = "infoGain", splitNumeric = "binary", gain_thres = 0): '''This function fits a decision tree classifier according to the given parameters Parameters ---------- X : required DataFrame (pandas) of all independent attributes y : required list or numpy array of the label values branching: "gainRatio", "infoGain", "giniIndex" splitCriterion: "infoGain", "giniIndex" splitNumeric: "binary", "multiple" gain_thres : Required modules ---------- pandas ''' #transform values to required form X_matrix = X.values.swapaxes(0,1).tolist() #1. Calculate the best attribute best_prio_score = -1 b_attr = "" #calculating the old information value of considering soleley the label vals. labelCount = branchingCriterion.labelCount(y)[1] oldInfo = branchingCriterion.information(labelCount) arrayTypes = X.dtypes #selecting the best attribute for the next split, according to the set branching factor for x in range(0, len(X_matrix)): #If the next attribute is numeric, split it accordingly! if(split.typeCheck(arrayTypes[x]) == "numeric"): #no splitt possible, as only one value is left if(len(X_matrix[x]) == 1): X_matrix[x] = str("="+X_matrix[x]) if(splitNumeric == "binary"): X_matrix[x] = split.binarySplit(X_matrix[x], y, splitCriterion) else: raise NotImplementedError("Multiple split has not yet been implemented") if(branching == "gainRatio"): prio_score = branchingCriterion.gainRatio(X_matrix[x], y, oldInfo) elif(branching == "infoGain"): prio_score = branchingCriterion.informationGain(X_matrix[x],y,oldInfo) elif(branching == "giniIndex"): prio_score = branchingCriterion.giniIndex(X_matrix[x],y) else: raise NotImplementedError("The given branching criterion could not be recognized") if(best_prio_score < prio_score): best_prio_score = prio_score b_attr = X.iloc[:,x].name #If the best attribute was a numeric, build new values pa.options.mode.chained_assignment = None X[b_attr] = X_matrix[X.columns.get_loc(b_attr)] pa.options.mode.chained_assignment = "warn" #2. build rule rules = [] attr_values = X[b_attr].drop_duplicates().values for a in range(0,len(attr_values)): rules = rules + ([[b_attr, attr_values[a]]]) #3. Calculate new sets based on the old rules #No further prunning possible, as all attributes are regarded! if(len(X.columns) > 1): #Build new sets & labels X = X.assign(y = pa.Series(y, index = X.index)) newSets = [X[X.loc[:,b_attr]==attr_values[0]]] for i in range(1,len(attr_values)): newSets = newSets + [X[X.loc[:,b_attr]==attr_values[i]]] #Calculate new & corresponding label values newYs = [newSets[0].loc[:,'y']] newSets[0] = newSets[0].drop('y',1) for i in range(1,len(newSets)): newYs = newYs + [newSets[i].loc[:,'y']] newSets[i] = newSets[i].drop('y',1) #Drop all unuseable attributes for i in range(0,len(newSets)): newSets[i] = newSets[i].drop(b_attr, 1) #No splitt necessary for attributes with only one value for j in newSets[i]: #If it is not the last column, drop the column if(len(newSets[i].columns) > 1): if(len(newSets[i].loc[:,j].drop_duplicates())==1): newSets[i] = newSets[i].drop(j,1) #Else drop the whole table else: if(len(newSets[i].loc[:,j].drop_duplicates())==1): newSets[i] =
pa.DataFrame()
pandas.DataFrame
# # import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import * import math class VolatilityArbitrage(object): def __init__(self): self.refl = '' def startup(self): print('VolatilityArbitrage v0.0.3') self.ds_file = './data/50ETF.xlsx' etf_close = pd.read_excel(self.ds_file,"close") etf_ivx = pd.read_excel(self.ds_file,"ivx") etf_hv = pd.read_excel(self.ds_file,"hv30") lastdate = pd.read_excel(self.ds_file,"ETF_option_lasttradingdate") etf_option_name = pd.read_excel(self.ds_file,"at_money_name") ##填补缺失值 for j in range(1,len(etf_close.columns.tolist())): for i in range(len(etf_close.date.values.tolist())-1,0,-1): if math.isnan(etf_close.iat[i,j]) and math.isnan(etf_close.iat[i-1,j]): etf_close.iat[i,j]= etf_close.iat[i+1,j] elif math.isnan(etf_close.iat[i,j]) and math.isnan(etf_close.iat[i-1,j])==False: etf_close.iat[i,j]=(etf_close.iat[i-1,j]+etf_close.iat[i+1,j])/2 fee = 5.0 # 手续费 slippage = 5.0 # 滑点 capital = 1000000.0 # 初始资金 size=50 # straddle option_value=0 # 期权价值,初始时为0 remain_money=capital # 当前资金 total_money = [remain_money] trade_option =
pd.DataFrame()
pandas.DataFrame
import json from datetime import datetime import pandas as pd from autogluon import TabularPrediction as task data_path = "./data/plasma/plasma" label_column = "RETPLASMA" fold1 =
pd.read_csv(data_path + "-fold1.csv")
pandas.read_csv
import requests import json import urllib import pandas as pd from vikuatools.utils import int_to_string, remove_value_from_dict_key, parse_properties def hs_get_recent_modified(url, parameters, max_results): """ Get recent modified object from hubspot API legacy url: str endpoint to retreive. one of deals, companies or engagements parameters: dict with parameters to include in call e.g. api_key, count, since max_results: dbl max number of objects to retreive return: list with object from responses """ object_list = [] get_recent_url = url parameter_dict = parameters headers = {} # Paginate your request using offset has_more = True while has_more: params = urllib.parse.urlencode(parameter_dict) get_url = get_recent_url + params r = requests.get(url= get_url, headers = headers) response_dict = json.loads(r.text) try: has_more = response_dict['hasMore'] except KeyError: has_more = response_dict['has-more'] try: object_list.extend(response_dict['results']) except KeyError: object_list.extend(response_dict['contacts']) try: parameter_dict['offset'] = response_dict['offset'] except KeyError: parameter_dict['vidOffset'] = response_dict['vid-offset'] if len(object_list) >= max_results: # Exit pagination, based on whatever value you've set your max results variable to. print('maximum number of results exceeded') break print(f'Done!! Found {len(object_list)} object') return object_list def hs_get_recent_modified_contacts(url, hapikey, count, max_results, contact_property): """ Get recent modified contacts from hubspot API legacy. Contacts requires another function due to different name in hasMore attribute and it need to ask for specific properties on the call url: str endpoint to retreive. one of deals, companies or engagements hapikey: str api_key count: dbl number of object to retreive in a single call max_results: dbl max number of objects to retreive contact_property: list Properties to query return: list with object from responses """ object_list = [] get_recent_url = url parameter_dict = {'hapikey': hapikey, 'count': count} headers = {} properties_w_header = ['property='+x for x in contact_property] properties_url = '&'+'&'.join(properties_w_header) # Paginate your request using offset has_more = True while has_more: parameters = urllib.parse.urlencode(parameter_dict) get_url = get_recent_url + parameters + properties_url r = requests.get(url= get_url, headers = headers) response_dict = json.loads(r.text) has_more = response_dict['has-more'] object_list.extend(response_dict['contacts']) parameter_dict['vidOffset'] = response_dict['vid-offset'] if len(object_list) >= max_results: # Exit pagination, based on whatever value you've set your max results variable to. print('maximum number of results exceeded') break print(f'Done!! Found {len(object_list)} object') return object_list def hs_extract_value(new_objects, property_names): """ Extract insterested properties from api call response. If response has association, it will extract company and vids new_objects: list with http response property_names: list with property names to keep return: pd.DataFrame with property_names fields """ # Association Flag has_associations = 'associations' in new_objects[0].keys() # If exist, append association properties to element to keep if has_associations: property_names = property_names + ['associatedCompanyIds', 'associatedVids'] # Start loop to extract values list_properties = [] for obj in new_objects: # If association exist, extract association if has_associations: associatedCompanyIds = obj['associations']['associatedCompanyIds'] associatedVids = obj['associations']['associatedVids'] # Extract all property values props = obj['properties'] saved_properties = {} for key, value in props.items(): saved_properties[key] = value['value'] # If exist, append associations properties if has_associations: saved_properties['associatedCompanyIds'] = associatedCompanyIds saved_properties['associatedVids'] = associatedVids # Save properties list_properties.append(saved_properties) # Properties to df df_properties = pd.DataFrame(list_properties) # Keep only properties of interest subset_columns = df_properties.columns.intersection(set(property_names)) df_properties = df_properties[subset_columns] return df_properties def hs_extract_engagements(engagement_list, *arg): """ Extract properties and associations from engagements engagement_list: list with engagement and associations, response from engagement endpoint return: df with engagement fields and company associations """ list_properties = [] for obj in engagement_list: props_dict = obj['engagement'] props = dict((k, props_dict[k]) for k in ['id', 'createdAt', 'lastUpdated', 'type', 'ownerId', 'activityType'] if k in props_dict) props['companyIds'] = obj['associations']['companyIds'] props['dealIds'] = obj['associations']['dealIds'] props['contactIds'] = obj['associations']['contactIds'] try: props['disposition'] = obj['metadata']['disposition'] except: props['disposition'] = None list_properties.append(props) df_eng =
pd.DataFrame(list_properties)
pandas.DataFrame
# _*_ encoding:utf-8 _*_ # This script calculates index market capture by day through coingekco api # market capture = index market cap / sum(each composition's market cap in the index ) # prerequisite: # 1. install coingecko api python library https://github.com/man-c/pycoingecko # 2. prepare index compositions info as a csv file which contain the info about when a coin is added # or removed from the index and its id in coingecko. e.g. dpi_index.csv, mvi_index.csv. # maintenance: each time a coin is added or removed from a index the csv file must change accordingly. # result is saved as a csv file which contains the index market capture by day. from pycoingecko import CoinGeckoAPI import pandas as pd import numpy as np import time import datetime today = datetime.datetime.now().strftime("%Y-%m-%d") # connect coingecko api cg = CoinGeckoAPI() def time_to_unix(str_time): """ convert str time tp unix timestamp :param str_time: yyyy-mm-dd :return: timestamp """ return time.mktime(time.strptime(str_time, "%Y-%m-%d")) def get_index_compositions_market_cap(compositions_table): """ get index compositions market cap by day :param compositions_table: dataframe which contains index composition info :return: dataframe which is index compositions marketcap by day """ coins_cap = pd.DataFrame(columns=['dates','coinscap','coins']) count = 0 for coin in compositions_table.values: coin_id = coin[4] from_timestamp = time_to_unix(coin[2]) if coin[2] == coin[3]: to_timestamp = time_to_unix(today) else: to_timestamp = time_to_unix(coin[3]) datas = cg.get_coin_market_chart_range_by_id(id=coin_id,vs_currency='usd',from_timestamp=from_timestamp,to_timestamp=to_timestamp) # waxe has no market cap data,so use Fully Diluted Market Cap instead if coin_id == 'waxe': datas_df = pd.DataFrame(datas['prices'],columns=['dates','coinscap']) datas_df['coinscap'] = datas_df['coinscap']*3700000 else: datas_df = pd.DataFrame(datas['market_caps'],columns=['dates','coinscap']) datas_df['coins'] = coin[1] coins_cap=coins_cap.append(datas_df) time.sleep(5) count += 1 print('round %d ,get market cap of %s'%(count,coin_id)) coins_cap['days'] = pd.to_datetime(coins_cap['dates'], unit='ms').dt.date coins_cap = coins_cap.groupby(['coins', 'days']).nth(0).reset_index() coins_cap = coins_cap.groupby('days')['coinscap'].sum().reset_index() return coins_cap def get_index_market_cap(id,from_time): """ get index marketcap :param id: coingekco id :param from_time: index start time yyyy-mm-dd :return: dataframe which contains days and marketcap """ from_timestamp = time_to_unix(from_time) to_timestamp = time_to_unix(today) index_caps = cg.get_coin_market_chart_range_by_id(id=id, vs_currency='usd', from_timestamp=from_timestamp, to_timestamp=to_timestamp) index_df = pd.DataFrame(index_caps['market_caps'], columns=['dates', 'index_marketcap']) index_df['days'] = pd.to_datetime(index_df['dates'], unit='ms').dt.date index_df = index_df.drop(columns='dates') index_df = index_df.groupby('days').nth(0).reset_index() return index_df def get_index_market_capture(index_info_dir,id,from_time): """ get index market capture :param index_info_dir: dir of index info table :param id: coingecko id of index :param from_time: index start time yyyy-mm-dd :return: dataframe, compositions and index market cap by day """ # read dpi composition info index_table =
pd.read_csv(index_info_dir)
pandas.read_csv
import json import pandas as pd from scipy.stats.stats import pearsonr, spearmanr import numpy as np from scipy import stats import sys import matplotlib.pyplot as plt import os from sklearn.linear_model import LinearRegression from sklearn.preprocessing import OneHotEncoder import argparse def parse_args(args): parser = argparse.ArgumentParser(description='Arguments for the evaluation script.') baseline_metrics = [ # 'Bleu', # 'Meteor', # 'Rouge 1', # 'Rouge 2', 'Rouge L', 'BertScore P Art', # 'BertScore R Art', # 'BertScore F1 Art', # 'FEQA', 'QAGS', # 'OpenIE', 'Dep Entail', 'FactCC', ] ablations_cols = [ 'Flip_Semantic_Frame_Errors', 'Flip_Discourse_Errors', 'Flip_Content_Verifiability_Errors', # 'Flip_RelE', 'Flip_EntE', 'Flip_CircE', 'Flip_OutE', 'Flip_GramE', 'Flip_CorefE', 'Flip_LinkE', 'Flip_Other' ] model_names = [ 'bart','pgn', 'bus', 'bert_sum', 's2s', 'TranS2S', 'TConvS2S', 'PtGen', 'BERTS2S' ] parser.add_argument('--mode', default='hm-correlation', choices=['hm-correlation', 'ablations', 'ablations-plot', 'mm-correlation'], help=( 'This script can calculate correlation with human judgments (hm-correlation),' ' evaluate the performance of the evaluation metrics at capturing different types of factual errors (ablations),' ' output the ablation as a plot (ablations-plot), and compute the Williams test (mm-correlation)' )) parser.add_argument('--human_eval_path', default='/home/phillab/data/frank/human_annotations.json', help='file containing human annotations expects csv file.') parser.add_argument('--baseline_metrics_outputs', default='/home/phillab/data/frank/baseline_factuality_metrics_outputs.json', help='file name containing outputs of baseline factuality metrics.') parser.add_argument('--baseline_metrics', nargs='+', default=baseline_metrics, help='baseline metrics to evaluate on (should match the name in the baseline metrics output file).') parser.add_argument('--no_baseline_metrics', action='store_true', help='If set, does not evaluate the baseline metrics') parser.add_argument('--metrics_outputs', default=None, help='names of json files containing metric outputs with key "score"') parser.add_argument('--metrics_outputs_info', default=None, help='json file describing how to parse metrics output files. This allows to customize the name of the score key and to have several metrics in one json file.') parser.add_argument('--ablations', nargs='+', default=ablations_cols, help='column names for ablations.') parser.add_argument('--human', default='Factuality', help='column for human judgements.') parser.add_argument('--no_partial_correlation', action='store_true') parser.add_argument('--partial_correlation_variable', default='model_name', help='what column to use as confounding to calculate partial correlations') parser.add_argument('--store_path', default=None) parser.add_argument('--dataset', default=None, choices=[None, 'cnndm', 'bbc'], help='if None use all data') parser.add_argument('--model_name', nargs='+', default=None, help=f'by default use all data, availble model names {model_names}') args = parser.parse_args(args) return vars(args) def williams_test(r12, r13, r23, n): """The Williams test (<NAME>. 1959. Regression Analysis, volume 14. Wiley, New York, USA) A test of whether the population correlation r12 equals the population correlation r13. Significant: p < 0.05 Arguments: r12 (float): correlation between x1, x2 r13 (float): correlation between x1, x3 r23 (float): correlation between x2, x3 n (int): size of the population Returns: t (float): Williams test result p (float): p-value of t-dist """ if r12 < r13: print('r12 should be larger than r13') sys.exit() elif n <= 3: print('n should be larger than 3') sys.exit() else: K = 1 - r12**2 - r13**2 - r23**2 + 2*r12*r13*r23 denominator = np.sqrt(2*K*(n-1)/(n-3) + (((r12+r13)**2)/4)*((1-r23)**3)) numerator = (r12-r13) * np.sqrt((n-1)*(1+r23)) t = numerator / denominator p = 1 - stats.t.cdf(t, df=n-3) # changed to n-3 on 30/11/14 return t, p def human_metric_correlation( data_df, human_col, metrics_cols, partial_correlation=True, partial_correlation_variable=None ): """ human_df: pandas dataframe, should only contain one column corresponding to human judgements metrics_df: pandas dataframe, columns are metrics. partial_correlation: bool - whether to use partial correlations. returns a pandas dataframe with pearson and spearman correlation results """ correlations = [] named_correlations = dict() for metric in metrics_cols: if metric not in data_df: correlations.append([0, 0, 0, 0]) named_correlations[metric] = [0, 0, 0, 0] print(f'Warning: {metric} not in dataframe.') continue mask = (data_df[metric].isnull() == False) & (data_df[human_col].isnull() == False) X = data_df[metric][mask] Y = data_df[human_col][mask] if partial_correlation: assert partial_correlation_variable is not None, f'You must specify a column to use as confounding variable for partial correlation calculation' Q = np.array(data_df[mask][partial_correlation_variable]) enc = OneHotEncoder(handle_unknown='ignore') Q = enc.fit_transform(Q.reshape(-1, 1)) pred_X = LinearRegression().fit(Q, X).predict(Q) pred_Y = LinearRegression().fit(Q, Y).predict(Q) X = X - pred_X Y = Y - pred_Y print(f'Info: metric {metric} used {len(X)} summaries to calculate correlation.') pr, pp = pearsonr(X, Y) sr, sp = spearmanr(X, Y) correlations.append([pr, pp, sr, sp]) named_correlations[metric] = [pr, pp, sr, sp] correlation_df = pd.DataFrame.from_dict( named_correlations, orient='index', columns=['pearson', 'pearson p-value', 'spearman', 'spearman p-value'] ) return correlation_df def metric_metric_correlation( data_df, human_col, metrics_cols, partial_correlation=True, partial_correlation_variable=None ): """ metrics_df: pandas dataframe, columns taken as metrics partial_correlation: bool - whether to use partial correlations. returns of tuple with two dataframes: (correlation_df, williams_df) correlation_df is a dataframe that contains metric-metric pearson correlation williams_df is a dataframe of booleans on weather the two metrics are different in statistically significant terms """ correlations = [] williams = [] for i, metric1 in enumerate(metrics_cols): correlation_metric = [] williams_metric = [] for j, metric2 in enumerate(metrics_cols): if j == i: correlation_metric.append(1) williams_metric.append(False) continue mask1 = (data_df[metric1].isnull() == False) & (data_df['model_name'] != 'reference') mask2 = (data_df[metric2].isnull() == False) & (data_df['model_name'] != 'reference') mask3 = (data_df[human_col].isnull() == False) mask = mask1 & mask2 & mask3 X = data_df[metric1][mask] Y = data_df[metric2][mask] Z = data_df[human_col][mask] if partial_correlation_variable is not None: Q = np.array(data_df[mask][partial_correlation_variable]) enc = OneHotEncoder(handle_unknown='ignore') Q = enc.fit_transform(Q.reshape(-1, 1)) pred_X = LinearRegression().fit(Q, X).predict(Q) pred_Y = LinearRegression().fit(Q, Y).predict(Q) pred_Z = LinearRegression().fit(Q, Z).predict(Q) X = X - pred_X Y = Y - pred_Y Z = Z - pred_Z r12, _ = pearsonr(X, Z) r13, _ = pearsonr(Y, Z) r23, _ = pearsonr(X, Y) n = min(len(X), len(Y)) if r12 < r13: r12, r13 = r13, r12 _, p = williams_test(r12, r13, r23, n) correlation_metric.append(r23) williams_metric.append(p) correlations.append(correlation_metric) williams.append(williams_metric) correlations_df = pd.DataFrame(correlations, index=metrics_cols, columns=metrics_cols) williams_df = pd.DataFrame(williams, index=metrics_cols, columns=metrics_cols) return (correlations_df, williams_df) def ablation( data_df, human_col, ablations_cols, metrics_cols, partial_correlation=True, partial_correlation_variable=None ): """ human_df: pandas dataframe, should only contain one column corresponding to human judgements ablations_df: pandas dataframe, each column corresponds to a different ablation of the human judgements metrics_df: pandas dataframe, columns are metrics. partial_correlation: bool - whether to use partial correlations. returns a dataframe each row corresponding to a different ablation """ ablations_dict = dict() human_df = human_metric_correlation(data_df, human_col, metrics_cols, partial_correlation=partial_correlation, partial_correlation_variable=partial_correlation_variable) human_correlation = human_df['pearson'] for ablation in ablations_cols: ablation_df = human_metric_correlation(data_df, ablation, metrics_cols, partial_correlation=partial_correlation, partial_correlation_variable=partial_correlation_variable) ablation_correlation = ablation_df['pearson'] ablations_dict[ablation] = human_correlation - ablation_correlation ablations_df = pd.DataFrame(ablations_dict, index=metrics_cols) return ablations_df def plot_ablations(ablation_df, save_path): """ ablation_df: pandas dataframe, the output of ablation function save_path: str, where to save the plot Plots the ablation_df and possibly saves it to the location """ ax = ablation_df.plot.bar(figsize=(10, 4), rot=0) plt.xticks(rotation=45) if not save_path: save_path = '.' fig = ax.get_figure() fig.savefig(os.path.join(save_path, 'ablations_plot.pdf'), bbox_inches='tight') def main(args): """ Depending on the `mode` used, this script computes correlation between factuality metrics and human judgments of factuality on the FRANK benchmark data. It can also measure how well a metric captures certain types of errors. The code uses baseline metric outputs provided as part of FRANK (in `baseline_facutlaity_metrics_outputs.json`). The user can specify which metrics among the baseline metrics to use in the computation. In addition to the baseline metrics, this tool allows users to evaluate their own factuality metric outputs on FRANK. There are two ways to do so: 1. By providing a FRANK benchmark submission file: a `json` files containing a list of records, each record having both `hash` and `model_name` fields as well as a `score` field with the metric output. 2. By defining a `json` file with information on how to parse the metric output files. the schema should look like: [ { "path": "PATH_TO_JSON_FILE_WITH_OUTPUS" "scores": [ {"name": "PRETTY NAME FOR THE METRIC 1", "key": "THE KEY CONTAINING THE METRIC 1 OUTPUT"}, {"name": "PRETTY NAME FOR THE METRIC 2", "key": "THE KEY CONTAINING THE METRIC 2 OUTPUT"}, ... ] },... ] Note that the output files should still be `json` files with a list of records with `hash` and `model_name` keys, but they can contain several metrics outputs in each record . This allows to specify a name for each metric, and allows several metrics for each output file. """ # Load the human judgements. data_df = pd.read_json(args['human_eval_path']) human_col = args['human'] ablations_cols = args['ablations'] metrics_cols = [] # Load the metric outputs. if not args['no_baseline_metrics']: metric_df = pd.read_json(args['baseline_metrics_outputs']) for baseline_metric in args['baseline_metrics']: assert baseline_metric in metric_df, baseline_metric + ' not found. Your metrics_output_info file is likely not well defined.' data_df = data_df.merge(metric_df[['hash', 'model_name'] + args['baseline_metrics']], on=['hash', 'model_name'], validate='one_to_one') metrics_cols += args['baseline_metrics'] if args['metrics_outputs']: metric_df = pd.read_json(args['metrics_outputs']) assert 'score' in metric_df, 'The metric output should be in a field named "score"' data_df = data_df.merge(metric_df[['hash', 'model_name', 'score']], on=['hash', 'model_name'], validate='one_to_one') metrics_cols += ['score'] if args['metrics_outputs_info']: with open(args['metrics_outputs_info']) as infile: metrics_info = json.loads(infile.read()) for metric_info in metrics_info: metric_df =
pd.read_json(metric_info['path'])
pandas.read_json
from __future__ import division import math import sys from random import randint from random import random as rnd from reoccuring_drift_stream import ReoccuringDriftStream import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.optimize import minimize from scipy.spatial.distance import cdist from scipy.special import logit from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils import validation from sklearn.utils.multiclass import unique_labels from sklearn.utils.validation import check_is_fitted from skmultiflow.drift_detection import KSWIN from skmultiflow.data.mixed_generator import MIXEDGenerator #Abrupt Concept Drift Generators from skmultiflow.drift_detection.adwin import ADWIN from skmultiflow.evaluation.evaluate_prequential import EvaluatePrequential from bix.classifiers.rrslvq import RRSLVQ #!sr/bin/env python3 #-*- coding: utf-8 -*- """ Created on Fri Jun 22 09:35:11 2018 @author: moritz """ # TODO: add sigma for every prototype (TODO from https://github.com/MrNuggelz/sklearn-lvq) class RRSLVQ(ClassifierMixin, BaseEstimator): """Robust Soft Learning Vector Quantization Parameters ---------- prototypes_per_class : int or list of int, optional (default=1) Number of prototypes per class. Use list to specify different numbers per class. initial_prototypes : array-like, shape = [n_prototypes, n_features + 1], optional Prototypes to start with. If not given initialization near the class means. Class label must be placed as last entry of each prototype. sigma : float, optional (default=0.5) Variance for the distribution. max_iter : int, optional (default=2500) The maximum number of iterations. gtol : float, optional (default=1e-5) Gradient norm must be less than gtol before successful termination of bfgs. display : boolean, optional (default=False) print information about the bfgs steps. random_state : int, RandomState instance or None, optional If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. gradient_descent : string, Gradient Descent describes the used technique to perform the gradient descent. Possible values: 'SGD' (default), and 'l-bfgs-b'. drift_handling : string, Type of concept drift DETECTION. None means no concept drift detection If KS, use of Kolmogorov Smirnov test If ADWIN, use of Adaptive Sliding Window dimension wise IF DIST, monitoring class distances to detect outlier. Attributes ---------- w_ : array-like, shape = [n_prototypes, n_features] Prototype vector, where n_prototypes in the number of prototypes and n_features is the number of features c_w_ : array-like, shape = [n_prototypes] Prototype classes classes_ : array-like, shape = [n_classes] Array containing labels. initial_fit : boolean, indicator for initial fitting. Set to false after first call of fit/partial fit. """ def __init__(self, prototypes_per_class=1, initial_prototypes=None, sigma=1.0, max_iter=2500, gtol=1e-5, display=False, random_state=None,drift_handling = "KS",confidence=0.05,replace = True): self.sigma = sigma self.confidence = confidence self.random_state = random_state self.initial_prototypes = initial_prototypes self.prototypes_per_class = prototypes_per_class self.display = display self.max_iter = max_iter self.gtol = gtol self.initial_fit = True self.max_class_distances = None self.classes_ = [] self.counter = 0 self.cd_detects = [] self.drift_handling = drift_handling self.drift_detected = False self.replace = replace self.init_drift_detection = True self.some = [] self.bg_data = [[],[]] if not isinstance(self.display, bool): raise ValueError("display must be a boolean") if not isinstance(self.max_iter, int) or self.max_iter < 1: raise ValueError("max_iter must be an positive integer") if not isinstance(self.gtol, float) or self.gtol <= 0: raise ValueError("gtol must be a positive float") def _optfun(self, variables, training_data, label_equals_prototype): n_data, n_dim = training_data.shape nb_prototypes = self.c_w_.size prototypes = variables.reshape(nb_prototypes, n_dim) out = 0 for i in range(n_data): xi = training_data[i] y = label_equals_prototype[i] fs = [self._costf(xi, w) for w in prototypes] fs_max = max(fs) s1 = sum([np.math.exp(fs[i] - fs_max) for i in range(len(fs)) if self.c_w_[i] == y]) s2 = sum([np.math.exp(f - fs_max) for f in fs]) s1 += 0.0000001 s2 += 0.0000001 out += math.log(s1 / s2) return -out def _optimize(self, X, y, random_state): """Implementation of Stochastical Gradient Descent""" n_data, n_dim = X.shape nb_prototypes = self.c_w_.size prototypes = self.w_.reshape(nb_prototypes, n_dim) for i in range(n_data): xi = X[i] c_xi = y[i] for j in range(prototypes.shape[0]): d = (xi - prototypes[j]) c = 0.5 if self.c_w_[j] == c_xi: # Attract prototype to data point self.w_[j] += c * (self._p(j, xi, prototypes=self.w_, y=c_xi) - self._p(j, xi, prototypes=self.w_)) * d else: # Distance prototype from data point self.w_[j] -= c * self._p(j, xi, prototypes=self.w_) * d def _costf(self, x, w, **kwargs): d = (x - w)[np.newaxis].T d = d.T.dot(d) return -d / (2 * self.sigma) def _p(self, j, e, y=None, prototypes=None, **kwargs): if prototypes is None: prototypes = self.w_ if y is None: fs = [self._costf(e, w, **kwargs) for w in prototypes] else: fs = [self._costf(e, prototypes[i], **kwargs) for i in range(prototypes.shape[0]) if self.c_w_[i] == y] fs_max = max(fs) s = sum([np.math.exp(f - fs_max) for f in fs]) o = np.math.exp( self._costf(e, prototypes[j], **kwargs) - fs_max) / s return o def get_prototypes(self): """Returns the prototypes""" return self.w_ def predict(self, x): """Predict class membership index for each input sample. This function does classification on an array of test vectors X. Parameters ---------- x : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) Returns predicted values. """ check_is_fitted(self, ['w_', 'c_w_']) x = validation.check_array(x) if x.shape[1] != self.w_.shape[1]: raise ValueError("X has wrong number of features\n" "found=%d\n" "expected=%d" % (self.w_.shape[1], x.shape[1])) return np.array([self.c_w_[np.array([self._costf(xi,p) for p in self.w_]).argmax()] for xi in x]) def posterior(self, y, x): """ calculate the posterior for x: p(y|x) Parameters ---------- y: class label x: array-like, shape = [n_features] sample Returns ------- posterior :return: posterior """ check_is_fitted(self, ['w_', 'c_w_']) x = validation.column_or_1d(x) if y not in self.classes_: raise ValueError('y must be one of the labels\n' 'y=%s\n' 'labels=%s' % (y, self.classes_)) s1 = sum([self._costf(x, self.w_[i]) for i in range(self.w_.shape[0]) if self.c_w_[i] == y]) s2 = sum([self._costf(x, w) for w in self.w_]) return s1 / s2 def get_info(self): return 'RSLVQ' def predict_proba(self, X): """ predict_proba Predicts the probability of each sample belonging to each one of the known target_values. Parameters ---------- X: Numpy.ndarray of shape (n_samples, n_features) A matrix of the samples we want to predict. Returns ------- numpy.ndarray An array of shape (n_samples, n_features), in which each outer entry is associated with the X entry of the same index. And where the list in index [i] contains len(self.target_values) elements, each of which represents the probability that the i-th sample of X belongs to a certain label. """ return 'Not implemented' def reset(self): self.__init__() def _validate_train_parms(self, train_set, train_lab, classes=None): random_state = validation.check_random_state(self.random_state) train_set, train_lab = validation.check_X_y(train_set, train_lab) if(self.initial_fit): if(classes): self.classes_ = np.asarray(classes) self.protos_initialized = np.zeros(self.classes_.size) else: self.classes_ = unique_labels(train_lab) self.protos_initialized = np.zeros(self.classes_.size) nb_classes = len(self.classes_) nb_samples, nb_features = train_set.shape # nb_samples unused # set prototypes per class if isinstance(self.prototypes_per_class, int): if self.prototypes_per_class < 0 or not isinstance( self.prototypes_per_class, int): raise ValueError("prototypes_per_class must be a positive int") # nb_ppc = number of protos per class nb_ppc = np.ones([nb_classes], dtype='int') * self.prototypes_per_class else: nb_ppc = validation.column_or_1d( validation.check_array(self.prototypes_per_class, ensure_2d=False, dtype='int')) if nb_ppc.min() <= 0: raise ValueError( "values in prototypes_per_class must be positive") if nb_ppc.size != nb_classes: raise ValueError( "length of prototypes per class" " does not fit the number of classes" "classes=%d" "length=%d" % (nb_classes, nb_ppc.size)) # initialize prototypes if self.initial_prototypes is None: #self.w_ = np.repeat(np.array([self.geometric_median(train_set[train_lab == l],"minimize") for l in self.classes_]),nb_ppc,axis=0) #self.c_w_ = np.repeat(self.classes_,nb_ppc) if self.initial_fit: self.w_ = np.empty([np.sum(nb_ppc), nb_features], dtype=np.double) self.c_w_ = np.empty([nb_ppc.sum()], dtype=self.classes_.dtype) pos = 0 for actClass in range(len(self.classes_)): nb_prot = nb_ppc[actClass] # nb_ppc: prototypes per class if(self.protos_initialized[actClass] == 0 and actClass in unique_labels(train_lab)): mean = np.mean( train_set[train_lab == self.classes_[actClass], :], 0) self.w_[pos:pos + nb_prot] = mean + ( random_state.rand(nb_prot, nb_features) * 2 - 1) if math.isnan(self.w_[pos, 0]): print('null: ', actClass) self.protos_initialized[actClass] = 0 else: self.protos_initialized[actClass] = 1 # self.c_w_[pos:pos + nb_prot] = self.classes_[actClass] pos += nb_prot else: x = validation.check_array(self.initial_prototypes) self.w_ = x[:, :-1] self.c_w_ = x[:, -1] if self.w_.shape != (np.sum(nb_ppc), nb_features): raise ValueError("the initial prototypes have wrong shape\n" "found=(%d,%d)\n" "expected=(%d,%d)" % ( self.w_.shape[0], self.w_.shape[1], nb_ppc.sum(), nb_features)) if set(self.c_w_) != set(self.classes_): raise ValueError( "prototype labels and test data classes do not match\n" "classes={}\n" "prototype labels={}\n".format(self.classes_, self.c_w_)) if self.initial_fit: self.initial_fit = False return train_set, train_lab, random_state def fit(self, X, y, classes=None): """Fit the LVQ model to the given training data and parameters using l-bfgs-b. Parameters ---------- x : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers in classification, real numbers in regression) Returns -------- self """ X, y, random_state = self._validate_train_parms(X, y, classes=classes) if len(np.unique(y)) == 1: raise ValueError("fitting " + type( self).__name__ + " with only one class is not possible") self._optimize(X, y, random_state) return self def partial_fit(self, X, y, classes=None): """Fit the LVQ model to the given training data and parameters using l-bfgs-b. Parameters ---------- x : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers in classification, real numbers in regression) Returns -------- self """ if unique_labels(y) in self.classes_ or self.initial_fit: X, y, random_state = self._validate_train_parms( X, y, classes=classes) else: raise ValueError('Class {} was not learned - please declare all \ classes in first call of fit/partial_fit'.format(y)) self.counter = self.counter + 1 if self.drift_handling is not None and self.concept_drift_detection(X,y): self.cd_handling(X,y) if self.counter > 30: self.save_data(X,y,random_state) self.cd_detects.append(self.counter) print(self.w_.shape) self._optimize(X, y, random_state) return self def save_data(self,X,y,random_state):
pd.DataFrame(self.w_)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Nov 6 22:15:42 2018 @author: katezeng This module is for Predictive Analysis - Hypothesis Testing - This component contains both the traditional statistical hypothesis testing, and the beginning of machine learning predictive analytics. Here you will write three (3) hypotheses and see whether or not they are supported by your data. You must use all of the methods listed below (at least once) on your data. - You do not need to try all the methods for each hypothesis. For example, you might use ANOVA for one of your hypotheses, and you might use a t-test and linear regression for another, etc. It will be the case, that some of the hypotheses will not be well supported. - When trying methods like a decision tree, you should use cross-validation and show your ROC curve and a confusion matrix. For each method, explain the method in one paragraph. - Explain how and why you will apply your selected method(s) to each hypothesis, and discuss the results. - Therefore, you will have at least three (3) hypothesis tests and will apply all seven (7) of the following methods to one or more of your hypotheses. - Required methods: - t-test or Anova (choose one) - Linear Regression or Logistical Regression (multivariate or multinomial) (choose one) - Decision tree - A Lazy Learner Method (such as kNN) - Naïve Bayes - SVM - Random Forest """ ##################################################### # # # Import Libraries # # # ##################################################### import pandas as pd import numpy as np from scipy import stats from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, roc_curve, auc, confusion_matrix, classification_report from sklearn import svm from sklearn.preprocessing import Normalizer from sklearn.model_selection import cross_val_predict from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import label_binarize from imblearn.over_sampling import SMOTE from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True) ######################################################## # # # List of Functions # # # ######################################################## # function for arranging columns def arrangeCol(data): cols = list(data) cols.insert(len(cols), cols.pop(cols.index('price'))) data = data.loc[:, cols] return data # function for linear regression with absolute error plot def linearRegression1(data): X = data[['hotel_meanprice']] y = data[['price']] X_train, X_test , y_train , y_test = train_test_split(X,y,test_size=0.25,random_state=0) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) plt.figure(figsize=(15,8)) ax = sns.distplot(y_test-predictions) ax.set(ylabel='Density', xlabel='Error', title='Error distribution of test sets by Linear Regrssion model') plt.savefig("./plots/LRresults.png") # function for linear regression with absolute error vs actual value def linearRegression2(data): X = data[['hotel_meanprice']] y = data[['price']] X_train, X_test , y_train , y_test = train_test_split(X,y,test_size=0.25,random_state=0) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) plt.figure(figsize=(15,8)) ax = sns.distplot(abs(y_test-predictions)/y_test) ax.set(ylabel='Percentage', xlabel='Mean Squared Error', title='Error distribution of test sets by Linear Regrssion model') plt.savefig("./plots/LR_absolute_diff.png") # find relationship between hotel average price and airbnb average price def hotel_airbnb(data): output1 = data.groupby(['zipcode'])['price'].mean().reset_index() output1.columns = ['zipcode', 'averagePrice'] output2 = data.groupby(['zipcode'])['hotel_meanprice'].mean().reset_index() output = pd.merge(output1, output2, on='zipcode') plt.figure(figsize=(15,8)) # get coeffs of linear fit slope, intercept, r_value, p_value, std_err = stats.linregress(output['hotel_meanprice'], output['averagePrice']) ax = sns.regplot(x='hotel_meanprice', y='averagePrice', data=output, line_kws={'label':"y={0:.1f}x+{1:.1f}".format(slope,intercept)}) ax.set(xlabel='Hotel prices', ylabel='Airbnb prices', title='Linear relationship between average hotel prices and Airbnb prices') ax.legend() plt.savefig("./plots/relationship_hotel_airbnb.png") # find the distribution of airbnb price def find_distribution(data): plt.figure(figsize=(15,8)) ax = sns.distplot(data['price']) ax.set(ylabel='density', xlabel='Airbnb Prices', title='Airbnb Price Distribution') plt.savefig("./plots/airbnb_price_dist.png") # find the impact of room type by doing one way ANOVA def room_type_impact(data): entire_apt = np.array(data[data['Entire home/apt'] == 1]['price']) shared_room = np.array(data[data['Shared room'] == 1]['price']) private_room = np.array(data[data['Private room'] == 1]['price']) result = stats.f_oneway(entire_apt, private_room, shared_room) print(result) # preproccessing data for further model training def preprocessing(data): price_dict = {'A': 0, 'B': 1, 'C': 2} data['price_group'] = pd.cut(data.price, bins=[0, 200, 400, 1000], labels=[0, 1, 2]) cols = ['latitude', 'longitude', 'zipcode', 'price'] data = data.drop(cols, axis=1) mydict = {'t': 1, 'f': 0} data = data.replace({'host_profile_pic': mydict}) data = data.replace({'identity_verified': mydict}) fig = plt.figure(figsize=(10, 8)) data.groupby('price_group').price_group.count().plot.bar(ylim=0) fig.suptitle('class distribution', fontsize=15) plt.xlabel('price group', fontsize=12) plt.xticks(rotation='horizontal') plt.ylabel('Number of hotels', fontsize=12) fig.savefig('./plots/class_distribution.jpg') X = pd.DataFrame(data.iloc[:, 0:-1]) y = pd.DataFrame(data.iloc[:, -1]) y = y.values.ravel() sm = SMOTE(random_state=42) X_res, y_res = sm.fit_sample(X, y) col_names = data.columns.tolist() new_data = np.c_[X_res, np.transpose(y_res)] data = pd.DataFrame(new_data, columns = col_names) return data, price_dict # function for model evaluation including classification report, accuracy score # and generate confusion matrix of each model def model_evaluation(y_test, y_pred, name): ## for confusion matrix # class info class_names = ['A', 'B', 'C'] conf_mat = confusion_matrix(y_test, y_pred) print("========Confusion Matrix and Reprot of " + name + "==========") fig, ax = plt.subplots(figsize=(8, 8)) sns.heatmap(conf_mat, annot=True, fmt='d', xticklabels=class_names, yticklabels=class_names) #sns.heatmap(conf_mat, annot=True, fmt='d') plt.setp(ax.get_xticklabels(), rotation=45) plt.setp(ax.get_yticklabels(), rotation=45) plt.ylabel('Actual') plt.xlabel('Predicted') #plt.savefig('./plots/confusion-matrix' + name + '.png') ## for accuracy score print("Accuracy Score of " + name + "\n", accuracy_score(y_test, y_pred)) ## for classification report print("Classification Report of " + name + "\n", classification_report(y_test, y_pred)) # training and testing using naive bayes classifier, and generate ROC curve def naiveBayes(data): X = pd.DataFrame(data.iloc[:, 0:-1]) y =
pd.factorize(data['price_group'])
pandas.factorize
# LIBRARIES # set up backend for ssh -x11 figures import matplotlib matplotlib.use('Agg') # read and write import os import sys import glob import re import fnmatch import csv import shutil from datetime import datetime # maths import numpy as np import pandas as pd import math import random # miscellaneous import warnings import gc import timeit # sklearn from sklearn.utils import resample from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, log_loss, roc_auc_score, \ accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, average_precision_score from sklearn.utils.validation import check_is_fitted from sklearn.model_selection import KFold, PredefinedSplit, cross_validate from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression, ElasticNet from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import StandardScaler # Statistics from scipy.stats import pearsonr, ttest_rel, norm # Other tools for ensemble models building (<NAME>'s InnerCV class) from hyperopt import fmin, tpe, space_eval, Trials, hp, STATUS_OK from xgboost import XGBRegressor from lightgbm import LGBMRegressor # CPUs from multiprocessing import Pool # GPUs from GPUtil import GPUtil # tensorflow import tensorflow as tf # keras from keras_preprocessing.image import ImageDataGenerator, Iterator from keras_preprocessing.image.utils import load_img, img_to_array, array_to_img from tensorflow.keras.utils import Sequence from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout, GlobalAveragePooling2D, concatenate from tensorflow.keras import regularizers from tensorflow.keras.optimizers import Adam, RMSprop, Adadelta from tensorflow.keras.callbacks import Callback, EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, CSVLogger from tensorflow.keras.losses import MeanSquaredError, BinaryCrossentropy from tensorflow.keras.metrics import RootMeanSquaredError, MeanAbsoluteError, AUC, BinaryAccuracy, Precision, Recall, \ TruePositives, FalsePositives, FalseNegatives, TrueNegatives from tensorflow_addons.metrics import RSquare, F1Score # Plots import matplotlib.pyplot as plt import matplotlib.cm as cm from PIL import Image from bioinfokit import visuz # Model's attention from keract import get_activations, get_gradients_of_activations from scipy.ndimage.interpolation import zoom # Survival from lifelines.utils import concordance_index # Necessary to define MyCSVLogger import collections import csv import io import six from tensorflow.python.lib.io import file_io from tensorflow.python.util.compat import collections_abc from tensorflow.keras.backend import eval # Set display parameters pd.set_option('display.max_rows', 200) # CLASSES class Basics: """ Root class herited by most other class. Includes handy helper functions """ def __init__(self): # seeds for reproducibility self.seed = 0 os.environ['PYTHONHASHSEED'] = str(self.seed) np.random.seed(self.seed) random.seed(self.seed) # other parameters self.path_data = '../data/' self.folds = ['train', 'val', 'test'] self.n_CV_outer_folds = 10 self.outer_folds = [str(x) for x in list(range(self.n_CV_outer_folds))] self.modes = ['', '_sd', '_str'] self.id_vars = ['id', 'eid', 'instance', 'outer_fold'] self.instances = ['0', '1', '1.5', '1.51', '1.52', '1.53', '1.54', '2', '3'] self.ethnicities_vars_forgot_Other = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.ethnicities_vars = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.demographic_vars = ['Age', 'Sex'] + self.ethnicities_vars self.names_model_parameters = ['target', 'organ', 'view', 'transformation', 'architecture', 'n_fc_layers', 'n_fc_nodes', 'optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'] self.targets_regression = ['Age'] self.targets_binary = ['Sex'] self.models_types = ['', '_bestmodels'] self.dict_prediction_types = {'Age': 'regression', 'Sex': 'binary'} self.dict_side_predictors = {'Age': ['Sex'] + self.ethnicities_vars_forgot_Other, 'Sex': ['Age'] + self.ethnicities_vars_forgot_Other} self.organs = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal'] self.left_right_organs_views = ['Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees'] self.dict_organs_to_views = {'Brain': ['MRI'], 'Eyes': ['Fundus', 'OCT'], 'Arterial': ['Carotids'], 'Heart': ['MRI'], 'Abdomen': ['Liver', 'Pancreas'], 'Musculoskeletal': ['Spine', 'Hips', 'Knees', 'FullBody'], 'PhysicalActivity': ['FullWeek']} self.dict_organsviews_to_transformations = \ {'Brain_MRI': ['SagittalRaw', 'SagittalReference', 'CoronalRaw', 'CoronalReference', 'TransverseRaw', 'TransverseReference'], 'Arterial_Carotids': ['Mixed', 'LongAxis', 'CIMT120', 'CIMT150', 'ShortAxis'], 'Heart_MRI': ['2chambersRaw', '2chambersContrast', '3chambersRaw', '3chambersContrast', '4chambersRaw', '4chambersContrast'], 'Musculoskeletal_Spine': ['Sagittal', 'Coronal'], 'Musculoskeletal_FullBody': ['Mixed', 'Figure', 'Skeleton', 'Flesh'], 'PhysicalActivity_FullWeek': ['GramianAngularField1minDifference', 'GramianAngularField1minSummation', 'MarkovTransitionField1min', 'RecurrencePlots1min']} self.dict_organsviews_to_transformations.update(dict.fromkeys(['Eyes_Fundus', 'Eyes_OCT'], ['Raw'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Abdomen_Liver', 'Abdomen_Pancreas'], ['Raw', 'Contrast'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], ['MRI'])) self.organsviews_not_to_augment = [] self.organs_instances23 = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'] self.organs_XWAS = \ ['*', '*instances01', '*instances1.5x', '*instances23', 'Brain', 'BrainCognitive', 'BrainMRI', 'Eyes', 'EyesFundus', 'EyesOCT', 'Hearing', 'Lungs', 'Arterial', 'ArterialPulseWaveAnalysis', 'ArterialCarotids', 'Heart', 'HeartECG', 'HeartMRI', 'Abdomen', 'AbdomenLiver', 'AbdomenPancreas', 'Musculoskeletal', 'MusculoskeletalSpine', 'MusculoskeletalHips', 'MusculoskeletalKnees', 'MusculoskeletalFullBody', 'MusculoskeletalScalars', 'PhysicalActivity', 'Biochemistry', 'BiochemistryUrine', 'BiochemistryBlood', 'ImmuneSystem'] # Others if '/Users/Alan/' in os.getcwd(): os.chdir('/Users/Alan/Desktop/Aging/Medical_Images/scripts/') else: os.chdir('/n/groups/patel/Alan/Aging/Medical_Images/scripts/') gc.enable() # garbage collector warnings.filterwarnings('ignore') def _version_to_parameters(self, model_name): parameters = {} parameters_list = model_name.split('_') for i, parameter in enumerate(self.names_model_parameters): parameters[parameter] = parameters_list[i] if len(parameters_list) > 11: parameters['outer_fold'] = parameters_list[11] return parameters @staticmethod def _parameters_to_version(parameters): return '_'.join(parameters.values()) @staticmethod def convert_string_to_boolean(string): if string == 'True': boolean = True elif string == 'False': boolean = False else: print('ERROR: string must be either \'True\' or \'False\'') sys.exit(1) return boolean class Metrics(Basics): """ Helper class defining dictionaries of metrics and custom metrics """ def __init__(self): # Parameters Basics.__init__(self) self.metrics_displayed_in_int = ['True-Positives', 'True-Negatives', 'False-Positives', 'False-Negatives'] self.metrics_needing_classpred = ['F1-Score', 'Binary-Accuracy', 'Precision', 'Recall'] self.dict_metrics_names_K = {'regression': ['RMSE'], # For now, R-Square is buggy. Try again in a few months. 'binary': ['ROC-AUC', 'PR-AUC', 'F1-Score', 'Binary-Accuracy', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_metrics_names = {'regression': ['RMSE', 'MAE', 'R-Squared', 'Pearson-Correlation'], 'binary': ['ROC-AUC', 'F1-Score', 'PR-AUC', 'Binary-Accuracy', 'Sensitivity', 'Specificity', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_losses_names = {'regression': 'MSE', 'binary': 'Binary-Crossentropy', 'multiclass': 'categorical_crossentropy'} self.dict_main_metrics_names_K = {'Age': 'MAE', 'Sex': 'PR-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.dict_main_metrics_names = {'Age': 'R-Squared', 'Sex': 'ROC-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.main_metrics_modes = {'loss': 'min', 'R-Squared': 'max', 'Pearson-Correlation': 'max', 'RMSE': 'min', 'MAE': 'min', 'ROC-AUC': 'max', 'PR-AUC': 'max', 'F1-Score': 'max', 'C-Index': 'max', 'C-Index-difference': 'max'} self.n_bootstrap_iterations = 1000 def rmse(y_true, y_pred): return math.sqrt(mean_squared_error(y_true, y_pred)) def sensitivity_score(y, pred): _, _, fn, tp = confusion_matrix(y, pred.round()).ravel() return tp / (tp + fn) def specificity_score(y, pred): tn, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return tn / (tn + fp) def true_positives_score(y, pred): _, _, _, tp = confusion_matrix(y, pred.round()).ravel() return tp def false_positives_score(y, pred): _, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return fp def false_negatives_score(y, pred): _, _, fn, _ = confusion_matrix(y, pred.round()).ravel() return fn def true_negatives_score(y, pred): tn, _, _, _ = confusion_matrix(y, pred.round()).ravel() return tn self.dict_metrics_sklearn = {'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'RMSE': rmse, 'Pearson-Correlation': pearsonr, 'R-Squared': r2_score, 'Binary-Crossentropy': log_loss, 'ROC-AUC': roc_auc_score, 'F1-Score': f1_score, 'PR-AUC': average_precision_score, 'Binary-Accuracy': accuracy_score, 'Sensitivity': sensitivity_score, 'Specificity': specificity_score, 'Precision': precision_score, 'Recall': recall_score, 'True-Positives': true_positives_score, 'False-Positives': false_positives_score, 'False-Negatives': false_negatives_score, 'True-Negatives': true_negatives_score} def _bootstrap(self, data, function): results = [] for i in range(self.n_bootstrap_iterations): data_i = resample(data, replace=True, n_samples=len(data.index)) results.append(function(data_i['y'], data_i['pred'])) return np.mean(results), np.std(results) class PreprocessingMain(Basics): """ This class executes the code for step 01. It preprocesses the main dataframe by: - reformating the rows and columns - splitting the dataset into folds for the future cross validations - imputing key missing data - adding a new UKB instance for physical activity data - formating the demographics columns (age, sex and ethnicity) - reformating the dataframe so that different instances of the same participant are treated as different rows - saving the dataframe """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None def _add_outer_folds(self): outer_folds_split = pd.read_csv(self.path_data + 'All_eids.csv') outer_folds_split.rename(columns={'fold': 'outer_fold'}, inplace=True) outer_folds_split['eid'] = outer_folds_split['eid'].astype('str') outer_folds_split['outer_fold'] = outer_folds_split['outer_fold'].astype('str') outer_folds_split.set_index('eid', inplace=True) self.data_raw = self.data_raw.join(outer_folds_split) def _impute_missing_ecg_instances(self): data_ecgs = pd.read_csv('/n/groups/patel/Alan/Aging/TimeSeries/scripts/age_analysis/missing_samples.csv') data_ecgs['eid'] = data_ecgs['eid'].astype(str) data_ecgs['instance'] = data_ecgs['instance'].astype(str) for _, row in data_ecgs.iterrows(): self.data_raw.loc[row['eid'], 'Date_attended_center_' + row['instance']] = row['observation_date'] def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_sex(self): # Use genetic sex when available self.data_raw['Sex_genetic'][self.data_raw['Sex_genetic'].isna()] = \ self.data_raw['Sex'][self.data_raw['Sex_genetic'].isna()] self.data_raw.drop(['Sex'], axis=1, inplace=True) self.data_raw.rename(columns={'Sex_genetic': 'Sex'}, inplace=True) self.data_raw.dropna(subset=['Sex'], inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = \ self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _encode_ethnicity(self): # Fill NAs for ethnicity on instance 0 if available in other instances eids_missing_ethnicity = self.data_raw['eid'][self.data_raw['Ethnicity'].isna()] for eid in eids_missing_ethnicity: sample = self.data_raw.loc[eid, :] if not math.isnan(sample['Ethnicity_1']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_1'] elif not math.isnan(sample['Ethnicity_2']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_2'] self.data_raw.drop(['Ethnicity_1', 'Ethnicity_2'], axis=1, inplace=True) # One hot encode ethnicity dict_ethnicity_codes = {'1': 'Ethnicity.White', '1001': 'Ethnicity.British', '1002': 'Ethnicity.Irish', '1003': 'Ethnicity.White_Other', '2': 'Ethnicity.Mixed', '2001': 'Ethnicity.White_and_Black_Caribbean', '2002': 'Ethnicity.White_and_Black_African', '2003': 'Ethnicity.White_and_Asian', '2004': 'Ethnicity.Mixed_Other', '3': 'Ethnicity.Asian', '3001': 'Ethnicity.Indian', '3002': 'Ethnicity.Pakistani', '3003': 'Ethnicity.Bangladeshi', '3004': 'Ethnicity.Asian_Other', '4': 'Ethnicity.Black', '4001': 'Ethnicity.Caribbean', '4002': 'Ethnicity.African', '4003': 'Ethnicity.Black_Other', '5': 'Ethnicity.Chinese', '6': 'Ethnicity.Other_ethnicity', '-1': 'Ethnicity.Do_not_know', '-3': 'Ethnicity.Prefer_not_to_answer', '-5': 'Ethnicity.NA'} self.data_raw['Ethnicity'] = self.data_raw['Ethnicity'].fillna(-5).astype(int).astype(str) ethnicities = pd.get_dummies(self.data_raw['Ethnicity']) self.data_raw.drop(['Ethnicity'], axis=1, inplace=True) ethnicities.rename(columns=dict_ethnicity_codes, inplace=True) ethnicities['Ethnicity.White'] = ethnicities['Ethnicity.White'] + ethnicities['Ethnicity.British'] + \ ethnicities['Ethnicity.Irish'] + ethnicities['Ethnicity.White_Other'] ethnicities['Ethnicity.Mixed'] = ethnicities['Ethnicity.Mixed'] + \ ethnicities['Ethnicity.White_and_Black_Caribbean'] + \ ethnicities['Ethnicity.White_and_Black_African'] + \ ethnicities['Ethnicity.White_and_Asian'] + \ ethnicities['Ethnicity.Mixed_Other'] ethnicities['Ethnicity.Asian'] = ethnicities['Ethnicity.Asian'] + ethnicities['Ethnicity.Indian'] + \ ethnicities['Ethnicity.Pakistani'] + ethnicities['Ethnicity.Bangladeshi'] + \ ethnicities['Ethnicity.Asian_Other'] ethnicities['Ethnicity.Black'] = ethnicities['Ethnicity.Black'] + ethnicities['Ethnicity.Caribbean'] + \ ethnicities['Ethnicity.African'] + ethnicities['Ethnicity.Black_Other'] ethnicities['Ethnicity.Other'] = ethnicities['Ethnicity.Other_ethnicity'] + \ ethnicities['Ethnicity.Do_not_know'] + \ ethnicities['Ethnicity.Prefer_not_to_answer'] + \ ethnicities['Ethnicity.NA'] self.data_raw = self.data_raw.join(ethnicities) def generate_data(self): # Preprocessing dict_UKB_fields_to_names = {'34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3', '31-0.0': 'Sex', '22001-0.0': 'Sex_genetic', '21000-0.0': 'Ethnicity', '21000-1.0': 'Ethnicity_1', '21000-2.0': 'Ethnicity_2', '22414-2.0': 'Abdominal_images_quality'} self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=['eid', '31-0.0', '22001-0.0', '21000-0.0', '21000-1.0', '21000-2.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0', '22414-2.0']) # Formatting self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' self._add_outer_folds() self._impute_missing_ecg_instances() self._add_physicalactivity_instances() self._compute_sex() self._compute_age() self._encode_ethnicity() # Concatenate the data from the different instances self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw[['eid', 'outer_fold', 'Age_' + i, 'Sex'] + self.ethnicities_vars + ['Abdominal_images_quality']].dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) df_i.rename(columns={'Age_' + i: 'Age'}, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[self.id_vars + self.demographic_vars + ['Abdominal_images_quality']] if i != '2': df_i['Abdominal_images_quality'] = np.nan # not defined for instance 3, not relevant for instances 0, 1 if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Save age as a float32 instead of float64 self.data_features['Age'] = np.float32(self.data_features['Age']) # Shuffle the rows before saving the dataframe self.data_features = self.data_features.sample(frac=1) # Generate dataframe for eids pipeline as opposed to instances pipeline self.data_features_eids = self.data_features[self.data_features.instance == '0'] self.data_features_eids['instance'] = '*' self.data_features_eids['id'] = [ID.replace('_0', '_*') for ID in self.data_features_eids['id'].values] def save_data(self): self.data_features.to_csv(self.path_data + 'data-features_instances.csv', index=False) self.data_features_eids.to_csv(self.path_data + 'data-features_eids.csv', index=False) class PreprocessingImagesIDs(Basics): """ Splits the different images datasets into folds for the future cross validation """ def __init__(self): Basics.__init__(self) # Instances 2 and 3 datasets (most medical images, mostly medical images) self.instances23_eids = None self.HEART_EIDs = None self.heart_eids = None self.FOLDS_23_EIDS = None def _load_23_eids(self): data_features = pd.read_csv(self.path_data + 'data-features_instances.csv') images_eids = data_features['eid'][data_features['instance'].isin([2, 3])] self.images_eids = list(set(images_eids)) def _load_heart_eids(self): # IDs already used in Heart videos HEART_EIDS = {} heart_eids = [] for i in range(10): # Important: The i's data fold is used as *validation* fold for outer fold i. data_i = pd.read_csv( "/n/groups/patel/JbProst/Heart/Data/FoldsAugmented/data-features_Heart_20208_Augmented_Age_val_" + str( i) + ".csv") HEART_EIDS[i] = list(set([int(str(ID)[:7]) for ID in data_i['eid']])) heart_eids = heart_eids + HEART_EIDS[i] self.HEART_EIDS = HEART_EIDS self.heart_eids = heart_eids def _split_23_eids_folds(self): self._load_23_eids() self._load_heart_eids() # List extra images ids, and split them between the different folds. extra_eids = [eid for eid in self.images_eids if eid not in self.heart_eids] random.shuffle(extra_eids) n_samples = len(extra_eids) n_samples_by_fold = n_samples / self.n_CV_outer_folds FOLDS_EXTRAEIDS = {} FOLDS_EIDS = {} for outer_fold in self.outer_folds: FOLDS_EXTRAEIDS[outer_fold] = \ extra_eids[int((int(outer_fold)) * n_samples_by_fold):int((int(outer_fold) + 1) * n_samples_by_fold)] FOLDS_EIDS[outer_fold] = self.HEART_EIDS[int(outer_fold)] + FOLDS_EXTRAEIDS[outer_fold] self.FOLDS_23_EIDS = FOLDS_EIDS def _save_23_eids_folds(self): for outer_fold in self.outer_folds: with open(self.path_data + 'instances23_eids_' + outer_fold + '.csv', 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(self.FOLDS_23_EIDS[outer_fold]) def generate_eids_splits(self): print("Generating eids split for organs on instances 2 and 3") self._split_23_eids_folds() self._save_23_eids_folds() class PreprocessingFolds(Metrics): """ Splits the data into training, validation and testing sets for all CV folds """ def __init__(self, target, organ, regenerate_data): Metrics.__init__(self) self.target = target self.organ = organ self.list_ids_per_view_transformation = None # Check if these folds have already been generated if not regenerate_data: if len(glob.glob(self.path_data + 'data-features_' + organ + '_*_' + target + '_*.csv')) > 0: print("Error: The files already exist! Either change regenerate_data to True or delete the previous" " version.") sys.exit(1) self.side_predictors = self.dict_side_predictors[target] self.variables_to_normalize = self.side_predictors if target in self.targets_regression: self.variables_to_normalize.append(target) self.dict_image_quality_col = {'Liver': 'Abdominal_images_quality'} self.dict_image_quality_col.update( dict.fromkeys(['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'], None)) self.image_quality_col = self.dict_image_quality_col[organ] self.views = self.dict_organs_to_views[organ] self.list_ids = None self.list_ids_per_view = {} self.data = None self.EIDS = None self.EIDS_per_view = {'train': {}, 'val': {}, 'test': {}} self.data_fold = None def _get_list_ids(self): self.list_ids_per_view_transformation = {} list_ids = [] # if different views are available, take the union of the ids for view in self.views: self.list_ids_per_view_transformation[view] = {} for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: list_ids_transformation = [] path = '../images/' + self.organ + '/' + view + '/' + transformation + '/' # for paired organs, take the unions of the ids available on the right and the left sides if self.organ + '_' + view in self.left_right_organs_views: for side in ['right', 'left']: list_ids_transformation += os.listdir(path + side + '/') list_ids_transformation = np.unique(list_ids_transformation).tolist() else: list_ids_transformation += os.listdir(path) self.list_ids_per_view_transformation[view][transformation] = \ [im.replace('.jpg', '') for im in list_ids_transformation] list_ids += self.list_ids_per_view_transformation[view][transformation] self.list_ids = np.unique(list_ids).tolist() self.list_ids.sort() def _filter_and_format_data(self): """ Clean the data before it can be split between the rows """ cols_data = self.id_vars + self.demographic_vars if self.image_quality_col is not None: cols_data.append(self.dict_image_quality_col[self.organ]) data = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=cols_data) data.rename(columns={self.dict_image_quality_col[self.organ]: 'Data_quality'}, inplace=True) for col_name in self.id_vars: data[col_name] = data[col_name].astype(str) data.set_index('id', drop=False, inplace=True) if self.image_quality_col is not None: data = data[data['Data_quality'] != np.nan] data.drop('Data_quality', axis=1, inplace=True) # get rid of samples with NAs data.dropna(inplace=True) # list the samples' ids for which images are available data = data.loc[self.list_ids] self.data = data def _split_data(self): # Generate the data for each outer_fold for i, outer_fold in enumerate(self.outer_folds): of_val = outer_fold of_test = str((int(outer_fold) + 1) % len(self.outer_folds)) DATA = { 'train': self.data[~self.data['outer_fold'].isin([of_val, of_test])], 'val': self.data[self.data['outer_fold'] == of_val], 'test': self.data[self.data['outer_fold'] == of_test] } # Generate the data for the different views and transformations for view in self.views: for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: print('Splitting data for view ' + view + ', and transformation ' + transformation) DF = {} for fold in self.folds: idx = DATA[fold]['id'].isin(self.list_ids_per_view_transformation[view][transformation]).values DF[fold] = DATA[fold].iloc[idx, :] # compute values for scaling of variables normalizing_values = {} for var in self.variables_to_normalize: var_mean = DF['train'][var].mean() if len(DF['train'][var].unique()) < 2: print('Variable ' + var + ' has a single value in fold ' + outer_fold + '. Using 1 as std for normalization.') var_std = 1 else: var_std = DF['train'][var].std() normalizing_values[var] = {'mean': var_mean, 'std': var_std} # normalize the variables for fold in self.folds: for var in self.variables_to_normalize: DF[fold][var + '_raw'] = DF[fold][var] DF[fold][var] = (DF[fold][var] - normalizing_values[var]['mean']) \ / normalizing_values[var]['std'] # report issue if NAs were detected (most likely comes from a sample whose id did not match) n_mismatching_samples = DF[fold].isna().sum().max() if n_mismatching_samples > 0: print(DF[fold][DF[fold].isna().any(axis=1)]) print('/!\\ WARNING! ' + str(n_mismatching_samples) + ' ' + fold + ' images ids out of ' + str(len(DF[fold].index)) + ' did not match the dataframe!') # save the data DF[fold].to_csv(self.path_data + 'data-features_' + self.organ + '_' + view + '_' + transformation + '_' + self.target + '_' + fold + '_' + outer_fold + '.csv', index=False) print('For outer_fold ' + outer_fold + ', the ' + fold + ' fold has a sample size of ' + str(len(DF[fold].index))) def generate_folds(self): self._get_list_ids() self._filter_and_format_data() self._split_data() class PreprocessingSurvival(Basics): """ Preprocesses the main dataframe for survival purposes. Mirrors the PreprocessingMain class, but computes Death time and FollowTime for the future survival analysis """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None self.survival_vars = ['FollowUpTime', 'Death'] def _preprocessing(self): usecols = ['eid', '40000-0.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0'] self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=usecols) dict_UKB_fields_to_names = {'40000-0.0': 'FollowUpDate', '34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3'} self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' # Format survival data self.data_raw['Death'] = ~self.data_raw['FollowUpDate'].isna() self.data_raw['FollowUpDate'][self.data_raw['FollowUpDate'].isna()] = '2020-04-27' self.data_raw['FollowUpDate'] = self.data_raw['FollowUpDate'].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) assert ('FollowUpDate.1' not in self.data_raw.columns) def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw.dropna(subset=['Year_of_birth'], inplace=True) self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpDate'] - self.data_raw[ 'Date_attended_center_' + i] self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpTime_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth', 'FollowUpDate'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _concatenate_instances(self): self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw.dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) dict_names = {} features = ['Age', 'FollowUpTime'] for feature in features: dict_names[feature + '_' + i] = feature self.dict_names = dict_names df_i.rename(columns=dict_names, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[['id', 'eid', 'instance'] + self.survival_vars] if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Add * instance for eids survival_eids = self.data_features[self.data_features['instance'] == '0'] survival_eids['instance'] = '*' survival_eids['id'] = survival_eids['eid'] + '_' + survival_eids['instance'] self.data_features = self.data_features.append(survival_eids) def generate_data(self): # Formatting self._preprocessing() self._add_physicalactivity_instances() self._compute_age() self._concatenate_instances() # save data self.data_features.to_csv('../data/data_survival.csv', index=False) class MyImageDataGenerator(Basics, Sequence, ImageDataGenerator): """ Helper class: custom data generator for images. It handles several custom features such as: - provides batches of not only images, but also the scalar data (e.g demographics) that correspond to it - it performs random shuffling while making sure that no leftover data (the remainder of the modulo batch size) is being unused - it can handle paired data for paired organs (e.g left/right eyes) """ def __init__(self, target=None, organ=None, view=None, data_features=None, n_samples_per_subepoch=None, batch_size=None, training_mode=None, side_predictors=None, dir_images=None, images_width=None, images_height=None, data_augmentation=False, data_augmentation_factor=None, seed=None): # Parameters Basics.__init__(self) self.target = target if target in self.targets_regression: self.labels = data_features[target] else: self.labels = data_features[target + '_raw'] self.organ = organ self.view = view self.training_mode = training_mode self.data_features = data_features self.list_ids = data_features.index.values self.batch_size = batch_size # for paired organs, take twice fewer ids (two images for each id), and add organ_side as side predictor if organ + '_' + view in self.left_right_organs_views: self.data_features['organ_side'] = np.nan self.n_ids_batch = batch_size // 2 else: self.n_ids_batch = batch_size if self.training_mode & (n_samples_per_subepoch is not None): # during training, 1 epoch = number of samples self.steps = math.ceil(n_samples_per_subepoch / batch_size) else: # during prediction and other tasks, an epoch is defined as all the samples being seen once and only once self.steps = math.ceil(len(self.list_ids) / self.n_ids_batch) # learning_rate_patience if n_samples_per_subepoch is not None: self.n_subepochs_per_epoch = math.ceil(len(self.data_features.index) / n_samples_per_subepoch) # initiate the indices and shuffle the ids self.shuffle = training_mode # Only shuffle if the model is being trained. Otherwise no need. self.indices = np.arange(len(self.list_ids)) self.idx_end = 0 # Keep track of last indice to permute indices accordingly at the end of epoch. if self.shuffle: np.random.shuffle(self.indices) # Input for side NN and CNN self.side_predictors = side_predictors self.dir_images = dir_images self.images_width = images_width self.images_height = images_height # Data augmentation self.data_augmentation = data_augmentation self.data_augmentation_factor = data_augmentation_factor self.seed = seed # Parameters for data augmentation: (rotation range, width shift range, height shift range, zoom range) self.augmentation_parameters = \ pd.DataFrame(index=['Brain_MRI', 'Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees', 'Musculoskeletal_FullBody', 'PhysicalActivity_FullWeek', 'PhysicalActivity_Walking'], columns=['rotation', 'width_shift', 'height_shift', 'zoom']) self.augmentation_parameters.loc['Brain_MRI', :] = [10, 0.05, 0.1, 0.0] self.augmentation_parameters.loc['Eyes_Fundus', :] = [20, 0.02, 0.02, 0] self.augmentation_parameters.loc['Eyes_OCT', :] = [30, 0.1, 0.2, 0] self.augmentation_parameters.loc[['Arterial_Carotids'], :] = [0, 0.2, 0.0, 0.0] self.augmentation_parameters.loc[['Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine'], :] = [10, 0.1, 0.1, 0.0] self.augmentation_parameters.loc[['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], :] = [10, 0.1, 0.1, 0.1] self.augmentation_parameters.loc[['Musculoskeletal_FullBody'], :] = [10, 0.05, 0.02, 0.0] self.augmentation_parameters.loc[['PhysicalActivity_FullWeek'], :] = [0, 0, 0, 0.0] organ_view = organ + '_' + view ImageDataGenerator.__init__(self, rescale=1. / 255., rotation_range=self.augmentation_parameters.loc[organ_view, 'rotation'], width_shift_range=self.augmentation_parameters.loc[organ_view, 'width_shift'], height_shift_range=self.augmentation_parameters.loc[organ_view, 'height_shift'], zoom_range=self.augmentation_parameters.loc[organ_view, 'zoom']) def __len__(self): return self.steps def on_epoch_end(self): _ = gc.collect() self.indices = np.concatenate([self.indices[self.idx_end:], self.indices[:self.idx_end]]) def _generate_image(self, path_image): img = load_img(path_image, target_size=(self.images_width, self.images_height), color_mode='rgb') Xi = img_to_array(img) if hasattr(img, 'close'): img.close() if self.data_augmentation: params = self.get_random_transform(Xi.shape) Xi = self.apply_transform(Xi, params) Xi = self.standardize(Xi) return Xi def _data_generation(self, list_ids_batch): # initialize empty matrices n_samples_batch = min(len(list_ids_batch), self.batch_size) X = np.empty((n_samples_batch, self.images_width, self.images_height, 3)) * np.nan x = np.empty((n_samples_batch, len(self.side_predictors))) * np.nan y = np.empty((n_samples_batch, 1)) * np.nan # fill the matrices sample by sample for i, ID in enumerate(list_ids_batch): y[i] = self.labels[ID] x[i] = self.data_features.loc[ID, self.side_predictors] if self.organ + '_' + self.view in self.left_right_organs_views: if i % 2 == 0: path = self.dir_images + 'right/' x[i][-1] = 0 else: path = self.dir_images + 'left/' x[i][-1] = 1 if not os.path.exists(path + ID + '.jpg'): path = path.replace('/right/', '/left/') if i % 2 == 0 else path.replace('/left/', '/right/') x[i][-1] = 1 - x[i][-1] else: path = self.dir_images X[i, :, :, :] = self._generate_image(path_image=path + ID + '.jpg') return [X, x], y def __getitem__(self, index): # Select the indices idx_start = (index * self.n_ids_batch) % len(self.list_ids) idx_end = (((index + 1) * self.n_ids_batch) - 1) % len(self.list_ids) + 1 if idx_start > idx_end: # If this happens outside of training, that is a mistake if not self.training_mode: print('\nERROR: Outside of training, every sample should only be predicted once!') sys.exit(1) # Select part of the indices from the end of the epoch indices = self.indices[idx_start:] # Generate a new set of indices # print('\nThe end of the data was reached within this batch, looping.') if self.shuffle: np.random.shuffle(self.indices) # Complete the batch with samples from the new indices indices = np.concatenate([indices, self.indices[:idx_end]]) else: indices = self.indices[idx_start: idx_end] if idx_end == len(self.list_ids) & self.shuffle: # print('\nThe end of the data was reached. Shuffling for the next epoch.') np.random.shuffle(self.indices) # Keep track of last indice for end of subepoch self.idx_end = idx_end # Select the corresponding ids list_ids_batch = [self.list_ids[i] for i in indices] # For paired organs, two images (left, right eyes) are selected for each id. if self.organ + '_' + self.view in self.left_right_organs_views: list_ids_batch = [ID for ID in list_ids_batch for _ in ('right', 'left')] return self._data_generation(list_ids_batch) class MyCSVLogger(Callback): """ Custom CSV Logger callback class for Keras training: append to existing file if can be found. Allows to keep track of training over several jobs. """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True self.csv_file = None if six.PY2: self.file_flags = 'b' self._open_args = {} else: self.file_flags = '' self._open_args = {'newline': '\n'} Callback.__init__(self) def on_train_begin(self, logs=None): if self.append: if file_io.file_exists(self.filename): with open(self.filename, 'r' + self.file_flags) as f: self.append_header = not bool(len(f.readline())) mode = 'a' else: mode = 'w' self.csv_file = io.open(self.filename, mode + self.file_flags, **self._open_args) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, six.string_types): return k elif isinstance(k, collections_abc.Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: # We set NA so that csv parsers do not fail for this last epoch. logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys]) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep fieldnames = ['epoch', 'learning_rate'] + self.keys if six.PY2: fieldnames = [unicode(x) for x in fieldnames] self.writer = csv.DictWriter( self.csv_file, fieldnames=fieldnames, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = collections.OrderedDict({'epoch': epoch, 'learning_rate': eval(self.model.optimizer.lr)}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None class MyModelCheckpoint(ModelCheckpoint): """ Custom checkpoint callback class for Keras training. Handles a baseline performance. """ def __init__(self, filepath, monitor='val_loss', baseline=-np.Inf, verbose=0, save_best_only=False, save_weights_only=False, mode='auto', save_freq='epoch'): # Parameters ModelCheckpoint.__init__(self, filepath, monitor=monitor, verbose=verbose, save_best_only=save_best_only, save_weights_only=save_weights_only, mode=mode, save_freq=save_freq) if mode == 'min': self.monitor_op = np.less self.best = baseline elif mode == 'max': self.monitor_op = np.greater self.best = baseline else: print('Error. mode for metric must be either min or max') sys.exit(1) class DeepLearning(Metrics): """ Core helper class to train models. Used to: - build the data generators - generate the CNN architectures - load the weights """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, debug_mode=False): # Initialization Metrics.__init__(self) tf.random.set_seed(self.seed) # Model's version self.target = target self.organ = organ self.view = view self.transformation = transformation self.architecture = architecture self.n_fc_layers = int(n_fc_layers) self.n_fc_nodes = int(n_fc_nodes) self.optimizer = optimizer self.learning_rate = float(learning_rate) self.weight_decay = float(weight_decay) self.dropout_rate = float(dropout_rate) self.data_augmentation_factor = float(data_augmentation_factor) self.outer_fold = None self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # NNet's architecture and weights self.side_predictors = self.dict_side_predictors[target] if self.organ + '_' + self.view in self.left_right_organs_views: self.side_predictors.append('organ_side') self.dict_final_activations = {'regression': 'linear', 'binary': 'sigmoid', 'multiclass': 'softmax', 'saliency': 'linear'} self.path_load_weights = None self.keras_weights = None # Generators self.debug_mode = debug_mode self.debug_fraction = 0.005 self.DATA_FEATURES = {} self.mode = None self.n_cpus = len(os.sched_getaffinity(0)) self.dir_images = '../images/' + organ + '/' + view + '/' + transformation + '/' # define dictionary to fit the architecture's input size to the images sizes (take min (height, width)) self.dict_organ_view_transformation_to_image_size = { 'Eyes_Fundus_Raw': (316, 316), # initial size (1388, 1388) 'Eyes_OCT_Raw': (312, 320), # initial size (500, 512) 'Musculoskeletal_Spine_Sagittal': (466, 211), # initial size (1513, 684) 'Musculoskeletal_Spine_Coronal': (315, 313), # initial size (724, 720) 'Musculoskeletal_Hips_MRI': (329, 303), # initial size (626, 680) 'Musculoskeletal_Knees_MRI': (347, 286) # initial size (851, 700) } self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Brain_MRI_SagittalRaw', 'Brain_MRI_SagittalReference', 'Brain_MRI_CoronalRaw', 'Brain_MRI_CoronalReference', 'Brain_MRI_TransverseRaw', 'Brain_MRI_TransverseReference'], (316, 316))) # initial size (88, 88) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Arterial_Carotids_Mixed', 'Arterial_Carotids_LongAxis', 'Arterial_Carotids_CIMT120', 'Arterial_Carotids_CIMT150', 'Arterial_Carotids_ShortAxis'], (337, 291))) # initial size (505, 436) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Heart_MRI_2chambersRaw', 'Heart_MRI_2chambersContrast', 'Heart_MRI_3chambersRaw', 'Heart_MRI_3chambersContrast', 'Heart_MRI_4chambersRaw', 'Heart_MRI_4chambersContrast'], (316, 316))) # initial size (200, 200) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Liver_Raw', 'Abdomen_Liver_Contrast'], (288, 364))) # initial size (288, 364) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Pancreas_Raw', 'Abdomen_Pancreas_Contrast'], (288, 350))) # initial size (288, 350) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Musculoskeletal_FullBody_Figure', 'Musculoskeletal_FullBody_Skeleton', 'Musculoskeletal_FullBody_Flesh', 'Musculoskeletal_FullBody_Mixed'], (541, 181))) # initial size (811, 272) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['PhysicalActivity_FullWeek_GramianAngularField1minDifference', 'PhysicalActivity_FullWeek_GramianAngularField1minSummation', 'PhysicalActivity_FullWeek_MarkovTransitionField1min', 'PhysicalActivity_FullWeek_RecurrencePlots1min'], (316, 316))) # initial size (316, 316) self.dict_architecture_to_image_size = {'MobileNet': (224, 224), 'MobileNetV2': (224, 224), 'NASNetMobile': (224, 224), 'NASNetLarge': (331, 331)} if self.architecture in ['MobileNet', 'MobileNetV2', 'NASNetMobile', 'NASNetLarge']: self.image_width, self.image_height = self.dict_architecture_to_image_size[architecture] else: self.image_width, self.image_height = \ self.dict_organ_view_transformation_to_image_size[organ + '_' + view + '_' + transformation] # define dictionary of batch sizes to fit as many samples as the model's architecture allows self.dict_batch_sizes = { # Default, applies to all images with resized input ~100,000 pixels 'Default': {'VGG16': 32, 'VGG19': 32, 'DenseNet121': 16, 'DenseNet169': 16, 'DenseNet201': 16, 'Xception': 32, 'InceptionV3': 32, 'InceptionResNetV2': 8, 'ResNet50': 32, 'ResNet101': 16, 'ResNet152': 16, 'ResNet50V2': 32, 'ResNet101V2': 16, 'ResNet152V2': 16, 'ResNeXt50': 4, 'ResNeXt101': 8, 'EfficientNetB7': 4, 'MobileNet': 128, 'MobileNetV2': 64, 'NASNetMobile': 64, 'NASNetLarge': 4}} # Define batch size if organ + '_' + view in self.dict_batch_sizes.keys(): randoself.batch_size = self.dict_batch_sizes[organ + '_' + view][architecture] else: self.batch_size = self.dict_batch_sizes['Default'][architecture] # double the batch size for the teslaM40 cores that have bigger memory if len(GPUtil.getGPUs()) > 0: # make sure GPUs are available (not truesometimes for debugging) if GPUtil.getGPUs()[0].memoryTotal > 20000: self.batch_size *= 2 # Define number of ids per batch (twice fewer for paired organs, because left and right samples) self.n_ids_batch = self.batch_size if organ + '_' + view in self.left_right_organs_views: self.n_ids_batch //= 2 # Define number of samples per subepoch if debug_mode: self.n_samples_per_subepoch = self.batch_size * 4 else: self.n_samples_per_subepoch = 32768 if organ + '_' + view in self.left_right_organs_views: self.n_samples_per_subepoch //= 2 # dict to decide which field is used to generate the ids when several targets share the same ids self.dict_target_to_ids = dict.fromkeys(['Age', 'Sex'], 'Age') # Note: R-Squared and F1-Score are not available, because their batch based values are misleading. # For some reason, Sensitivity and Specificity are not available either. Might implement later. self.dict_losses_K = {'MSE': MeanSquaredError(name='MSE'), 'Binary-Crossentropy': BinaryCrossentropy(name='Binary-Crossentropy')} self.dict_metrics_K = {'R-Squared': RSquare(name='R-Squared', y_shape=(1,)), 'RMSE': RootMeanSquaredError(name='RMSE'), 'F1-Score': F1Score(name='F1-Score', num_classes=1, dtype=tf.float32), 'ROC-AUC': AUC(curve='ROC', name='ROC-AUC'), 'PR-AUC': AUC(curve='PR', name='PR-AUC'), 'Binary-Accuracy': BinaryAccuracy(name='Binary-Accuracy'), 'Precision': Precision(name='Precision'), 'Recall': Recall(name='Recall'), 'True-Positives': TruePositives(name='True-Positives'), 'False-Positives': FalsePositives(name='False-Positives'), 'False-Negatives': FalseNegatives(name='False-Negatives'), 'True-Negatives': TrueNegatives(name='True-Negatives')} # Metrics self.prediction_type = self.dict_prediction_types[target] self.loss_name = self.dict_losses_names[self.prediction_type] self.loss_function = self.dict_losses_K[self.loss_name] self.main_metric_name = self.dict_main_metrics_names_K[target] self.main_metric_mode = self.main_metrics_modes[self.main_metric_name] self.main_metric = self.dict_metrics_K[self.main_metric_name] self.metrics_names = [self.main_metric_name] self.metrics = [self.dict_metrics_K[metric_name] for metric_name in self.metrics_names] # Optimizers self.optimizers = {'Adam': Adam, 'RMSprop': RMSprop, 'Adadelta': Adadelta} # Model self.model = None @staticmethod def _append_ext(fn): return fn + ".jpg" def _load_data_features(self): for fold in self.folds: self.DATA_FEATURES[fold] = pd.read_csv( self.path_data + 'data-features_' + self.organ + '_' + self.view + '_' + self.transformation + '_' + self.dict_target_to_ids[self.target] + '_' + fold + '_' + self.outer_fold + '.csv') for col_name in self.id_vars: self.DATA_FEATURES[fold][col_name] = self.DATA_FEATURES[fold][col_name].astype(str) self.DATA_FEATURES[fold].set_index('id', drop=False, inplace=True) def _take_subset_to_debug(self): for fold in self.folds: # use +1 or +2 to test the leftovers pipeline leftovers_extra = {'train': 0, 'val': 1, 'test': 2} n_batches = 2 n_limit_fold = leftovers_extra[fold] + self.batch_size * n_batches self.DATA_FEATURES[fold] = self.DATA_FEATURES[fold].iloc[:n_limit_fold, :] def _generate_generators(self, DATA_FEATURES): GENERATORS = {} for fold in self.folds: # do not generate a generator if there are no samples (can happen for leftovers generators) if fold not in DATA_FEATURES.keys(): continue # parameters training_mode = True if self.mode == 'model_training' else False if (fold == 'train') & (self.mode == 'model_training') & \ (self.organ + '_' + self.view not in self.organsviews_not_to_augment): data_augmentation = True else: data_augmentation = False # define batch size for testing: data is split between a part that fits in batches, and leftovers if self.mode == 'model_testing': if self.organ + '_' + self.view in self.left_right_organs_views: n_samples = len(DATA_FEATURES[fold].index) * 2 else: n_samples = len(DATA_FEATURES[fold].index) batch_size_fold = min(self.batch_size, n_samples) else: batch_size_fold = self.batch_size if (fold == 'train') & (self.mode == 'model_training'): n_samples_per_subepoch = self.n_samples_per_subepoch else: n_samples_per_subepoch = None # generator GENERATORS[fold] = \ MyImageDataGenerator(target=self.target, organ=self.organ, view=self.view, data_features=DATA_FEATURES[fold], n_samples_per_subepoch=n_samples_per_subepoch, batch_size=batch_size_fold, training_mode=training_mode, side_predictors=self.side_predictors, dir_images=self.dir_images, images_width=self.image_width, images_height=self.image_height, data_augmentation=data_augmentation, data_augmentation_factor=self.data_augmentation_factor, seed=self.seed) return GENERATORS def _generate_class_weights(self): if self.dict_prediction_types[self.target] == 'binary': self.class_weights = {} counts = self.DATA_FEATURES['train'][self.target + '_raw'].value_counts() n_total = counts.sum() # weighting the samples for each class inversely proportional to their prevalence, with order of magnitude 1 for i in counts.index.values: self.class_weights[i] = n_total / (counts.loc[i] * len(counts.index)) def _generate_cnn(self): # define the arguments # take special initial weights for EfficientNetB7 (better) if (self.architecture == 'EfficientNetB7') & (self.keras_weights == 'imagenet'): w = 'noisy-student' else: w = self.keras_weights kwargs = {"include_top": False, "weights": w, "input_shape": (self.image_width, self.image_height, 3)} if self.architecture in ['ResNet50', 'ResNet101', 'ResNet152', 'ResNet50V2', 'ResNet101V2', 'ResNet152V2', 'ResNeXt50', 'ResNeXt101']: import tensorflow.keras kwargs.update( {"backend": tensorflow.keras.backend, "layers": tensorflow.keras.layers, "models": tensorflow.keras.models, "utils": tensorflow.keras.utils}) # load the architecture builder if self.architecture == 'VGG16': from tensorflow.keras.applications.vgg16 import VGG16 as ModelBuilder elif self.architecture == 'VGG19': from tensorflow.keras.applications.vgg19 import VGG19 as ModelBuilder elif self.architecture == 'DenseNet121': from tensorflow.keras.applications.densenet import DenseNet121 as ModelBuilder elif self.architecture == 'DenseNet169': from tensorflow.keras.applications.densenet import DenseNet169 as ModelBuilder elif self.architecture == 'DenseNet201': from tensorflow.keras.applications.densenet import DenseNet201 as ModelBuilder elif self.architecture == 'Xception': from tensorflow.keras.applications.xception import Xception as ModelBuilder elif self.architecture == 'InceptionV3': from tensorflow.keras.applications.inception_v3 import InceptionV3 as ModelBuilder elif self.architecture == 'InceptionResNetV2': from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 as ModelBuilder elif self.architecture == 'ResNet50': from keras_applications.resnet import ResNet50 as ModelBuilder elif self.architecture == 'ResNet101': from keras_applications.resnet import ResNet101 as ModelBuilder elif self.architecture == 'ResNet152': from keras_applications.resnet import ResNet152 as ModelBuilder elif self.architecture == 'ResNet50V2': from keras_applications.resnet_v2 import ResNet50V2 as ModelBuilder elif self.architecture == 'ResNet101V2': from keras_applications.resnet_v2 import ResNet101V2 as ModelBuilder elif self.architecture == 'ResNet152V2': from keras_applications.resnet_v2 import ResNet152V2 as ModelBuilder elif self.architecture == 'ResNeXt50': from keras_applications.resnext import ResNeXt50 as ModelBuilder elif self.architecture == 'ResNeXt101': from keras_applications.resnext import ResNeXt101 as ModelBuilder elif self.architecture == 'EfficientNetB7': from efficientnet.tfkeras import EfficientNetB7 as ModelBuilder # The following model have a fixed input size requirement elif self.architecture == 'NASNetMobile': from tensorflow.keras.applications.nasnet import NASNetMobile as ModelBuilder elif self.architecture == 'NASNetLarge': from tensorflow.keras.applications.nasnet import NASNetLarge as ModelBuilder elif self.architecture == 'MobileNet': from tensorflow.keras.applications.mobilenet import MobileNet as ModelBuilder elif self.architecture == 'MobileNetV2': from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2 as ModelBuilder else: print('Architecture does not exist.') sys.exit(1) # build the model's base cnn = ModelBuilder(**kwargs) x = cnn.output # complete the model's base if self.architecture in ['VGG16', 'VGG19']: x = Flatten()(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) else: x = GlobalAveragePooling2D()(x) if self.architecture == 'EfficientNetB7': x = Dropout(self.dropout_rate)(x) cnn_output = x return cnn.input, cnn_output def _generate_side_nn(self): side_nn = Sequential() side_nn.add(Dense(16, input_dim=len(self.side_predictors), activation="relu", kernel_regularizer=regularizers.l2(self.weight_decay))) return side_nn.input, side_nn.output def _complete_architecture(self, cnn_input, cnn_output, side_nn_input, side_nn_output): x = concatenate([cnn_output, side_nn_output]) x = Dropout(self.dropout_rate)(x) for n in [int(self.n_fc_nodes * (2 ** (2 * (self.n_fc_layers - 1 - i)))) for i in range(self.n_fc_layers)]: x = Dense(n, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) # scale the dropout proportionally to the number of nodes in a layer. No dropout for the last layers if n > 16: x = Dropout(self.dropout_rate * n / 1024)(x) predictions = Dense(1, activation=self.dict_final_activations[self.prediction_type], kernel_regularizer=regularizers.l2(self.weight_decay))(x) self.model = Model(inputs=[cnn_input, side_nn_input], outputs=predictions) def _generate_architecture(self): cnn_input, cnn_output = self._generate_cnn() side_nn_input, side_nn_output = self._generate_side_nn() self._complete_architecture(cnn_input=cnn_input, cnn_output=cnn_output, side_nn_input=side_nn_input, side_nn_output=side_nn_output) def _load_model_weights(self): try: self.model.load_weights(self.path_load_weights) except (FileNotFoundError, TypeError): # load backup weights if the main weights are corrupted try: self.model.load_weights(self.path_load_weights.replace('model-weights', 'backup-model-weights')) except FileNotFoundError: print('Error. No file was found. imagenet weights should have been used. Bug somewhere.') sys.exit(1) @staticmethod def clean_exit(): # exit print('\nDone.\n') print('Killing JOB PID with kill...') os.system('touch ../eo/' + os.environ['SLURM_JOBID']) os.system('kill ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB PID with kill -9...') os.system('kill -9 ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB ID') os.system('scancel ' + os.environ['SLURM_JOBID']) time.sleep(60) print('Everything failed to kill the job. Hanging there until hitting walltime...') class Training(DeepLearning): """ Class to train CNN models: - Generates the architecture - Loads the best last weights so that a model can be trained over several jobs - Generates the callbacks - Compiles the model - Trains the model """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False, transfer_learning=None, continue_training=True, display_full_metrics=True): # parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.version = self.version + '_' + str(outer_fold) # NNet's architecture's weights self.continue_training = continue_training self.transfer_learning = transfer_learning self.list_parameters_to_match = ['organ', 'transformation', 'view'] # dict to decide in which order targets should be used when trying to transfer weight from a similar model self.dict_alternative_targets_for_transfer_learning = {'Age': ['Age', 'Sex'], 'Sex': ['Sex', 'Age']} # Generators self.folds = ['train', 'val'] self.mode = 'model_training' self.class_weights = None self.GENERATORS = None # Metrics self.baseline_performance = None if display_full_metrics: self.metrics_names = self.dict_metrics_names_K[self.prediction_type] # Model self.path_load_weights = self.path_data + 'model-weights_' + self.version + '.h5' if debug_mode: self.path_save_weights = self.path_data + 'model-weights-debug.h5' else: self.path_save_weights = self.path_data + 'model-weights_' + self.version + '.h5' self.n_epochs_max = 100000 self.callbacks = None # Load and preprocess the data, build the generators def data_preprocessing(self): self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._generate_class_weights() self.GENERATORS = self._generate_generators(self.DATA_FEATURES) # Determine which weights to load, if any. def _weights_for_transfer_learning(self): print('Looking for models to transfer weights from...') # define parameters parameters = self._version_to_parameters(self.version) # continue training if possible if self.continue_training and os.path.exists(self.path_load_weights): print('Loading the weights from the model\'s previous training iteration.') return # Initialize the weights using other the weights from other successful hyperparameters combinations if self.transfer_learning == 'hyperparameters': # Check if the same model with other hyperparameters have already been trained. Pick the best for transfer. params = self.version.split('_') params_tl_idx = \ [i for i in range(len(names_model_parameters)) if any(names_model_parameters[i] == p for p in ['optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'])] for idx in params_tl_idx: params[idx] = '*' versions = '../eo/MI02_' + '_'.join(params) + '.out' files = glob.glob(versions) if self.main_metric_mode == 'min': best_perf = np.Inf else: best_perf = -np.Inf for file in files: hand = open(file, 'r') # find best last performance final_improvement_line = None baseline_performance_line = None for line in hand: line = line.rstrip() if re.search('Baseline validation ' + self.main_metric_name + ' = ', line): baseline_performance_line = line if re.search('val_' + self.main_metric_name + ' improved from', line): final_improvement_line = line hand.close() if final_improvement_line is not None: perf = float(final_improvement_line.split(' ')[7].replace(',', '')) elif baseline_performance_line is not None: perf = float(baseline_performance_line.split(' ')[-1]) else: continue # Keep track of the file with the best performance if self.main_metric_mode == 'min': update = perf < best_perf else: update = perf > best_perf if update: best_perf = perf self.path_load_weights = \ file.replace('../eo/', self.path_data).replace('MI02', 'model-weights').replace('.out', '.h5') if best_perf not in [-np.Inf, np.Inf]: print('Transfering the weights from: ' + self.path_load_weights + ', with ' + self.main_metric_name + ' = ' + str(best_perf)) return # Initialize the weights based on models trained on different datasets, ranked by similarity if self.transfer_learning == 'datasets': while True: # print('Matching models for the following criterias:'); # print(['architecture', 'target'] + list_parameters_to_match) # start by looking for models trained on the same target, then move to other targets for target_to_load in self.dict_alternative_targets_for_transfer_learning[parameters['target']]: # print('Target used: ' + target_to_load) parameters_to_match = parameters.copy() parameters_to_match['target'] = target_to_load # load the ranked performances table to select the best performing model among the similar # models available path_performances_to_load = self.path_data + 'PERFORMANCES_ranked_' + \ parameters_to_match['target'] + '_' + 'val' + '.csv' try: Performances = pd.read_csv(path_performances_to_load) Performances['organ'] = Performances['organ'].astype(str) except FileNotFoundError: # print("Could not load the file: " + path_performances_to_load) break # iteratively get rid of models that are not similar enough, based on the list for parameter in ['architecture', 'target'] + self.list_parameters_to_match: Performances = Performances[Performances[parameter] == parameters_to_match[parameter]] # if at least one model is similar enough, load weights from the best of them if len(Performances.index) != 0: self.path_load_weights = self.path_data + 'model-weights_' + Performances['version'][0] + '.h5' self.keras_weights = None print('transfering the weights from: ' + self.path_load_weights) return # if no similar model was found, try again after getting rid of the last selection criteria if len(self.list_parameters_to_match) == 0: print('No model found for transfer learning.') break self.list_parameters_to_match.pop() # Otherwise use imagenet weights to initialize print('Using imagenet weights.') # using string instead of None for path to not ge self.path_load_weights = None self.keras_weights = 'imagenet' def _compile_model(self): # if learning rate was reduced with success according to logger, start with this reduced learning rate if self.path_load_weights is not None: path_logger = self.path_load_weights.replace('model-weights', 'logger').replace('.h5', '.csv') else: path_logger = self.path_data + 'logger_' + self.version + '.csv' if os.path.exists(path_logger): try: logger = pd.read_csv(path_logger) best_log = \ logger[logger['val_' + self.main_metric_name] == logger['val_' + self.main_metric_name].max()] lr = best_log['learning_rate'].values[0] except pd.errors.EmptyDataError: os.remove(path_logger) lr = self.learning_rate else: lr = self.learning_rate self.model.compile(optimizer=self.optimizers[self.optimizer](lr=lr, clipnorm=1.0), loss=self.loss_function, metrics=self.metrics) def _compute_baseline_performance(self): # calculate initial val_loss value if self.continue_training: idx_metric_name = ([self.loss_name] + self.metrics_names).index(self.main_metric_name) baseline_perfs = self.model.evaluate(self.GENERATORS['val'], steps=self.GENERATORS['val'].steps) self.baseline_performance = baseline_perfs[idx_metric_name] elif self.main_metric_mode == 'min': self.baseline_performance = np.Inf else: self.baseline_performance = -np.Inf print('Baseline validation ' + self.main_metric_name + ' = ' + str(self.baseline_performance)) def _define_callbacks(self): if self.debug_mode: path_logger = self.path_data + 'logger-debug.csv' append = False else: path_logger = self.path_data + 'logger_' + self.version + '.csv' append = self.continue_training csv_logger = MyCSVLogger(path_logger, separator=',', append=append) model_checkpoint_backup = MyModelCheckpoint(self.path_save_weights.replace('model-weights', 'backup-model-weights'), monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') model_checkpoint = MyModelCheckpoint(self.path_save_weights, monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') patience_reduce_lr = min(7, 3 * self.GENERATORS['train'].n_subepochs_per_epoch) reduce_lr_on_plateau = ReduceLROnPlateau(monitor='loss', factor=0.5, patience=patience_reduce_lr, verbose=1, mode='min', min_delta=0, cooldown=0, min_lr=0) early_stopping = EarlyStopping(monitor='val_' + self.main_metric.name, min_delta=0, patience=15, verbose=0, mode=self.main_metric_mode, baseline=self.baseline_performance, restore_best_weights=True) self.callbacks = [csv_logger, model_checkpoint_backup, model_checkpoint, early_stopping, reduce_lr_on_plateau] def build_model(self): self._weights_for_transfer_learning() self._generate_architecture() # Load weights if possible try: load_weights = True if os.path.exists(self.path_load_weights) else False except TypeError: load_weights = False if load_weights: self._load_model_weights() else: # save transferred weights as default, in case no better weights are found self.model.save_weights(self.path_save_weights.replace('model-weights', 'backup-model-weights')) self.model.save_weights(self.path_save_weights) self._compile_model() self._compute_baseline_performance() self._define_callbacks() def train_model(self): # garbage collector _ = gc.collect() # use more verbose when debugging verbose = 1 if self.debug_mode else 2 # train the model self.model.fit(self.GENERATORS['train'], steps_per_epoch=self.GENERATORS['train'].steps, validation_data=self.GENERATORS['val'], validation_steps=self.GENERATORS['val'].steps, shuffle=False, use_multiprocessing=False, workers=self.n_cpus, epochs=self.n_epochs_max, class_weight=self.class_weights, callbacks=self.callbacks, verbose=verbose) class PredictionsGenerate(DeepLearning): """ Generates the predictions for each model. Unscales the predictions. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False): # Initialize parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.mode = 'model_testing' # Define dictionaries attributes for data, generators and predictions self.DATA_FEATURES_BATCH = {} self.DATA_FEATURES_LEFTOVERS = {} self.GENERATORS_BATCH = None self.GENERATORS_LEFTOVERS = None self.PREDICTIONS = {} def _split_batch_leftovers(self): # split the samples into two groups: what can fit into the batch size, and the leftovers. for fold in self.folds: n_leftovers = len(self.DATA_FEATURES[fold].index) % self.n_ids_batch if n_leftovers > 0: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold].iloc[:-n_leftovers] self.DATA_FEATURES_LEFTOVERS[fold] = self.DATA_FEATURES[fold].tail(n_leftovers) else: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold] # special case for syntax if no leftovers if fold in self.DATA_FEATURES_LEFTOVERS.keys(): del self.DATA_FEATURES_LEFTOVERS[fold] def _generate_outerfold_predictions(self): # prepare unscaling if self.target in self.targets_regression: mean_train = self.DATA_FEATURES['train'][self.target + '_raw'].mean() std_train = self.DATA_FEATURES['train'][self.target + '_raw'].std() else: mean_train, std_train = None, None # Generate predictions for fold in self.folds: print('Predicting samples from fold ' + fold + '.') print(str(len(self.DATA_FEATURES[fold].index)) + ' samples to predict.') print('Predicting batches: ' + str(len(self.DATA_FEATURES_BATCH[fold].index)) + ' samples.') pred_batch = self.model.predict(self.GENERATORS_BATCH[fold], steps=self.GENERATORS_BATCH[fold].steps, verbose=1) if fold in self.GENERATORS_LEFTOVERS.keys(): print('Predicting leftovers: ' + str(len(self.DATA_FEATURES_LEFTOVERS[fold].index)) + ' samples.') pred_leftovers = self.model.predict(self.GENERATORS_LEFTOVERS[fold], steps=self.GENERATORS_LEFTOVERS[fold].steps, verbose=1) pred_full = np.concatenate((pred_batch, pred_leftovers)).squeeze() else: pred_full = pred_batch.squeeze() print('Predicted a total of ' + str(len(pred_full)) + ' samples.') # take the average between left and right predictions for paired organs if self.organ + '_' + self.view in self.left_right_organs_views: pred_full = np.mean(pred_full.reshape(-1, 2), axis=1) # unscale predictions if self.target in self.targets_regression: pred_full = pred_full * std_train + mean_train # format the dataframe self.DATA_FEATURES[fold]['pred'] = pred_full self.PREDICTIONS[fold] = self.DATA_FEATURES[fold] self.PREDICTIONS[fold]['id'] = [ID.replace('.jpg', '') for ID in self.PREDICTIONS[fold]['id']] def _generate_predictions(self): self.path_load_weights = self.path_data + 'model-weights_' + self.version + '_' + self.outer_fold + '.h5' self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._load_model_weights() self._split_batch_leftovers() # generate the generators self.GENERATORS_BATCH = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_BATCH) if self.DATA_FEATURES_LEFTOVERS is not None: self.GENERATORS_LEFTOVERS = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_LEFTOVERS) self._generate_outerfold_predictions() def _format_predictions(self): for fold in self.folds: perf_fun = self.dict_metrics_sklearn[self.dict_main_metrics_names[self.target]] perf = perf_fun(self.PREDICTIONS[fold][self.target + '_raw'], self.PREDICTIONS[fold]['pred']) print('The ' + fold + ' performance is: ' + str(perf)) # format the predictions self.PREDICTIONS[fold].index.name = 'column_names' self.PREDICTIONS[fold] = self.PREDICTIONS[fold][['id', 'outer_fold', 'pred']] def generate_predictions(self): self._generate_architecture() self._generate_predictions() self._format_predictions() def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + self.outer_fold + '.csv', index=False) class PredictionsConcatenate(Basics): """ Concatenates the predictions coming from the different cross validation folds. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None): # Initialize parameters Basics.__init__(self) self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # Define dictionaries attributes for data, generators and predictions self.PREDICTIONS = {} def concatenate_predictions(self): for fold in self.folds: for outer_fold in self.outer_folds: Predictions_fold = pd.read_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + outer_fold + '.csv') if fold in self.PREDICTIONS.keys(): self.PREDICTIONS[fold] = pd.concat([self.PREDICTIONS[fold], Predictions_fold]) else: self.PREDICTIONS[fold] = Predictions_fold def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '.csv', index=False) class PredictionsMerge(Basics): """ Merges the predictions from all models into a unified dataframe. """ def __init__(self, target=None, fold=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.data_features = None self.list_models = None self.Predictions_df_previous = None self.Predictions_df = None def _load_data_features(self): self.data_features = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=self.id_vars + self.demographic_vars) for var in self.id_vars: self.data_features[var] = self.data_features[var].astype(str) self.data_features.set_index('id', drop=False, inplace=True) self.data_features.index.name = 'column_names' def _preprocess_data_features(self): # For the training set, each sample is predicted n_CV_outer_folds times, so prepare a larger dataframe if self.fold == 'train': df_all_folds = None for outer_fold in self.outer_folds: df_fold = self.data_features.copy() df_all_folds = df_fold if outer_fold == self.outer_folds[0] else df_all_folds.append(df_fold) self.data_features = df_all_folds def _load_previous_merged_predictions(self): if os.path.exists(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv'): self.Predictions_df_previous = pd.read_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions_df_previous.drop(columns=['eid', 'instance'] + self.demographic_vars, inplace=True) def _list_models(self): # generate list of predictions that will be integrated in the Predictions dataframe self.list_models = glob.glob(self.path_data + 'Predictions_instances_' + self.target + '_*_' + self.fold + '.csv') # get rid of ensemble models and models already merged self.list_models = [model for model in self.list_models if ('*' not in model)] if self.Predictions_df_previous is not None: self.list_models = \ [model for model in self.list_models if ('pred_' + '_'.join(model.split('_')[2:-1]) not in self.Predictions_df_previous.columns)] self.list_models.sort() def preprocessing(self): self._load_data_features() self._preprocess_data_features() self._load_previous_merged_predictions() self._list_models() def merge_predictions(self): # merge the predictions print('There are ' + str(len(self.list_models)) + ' models to merge.') i = 0 # define subgroups to accelerate merging process list_subgroups = list(set(['_'.join(model.split('_')[3:7]) for model in self.list_models])) for subgroup in list_subgroups: print('Merging models from the subgroup ' + subgroup) models_subgroup = [model for model in self.list_models if subgroup in model] Predictions_subgroup = None # merge the models one by one for file_name in models_subgroup: i += 1 version = '_'.join(file_name.split('_')[2:-1]) if self.Predictions_df_previous is not None and \ 'pred_' + version in self.Predictions_df_previous.columns: print('The model ' + version + ' has already been merged before.') else: print('Merging the ' + str(i) + 'th model: ' + version) # load csv and format the predictions prediction = pd.read_csv(self.path_data + file_name) print('raw prediction\'s shape: ' + str(prediction.shape)) for var in ['id', 'outer_fold']: prediction[var] = prediction[var].apply(str) prediction.rename(columns={'pred': 'pred_' + version}, inplace=True) # merge data frames if Predictions_subgroup is None: Predictions_subgroup = prediction elif self.fold == 'train': Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id', 'outer_fold']) else: prediction.drop(['outer_fold'], axis=1, inplace=True) # not supported for panda version > 0.23.4 for now Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id']) # merge group predictions data frames if self.fold != 'train': Predictions_subgroup.drop(['outer_fold'], axis=1, inplace=True) if Predictions_subgroup is not None: if self.Predictions_df is None: self.Predictions_df = Predictions_subgroup elif self.fold == 'train': self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id']) print('Predictions_df\'s shape: ' + str(self.Predictions_df.shape)) # garbage collector gc.collect() # Merge with the previously merged predictions if (self.Predictions_df_previous is not None) & (self.Predictions_df is not None): if self.fold == 'train': self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: self.Predictions_df.drop(columns=['outer_fold'], inplace=True) # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id']) self.Predictions_df_previous = None elif self.Predictions_df is None: print('No new models to merge. Exiting.') print('Done.') sys.exit(0) # Reorder the columns alphabetically pred_versions = [col for col in self.Predictions_df.columns if 'pred_' in col] pred_versions.sort() id_cols = ['id', 'outer_fold'] if self.fold == 'train' else ['id'] self.Predictions_df = self.Predictions_df[id_cols + pred_versions] def postprocessing(self): # get rid of useless rows in data_features before merging to keep the memory requirements as low as possible self.data_features = self.data_features[self.data_features['id'].isin(self.Predictions_df['id'].values)] # merge data_features and predictions if self.fold == 'train': print('Starting to merge a massive dataframe') self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id']) print('Merging done') # remove rows for which no prediction is available (should be none) subset_cols = [col for col in self.Predictions_df.columns if 'pred_' in col] self.Predictions_df.dropna(subset=subset_cols, how='all', inplace=True) # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_df.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_df[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print('R2 for each model: ') print(R2S) def save_merged_predictions(self): print('Writing the merged predictions...') self.Predictions_df.to_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv', index=False) class PredictionsEids(Basics): """ Computes the average age prediction across samples from different instances for every participant. (Scaled back to instance 0) """ def __init__(self, target=None, fold=None, debug_mode=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.debug_mode = debug_mode self.Predictions = None self.Predictions_chunk = None self.pred_versions = None self.res_versions = None self.target_0s = None self.Predictions_eids = None self.Predictions_eids_previous = None self.pred_versions_previous = None def preprocessing(self): # Load predictions self.Predictions = pd.read_csv( self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions.drop(columns=['id'], inplace=True) self.Predictions['eid'] = self.Predictions['eid'].astype(str) self.Predictions.index.name = 'column_names' self.pred_versions = [col for col in self.Predictions.columns.values if 'pred_' in col] # Prepare target values on instance 0 as a reference target_0s = pd.read_csv(self.path_data + 'data-features_eids.csv', usecols=['eid', self.target]) target_0s['eid'] = target_0s['eid'].astype(str) target_0s.set_index('eid', inplace=True) target_0s = target_0s[self.target] target_0s.name = 'target_0' target_0s = target_0s[self.Predictions['eid'].unique()] self.Predictions = self.Predictions.merge(target_0s, on='eid') # Compute biological ages reported to target_0 for pred in self.pred_versions: # Compute the biais of the predictions as a function of age print('Generating residuals for model ' + pred.replace('pred_', '')) df_model = self.Predictions[['Age', pred]] df_model.dropna(inplace=True) if (len(df_model.index)) > 0: age = df_model.loc[:, ['Age']] res = df_model['Age'] - df_model[pred] regr = LinearRegression() regr.fit(age, res) self.Predictions[pred.replace('pred_', 'correction_')] = regr.predict(self.Predictions[['Age']]) # Take the residuals bias into account when "translating" the prediction to instance 0 correction = self.Predictions['target_0'] - self.Predictions[self.target] + \ regr.predict(self.Predictions[['Age']]) - regr.predict(self.Predictions[['target_0']]) self.Predictions[pred] = self.Predictions[pred] + correction self.Predictions[self.target] = self.Predictions['target_0'] self.Predictions.drop(columns=['target_0'], inplace=True) self.Predictions.index.name = 'column_names' def processing(self): if self.fold == 'train': # Prepare template to which each model will be appended Predictions = self.Predictions[['eid'] + self.demographic_vars] Predictions = Predictions.groupby('eid', as_index=True).mean() Predictions.index.name = 'column_names' Predictions['eid'] = Predictions.index.values Predictions['instance'] = '*' Predictions['id'] = Predictions['eid'] + '_*' self.Predictions_eids = Predictions.copy() self.Predictions_eids['outer_fold'] = -1 for i in range(self.n_CV_outer_folds): Predictions_i = Predictions.copy() Predictions_i['outer_fold'] = i self.Predictions_eids = self.Predictions_eids.append(Predictions_i) # Append each model one by one because the folds are different print(str(len(self.pred_versions)) + ' models to compute.') for pred_version in self.pred_versions: if pred_version in self.pred_versions_previous: print(pred_version.replace('pred_', '') + ' had already been computed.') else: print("Computing results for version " + pred_version.replace('pred_', '')) Predictions_version = self.Predictions[['eid', pred_version, 'outer_fold']] # Use placeholder for NaN in outer_folds Predictions_version['outer_fold'][Predictions_version['outer_fold'].isna()] = -1 Predictions_version_eids = Predictions_version.groupby(['eid', 'outer_fold'], as_index=False).mean() self.Predictions_eids = self.Predictions_eids.merge(Predictions_version_eids, on=['eid', 'outer_fold'], how='outer') self.Predictions_eids[of_version] = self.Predictions_eids['outer_fold'] self.Predictions_eids[of_version][self.Predictions_eids[of_version] == -1] = np.nan del Predictions_version _ = gc.collect self.Predictions_eids.drop(columns=['outer_fold'], inplace=True) else: self.Predictions_eids = self.Predictions.groupby('eid').mean() self.Predictions_eids['eid'] = self.Predictions_eids.index.values self.Predictions_eids['instance'] = '*' self.Predictions_eids['id'] = self.Predictions_eids['eid'].astype(str) + '_' + \ self.Predictions_eids['instance'] # Re-order the columns self.Predictions_eids = self.Predictions_eids[self.id_vars + self.demographic_vars + self.pred_versions] def postprocessing(self): # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_eids.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_eids[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S =
pd.DataFrame({'version': versions, 'R2': r2s})
pandas.DataFrame
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df = pandas.DataFrame(frame_data) result = df.fillna(value={"Date": df["Date2"]}) modin_df = pd.DataFrame(frame_data).fillna(value={"Date": df["Date2"]}) df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # with timezone """ frame_data = {'A': [pandas.Timestamp('2012-11-11 00:00:00+01:00'), pandas.NaT]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna(method='pad'), df.fillna(method='pad')) frame_data = {'A': [pandas.NaT, pandas.Timestamp('2012-11-11 00:00:00+01:00')]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data).fillna(method='bfill') df_equals(modin_df, df.fillna(method='bfill')) """ def test_fillna_downcast(self): # infer int64 from float64 frame_data = {"a": [1.0, np.nan]} df = pandas.DataFrame(frame_data) result = df.fillna(0, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna(0, downcast="infer") df_equals(modin_df, result) # infer int64 from float64 when fillna value is a dict df = pandas.DataFrame(frame_data) result = df.fillna({"a": 0}, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna({"a": 0}, downcast="infer") df_equals(modin_df, result) def test_ffill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="ffill"), test_data.tsframe.fillna(method="ffill") ) def test_bfill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="bfill"), test_data.tsframe.fillna(method="bfill") ) def test_fillna_inplace(self): frame_data = random_state.randn(10, 4) df = pandas.DataFrame(frame_data) df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(value=0, inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(value=0, inplace=True) df_equals(modin_df, df) modin_df = pd.DataFrame(df).fillna(value={0: 0}, inplace=True) assert modin_df is None df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(method="ffill", inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(method="ffill", inplace=True) df_equals(modin_df, df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_fillna_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_pad_backfill_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = pandas.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") modin_df = pd.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") df_equals(modin_df.fillna("nan"), df.fillna("nan")) frame_data = {"A": [1, np.nan], "B": [1.0, 2.0]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) for v in ["", 1, np.nan, 1.0]: df_equals(modin_df.fillna(v), df.fillna(v)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_skip_certain_blocks(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # don't try to fill boolean, int blocks df_equals(modin_df.fillna(np.nan), pandas_df.fillna(np.nan)) def test_fillna_dict_series(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna({"a": 0, "b": 5}), df.fillna({"a": 0, "b": 5})) df_equals( modin_df.fillna({"a": 0, "b": 5, "d": 7}), df.fillna({"a": 0, "b": 5, "d": 7}), ) # Series treated same as dict df_equals(modin_df.fillna(modin_df.max()), df.fillna(df.max())) def test_fillna_dataframe(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data, index=list("VWXYZ")) modin_df = pd.DataFrame(frame_data, index=list("VWXYZ")) # df2 may have different index and columns df2 = pandas.DataFrame( { "a": [np.nan, 10, 20, 30, 40], "b": [50, 60, 70, 80, 90], "foo": ["bar"] * 5, }, index=list("VWXuZ"), ) modin_df2 = pd.DataFrame(df2) # only those columns and indices which are shared get filled df_equals(modin_df.fillna(modin_df2), df.fillna(df2)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_columns(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_invalid_method(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with tm.assert_raises_regex(ValueError, "ffil"): modin_df.fillna(method="ffil") def test_fillna_invalid_value(self): test_data = TestData() modin_df = pd.DataFrame(test_data.frame) # list pytest.raises(TypeError, modin_df.fillna, [1, 2]) # tuple pytest.raises(TypeError, modin_df.fillna, (1, 2)) # frame with series pytest.raises(TypeError, modin_df.iloc[:, 0].fillna, modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_col_reordering(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.fillna(method="ffill"), pandas_df.fillna(method="ffill")) """ TODO: Use this when Arrow issue resolves: (https://issues.apache.org/jira/browse/ARROW-2122) def test_fillna_datetime_columns(self): frame_data = {'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) frame_data = {'A': [-1, -2, np.nan], 'B': [pandas.Timestamp('2013-01-01'), pandas.Timestamp('2013-01-02'), pandas.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) """ @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_filter(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) by = {"items": ["col1", "col5"], "regex": "4$|3$", "like": "col"} df_equals( modin_df.filter(items=by["items"]), pandas_df.filter(items=by["items"]) ) df_equals( modin_df.filter(regex=by["regex"], axis=0), pandas_df.filter(regex=by["regex"], axis=0), ) df_equals( modin_df.filter(regex=by["regex"], axis=1), pandas_df.filter(regex=by["regex"], axis=1), ) df_equals(modin_df.filter(like=by["like"]), pandas_df.filter(like=by["like"])) with pytest.raises(TypeError): modin_df.filter(items=by["items"], regex=by["regex"]) with pytest.raises(TypeError): modin_df.filter() def test_first(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.first("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_first_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.first_valid_index() == (pandas_df.first_valid_index()) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_dict(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_dict(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_items(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_items(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_records(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_records(None) def test_get_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_value(0, "col1") def test_get_values(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_values() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_head(self, data, n): # Test normal dataframe head modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.head(n), pandas_df.head(n)) df_equals(modin_df.head(len(modin_df) + 1), pandas_df.head(len(pandas_df) + 1)) # Test head when we call it from a QueryCompilerView modin_result = modin_df.loc[:, ["col1", "col3", "col3"]].head(n) pandas_result = pandas_df.loc[:, ["col1", "col3", "col3"]].head(n) df_equals(modin_result, pandas_result) def test_hist(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).hist(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iat(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.iat() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmax(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) pandas_result = pandas_df.T.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.T.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmin(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.T.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) def test_infer_objects(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).infer_objects() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, ["empty_data"]): # Scaler np.testing.assert_equal(modin_df.iloc[0, 1], pandas_df.iloc[0, 1]) # Series df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.iloc[1:, 0], pandas_df.iloc[1:, 0]) df_equals(modin_df.iloc[1:2, 0], pandas_df.iloc[1:2, 0]) # DataFrame df_equals(modin_df.iloc[[1, 2]], pandas_df.iloc[[1, 2]]) # See issue #80 # df_equals(modin_df.iloc[[1, 2], [1, 0]], pandas_df.iloc[[1, 2], [1, 0]]) df_equals(modin_df.iloc[1:2, 0:2], pandas_df.iloc[1:2, 0:2]) # Issue #43 modin_df.iloc[0:3, :] # Write Item modin_df.iloc[[1, 2]] = 42 pandas_df.iloc[[1, 2]] = 42 df_equals(modin_df, pandas_df) else: with pytest.raises(IndexError): modin_df.iloc[0, 1] @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.index, pandas_df.index) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.index = [str(i) for i in modin_df_cp.index] pandas_df_cp.index = [str(i) for i in pandas_df_cp.index] df_equals(modin_df_cp.index, pandas_df_cp.index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_indexing_duplicate_axis(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pandas_df.index = [i // 3 for i in range(len(modin_df))] assert any(modin_df.index.duplicated()) assert any(pandas_df.index.duplicated()) df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.iloc[0, 0:4], pandas_df.iloc[0, 0:4]) df_equals( modin_df.loc[0, modin_df.columns[0:4]], pandas_df.loc[0, pandas_df.columns[0:4]], ) def test_info(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).info(memory_usage="deep") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("loc", int_arg_values, ids=arg_keys("loc", int_arg_keys)) def test_insert(self, data, loc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df = modin_df.copy() pandas_df = pandas_df.copy() column = "New Column" value = modin_df.iloc[:, 0] try: pandas_df.insert(loc, column, value) except Exception as e: with pytest.raises(type(e)): modin_df.insert(loc, column, value) else: modin_df.insert(loc, column, value) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Bad Column", modin_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Duplicate", modin_df[modin_df.columns[0]]) pandas_df.insert(0, "Duplicate", pandas_df[pandas_df.columns[0]]) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Scalar", 100) pandas_df.insert(0, "Scalar", 100) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Too Short", list(modin_df[modin_df.columns[0]])[:-1]) with pytest.raises(ValueError): modin_df.insert(0, modin_df.columns[0], modin_df[modin_df.columns[0]]) with pytest.raises(IndexError): modin_df.insert(len(modin_df.columns) + 100, "Bad Loc", 100) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(columns=list("ab")).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(columns=list("ab")).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(index=modin_df.index).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(index=pandas_df.index).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.insert( 0, "DataFrame insert", modin_df[[modin_df.columns[0]]] ) pandas_result = pandas_df.insert( 0, "DataFrame insert", pandas_df[[pandas_df.columns[0]]] ) df_equals(modin_result, pandas_result) def test_interpolate(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).interpolate() def test_is_copy(self): data = test_data_values[0] with pytest.warns(FutureWarning): assert pd.DataFrame(data).is_copy == pandas.DataFrame(data).is_copy @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_items(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.items() pandas_items = pandas_df.items() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iteritems(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.iteritems() pandas_items = pandas_df.iteritems() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iterrows(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_iterrows = modin_df.iterrows() pandas_iterrows = pandas_df.iterrows() for modin_row, pandas_row in zip(modin_iterrows, pandas_iterrows): modin_index, modin_series = modin_row pandas_index, pandas_series = pandas_row df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_itertuples(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # test default modin_it_default = modin_df.itertuples() pandas_it_default = pandas_df.itertuples() for modin_row, pandas_row in zip(modin_it_default, pandas_it_default): np.testing.assert_equal(modin_row, pandas_row) # test all combinations of custom params indices = [True, False] names = [None, "NotPandas", "Pandas"] for index in indices: for name in names: modin_it_custom = modin_df.itertuples(index=index, name=name) pandas_it_custom = pandas_df.itertuples(index=index, name=name) for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.ix() def test_join(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col5": [0], "col6": [1]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["left", "right", "outer", "inner"] for how in join_types: modin_join = modin_df.join(modin_df2, how=how) pandas_join = pandas_df.join(pandas_df2, how=how) df_equals(modin_join, pandas_join) frame_data3 = {"col7": [1, 2, 3, 5, 6, 7, 8]} modin_df3 = pd.DataFrame(frame_data3) pandas_df3 = pandas.DataFrame(frame_data3) join_types = ["left", "outer", "inner"] for how in join_types: modin_join = modin_df.join([modin_df2, modin_df3], how=how) pandas_join = pandas_df.join([pandas_df2, pandas_df3], how=how) df_equals(modin_join, pandas_join) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_keys(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.keys(), pandas_df.keys()) def test_kurt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurt() def test_kurtosis(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurtosis() def test_last(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.last("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_last_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.last_valid_index() == (pandas_df.last_valid_index()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_loc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] key2 = modin_df.columns[1] # Scaler assert modin_df.loc[0, key1] == pandas_df.loc[0, key1] # Series df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.loc[1:, key1], pandas_df.loc[1:, key1]) df_equals(modin_df.loc[1:2, key1], pandas_df.loc[1:2, key1]) # DataFrame df_equals(modin_df.loc[[1, 2]], pandas_df.loc[[1, 2]]) # List-like of booleans indices = [ True if i % 3 == 0 else False for i in range(len(modin_df.index)) ] columns = [ True if i % 5 == 0 else False for i in range(len(modin_df.columns)) ] modin_result = modin_df.loc[indices, columns] pandas_result = pandas_df.loc[indices, columns] df_equals(modin_result, pandas_result) # See issue #80 # df_equals(modin_df.loc[[1, 2], ['col1']], pandas_df.loc[[1, 2], ['col1']]) df_equals(modin_df.loc[1:2, key1:key2], pandas_df.loc[1:2, key1:key2]) # From issue #421 df_equals(modin_df.loc[:, [key2, key1]], pandas_df.loc[:, [key2, key1]]) df_equals(modin_df.loc[[2, 1], :], pandas_df.loc[[2, 1], :]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.loc[[1, 2]] = 42 pandas_df_copy.loc[[1, 2]] = 42 df_equals(modin_df_copy, pandas_df_copy) def test_loc_multi_index(self): modin_df = pd.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) pandas_df = pandas.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) df_equals(modin_df.loc[1], pandas_df.loc[1]) df_equals(modin_df.loc[1, "Presidents"], pandas_df.loc[1, "Presidents"]) df_equals( modin_df.loc[1, ("Presidents", "Pure mentions")], pandas_df.loc[1, ("Presidents", "Pure mentions")], ) assert ( modin_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] == pandas_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] ) df_equals( modin_df.loc[(1, 2), "Presidents"], pandas_df.loc[(1, 2), "Presidents"] ) tuples = [ ("bar", "one"), ("bar", "two"), ("bar", "three"), ("bar", "four"), ("baz", "one"), ("baz", "two"), ("baz", "three"), ("baz", "four"), ("foo", "one"), ("foo", "two"), ("foo", "three"), ("foo", "four"), ("qux", "one"), ("qux", "two"), ("qux", "three"), ("qux", "four"), ] modin_index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) pandas_index = pandas.MultiIndex.from_tuples(tuples, names=["first", "second"]) frame_data = np.random.randint(0, 100, size=(16, 100)) modin_df = pd.DataFrame( frame_data, index=modin_index, columns=["col{}".format(i) for i in range(100)], ) pandas_df = pandas.DataFrame( frame_data, index=pandas_index, columns=["col{}".format(i) for i in range(100)], ) df_equals(modin_df.loc["bar", "col1"], pandas_df.loc["bar", "col1"]) assert ( modin_df.loc[("bar", "one"), "col1"] == pandas_df.loc[("bar", "one"), "col1"] ) df_equals( modin_df.loc["bar", ("col1", "col2")], pandas_df.loc["bar", ("col1", "col2")], ) def test_lookup(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).lookup([0, 1], ["col1", "col2"]) def test_mad(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).mad() def test_mask(self): df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) m = df % 3 == 0 with pytest.warns(UserWarning): try: df.mask(~m, -df) except ValueError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_max(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mean(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_median(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) class TestDFPartTwo: def test_melt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).melt() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "index", bool_arg_values, ids=arg_keys("index", bool_arg_keys) ) def test_memory_usage(self, data, index): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 modin_result = modin_df.memory_usage(index=index) pandas_result = pandas_df.memory_usage(index=index) df_equals(modin_result, pandas_result) def test_merge(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col1": [0, 1, 2], "col2": [1, 5, 6]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["outer", "inner"] for how in join_types: # Defaults modin_result = modin_df.merge(modin_df2, how=how) pandas_result = pandas_df.merge(pandas_df2, how=how) df_equals(modin_result, pandas_result) # left_on and right_index modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_index=True ) df_equals(modin_result, pandas_result) # left_index and right_on modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col1 modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col2 modin_result = modin_df.merge( modin_df2, how=how, left_on="col2", right_on="col2" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col2", right_on="col2" ) df_equals(modin_result, pandas_result) # left_index and right_index modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_index=True ) df_equals(modin_result, pandas_result) # Named Series promoted to DF s = pd.Series(frame_data2.get("col1")) with pytest.raises(ValueError): modin_df.merge(s) s = pd.Series(frame_data2.get("col1"), name="col1") df_equals(modin_df.merge(s), modin_df.merge(modin_df2[["col1"]])) with pytest.raises(ValueError): modin_df.merge("Non-valid type") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_min(self, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mode(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mode(axis=axis, numeric_only=numeric_only) except Exception: with pytest.raises(TypeError): modin_df.mode(axis=axis, numeric_only=numeric_only) else: modin_result = modin_df.mode(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ndim(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.ndim == pandas_df.ndim def test_nlargest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nlargest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notna(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notna(), pandas_df.notna()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notnull(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notnull(), pandas_df.notnull()) def test_nsmallest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nsmallest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "dropna", bool_arg_values, ids=arg_keys("dropna", bool_arg_keys) ) def test_nunique(self, data, axis, dropna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.T.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) def test_pct_change(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).pct_change() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pipe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) n = len(modin_df.index) a, b, c = 2 % n, 0, 3 % n col = modin_df.columns[3 % len(modin_df.columns)] def h(x): return x.drop(columns=[col]) def g(x, arg1=0): for _ in range(arg1): x = x.append(x) return x def f(x, arg2=0, arg3=0): return x.drop([arg2, arg3]) df_equals( f(g(h(modin_df), arg1=a), arg2=b, arg3=c), (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) df_equals( (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), (pandas_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) def test_pivot(self): df = pd.DataFrame( { "foo": ["one", "one", "one", "two", "two", "two"], "bar": ["A", "B", "C", "A", "B", "C"], "baz": [1, 2, 3, 4, 5, 6], "zoo": ["x", "y", "z", "q", "w", "t"], } ) with pytest.warns(UserWarning): df.pivot(index="foo", columns="bar", values="baz") def test_pivot_table(self): df = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], } ) with pytest.warns(UserWarning): df.pivot_table(values="D", index=["A", "B"], columns=["C"], aggfunc=np.sum) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_plot(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): # We have to test this way because equality in plots means same object. zipped_plot_lines = zip(modin_df.plot().lines, pandas_df.plot().lines) for l, r in zipped_plot_lines: if isinstance(l.get_xdata(), np.ma.core.MaskedArray) and isinstance( r.get_xdata(), np.ma.core.MaskedArray ): assert all((l.get_xdata() == r.get_xdata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) if isinstance(l.get_ydata(), np.ma.core.MaskedArray) and isinstance( r.get_ydata(), np.ma.core.MaskedArray ): assert all((l.get_ydata() == r.get_ydata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pop(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] temp_modin_df = modin_df.copy() temp_pandas_df = pandas_df.copy() modin_popped = temp_modin_df.pop(key) pandas_popped = temp_pandas_df.pop(key) df_equals(modin_popped, pandas_popped) df_equals(temp_modin_df, temp_pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_prod(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_product(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("q", quantiles_values, ids=quantiles_keys) def test_quantile(self, request, data, q): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.quantile(q), pandas_df.quantile(q)) df_equals(modin_df.quantile(q, axis=1), pandas_df.quantile(q, axis=1)) try: pandas_result = pandas_df.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.quantile(q) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.T.quantile(q), pandas_df.T.quantile(q)) df_equals(modin_df.T.quantile(q, axis=1), pandas_df.T.quantile(q, axis=1)) try: pandas_result = pandas_df.T.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.T.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.T.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.T.quantile(q) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("funcs", query_func_values, ids=query_func_keys) def test_query(self, data, funcs): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.query("") with pytest.raises(NotImplementedError): x = 2 # noqa F841 modin_df.query("col1 < @x") try: pandas_result = pandas_df.query(funcs) except Exception as e: with pytest.raises(type(e)): modin_df.query(funcs) else: modin_result = modin_df.query(funcs) df_equals(modin_result, pandas_result) def test_query_after_insert(self): modin_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) modin_df["z"] = modin_df.eval("x / y") modin_df = modin_df.query("z >= 0") modin_result = modin_df.reset_index(drop=True) modin_result.columns = ["a", "b", "c"] pandas_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) pandas_df["z"] = pandas_df.eval("x / y") pandas_df = pandas_df.query("z >= 0") pandas_result = pandas_df.reset_index(drop=True) pandas_result.columns = ["a", "b", "c"] df_equals(modin_result, pandas_result) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "na_option", ["keep", "top", "bottom"], ids=["keep", "top", "bottom"] ) def test_rank(self, data, axis, numeric_only, na_option): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) except Exception as e: with pytest.raises(type(e)): modin_df.rank(axis=axis, numeric_only=numeric_only, na_option=na_option) else: modin_result = modin_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) df_equals(modin_result, pandas_result) def test_reindex(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.reindex([0, 3, 2, 1]), pandas_df.reindex([0, 3, 2, 1])) df_equals(modin_df.reindex([0, 6, 2]), pandas_df.reindex([0, 6, 2])) df_equals( modin_df.reindex(["col1", "col3", "col4", "col2"], axis=1), pandas_df.reindex(["col1", "col3", "col4", "col2"], axis=1), ) df_equals( modin_df.reindex(["col1", "col7", "col4", "col8"], axis=1), pandas_df.reindex(["col1", "col7", "col4", "col8"], axis=1), ) df_equals( modin_df.reindex(index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"]), pandas_df.reindex( index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"] ), ) df_equals( modin_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), pandas_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), ) def test_reindex_like(self): df1 = pd.DataFrame( [ [24.3, 75.7, "high"], [31, 87.8, "high"], [22, 71.6, "medium"], [35, 95, "medium"], ], columns=["temp_celsius", "temp_fahrenheit", "windspeed"], index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"), ) df2 = pd.DataFrame( [[28, "low"], [30, "low"], [35.1, "medium"]], columns=["temp_celsius", "windspeed"], index=pd.DatetimeIndex(["2014-02-12", "2014-02-13", "2014-02-15"]), ) with pytest.warns(UserWarning): df2.reindex_like(df1) def test_rename_sanity(self): test_data = TestData() mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} modin_df = pd.DataFrame(test_data.frame) df_equals( modin_df.rename(columns=mapping), test_data.frame.rename(columns=mapping) ) renamed2 = test_data.frame.rename(columns=str.lower) df_equals(modin_df.rename(columns=str.lower), renamed2) modin_df = pd.DataFrame(renamed2) df_equals( modin_df.rename(columns=str.upper), renamed2.rename(columns=str.upper) ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) tm.assert_index_equal( modin_df.rename(index={"foo": "bar", "bar": "foo"}).index, df.rename(index={"foo": "bar", "bar": "foo"}).index, ) tm.assert_index_equal( modin_df.rename(index=str.upper).index, df.rename(index=str.upper).index ) # have to pass something with pytest.raises(TypeError): modin_df.rename() # partial columns renamed = test_data.frame.rename(columns={"C": "foo", "D": "bar"}) modin_df = pd.DataFrame(test_data.frame) tm.assert_index_equal( modin_df.rename(columns={"C": "foo", "D": "bar"}).index, test_data.frame.rename(columns={"C": "foo", "D": "bar"}).index, ) # TODO: Uncomment when transpose works # other axis # renamed = test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}) # tm.assert_index_equal( # test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}).index, # modin_df.T.rename(index={'C': 'foo', 'D': 'bar'}).index) # index with name index = pandas.Index(["foo", "bar"], name="name") renamer = pandas.DataFrame(data, index=index) modin_df = pd.DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) modin_renamed = modin_df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, modin_renamed.index) assert renamed.index.name == modin_renamed.index.name def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = pandas.MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = pandas.MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) frame_data = [(0, 0), (1, 1)] df = pandas.DataFrame(frame_data, index=index, columns=columns) modin_df = pd.DataFrame(frame_data, index=index, columns=columns) # # without specifying level -> accross all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) modin_renamed = modin_df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.index, modin_renamed.index) renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) assert renamed.index.names == modin_renamed.index.names assert renamed.columns.names == modin_renamed.columns.names # # with specifying a level # dict renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz" ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz" ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) # function func = str.upper renamed = df.rename(columns=func, level=0) modin_renamed = modin_df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="fizz") modin_renamed = modin_df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level=1) modin_renamed = modin_df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="buzz") modin_renamed = modin_df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, modin_renamed.columns) # index renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) modin_renamed = modin_df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(modin_renamed.index, renamed.index) @pytest.mark.skip(reason="Pandas does not pass this test") def test_rename_nocopy(self): test_data = TestData().frame modin_df = pd.DataFrame(test_data) modin_renamed = modin_df.rename(columns={"C": "foo"}, copy=False) modin_renamed["foo"] = 1 assert (modin_df["C"] == 1).all() def test_rename_inplace(self): test_data = TestData().frame modin_df = pd.DataFrame(test_data) df_equals( modin_df.rename(columns={"C": "foo"}), test_data.rename(columns={"C": "foo"}), ) frame = test_data.copy() modin_frame = modin_df.copy() frame.rename(columns={"C": "foo"}, inplace=True) modin_frame.rename(columns={"C": "foo"}, inplace=True) df_equals(modin_frame, frame) def test_rename_bug(self): # rename set ref_locs, and set_index was not resetting frame_data = {0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) # TODO: Uncomment when set_index is implemented # df = df.set_index(['a', 'b']) # df.columns = ['2001-01-01'] modin_df = modin_df.rename(columns={0: "a"}) modin_df = modin_df.rename(columns={1: "b"}) # TODO: Uncomment when set_index is implemented # modin_df = modin_df.set_index(['a', 'b']) # modin_df.columns = ['2001-01-01'] df_equals(modin_df, df) def test_rename_axis(self): data = {"num_legs": [4, 4, 2], "num_arms": [0, 0, 2]} index = ["dog", "cat", "monkey"] modin_df = pd.DataFrame(data, index) pandas_df = pandas.DataFrame(data, index) df_equals(modin_df.rename_axis("animal"), pandas_df.rename_axis("animal")) df_equals( modin_df.rename_axis("limbs", axis="columns"), pandas_df.rename_axis("limbs", axis="columns"), ) modin_df.rename_axis("limbs", axis="columns", inplace=True) pandas_df.rename_axis("limbs", axis="columns", inplace=True) df_equals(modin_df, pandas_df) new_index = pd.MultiIndex.from_product( [["mammal"], ["dog", "cat", "monkey"]], names=["type", "name"] ) modin_df.index = new_index pandas_df.index = new_index df_equals( modin_df.rename_axis(index={"type": "class"}), pandas_df.rename_axis(index={"type": "class"}), ) df_equals( modin_df.rename_axis(columns=str.upper), pandas_df.rename_axis(columns=str.upper), ) df_equals( modin_df.rename_axis( columns=[str.upper(o) for o in modin_df.columns.names] ), pandas_df.rename_axis( columns=[str.upper(o) for o in pandas_df.columns.names] ), ) with pytest.raises(ValueError): df_equals( modin_df.rename_axis(str.upper, axis=1), pandas_df.rename_axis(str.upper, axis=1), ) def test_rename_axis_inplace(self): test_frame = TestData().frame modin_df = pd.DataFrame(test_frame) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("foo", inplace=True) modin_no_return = modin_result.rename_axis("foo", inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) modin_no_return = modin_result.rename_axis("bar", axis=1, inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) def test_reorder_levels(self): df = pd.DataFrame( index=pd.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ) ) df["Value"] = np.random.randint(1, 100, len(df)) with pytest.warns(UserWarning): df.reorder_levels(["Letter", "Color", "Number"]) def test_replace(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).replace() def test_resample(self): d = dict( { "price": [10, 11, 9, 13, 14, 18, 17, 19], "volume": [50, 60, 40, 100, 50, 100, 40, 50], } ) df = pd.DataFrame(d) df["week_starting"] = pd.date_range("01/01/2018", periods=8, freq="W") with pytest.warns(UserWarning): df.resample("M", on="week_starting") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_reset_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.reset_index(inplace=False) pandas_result = pandas_df.reset_index(inplace=False) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pd_df_cp = pandas_df.copy() modin_df_cp.reset_index(inplace=True) pd_df_cp.reset_index(inplace=True) df_equals(modin_df_cp, pd_df_cp) def test_rolling(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.rolling(2, win_type="triang") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_round(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.round(), pandas_df.round()) df_equals(modin_df.round(1), pandas_df.round(1)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_sample(self, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.sample(n=3, frac=0.4, axis=axis) with pytest.raises(KeyError): modin_df.sample(frac=0.5, weights="CoLuMn_No_ExIsT", axis=0) with pytest.raises(ValueError): modin_df.sample(frac=0.5, weights=modin_df.columns[0], axis=1) with pytest.raises(ValueError): modin_df.sample( frac=0.5, weights=[0.5 for _ in range(len(modin_df.index[:-1]))], axis=0 ) with pytest.raises(ValueError): modin_df.sample( frac=0.5, weights=[0.5 for _ in range(len(modin_df.columns[:-1]))], axis=1, ) with pytest.raises(ValueError): modin_df.sample(n=-3, axis=axis) with pytest.raises(ValueError): modin_df.sample(frac=0.2, weights=pandas.Series(), axis=axis) if isinstance(axis, str): num_axis = pandas.DataFrame()._get_axis_number(axis) else: num_axis = axis # weights that sum to 1 sums = sum(i % 2 for i in range(len(modin_df.axes[num_axis]))) weights = [i % 2 / sums for i in range(len(modin_df.axes[num_axis]))] modin_result = modin_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) pandas_result = pandas_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) df_equals(modin_result, pandas_result) # weights that don't sum to 1 weights = [i % 2 for i in range(len(modin_df.axes[num_axis]))] modin_result = modin_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) pandas_result = pandas_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(n=0, axis=axis) pandas_result = pandas_df.sample(n=0, axis=axis) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(frac=0.5, random_state=42, axis=axis) pandas_result = pandas_df.sample(frac=0.5, random_state=42, axis=axis) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(n=2, random_state=42, axis=axis) pandas_result = pandas_df.sample(n=2, random_state=42, axis=axis) df_equals(modin_result, pandas_result) def test_select_dtypes(self): frame_data = { "test1": list("abc"), "test2": np.arange(3, 6).astype("u1"), "test3": np.arange(8.0, 11.0, dtype="float64"), "test4": [True, False, True], "test5": pandas.date_range("now", periods=3).values, "test6": list(range(5, 8)), } df = pandas.DataFrame(frame_data) rd = pd.DataFrame(frame_data) include = np.float, "integer" exclude = (np.bool_,) r = rd.select_dtypes(include=include, exclude=exclude) e = df[["test2", "test3", "test6"]] df_equals(r, e) r = rd.select_dtypes(include=np.bool_) e = df[["test4"]] df_equals(r, e) r = rd.select_dtypes(exclude=np.bool_) e = df[["test1", "test2", "test3", "test5", "test6"]] df_equals(r, e) try: pd.DataFrame().select_dtypes() assert False except ValueError: assert True def test_sem(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).sem() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_set_axis(self, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) x = pandas.DataFrame()._get_axis_number(axis) index = modin_df.columns if x else modin_df.index labels = ["{0}_{1}".format(index[i], i) for i in range(modin_df.shape[x])] modin_result = modin_df.set_axis(labels, axis=axis, inplace=False) pandas_result = pandas_df.set_axis(labels, axis=axis, inplace=False) df_equals(modin_result, pandas_result) with pytest.warns(FutureWarning): modin_df.set_axis(axis, labels, inplace=False) modin_df_copy = modin_df.copy() modin_df.set_axis(labels, axis=axis, inplace=True) # Check that the copy and original are different try: df_equals(modin_df, modin_df_copy) except AssertionError: assert True else: assert False pandas_df.set_axis(labels, axis=axis, inplace=True) df_equals(modin_df, pandas_df) with pytest.warns(FutureWarning): modin_df.set_axis(labels, axis=axis, inplace=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "drop", bool_arg_values, ids=arg_keys("drop", bool_arg_keys) ) @pytest.mark.parametrize( "append", bool_arg_values, ids=arg_keys("append", bool_arg_keys) ) def test_set_index(self, request, data, drop, append): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.set_index( key, drop=drop, append=append, inplace=False ) pandas_result = pandas_df.set_index( key, drop=drop, append=append, inplace=False ) df_equals(modin_result, pandas_result) modin_df_copy = modin_df.copy() modin_df.set_index(key, drop=drop, append=append, inplace=True) # Check that the copy and original are different try: df_equals(modin_df, modin_df_copy) except AssertionError: assert True else: assert False pandas_df.set_index(key, drop=drop, append=append, inplace=True) df_equals(modin_df, pandas_df) def test_set_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).set_value(0, 0, 0) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_shape(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.shape == pandas_df.shape def test_shift(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).shift() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_size(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.size == pandas_df.size @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_skew(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.skew(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.skew(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) def test_slice_shift(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).slice_shift() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "ascending", bool_arg_values, ids=arg_keys("ascending", bool_arg_keys) ) @pytest.mark.parametrize("na_position", ["first", "last"], ids=["first", "last"]) @pytest.mark.parametrize( "sort_remaining", bool_arg_values, ids=arg_keys("sort_remaining", bool_arg_keys) ) def test_sort_index(self, data, axis, ascending, na_position, sort_remaining): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # Change index value so sorting will actually make a difference if axis == "rows" or axis == 0: length = len(modin_df.index) modin_df.index = [(i - length / 2) % length for i in range(length)] pandas_df.index = [(i - length / 2) % length for i in range(length)] # Add NaNs to sorted index if axis == "rows" or axis == 0: length = len(modin_df.index) modin_df.index = [ np.nan if i % 2 == 0 else modin_df.index[i] for i in range(length) ] pandas_df.index = [ np.nan if i % 2 == 0 else pandas_df.index[i] for i in range(length) ] else: length = len(modin_df.columns) modin_df.columns = [ np.nan if i % 2 == 0 else modin_df.columns[i] for i in range(length) ] pandas_df.columns = [ np.nan if i % 2 == 0 else pandas_df.columns[i] for i in range(length) ] modin_result = modin_df.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=False ) pandas_result = pandas_df.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=False ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=True ) pandas_df_cp.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=True ) df_equals(modin_df_cp, pandas_df_cp) # MultiIndex modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pd.MultiIndex.from_tuples( [(i // 10, i // 5, i) for i in range(len(modin_df))] ) pandas_df.index = pandas.MultiIndex.from_tuples( [(i // 10, i // 5, i) for i in range(len(pandas_df))] ) with pytest.warns(UserWarning): df_equals(modin_df.sort_index(level=0), pandas_df.sort_index(level=0)) with pytest.warns(UserWarning): df_equals(modin_df.sort_index(axis=0), pandas_df.sort_index(axis=0)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "ascending", bool_arg_values, ids=arg_keys("ascending", bool_arg_keys) ) @pytest.mark.parametrize("na_position", ["first", "last"], ids=["first", "last"]) def test_sort_values(self, request, data, axis, ascending, na_position): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name and ( (axis == 0 or axis == "over rows") or name_contains(request.node.name, numeric_dfs) ): index = ( modin_df.index if axis == 1 or axis == "columns" else modin_df.columns ) key = index[0] modin_result = modin_df.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) pandas_result = pandas_df.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) pandas_df_cp.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) df_equals(modin_df_cp, pandas_df_cp) keys = [key, index[-1]] modin_result = modin_df.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) pandas_result = pandas_df.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) pandas_df_cp.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) df_equals(modin_df_cp, pandas_df_cp) def test_squeeze(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } frame_data_2 = {"col1": [0, 1, 2, 3]} frame_data_3 = { "col1": [0], "col2": [4], "col3": [8], "col4": [12], "col5": [0], } frame_data_4 = {"col1": [2]} frame_data_5 = {"col1": ["string"]} # Different data for different cases pandas_df = pandas.DataFrame(frame_data).squeeze() ray_df = pd.DataFrame(frame_data).squeeze() df_equals(ray_df, pandas_df) pandas_df_2 = pandas.DataFrame(frame_data_2).squeeze() ray_df_2 = pd.DataFrame(frame_data_2).squeeze() df_equals(ray_df_2, pandas_df_2) pandas_df_3 = pandas.DataFrame(frame_data_3).squeeze() ray_df_3 = pd.DataFrame(frame_data_3).squeeze() df_equals(ray_df_3, pandas_df_3) pandas_df_4 = pandas.DataFrame(frame_data_4).squeeze() ray_df_4 = pd.DataFrame(frame_data_4).squeeze() df_equals(ray_df_4, pandas_df_4) pandas_df_5 = pandas.DataFrame(frame_data_5).squeeze() ray_df_5 = pd.DataFrame(frame_data_5).squeeze() df_equals(ray_df_5, pandas_df_5) data = [ [ pd.Timestamp("2019-01-02"), pd.Timestamp("2019-01-03"), pd.Timestamp("2019-01-04"), pd.Timestamp("2019-01-05"), ], [1, 1, 1, 2], ] df = pd.DataFrame(data, index=["date", "value"]).T pf =
pandas.DataFrame(data, index=["date", "value"])
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Oct 31 19:06:02 2018 @author: Jessica """ from __future__ import division, print_function from sklearn.datasets import fetch_mldata from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import PCA from sklearn.metrics import f1_score import matplotlib import matplotlib.pyplot as plt import csv import time import numpy as np import pandas as pd mnist = fetch_mldata('MNIST original', data_home='./') mnist.data.shape mnist X, y = mnist['data'], mnist['target'] X.shape y.shape # Display 36,000th image some_digit = X[36000] some_digit_image = some_digit.reshape(28, 28) plt.imshow(some_digit_image, cmap = matplotlib.cm.binary, interpolation = 'nearest') plt.axis('off') plt.show() # Split the data to 60,000 images as training data and 10,000 as test data X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] # --- Random Forest Classifier --- rfClf = RandomForestClassifier(n_estimators=100, max_leaf_nodes=10, n_jobs=-1) # Record the time it takes to fit the model # set random number seed np.random.seed(seed = 9999) replications = 10 # repeat the trial ten times x_time = [] # empty list for storing test results n = 0 # initialize count print('--- Time to Fit Random Forest Classifier ---') while (n < replications): start_time = time.clock() # generate 1 million random negative binomials and store in a vector rfClf.fit(X_train, y_train) end_time = time.clock() runtime = end_time - start_time # seconds of wall-clock time x_time.append(runtime * 1000) # report in milliseconds print("replication", n + 1, ":", x_time[n], "milliseconds\n") n = n + 1 # write results to external file with open('rf_fit.csv', 'wt') as f: writer = csv.writer(f, quoting = csv.QUOTE_NONNUMERIC, dialect = 'excel') writer.writerow('x_time') for i in range(replications): writer.writerow(([x_time[i],])) # preliminary analysis for this cell of the design print(
pd.DataFrame(x_time)
pandas.DataFrame
from constants_and_util import * from scipy.stats import norm, pearsonr, spearmanr import pandas as pd import copy import numpy as np import random import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import Lasso from sklearn.ensemble import RandomForestRegressor from scipy.stats import ttest_ind, rankdata import non_image_data_processing import patsy import os import math import sklearn import json import seaborn as sns from scipy.stats import scoreatpercentile import statsmodels from sklearn.kernel_ridge import KernelRidge import scipy from scipy.stats import scoreatpercentile, linregress, ttest_rel from statsmodels.iolib.summary2 import summary_col """ Code to perform analyses on the fitted models. We note two potentially confusing naming conventions in the analysis code. First, much of the code was written during preliminary analyses looking just at SES; later, we broadened the analysis to look at pain gaps by sex, race, etc. Hence, many of the variable names/comments contain "ses", but in general, these refer to all three binary variables we consider in the final paper (capturing education and race, not just income). Second, while the paper refers to "training", "development", and "validation" sets, those correspond in the code to the "train", "val", and "test" sets, respectively. """ def make_simple_histogram_of_pain(y, binary_vector_to_use, positive_class_label, negative_class_label, plot_filename): """ Make a simple histogram of pain versus binary class (eg, pain for black vs non-black patients). Checked. """ sns.set_style() bins = np.arange(0, 101, 10) plt.figure(figsize=[4, 4]) hist_weights = np.ones((binary_vector_to_use == False).sum())/float((binary_vector_to_use == False).sum()) # https://stackoverflow.com/a/16399202/9477154 plt.hist(y[binary_vector_to_use == False], weights=hist_weights, alpha=1, bins=bins, label=negative_class_label, orientation='horizontal') hist_weights = np.ones((binary_vector_to_use == True).sum())/float((binary_vector_to_use == True).sum()) plt.hist(y[binary_vector_to_use == True], weights=hist_weights, alpha=.7, bins=bins, label=positive_class_label, orientation='horizontal') plt.ylim([0, 100]) plt.yticks([0, 20, 40, 60, 80, 100], fontsize=12) plt.xlabel("") plt.legend(loc=4, fontsize=12) plt.xticks([]) plt.savefig(plot_filename) def compare_to_mri_features(datasets, y, yhat, all_ses_vars, ids, df_for_filtering_out_special_values, also_include_xray_features, use_random_forest, mri_features): """ Show that yhat still outperforms a predictor which uses MRI features. df_for_filtering_out_special_values: this is a dataframe for MRI features only which only has rows if there are no 0.5/-0.5 values. Just a sanity check (those values are rare) because I'm not sure whether binarizing really makes sense for those values. """ datasets = copy.deepcopy(datasets) idxs_with_mris = {} dfs_to_use_in_regression = {} for dataset in ['train', 'val', 'test']: idxs_with_mris[dataset] = np.isnan(datasets[dataset].non_image_data[mri_features].values).sum(axis=1) == 0 if df_for_filtering_out_special_values is not None: dfs_to_use_in_regression[dataset] = pd.merge(datasets[dataset].non_image_data, df_for_filtering_out_special_values, how='left', on=['id', 'side', 'visit'], validate='one_to_one') no_special_values = ~pd.isnull(dfs_to_use_in_regression[dataset]['no_special_values']).values idxs_with_mris[dataset] = (idxs_with_mris[dataset]) & (no_special_values) else: dfs_to_use_in_regression[dataset] = datasets[dataset].non_image_data.copy() if also_include_xray_features: mri_features_to_use = ['C(%s)' % a for a in mri_features + CLINICAL_CONTROL_COLUMNS] else: mri_features_to_use = ['C(%s)' % a for a in mri_features] print("\n\n\n\n********Predicting pain from MRI features; including Xray clinical features=%s; using random forest %s; filtering out special values %s" % (also_include_xray_features, use_random_forest, df_for_filtering_out_special_values is not None)) yhat_from_mri = compare_to_clinical_performance( train_df=dfs_to_use_in_regression['train'].loc[idxs_with_mris['train']], val_df=dfs_to_use_in_regression['val'].loc[idxs_with_mris['val']], test_df=dfs_to_use_in_regression['test'].loc[idxs_with_mris['test']], y_col='koos_pain_subscore', features_to_use=mri_features_to_use, binary_prediction=False, use_nonlinear_model=use_random_forest, do_ols_sanity_check=True) print("Compare to yhat performance") yhat_performance = assess_performance(y=y[idxs_with_mris['test']], yhat=yhat[idxs_with_mris['test']], binary_prediction=False) for k in yhat_performance: print('%s: %2.3f' % (k, yhat_performance[k])) mri_ses_vars = {} for k in all_ses_vars: mri_ses_vars[k] = all_ses_vars[k][idxs_with_mris['test']] print(quantify_pain_gap_reduction_vs_rival(yhat=yhat[idxs_with_mris['test']], y=y[idxs_with_mris['test']], rival_severity_measure=yhat_from_mri, all_ses_vars=mri_ses_vars, ids=ids[idxs_with_mris['test']])) def sig_star(p): assert p >= 0 and p <= 1 if p < .001: return '***' elif p < .01: return '**' elif p < .05: return '*' return '' def get_pvalue_on_binary_vector_mean_diff(yhat_vector, klg_vector, ids): """ Assess whether yhat_vector and KLG_vector are assigning different fractions of people to surgery. Basically does a paired t-test on the binary vector accounting for clustering. Used for surgery analysis. """ assert len(yhat_vector) == len(klg_vector) == len(ids) check_is_array(yhat_vector) check_is_array(klg_vector) diff_df = pd.DataFrame({'diff':1.*yhat_vector - 1.*klg_vector, 'id':ids}) clustered_diff_model = sm.OLS.from_formula('diff ~ 1', data=diff_df).fit(cov_type='cluster', cov_kwds={'groups':diff_df['id']}) assert np.allclose(clustered_diff_model.params['Intercept'], yhat_vector.mean() - klg_vector.mean()) return clustered_diff_model.pvalues['Intercept'] def get_ci_on_binary_vector(vector, ids): """ Compute standard error on a binary vector's mean, accounting for clustering. Used for surgery analysis. """ assert len(vector) == len(ids) check_is_array(vector) check_is_array(ids) df = pd.DataFrame({'val':1.*vector, 'id':ids}) cluster_model = sm.OLS.from_formula('val ~ 1', data=df).fit(cov_type='cluster', cov_kwds={'groups':df['id']}) assert np.allclose(cluster_model.params['Intercept'], vector.mean()) return '(%2.5f, %2.5f)' % (cluster_model.conf_int().loc['Intercept', 0], cluster_model.conf_int().loc['Intercept', 1]) def do_surgery_analysis_ziad_style(yhat, y, klg, all_ses_vars, baseline_idxs, have_actually_had_surgery, df_to_use, ids): """ Hopefully the final surgery analysis. Does a couple things: 1. Uses a criterion for allocating surgery based on the prior literature: KLG >= 3 and high pain, as defined using pain threshold from prior literature. - to compare to yhat we do it two ways: discretize yhat, use discretized_yhat >= 3 - and, to make sure we allocate the same number of surgeries, take all high pain people and just count down by yhat until we have the same number that KLG allocates. 2. Then examines: - What fraction of people are eligible for surgery both overall and in our racial/SES groups? - What fraction of people are in a lot of pain but aren't eligible for surgery both overall and in our racial/SES groups? - Is painkiller use correlated with yhat among those who don't receive surgery? As a robustness check, all these analyses are repeated on both baseline + overall dataset, both excluding and including those who have already had surgery. """ check_is_array(yhat) check_is_array(y) check_is_array(klg) check_is_array(ids) check_is_array(baseline_idxs) check_is_array(have_actually_had_surgery) pd.set_option('precision', 6) pd.set_option('display.width', 1000) df_to_use = df_to_use.copy() in_high_pain = binarize_koos(y) == True discretized_yhat = discretize_yhat_like_kl_grade(yhat_arr=yhat, kl_grade_arr=klg, y_col='koos_pain_subscore') klg_cutoff = 3 fit_surgery_criteria_under_klg = (in_high_pain == True) & (klg >= klg_cutoff) fit_surgery_criteria_under_discretized_yhat = (in_high_pain == True) & (discretized_yhat >= klg_cutoff) for just_use_baseline in [True, False]: for exclude_those_who_have_surgery in [True, False]: idxs_to_use = np.ones(baseline_idxs.shape) == 1 if just_use_baseline: idxs_to_use = idxs_to_use & (baseline_idxs == 1) if exclude_those_who_have_surgery: idxs_to_use = idxs_to_use & (have_actually_had_surgery == 0) print("\n\n\n\n****Just use baseline: %s; exclude those who have had surgery: %s; analyzing %i knees" % (just_use_baseline, exclude_those_who_have_surgery, idxs_to_use.sum())) n_surgeries_under_klg = int(fit_surgery_criteria_under_klg[idxs_to_use].sum()) # Alternate yhat criterion: assign exactly same number of people surgery under yhat as under KLG. # Do this by taking people with the lowest yhat values subject to being in high pain. # Compute this independently for each group specified by idxs_to_use. lowest_yhat_idxs = np.argsort(yhat) yhat_match_n_surgeries = np.array([False for a in range(len(fit_surgery_criteria_under_discretized_yhat))]) for idx in lowest_yhat_idxs: if yhat_match_n_surgeries.sum() < n_surgeries_under_klg: if (in_high_pain[idx] == 1) & (idxs_to_use[idx] == 1): yhat_match_n_surgeries[idx] = True assert yhat[yhat_match_n_surgeries == True].mean() < yhat[yhat_match_n_surgeries == False].mean() assert np.allclose(yhat_match_n_surgeries[idxs_to_use].mean(), fit_surgery_criteria_under_klg[idxs_to_use].mean()) fracs_eligible_for_surgery = [] fracs_eligible_for_surgery.append({'group':'Overall', 'klg':fit_surgery_criteria_under_klg[idxs_to_use].mean(), 'klg_ci':get_ci_on_binary_vector(fit_surgery_criteria_under_klg[idxs_to_use], ids[idxs_to_use]), 'yhat':fit_surgery_criteria_under_discretized_yhat[idxs_to_use].mean(), 'yhat_ci':get_ci_on_binary_vector(fit_surgery_criteria_under_discretized_yhat[idxs_to_use], ids[idxs_to_use]), 'yhat_match_surgeries':yhat_match_n_surgeries[idxs_to_use].mean(), 'yhat_klg_p':get_pvalue_on_binary_vector_mean_diff(yhat_vector=fit_surgery_criteria_under_discretized_yhat[idxs_to_use], klg_vector=fit_surgery_criteria_under_klg[idxs_to_use], ids=ids[idxs_to_use])}) for ses_var in all_ses_vars: fracs_eligible_for_surgery.append({'group':ses_var, 'yhat':fit_surgery_criteria_under_discretized_yhat[(all_ses_vars[ses_var] == True) & idxs_to_use].mean(), 'yhat_ci':get_ci_on_binary_vector(fit_surgery_criteria_under_discretized_yhat[(all_ses_vars[ses_var] == True) & idxs_to_use], ids[(all_ses_vars[ses_var] == True) & idxs_to_use]), 'klg':fit_surgery_criteria_under_klg[(all_ses_vars[ses_var] == True) & idxs_to_use].mean(), 'klg_ci':get_ci_on_binary_vector(fit_surgery_criteria_under_klg[(all_ses_vars[ses_var] == True) & idxs_to_use], ids[(all_ses_vars[ses_var] == True) & idxs_to_use]), 'yhat_match_surgeries':yhat_match_n_surgeries[(all_ses_vars[ses_var] == True) & idxs_to_use].mean(), 'yhat_klg_p':get_pvalue_on_binary_vector_mean_diff(yhat_vector=fit_surgery_criteria_under_discretized_yhat[(all_ses_vars[ses_var] == True) & idxs_to_use], klg_vector=fit_surgery_criteria_under_klg[(all_ses_vars[ses_var] == True) & idxs_to_use], ids=ids[(all_ses_vars[ses_var] == True) & idxs_to_use])}) fracs_eligible_for_surgery = pd.DataFrame(fracs_eligible_for_surgery) fracs_eligible_for_surgery['yhat/klg'] = fracs_eligible_for_surgery['yhat'] / fracs_eligible_for_surgery['klg'] fracs_eligible_for_surgery['yhat_match_surgeries/klg'] = fracs_eligible_for_surgery['yhat_match_surgeries'] / fracs_eligible_for_surgery['klg'] print("Fraction eligible for surgery") print(fracs_eligible_for_surgery[['group', 'klg', 'klg_ci', 'yhat', 'yhat_ci', 'yhat/klg', 'yhat_klg_p']]) assert (fracs_eligible_for_surgery['yhat/klg'] > 1).all() assert (fracs_eligible_for_surgery['yhat_match_surgeries/klg'] >= 1).all() for check in ['klg', 'yhat']: # check CIs. assert np.allclose( fracs_eligible_for_surgery[check].values - fracs_eligible_for_surgery['%s_ci' % check].map(lambda x:float(x.split()[0].replace(',', '').replace('(', ''))), fracs_eligible_for_surgery['%s_ci' % check].map(lambda x:float(x.split()[1].replace(',', '').replace(')', ''))) - fracs_eligible_for_surgery[check].values, atol=1e-5) # for each population we calculate both under the current regime and under our counterfactual surgery assignment: the rate of people who do not receive surgery and are in pain. do_not_receive_surgery_and_are_in_pain = [] print("Do not receive surgery and are in pain") do_not_receive_surgery_and_are_in_pain.append({'group':'Overall', 'klg':((fit_surgery_criteria_under_klg == 0) & in_high_pain)[idxs_to_use].mean(), 'klg_ci':get_ci_on_binary_vector(((fit_surgery_criteria_under_klg == 0) & in_high_pain)[idxs_to_use], ids[idxs_to_use]), 'yhat':((fit_surgery_criteria_under_discretized_yhat == 0) & in_high_pain)[idxs_to_use].mean(), 'yhat_ci':get_ci_on_binary_vector(((fit_surgery_criteria_under_discretized_yhat == 0) & in_high_pain)[idxs_to_use], ids[idxs_to_use]), 'yhat_match_surgeries':((yhat_match_n_surgeries == 0) & in_high_pain)[idxs_to_use].mean(), 'yhat_klg_p':get_pvalue_on_binary_vector_mean_diff(yhat_vector=((fit_surgery_criteria_under_discretized_yhat == 0) & in_high_pain)[idxs_to_use], klg_vector=((fit_surgery_criteria_under_klg == 0) & in_high_pain)[idxs_to_use], ids=ids[idxs_to_use])}) for ses_var in all_ses_vars: do_not_receive_surgery_and_are_in_pain.append({'group':ses_var, 'klg':((fit_surgery_criteria_under_klg == 0) & in_high_pain)[(all_ses_vars[ses_var] == True) & idxs_to_use].mean(), 'klg_ci':get_ci_on_binary_vector(((fit_surgery_criteria_under_klg == 0) & in_high_pain)[idxs_to_use & (all_ses_vars[ses_var] == True)], ids[idxs_to_use & (all_ses_vars[ses_var] == True)]), 'yhat':((fit_surgery_criteria_under_discretized_yhat == 0) & in_high_pain)[(all_ses_vars[ses_var] == True) & idxs_to_use].mean(), 'yhat_ci':get_ci_on_binary_vector(((fit_surgery_criteria_under_discretized_yhat == 0) & in_high_pain)[idxs_to_use & (all_ses_vars[ses_var] == True)], ids[idxs_to_use & (all_ses_vars[ses_var] == True)]), 'yhat_match_surgeries':((yhat_match_n_surgeries == 0) & in_high_pain)[(all_ses_vars[ses_var] == True) & idxs_to_use].mean(), 'yhat_klg_p':get_pvalue_on_binary_vector_mean_diff(yhat_vector=((fit_surgery_criteria_under_discretized_yhat == 0) & in_high_pain)[(all_ses_vars[ses_var] == True) & idxs_to_use], klg_vector=((fit_surgery_criteria_under_klg == 0) & in_high_pain)[(all_ses_vars[ses_var] == True) & idxs_to_use], ids=ids[(all_ses_vars[ses_var] == True) & idxs_to_use])}) do_not_receive_surgery_and_are_in_pain = pd.DataFrame(do_not_receive_surgery_and_are_in_pain) do_not_receive_surgery_and_are_in_pain['yhat/klg'] = do_not_receive_surgery_and_are_in_pain['yhat'] / do_not_receive_surgery_and_are_in_pain['klg'] do_not_receive_surgery_and_are_in_pain['yhat_match_surgeries/klg'] = do_not_receive_surgery_and_are_in_pain['yhat_match_surgeries'] / do_not_receive_surgery_and_are_in_pain['klg'] print(do_not_receive_surgery_and_are_in_pain[['group', 'klg', 'klg_ci', 'yhat', 'yhat_ci', 'yhat/klg', 'yhat_klg_p']]) assert (do_not_receive_surgery_and_are_in_pain['yhat/klg'] < 1).all() assert (do_not_receive_surgery_and_are_in_pain['yhat_match_surgeries/klg'] <= 1).all() for check in ['klg', 'yhat']: # check CIs. assert np.allclose( do_not_receive_surgery_and_are_in_pain[check].values - do_not_receive_surgery_and_are_in_pain['%s_ci' % check].map(lambda x:float(x.split()[0].replace(',', '').replace('(', ''))), do_not_receive_surgery_and_are_in_pain['%s_ci' % check].map(lambda x:float(x.split()[1].replace(',', '').replace(')', ''))) - do_not_receive_surgery_and_are_in_pain[check].values, atol=1e-5) # show in the non-surgical population the corrrelation between opioid use and y-hat predict_medication_results = [] medications = ['rxactm', 'rxanalg', 'rxasprn', 'rxnarc', 'rxnsaid', 'rxothan'] for surgery_criterion in ['yhat', 'yhat_match_surgeries', 'klg']: if surgery_criterion == 'yhat': non_surgical_population = (fit_surgery_criteria_under_discretized_yhat == False) & idxs_to_use elif surgery_criterion == 'klg': non_surgical_population = (fit_surgery_criteria_under_klg == False) & idxs_to_use elif surgery_criterion == 'yhat_match_surgeries': non_surgical_population = (yhat_match_n_surgeries == False) & idxs_to_use for m in medications: df_for_regression = pd.DataFrame({'medication':df_to_use.loc[non_surgical_population, m].values, 'yhat':yhat[non_surgical_population], 'id':df_to_use.loc[non_surgical_population, 'id'].values}) df_for_regression = df_for_regression.dropna() predict_on_medication_in_nonsurgical_population = sm.Logit.from_formula('medication ~ yhat', data=df_for_regression).fit(cov_type='cluster', cov_kwds={'groups':df_for_regression['id']}) predict_medication_results.append({'medication':MEDICATION_CODES[('v00' + m).upper()], 'beta_yhat':predict_on_medication_in_nonsurgical_population.params['yhat'], 'DV mean':df_for_regression['medication'].mean(), 'p_yhat':predict_on_medication_in_nonsurgical_population.pvalues['yhat'], 'surgery_criterion':surgery_criterion, 'n':predict_on_medication_in_nonsurgical_population.nobs}) predict_medication_results = pd.DataFrame(predict_medication_results)[['surgery_criterion', 'medication', 'beta_yhat', 'p_yhat', 'DV mean', 'n']] predict_medication_results['sig'] = predict_medication_results['p_yhat'].map(sig_star) assert (predict_medication_results['sig'].map(lambda x:'*' in x) & (predict_medication_results['beta_yhat'] > 0)).sum() == 0 # make sure no significant associations in the wrong direction. print(predict_medication_results.sort_values(by='medication')) def extract_all_ses_vars(df): """ Small helper method: return a dictionary of variables coded in the proper direction. """ for k in ['binarized_income_at_least_50k', 'binarized_education_graduated_college', 'race_black']: assert df[k].map(lambda x:x in [0, 1]).all() assert df[k].map(lambda x:x in [True, False]).all() income_at_least_50k = df['binarized_income_at_least_50k'].values == 1 graduated_college = df['binarized_education_graduated_college'].values == 1 race_black = df['race_black'].values == 1 all_ses_vars = {'did_not_graduate_college':~(graduated_college == 1), 'income_less_than_50k':~(income_at_least_50k == 1), 'race_black':race_black == 1} return all_ses_vars, income_at_least_50k, graduated_college, race_black def assess_treatment_gaps_controlling_for_klg(klg, all_ses_vars, baseline_idxs, df_to_use): """ Regression: treatment ~ SES + controls, where controls \in [KLG, none]. """ check_is_array(klg) check_is_array(baseline_idxs) pd.set_option('max_rows', 500) get_OR_and_CI = lambda m:'%2.2f (%2.2f, %2.2f)' % (np.exp(m.params['ses']), np.exp(m.conf_int().loc['ses', 0]), np.exp(m.conf_int().loc['ses', 1])) treatment_gaps_regression_results = [] for treatment in ['knee_surgery', 'rxnarc', 'rxactm', 'rxanalg', 'rxasprn', 'rxnsaid', 'rxothan']: for just_use_baseline in [True, False]: idxs_to_use = np.ones(baseline_idxs.shape) == 1 if just_use_baseline: idxs_to_use = idxs_to_use & (baseline_idxs == 1) for control_for_klg in [True, False]: for ses_var_name in all_ses_vars: regression_df = pd.DataFrame({'ses':all_ses_vars[ses_var_name][idxs_to_use] * 1., 'klg':klg[idxs_to_use], 'treatment':df_to_use.loc[idxs_to_use, treatment].values, 'id':df_to_use.loc[idxs_to_use, 'id'].values, 'visit':df_to_use.loc[idxs_to_use, 'visit'].values}).dropna() if control_for_klg: formula = 'treatment ~ ses + C(klg)' else: formula = 'treatment ~ ses' regression_model = sm.Logit.from_formula(formula, data=regression_df).fit(cov_type='cluster', cov_kwds={'groups':regression_df['id'].values}) treatment_gaps_regression_results.append({'n_obs':regression_model.nobs, 'just_baseline':just_use_baseline, 'klg_control':control_for_klg, 'treatment':MEDICATION_CODES[('v00' + treatment).upper()] if treatment != 'knee_surgery' else 'knee_surgery', 'ses_var':ses_var_name, 'ses_OR':get_OR_and_CI(regression_model), 'DV mean':'%2.3f' % regression_df['treatment'].mean() , 'sig':sig_star(regression_model.pvalues['ses'])}) treatment_gaps_regression_results = pd.DataFrame(treatment_gaps_regression_results)[['just_baseline', 'klg_control', 'treatment', 'ses_var', 'ses_OR', 'sig', 'DV mean', 'n_obs']] print(treatment_gaps_regression_results) def study_effect_of_surgery(df_to_use, surgery_col_to_analyze): """ The goal here was to show that people are in less pain after surgery, which is true for arthroplasty (not arthroscopy). """ pd.set_option('display.width', 500) df_to_use = df_to_use.copy() df_to_use['high_pain'] = binarize_koos(df_to_use['koos_pain_subscore']) print("Prior to dropping people with missing %s data, %i rows" % (surgery_col_to_analyze, len(df_to_use))) df_to_use = df_to_use.dropna(subset=[surgery_col_to_analyze]) print("After dropping people with missing %s data, %i rows" % (surgery_col_to_analyze, len(df_to_use))) df_to_use['id_plus_side'] = df_to_use['id'].astype(str) + '*' + df_to_use['side'].astype(str) medications = ['rxactm', 'rxanalg', 'rxasprn', 'rxnarc', 'rxnsaid', 'rxothan'] outcomes = ['koos_pain_subscore', 'high_pain'] + medications + ['all_pain_medications_combined'] df_to_use['all_pain_medications_combined'] = False for k in medications: df_to_use['all_pain_medications_combined'] = (df_to_use['all_pain_medications_combined'] | (df_to_use[k] == 1)) grouped_d = df_to_use.groupby('id_plus_side') outcomes_to_changes = {} for outcome in outcomes: outcomes_to_changes[outcome] = [] outcomes_to_changes['pre_surgery_klg'] = [] outcomes_to_changes['pre_surgery_discretized_yhat'] = [] for group_id, small_d in grouped_d: small_d = small_d.copy().sort_values(by='visit') if small_d[surgery_col_to_analyze].sum() == 0: continue if small_d[surgery_col_to_analyze].iloc[0] == 1: continue small_d.index = range(len(small_d)) before_surgery = small_d[surgery_col_to_analyze] == 0 after_surgery = small_d[surgery_col_to_analyze] == 1 assert before_surgery.sum() > 0 assert after_surgery.sum() > 0 outcomes_to_changes['pre_surgery_klg'].append(small_d.loc[before_surgery, 'xrkl'].dropna().mean()) if 'discretized_yhat' in small_d.columns: outcomes_to_changes['pre_surgery_discretized_yhat'].append(small_d.loc[before_surgery, 'discretized_yhat'].dropna().mean()) else: outcomes_to_changes['pre_surgery_discretized_yhat'].append(np.nan) for outcome in outcomes: if pd.isnull(small_d[outcome]).mean() > 0: continue before_surgery_mean = small_d.loc[before_surgery, outcome].mean() after_surgery_mean = small_d.loc[after_surgery, outcome].mean() outcomes_to_changes[outcome].append({'before_surgery':before_surgery_mean, 'after_surgery':after_surgery_mean}) assert sorted(small_d[surgery_col_to_analyze].values) == list(small_d[surgery_col_to_analyze].values) outcomes_to_changes['pre_surgery_klg'] = np.array(outcomes_to_changes['pre_surgery_klg']) outcomes_to_changes['pre_surgery_discretized_yhat'] = np.array(outcomes_to_changes['pre_surgery_discretized_yhat']) if np.isnan(outcomes_to_changes['pre_surgery_discretized_yhat']).mean() < 1: assert (np.isnan(outcomes_to_changes['pre_surgery_klg']) == np.isnan(outcomes_to_changes['pre_surgery_discretized_yhat'])).all() for k in ['pre_surgery_klg', 'pre_surgery_discretized_yhat']: not_nan = ~np.isnan(outcomes_to_changes[k]) print('Mean of %s prior to surgery in people who had surgery: %2.5f; median %2.5f' % (k, outcomes_to_changes[k][not_nan].mean(), np.median(outcomes_to_changes[k][not_nan]))) results_df = [] for outcome in outcomes: pre_surgery_values = np.array([a['before_surgery'] for a in outcomes_to_changes[outcome]]) post_surgery_values = np.array([a['after_surgery'] for a in outcomes_to_changes[outcome]]) t, p = ttest_rel(pre_surgery_values, post_surgery_values) pretty_outcome_name = MEDICATION_CODES['V00' + outcome.upper()] if 'V00' + outcome.upper() in MEDICATION_CODES else outcome results_df.append({'outcome':pretty_outcome_name, 'n':len(post_surgery_values), 'pre_surgery_larger':(pre_surgery_values > post_surgery_values).sum(), 'post_surgery_larger':(pre_surgery_values < post_surgery_values).sum(), 'no_change':(pre_surgery_values == post_surgery_values).sum(), 'pre_surgery_mean':pre_surgery_values.mean(), 'post_surgery_mean':post_surgery_values.mean(), 'p':p}) if np.isnan(outcomes_to_changes['pre_surgery_discretized_yhat']).mean() < 1: # check whether yhat predicts surgical outcomes -- but this turns out to be pretty impossible due to small size o fhte test set. for outcome in outcomes: print(outcome) pre_surgery_values = np.array([a['before_surgery'] for a in outcomes_to_changes[outcome]]) post_surgery_values = np.array([a['after_surgery'] for a in outcomes_to_changes[outcome]]) for k in ['pre_surgery_klg', 'pre_surgery_discretized_yhat']: not_nan = ~np.isnan(outcomes_to_changes[k]) r, p = pearsonr(outcomes_to_changes[k][not_nan], post_surgery_values[not_nan] - pre_surgery_values[not_nan]) print("Correlation between %s and post-surgery change: %2.3f, p=%2.3e; n=%i" % (k, r, p, not_nan.sum())) return
pd.DataFrame(results_df)
pandas.DataFrame
from sklearn.metrics.pairwise import euclidean_distances from human_ISH_config import * import pandas as pd import numpy as np import scipy from sklearn import metrics import json import os #print (pd.show_versions()) def create_diagonal_mask(low_to_high_map, target_value=1): """ Create a block diagonal mask matrix from the input mapping. The input pandas data frame has only two columns, the first is the low level id (image, sample, or probe_id) and the second is the high level mapping (gene, region, donor). The target_value argument can be set to np.nan. The output will be a matrix sized the number of low level ID's squared. The column and row order will have to be rearranged to match your distance matrix. """ low_to_high_map.drop_duplicates() grouped = low_to_high_map.groupby(low_to_high_map.columns[1]) ordered_low_level_names = list() group_matrices = [] for name, group in grouped: group_size = group.shape[0] # build up row/col names, order doesn't matter within a group = they are all equal ordered_low_level_names = ordered_low_level_names + group.iloc[:, 0].tolist() # set the diagonal matrix to be the target value single_group_matrix = np.full(shape=(group_size, group_size), fill_value=target_value) group_matrices.append(single_group_matrix) # add the individual matrices along the diagonal relationship_matrix = scipy.linalg.block_diag(*group_matrices) # convert to pandas dataframe and set names relationship_df = pd.DataFrame(relationship_matrix, columns=ordered_low_level_names, index=ordered_low_level_names) return relationship_df def get_general_distance_and_relationship_matrix(path_to_embeddings,image_level_embed_file_name, study=None): """ This function uses the image_level_embeddings to create a distance matrix. It also creates a relationship matrix for images that we have an embedding for. It calculates the euclidean distance for every possible pair of images and also gives the relationship (same gene/different gene) for every possible pair of images. :param path_to_embeddings: path to the image_level_embeddings :return: 2 pandas Data frames: distance matrix and the relationship matrix. """ if study == None: images_info = pd.read_csv(os.path.join(DATA_DIR,STUDY,"human_ISH_info.csv")) else: images_info = pd.read_csv(os.path.join(DATA_DIR, study, "human_ISH_info.csv")) dist_matrix_df = build_distance_matrix(os.path.join(path_to_embeddings, image_level_embed_file_name)) dist_matrix_rows = list(dist_matrix_df.index) # list of image IDs dist_matrix_columns = list(dist_matrix_df) # list of image IDs # --- sanity check ------------- if dist_matrix_rows != dist_matrix_columns: print ("Something is wrong, the number and order of image IDs in distance matrix's rows and columns should the same.") return None # ------------------------------ genes = images_info[images_info['image_id'].isin(dist_matrix_rows)]['gene_symbol'] low_to_high_map = pd.DataFrame(list(zip(dist_matrix_rows, genes))) # create a 2-column df of image IDs and genes relationship_df = create_diagonal_mask(low_to_high_map, target_value=1) # --- check to see if rows and columns of dist matrix match the relationship matrix. --------------------- # if they don't re-arrange them in the relationship matrix to match the dist matrix dist_matrix_df, relationship_df = match_matrices(dist_matrix_df, relationship_df) # --------------------------------------------------------------------------------------------------------- return dist_matrix_df,relationship_df def match_matrices(first_matrix_df, second_matrix_df): """ Checks to see if the two matrices match. Matching means the number and order of rows and columns are the same (based on titles) If they do not match, the function re-arranges the order of rows and columns of the second matrix to make it similar to the first matrix. The function does not modify the values inside the matrices. It jus re-arranges the order of columns and rows. :param first_matrix_df: pandas Dataframe. :param second_matrix_df: pandas Dataframe. :return: 2 pandas Dataframes. """ first_matrix_array = first_matrix_df.to_numpy() second_matrix_array = second_matrix_df.to_numpy() first_matrix_rows = list(first_matrix_df.index) first_matrix_columns = list(first_matrix_df) second_matrix_rows = list(second_matrix_df.index) second_matrix_columns = list(second_matrix_df) if first_matrix_rows == second_matrix_rows and first_matrix_columns == second_matrix_columns: print("They match!") else: print("They don't match. Re-arranging ...") desired_permutation = [] for item in second_matrix_columns: ind = first_matrix_columns.index(item) # get the correct order of image IDs from distance matrix columns desired_permutation.append(ind) idx = np.empty_like(desired_permutation) idx[desired_permutation] = np.arange(len(desired_permutation)) second_matrix_array[:] = second_matrix_array[:, idx] second_matrix_array[:] = second_matrix_array[idx, :] second_matrix_df = pd.DataFrame(second_matrix_array, columns=first_matrix_columns, index=first_matrix_rows) return first_matrix_df, second_matrix_df def apply_mask(mask_matrix_df, original_matrix_df): """ Changes elements of the original array based on the mask array. The original array and the mask array should have the same shape. :param mask_matrix_df: pandas Data frame. Boolean mask. It has to be the same shape as the target array. :param original_matrix_df: pandas Data frame. Original matrix that we want to apply the mask to. :return: pandas data frame. This is the original array after masking. It is converted to pandas df. """ print("Applying the mask ...") original_matrix_columns = list(original_matrix_df) original_matrix_rows = list(original_matrix_df.index) mask_array = mask_matrix_df.to_numpy() original_array = original_matrix_df.to_numpy().astype(float) # Note: np.nan cannot be inserted into an array of type int. The array needs to be float. np.putmask(original_array, mask_array, np.nan) after_masking_df = pd.DataFrame(original_array, columns=original_matrix_columns, index=original_matrix_rows) return after_masking_df def AUC(dist_matrix_df, label_matrix_df, title, image_level_embed_file_name): """ Calculates the AUC using the positive and negative pairs. It gets the actual labels of the pairs from the label matrix and the predicted labels based on the distance matrix. It will ignore np.nan values in the two matrices. :param dist_matrix_df: pandas data frame that has the euclidean distance between pairs of images. Some cells might be Nan. :param label_matrix_df: pandas data frame that has the actual labels of the pairs of images. Some cells might be Nan. These two matrices should completely match. Meaning they should have the same number of rows and columns, the order of rows and columns should be the same, also any cell that is Nan in one matrix should also be Nan in the other one. :return: float. The AUC value. """ print ("Calculating AUC ...") dist_matrix_columns = list(dist_matrix_df) dist_matrix_rows = list(dist_matrix_df.index) label_matrix_columns = list(label_matrix_df) label_matrix_rows = list(label_matrix_df.index) if dist_matrix_columns == label_matrix_columns and dist_matrix_rows == label_matrix_rows: print ("The two matrix match. Will continue to calculate AUC ...") dist_matrix_array = dist_matrix_df.to_numpy() label_matrix_array = label_matrix_df.to_numpy() top_tri_ind_list = np.triu_indices(len(dist_matrix_columns),1) top_tri_dist_matrix = dist_matrix_array[top_tri_ind_list] top_tri_dist_matrix = top_tri_dist_matrix[~np.isnan(top_tri_dist_matrix)] # remove NaNs print ("top triangle of dist matrix without NaNs:", len(top_tri_dist_matrix)) top_tri_ind_list = np.triu_indices(len(label_matrix_array), 1) top_tri_label_matrix = label_matrix_array[top_tri_ind_list] top_tri_label_matrix = top_tri_label_matrix [~np.isnan(top_tri_label_matrix)] # remove NaNs print ("top triangle of label matrix without NaNs:",len(top_tri_label_matrix)) top_tri_label_matrix = top_tri_label_matrix.astype(int) # convert values to int so they are binary {0,1} # #positive label is 0 because distance is closer for positive pairs. fpr, tpr, thresholds = metrics.roc_curve(top_tri_label_matrix, top_tri_dist_matrix, pos_label=0) auc_val = metrics.auc(fpr, tpr) """ if 'training_validation' in image_level_embed_file_name: set_type = 'Training and Validation' elif 'training' in image_level_embed_file_name: set_type = 'Training' elif 'validation' in image_level_embed_file_name: set_type = 'Validation' else: set_type = None #plot_curve(fpr, tpr, title, ['fpr', 'tpr'], set_type) #to generate tpr over fpr graphs l = len(top_tri_dist_matrix) l_sub = len(top_tri_dist_matrix) // 10 res = np.random.choice(l, l_sub) top_tri_dist_matrix = [top_tri_dist_matrix[i] for i in res] top_tri_label_matrix = [top_tri_label_matrix[i] for i in res] #plot_curve(top_tri_label_matrix, top_tri_dist_matrix, title, ['label', 'distance'], set_type) # to generate distance over actual label graphs """ """ # This piece of code will use the whole dist and label matrix and not just the top triangle. # This is less efficient because we know that the matrices are symmetric. dist_matrix_flatten = dist_matrix_array.flatten() dist_matrix_flatten = dist_matrix_flatten[~np.isnan(dist_matrix_flatten)] # remove NaNs label_matrix_flatten = label_matrix_array.flatten() label_matrix_flatten = label_matrix_flatten[~np.isnan(label_matrix_flatten)] # remove NaNs label_matrix_flatten = label_matrix_flatten.astype(int) # convert values to int so they are binary {0,1} # #positive label is 0 because distance is closer for positive pairs. fpr, tpr, thresholds = metrics.roc_curve(label_matrix_flatten, dist_matrix_flatten, pos_label=0) auc_val = metrics.auc(fpr, tpr) return auc_val """ return auc_val else: print ("The two matrices do not match.") return None def first_hit_percentage(dist_matrix_df, study=None): """ This function finds the image ID of the closest image to every image and then checks to see what percentage of these pairs are positive, meaning they have the same gene. It finds the closest image by calling the 'find_closest_image()' function and passing the distance matrix to it. The distance matrix may have np.nan values in some cells. Those cells will be ignored when looking for the closest image. Which cells in the distance matrix might be np.nan? That depends on the criteria of the evaluation which determines the universe of the genes to be considered. :param dist_matrix_df: data frame that has the euclidean distance between every possible pair of images in the dataset. The euclidean distances are calculated from the embedding vectors of each images. :param study: the study that the embeddings belong to (i.e autism, schizophrenia) # ----------------------- One step of the project is to pass disease images through a model that has been trained on healthy cortex images. Because these models are trained on cortex, their corresponding files and information are in the cortex folder. The disease embeddings that are generated by these models will also be stored in the cortex folder. Therefore, the STUDY argument in the human_ISH_config.py is set to "cortex". However, the main files of the disease dataset are in its own directory. That is why we have this argument 'study'. Example: I have a model that has been trained on cortex images at some time stamp. The info of that model such as its check points and its generated cortex embeddings are in: DATA_DIR/cortex/segmentation_embeddings/timestamp Also, when I pass the SZ and autism images through this model, I will store their embeddings in the same directory: DATA_DIR/cortex/segmentation_embeddings/timestamp However, he info.csv file which has the information of schizophrenia images and needs to be used in evaluation is in: DATA_DIR/schizophrenia To summarize: in this scenario, the disease embeddings that we want to evaluate are in: DATA_DIR//STUDY/segmentation_embeddings/timestamp but the disease info file is in: DATA_DIR/study/ # ----------------------- :return: float. The percentage of images for which the closest image has the same gene. """ print ("Calculating first hit match percentage ...") if study == None: images_info = pd.read_csv(os.path.join(DATA_DIR,STUDY, "human_ISH_info.csv")) else: images_info = pd.read_csv(os.path.join(DATA_DIR, study, "human_ISH_info.csv")) min_indexes_df = find_closest_image(dist_matrix_df) # min_indexes_df has two columns: an image ID and the ID of the closest image to that image total_count = len(min_indexes_df) #total number of rows (== number of images) image_gene_mapping = images_info[['image_id', 'gene_symbol']] min_indexes_df = pd.merge(min_indexes_df, image_gene_mapping, left_on='id1', right_on='image_id') min_indexes_df = pd.merge(min_indexes_df, image_gene_mapping, left_on='id2', right_on='image_id') same_gene = min_indexes_df.query('gene_symbol_x == gene_symbol_y') # definition of positive match_count = len(same_gene) proportion = (match_count / total_count) * 100.0 return proportion def first_hit_match_percentage_and_AUC_results(path_to_embeddings ,image_level_embed_file_name, study = None): """ :param path_to_embeddings: :param image_level_embed_file_name: :param study: the study that the embeddings belong to (i.e autism, schizophrenia) # ----------------------- One step of the project is to pass disease images through a model that has been trained on healthy cortex images. Because these models are trained on cortex, their corresponding files and information are in the cortex folder. The disease embeddings that are generated by these models will also be stored in the cortex folder. Therefore, the STUDY argument in the human_ISH_config.py is set to "cortex". However, the main files of the disease dataset are in its own directory. That is why we have this argument 'study'. Example: I have a model that has been trained on cortex images at some time stamp. The info of that model such as its check points and its generated cortex embeddings are in: DATA_DIR/cortex/segmentation_embeddings/timestamp Also, when I pass the SZ and autism images through this model, I will store their embeddings in the same directory: DATA_DIR/cortex/segmentation_embeddings/timestamp However, he info.csv file which has the information of schizophrenia images and needs to be used in evaluation is in: DATA_DIR/schizophrenia To summarize: in this scenario, the disease embeddings that we want to evaluate are in: DATA_DIR//STUDY/segmentation_embeddings/timestamp but the disease info file is in: DATA_DIR/study/ # ----------------------- :return: """ general_distance_matrix , general_relationship_matrix = get_general_distance_and_relationship_matrix(path_to_embeddings, image_level_embed_file_name, study) # ---- General ---------------------------------------------------------------------------------- # General means only look at gene. Is it the same gene or different gene. Do not check donor_id. print ("---------------------------------- General ---------------------------------- ") general_first_hit_percentage = first_hit_percentage(general_distance_matrix, study) general_AUC = AUC(general_distance_matrix, general_relationship_matrix, "General", image_level_embed_file_name) general_res = [general_first_hit_percentage, general_AUC] # ---- Among Other Donors ------------------------------------------------------------------------ print ("---------------------------------- Other Donors ----------------------------- ") if study == None: images_info = pd.read_csv(os.path.join( DATA_DIR,STUDY,"human_ISH_info.csv")) else: images_info = pd.read_csv(os.path.join(DATA_DIR, study, "human_ISH_info.csv")) dist_matrix_rows = list(general_distance_matrix.index) donors = images_info[images_info['image_id'].isin(dist_matrix_rows)]['donor_id'] low_to_high_map = pd.DataFrame(list(zip(dist_matrix_rows, donors))) # create a 2-column df of image IDs and genes mask_df = create_diagonal_mask(low_to_high_map, target_value=1) # the pairs that have the same donor will have label 1 general_relationship_matrix, arranged_mask_df = match_matrices(general_relationship_matrix, mask_df) # after applying the mask, any cell that corresponds to a pair with the same donor will be Nan. # therefore, we are limiting our universe of pairs to those that have different donors. distance_matrix_after_masking = apply_mask(arranged_mask_df, general_distance_matrix) relationship_matrix_after_masking = apply_mask(arranged_mask_df, general_relationship_matrix) among_other_donors_first_hit_percentage = first_hit_percentage(distance_matrix_after_masking, study) among_other_donors_AUC = AUC(distance_matrix_after_masking, relationship_matrix_after_masking, "Other Donors", image_level_embed_file_name) among_other_donors_res = [among_other_donors_first_hit_percentage, among_other_donors_AUC] # ---- Within Donor ---------------------------------------------------------------------------- # so far, in the masked_df, the pairs that have the same donor will have label 1, and when we use this as a mask, # these pairs will be set to Nan. But we need the opposite of that here. # we need the pairs that have a different donor to be 1, so later when we actually apply the mask, the corresponding pairs would be set to Na. # the idea is to convert every 0 into 1 and every 1 into 0 print("---------------------------------- Within Donor ------------------------------ ") inverted_mask_df = np.logical_not(mask_df).astype(int) general_relationship_matrix, arranged_inverted_mask_df = match_matrices(general_relationship_matrix, inverted_mask_df) # after applying the mask, any cell that corresponds to a pair with the same donor will be Nan. # therefore, we are limiting our universe of pairs to those that have different donors. distance_matrix_after_masking = apply_mask(arranged_inverted_mask_df, general_distance_matrix) relationship_matrix_after_masking = apply_mask(arranged_inverted_mask_df, general_relationship_matrix) withing_donor_first_hit_percentage = first_hit_percentage(distance_matrix_after_masking, study) within_donor_brains_AUC = AUC(distance_matrix_after_masking, relationship_matrix_after_masking, "Within Donor", image_level_embed_file_name) within_donor_res = [withing_donor_first_hit_percentage, within_donor_brains_AUC] return [general_res, among_other_donors_res, within_donor_res] def build_distance_matrix(path_to_embeddings): """ Distance from one item to itself shows up as inf. :param filename: String. This is the name of the folder in the EMBEDDING_DEST folder which contains the embeddings csv file :return: pandas DataFrame. A distance matrix that has the euclidean distance between all the possible pairs of embedding vectors """ embed_df = pd.read_csv(path_to_embeddings) print ("length is: ", len(embed_df)) columns = list(embed_df) distances = euclidean_distances(embed_df.iloc[:, 1:], embed_df.iloc[:, 1:]) embed_df = embed_df.set_index([columns[0]]) # format distance matrix distances_df = pd.DataFrame(distances) distances_df.columns = list(embed_df.index) distances_df.index = list(embed_df.index) print ("finished building the distance matrix ...") print ("///////////////////") print (len(distances_df)) return distances_df def find_closest_image(distances_df): """ :param distances_df: pandas DataFrame. A distance matrix that has the euclidean distance between all the possible pairs of embedding vectors :return: pandas DataFrame. Has 2 columns. The first column is an image_id, the second column is the image_id of the corresponding closest image. """ # find the closest image in each row default_value_for_diagonal = distances_df.iloc[0,0] # set the distance between each image to itself as inf to make sure it doesn't get picked as closest distances_df.values[[np.arange(distances_df.shape[0])] * 2] = float("inf") min_indexes = distances_df.idxmin(axis=1, skipna=True) min_indexes_df = pd.DataFrame(min_indexes).reset_index() min_indexes_df.columns = ["id1", "id2"] #min_indexes_df = min_indexes_df.applymap(str) # set the distance between each image to itself back to the default distances_df.values[[np.arange(distances_df.shape[0])] * 2] = float(default_value_for_diagonal) print("finished finding the closest image ...") return min_indexes_df def not_the_same_gene(min_indexes_df, level): """ This function returns the proportion of images for which the closest image (based on the distance matrix) has a different gene. This is a helper function to better understand the metrics and results. Ideally, the closest image to an image should have the same gene. (same gene ==> same pattern ==> less distance) :param min_indexes_df: a dataframe with two columns: image id, and image id of the closest image :param level: the integration level in at which we are comparing the embeddings. :return: float. """ if level == 'image': total_count = len(min_indexes_df) print ("total number of images: ", total_count) info_csv_path = os.path.join(DATA_DIR, STUDY, "human_ISH_info.csv") info_csv = pd.read_csv(info_csv_path, index_col=None) gene_donor_mapping = info_csv[['gene_symbol', 'donor_id', 'image_id']] gene_donor_mapping['image_id']=gene_donor_mapping['image_id'].astype(str) min_indexes_df = pd.merge(min_indexes_df, gene_donor_mapping, left_on='id1', right_on='image_id') min_indexes_df = pd.merge(min_indexes_df, gene_donor_mapping, left_on='id2', right_on='image_id') not_the_same_image = min_indexes_df.query('image_id_x != image_id_y') not_the_same_gene = not_the_same_image.query('gene_symbol_x != gene_symbol_y') print(not_the_same_gene) match_count = len(not_the_same_gene) print("number of matches with not the same gene is: ", match_count) proportion = (match_count / total_count) * 100.0 print ("proportion is: ", proportion) return proportion def get_creation_time(ts): """ This function gets the creation time of the embedding csv file. It is designed to be used for embeddings that are generated by the triplet model. I am using the embedding file in the experiment_files folder. The reason is that in linux, there is no simple way of getting the creation time of a file. Instead, we can get the last time it was modifies. Every embedding file generated by the triplet model is saved in EXPERIMENT_ROOT. From there, it is also copied inside EMBEDDING_DEST. After copying, I use the copied version in EMBEDDING_DEST so the initial one in EXPERIMENT_ROOT is probably never accessed and modified and its last-access-time will be almost the same as its creation time. :param ts: folder name. :return: creation time stamp. """ path_to_embed_file = os.path.join(DATA_DIR, STUDY, "experiment_files", "experiment_"+ ts, "triplet_training_validation_embeddings.h5") if os.path.exists(path_to_embed_file): stat = os.stat(path_to_embed_file) try: return stat.st_birthtime except AttributeError: # We're probably on Linux. No easy way to get creation dates here, # so we'll settle for when its content was last modified. return stat.st_mtime else: print ("here, path is: ", path_to_embed_file) return None def disease_embed_evaluate(study, ts_list): for ts in ts_list: if ts == "random" or "resnet" in ts: path_to_embeddings = os.path.join(DATA_DIR, study, "segmentation_embeddings", ts) eval_path = os.path.join(DATA_DIR, study, "segmentation_embeddings", ts) base_case = True else: path_to_embeddings = os.path.join(EMBEDDING_DEST, ts) eval_path = os.path.join(EMBEDDING_DEST, ts) base_case = False image_level_files_list = [] print ("ts is: ", ts) print ("path to embeddings is: ", path_to_embeddings) contents = os.listdir(path_to_embeddings) print (contents) for item in contents: if base_case: if item.endswith("embeddings_image_level.csv"): image_level_files_list.append(item) else: if item.endswith("embeddings_image_level.csv") and study in item: #if item.endswith("five.csv"): image_level_files_list.append(item) print (image_level_files_list) for item in image_level_files_list: # for every image level embedding file, call another function to calculate first hit match percentage and AUC image_level_embed_file_name = item results = first_hit_match_percentage_and_AUC_results(path_to_embeddings, image_level_embed_file_name, study) # list of columns to have in the evaluation table. columns = ["ts", "dataset","number of embeddings", "general_first_hit_percentage", "general_AUC", "among_other_donors_first_hit_percentage","among_other_donors_AUC", "within_donor_first_hit_percentage", "within_donor_AUC"] df = pd.read_csv(os.path.join(path_to_embeddings, image_level_embed_file_name)) number_of_embeddings = len(df) eval_results_df = pd.DataFrame(columns=columns) general_res = results[0] among_other_donors_res = results[1] within_donor_res = results[2] eval_results_df.loc[0] = [ts, study, number_of_embeddings, general_res[0], general_res[1], among_other_donors_res[0], among_other_donors_res[1], within_donor_res[0], within_donor_res[1]] eval_result_file_name = item.split(".")[0] + "_evaluation_result_top_tri.csv" eval_results_df.to_csv(os.path.join(eval_path, eval_result_file_name), index=None) def evaluate(ts, not_found_list): """ The function evaluates the embeddings. It gets a folder name as input. If embeddings are generated by the triplet model, the input folder name is a time stamp. The function then reads all the image level embedding csv files within that folder. Normally, there should be 3 files: One for training set embeddings, one for validation set embeddings, and one for training+validation. :param ts: Folder name :return: None. For every image level embedding file inside this folder, the function creates an evaluation csv file. """ path_to_embeddings = os.path.join(EMBEDDING_DEST, ts) image_level_files_list = [] if not os.path.exists(path_to_embeddings): print ("Could not find ", path_to_embeddings) not_found_list.append(path_to_embeddings) pass else: contents = os.listdir(path_to_embeddings) for item in contents: if item.endswith("embeddings_image_level.csv") and 'autism' not in item and 'schizophrenia' not in item: image_level_files_list.append(item) for item in image_level_files_list: # for every image level embedding file, call another function to calculate first hit match percentage and AUC image_level_embed_file_name = item results = first_hit_match_percentage_and_AUC_results(path_to_embeddings,image_level_embed_file_name) # from args.json : args_names, args_val = get_arguments_from_json(ts) # list of columns to have in the evaluation table. columns = ["ts", "number of embeddings", "duration", "general_first_hit_percentage", "general_AUC", "among_other_donors_first_hit_percentage", "among_other_donors_AUC", "within_donor_first_hit_percentage", "within_donor_AUC"] # ------ number of embeddings and duration ---- df = pd.read_csv(os.path.join(path_to_embeddings, image_level_embed_file_name)) number_of_embeddings = len(df) # duration means the amount of time between when the folder was created and when the embeddings were generated. # it is the amount of time that it took the model to generate these embeddings. # this argument is valid for embeddings that were generated by the triplet model. print ("/////////////////////////////////") print (args_names) if args_names != None and "finish_time" in args_names: idx = args_names.index("finish_time") creation_time = int(args_val[idx]) duration = creation_time - int(ts) else: creation_time = get_creation_time(ts) if creation_time != None: creation_time = int(creation_time) duration = creation_time - int(ts) else: duration = -1 # --------------------------------------------- if args_names != None and args_val != None: columns = columns[0:3] + args_names + columns[3:] eval_results_df = pd.DataFrame(columns=columns) general_res = results[0] among_other_donors_res = results[1] within_donor_res = results[2] if args_names != None and args_val != None: eval_results_df.loc[0] = [ts, number_of_embeddings, duration] + args_val + [general_res[0], general_res[1], among_other_donors_res[0], among_other_donors_res[1], within_donor_res[0], within_donor_res[1]] else: eval_results_df.loc[0] = [ts, number_of_embeddings, duration, general_res[0], general_res[1], among_other_donors_res[0], among_other_donors_res[1], within_donor_res[0], within_donor_res[1]] eval_result_file_name = item.split(".")[0] + "_evaluation_result_top_tri.csv" eval_path = os.path.join(EMBEDDING_DEST, ts) eval_results_df.to_csv(os.path.join(eval_path, eval_result_file_name), index=None) #---------- return not_found_list def get_json_argument_list(): """ Returns a list of arguments from json files that we are interested in and we want to keep as columns in the evaluation tables. :return: list of arguments """ list_of_arguments_to_get = ["finish_time", "segmentation_training_samples", "patch_count_per_image", "learning_rate", "batch_k", "batch_p", "flip_augment", "standardize", "margin", "metric"] return list_of_arguments_to_get def get_arguments_from_json(ts): """ Embeddings that are generated with the triplet model are saved in folders that have time stamp as name. There is an args.json file in each folder that has the values for the arguments. The function checks to see if there is an args.json file within that folder. If yes, it looks for arguments from a list of arguments and returns the argument value. If that argument does not exist in the json file, it is returned as -1. :param ts: The embedding folder's name which is usually a time stamp. :return: two lists. The first list is a list of arguments, the second list is those arguments' values. """ list_of_arguments_to_get = get_json_argument_list() args_val_list = [] path_to_embeddings = os.path.join(EMBEDDING_DEST, ts) args_file = os.path.join(path_to_embeddings, "args.json") if not os.path.exists(args_file): print ("There is no args.json file in ", path_to_embeddings) return None, None if os.path.isfile(args_file): with open(args_file, 'r+') as f: args_resumed = json.load(f) for arg in list_of_arguments_to_get: if arg in args_resumed: args_val_list.append(args_resumed[arg]) else: args_val_list.append(-1) f.close() return list_of_arguments_to_get, args_val_list def concat_disease_evaluation_results(study, list_of_folders): """ The function uses a list of folders, goes through each folder and reads its evaluation csv files. :param study: the target study :param list_of_folders: list of folders that contain the evaluation result of the embeddings :return: """ eval_df_list = [] for item in list_of_folders: if item == "random" or "resnet" in item: path_to_eval_folder = os.path.join(DATA_DIR, study, "segmentation_embeddings", item) base_case = True else: path_to_eval_folder = os.path.join(EMBEDDING_DEST, item) base_case = False files = os.listdir(path_to_eval_folder) for f in files: # for each evaluation result csv file, see whether it is from training set, or validation set, or training+validation if base_case == True: if f.endswith("image_level_evaluation_result_top_tri.csv"): df = pd.read_csv(os.path.join(path_to_eval_folder, f)) eval_df_list.append(df) else: if f.endswith("image_level_evaluation_result_top_tri.csv") and study in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) eval_df_list.append(df) columns = list(eval_df_list[0]) concatenated_df = pd.concat(eval_df_list, sort=False) concatenated_df.to_csv(os.path.join(EMBEDDING_DEST, study+ "_all_evaluation_result_top_tri.csv"),index=None) def concat_all_evaluation_results(list_of_folders): """ The function uses a list of folders, goes through each folder and reads its evaluation csv files. Normally, there should be 3 files in each folder: one for training set evaluation, one for validation set evaluation, and one for training+validation set evaluation. The function first concatenates each set's results from all the folders (concatenates vertically) into csv files. So there will be 3 csv files, one for training, one for validation, and one for training+validation. Number of rows == number of folder. The function then concatenates those 3 csv files horizontally into a final general csv file. :param list_of_folders: list of folders that contain the evaluation result of the embeddings :return: None. The function generates 4 csv files. training_all_evaluation_result_top_tri.csv validation_all_evaluation_result_top_tri.csv training_and_validation_all_evaluation_result_top_tri.csv all_evaluation_result_top_tri.csv """ train_eval_df_list = [] val_eval_df_list = [] train_val_eval_df_list = [] for item in list_of_folders: path_to_eval_folder = os.path.join(EMBEDDING_DEST, item) files = os.listdir(path_to_eval_folder) for f in files: # for each evaluation result csv file, see whether it is from training set, or validation set, or training+validation if f.endswith("image_level_evaluation_result_top_tri.csv"): if "random" in f: if "random_training_validation" in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) train_val_eval_df_list.append(df) elif "random_training" in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) train_eval_df_list.append(df) elif "random_validation" in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) val_eval_df_list.append(df) else: if "triplet" in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) train_val_eval_df_list.append(df) elif "training" in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) train_eval_df_list.append(df) elif "validation" in f: df = pd.read_csv(os.path.join(path_to_eval_folder, f)) val_eval_df_list.append(df) # add 'training_' or 'validation_' to the column names of evaluation results coming from training and validation sets. # This is to be able to distinguish them in the final general csv file. columns = list(train_val_eval_df_list[0]) train_columns = ["training_"+item for item in columns[1:]] train_columns = [columns[0]] + train_columns train_columns_dict ={} val_columns = ["validation_"+item for item in columns[1:]] val_columns = [columns[0]] + val_columns val_columns_dict ={} #train_and_val_columns = ["train_and_validation_"+item for item in columns[1:]] #train_and_val_columns = [columns[0]] + train_and_val_columns #train_and_val_columns_dict ={} for i in range(len(columns)): train_columns_dict[columns[i]] = train_columns[i] val_columns_dict[columns[i]] = val_columns[i] #train_and_val_columns_dict[columns[i]] = train_and_val_columns[i] concatenated_training_df = pd.concat(train_eval_df_list, sort=False) concatenated_training_df = concatenated_training_df.rename(columns=train_columns_dict) concatenated_validation_df = pd.concat(val_eval_df_list, sort=False) concatenated_validation_df = concatenated_validation_df.rename(columns=val_columns_dict) concatenated_train_and_validation_df =
pd.concat(train_val_eval_df_list, sort=False)
pandas.concat
# code stolen from https://github.com/xhochy/nyc-taxi-fare-prediction-deployment-example # download the data from https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page # use the pandas code snippet from here # https://github.com/xhochy/nyc-taxi-fare-prediction-deployment-example/blob/main/training/Train.ipynb # to convert the CSV to parquet import lightgbm import numpy as np import pandas as pd from sklearn.compose import make_column_transformer from sklearn.preprocessing import FunctionTransformer def haversine_distance(lat1, lng1, lat2, lng2): lat1, lng1, lat2, lng2 = (np.radians(x) for x in (lat1, lng1, lat2, lng2)) d = ( np.sin(lat2 / 2 - lat1 / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(lng2 / 2 - lng1 / 2) ** 2 ) return 2 * 6371 * np.arcsin(np.sqrt(d)) # 6,371 km is the earth radius def haversine_distance_from_df(df): return pd.DataFrame( { "haversine_distance": haversine_distance( df["pickup_latitude"], df["pickup_longitude"], df["dropoff_latitude"], df["dropoff_longitude"], ) } ) def split_pickup_datetime(df): return pd.DataFrame( { "pickup_dayofweek": df["tpep_pickup_datetime"].dt.dayofweek, "pickup_hour": df["tpep_pickup_datetime"].dt.hour, "pickup_minute": df["tpep_pickup_datetime"].dt.minute, } ) def feature_enginering(): return make_column_transformer( (FunctionTransformer(), ["passenger_count"]), ( FunctionTransformer(func=split_pickup_datetime), ["tpep_pickup_datetime"], ), ( FunctionTransformer( func=haversine_distance_from_df, ), [ "pickup_latitude", "pickup_longitude", "dropoff_latitude", "dropoff_longitude", ], ), ) if __name__ == "__main__": used_columns = [ "fare_amount", "pickup_latitude", "pickup_longitude", "dropoff_latitude", "dropoff_longitude", "tpep_pickup_datetime", "passenger_count", ] df =
pd.read_parquet("data/yellow_tripdata_2016-01.parquet", columns=used_columns)
pandas.read_parquet
import os import pandas as pd import numpy as np def read_config(filename): """ Read and parse configuration file containing stored user variables. These variables are then passed to the analysis notebooks and input to pipeline functions. """ f = open(filename) config_dict = {} for lines in f: items = lines.split("\t", 1) config_dict[items[0]] = eval(items[1]) return config_dict def setup_dir(config_file): """ Create directories to store files created by VAE training and simulation analysis Arguments ---------- config_file: str File containing user defined parameters """ base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) # Read in config variables params = read_config(config_file) # Load parameters local_dir = params["local_dir"] dataset_name = params["dataset_name"] train_architecture = params["NN_architecture"] # Create VAE directories output_dirs = [ os.path.join(base_dir, dataset_name, "models"), os.path.join(base_dir, dataset_name, "logs"), ] # Check if the following directories exist # and if not to create them for each_dir in output_dirs: # Check if analysis output directory exist otherwise create if not os.path.exists(each_dir): print("creating new directory: {}".format(each_dir)) os.makedirs(each_dir, exist_ok=True) # Check if NN architecture directory exist otherwise create NN_dir = os.path.join(each_dir, train_architecture) if not os.path.exists(NN_dir): print("creating new directory: {}".format(NN_dir)) os.makedirs(NN_dir, exist_ok=True) # Check if analysis output directory exist otherwise create results_dir = os.path.join(base_dir, dataset_name, "results") if not os.path.exists(results_dir): print("creating new directory: {}".format(results_dir)) os.makedirs(results_dir, exist_ok=True) # Check if 'saved_variables' directory exist otherwise create var_dir = os.path.join(results_dir, "saved_variables") if not os.path.exists(var_dir): print("creating new directory: {}".format(var_dir)) os.makedirs(var_dir, exist_ok=True) # Create local directories to store intermediate files output_dirs = [ os.path.join(local_dir, "experiment_simulated"), os.path.join(local_dir, "partition_simulated"), ] # Check if analysis output directory exist otherwise create for each_dir in output_dirs: if not os.path.exists(each_dir): print("creating new directory: {}".format(each_dir)) os.makedirs(each_dir, exist_ok=True) def create_experiment_id_file(metadata_file, input_data_file, output_file, config_file): """ Create file with experiment ids that are associated with expression data Arguments ---------- metadata_file: str File containing metadata annotations per sample input_data_file: str File containing normalized expression data output_file: str File containing experiment ids with expression data and sample annotations config_file: str File containing user defined parameters """ # Read in metadata metadata =
pd.read_csv(metadata_file, header=0, sep="\t", index_col=0)
pandas.read_csv
import csv import numpy as np from matplotlib import pyplot as plt import scipy.stats as stats import pandas as pd def read_data(datafile): data = pd.read_csv(datafile) return np.array(data['x']), np.array(data['y']) def plotdata(data, color): for x in data: plt.plot(x[0], x[1], color) def plotGaussian(mu, var, sigma, label, subplot): x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) ax[subplot].plot(x, stats.norm.pdf(x, mu, sigma), label=label) ax[subplot].axvline(mu, ls='--', lw=0.5, c='gray') def calcGaussian(array): mu = np.mean(array, axis=0) var = np.var(array, axis=0) sigma = np.sqrt(var) return mu, var, sigma fig, ax = plt.subplots(2, 1) dataFiles = ['data_38400.csv', 'data_57600.csv', 'data_115200.csv'] pandas = [] for file in dataFiles: label = file[5:-4] x_values, y_values = read_data(file) mu_x, var_x, sigma_x = calcGaussian(x_values) plotGaussian(mu_x, var_x, sigma_x, label, 0) mu_y, var_y, sigma_y = calcGaussian(y_values) plotGaussian(mu_y, var_y, sigma_y, label, 1) pandas.append([label, mu_x, var_x, sigma_x, mu_y, var_y, sigma_y]) df =
pd.DataFrame(pandas, columns=['Baudrate', 'mu_x', 'var_x', 'sigma_x', 'mu_y', 'var_y', 'sigma_y'])
pandas.DataFrame
# Copyright 2017 QuantRocket LLC - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib import cycler from matplotlib.backends.backend_pdf import PdfPages from .utils import ( with_baseline, get_cum_returns) from matplotlib.ticker import FuncFormatter class BaseTearsheet(object): """ Base class for tear sheets. Parameters ---------- figsize : tuple (width, height), optional (width, height) of matplotlib figure. Default is (16, 12) pdf_filename : string, optional save tear sheet to this filepath as a PDF instead of displaying max_cols_for_details : int, optional suppress detailed plots if there are more than this many columns (i.e. strategies or securities). Too many plots may cause slow rendering. Default 25. """ def __init__(self, pdf_filename=None, figsize=None, max_cols_for_details=25): self.figsize = figsize or (16.0, 12.0) # width, height in inches plt.rc("axes", axisbelow=True) if pdf_filename: self._pdf = PdfPages(pdf_filename, keep_empty=True) else: self._pdf = None self._suptitle = None self._suptitle_kwargs = { "bbox": dict(facecolor="#EAEAF2", edgecolor='white', alpha=0.5)} self.max_cols_for_details = max_cols_for_details def _save_or_show(self): """ Saves the fig to the multi-page PDF, or shows it. """ if self._pdf: for fignum in plt.get_fignums(): self._pdf.savefig(fignum, bbox_inches='tight') plt.close("all") self._pdf.close() else: plt.show() def _y_format_as_percentage(self, axis, max_decimal_places=1): """ Sets a Y-axis formatter that converts a decimal to a percentage (e.g. 0.12 -> 12.0%) """ def format_as_pct(x, pos): # Round to max_decimal_places (12.1%) unless it doesn't matter (12% # not 12.0%) decimal_places = max_decimal_places while decimal_places > 0: rounded_result = round(x, decimal_places+2) more_rounded_result = round(x, decimal_places+1) if rounded_result != more_rounded_result: return ('{:.%d%%}' % decimal_places).format(x) decimal_places -= 1 return '{:.0%}'.format(x) y_axis_formatter = FuncFormatter(format_as_pct) axis.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) def _y_format_at_least_two_decimal_places(self, axis): """ Sets a Y-axis formatter that rounds a decimal to two decimal places. """ def format_at_least_two_decimal_places(x, pos): if round(x,2) == round(x,3): return '{:.2f}'.format(x) else: decimal_places = 3 while True: if math.isclose(round(x, decimal_places), round(x, decimal_places+1)): return round(x, decimal_places) decimal_places += 1 y_axis_formatter = FuncFormatter(format_at_least_two_decimal_places) axis.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) def _get_plot_dimensions(self, plot_count): """ Returns a tuple of rows, cols needed to accomodate the plot_count. """ rows = math.ceil(math.sqrt(plot_count)) cols = math.ceil(plot_count/rows) return rows, cols def _clear_legend(self, plot, legend_title=None): """ Anchors the legend to the outside right of the plot area so you can see the plot. """ plot.legend( loc='center left', bbox_to_anchor=(1, 0.5), title=legend_title) def _create_returns_plots(self, performance, subplot, extra_label, figsize=None, legend_title=None): """ Creates agg/details plots for cumulative returns, drawdowns, rolling Sharpe, and possibly pnl. """ figsize = figsize or self.figsize color_palette = sns.color_palette() if isinstance(performance.cum_returns, pd.DataFrame): num_series = len(performance.cum_returns.columns) if performance.benchmark_returns is not None: num_series += 1 if num_series > 6: color_palette = sns.color_palette("hls", num_series) with sns.color_palette(color_palette): fig = plt.figure("Cumulative Returns", figsize=figsize) axis = fig.add_subplot(subplot) max_return = performance.cum_returns.max(axis=0) if isinstance(max_return, pd.Series): max_return = max_return.max(axis=0) # If the price more than doubled, use a log scale if max_return >= 2: axis.set_yscale("log", basey=2) axis.set_ylabel("Cumulative return (log scale)") else: self._y_format_at_least_two_decimal_places(axis) axis.set_ylabel("Cumulative return") include_commissions = ( performance.commissions is not None # if all commissions are null/0, don't show them and (performance.commissions.fillna(0) != 0).any()) include_slippage = ( performance.slippages is not None # if all slippages are null/0, don't show them and (performance.slippages.fillna(0) != 0).any()) if ( # a 212 subplot means a detailed plot, which isn't compatible with # showing commissions and slippage subplot != 212 and (include_commissions or include_slippage)): if include_commissions: cum_commissions = performance.cum_commissions cum_commissions.name = "commissions" if include_slippage: cum_slippages = performance.cum_slippages cum_slippages.name = "slippage" performance.cum_returns.name = "returns" cum_gross_returns = performance.cum_returns if include_commissions: cum_gross_returns = cum_gross_returns.multiply(cum_commissions) if include_slippage: cum_gross_returns = cum_gross_returns.multiply(cum_slippages) cum_gross_returns.name = "gross returns" breakdown_parts = [performance.cum_returns, cum_gross_returns] if include_commissions: breakdown_parts.append(cum_commissions) if include_slippage: breakdown_parts.append(cum_slippages) try: returns_breakdown =
pd.concat(breakdown_parts, axis=1, sort=True)
pandas.concat
import numpy as np import pandas as pd from glob import glob import matplotlib.pyplot as plt ''' turbine-05_helihoist-1_tom_acc-vel-pos_hammerhead_2019-09-10-16-04-47_2019-09-20-02-53-43 turbine-05_helihoist-1_tom_geometry_hammerhead_2019-09-10-16-04-47_2019-09-20-02-53-43 turbine-05_helihoist-1_tom_acc-vel-pos_sbi1_2019-09-20-02-53-43_2019-09-20-07-42-54 turbine-05_sbitroot_tom_acc-vel-pos_sbi1_2019-09-20-02-34-11_2019-09-20-07-33-33 turbine-05_sbittip_tom_acc-vel-pos_sbi1_2019-09-20-02-47-05_2019-09-20-07-43-54 turbine-05_sbittip_tom_acc-vel-pos_sbi2_2019-09-20-12-07-46_2019-09-20-13-00-55 turbine-05_sbitroot_tom_acc-vel-pos_sbi2_2019-09-20-12-03-56_2019-09-20-12-58-11 turbine-05_helihoist-1_tom_acc-vel-pos_sbi2_2019-09-20-12-01-12_2019-09-20-12-51-37 turbine-05_sbittip_tom_acc-vel-pos_tnhb1_2019-09-20-07-43-54_2019-09-20-12-07-46 turbine-05_sbitroot_tom_acc-vel-pos_tnhb1_2019-09-20-07-33-33_2019-09-20-12-03-56 turbine-05_helihoist-1_tom_geometry_tnhb1_2019-09-20-07-42-54_2019-09-20-12-01-11 turbine-05_helihoist-1_tom_acc-vel-pos_tnhb1_2019-09-20-07-42-54_2019-09-20-12-01-11 turbine-05_helihoist-1_tom_acc-vel-pos_tnhb2_2019-09-20-12-51-37_2019-09-20-16-14-47 turbine-05_helihoist-1_tom_geometry_tnhb2_2019-09-20-12-51-37_2019-09-20-16-14-47 turbine-05_sbitroot_tom_acc-vel-pos_tnhb2_2019-09-20-12-58-11_2019-09-20-16-36-36 turbine-05_sbittip_tom_acc-vel-pos_tnhb2_2019-09-20-13-00-55_2019-09-20-16-11-16 wmb-sued-2019-9-10 wmb-sued-2019-9-11 wmb-sued-2019-9-12 wmb-sued-2019-9-13 wmb-sued-2019-9-14 wmb-sued-2019-9-15 wmb-sued-2019-9-16 wmb-sued-2019-9-17 wmb-sued-2019-9-18 wmb-sued-2019-9-19 wmb-sued-2019-9-20 keine winddaten ''' #loading data and filling it into an array of all dataframes hammerhead = sorted(glob('Daten/hammerhead/hammerhead/turbine-05**.csv')) sbi1 = sorted(glob('Daten/sbi1/sbi1/turbine-05**.csv')) sbi2 = sorted(glob('Daten/sbi2/sbi2/turbine-05*.csv')) tnhb1 = sorted(glob('Daten/tnhb1/tnhb1/turbine-05**.csv')) tnhb2 = sorted(glob('Daten/tnhb2/tnhb2/turbine-05**.csv')) data = [] helihoist_tele_hammerhead = pd.read_csv(hammerhead[0], delimiter = ',') helihoist_geo_hammerhead = pd.read_csv(hammerhead[1], delimiter = ',') data.append(helihoist_tele_hammerhead) , data.append(helihoist_geo_hammerhead) helihoist_sbi1 = pd.read_csv(sbi1[0], delimiter = ',') sbiroot_sbi1 = pd.read_csv(sbi1[1], delimiter = ',') sbitip_sbi1 = pd.read_csv(sbi1[2], delimiter = ',') data.append(helihoist_sbi1) ,data.append(sbiroot_sbi1) ,data.append(sbitip_sbi1) helihoist_sbi2 = pd.read_csv(sbi2[0], delimiter = ',') sbiroot_sbi2 = pd.read_csv(sbi2[1], delimiter = ',') sbitip_sbi2 = pd.read_csv(sbi2[2], delimiter = ',') data.append(helihoist_sbi2) ,data.append(sbiroot_sbi2) ,data.append(sbitip_sbi2) helihoist_tnhb1 = pd.read_csv(tnhb1[0], delimiter = ',') helihoist_geo_tnhb1 = pd.read_csv(tnhb1[1], delimiter = ',') sbiroot_tnhb1 = pd.read_csv(tnhb1[2], delimiter = ',') sbitip_tnhb1 = pd.read_csv(tnhb1[3], delimiter = ',') data.append(helihoist_tnhb1) ,data.append(helihoist_geo_tnhb1) ,data.append(sbiroot_tnhb1),data.append(sbitip_tnhb1) helihoist_tnhb2 = pd.read_csv(tnhb2[0], delimiter = ',') helihoist_geo_tnhb2 = pd.read_csv(tnhb2[1], delimiter = ',') sbiroot_tnhb2 = pd.read_csv(tnhb2[2], delimiter = ',') sbitip_tnhb2 = pd.read_csv(tnhb2[3], delimiter = ',') data.append(helihoist_tnhb2) ,data.append(helihoist_geo_tnhb2) ,data.append(sbiroot_tnhb2),data.append(sbitip_tnhb2) wmb1= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-10.csv', delimiter = ' ') wmb2= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-11.csv', delimiter = ' ') wmb3= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-12.csv', delimiter = ' ') wmb4= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-13.csv', delimiter = ' ') wmb5= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-14.csv', delimiter = ' ') wmb6= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-15.csv', delimiter = ' ') wmb7= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-16.csv', delimiter = ' ') wmb8= pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-17.csv', delimiter = ' ') wmb9=
pd.read_csv('environment/environment/waves/wmb-sued/wmb-sued_2019-09-18.csv', delimiter = ' ')
pandas.read_csv
import logging import os import numpy as np import pandas as pd import sqlalchemy from cached_property import cached_property from scipy.interpolate import interp1d from aqueduct.errors import Error class RiskService(object): def __init__(self, user_selections): # DB Connection self.engine = sqlalchemy.create_engine(os.getenv('POSTGRES_URL')) self.metadata = sqlalchemy.MetaData(bind=self.engine) self.metadata.reflect(self.engine) # BACKGROUND INFO self.flood_types = ["riverine", "coastal"] self.exposures = ["gdpexp", "popexp", "urban_damage_v2"] self.geogunits = ["geogunit_103", "geogunit_108"] self.scenarios = {"business as usual": ['rcp8p5', 'ssp2', "bau"], "pessimistic": ['rcp8p5', 'ssp3', "pes"], "optimistic": ['rcp4p5', 'ssp2', "opt"], "rcp8p5": ['rcp8p5', 'ssp3', "pes"], "rcp4p5": ['rcp8p5', 'ssp2', "bau"]} self.models = {"riverine": ["gf", "ha", "ip", "mi", "nr"], # "coastal": ["wt"]} "coastal": ["95", "50", "05"]} self.years = [2010., 2030., 2050., 2080.] self.ys = [str(x)[0:4] for x in self.years] self.rps = [2, 5, 10, 25, 50, 100, 250, 500, 1000] self.rps_names = ["rp" + str(x).zfill(5) for x in self.rps] # MANDATORY USER INPUTS self.flood = user_selections.get("flood") # Flood type self.exposure = user_selections.get("exposure") # Exposure type self.geogunit_unique_name = user_selections.get("geogunit_unique_name") # Unique geographical unit name self.sub_scenario = user_selections.get( "sub_scenario") # Subsidence option (Will always be no for Riverine floods) self.existing_prot = user_selections.get( "existing_prot") # User input for protection standard (triggers on-the-fly calculation) self.scenario = user_selections.get("scenario") self.geogunit, self.geogunit_name, self.geogunit_type, self.clim, self.socio, self.scen_abb, self.sub_abb, self.df_precalc, self.prot_pres, self.risk_analysis = self.user_selections() # Scenario abbreviation self.mods = self.models.get(self.flood) def user_selections(self): """ Purpose: Gather all necessary inputs to run any analysis Input: flood: Riverine of Coastal (User must select) Geogunit_unique_name: geographical unit name from website. (User must select) Website should use list of unique names to avoid selecting more than one unit Scenario: Business as usual, Pessimistic, Optimistic sub_scenario: Yes (defaul(t), No does the user want to consider subsidence? Only relevant for coastal) existing_prot: Default protection standard. User can input their own or, which will trigger on-the-fly calculations Output: geogunit unit - (geogunit_103 for cities, geogunit_108 for everything else) geogunit_name - original (ie non-unique) name geogunit_type - City, State, Country, Basin clim - rcp4p5, rcp8p4 (climate scenario associated with overall scenario) socio - base, ssp2, ssp3 (socioeconomic scenario associated with overall scenario) sub_scenario- Yes, No (Is subsidence included?) sub_abb - wtsub or nosub (code name for subsidence. wtsub = with sub) prot_pres - default protection standard for unit as a whole risk_analysis - can we use precalculated risk data, or do we need to calculate on-the-fly? """ # GEOGUNIT INFO fids, geogunit_name, geogunit_type = pd.read_sql_query( "SELECT fids, name, type FROM lookup_master where uniqueName = '{0}' ".format(self.geogunit_unique_name), self.engine).values[0] geogunit = "geogunit_103" if geogunit_type.lower() == "city" else "geogunit_108" # IMPACT DRIVER INFO (climate and socioeconomc scenarios clim, socio, scen_abb = self.scenarios.get(self.scenario) # SUBSIDENCE INFO # Make sure subsidence is turned off for river floods sub_abb = "wtsub" if self.sub_scenario else "nosub" # DEFAULT DATA defaultfn = "precalc_agg_{0}_{1}_{2}".format(self.flood, geogunit_type.lower(), sub_abb) logging.info(f'[RISK - user_selection]: {str(defaultfn)}') df_precalc = pd.read_sql_query("SELECT * FROM {0} where id like '{1}'".format(defaultfn, geogunit_name), self.engine, index_col='id') # PROTECTION STANDARDS and RISK ANALYSIS TYPE if not self.existing_prot: risk_analysis = "precalc" # Hardwire in the protection standards for the Netherlands or Average prot standard for a whole unit (i.e. country) # here self.exposure should be allways urban_damage_v2 prot_pres = (1000 if geogunit_name in ['Noord-Brabant, Netherlands', 'Zeeland, Netherlands', 'Zeeuwse meren, Netherlands', 'Zuid-Holland, Netherlands', 'Drenthe, Netherlands', 'Flevoland, Netherlands', 'Friesland, Netherlands', 'Gelderland, Netherlands', 'Groningen, Netherlands', 'IJsselmeer, Netherlands', 'Limburg, Netherlands', 'Noord-Holland, Netherlands', 'Overijssel, Netherlands', 'Utrecht, Netherlands', 'Netherlands'] else df_precalc[ ["_".join(['urban_damage_v2', '2010', scen_abb, "prot_avg"])]]) else: risk_analysis = "calc" prot_pres = self.existing_prot return geogunit, geogunit_name, geogunit_type.lower(), clim, socio, scen_abb, sub_abb, df_precalc, prot_pres, risk_analysis def lp_data(self): inFormat = 'raw_agg_{:s}_{:s}_{:s}'.format(self.flood, self.geogunit_type, self.exposure) cols = [ '{0} as {1}'.format(col, col.replace(self.clim, 'lp').replace(self.socio + "_" + self.sub_abb + "_", '')) for col in sqlalchemy.Table(inFormat, self.metadata).columns.keys() if (self.clim in col) and (self.socio in col) and (self.sub_abb in col)] df_temp = pd.read_sql_query( "SELECT {0} FROM {1} where id like '{2}'".format(', '.join(cols), inFormat, self.geogunit_name), self.engine) df_lpcurve = df_temp.T df1 = df_lpcurve.reset_index().rename(columns={"index": "index", 0: "y"}) df2 = df_lpcurve.reset_index()['index'].str.split('_', expand=True).rename( columns={0: "lp", 1: "c", 2: "year", 3: "x"}) logging.info('[RISK]: lp_curve') #logging.info(df1) #logging.info(df2) return pd.concat([df1, df2], axis=1).reindex(df1.index)[['c', 'year', 'y', 'x']].replace(self.rps_names, self.rps) #return pd.concat([df1, df2], axis=1, join_axes=[df1.index])[['c', 'year', 'y', 'x']].replace(self.rps_names, self.rps) def bench(self): defaultfn = "precalc_agg_{0}_{1}_{2}".format(self.flood, self.geogunit_type, self.sub_abb) print(defaultfn) # cols = ['{0} as {1}'.format(col, col.replace(self.exposure, 'bench').replace('urban_damage_v2', 'bench').replace("_"+ self.scen_abb, '')) for col in sqlalchemy.Table(defaultfn, self.metadata).columns.keys() if ((self.exposure in col) or ('urban_damage_v2' in col)) and (self.scen_abb in col) and ("cc" not in col) and ("soc" not in col) and ("sub" not in col) and ("avg" in col)] cols = ['{0} as {1}'.format(col, col.replace(self.exposure, 'bench').replace('urban_damage_v2', 'bench').replace( "_" + self.scen_abb, '')) for col in sqlalchemy.Table(defaultfn, self.metadata).columns.keys() if ((self.exposure in col) or ('prot' in col)) and (self.scen_abb in col) and ("cc" not in col) and ( "soc" not in col) and ("sub" not in col) and ("avg" in col)] benchData = pd.read_sql_query("SELECT id, {0} FROM {1}".format(', '.join(cols), defaultfn), self.engine, index_col='id') return benchData def format_risk(self, dataframe): datalist = ["tot_avg", "tot_min", "tot_max", "ast", "prot_avg", "per_avg", "per_min", "per_max", "cc_avg", "cc_min", "cc_max", "soc_avg", "sub_avg"] colNames = ["Annual_Damage_Avg", "Annual_Damage_Min", "Annual_Damage_Max", "Asset_Value", "Flood_Protection", "Percent_Damage_Avg", "Percent_Damage_Min", "Percent_Damage_Max", "CC_Driver_Avg", "CC_Driver_Min", "CC_Driver_Max", "Soc_Driver", "Sub_Driver"] df_final = pd.DataFrame(index=self.ys, columns=colNames) for d in range(0, len(datalist)): selData = dataframe[[col for col in dataframe.columns.tolist() if (datalist[d] in col)]] if len(selData.values[0]) == 3: df_final[colNames[d]][1:] = selData.values[0] else: df_final[colNames[d]] = selData.values[0] return df_final def find_assets(self): """ Purpose: Find total asset value Output: df_aggregate = Annual impacts for each year for user-selected geographical unit """ # Create term to filter out unnecessary results. Drop SSP2 data if scenario # is pessemistic. Else, drop SSP3 dropex = "ssp2" if self.scen_abb == "pes" else "ssp3" assts = self.df_precalc[[col for col in self.df_precalc.columns.tolist() if (self.exposure in col) and (self.scen_abb in col) and ("ast" in col) and ( dropex not in col)]] return assts.reset_index(drop=True) def run_stats(self, dataframe): """ Purpose: Finds the average, min, and max impact for all impact types Input: dataframe: Data associated with flood, geography, exposure type for all climate models Output: Dataframe with average impact data for each year for each impact type. Also includes min and max (uncertainity) """ # Create dataframe to hold final data df_final = pd.DataFrame(index=dataframe.index) # Define column field name structure colFormat = '{:s}_{:s}_{:s}_{:s}_{:s}'.format # Run following analysis for each year and impact type for y in self.ys: for t in ["cc", "soc", "sub", "tot", "prot"]: df_filt = dataframe[[col for col in dataframe.columns if (t in col) and (y in col)]] df_final[colFormat(self.exposure, y, self.scen_abb, t, "avg")] = df_filt.mean(axis=1) if y != '2010' and t == "tot" or y != '2010' and t == 'cc': df_final[colFormat(self.exposure, y, self.scen_abb, t, "min")] = df_filt.min(axis=1) df_final[colFormat(self.exposure, y, self.scen_abb, t, "max")] = df_filt.max(axis=1) df_final.replace(np.nan, 0, inplace=True) return df_final def ratio_to_total(self, dataframe): """ Purpose: Finds the impact attributed to climate change only, socioecon only, and subsidence only Input: inData: Annual expected impact data (found using default_risk function) mods: All possible climate models Output: Dataframe with final impact data for each year for each impact type. Column name also specifies given model """ # Create dataframe to hold final data df_final = pd.DataFrame(index=dataframe.index) # Run analysis for each climate model and each year past 2010 colFormat = '{:s}_{:s}_{:s}_{:s}_{:s}'.format df_final[colFormat(self.exposure, "2010", self.scen_abb, "prot", "avg")] = dataframe[ colFormat(self.exposure, "2010", self.scen_abb, "prot", "avg")] tot2010 = dataframe[colFormat(self.exposure, "2010", self.scen_abb, "tot", "avg")] df_final[colFormat(self.exposure, "2010", self.scen_abb, "tot", "avg")] = tot2010 for y in self.ys[1:]: # Filter data year df_filt = dataframe[[col for col in dataframe.columns if (y in col)]] # Total impact for selected year is already calculated df_final[colFormat(self.exposure, y, self.scen_abb, "tot", "avg")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "tot", "avg")] df_final[colFormat(self.exposure, y, self.scen_abb, "tot", "min")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "tot", "min")] df_final[colFormat(self.exposure, y, self.scen_abb, "tot", "max")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "tot", "max")] # Find the difference from each impact to the 2010 baseline data df_filt['tot_diff'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "tot", "avg")] - tot2010 # Total impact df_filt['cc_diff_avg'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "cc", "avg")] - tot2010 # Total impact df_filt['cc_diff_min'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "cc", "min")] - tot2010 # Total impact df_filt['cc_diff_max'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "cc", "max")] - tot2010 # Total impact df_filt['soc_diff'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "soc", "avg")] - tot2010 # Total impact#Soc only impact df_filt['sub_diff'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "sub", "avg")] - tot2010 # Total impact #Subsidence only impact # Correct for values if impact is less than 2010 baseline data df_filt['cc_diff_avg'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['cc_diff_avg'] < 0, 0, df_filt['cc_diff_avg']), np.where(df_filt['cc_diff_avg'] > 0, 0, df_filt['cc_diff_avg'])) df_filt['cc_diff_min'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['cc_diff_min'] < 0, 0, df_filt['cc_diff_min']), np.where(df_filt['cc_diff_min'] > 0, 0, df_filt['cc_diff_min'])) df_filt['cc_diff_max'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['cc_diff_max'] < 0, 0, df_filt['cc_diff_max']), np.where(df_filt['cc_diff_max'] > 0, 0, df_filt['cc_diff_max'])) df_filt['soc_diff'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['soc_diff'] < 0, 0, df_filt['soc_diff']), np.where(df_filt['soc_diff'] > 0, 0, df_filt['soc_diff'])) df_filt['sub_diff'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['sub_diff'] < 0, 0, df_filt['sub_diff']), np.where(df_filt['sub_diff'] > 0, 0, df_filt['sub_diff'])) if self.sub_abb == "nosub": df_filt['sub_diff'] = 0 # Find the ratio of impact attributed to each impact cause ( use the difference from 2010, not the absolute impact) # Climate change only = (CC Only) / ( CC Only + Socio Only + Sub Only) * Total Impact df_final[colFormat(self.exposure, y, self.scen_abb, "cc", "avg")] = (df_filt['cc_diff_avg'] / ( df_filt['cc_diff_avg'] + df_filt['soc_diff'] + df_filt['sub_diff'] + .000000001)) * df_filt[ 'tot_diff'] df_final[colFormat(self.exposure, y, self.scen_abb, "cc", "min")] = (df_filt['cc_diff_min'] / ( df_filt['cc_diff_min'] + df_filt['soc_diff'] + df_filt['sub_diff'] + .000000001)) * df_filt[ 'tot_diff'] df_final[colFormat(self.exposure, y, self.scen_abb, "cc", "max")] = (df_filt['cc_diff_max'] / ( df_filt['cc_diff_max'] + df_filt['soc_diff'] + df_filt['sub_diff'] + .000000001)) * df_filt[ 'tot_diff'] # Socioecon change only = (Soc Only) / ( CC Only + Socio Only + Sub Only) * Total Impact df_final[colFormat(self.exposure, y, self.scen_abb, "soc", "avg")] = (df_filt['soc_diff'] / ( df_filt['cc_diff_avg'] + df_filt['soc_diff'] + df_filt['sub_diff'] + .000000001)) * df_filt[ 'tot_diff'] # Subsidence change only = (Sub Only) / ( CC Only + Socio Only + Sub Only) * Total Impact df_final[colFormat(self.exposure, y, self.scen_abb, "sub", "avg")] = (df_filt['sub_diff'] / ( df_filt['cc_diff_avg'] + df_filt['soc_diff'] + df_filt['sub_diff'] + .000000001)) * df_filt[ 'tot_diff'] df_final[colFormat(self.exposure, y, self.scen_abb, "prot", "avg")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "prot", "avg")] # Replace any nulls with 0 df_final.replace(np.nan, 0, inplace=True) return df_final @staticmethod def expected_value(values, RPs, RP_zero, RP_infinite): """ Purpose: Annual expected image/damage for given time period Input: values: Impact per return period 2D array MxN M: several time periods N: several return periods RPs: return periods (equal to length of N) RP_zero: return period at which to break the EP-curve to zero (i.e. protection standard) RP_infinite: return period close to the infinitely high return period Output: vector with expected values for each time period """ # append the return period at which maximum impact occurs, normally this is set to 1e6 years RPs = np.append(np.array(RPs), RP_infinite) # derive the probabilities associated with return periods prob = 1. / RPs values = np.array(values) # append infinite impact (last value in array) to array. Simply copy the last value. values = np.append(values, values[-1]) # now make a smooth function (function relates prob (on x) to projected future impact (y)) values_func = interp1d(prob, values) # Returns 10,000 evenly spaced probabilities from most likely prob to most extreme prob_smooth = np.linspace(prob[0], prob[-1], 10000) # Insert these probabilites into "smooth function" to find their related impact values_smooth = values_func(prob_smooth) # Set all impacts above thres (protection standard) to zero values_smooth[prob_smooth > 1. / RP_zero] = 0. # compute expected values from return period values: # Integrate under curve to find sum of all impact exp_val = np.trapz(np.flipud(values_smooth), np.flipud(prob_smooth)) # print "Values, RP, Exp Value", values, RP_zero, exp_val, return exp_val @staticmethod def interp_value(x, y, x_i, min_x=-np.Inf, max_x=np.Inf): """ Purpose: Find impacts associated with given protection standard OR Find probability associated with a given impact Allows for extrapolation to find new Y given user-defined X Do a linear inter/extrapolation of y(x) to find a value y(x_idx) """ ### OLD CODE # Creates a function that relates X and Y and allows for extrapolation to find new Y given user-defined X # y_interp = extrap1d(interp1d(np.array(x), np.array(y), axis=0)) # return y_interp(np.maximum(np.minimum(np.atleast_1d(x_i), max_x), min_x)) # -#-#-#-#-#-#-#-#-#-#-#-#-# ### NEW CODE # interpolation only! return y min/max if out of bounds x = np.atleast_1d(x) y = np.atleast_1d(y) f = interp1d(x, y, fill_value=(y.min(), y.max()), bounds_error=False) y_new = f(x_i) return y_new @staticmethod def extrap1d(interpolator): """ Purpose: Make an extrapolation function """ xs = interpolator.x ys = interpolator.y def pointwise(x): # If new prob is smaller than smallest prob in function if x < xs[0]: return ys[0] + (x - xs[0]) * (ys[1] - ys[0]) / (xs[1] - xs[0]) # If new prob is larger than largest prob in function elif x > xs[-1]: return ys[-1] + (x - xs[-1]) * (ys[-1] - ys[-2]) / (xs[-1] - xs[-2]) # If prob falls within set range of prob in function else: return interpolator(x) def ufunclike(xs): return np.fromiter(map(pointwise, np.array(xs))) return ufunclike def compute_rp_change(self, ref_impact, target_impact, rp, min_rp=2, max_rp=1000): """ Purpose: Compute how return period protection changes from one impact distribution to another (e.g. present to future) Input: rps: return periods of impacts ref_impact: set of reference impact target_impacts: impacts to which protection standard should be mapped (i.e. year the flood protection should be valid in) rp, protection standard at reference impacts """ ### NEW CODE if target_impact.sum() == 0: new_prot = np.nan else: # interpolate to estimate impacts at protection level 'rp' prot_impact = self.interp_value(self.rps, ref_impact, rp) new_prot = self.interp_value(target_impact, self.rps, prot_impact) return new_prot def find_impact(self, impact_cc, impact_soc, impact_sub, impact_cc_soc, impact_urb, model): """ Purpose: Finds annual impacts for climate only, socio only, subsidence only, and all scenarios together Input: impact_cc: Climate change only impacts.Variable consists of 4 dataframes (one for each year) impact_soc: Socioecon change only impacts. Variable consists of 4 dataframes (one for each year) impact_sub: Subsidence only impacts. Variable consists of 4 dataframes (one for each year) impact_cc_sub: Total impacts. Variable consists of 4 dataframes (one for each year) impact_urb: Climate change only impacts to urban damage. Variable consists of 4 dataframes (one for each year) model = Climate change model associated with input data Output: Dataframe with raw annual impact data for each year for each impact type. Column name also specifies given model """ # Create dataframes to hold expected impact (for each model and year) col = [model + x + j for x in ["_cc_", "_soc_", "_sub_", "_tot_", "_prot_"] for j in self.ys] model_imps = pd.DataFrame(index=[self.geogunit_name], columns=col) # Perform for each year we have impact data for y, imp_cc, imp_soc, imp_sub, imp_cc_soc, imp_urb in zip(self.ys, impact_cc, impact_soc, impact_sub, impact_cc_soc, impact_urb): # No transformation needed in 2010 if y == '2010': prot_trans = self.prot_pres else: # Find how the flood protection changes over time prot_trans = self.compute_rp_change(impact_urb[0], imp_urb.values[0], self.prot_pres, min_rp=min(self.rps), max_rp=max(self.rps)) # i.e. RP_zero # Find the annual expected damage with the new protection standard model_imps.loc[self.geogunit_name, [model + "_cc_" + y]] = self.expected_value(imp_cc.values[0], self.rps, prot_trans, 1e5) model_imps.loc[self.geogunit_name, [model + "_soc_" + y]] = self.expected_value(imp_soc.values[0], self.rps, prot_trans, 1e5) model_imps.loc[self.geogunit_name, [model + "_sub_" + y]] = self.expected_value(imp_sub, self.rps, prot_trans, 1e5) model_imps.loc[self.geogunit_name, [model + "_tot_" + y]] = self.expected_value(imp_cc_soc.values[0], self.rps, prot_trans, 1e5) model_imps.loc[self.geogunit_name, [model + "_prot_" + y]] = prot_trans return model_imps def select_projection_data(self, dataframe, climate, model, socioecon, year): """ Purpose: Pull all historical (2010) raw data Input: dataframe: Raw data associated with user-defined flood, geographic unit and exposure climate = Climate scenario model = Climate model socioecon = Socioeconomic scenario sub_scenario: Is subsidence considered? Yes or No year: 2030, 2050, or 2080 Output:mpact data for each return period for given year Dataframe with raw ir """ # Select data using year, subsidence type, climate scen, socioecon scen, model # CHANGEDIT selCol = climate + "_" + model + "_" + socioecon + "_" + self.sub_abb + "_" + year #logging.debug(selCol) # selData = dataframe[[col for col in dataframe.index.tolist() if selCol in col]] selData = dataframe[[col for col in dataframe.columns if (selCol in col) and ("rp00001" not in col)]] # selData = dataframe[[col for col in dataframe.columns if (model in col) and (socioecon in col) and (climate in col) and (year in col) and ("rp00001" not in col)]] #logging.debug(f'[RISK SERVICE - select_projection_data]: {selData}') return selData def calc_risk(self): """ Purpose: Runs analysis on the fly instead of using precalcuted results (For when users define current protection level, find annual impact themselves) Output: df_aggregate = aggregated annual impacts for each year """ # READ IN DATA # File name format for raw data inFormat = 'raw_agg_{:s}_{:s}_{:s}'.format fn = inFormat(self.flood, self.geogunit_type, self.exposure) # URBAN DAMAGE DATA urbfn = inFormat(self.flood, self.geogunit_type, "urban_damage_v2") # Filter by geographic name df_raw = pd.read_sql_query("SELECT * FROM {0} where id = '{1}' ".format(fn, self.geogunit_name), self.engine, index_col='id') df_urb = pd.read_sql_query("SELECT * FROM {0} where id = '{1}' ".format(urbfn, self.geogunit_name), self.engine, index_col='id') logging.info(f'[RISK SERVICE - calc_risk]: urbfn => {urbfn} fn => {fn}') logging.debug('[RISK SERVICE - calc_risk]: prot_press => ' + str(self.prot_pres)) # Find impact for each model model_impact =
pd.DataFrame(index=[self.geogunit_name])
pandas.DataFrame
from __future__ import print_function # this is a class to deal with aqs data from builtins import zip from builtins import range from builtins import object import os from datetime import datetime from zipfile import ZipFile import pandas as pd from numpy import array, arange import inspect import requests class AQS(object): def __init__(self): # self.baseurl = 'https://aqs.epa.gov/aqsweb/airdata/' self.objtype = 'AQS' self.daily = False self.baseurl = 'https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/' self.dates = [datetime.strptime('2014-06-06 12:00:00', '%Y-%m-%d %H:%M:%S'), datetime.strptime('2014-06-06 13:00:00', '%Y-%m-%d %H:%M:%S')] self.renamedhcols = ['datetime_local', 'datetime', 'State_Code', 'County_Code', 'Site_Num', 'Parameter_Code', 'POC', 'Latitude', 'Longitude', 'Datum', 'Parameter_Name', 'Obs', 'Units', 'MDL', 'Uncertainty', 'Qualifier', 'Method_type', 'Method_Code', 'Method_Name', 'State_Name', 'County_Name', 'Date_of_Last_Change'] self.renameddcols = ['datetime_local', 'State_Code', 'County_Code', 'Site_Num', 'Parameter_Code', 'POC', 'Latitude', 'Longitude', 'Datum', 'Parameter_Name', 'Sample_Duration', 'Pollutant_Standard', 'Units', 'Event_Type', 'Observation_Count', 'Observation_Percent', 'Obs', '1st_Max_Value', '1st_Max Hour', 'AQI', 'Method_Code', 'Method_Name', 'Local_Site_Name', 'Address', 'State_Name', 'County_Name', 'City_Name', 'MSA_Name', 'Date_of_Last_Change'] self.savecols = ['datetime_local', 'datetime', 'SCS', 'Latitude', 'Longitude', 'Obs', 'Units', 'Species'] self.se_states = array( ['Alabama', 'Florida', 'Georgia', 'Mississippi', 'North Carolina', 'South Carolina', 'Tennessee', 'Virginia', 'West Virginia'], dtype='|S14') self.se_states_abv = array( ['AL', 'FL', 'GA', 'MS', 'NC', 'SC', 'TN', 'VA', 'WV'], dtype='|S14') self.ne_states = array(['Connecticut', 'Delaware', 'District Of Columbia', 'Maine', 'Maryland', 'Massachusetts', 'New Hampshire', 'New Jersey', 'New York', 'Pennsylvania', 'Rhode Island', 'Vermont'], dtype='|S20') self.ne_states_abv = array(['CT', 'DE', 'DC', 'ME', 'MD', 'MA', 'NH', 'NJ', 'NY', 'PA', 'RI', 'VT'], dtype='|S20') self.nc_states = array( ['Illinois', 'Indiana', 'Iowa', 'Kentucky', 'Michigan', 'Minnesota', 'Missouri', 'Ohio', 'Wisconsin'], dtype='|S9') self.nc_states_abv = array(['IL', 'IN', 'IA', 'KY', 'MI', 'MN', 'MO', 'OH', 'WI'], dtype='|S9') self.sc_states = array( ['Arkansas', 'Louisiana', 'Oklahoma', 'Texas'], dtype='|S9') self.sc_states_abv = array(['AR', 'LA', 'OK', 'TX'], dtype='|S9') self.r_states = array(['Arizona', 'Colorado', 'Idaho', 'Kansas', 'Montana', 'Nebraska', 'Nevada', 'New Mexico', 'North Dakota', 'South Dakota', 'Utah', 'Wyoming'], dtype='|S12') self.r_states_abv = array(['AZ', 'CO', 'ID', 'KS', 'MT', 'NE', 'NV', 'NM', 'ND', 'SD', 'UT', 'WY'], dtype='|S12') self.p_states = array( ['California', 'Oregon', 'Washington'], dtype='|S10') self.p_states_abv = array(['CA', 'OR', 'WA'], dtype='|S10') self.datadir = '.' self.cwd = os.getcwd() self.df = None # hourly dataframe self.monitor_file = inspect.getfile( self.__class__)[:-13] + '/data/monitoring_site_locations.dat' self.monitor_df = None self.d_df = None # daily dataframe def check_file_size(self, url): test = requests.head(url).headers if int(test['Content-Length']) > 1000: return True else: return False def retrieve_aqs_hourly_pm25_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url1 = self.baseurl + 'hourly_88101_' + year + '.zip' if self.check_file_size(url1): print('Downloading Hourly PM25 FRM: ' + url1) filename = wget.download(url1) print('') print('Unpacking: ' + url1) dffrm = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) dffrm.columns = self.renamedhcols dffrm['SCS'] = array( dffrm['State_Code'].values * 1.E7 + dffrm['County_Code'].values * 1.E4 + dffrm['Site_Num'].values, dtype='int32') else: dffrm = pd.DataFrame(columns=self.renamedhcols) url2 = self.baseurl + 'hourly_88502_' + year + '.zip' if self.check_file_size(url2): print('Downloading Hourly PM25 NON-FRM: ' + url2) filename = wget.download(url2) print('') print('Unpacking: ' + url2) dfnfrm = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) dfnfrm.columns = self.renamedhcols dfnfrm['SCS'] = array( dfnfrm['State_Code'].values * 1.E7 + dfnfrm['County_Code'].values * 1.E4 + dfnfrm['Site_Num'].values, dtype='int32') else: dfnfrm = pd.DataFrame(columns=self.renamedhcols) if self.check_file_size(url1) | self.check_file_size(url2): df = pd.concat([dfnfrm, dffrm], ignore_index=True) df.loc[:, 'State_Code'] = pd.to_numeric( df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') # df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) df['Species'] = 'PM2.5' print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_PM_25_88101_' + year + '.hdf') df.to_hdf('AQS_HOURLY_PM_25_88101_' + year + '.hdf', 'df', format='table') else: df = pd.DataFrame(columns=self.renamedhcols) return df def retrieve_aqs_hourly_ozone_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_44201_' + year + '.zip' print('Downloading Hourly Ozone: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_OZONE_44201_' + year + '.hdf') df.to_hdf('AQS_HOURLY_OZONE_44201_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_pm10_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_81102_' + year + '.zip' print('Downloading Hourly PM10: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_PM_10_81102_' + year + '.hdf') df.to_hdf('AQS_HOURLY_PM_10_81102_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_so2_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_42401_' + year + '.zip' print('Downloading Hourly SO2: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_SO2_42401_' + year + '.hdf') df.to_hdf('AQS_HOURLY_SO2_42401_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_no2_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_42602_' + year + '.zip' print('Downloading Hourly NO2: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_NO2_42602_' + year + '.hdf') df.to_hdf('AQS_HOURLY_NO2_42602_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_co_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_42101_' + year + '.zip' print('Downloading Hourly CO: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_CO_42101_' + year + '.hdf') df.to_hdf('AQS_HOURLY_CO_42101_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_nonoxnoy_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_NONOxNOy_' + year + '.zip' print('Downloading Hourly NO NOx NOy: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_NONOXNOY_' + year + '.hdf') df.to_hdf('AQS_HOURLY_NONOXNOY_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_voc_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_VOCS_' + year + '.zip' print('Downloading Hourly VOCs: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df, voc=True) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_VOC_' + year + '.hdf') df.to_hdf('AQS_HOURLY_VOC_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_spec_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_SPEC_' + year + '.zip' if self.check_file_size(url): print('Downloading PM Speciation: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric( df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_SPEC_' + year + '.hdf') df.to_hdf('AQS_HOURLY_SPEC_' + year + '.hdf', 'df', format='table') return df else: return pd.DataFrame(columns=self.renamedhcols) def retrieve_aqs_hourly_wind_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_WIND_' + year + '.zip' print('Downloading AQS WIND: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_WIND_' + year + '.hdf') df.to_hdf('AQS_HOURLY_WIND_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_temp_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_TEMP_' + year + '.zip' print('Downloading AQS TEMP: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_TEMP_' + year + '.hdf') df.to_hdf('AQS_HOURLY_TEMP_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_rhdp_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_RH_DP_' + year + '.zip' print('Downloading AQS RH and DP: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] =
pd.to_numeric(df.State_Code, errors='coerce')
pandas.to_numeric
#!/usr/bin/python # coding=utf-8 import time import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import jieba import jieba.analyse import os from pyecharts import options as opts from pyecharts.charts import Map from pyecharts.charts import Pie from pyecharts.charts import Bar from pyecharts.charts import TreeMap from pyecharts.charts import Line from pyecharts.faker import Faker from pyecharts.render import make_snapshot # 使用 snapshot-selenium 渲染图片 from snapshot_selenium import snapshot from snownlp import SnowNLP def get_current_time(): return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) class MovieInfoAnalyse(object): """ TOP500电影信息分析类 """ def __init__(self): if not os.path.exists('analyse_data'): os.mkdir('analyse_data') print("所有分析结果保存在 analyse_data 文件夹下...") def make_geo_map(self): """ 生成世界地图,根据各国电影发行量 :return: """ # print(get_current_time() + '|-------> 正在生成 世界各国电影发行量 图表...') # 导入TOP500电影数据 csv_path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir, "moviespider", "movie_info_top500.csv")) rows = pd.read_csv(csv_path, encoding='utf-8', dtype=str) # 分析并统计数据 col_country = rows['国别'].to_frame() res = col_country.groupby('国别')['国别'].count().sort_values(ascending=False) raw_data = [i for i in res.items()] # 导入映射数据,英文名 -> 中文名 country_name = pd.read_json('countries_zh_to_en.json', orient='index') stand_data = [i for i in country_name[0].items()] # 数据转换 res_code = [] for raw_country in raw_data: for stand_country in stand_data: if stand_country[1] in raw_country[0]: res_code.append(stand_country[0]) code = pd.DataFrame(res_code).groupby(0)[0].count().sort_values(ascending=False) data = [] for k, v in code.items(): data.append([k, v]) # 制作图表 c = Map() c.add("电影发行量", data, "world") c.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) c.set_global_opts(title_opts=opts.TitleOpts(title="电影TOP500榜单中 - 世界各国电影发行量"), visualmap_opts=opts.VisualMapOpts(max_=55)) htmlPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "世界各国电影发行量.html")) pngPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "世界各国电影发行量.png")) # 生成html c.render(htmlPath) # 生成png # make_snapshot(snapshot, c.render(), pngPath) # print(get_current_time() + '|-------> 已生成 世界各国电影发行量 图表...') return c def make_pid_charts(self): """ 根据电影类型生成饼图 :return: """ # print(get_current_time() + '|-------> 正在生成 各类型占比 图表...') # 导入数据并初始化 csv_path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir, "moviespider", "movie_info_top500.csv")) rows = pd.read_csv(csv_path, encoding='utf-8', dtype=str) to_drop = ['名称', '导演', '演员', '国别', '年份', '语言', '评分', '评分人数', '五星占比', '四星占比', '三星占比', '二星占比', '一星占比', '短评数', '简介'] res = rows.drop(to_drop, axis=1) # 数据分割 type_list = [] for i in res.itertuples(): for j in i[1].split(','): type_list.append(j) # 数据统计 df = pd.DataFrame(type_list, columns=['类型']) res = df.groupby('类型')['类型'].count().sort_values(ascending=False) res_list = [] for i in res.items(): res_list.append(i) # 生成饼图 c = Pie() c.add("", res_list, center=["40%", "55%"], ) c.set_global_opts( title_opts=opts.TitleOpts(title="电影TOP500榜单中 - 各类型占比"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"), ) c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")) htmlPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "各类型占比.html")) pngPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "各类型占比.png")) # 生成html c.render(htmlPath) # 生成png # make_snapshot(snapshot, c.render(), pngPath) # print(get_current_time() + '|-------> 已生成 各类型占比 图表...') return c def make_relase_year_bar(self): """ 生成各年份电影发行量柱状图 :return: """ # print(get_current_time() + '|-------> 正在生成 各年份电影发行量 图表...') # 导入数据并初始化 csv_path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir, "moviespider", "movie_info_top500.csv")) rows = pd.read_csv(csv_path, encoding='utf-8', dtype=str) to_drop = ['名称', '导演', '演员', '国别', '类型', '语言', '评分', '评分人数', '五星占比', '四星占比', '三星占比', '二星占比', '一星占比', '短评数', '简介'] res = rows.drop(to_drop, axis=1) # 数据分析 res_by = res.groupby('年份')['年份'].count().sort_values(ascending=False) res_by2 = res_by.sort_index(ascending=False) type(res_by2) years = [] datas = [] for k, v in res_by2.items(): years.append(k) datas.append(v) # 生成图标 c = Bar() c.add_xaxis(years) c.add_yaxis("发行电影数量", datas, color=Faker.rand_color()) c.set_global_opts( title_opts=opts.TitleOpts(title="电影TOP500榜单中 - 各年份电影发行量"), datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")], ) htmlPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "各年份电影发行量.html")) pngPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "各年份电影发行量.png")) # 生成html c.render(htmlPath) # 生成png # make_snapshot(snapshot, c.render(), pngPath) # print(get_current_time() + '|-------> 已生成 各年份电影发行量 图表...') return c def make_star_treemap(self): """ 根据演员参演电影数生成矩形树图 :return: """ # print(get_current_time() + '|-------> 正在生成 演员参演电影数 图表...') # 导入数据并初始化 csv_path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir, "moviespider", "movie_info_top500.csv")) rows = pd.read_csv(csv_path, encoding='utf-8', dtype=str) # rows = pd.read_csv('../comments/movie_info_top500.csv', encoding='utf-8', dtype=str) to_drop = ['名称', '导演', '年份', '国别', '类型', '语言', '评分', '评分人数', '五星占比', '四星占比', '三星占比', '二星占比', '一星占比', '短评数', '简介'] res = rows.drop(to_drop, axis=1) # 数据分割 all_star_list = [] for i in res.itertuples(): # print(i[1] + '\n') for j in i[1].split(','): all_star_list.append(j) # 数据统计 df = pd.DataFrame(all_star_list, columns=['演员']) res = df.groupby('演员')['演员'].count().sort_values(ascending=False) all_star_list = [] for i in res.items(): if i[1] > 4: all_star_list.append({"value": i[1], "name": i[0]}) # 生成图标 c = TreeMap() c.add("参演电影数", all_star_list) c.set_global_opts(title_opts=opts.TitleOpts(title="电影TOP500榜单中 - 演员参演电影数", subtitle="至少参演5部影评以上")) htmlPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "演员参演电影数.html")) pngPath = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), "analyse_data", "演员参演电影数.png")) # 生成html c.render(htmlPath) # 生成png # make_snapshot(snapshot, c.render(), pngPath) # print(get_current_time() + '|-------> 已生成 演员参演电影数 图表...') return c def make_sentiments_line(self): csv_path = os.path.abspath(os.path.join(os.path.dirname("__file__"), os.path.pardir, "moviespider", "comment_data", "极速车王.csv")) # csv_path = os.path.abspath(os.path.join("D:\\MoviesAnalyse", "moviespider", "comment_data", "极速车王.csv")) df =
pd.read_csv(csv_path)
pandas.read_csv
''' example of loading FinMind api ''' from FinMind.Data import Load import requests import pandas as pd url = 'http://finmindapi.servebeer.com/api/data' list_url = 'http://finmindapi.servebeer.com/api/datalist' translate_url = 'http://finmindapi.servebeer.com/api/translation' '''----------------TaiwanStockInfo----------------''' form_data = {'dataset':'TaiwanStockInfo'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockPrice----------------''' form_data = {'dataset':'TaiwanStockPrice', 'stock_id':'2317', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockPriceMinute----------------''' form_data = {'dataset':'TaiwanStockPriceMinute', 'stock_id':'2330', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------FinancialStatements----------------''' form_data = {'dataset':'FinancialStatements', 'stock_id':'2317', 'date':'2019-01-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data = Load.transpose(data) data.head() '''----------------TaiwanCashFlowsStatement----------------''' form_data = {'dataset':'TaiwanCashFlowsStatement', 'stock_id':'2330', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockStockDividend----------------''' form_data = {'dataset':'TaiwanStockStockDividend', 'stock_id':'2317', 'date':'2018-01-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockMarginPurchaseShortSale----------------''' form_data = {'dataset':'TaiwanStockMarginPurchaseShortSale', 'stock_id':'2317', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------InstitutionalInvestorsBuySell----------------''' form_data = {'dataset':'InstitutionalInvestorsBuySell', 'stock_id':'2317', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------Shareholding----------------''' form_data = {'dataset':'Shareholding', 'stock_id':'2317', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------BalanceSheet----------------''' form_data = {'dataset':'BalanceSheet', 'stock_id':'2317', 'date':'2019-01-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockHoldingSharesPer----------------''' form_data = {'dataset':'TaiwanStockHoldingSharesPer', 'stock_id':'2317', 'date':'2019-06-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockMonthRevenue----------------''' form_data = {'dataset':'TaiwanStockMonthRevenue', 'stock_id':'2317', 'date':'2019-01-01'} res = requests.post( url,verify = True, data = form_data) temp = res.json() data =
pd.DataFrame(temp['data'])
pandas.DataFrame