prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from ...cg.shapes import asShape as pShape from ...common import requires as _requires from warnings import warn @_requires("geopandas") def to_df(df, geom_col="geometry", **kw): """Convert a ``geopandas.GeoDataFrame`` into a normal ``pandas.DataFrame`` with a column containing PySAL shapes. Parameters ---------- df : geopandas.GeoDataFrame A ``geopandas.GeoDataFrame`` (or ``pandas.DataFrame``) with a column containing geo-interfaced shapes. geom_col : str The column name in ``df`` contains the geometry. Default is ``'geometry'``. **kw : dict Optional keyword arguments for ``pandas.DataFrame()``. Returns ------- df : pandas.DataFrame The data converted into a ``pandas.DataFrame`` object. See Also -------- pandas.DataFrame """ import pandas as pd from geopandas import GeoDataFrame, GeoSeries df[geom_col] = df[geom_col].apply(pShape) if isinstance(df, (GeoDataFrame, GeoSeries)): df =
pd.DataFrame(df, **kw)
pandas.DataFrame
import pandas as pd num_of_parallel_requests = 5 period = 5.0 class RequestQueue: def __init__(self): self.items =
pd.DataFrame(columns=["id", "timestamp", "shard", "load", "expected_end_time", "actual_end_time"])
pandas.DataFrame
''' The analysis module Handles the analyses of the info and data space for experiment evaluation and design. ''' from slm_lab.agent import AGENT_DATA_NAMES from slm_lab.env import ENV_DATA_NAMES from slm_lab.lib import logger, math_util, util, viz from slm_lab.spec import spec_util import numpy as np import os import pandas as pd import pydash as ps import regex as re import shutil FITNESS_COLS = ['strength', 'speed', 'stability', 'consistency'] # TODO improve to make it work with any reward mean FITNESS_STD = util.read('slm_lab/spec/_fitness_std.json') NOISE_WINDOW = 0.05 NORM_ORDER = 1 # use L1 norm in fitness vector norm MA_WINDOW = 100 logger = logger.get_logger(__name__) ''' Fitness analysis ''' def calc_strength_sr(aeb_df, rand_reward, std_reward): ''' Calculate strength for each reward as strength = (reward - rand_reward) / (std_reward - rand_reward) ''' return (aeb_df['reward'] - rand_reward) / (std_reward - rand_reward) def calc_strength(aeb_df): ''' Strength of an agent in fitness is its maximum strength_ma. Moving average is used to denoise signal. For an agent total reward at a time, calculate strength by normalizing it with a given baseline rand_reward and solution std_reward, i.e. strength = (reward - rand_reward) / (std_reward - rand_reward) **Properties:** - random agent has strength 0, standard agent has strength 1. - strength is standardized to be independent of the actual sign and scale of raw reward - scales relative to std_reward: if an agent achieve x2 std_reward, the strength is x2, and so on. This allows for standard comparison between agents on the same problem using an intuitive measurement of strength. With proper scaling by a difficulty factor, we can compare across problems of different difficulties. ''' return aeb_df['strength_ma'].max() def calc_speed(aeb_df, std_timestep): ''' Find the maximum strength_ma, and the time to first reach it. Then the strength/time divided by the standard std_strength/std_timestep is speed, i.e. speed = (max_strength_ma / timestep_to_first_reach) / (std_strength / std_timestep) **Properties:** - random agent has speed 0, standard agent has speed 1. - if both agents reach the same max strength_ma, and one reaches it in half the timesteps, it is twice as fast. - speed is standardized regardless of the scaling of absolute timesteps, or even the max strength attained This allows an intuitive measurement of learning speed and the standard comparison between agents on the same problem. ''' first_max_idx = aeb_df['strength_ma'].idxmax() # this returns the first max max_row = aeb_df.loc[first_max_idx] std_strength = 1. if max_row['total_t'] == 0: # especially for random agent speed = 0. else: speed = (max_row['strength_ma'] / max_row['total_t']) / (std_strength / std_timestep) return speed def calc_stability(aeb_df): ''' Stability = fraction of monotonically increasing elements in the denoised series of strength_ma, or 0 if strength_ma is all <= 0. **Properties:** - stable agent has value 1, unstable agent < 1, and non-solution = 0. - uses strength_ma to be more robust to noise - sharp gain in strength is considered stable - monotonically increasing implies strength can keep growing and as long as it does not fall much, it is considered stable ''' if (aeb_df['strength_ma'].values <= 0.).all(): stability = 0. else: mono_inc_sr = np.diff(aeb_df['strength_ma']) >= 0. stability = mono_inc_sr.sum() / mono_inc_sr.size return stability def calc_consistency(aeb_fitness_df): ''' Calculate the consistency of trial by the fitness_vectors of its sessions: consistency = ratio of non-outlier vectors **Properties:** - outliers are calculated using MAD modified z-score - if all the fitness vectors are zero or all strength are zero, consistency = 0 - works for all sorts of session fitness vectors, with the standard scale When an agent fails to achieve standard strength, it is meaningless to measure consistency or give false interpolation, so consistency is 0. ''' fitness_vecs = aeb_fitness_df.values if ~np.any(fitness_vecs) or ~np.any(aeb_fitness_df['strength']): # no consistency if vectors all 0 consistency = 0. elif len(fitness_vecs) == 2: # if only has 2 vectors, check norm_diff diff_norm = np.linalg.norm(np.diff(fitness_vecs, axis=0), NORM_ORDER) / np.linalg.norm(np.ones(len(fitness_vecs[0])), NORM_ORDER) consistency = diff_norm <= NOISE_WINDOW else: is_outlier_arr = math_util.is_outlier(fitness_vecs) consistency = (~is_outlier_arr).sum() / len(is_outlier_arr) return consistency def calc_epi_reward_ma(aeb_df, ckpt=None): '''Calculates the episode reward moving average with the MA_WINDOW''' rewards = aeb_df['reward'] if ckpt == 'eval': # online eval mode reward is reward_ma from avg aeb_df['reward_ma'] = rewards else: aeb_df['reward_ma'] = rewards.rolling(window=MA_WINDOW, min_periods=0, center=False).mean() return aeb_df def calc_fitness(fitness_vec): ''' Takes a vector of qualifying standardized dimensions of fitness and compute the normalized length as fitness use L1 norm for simplicity and intuititveness of linearity ''' if isinstance(fitness_vec, pd.Series): fitness_vec = fitness_vec.values elif isinstance(fitness_vec, pd.DataFrame): fitness_vec = fitness_vec.iloc[0].values std_fitness_vector = np.ones(len(fitness_vec)) fitness = np.linalg.norm(fitness_vec, NORM_ORDER) / np.linalg.norm(std_fitness_vector, NORM_ORDER) return fitness def calc_aeb_fitness_sr(aeb_df, env_name): '''Top level method to calculate fitness vector for AEB level data (strength, speed, stability)''' std = FITNESS_STD.get(env_name) if std is None: std = FITNESS_STD.get('template') logger.warn(f'The fitness standard for env {env_name} is not built yet. Contact author. Using a template standard for now.') # calculate the strength sr and the moving-average (to denoise) first before calculating fitness aeb_df['strength'] = calc_strength_sr(aeb_df, std['rand_epi_reward'], std['std_epi_reward']) aeb_df['strength_ma'] = aeb_df['strength'].rolling(MA_WINDOW, min_periods=0, center=False).mean() strength = calc_strength(aeb_df) speed = calc_speed(aeb_df, std['std_timestep']) stability = calc_stability(aeb_df) aeb_fitness_sr = pd.Series({ 'strength': strength, 'speed': speed, 'stability': stability}) return aeb_fitness_sr ''' Checkpoint and early termination analysis ''' def get_reward_mas(agent, name='eval_reward_ma'): '''Return array of the named reward_ma for all of an agent's bodies.''' bodies = getattr(agent, 'nanflat_body_a', [agent.body]) return np.array([getattr(body, name) for body in bodies], dtype=np.float16) def get_std_epi_rewards(agent): '''Return array of std_epi_reward for each of the environments.''' bodies = getattr(agent, 'nanflat_body_a', [agent.body]) return np.array([ps.get(FITNESS_STD, f'{body.env.name}.std_epi_reward') for body in bodies], dtype=np.float16) def new_best(agent): '''Check if algorithm is now the new best result, then update the new best''' best_reward_mas = get_reward_mas(agent, 'best_reward_ma') eval_reward_mas = get_reward_mas(agent, 'eval_reward_ma') best = (eval_reward_mas >= best_reward_mas).all() if best: bodies = getattr(agent, 'nanflat_body_a', [agent.body]) for body in bodies: body.best_reward_ma = body.eval_reward_ma return best def all_solved(agent): '''Check if envs have all been solved using std from slm_lab/spec/_fitness_std.json''' eval_reward_mas = get_reward_mas(agent, 'eval_reward_ma') std_epi_rewards = get_std_epi_rewards(agent) solved = ( not np.isnan(std_epi_rewards).any() and (eval_reward_mas >= std_epi_rewards).all() ) return solved def is_unfit(fitness_df, session): '''Check if a fitness_df is unfit. Used to determine of trial should stop running more sessions''' if FITNESS_STD.get(session.spec['env'][0]['name']) is None: return False # fitness not known mean_fitness_df = calc_mean_fitness(fitness_df) return mean_fitness_df['strength'].iloc[0] <= NOISE_WINDOW ''' Analysis interface methods ''' def save_spec(spec, info_space, unit='experiment'): '''Save spec to proper path. Called at Experiment or Trial init.''' prepath = util.get_prepath(spec, info_space, unit) util.write(spec, f'{prepath}_spec.json') def calc_mean_fitness(fitness_df): '''Method to calculated mean over all bodies for a fitness_df''' return fitness_df.mean(axis=1, level=3) def get_session_data(session, body_df_kind='eval', tmp_space_session_sub=False): ''' Gather data from session from all the bodies Depending on body_df_kind, will use eval_df or train_df ''' session_data = {} for aeb, body in util.ndenumerate_nonan(session.aeb_space.body_space.data): aeb_df = body.eval_df if body_df_kind == 'eval' else body.train_df # TODO tmp substitution since SpaceSession does not have run_eval_episode yet if tmp_space_session_sub: aeb_df = body.train_df session_data[aeb] = aeb_df.copy() return session_data def calc_session_fitness_df(session, session_data): '''Calculate the session fitness df''' session_fitness_data = {} for aeb in session_data: aeb_df = session_data[aeb] aeb_df = calc_epi_reward_ma(aeb_df, ps.get(session.info_space, 'ckpt')) util.downcast_float32(aeb_df) body = session.aeb_space.body_space.data[aeb] aeb_fitness_sr = calc_aeb_fitness_sr(aeb_df, body.env.name) aeb_fitness_df = pd.DataFrame([aeb_fitness_sr], index=[session.index]) aeb_fitness_df = aeb_fitness_df.reindex(FITNESS_COLS[:3], axis=1) session_fitness_data[aeb] = aeb_fitness_df # form multi_index df, then take mean across all bodies session_fitness_df = pd.concat(session_fitness_data, axis=1) mean_fitness_df = calc_mean_fitness(session_fitness_df) session_fitness = calc_fitness(mean_fitness_df) logger.info(f'Session mean fitness: {session_fitness}\n{mean_fitness_df}') return session_fitness_df def calc_trial_fitness_df(trial): ''' Calculate the trial fitness df by aggregating from the collected session_data_dict (session_fitness_df's). Adds a consistency dimension to fitness vector. ''' trial_fitness_data = {} try: all_session_fitness_df = pd.concat(list(trial.session_data_dict.values())) except ValueError as e: logger.exception('Sessions failed, no data to analyze. Check stack trace above') for aeb in util.get_df_aeb_list(all_session_fitness_df): aeb_fitness_df = all_session_fitness_df.loc[:, aeb] aeb_fitness_sr = aeb_fitness_df.mean() consistency = calc_consistency(aeb_fitness_df) aeb_fitness_sr = aeb_fitness_sr.append(pd.Series({'consistency': consistency})) aeb_fitness_df = pd.DataFrame([aeb_fitness_sr], index=[trial.index]) aeb_fitness_df = aeb_fitness_df.reindex(FITNESS_COLS, axis=1) trial_fitness_data[aeb] = aeb_fitness_df # form multi_index df, then take mean across all bodies trial_fitness_df = pd.concat(trial_fitness_data, axis=1) mean_fitness_df = calc_mean_fitness(trial_fitness_df) trial_fitness_df = mean_fitness_df trial_fitness = calc_fitness(mean_fitness_df) logger.info(f'Trial mean fitness: {trial_fitness}\n{mean_fitness_df}') return trial_fitness_df def plot_session(session_spec, info_space, session_data): '''Plot the session graph, 2 panes: reward, loss & explore_var. Each aeb_df gets its own color''' max_tick_unit = ps.get(session_spec, 'meta.max_tick_unit') aeb_count = len(session_data) palette = viz.get_palette(aeb_count) fig = viz.tools.make_subplots(rows=3, cols=1, shared_xaxes=True, print_grid=False) for idx, (a, e, b) in enumerate(session_data): aeb_str = f'{a}{e}{b}' aeb_df = session_data[(a, e, b)] aeb_df.fillna(0, inplace=True) # for saving plot, cant have nan fig_1 = viz.plot_line(aeb_df, 'reward_ma', max_tick_unit, legend_name=aeb_str, draw=False, trace_kwargs={'legendgroup': aeb_str, 'line': {'color': palette[idx]}}) fig.append_trace(fig_1.data[0], 1, 1) fig_2 = viz.plot_line(aeb_df, ['loss'], max_tick_unit, y2_col=['explore_var'], trace_kwargs={'legendgroup': aeb_str, 'showlegend': False, 'line': {'color': palette[idx]}}, draw=False) fig.append_trace(fig_2.data[0], 2, 1) fig.append_trace(fig_2.data[1], 3, 1) fig.layout['xaxis1'].update(title=max_tick_unit, zerolinewidth=1) fig.layout['yaxis1'].update(fig_1.layout['yaxis']) fig.layout['yaxis1'].update(domain=[0.55, 1]) fig.layout['yaxis2'].update(fig_2.layout['yaxis']) fig.layout['yaxis2'].update(showgrid=False, domain=[0, 0.45]) fig.layout['yaxis3'].update(fig_2.layout['yaxis2']) fig.layout['yaxis3'].update(overlaying='y2', anchor='x2') fig.layout.update(ps.pick(fig_1.layout, ['legend'])) fig.layout.update(title=f'session graph: {session_spec["name"]} t{info_space.get("trial")} s{info_space.get("session")}', width=500, height=600) viz.plot(fig) return fig def gather_aeb_rewards_df(aeb, session_datas, max_tick_unit): '''Gather rewards from each session for a body into a df''' aeb_session_rewards = {} for s, session_data in session_datas.items(): aeb_df = session_data[aeb] aeb_reward_sr = aeb_df['reward_ma'] aeb_reward_sr.index = aeb_df[max_tick_unit] # guard for duplicate eval result aeb_reward_sr = aeb_reward_sr[~aeb_reward_sr.index.duplicated()] if util.in_eval_lab_modes(): # guard for eval appending possibly not ordered aeb_reward_sr.sort_index(inplace=True) aeb_session_rewards[s] = aeb_reward_sr aeb_rewards_df = pd.DataFrame(aeb_session_rewards) return aeb_rewards_df def build_aeb_reward_fig(aeb_rewards_df, aeb_str, color, max_tick_unit): '''Build the aeb_reward envelope figure''' mean_sr = aeb_rewards_df.mean(axis=1) std_sr = aeb_rewards_df.std(axis=1).fillna(0) max_sr = mean_sr + std_sr min_sr = mean_sr - std_sr x = aeb_rewards_df.index.tolist() max_y = max_sr.tolist() min_y = min_sr.tolist() envelope_trace = viz.go.Scatter( x=x + x[::-1], y=max_y + min_y[::-1], fill='tozerox', fillcolor=viz.lower_opacity(color, 0.2), line=dict(color='rgba(0, 0, 0, 0)'), showlegend=False, legendgroup=aeb_str, ) df =
pd.DataFrame({max_tick_unit: x, 'mean_reward': mean_sr})
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, to_datetime, ) import pandas._testing as tm import pandas.tseries.offsets as offsets class TestRollingTS: # rolling time-series friendly # xref GH13327 def setup_method(self, method): self.regular = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") self.ragged = DataFrame({"B": range(5)}) self.ragged.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] def test_doc_string(self): df = DataFrame( {"B": [0, 1, 2, np.nan, 4]}, index=[ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ], ) df df.rolling("2s").sum() def test_invalid_window_non_int(self): # not a valid freq msg = "passed window foobar is not compatible with a datetimelike index" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="foobar") # not a datetimelike index msg = "window must be an integer" with pytest.raises(ValueError, match=msg): self.regular.reset_index().rolling(window="foobar") @pytest.mark.parametrize("freq", ["2MS", offsets.MonthBegin(2)]) def test_invalid_window_nonfixed(self, freq): # non-fixed freqs msg = "\\<2 \\* MonthBegins\\> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): self.regular.rolling(window=freq) @pytest.mark.parametrize("freq", ["1D", offsets.Day(2), "2ms"]) def test_valid_window(self, freq): self.regular.rolling(window=freq) @pytest.mark.parametrize("minp", [1.0, "foo", np.array([1, 2, 3])]) def test_invalid_minp(self, minp): # non-integer min_periods msg = ( r"local variable 'minp' referenced before assignment|" "min_periods must be an integer" ) with pytest.raises(ValueError, match=msg): self.regular.rolling(window="1D", min_periods=minp) def test_invalid_center_datetimelike(self): # center is not implemented msg = "center is not implemented for datetimelike and offset based windows" with pytest.raises(NotImplementedError, match=msg): self.regular.rolling(window="1D", center=True) def test_on(self): df = self.regular # not a valid column msg = ( r"invalid on specified as foobar, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling(window="2s", on="foobar") # column is valid df = df.copy() df["C"] = date_range("20130101", periods=len(df)) df.rolling(window="2d", on="C").sum() # invalid columns msg = "window must be an integer" with pytest.raises(ValueError, match=msg): df.rolling(window="2d", on="B") # ok even though on non-selected df.rolling(window="2d", on="C").B.sum() def test_monotonic_on(self): # on/index must be monotonic df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) assert df.A.is_monotonic df.rolling("2s", on="A").sum() df = df.set_index("A") assert df.index.is_monotonic df.rolling("2s").sum() def test_non_monotonic_on(self): # GH 19248 df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) df = df.set_index("A") non_monotonic_index = df.index.to_list() non_monotonic_index[0] = non_monotonic_index[3] df.index = non_monotonic_index assert not df.index.is_monotonic msg = "index must be monotonic" with pytest.raises(ValueError, match=msg): df.rolling("2s").sum() df = df.reset_index() msg = ( r"invalid on specified as A, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling("2s", on="A").sum() def test_frame_on(self): df = DataFrame( {"B": range(5), "C": date_range("20130101 09:00:00", periods=5, freq="3s")} ) df["A"] = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] # we are doing simulating using 'on' expected = df.set_index("A").rolling("2s").B.sum().reset_index(drop=True) result = df.rolling("2s", on="A").B.sum() tm.assert_series_equal(result, expected) # test as a frame # we should be ignoring the 'on' as an aggregation column # note that the expected is setting, computing, and resetting # so the columns need to be switched compared # to the actual result where they are ordered as in the # original expected = ( df.set_index("A").rolling("2s")[["B"]].sum().reset_index()[["B", "A"]] ) result = df.rolling("2s", on="A")[["B"]].sum() tm.assert_frame_equal(result, expected) def test_frame_on2(self): # using multiple aggregation columns df = DataFrame( { "A": [0, 1, 2, 3, 4], "B": [0, 1, 2, np.nan, 4], "C": Index( [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] ), }, columns=["A", "C", "B"], ) expected1 = DataFrame( {"A": [0.0, 1, 3, 3, 7], "B": [0, 1, 3, np.nan, 4], "C": df["C"]}, columns=["A", "C", "B"], ) result = df.rolling("2s", on="C").sum() expected = expected1 tm.assert_frame_equal(result, expected) expected = Series([0, 1, 3, np.nan, 4], name="B") result = df.rolling("2s", on="C").B.sum() tm.assert_series_equal(result, expected) expected = expected1[["A", "B", "C"]] result = df.rolling("2s", on="C")[["A", "B", "C"]].sum() tm.assert_frame_equal(result, expected) def test_basic_regular(self): df = self.regular.copy() df.index = date_range("20130101", periods=5, freq="D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="1D").sum() tm.assert_frame_equal(result, expected) df.index = date_range("20130101", periods=5, freq="2D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1).sum() result = df.rolling(window="2D").sum() tm.assert_frame_equal(result, expected) def test_min_periods(self): # compare for min_periods df = self.regular # these slightly different expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s", min_periods=1).sum() tm.assert_frame_equal(result, expected) def test_closed(self): # xref GH13965 df = DataFrame( {"A": [1] * 5}, index=[ Timestamp("20130101 09:00:01"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:04"), Timestamp("20130101 09:00:06"), ], ) # closed must be 'right', 'left', 'both', 'neither' msg = "closed must be 'right', 'left', 'both' or 'neither'" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="2s", closed="blabla") expected = df.copy() expected["A"] = [1.0, 2, 2, 2, 1] result = df.rolling("2s", closed="right").sum() tm.assert_frame_equal(result, expected) # default should be 'right' result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [1.0, 2, 3, 3, 2] result = df.rolling("2s", closed="both").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 2, 2, 1] result = df.rolling("2s", closed="left").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 1, 1, np.nan] result = df.rolling("2s", closed="neither").sum() tm.assert_frame_equal(result, expected) def test_ragged_sum(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 3, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, np.nan, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s").sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=3).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 10] tm.assert_frame_equal(result, expected) def test_ragged_mean(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_median(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_quantile(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_std(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.5] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.707107, 1.0, 1.0, 1.290994] tm.assert_frame_equal(result, expected) def test_ragged_var(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.25] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.0] tm.assert_frame_equal(result, expected) def test_ragged_skew(self): df = self.ragged result = df.rolling(window="3s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 2 + [0.0, 0.0, 0.0] tm.assert_frame_equal(result, expected) def test_ragged_kurt(self): df = self.ragged result = df.rolling(window="3s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 4 + [-1.2] tm.assert_frame_equal(result, expected) def test_ragged_count(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 1, 1, 1] tm.assert_frame_equal(result, expected) df = self.ragged result = df.rolling(window="1s").count() tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 2, 1, 2] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).count() expected = df.copy() expected["B"] = [np.nan, np.nan, 2, np.nan, 2] tm.assert_frame_equal(result, expected) def test_regular_min(self): df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [0.0, 1, 2, 3, 4]} ).set_index("A") result = df.rolling("1s").min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [5, 4, 3, 4, 5]} ).set_index("A") tm.assert_frame_equal(result, expected) result = df.rolling("2s").min() expected = df.copy() expected["B"] = [5.0, 4, 3, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling("5s").min() expected = df.copy() expected["B"] = [5.0, 4, 3, 3, 3] tm.assert_frame_equal(result, expected) def test_ragged_min(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 1, 1, 3, 3] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 0, 0, 1, 1] tm.assert_frame_equal(result, expected) def test_perf_min(self): N = 10000 dfp = DataFrame( {"B": np.random.randn(N)}, index=date_range("20130101", periods=N, freq="s") ) expected = dfp.rolling(2, min_periods=1).min() result = dfp.rolling("2s").min() assert ((result - expected) < 0.01).all().bool() expected = dfp.rolling(200, min_periods=1).min() result = dfp.rolling("200s").min() assert ((result - expected) < 0.01).all().bool() def test_ragged_max(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "freq, op, result_data", [ ("ms", "min", [0.0] * 10), ("ms", "mean", [0.0] * 9 + [2.0 / 9]), ("ms", "max", [0.0] * 9 + [2.0]), ("s", "min", [0.0] * 10), ("s", "mean", [0.0] * 9 + [2.0 / 9]), ("s", "max", [0.0] * 9 + [2.0]), ("min", "min", [0.0] * 10), ("min", "mean", [0.0] * 9 + [2.0 / 9]), ("min", "max", [0.0] * 9 + [2.0]), ("h", "min", [0.0] * 10), ("h", "mean", [0.0] * 9 + [2.0 / 9]), ("h", "max", [0.0] * 9 + [2.0]), ("D", "min", [0.0] * 10), ("D", "mean", [0.0] * 9 + [2.0 / 9]), ("D", "max", [0.0] * 9 + [2.0]), ], ) def test_freqs_ops(self, freq, op, result_data): # GH 21096 index = date_range(start="2018-1-1 01:00:00", freq=f"1{freq}", periods=10) s = Series(data=0, index=index) s.iloc[1] = np.nan s.iloc[-1] = 2 result = getattr(s.rolling(window=f"10{freq}"), op)() expected = Series(data=result_data, index=index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ "sum", "mean", pytest.param( "count", marks=pytest.mark.filterwarnings("ignore:min_periods:FutureWarning"), ), "median", "std", "var", "kurt", "skew", "min", "max", ], ) def test_all(self, f): # simple comparison of integer vs time-based windowing df = self.regular * 2 er = df.rolling(window=1) r = df.rolling(window="1s") result = getattr(r, f)() expected = getattr(er, f)() tm.assert_frame_equal(result, expected) result = r.quantile(0.5) expected = er.quantile(0.5) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "f", [ "sum", "mean", "count", "median", "std", "var", "kurt", "skew", "min", "max", ], ) def test_all2(self, f): # more sophisticated comparison of integer vs. # time-based windowing df = DataFrame( {"B": np.arange(50)}, index=date_range("20130101", periods=50, freq="H") ) # in-range data dft = df.between_time("09:00", "16:00") r = dft.rolling(window="5H") result = getattr(r, f)() # we need to roll the days separately # to compare with a time-based roll # finally groupby-apply will return a multi-index # so we need to drop the day def agg_by_day(x): x = x.between_time("09:00", "16:00") return getattr(x.rolling(5, min_periods=1), f)() expected = ( df.groupby(df.index.day).apply(agg_by_day).reset_index(level=0, drop=True) ) tm.assert_frame_equal(result, expected) def test_groupby_monotonic(self): # GH 15130 # we don't need to validate monotonicity when grouping data = [ ["David", "1/1/2015", 100], ["David", "1/5/2015", 500], ["David", "5/30/2015", 50], ["David", "7/25/2015", 50], ["Ryan", "1/4/2014", 100], ["Ryan", "1/19/2015", 500], ["Ryan", "3/31/2016", 50], ["Joe", "7/1/2015", 100], ["Joe", "9/9/2015", 500], ["Joe", "10/15/2015", 50], ] df = DataFrame(data=data, columns=["name", "date", "amount"]) df["date"] = to_datetime(df["date"]) expected = ( df.set_index("date") .groupby("name") .apply(lambda x: x.rolling("180D")["amount"].sum()) ) result = df.groupby("name").rolling("180D", on="date")["amount"].sum() tm.assert_series_equal(result, expected) def test_non_monotonic(self): # GH 13966 (similar to #15130, closed by #15175) dates = date_range(start="2016-01-01 09:30:00", periods=20, freq="s") df = DataFrame( { "A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.concatenate((dates, dates)), "C": np.arange(40), } ) result = df.groupby("A").rolling("4s", on="B").C.mean() expected = ( df.set_index("B").groupby("A").apply(lambda x: x.rolling("4s")["C"].mean()) ) tm.assert_series_equal(result, expected) df2 = df.sort_values("B") result = df2.groupby("A").rolling("4s", on="B").C.mean() tm.assert_series_equal(result, expected) def test_rolling_cov_offset(self): # GH16058 idx = date_range("2017-01-01", periods=24, freq="1h") ss = Series(np.arange(len(idx)), index=idx) result = ss.rolling("2h").cov() expected = Series([np.nan] + [0.5] * (len(idx) - 1), index=idx) tm.assert_series_equal(result, expected) expected2 = ss.rolling(2, min_periods=1).cov() tm.assert_series_equal(result, expected2) result = ss.rolling("3h").cov() expected = Series([np.nan, 0.5] + [1.0] * (len(idx) - 2), index=idx) tm.assert_series_equal(result, expected) expected2 = ss.rolling(3, min_periods=1).cov() tm.assert_series_equal(result, expected2) def test_rolling_on_decreasing_index(self): # GH-19248, GH-32385 index = [ Timestamp("20190101 09:00:30"), Timestamp("20190101 09:00:27"), Timestamp("20190101 09:00:20"), Timestamp("20190101 09:00:18"), Timestamp("20190101 09:00:10"), ] df = DataFrame({"column": [3, 4, 4, 5, 6]}, index=index) result = df.rolling("5s").min() expected =
DataFrame({"column": [3.0, 3.0, 4.0, 4.0, 6.0]}, index=index)
pandas.DataFrame
""" author: <NAME> date: 2020-11-27 This script imports the train and test csv from the proccessed data folder and performing machine learning modelling and alaysis. Usage: machine_learning_analysis.py --in_train=<in_train> --in_test=<in_test> --out_path=<out_path> Options: --in_train=<in_train> path including filename of the input train data file to process (this is a required option) --in_test=<in_test> path including filename of the input test data file to process (this is a required option) --out_path=<out_path> path to where the figures and tables will be written to (this is a required option) Example: python machine_learning_analysis.py --in_train="../data/processed/bank-additional-full_train.csv" --in_test="../data/processed/bank-additional-full_test.csv" --out_path="../results/" """ #Standards import os import numpy as np import pandas as pd import string from collections import deque from docopt import docopt #Plots import matplotlib.pyplot as plt import altair as alt import seaborn as sns # classifiers / models from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge, RidgeCV, RidgeClassifier from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC, SVR # Data, preprocessing and pipeline #Pro from sklearn import datasets from sklearn.feature_extraction.text import CountVectorizer from sklearn.impute import SimpleImputer from sklearn.preprocessing import ( OneHotEncoder, OrdinalEncoder, PolynomialFeatures, StandardScaler, ) from sklearn.pipeline import Pipeline, make_pipeline from sklearn.compose import ( ColumnTransformer, TransformedTargetRegressor, make_column_transformer, ) # metrics for class imbalance from sklearn.metrics import ( accuracy_score, classification_report, confusion_matrix, plot_confusion_matrix, f1_score, make_scorer, precision_score, recall_score, ) # hyperparameter optimization from sklearn.model_selection import ( GridSearchCV, RandomizedSearchCV, ShuffleSplit, cross_val_score, cross_validate, train_test_split, ) # other # ignore warning import warnings warnings.filterwarnings('ignore') opt = docopt(__doc__) def main(in_train, in_test, out_path): """ Take in the data, perform preprocessing to model fitting, generate analysis with figures and table and output to the given path. Parameters ---------- in_train : string path including filename of the input train data file to process in_test : string path including filename of the input test data file to process out_path : string path to where the processed data will be written to Example ---------- main("../data/processed/bank-additional-full_train.csv", "../data/processed/bank-additional-full_test.csv", "../result") """ # load in data (should be full data before split) ##need update once clean data script is finalized. train_df = pd.read_csv(in_train, sep=',') test_df = pd.read_csv(in_test, sep=',') # load in data (should be full data before split) ## Removed once clean data script is finalized. # df2 = df.copy() # df2.loc[df['y'] == 'no', 'target'] = 0 # df2.loc[df['y'] == 'yes', 'target'] = 1 # load in data (should be full data before split) ## need to update in directly taking in train df and test df from data clean sript # train_df, test_df = train_test_split(df2, test_size = 0.20, random_state=123) # Define types of features: numeric, categorical, ordinal for now. No drop features ## need update on drop feature after data clean. numeric_features = ["age", "campaign", "pdays", "previous", "emp.var.rate", "cons.price.idx", "cons.conf.idx", "euribor3m", "nr.employed", "duration"] categorical_features = ["job", "poutcome", "month", "day_of_week", "contact","marital", "default", "housing", "loan"] ordinal_features = ["education"] education_ordering = ['illiterate', 'basic.4y','basic.6y','basic.9y','high.school', 'professional.course','university.degree', 'unknown'] drop_features = [] target = ["y"] # drop target for train and test data. X_train = train_df.drop(columns=target) y_train = train_df[target] X_test = test_df.drop(columns=target) y_test = test_df[target] # Define preprocessing transformers (preprocessors - column transformer) numeric_transformer = make_pipeline( SimpleImputer(strategy="median"), StandardScaler() ) ordinal_transformer = make_pipeline( SimpleImputer(strategy="most_frequent"), OrdinalEncoder(categories=[education_ordering]) ) categorical_transformer = make_pipeline( SimpleImputer(strategy="constant", fill_value="missing"), OneHotEncoder(handle_unknown="ignore", sparse=False) ) preprocessor = make_column_transformer( ("drop", drop_features), (numeric_transformer, numeric_features), (ordinal_transformer, ordinal_features), (categorical_transformer, categorical_features) ) # A function to store mean cross-validation validation values def store_cross_val_results(model_name, scores, results_dict): results_dict[model_name] = { "Accuracy": "{:0.3f}".format(np.mean(scores["test_accuracy"])), # "mean_fit_time (s)": "{:0.4f}".format(np.mean(scores["fit_time"])), #since it's not critical to get the result within an hour or so, fit and score time would not matter much # "mean_score_time (s)": "{:0.4f}".format(np.mean(scores["score_time"])), "Recall": "{:0.3f}".format(np.mean(scores["test_recall"])), "Precision": "{:0.3f}".format(np.mean(scores["test_precision"])), "f1": "{:0.3f}".format(np.mean(scores["test_f1"])), "AP": "{:0.3f}".format(np.mean(scores["test_average_precision"])), "Roc_Auc": "{:0.3f}".format(np.mean(scores["test_roc_auc"])), } # A summary dictionary to store the scores for different models. results_df = {} # Define model metrics, fit and score the baseline model: Dummy Classifier scoring=["accuracy", "f1", "recall", "precision", "average_precision", "roc_auc"] pipe = make_pipeline(preprocessor, DummyClassifier(strategy="most_frequent")) scores = cross_validate(pipe, X_train, y_train, return_train_score=True, scoring=scoring) summary = store_cross_val_results("Dummy", scores, results_df)
pd.DataFrame(results_df)
pandas.DataFrame
import csv import re import pandas as pd from os.path import join, exists from os import mkdir from shutil import rmtree from os import remove as remove_file from sys import stdout import zipfile import ntpath from .. enums import POSSIBLE_INPUTS, POSSIBLE_COMMANDS, INPUT_DEFAULTS, PATH_TO_STORAGE from .. sys_functions.find_files_in_folder import find_files from .. sys_functions.get_inputs import get_path_to_FEB_files, get_optional_input from .. logger import console_log as log # define headers HEADER_PAR = ['a','b'] HEADER_TIM = ['time'] HEADER_STR = ['sx','sy','sz','sxy','sxz','syz'] HEADER_DIS = ['ux','uy','uz'] HEADER_POS = ['x','y','z'] HEADER_FAL = ['fail'] # define last simulation timestamp LAST_TIMESTAMP = 0.2 def includeNodeNumberInHeader(header): clock = 0 counter = 0 new_header = [] for _ in range(8): for i in range(len(header)): if clock == 0: counter += 1 new_header.append(header[i] + "_" + str(counter)) clock = clock + 1 if clock < 2 else 0 return new_header def create_header(): a = HEADER_PAR a.extend(HEADER_TIM) a.extend(HEADER_FAL) a.extend(includeNodeNumberInHeader(HEADER_POS)) a.extend(includeNodeNumberInHeader(HEADER_DIS)) a.extend(HEADER_STR) return a def decode_data(file): data = {} with open(file, 'r') as datafile: for line in datafile: if line.find("*Time") != -1: time = float(line.split("=")[1]) data[time] = [] elif line.find("*") == -1: # if line.find(","): # line = line.replace(",","") # line.replace("\\n","") line = re.sub(",", '', line) line = re.sub("\n", '', line) str_data = line[2:].split(" ") data[time].extend([float(s) for s in str_data]) return data def get_param_val(file): params = {} with open(file, 'r',newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') for i, row in enumerate(spamreader): params[i] = [float(v) for v in row[-1].split(";")] return params def compile_data(files): frames = [] total_files = len(files) for i, (fp, _, _) in enumerate(files): ndf = pd.read_pickle(fp) frames.append(ndf) log.log_message("compiled pickle: ", (i + 1) /total_files) df = pd.concat(frames, ignore_index=True) return df def make_pickle(inputs): function_name = 'MAKE_PICKLE' log.log_step("\n== {} ==\n".format(function_name)) # Get optional Inputs inp_folder = get_optional_input(inputs, 'INPUT_FOLDER', function_name) out_folder = get_optional_input(inputs, 'OUTPUT_FOLDER', function_name) inpf_name = ntpath.basename(inp_folder) temp_folder = join(inp_folder,"tmp") if not exists(temp_folder): mkdir(temp_folder) # zipfile handler zipf = zipfile.ZipFile(join(inp_folder,'zipped_data.zip'), 'w', zipfile.ZIP_DEFLATED) files = find_files(inp_folder, ("fileFormat","txt")) csv_files = find_files(inp_folder, ("fileFormat","csv")) for (fp, ff, fn) in csv_files: if fn.find('modified_param_log') != -1: param_file = (fp, ff, fn) else: raise(AssertionError("modified_params_log file not found.")) # ----------------- # organize files: str_files = {} dis_files = {} pos_files = {} log.log_message("-- Sorting files") for (fp, ff, fn) in files: fs = fn.split("_") if len(fs) == 2: key = "initial" else: key = int(fs[-1]) if fs[0] == 'displacement': dis_files[key] = (fp, ff, fn) elif fs[0] == 'stress': str_files[key] = (fp, ff, fn) elif fs[0] == 'position': pos_files[key] = (fp, ff, fn) files = [str_files, dis_files, pos_files] # ----------------- # Determining critial values log.log_message("-- Checking lengths") lengths = [len(l) for l in files] idxmin = lengths.index(min(lengths)) baseDict = files[idxmin] baseDictLength = len(baseDict) # get param values log.log_message("-- Getting params") params = get_param_val(param_file[0]) # ----------------- # create dataframe log.log_message("-- Creating dataframe") header = create_header() df = pd.DataFrame(columns=header) rowCounter = 0 fileCounter = 0 # ----------------- # creating temporary pickles log.log_message("-- Filling dataframe") for i, key in enumerate(baseDict): if key in params: str_data = decode_data(str_files[key][0]) dis_data = decode_data(dis_files[key][0]) pos_data = decode_data(pos_files[key][0]) org_keys = sorted(str_data.keys()) if len(org_keys) > 0: last_timestamp = org_keys[-1] failed = 1 if float(last_timestamp) != LAST_TIMESTAMP else 0 for time in org_keys: df.loc[rowCounter] = params[key] + [time] + [failed] + pos_data[time] + dis_data[time] + str_data[time] rowCounter += 1 stdout.write(".") stdout.flush() if i % 100 == 0 and i != 0: # Log log.log_message("\nBatch: #{fc} -> {pc}%".format(fc=fileCounter, pc = i/baseDictLength)) df.to_pickle(join(temp_folder,"data%s.pickle" % fileCounter)) # create new instance df =
pd.DataFrame(columns=header)
pandas.DataFrame
from random import randint import numpy as np import pandas as pd def cross_validation(data, column_target, k=10): column_values = data[column_target].value_counts().index # classes do problema class_data = [data[data[column_target] == valor] for valor in column_values] # separação das instancias em classes class_quant = [] # quantidade de cada classe para manter a proporção class_remainder = [] # resto da div for data in class_data: class_quant.append(int(data.shape[0] / k)) class_remainder.append(int(data.shape[0] % k)) folds = [pd.DataFrame(columns=data.columns) for i in range(k)] # inicia a lista de folds for data in class_data: data.index = range(data.shape[0]) # reindex das tabelas for i in range(k): # para cada fold for j in range(len(class_data)): # para cada classe for _ in range(class_quant[j]): # até a quantidade certa index = randint(0, class_data[j].shape[0]-1) # determina o index folds[i] = folds[i].append(class_data[j].iloc[index], ignore_index=True) # adiciona a instancia em um fold class_data[j].drop([index], inplace=True) # retira da tabela class_data[j].index = range(class_data[j].shape[0]) # reindex if class_remainder[j] > 0: index = randint(0, class_data[j].shape[0]-1) folds[i] = folds[i].append(class_data[j].iloc[index], ignore_index=True) class_data[j].drop([index], inplace=True) class_data[j].index = range(class_data[j].shape[0]) class_remainder[j] -= 1 new_train_datas = [pd.DataFrame(columns=data.columns) for i in range(k)] # inicia a lista de dados de treinamento new_test_datas = [pd.DataFrame(columns=data.columns) for i in range(k)] # inicia a lista de dados de teste for i in range(k): # cria as novas tabelas de dados utilizando os folds new_test_datas[i] = new_test_datas[i].append(folds[i], ignore_index=True) for j in range(k): if i != j: new_train_datas[i] = new_train_datas[i].append(folds[j], ignore_index=True) return (new_train_datas, new_test_datas) def bootstrap(data, k=5): new_sets = [] for _ in range(k): train_instances = [] test_instances = [] reg_index = {} for _ in range(data.shape[0]): index = randint(0, data.shape[0] - 1) train_instances.append(data.iloc[index]) reg_index[index] = True for index in range(data.shape[0]): if not index in reg_index: test_instances.append(data.iloc[index]) new_train =
pd.DataFrame(train_instances)
pandas.DataFrame
import pandas as pd import numpy as np import math import os import time from DataCleanService.src.main.utils.utils import remove_gz_suffix, remove_gz_suffix_for_condo from DataCleanService.src.main.config import constants, DataCleanServiceConfig import glob # TODO: data format exception (str, float...) def select_related_rows(df, prefix): df = df[df['Taxes'] != 0] if prefix == 'Sold': df.dropna(subset=['Cd'], inplace=True) df = df[df['Sp_dol'] > 50000] # TODO: Remove this constraint # df['lp/sp'] = abs(df['Lp_dol'] - df['Sp_dol']) / df['Sp_dol'] # df = df[df['lp/sp'] <= 0.3] # df.drop(columns=['lp/sp'], inplace=True) if prefix == 'Listing': df = df[df['Lp_dol'] > 50000] df.drop(columns=['Sp_dol', 'Cd'], inplace=True) year, month, day, hour, minute = time.strftime("%Y,%m,%d,%H,%M").split(',') cur_date = str(year) + '-' + str(month) + '-' + str(day) df['Cd'] = cur_date df.index = range(len(df)) return df def complement_null(df, depth_median, front_median): df[constants.CMPLMT_NONE_COL] = df[constants.CMPLMT_NONE_COL].fillna(value='None') df[constants.CMPLMT_ZERO_COL] = df[constants.CMPLMT_ZERO_COL].fillna(value=0) df['Den_fr'] = df['Den_fr'].fillna(value='N') # Depth / Front_ft: Condo related cols -> 0 House-related cols -> median df_cdhs = df[df['Type_own1_out'].isin(constants.CDHS_LABEL)][['Depth', 'Front_ft']] df_part_hs = df[~df['Type_own1_out'].isin(constants.CDHS_LABEL)][['Depth', 'Front_ft']] df_cdhs['Depth'] = df_cdhs['Depth'].fillna(value=0) df_cdhs['Front_ft'] = df_cdhs['Front_ft'].fillna(value=0) if (depth_median == 0) & (front_median == 0): depth_median = df_part_hs['Depth'].median() front_median = df_part_hs['Front_ft'].median() median = [[depth_median, front_median]] df_median = pd.DataFrame(median, columns=['depth_median', 'front_median']) df_median.to_csv(DataCleanServiceConfig.CLEAN_DATA_MEDIAN_FILE, index=None) df_part_hs['Depth'] = df_part_hs['Depth'].fillna(value=depth_median) df_part_hs['Front_ft'] = df_part_hs['Front_ft'].fillna(value=front_median) depth_front = pd.concat([df_cdhs, df_part_hs], ignore_index=False) df = df.join(depth_front, lsuffix='_x', rsuffix='') df.drop(columns=['Depth_x', 'Front_ft_x'], inplace=True) return df def process_cols(df, comm_list): # Process Area code df.Area_code = df.Area_code.astype(str) df['Area_code'] = df.Area_code.str.extract('(\d+)', expand=True).astype(float) # Process Garage df['Garage'] = df['Gar'] + df['Gar_spaces'] df.drop(columns=['Gar', 'Gar_spaces'], inplace=True) # Process lat & lng df['lng'] = df['lng'].apply(lambda x: x * (-1)) # Process Community if comm_list is None: cm_count = df.Community.value_counts() cm_h = {cm_count.index[i]: cm_count.values[i] for i in range(len(cm_count.values)) if cm_count.values[i] > constants.COMM_TH} selected_cm = [*(cm_h.keys())] df_comm = pd.DataFrame(selected_cm, columns=['Comm']) df_comm.to_csv(DataCleanServiceConfig.COMM_FILE, index=None) else: selected_cm = comm_list df.Community.where(df['Community'].isin(selected_cm), 'Other', inplace=True) return df def process_date(df): df['Cd'] = pd.to_datetime(df['Cd']) df['month'] = df.Cd.dt.month df.index = range(len(df)) month_dic = {1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'} df_month = pd.DataFrame(0, index=np.arange(len(df)), columns=constants.MONTH) df =
pd.concat([df, df_month], axis=1)
pandas.concat
#!/usr/bin/env python # encoding: utf-8 ''' asreml.Gmatrix -- shortdesc asreml.Gmatrix is a description It defines classes_and_methods @author: user_name @copyright: 2020 organization_name. All rights reserved. @license: license @contact: user_email @deffield updated: Updated ''' import sys import os import time import numpy as np import array as arr import pandas as pd import Utils from optparse import OptionParser from logging_utils import setup_logging_to_file, log_exception, log_info,log_warn __all__ = [] __version__ = 0.1 __date__ = '2020-06-02' __updated__ = '2020-06-02' DEBUG = 1 TESTRUN = 0 PROFILE = 0 def getMAFvalue(arr, idx): if arr == [0,0]: return 0 if idx == 1 else 2 elif arr == [1,1]: return 2 if idx == 1 else 0 elif arr == [0,1] or arr == [1,0]: return 1 else: return '' def mafMatrix(infile, outdir, df): log_info('MAF Matrix') log_info('Calculate frequencies') df_freq = pd.DataFrame(columns=['0', '1'], index=df.index) try: for index, row in df.iterrows(): freq = [0,0] count = 0 for val in row.values: count_0 = np.count_nonzero(np.asarray(val, dtype='i1') == 0) count_1 = np.count_nonzero(np.asarray(val, dtype='i1') == 1) count_neg = np.count_nonzero(np.asarray(val, dtype='i1') == -1) if count_neg > 0: continue else: freq[0] += count_0 freq[1] += count_1 count += 2 df_freq.loc[index] = [freq[0]/count, freq[1]/count] # gt_freq = gt.count_alleles().to_frequencies() log_info('Write frequencies') Utils.saveFile(df_freq, os.path.join(outdir, "freq.alleles.txt"), index=True) except Exception as e: log_warn(e) log_info('Construct MAF matrix') try: vector_maf = pd.DataFrame(columns=['MAF'], index=df.index) for index, row in df.iterrows(): arr = df_freq.loc[index].values idx = np.argmin(arr) # idx = np.where(arr == np.amin(arr)) vector_maf.loc[index] = arr[idx] df.loc[index] = df.loc[index].apply(lambda x: getMAFvalue(x, idx)) log_info('Write MAF matrix') df = df.transpose() Utils.saveFile(df, os.path.join(outdir, "matrix.maf.txt"), index=True) log_info('Write MAF frequencies') df_maf = pd.DataFrame(columns=df.columns, index=df.index) for index, row in df.iterrows(): df_maf.loc[index] = list(vector_maf['MAF'].values) Utils.saveFile(vector_maf, os.path.join(outdir, "freq.maf.txt"), index=True) Utils.saveFile(df_maf, os.path.join(outdir, "matrix.P.txt"), index=True) log_info("End MAF") return df except Exception as e: log_warn(e) def codeGenotype(code): try: if code == 1: return [0, 0] elif code == 2: return [0, 1] elif code == 3: return [1, 0] elif code == 4: return [1, 1] else: return [-1,-1] except Exception as e: log_warn(e) def loadrQTL(infile): log_info('Load rQTL') files = infile.split(',') try: df_final = None for f in files: df = Utils.loadFile(f) df = df.set_index('ID', drop=True) df = df.iloc[4:] df = df.astype(dtype='int32') df = df.applymap(lambda x: codeGenotype(x)) df = df.transpose() if df_final is None: df_final = df else: df_final = pd.concat([df_final, df], axis=1, sort=False) return df_final except Exception as e: log_exception(e) def calculateSimilarity(lst0, lst1): try: count = 0 for i in range(len(lst0)): count += 1 if lst0[i] == lst1[i] else 0 return count / len(lst0) except Exception as e: log_warn(e) return 0 def tabulate(df_maf, outdir): log_info('Construct Relationship Matrix using Tabulation method') df_grm =
pd.DataFrame(columns=df_maf.index, index=df_maf.index)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import library.areamanager as areamanager import pandas as pd import json import time import collections import numpy as np import pickle import library.cat_utils as cat_utils import library.geo_utils as geo_utils from library.parallel_util import run_parallel from library.constants import geocat_constants,experiment_constants from tqdm import tqdm import math import sklearn import sklearn.neighbors SPLIT_YEAR=2017 earth_radius = 6371000/1000 # km in earth cities=['lasvegas','phoenix','charlotte','madison'] # cities=experiment_constants.CITIES #cities=['madison'] dict_alias_title,category_tree,dict_alias_depth=cat_utils.cat_structs("../../data/categories.json") undirected_category_tree=category_tree.to_undirected() def category_filter(categories): tmp_cat_list=list() if categories != None: for category in categories: try: if dict_alias_depth[dict_alias_title[category]] <= 2: tmp_cat_list.append(dict_alias_title[category]) except: pass tmp_cat_list=cat_utils.get_most_detailed_categories(tmp_cat_list,dict_alias_title,dict_alias_depth) return tmp_cat_list def category_normalization(categories): if categories != None: return categories else: return [] TRAIN_SIZE=experiment_constants.TRAIN_SIZE TEST_SIZE=1-TRAIN_SIZE # In[2]: fbusiness=open("../../data/business.json") poi_data = dict() start_time=time.time() for i, line in enumerate(fbusiness): # json to dict obj_json = json.loads(line) # add to the data collection if obj_json['categories'] != None: poi_data[obj_json['business_id']]={'latitude':obj_json['latitude'], 'longitude':obj_json['longitude'], 'categories':obj_json['categories'].split(', ')} else: poi_data[obj_json['business_id']]={'latitude':obj_json['latitude'], 'longitude':obj_json['longitude'], 'categories':obj_json['categories']} print(time.time()-start_time) # In[3]: areas=dict() for city in cities: areas[city]=areamanager.delimiter_area(city) # In[4]: cities_pid_in_area=dict() start_time=time.time() for city in cities: area=areas[city] pid_in_area=collections.defaultdict(bool) for poi_id in poi_data: if areamanager.poi_in_area(area,poi_data[poi_id]): pid_in_area[poi_id]=True cities_pid_in_area[city]=pid_in_area print(time.time()-start_time) # In[5]: fuser=open("../../data/user.json") user_friend = dict() user_data = dict() start_time=time.time() for i, line in enumerate(fuser): # json to dict obj_json = json.loads(line) # add to the data collection user_friend[obj_json['user_id']]=obj_json['friends'].split(', ') custom_obj = dict() for key, value in obj_json.items(): if key not in ['friends','elite','name','user_id']: custom_obj[key] = value user_data[obj_json['user_id']] = custom_obj print(time.time()-start_time) # In[6]: freview=open("../../data/review.json") cities_checkin_data=dict() for city in cities: cities_checkin_data[city]=list() start_time=time.time() for i, line in enumerate(freview): # json to dict obj_json = json.loads(line) for city in cities: if cities_pid_in_area[city][obj_json['business_id']]: # add to the data collection cities_checkin_data[city].append({'user_id':obj_json['user_id'], 'poi_id':obj_json['business_id'], 'date':obj_json['date']}) break if i % 500000 ==0: print(i) print(time.time()-start_time) ftip=open("../../data/tip.json") start_time=time.time() for i, line in enumerate(ftip): # json to dict obj_json = json.loads(line) for city in cities: if cities_pid_in_area[city][obj_json['business_id']]: # add to the data collection cities_checkin_data[city].append({'user_id':obj_json['user_id'], 'poi_id':obj_json['business_id'], 'date':obj_json['date']}) break if i % 500000 ==0: print(i) print(time.time()-start_time) # In[ ]: # df_checkin=pd.read_csv("../../data/checkin.csv") # df_checkin=df_checkin.set_index("user_id") # In[ ]: # city_area=areamanager.delimiter_area('madison') # df_checkin_city=areamanager.pois_in_area(city_area,df_checkin.reset_index()) # In[ ]: # i=0 # for idx,checkin in df_checkin.iterrows(): # # print(checkin.business_id) # if cities_pid_in_area['madison'][checkin.business_id]: # i+=1 # i # In[ ]: # print(len(df_checkin_city['business_id'].drop_duplicates())) # print(len(df_checkin_city['user_id'].drop_duplicates())) # print(len(df_checkin_city)) # In[7]: genoptions=['poi','neighbor','user','checkin','test','train' ,'user_data'] genoptions=['checkin', 'poi','neighbor', 'user','user_data' ] # In[ ]: for city in cities: print("CITY: %s" % (city)) # Pega os checkins da cidade checkin_data=cities_checkin_data[city] print("checkin_data size: %d"%(len(checkin_data))) # transforma em dataframe df_checkin=pd.DataFrame.from_dict(checkin_data) df_checkin.head(1) # Começa a parte de filtragrem df_diff_users_visited=df_checkin[['user_id','poi_id']].drop_duplicates().reset_index(drop=True).groupby('poi_id').count().reset_index().rename(columns={"user_id":"diffusersvisited"}) df_diff_users_visited=df_diff_users_visited[df_diff_users_visited['diffusersvisited']>=5] del df_diff_users_visited['diffusersvisited'] df_checkin=pd.merge(df_checkin,df_diff_users_visited,on='poi_id',how='inner') df_checkin['Count']=df_checkin.groupby(['user_id'])['user_id'].transform('count') df_checkin=df_checkin[df_checkin['Count']>=20] del df_checkin['Count'] # converte para dicionario, ou lista de dicionarios checkin_data=list(df_checkin.to_dict('index').values()) # termina a parte de filtragem # pega todos ids dos usuarios users_id = set() for check in checkin_data: users_id.add(check['user_id']) # quantidade de usuarios user_num=len(users_id) # pega todos ids dos pois pois_id = set() for check in checkin_data: pois_id.add(check['poi_id']) #quantidade de pois poi_num=len(pois_id) print("user_num:%d, poi_num:%d"%(user_num,poi_num)) # Começa a transformar ids de String para inteiro users_id_to_int = dict() for i,user_id in enumerate(users_id): users_id_to_int[user_id]=i fuid=open('../../data/user/id/'+city+'.pickle','wb') pickle.dump(users_id_to_int,fuid) fuid.close() pois_id_to_int = dict() for i,poi_id in enumerate(pois_id): pois_id_to_int[poi_id]=i fpid=open('../../data/poi/id/'+city+'.pickle','wb') pickle.dump(pois_id_to_int,fpid) fpid.close() # Termina de transformar ids de String para inteiro # cria dicionario de "objetos" ou dicionarios de pois da cidade # alem de aplicar filtragem categorica city_poi_data=dict() if 'poi' in genoptions: for poi_id in pois_id: city_poi_data[pois_id_to_int[poi_id]]=poi_data[poi_id].copy() city_poi_data[pois_id_to_int[poi_id]] = {'categories':category_normalization(city_poi_data[pois_id_to_int[poi_id]]['categories'])} fpoi=open('../../data/poi_full/'+city+'.pickle','wb') pickle.dump(city_poi_data,fpoi) fpoi.close() city_poi_data=dict() if 'poi' in genoptions: for poi_id in pois_id: city_poi_data[pois_id_to_int[poi_id]]=poi_data[poi_id].copy() city_poi_data[pois_id_to_int[poi_id]]['categories']=category_filter(poi_data[poi_id]['categories']) fpoi=open('../../data/poi/'+city+'.pickle','wb') pickle.dump(city_poi_data,fpoi) fpoi.close() # pega os vizinhos de cada poi # print("Pegando vizinhos...") if 'neighbor' in genoptions: poi_neighbors={} pois_id=[pois_id_to_int[pid] for pid in pois_id] pois_coos = np.array([(city_poi_data[pid]['latitude'],city_poi_data[pid]['longitude']) for pid in pois_id])*np.pi/180 poi_coos_balltree = sklearn.neighbors.BallTree(pois_coos,metric="haversine") poi_neighbors = {lid: list(poi_coos_balltree.query_radius([pois_coos[lid]],geocat_constants.NEIGHBOR_DISTANCE/earth_radius)[0]) for lid in pois_id} # print(poi_neighbors) # args=[(lid,) for lid in pois_id] # def neighbors_searcher(poi_id): # neighbors=list() # for npoi_id in pois_id: # if geo_utils.dist((city_poi_data[poi_id]['latitude'],city_poi_data[poi_id]['longitude']),(city_poi_data[npoi_id]['latitude'],city_poi_data[npoi_id]['longitude'])) <= geocat_constants.NEIGHBOR_DISTANCE: # neighbors.append(npoi_id) # return neighbors # poi_neighbors = run_parallel(neighbors_searcher,args,chunksize=60) # list to dict # poi_neighbors = {i: poi_neighbors[i] for i in range(len(poi_neighbors))} print("Terminou vizinhos...") fneighbors=open('../../data/neighbor/'+city+'.pickle','wb') pickle.dump(poi_neighbors,fneighbors) fneighbors.close() city_user_friend=dict() countusf=0 print("Inicio Amigos...") users_id = list(users_id) if 'user' in genoptions: for i in tqdm(range(len(users_id))): user_id=users_id[i] ucity_friends=list() for friend_id in user_friend[user_id]: try: ucity_friends.append(users_id_to_int[friend_id]) countusf+=1 except: pass city_user_friend[users_id_to_int[user_id]]=ucity_friends fuser=open('../../data/user/friend/'+city+'.pickle','wb') pickle.dump(city_user_friend,fuser) fuser.close() print("Fim Amigos...") print("Friends: %d"%(countusf)) city_user_data = dict() if 'user_data' in genoptions: for i in tqdm(range(len(users_id))): user_id=users_id[i] city_user_data[users_id_to_int[user_id]]=user_data[user_id].copy() fuser=open('../../data/user/'+city+'.pickle','wb') pickle.dump(city_user_data,fuser) fuser.close() if 'checkin' in genoptions: for checkin in checkin_data: checkin['user_id'] = users_id_to_int[checkin['user_id']] checkin['poi_id'] = pois_id_to_int[checkin['poi_id']] checkin['date'] =
pd.to_datetime(checkin['date'])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 15 07:39:40 2020 @author: adonay """ import os.path as op import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt import utils_io as uio import utils_signal_processing as sig_proc import utils_feature_extraction as feat_ext from mne.filter import filter_data from sklearn.decomposition import PCA import matplotlib font = {'family' : 'normal', 'size' : 15} matplotlib.rc('font', **font) def zscore(x): x = (x - np.nanmean(x))/ np.nanstd(x) return x def minmax_scaler(x): xmin, xmax = np.min(x), np.max(x) x = (x - xmin)/ (xmax - xmin) return x def make_fig(): fig = plt.figure(figsize=(15, 20), constrained_layout=True) gs = fig.add_gridspec(4, 4) ax1 = fig.add_subplot(gs[0, :]) ax1.set_title('TS, peaks and pk slopes') ax2 = fig.add_subplot(gs[1,:-2]) ax3 = fig.add_subplot(gs[2, :-2]) ax4 = fig.add_subplot(gs[3, 0]) ax5 = fig.add_subplot(gs[3, 1]) ax6 = fig.add_subplot(gs[1, 2:]) ax7 = fig.add_subplot(gs[2, 2:]) ax8 = fig.add_subplot(gs[3, 2:]) return fig, [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8] def filename_creator(subj, folder_name): diagn = df_beh.loc[subj, 'gen_diagnosis'] diag_num = df_beh.loc[subj, 'gen_diagnosis_num'] age = df_beh.loc[subj, 'age'] if diagn == "Control": severity = 0 ttl = f"{n} {subj}, age {df_beh.loc[subj, 'age']} ,{diagn}" elif diagn == "PD": ttl = f"{n} {subj}, age {df_beh.loc[subj, 'age']} ,{diagn}, {df_beh.loc[subj, 'updrs_arm_total_R']}" severity = df_beh.loc[subj, 'updrs_arm_total_R'] else: ttl = f"{n} {subj}, age {df_beh.loc[subj, 'age']} ,{diagn}, {df_beh.loc[subj, 'common_arm_score_L']}" severity = df_beh.loc[subj, 'common_arm_score_L'] fname = f"{folder_name}/{severity}_{diag_num}_{age}_{subj}.png" return fname # def save_plot(x, y, folder): # Path definitions root_dir = '/home/adonay/Desktop/projects/Ataxia' model_name = '_resnet152_FingerTappingJan29shuffle1_650000' paths = uio.get_paths(model_name, root_dir) sfreq_common = 60 BP_filr = [1, 10] # load data df_beh =
pd.read_csv(paths['beh'], index_col=0)
pandas.read_csv
import numpy as np import pandas as pd import pyprind import os from py_stringsimjoin.utils.generic_helper import \ find_output_attribute_indices, get_output_header_from_tables, \ get_output_row_from_tables def get_pairs_with_missing_value_disk(ltable, rtable, l_key_attr, r_key_attr, l_join_attr, r_join_attr, temp_dir, data_limit_per_core, missing_pairs_file_name, l_out_attrs=None, r_out_attrs=None, l_out_prefix='l_', r_out_prefix='r_', out_sim_score=False, show_progress=True): # find column indices of key attr, join attr and output attrs in ltable l_columns = list(ltable.columns.values) l_key_attr_index = l_columns.index(l_key_attr) l_join_attr_index = l_columns.index(l_join_attr) l_out_attrs_indices = find_output_attribute_indices(l_columns, l_out_attrs) # find column indices of key attr, join attr and output attrs in rtable r_columns = list(rtable.columns.values) r_key_attr_index = r_columns.index(r_key_attr) r_join_attr_index = r_columns.index(r_join_attr) r_out_attrs_indices = find_output_attribute_indices(r_columns, r_out_attrs) # find ltable records with missing value in l_join_attr ltable_missing = ltable[pd.isnull(ltable[l_join_attr])] # find ltable records which do not contain missing value in l_join_attr ltable_not_missing = ltable[pd.notnull(ltable[l_join_attr])] # find rtable records with missing value in r_join_attr rtable_missing = rtable[pd.isnull(rtable[r_join_attr])] output_rows = [] has_output_attributes = (l_out_attrs is not None or r_out_attrs is not None) if show_progress: print('Finding pairs with missing value...') prog_bar = pyprind.ProgBar(len(ltable_missing) + len(rtable_missing)) # For each ltable record with missing value in l_join_attr, # output a pair corresponding to every record in rtable. for l_row in ltable_missing.itertuples(index=False): for r_row in rtable.itertuples(index=False): if has_output_attributes: record = get_output_row_from_tables( l_row, r_row, l_key_attr_index, r_key_attr_index, l_out_attrs_indices, r_out_attrs_indices) else: record = [l_row[l_key_attr_index], r_row[r_key_attr_index]] output_rows.append(record) # Flushing the data onto the disk if in-memory size exceeds the permissible data limit if len(output_rows) > data_limit_per_core: df = pd.DataFrame(output_rows) with open(missing_pairs_file_name, 'a+') as myfile: df.to_csv(myfile, header=False, index=False) output_rows = [] if show_progress: prog_bar.update() # if output rows have some data left, flush the same to the disk to maintain consistency. if len(output_rows) > 0: df = pd.DataFrame(output_rows) with open(missing_pairs_file_name, 'a+') as myfile: df.to_csv(myfile, header=False, index=False) output_rows = [] # For each rtable record with missing value in r_join_attr, # output a pair corresponding to every record in ltable which # doesn't have a missing value in l_join_attr. for r_row in rtable_missing.itertuples(index=False): for l_row in ltable_not_missing.itertuples(index=False): if has_output_attributes: record = get_output_row_from_tables( l_row, r_row, l_key_attr_index, r_key_attr_index, l_out_attrs_indices, r_out_attrs_indices) else: record = [l_row[l_key_attr_index], r_row[r_key_attr_index]] if out_sim_score: record.append(np.NaN) output_rows.append(record) # Flushing the data onto the disk if in-memory size exceeds the permissible data limit if len(output_rows) > data_limit_per_core: df = pd.DataFrame(output_rows) with open(missing_pairs_file_name, 'a+') as myfile: df.to_csv(myfile, header=False, index=False) output_rows = [] if show_progress: prog_bar.update() # if output rows have some data left, flush the same to the disk to maintain consistency. if len(output_rows) > 0: df =
pd.DataFrame(output_rows)
pandas.DataFrame
import leidenalg import graphtools import sklearn from igraph import Graph import numpy as np import seaborn as sns import pandas as pd from scipy.spatial.distance import squareform from scipy.cluster import hierarchy class AffinityLeiden(sklearn.base.BaseEstimator, sklearn.base.ClusterMixin): def __init__( self, knn=5, knn_max=None, knn_dist="euclidean", n_pca=100, decay=40, n_landmark=2000, resolution_parameter=1, n_jobs=1, verbose=True, random_state=None, ): self.knn = knn self.knn_max = knn_max self.knn_dist = knn_dist self.decay = decay self.n_pca = n_pca self.n_jobs = n_jobs self.n_landmark = n_landmark self.resolution_parameter = resolution_parameter self.random_state = random_state self.verbose = verbose def fit(self, X, y=None): if isinstance(X, list): X = np.array(X) if X.ndim < 2: raise ValueError("Cannot fit 1D array.") if X.shape[0] == 1: raise ValueError("Input contains only 1 sample.") self.n_features_in_ = X.shape[1] graph = graphtools.Graph( X, n_pca=self.n_pca, n_landmark=self.n_landmark, distance=self.knn_dist, knn=self.knn, knn_max=self.knn_max, decay=self.decay, thresh=1e-4, n_jobs=self.n_jobs, verbose=self.verbose, random_state=self.random_state, ) self.affinity_matrix_ = graph.diff_op.todense() affinity_igraph = Graph().Weighted_Adjacency( matrix=self.affinity_matrix_.tolist(), mode="undirected" ) partition = leidenalg.find_partition( affinity_igraph, partition_type=leidenalg.RBConfigurationVertexPartition, weights=affinity_igraph.es["weight"], n_iterations=-1, seed=self.random_state, resolution_parameter=self.resolution_parameter, ) self.labels_ = np.array(partition.membership) self.q_ = partition.q return self @property def singularities(self): self._singularities = ( np.unique(self.labels_, return_counts=True)[1] == 1 ).sum() return self._singularities @property def n_clusters(self): self._n_labels = len(np.unique(self.labels_)) return self._n_labels @property def mean_cluster_size(self): self._mean_cluster_size = np.unique(self.labels_, return_counts=True)[1].mean() return self._mean_cluster_size def set_index(self, index): assert len(index) == len(self.labels_) self.index = index return self def adjusted_mutual_info_score(self, s): return sklearn.metrics.adjusted_mutual_info_score( self.labels_, s[self.index].values ) def adjusted_rand_score(self, s): return sklearn.metrics.adjusted_rand_score(self.labels_, s[self.index].values) def consensus_matrix( dfs, column="cluster", weights=None, combine_nt=False, nt_threshold=1 ): # check for identical indices [
pd.testing.assert_index_equal(dfs[0].index, df.index)
pandas.testing.assert_index_equal
# -*- coding: utf-8 -*- """ Created on Tue Feb 09 16:48:04 2016 @author: rakhunzy """ import numpy as np import pandas as pd import sys from matplotlib import pyplot as plt # In[] def middle_point(lst): return lst[len(lst)/2] def point_index(contour, point): return np.argwhere(np.all(contour == point,axis=1))[0,0] def get_line(start, end): """Bresenham's Line Algorithm Produces a list of tuples from start and end >>> points1 = get_line((0, 0), (3, 4)) >>> points2 = get_line((3, 4), (0, 0)) >>> assert(set(points1) == set(points2)) >>> print points1 [(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)] >>> print points2 [(3, 4), (2, 3), (1, 2), (1, 1), (0, 0)] """ # Setup initial conditions x1 = int(start[0]) y1 = int(start[1]) x2 = int(end[0]) y2 = int(end[1]) dx = x2 - x1 dy = y2 - y1 # Determine how steep the line is is_steep = abs(dy) > abs(dx) # Rotate line if is_steep: x1, y1 = y1, x1 x2, y2 = y2, x2 # Swap start and end points if necessary and store swap state swapped = False if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 swapped = True # Recalculate differentials dx = x2 - x1 dy = y2 - y1 # Calculate error error = int(dx / 2.0) ystep = 1 if y1 < y2 else -1 # Iterate over bounding box generating points between start and end y = y1 points = [] for x in range(x1, x2 + 1): coord = (y, x) if is_steep else (x, y) points.append(coord) error -= abs(dy) if error < 0: y += ystep error += dx # Reverse the list if the coordinates were swapped if swapped: points.reverse() return np.array(points) # In[] def read_contours(fname): content = [] for s in open(fname).readlines(): s = s.strip('\t\n').split('\t') image_filename = s[0] rect = np.array([np.float(i) for i in s[1:5]]) coordinates = np.array([np.float(i) for i in s[5:]]) coordinates = np.reshape(coordinates, (len(coordinates)/2, 2)) content.append([image_filename, rect, coordinates,]) return content # In[] def get_contour_section(contour, index1, index2): if index1 < index2: return contour[index1:index2] else: return np.vstack((contour[index1:],contour[:index2])) def make_dense_contour(contour): contour = np.append(contour, [contour[0]], axis=0) new_contour = [] for i in range(len(contour)-1): if i == 0: new_contour = get_line(contour[i],contour[i+1]) else: new_contour = np.vstack((new_contour, get_line(contour[i],contour[i+1]))) return new_contour def double_landmarks(contour, lm_indices): primary_points = np.array(lm_indices) primary_points = np.append(primary_points, primary_points[0]) new_points = [] for i in range(len(primary_points) - 1): point = middle_point(get_contour_section(contour, primary_points[i], primary_points[i + 1])) point_idx = point_index(contour, point) new_points.append(point_idx) old_points = np.array([lm_indices]) new_points = np.array([new_points]) result = np.vstack((old_points, new_points)).transpose().reshape((1,len(lm_indices)*2)) return np.ravel(result) def contour_to_landmarks(contour): contour_max = np.max(contour, axis=0) contour_min = np.min(contour, axis=0) point_top = middle_point(contour[np.where( contour[:,1] == contour_min[1])]) point_bottom = middle_point(contour[np.where( contour[:,1] == contour_max[1])]) # point_left = middle_point(contour[np.where( contour[:,0] == contour_min[0])]) # point_right = middle_point(contour[np.where( contour[:,0] == contour_max[0])]) lm_2 = [point_index(contour, p) for p in (point_top, point_bottom)] lm_4 = double_landmarks(contour, lm_2) #lm_4 = [point_index(contour, p) for p in (point_top, point_right, point_bottom, point_left)] lm_8 = double_landmarks(contour, lm_4) lm_16 = double_landmarks(contour, lm_8) return contour[lm_16] # x y width height def bounding_box(iterable): min_x, min_y = np.min(iterable, axis=0) max_x, max_y = np.max(iterable, axis=0) return np.array([min_x, min_y, max_x-min_x, max_y - min_y]) #rect = contours[0][1] #contour = contours[0][2] def line_to_landmark(rect, contour): dcontour = make_dense_contour(contour) landmarks = contour_to_landmarks(dcontour) landmarks = np.array([[lm[0] + rect[0], lm[1] + rect[1]] for lm in landmarks]) bbox = bounding_box(landmarks) flat_landmarks = np.ravel(landmarks.reshape((1,len(landmarks)*2))) result = np.hstack((bbox, flat_landmarks)) return result if False: input_file_name = '../../data/train/1.pts' # In[] input_file_name = sys.argv[1] output_file_name = input_file_name[:-4] + '_boxede16.lms' contours = read_contours(input_file_name) # In[] df =
pd.DataFrame([c[0] for c in contours])
pandas.DataFrame
import numpy as np import pandas as pd from pandas import compat from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.indexing import is_list_like from pandas.core.arrays.categorical import _factorize_from_iterable class Smarties: def __init__(self, main_lookup=None): self.main_lookup=main_lookup return None def transform(self, df): result_lookup = self.main_lookup try: df = df[result_lookup['normal']] except: list1 = result_lookup['normal'] list2 = df.columns for i in list1: if i in list2: print('ok',i) else: print('missing!',i) raise Exception('You are missing a column key, should be:' + str(result_lookup['normal'])) encoding_lookup = result_lookup['encoding'] with_dummies = [df.drop(encoding_lookup.keys(), axis=1)] #drop columns to encode for key in encoding_lookup: values = df[key].values #Check to see if encoding took place number_of_cols = len(encoding_lookup[key]) number_of_rows = df.shape[0] dummy_mat = np.zeros((number_of_rows, number_of_cols), dtype=np.uint8) for row in range(number_of_rows): indices = [i for i, s in enumerate(encoding_lookup[key]) if key + '_' + str(values[row]) == s] if len(indices) > 0: dummy_mat[row][indices[0]] = 1 with_dummies.append(DataFrame(dummy_mat, index=df.index, columns=encoding_lookup[key])) return pd.concat(with_dummies, axis=1) def fit_transform(self, data, y=None, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False): """ Convert categorical variable into dummy/indicator variables """ #from pandas.core.reshape.concat import concat from itertools import cycle if 'DataFrame' not in str(type(data)): #convert series to dataframe data = data.to_frame() main_lookup={} main_lookup['normal'] = data.columns if isinstance(data, DataFrame): # determine columns being encoded if columns is None: columns_to_encode = data.select_dtypes( include=['object', 'category']).columns else: columns_to_encode = columns # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): length_msg = ("Length of '{0}' ({1}) did not match the length of " "the columns being encoded ({2}).") if
is_list_like(item)
pandas.core.indexing.is_list_like
#!/usr/bin/env python # coding: utf-8 # ## 라이브러리 import # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import seaborn as sns COLORS = sns.color_palette() import chart_studio.plotly as py import cufflinks as cf print(cf.__version__) cf.go_offline() get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") import plotly plotly.offline.init_notebook_mode() # ## 그래프 시각화의 한글지원 코드 # In[2]: import matplotlib from matplotlib import font_manager, rc import platform try : if platform.system() == 'Windows': # 윈도우인 경우 font_name = font_manager.FontProperties(fname="c:/Windows/Fonts/malgun.ttf").get_name() rc('font', family=font_name) else: # Mac 인 경우 rc('font', family='AppleGothic') except : pass matplotlib.rcParams['axes.unicode_minus'] = False # # <데이터 소개> # - 서울시 공공자전거 이용현황(2019년 10월1일 ~ 11월30일) # ### 연령대별로 EDA # - 연령대별로는 어떻게 봐야할까? # - 이용시간, 이동거리, 이용건수를 추출 # - 이용시간 대비 이동거리와 이용건수 비교, 분석 # - 운동량은 날려야할까? # # #### 데이터 로드 및 concat # - 공공데이터 csv파일의 한글깨짐현상 # - 공공데이터 파일의 Encoding은 utf-8방식으로 통일해 주었으면 좋겠지만, 거의 대부분 cp949나 euc-kr방식으로 인코딩 되어 있음 # - 해당 서울시 공공자전거 csv파일의 cp949로 인코딩이 되어 있고 utf8 불러왔을 때, ???? 현상이 나타남 # - utf8 로 변환 후 재로드 # In[4]: df1 = pd.read_csv('/Users/wglee/Desktop/DATA ANALYSIS/데이터사이언스school/EDA프로젝트/EDA프로젝트데이터/서울특별시 공공자전거 이용정보(시간대별)_20190601_20191130(7).csv', encoding='utf-8') df1 = df1.loc[458674:] df2 = pd.read_csv('/Users/wglee/Desktop/DATA ANALYSIS/데이터사이언스school/EDA프로젝트/EDA프로젝트데이터/서울특별시 공공자전거 이용정보(시간대별)_20190601_20191130(8).csv', encoding='utf-8') df3 = pd.read_csv('/Users/wglee/Desktop/DATA ANALYSIS/데이터사이언스school/EDA프로젝트/EDA프로젝트데이터/서울특별시 공공자전거 이용정보(시간대별)_20190601_20191130(9).csv', encoding='utf-8') df4 =
pd.read_csv('/Users/wglee/Desktop/DATA ANALYSIS/데이터사이언스school/EDA프로젝트/EDA프로젝트데이터/서울특별시 공공자전거 이용정보(시간대별)_20190601_20191130(10).csv', encoding='utf-8')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Jan 3 23:04:33 2019 当给定了影像数据和量表时,如果量表数据包括而且大于影像数据时,我们需要从中提取与影像数据匹配的部分 @author: lenovo """ import sys import os cpwd = __file__ root = os.path.dirname(os.path.dirname(__file__)) sys.path.append(root) print(f'##{root}') import pandas as pd import Utils.lc_copy_selected_file_V6 as copy class screening_covariance_to_match_neuroimage(): def __init__(sel): sel.folder = r'D:\WorkStation_2018\WorkStation_dynamicFC_V1\Data\zDynamic\state\covariances\folder_MDD.xlsx' sel.path_neuroimage = r'D:\WorkStation_2018\WorkStation_dynamicFC_V1\Data\zDynamic\state\allState17_5\state5_all\state5\state5_MDD' sel.cov_path = r'D:\WorkStation_2018\WorkStation_dynamicFC_V1\Data\zDynamic\state\covariances\ageANDsex_MDD.xlsx' sel.save_path = r'D:\WorkStation_2018\WorkStation_dynamicFC_V1\Data\zDynamic\state\allState17_5\state5_all\state5\cov' sel.save_name = 'state5_cov_MDD.xlsx' def fetch_folder(sel): """ fetch sel.folder""" sel_folder = copy.CopyFmri( reference_file=sel.folder, targe_file_folder=sel.path_neuroimage, keywork_reference_for_uid='([1-9]\d*)', ith_reference_for_uid=0, keyword_targetfile_for_uid='([1-9]\d*)', matching_pointnumber_in_backwards=1, ith_targetfile_for_uid=0, keyword_targetfile_not_for_uid='', keyword_parentfolder_contain_targetfile='', savePath=sel.save_path, n_processess=2, ifSaveLog=0, ifCopy=0, ifMove=0, saveInToOneOrMoreFolder='saveToOneFolder', saveNameSuffix='', ifRun=0) result = sel_folder.main_run() uid = result.allSubjName values = [int(v) for v in uid.values] uid =
pd.DataFrame(values)
pandas.DataFrame
''' Created on Apr 3, 2020 @author: <NAME>, Blue Lightning Development, LLC ''' import os import pandas as pd pathToRepository = 'C:/Users/NOOK/GITHUB/COVID-19' # change to where you checked out https://github.com/CSSEGISandData/COVID-19.git states = ["Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado", "Connecticut", "Delaware", "District of Columbia", "Florida", "Georgia", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma", "Oregon", "Pennsylvania", "Puerto Rico", "Rhode Island", "South Carolina", "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia", "Washington", "West Virginia", "Wisconsin", "Wyoming"] states2 = { # yes these are redundant; but one is sorted by name and the other by 2 letter 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } def updateHospitalizations(pathToRepository, pull=True): if (pull) : os.system('git -C %s pull' % pathToRepository) f = pd.DataFrame(columns=states) base = '%s/csse_covid_19_data/csse_covid_19_daily_reports_us/' % pathToRepository for (__, __, filenames) in os.walk(base): for name in filenames: if (name.endswith('.csv')) : print(name, pd.to_datetime(name[0:-4])) daily =
pd.read_csv(base + name, encoding='utf8')
pandas.read_csv
## By <NAME> ## Created 2018. Edited AS 2019. Edited AJ 2020 import sys import argparse import gzip import pandas as pd import os import multiprocessing as mp import re from traceback import print_exc def revComp(my_seq): ## obtain reverse complement of a sequence base_comp = {'A':'T', 'C':'G','G':'C', 'T':'A', 'N':'N', " ":" "} lms = list(my_seq[:-1]) ## parse string into list of components lms.reverse() try: lms = [base_comp[base] for base in lms] except TypeError: pass lms = ''.join(lms) ## get string from reversed and complemented list return(lms) def BC_scan(barcodes,start_scan,end_scan,seq): ## Given start and end position of scanning sequence, look for barcodes str_list = [seq[i:i+16] for i in range(start_scan,end_scan)] ## barcode file has "\n" in encoding bc_intersect = list(set(str_list).intersection(barcodes)) if bc_intersect: bc_intersect = [element for element in bc_intersect] ## allow for possibility of multiple barcodes matching bc_pos = [seq.index(element) for element in bc_intersect] else: bc_intersect = 'no_bc' bc_pos='-' return{'bc_pos':bc_pos,'bc_intersect':bc_intersect} def TDetectFwd(seq): ## Looks for T9 in the forward strand try: fwd_ix = seq.index('TTTTTTTTT') ### Only detects the first occurrence of T9 return(fwd_ix) except ValueError: fwd_ix = -1 return(fwd_ix) def TDetectRev(rev_seq): ## If it was actually the reverse strand then it looks at T9 in the reverse complement try: rev_ix = rev_seq.index('TTTTTTTTT') return(rev_ix) except ValueError: rev_ix = -1 return(rev_ix) def TSODetectFwd(end_seq): ## Looks for middle 15 bases of TSO in the forward strand tso = 'TGGTATCAACGCAGA' try: fwdTSO_ix = len(end_seq) - end_seq.index(revComp(tso)) return(fwdTSO_ix) except ValueError: fwdTSO_ix = -1 return(fwdTSO_ix) def TSODetectRev(revEnd_seq): ## If it was actually the reverse strand then it looks at TSO in the reverse complement tso = 'AAGCAGTGGTATCAACGCAGAGTACAT' try: revTSO_ix = len(revEnd_seq) - revEnd_seq.index(revComp(tso)) return(revTSO_ix) except ValueError: revTSO_ix = -1 return(revTSO_ix) def prelim(args): global barcodes global cluster_id global umiLength file_name = re.split('/|.fq.gz|.fastq.gz',args.fq)[-2] print(file_name) # If output file already exists, delete it. if os.path.isfile('%sPolyT_BCDetection_%s_.csv' %(args.outDir, file_name)): os.system('rm %sPolyT_BCDetection_%s_.csv' %(args.outDir,file_name)) # If secondary output file for reads that are too short already exists, delete it. if os.path.isfile('%sTooShort.csv' %(args.outDir)): os.system('rm %sTooShort.csv' %(args.outDir)) bc_file = args.bcClust.replace(u'\xa0', u'') barcodes = [x.strip('\n').split('\t')[0] for x in open(bc_file).readlines()] cluster_id = [x.strip('\n').split('\t')[1] for x in open(bc_file).readlines()] if args.chemistry == "v2": umiLength = 10 elif args.chemistry == "v3": umiLength = 12 return() def addToDict(d, line, rn): seq = line[:-1][:200] rev_seq = revComp(line)[:200] end_seq = line[-200:-1] revEnd_seq = revComp(line)[-200:] d['Readname'].append(rn) d['length'].append(len(line)) ## Getting TSO stats for read fwdTSO_ix = TSODetectFwd(end_seq) revTSO_ix = TSODetectRev(revEnd_seq) if fwdTSO_ix == revTSO_ix == -1: d['tso_status'].append('-') d['tso_position'].append('-') elif fwdTSO_ix == -1 and revTSO_ix != -1: d['tso_status'].append('TSO_found') d['tso_position'].append([revTSO_ix]) elif fwdTSO_ix != -1 and revTSO_ix == -1: d['tso_status'].append('TSO_found') d['tso_position'].append([fwdTSO_ix]) elif fwdTSO_ix != -1 and revTSO_ix != -1: d['tso_status'].append('DoubleTSO') d['tso_position'].append('-') ## Getting T9 position fwd_ix = TDetectFwd(seq) rev_ix = TDetectRev(rev_seq) if fwd_ix == rev_ix == -1: ## If valuError, output is -1, so no polyT found d['T9_status'].append('poly_T_not_found') d['position'].append('-') d['bc_position'].append('-') d['BarcodeFound'].append('no_bc') d['Cluster'].append('no_clust') d['Strand_info'].append('none') d['UMIs'].append('-') elif fwd_ix == -1 and rev_ix != -1: ## PolyT found in reverse complement only d['T9_status'].append('poly_T_found') d['position'].append([rev_ix]) d['Strand_info'].append('rev') start_scan = rev_ix-36 end_scan = rev_ix-6 if start_scan >= 0 and end_scan > 0: bc_found = BC_scan(barcodes,start_scan,end_scan,rev_seq) elif start_scan < 0 and end_scan >0: start_scan = 0 bc_found = BC_scan(barcodes,start_scan,end_scan,rev_seq) elif start_scan <0 and end_scan <= 0: bc_found = {'bc_pos':'-','bc_intersect':'no_bc'} if bc_found: d['BarcodeFound'].append(bc_found.get('bc_intersect')) d['bc_position'].append(bc_found.get('bc_pos')) if 'no_bc' in bc_found.get('bc_intersect'): d['Cluster'].append('no_clust') d['UMIs'].append('-') else: d['Cluster'].append([cluster_id[x] for x in [barcodes.index(item) for item in bc_found.get('bc_intersect')]]) UMI_start = int(bc_found.get('bc_pos')[0])+16 UMI_end = int(bc_found.get('bc_pos')[0])+16+umiLength d['UMIs'].append(rev_seq[UMI_start:UMI_end]) #bc_count += 1 else: d['BarcodeFound'].append('no_bc') d['Cluster'].append('no_clust') d['bc_position'].append('-') d['UMIs'].append('-') elif fwd_ix != -1 and rev_ix == -1: ## PolyT found in sequence but NOT the reverse complement d['T9_status'].append('poly_T_found') d['position'].append([fwd_ix]) d['Strand_info'].append('fwd') start_scan = fwd_ix-36 end_scan = fwd_ix-16 if start_scan >= 0 and end_scan > 0: bc_found = BC_scan(barcodes,start_scan,end_scan,seq) elif start_scan < 0 and end_scan >0: start_scan = 0 bc_found = BC_scan(barcodes,start_scan,end_scan,seq) elif start_scan <0 and end_scan <= 0: bc_found = {'bc_pos':'-','bc_intersect':'no_bc'} else: print("wtf",fwd_ix,rev_ix,start_scan,end_scan) if bc_found: d['BarcodeFound'].append(bc_found.get('bc_intersect')) d['bc_position'].append(bc_found.get('bc_pos')) if 'no_bc' in bc_found.get('bc_intersect'): d['Cluster'].append('no_clust') d['UMIs'].append('-') else: d['Cluster'].append([cluster_id[x] for x in [barcodes.index(item) for item in bc_found.get('bc_intersect')]]) UMI_start = int(bc_found.get('bc_pos')[0])+16 UMI_end = int(bc_found.get('bc_pos')[0])+16+umiLength d['UMIs'].append(seq[UMI_start:UMI_end]) #bc_count += 1 else: d['BarcodeFound'].append('no_bc') d['Cluster'].append('no_clust') d['bc_position'].append('-') d['UMIs'].append('-') else: ## PolyT found in both. Could mean one of three things start_scan_f = fwd_ix-36 end_scan_f = fwd_ix-16 if start_scan_f >= 0 and end_scan_f > 0: bc_found_f = BC_scan(barcodes,start_scan_f,end_scan_f,seq) elif start_scan_f < 0 and end_scan_f >0: start_scan_f = 0 bc_found_f = BC_scan(barcodes,start_scan_f,end_scan_f,seq) elif start_scan_f <0 and end_scan_f <= 0: bc_found_f = {'bc_pos':'-','bc_intersect':'no_bc'} start_scan_r = rev_ix-36 end_scan_r = rev_ix-6 if start_scan_r >= 0 and end_scan_r > 0: bc_found_r = BC_scan(barcodes,start_scan_r,end_scan_r,rev_seq) elif start_scan_r < 0 and end_scan_r >0: start_scan_r = 0 bc_found_r = BC_scan(barcodes,start_scan_r,end_scan_r,rev_seq) elif start_scan_r <0 and end_scan_r <= 0: bc_found_r = {'bc_pos':'-','bc_intersect':'no_bc'} if bc_found_f and bc_found_r and bc_found_r.get('bc_intersect') != 'no_bc' and bc_found_f.get('bc_intersect') != 'no_bc': ## BC found in forward AND reverse strand implies something is wrong, discard the read d['T9_status'].append('poly_T_found') d['position'].append([fwd_ix,rev_ix]) d['BarcodeFound'].append('DoubleBC') d['bc_position'].append('-') d['Cluster'].append('no_clust') d['Strand_info'].append('both') d['UMIs'].append('-') #chimera += 1 elif bc_found_f and not bc_found_r: ## Barcode found in fwd strand, reverse strand polyT was a false positive d['T9_status'].append('poly_T_found') d['position'].append([fwd_ix]) d['Strand_info'].append('fwd') d['BarcodeFound'].append(bc_found_f.get('bc_intersect')) d['bc_position'].append(bc_found_f.get('bc_pos')) if 'no_bc' in bc_found.get('bc_intersect'): d['Cluster'].append('no_clust') d['UMIs'].append('-') else: d['Cluster'].append([cluster_id[x] for x in [barcodes.index(item) for item in bc_found_f.get('bc_intersect')]]) UMI_start = int(bc_found.get('bc_pos')[0])+16 UMI_end = int(bc_found.get('bc_pos')[0])+16+umiLength d['UMIs'].append(seq[UMI_start:UMI_end]) #bc_count += 1 elif bc_found_r and not bc_found_f: ## Barcode found in reverse strand, fwd T9 was a false positive d['T9_status'].append('poly_T_found') d['position'].append([rev_ix]) d['Strand_info'].append('rev') d['BarcodeFound'].append(bc_found_f.get('bc_intersect')) d['bc_position'].append(bc_found_f.get('bc_pos')) if 'no_bc' in bc_found.get('bc_intersect'): d['Cluster'].append('no_clust') d['UMIs'].append('-') else: d['Cluster'].append([cluster_id[x] for x in [barcodes.index(item) for item in bc_found_f.get('bc_intersect')]]) UMI_start = int(bc_found.get('bc_pos')[0])+16 UMI_end = int(bc_found.get('bc_pos')[0])+16+umiLength d['UMIs'].append(rev_seq[UMI_start:UMI_end]) #bc_count += 1 else: d['T9_status'].append('poly_T_found') d['position'].append('-') d['Strand_info'].append('both') d['bc_position'].append('-') d['BarcodeFound'].append('no_bc') d['Cluster'].append('no_clust') d['UMIs'].append('-') return(d) def chunkAndProcess(args,d,tooShort): step = 4 ## read lines in file with a step size of 4 startLine = 0 sim_processes = args.numProc print("Number of simultaneous processes: ", sim_processes) readCount = sum(1 for i in gzip.open(args.fq, 'rb')) // 4 # print("Number of reads in fastq file: ", readCount) toFork = (readCount // sim_processes) + 1 # print("Number of reads per process: ", toFork) ## test # Set childNo to 1 to give first child that childNo. childNo = 1 while readCount >= 1: isChild = os.fork() if isChild == 0: break else: if childNo == sim_processes: break else: startLine = startLine + (toFork * 4) readCount = readCount - toFork childNo += 1 if isChild != 0: os.waitpid(isChild, 0) sys.exit() with gzip.open(args.fq,"rt",encoding ='utf-8') as f: for _ in zip(range(startLine), f): pass for lineno, line in enumerate(f, start = startLine): if lineno < startLine + (toFork * 4): if lineno % step == 0: rn = line[:-1] if 'runid' in rn: rn = line.split(' ')[0] if lineno % step == 1 and len(line) >= 201: d = addToDict(d, line, rn) if lineno % step == 1 and len(line) < 201: tooShort.append(rn) else: break writeTooShort(args, tooShort, childNo) df = pd.DataFrame(data=d) df.to_csv('%stmp%d' %(args.outDir, childNo), sep = "\t",index=False, header=False) return() def writeTooShort(args, tooShort, childNo): tmp_d = {'Name':tooShort} tmp_df =
pd.DataFrame(data=tmp_d)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os.path import unittest import pandas as pd import pandas.io.common import biom import skbio import qiime2 from pandas.util.testing import assert_frame_equal, assert_series_equal from q2_types.feature_table import BIOMV210Format from q2_types.feature_data import ( TaxonomyFormat, HeaderlessTSVTaxonomyFormat, TSVTaxonomyFormat, DNAFASTAFormat, DNAIterator, PairedDNAIterator, PairedDNASequencesDirectoryFormat, AlignedDNAFASTAFormat, DifferentialFormat, AlignedDNAIterator ) from q2_types.feature_data._transformer import ( _taxonomy_formats_to_dataframe, _dataframe_to_tsv_taxonomy_format) from qiime2.plugin.testing import TestPluginBase # NOTE: these tests are fairly high-level and mainly test the transformer # interfaces for the three taxonomy file formats. More in-depth testing for # border cases, errors, etc. are in `TestTaxonomyFormatsToDataFrame` and # `TestDataFrameToTSVTaxonomyFormat` below, which test the lower-level helper # functions utilized by the transformers. class TestTaxonomyFormatTransformers(TestPluginBase): package = 'q2_types.feature_data.tests' def test_taxonomy_format_to_dataframe_with_header(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', '3-column.tsv')) assert_frame_equal(obs, exp) def test_taxonomy_format_to_dataframe_without_header(self): # Bug identified in https://github.com/qiime2/q2-types/issues/107 index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Unnamed Column 1', 'Unnamed Column 2'] exp = pd.DataFrame([['k__Foo; p__Bar', 'some', 'another'], ['k__Foo; p__Baz', 'column', 'column!']], index=index, columns=columns, dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', 'headerless.tsv')) assert_frame_equal(obs, exp) def test_taxonomy_format_to_series_with_header(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', '3-column.tsv')) assert_series_equal(obs, exp) def test_taxonomy_format_to_series_without_header(self): # Bug identified in https://github.com/qiime2/q2-types/issues/107 index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', 'headerless.tsv')) assert_series_equal(obs, exp) def test_headerless_tsv_taxonomy_format_to_tsv_taxonomy_format(self): exp = ( 'Feature ID\tTaxon\tUnnamed Column 1\tUnnamed Column 2\n' 'seq1\tk__Foo; p__Bar\tsome\tanother\n' 'seq2\tk__Foo; p__Baz\tcolumn\tcolumn!\n' ) _, obs = self.transform_format( HeaderlessTSVTaxonomyFormat, TSVTaxonomyFormat, filename=os.path.join('taxonomy', 'headerless.tsv')) with obs.open() as fh: self.assertEqual(fh.read(), exp) def test_tsv_taxonomy_format_to_dataframe(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) _, obs = self.transform_format( TSVTaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', '3-column.tsv')) assert_frame_equal(obs, exp) def test_tsv_taxonomy_format_to_series(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TSVTaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', '3-column.tsv')) assert_series_equal(obs, exp) def test_dataframe_to_tsv_taxonomy_format(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Foo', 'Bar'] df = pd.DataFrame([['taxon1', '42', 'foo'], ['taxon2', '43', 'bar']], index=index, columns=columns, dtype=object) exp = ( 'Feature ID\tTaxon\tFoo\tBar\n' 'seq1\ttaxon1\t42\tfoo\n' 'seq2\ttaxon2\t43\tbar\n' ) transformer = self.get_transformer(pd.DataFrame, TSVTaxonomyFormat) obs = transformer(df) with obs.open() as fh: self.assertEqual(fh.read(), exp) def test_series_to_tsv_taxonomy_format(self): index = pd.Index(['emrakul', 'peanut'], name='Feature ID', dtype=object) series = pd.Series(['taxon1', 'taxon2'], index=index, name='Taxon', dtype=object) exp = ( 'Feature ID\tTaxon\n' 'emrakul\ttaxon1\n' 'peanut\ttaxon2\n' ) transformer = self.get_transformer(pd.Series, TSVTaxonomyFormat) obs = transformer(series) with obs.open() as fh: self.assertEqual(fh.read(), exp) def test_biom_table_to_tsv_taxonomy_format(self): filepath = self.get_data_path( os.path.join('taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom')) table = biom.load_table(filepath) transformer = self.get_transformer(biom.Table, TSVTaxonomyFormat) obs = transformer(table) self.assertIsInstance(obs, TSVTaxonomyFormat) self.assertEqual( obs.path.read_text(), 'Feature ID\tTaxon\nO0\ta; b\nO1\ta; b\nO2\ta; b\nO3\ta; b\n') def test_biom_table_to_tsv_taxonomy_format_no_taxonomy_md(self): filepath = self.get_data_path( os.path.join('taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom')) table = biom.load_table(filepath) observation_metadata = [dict(taxon=['a', 'b']) for _ in range(4)] table = biom.Table(table.matrix_data, observation_ids=table.ids(axis='observation'), sample_ids=table.ids(axis='sample'), observation_metadata=observation_metadata) transformer = self.get_transformer(biom.Table, TSVTaxonomyFormat) with self.assertRaisesRegex(ValueError, 'O0 does not contain `taxonomy`'): transformer(table) def test_biom_table_to_tsv_taxonomy_format_missing_md(self): filepath = self.get_data_path( os.path.join('taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom')) table = biom.load_table(filepath) observation_metadata = [dict(taxonomy=['a', 'b']) for _ in range(4)] observation_metadata[2]['taxonomy'] = None # Wipe out one entry table = biom.Table(table.matrix_data, observation_ids=table.ids(axis='observation'), sample_ids=table.ids(axis='sample'), observation_metadata=observation_metadata) transformer = self.get_transformer(biom.Table, TSVTaxonomyFormat) with self.assertRaisesRegex(TypeError, 'problem preparing.*O2'): transformer(table) def test_biom_v210_format_to_tsv_taxonomy_format(self): filename = os.path.join( 'taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom') _, obs = self.transform_format(BIOMV210Format, TSVTaxonomyFormat, filename=filename) self.assertIsInstance(obs, TSVTaxonomyFormat) self.assertEqual( obs.path.read_text(), 'Feature ID\tTaxon\nO0\ta; b\nO1\ta; b\nO2\ta; b\nO3\ta; b\n') def test_biom_v210_format_no_md_to_tsv_taxonomy_format(self): with self.assertRaisesRegex(TypeError, 'observation metadata'): self.transform_format( BIOMV210Format, TSVTaxonomyFormat, filename=os.path.join('taxonomy', 'feature-table_v210.biom')) def test_taxonomy_format_with_header_to_metadata(self): _, obs = self.transform_format(TaxonomyFormat, qiime2.Metadata, os.path.join('taxonomy', '3-column.tsv')) index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp_df = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_taxonomy_format_without_header_to_metadata(self): _, obs = self.transform_format(TaxonomyFormat, qiime2.Metadata, os.path.join('taxonomy', 'headerless.tsv')) index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Unnamed Column 1', 'Unnamed Column 2'] exp_df = pd.DataFrame([['k__Foo; p__Bar', 'some', 'another'], ['k__Foo; p__Baz', 'column', 'column!']], index=index, columns=columns, dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_tsv_taxonomy_format_to_metadata(self): _, obs = self.transform_format(TSVTaxonomyFormat, qiime2.Metadata, os.path.join('taxonomy', '3-column.tsv')) index =
pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object)
pandas.Index
""" Collection of tests asserting things that should be true for any index subclass. Makes use of the `indices` fixture defined in pandas/tests/indexes/conftest.py. """ import re import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.core.dtypes.common import is_period_dtype, needs_i8_conversion import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, MultiIndex, PeriodIndex, RangeIndex, TimedeltaIndex, ) import pandas._testing as tm class TestCommon: def test_droplevel(self, index): # GH 21115 if isinstance(index, MultiIndex): # Tested separately in test_multi.py return assert index.droplevel([]).equals(index) for level in index.name, [index.name]: if isinstance(index.name, tuple) and level is index.name: # GH 21121 : droplevel with tuple name continue with pytest.raises(ValueError): index.droplevel(level) for level in "wrong", ["wrong"]: with pytest.raises( KeyError, match=r"'Requested level \(wrong\) does not match index name \(None\)'", ): index.droplevel(level) def test_constructor_non_hashable_name(self, index): # GH 20527 if isinstance(index, MultiIndex): pytest.skip("multiindex handled in test_multi.py") message = "Index.name must be a hashable type" renamed = [["1"]] # With .rename() with pytest.raises(TypeError, match=message): index.rename(name=renamed) # With .set_names() with pytest.raises(TypeError, match=message): index.set_names(names=renamed) def test_constructor_unwraps_index(self, index): if isinstance(index, pd.MultiIndex): raise pytest.skip("MultiIndex has no ._data") a = index b = type(a)(a) tm.assert_equal(a._data, b._data) @pytest.mark.parametrize("itm", [101, "no_int"]) # FutureWarning from non-tuple sequence of nd indexing @pytest.mark.filterwarnings("ignore::FutureWarning") def test_getitem_error(self, index, itm): with pytest.raises(IndexError): index[itm] @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_corner_union(self, index, fname, sname, expected_name): # GH 9943 9862 # Test unions with various name combinations # Do not test MultiIndex or repeats if isinstance(index, MultiIndex) or not index.is_unique: pytest.skip("Not for MultiIndex or repeated indices") # Test copy.union(copy) first = index.copy().set_names(fname) second = index.copy().set_names(sname) union = first.union(second) expected = index.copy().set_names(expected_name) tm.assert_index_equal(union, expected) # Test copy.union(empty) first = index.copy().set_names(fname) second = index.drop(index).set_names(sname) union = first.union(second) expected = index.copy().set_names(expected_name) tm.assert_index_equal(union, expected) # Test empty.union(copy) first = index.drop(index).set_names(fname) second = index.copy().set_names(sname) union = first.union(second) expected = index.copy().set_names(expected_name) tm.assert_index_equal(union, expected) # Test empty.union(empty) first = index.drop(index).set_names(fname) second = index.drop(index).set_names(sname) union = first.union(second) expected = index.drop(index).set_names(expected_name) tm.assert_index_equal(union, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_union_unequal(self, index, fname, sname, expected_name): if isinstance(index, MultiIndex) or not index.is_unique: pytest.skip("Not for MultiIndex or repeated indices") # test copy.union(subset) - need sort for unicode and string first = index.copy().set_names(fname) second = index[1:].set_names(sname) union = first.union(second).sort_values() expected = index.set_names(expected_name).sort_values() tm.assert_index_equal(union, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_corner_intersect(self, index, fname, sname, expected_name): # GH35847 # Test intersections with various name combinations if isinstance(index, MultiIndex) or not index.is_unique: pytest.skip("Not for MultiIndex or repeated indices") # Test copy.intersection(copy) first = index.copy().set_names(fname) second = index.copy().set_names(sname) intersect = first.intersection(second) expected = index.copy().set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test copy.intersection(empty) first = index.copy().set_names(fname) second = index.drop(index).set_names(sname) intersect = first.intersection(second) expected = index.drop(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test empty.intersection(copy) first = index.drop(index).set_names(fname) second = index.copy().set_names(sname) intersect = first.intersection(second) expected = index.drop(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test empty.intersection(empty) first = index.drop(index).set_names(fname) second = index.drop(index).set_names(sname) intersect = first.intersection(second) expected = index.drop(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_intersect_unequal(self, index, fname, sname, expected_name): if isinstance(index, MultiIndex) or not index.is_unique: pytest.skip("Not for MultiIndex or repeated indices") # test copy.intersection(subset) - need sort for unicode and string first = index.copy().set_names(fname) second = index[1:].set_names(sname) intersect = first.intersection(second).sort_values() expected = index[1:].set_names(expected_name).sort_values() tm.assert_index_equal(intersect, expected) def test_to_flat_index(self, index): # 22866 if isinstance(index, MultiIndex): pytest.skip("Separate expectation for MultiIndex") result = index.to_flat_index() tm.assert_index_equal(result, index) def test_set_name_methods(self, index): new_name = "This is the new name for this index" # don't tests a MultiIndex here (as its tested separated) if isinstance(index, MultiIndex): pytest.skip("Skip check for MultiIndex") original_name = index.name new_ind = index.set_names([new_name]) assert new_ind.name == new_name assert index.name == original_name res = index.rename(new_name, inplace=True) # should return None assert res is None assert index.name == new_name assert index.names == [new_name] # FIXME: dont leave commented-out # with pytest.raises(TypeError, match="list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with pytest.raises(ValueError, match="Level must be None"): index.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ("A", "B") index.rename(name, inplace=True) assert index.name == name assert index.names == [name] def test_copy_and_deepcopy(self, index): from copy import copy, deepcopy if isinstance(index, MultiIndex): pytest.skip("Skip check for MultiIndex") for func in (copy, deepcopy): idx_copy = func(index) assert idx_copy is not index assert idx_copy.equals(index) new_copy = index.copy(deep=True, name="banana") assert new_copy.name == "banana" def test_unique(self, index): # don't test a MultiIndex here (as its tested separated) # don't test a CategoricalIndex because categories change (GH 18291) if isinstance(index, (MultiIndex, CategoricalIndex)): pytest.skip("Skip check for MultiIndex/CategoricalIndex") # GH 17896 expected = index.drop_duplicates() for level in 0, index.name, None: result = index.unique(level=level) tm.assert_index_equal(result, expected) msg = "Too many levels: Index has only 1 level, not 4" with pytest.raises(IndexError, match=msg): index.unique(level=3) msg = ( fr"Requested level \(wrong\) does not match index name " fr"\({re.escape(index.name.__repr__())}\)" ) with pytest.raises(KeyError, match=msg): index.unique(level="wrong") def test_get_unique_index(self, index): # MultiIndex tested separately if not len(index) or isinstance(index, MultiIndex): pytest.skip("Skip check for empty Index and MultiIndex") idx = index[[0] * 5] idx_unique = index[[0]] # We test against `idx_unique`, so first we make sure it's unique # and doesn't contain nans. assert idx_unique.is_unique is True try: assert idx_unique.hasnans is False except NotImplementedError: pass for dropna in [False, True]: result = idx._get_unique_index(dropna=dropna) tm.assert_index_equal(result, idx_unique) # nans: if not index._can_hold_na: pytest.skip("Skip na-check if index cannot hold na") if
is_period_dtype(index.dtype)
pandas.core.dtypes.common.is_period_dtype
# ********************************************************************************** # # # # Project: FastClassAI workbecnch # # # # Author: <NAME> # # Contact: <EMAIL> # # # # This notebook is a part of Skin AanaliticAI development kit, created # # for evaluation of public datasets used for skin cancer detection with # # large number of AI models and data preparation pipelines. # # # # License: MIT # # Copyright (C) 2021.01.30 <NAME> # # https://opensource.org/licenses/MIT # # # # ********************************************************************************** # #!/usr/bin/env python # -*- coding: utf-8 -*- import os # allow changing, and navigating files and folders, import sys import re # module to use regular expressions, import glob # lists names in folders that match Unix shell patterns import random # functions that use and generate random numbers import pickle import numpy as np # support for multi-dimensional arrays and matrices import pandas as pd # library for data manipulation and analysis import seaborn as sns # advance plots, for statistics, import matplotlib as mpl # to get some basif functions, heping with plot mnaking import scipy.cluster.hierarchy as sch import matplotlib.pyplot as plt # for making plots, from src.utils.model_summary_plots import visual_model_summary # from src.utils.method_comparison_tools import method_comparison_boxplot # copied here for any potential changes, # Function .......................................................................... def create_class_colors_dict(*, list_of_unique_names, cmap_name="tab20", cmap_colors_from=0, cmap_colors_to=1 ): '''Returns dictionary that maps each class name in list_of_unique_names, to to a distinct RGB color . list_of_unique_names : list with unique, full names of clasesses, group etc.. . cmap_name : standard mpl colormap name. . cmap_colors_from, cmap_colors_to, values between 0 and 1, used to select range of colors in cmap, ''' # create cmap mycmap = plt.cm.get_cmap(cmap_name, len(list_of_unique_names)*10000) newcolors = mycmap(np.linspace(cmap_colors_from, cmap_colors_to, len(list_of_unique_names))) class_color_dict = dict() for i, un in enumerate(list_of_unique_names): class_color_dict[un] = newcolors[i] return class_color_dict # Function ............................................................................. def load_summary_files(*, dataset_name, dataset_variants, module_names, ai_methods, keywords, path_results, verbose=False ): # assure that you have proper datastructures if isinstance(dataset_variants, str): dataset_variants = [dataset_variants] else: pass if isinstance(module_names, str): module_names = [module_names] else: pass if isinstance(ai_methods, str): ai_methods = [ai_methods] else: pass if isinstance(keywords, str): keywords = [keywords] else: pass # collect names of files that will be loaded file_counter=0 for ai_method in ai_methods: for dataset_variant in dataset_variants: for module_name in module_names: if verbose==True: print("Loading files for: ", ai_method, dataset_variant, module_name, "Found: ", end="") else: pass # path rpath = os.path.join(path_results, f"{ai_method}__{dataset_name}__{dataset_variant}") os.chdir(rpath) # find all files in rpath files = [] for file in glob.glob("*"): files.append(file) # select all with keywords, files_s = pd.Series(files) for k in keywords: files_s = files_s.loc[files_s.str.contains(k)] files_l = files_s.values.tolist() # info part 2, if verbose==True: print(len(files_s)>0, "files") else: pass # load files if len(files_s)>0: for file_name in files_l : loaded_df = pd.read_csv(file_name) loaded_df["file_name"]=[file_name]*loaded_df.shape[0] loaded_df["path"]=[rpath]*loaded_df.shape[0] if file_counter==0: summary_df = loaded_df file_counter += 1 else: summary_df = pd.concat([summary_df, loaded_df], axis=0) summary_df.reset_index(inplace=True, drop=True) else: pass # info part 2, if verbose==True: print("----> Final Table has results for ", summary_df.shape[0], " models") else: pass return summary_df # Function ............................................................................. def create_new_df_feature(*, df, new_feature_name, old_features_list, return_full_df=True, verbose=False): ''' create new feature by concatanating corresponsing cells in pd dataframe form any number of other selected features old_features_list: str, or list, with name/s of feature to be concatenated return_full_df : bool, if True entire df is retuned if False, return pd.series only with thenew feature ''' if isinstance(old_features_list, str): old_features_list = [old_features_list] else: pass # check if all feaqtures are available stop_the_function = False for i, feature in enumerate(old_features_list): try: df.loc[:, feature] except: stop_the_function = True if verbose==True: print(f"ERROR: {feature} -- was not found in dataframe") else: pass # concatanate values in each corresponding cell if stop_the_function==True: return None else: for i, feature in enumerate(old_features_list): if i==0: new_feature = df.loc[:, feature].values.tolist() else: another_new_feature = df.loc[:, feature].values.tolist() new_feature = [f"{x}__{y}" for (x,y) in zip(new_feature, another_new_feature)] if return_full_df==True: df[new_feature_name] = new_feature return df else: return pd.Series(new_feature) # Function ............................................................................. def simple_visual_model_summary(*, model_idx_in_sorted_summary_df=0, subset_collection_name, batch_names_list, summary_df, class_labels_configs, path_data, path_results, N_displayed_images ="all", max_img_per_col = 15, fontsize_scale= 1 ): ''' Temporary function used only with FastClassAI pipeline, that will load raw images from all batches in a given subset batch collection, eg batch 1 and 2 for test data, then it will plot 3 figures - 1st figure - images grouped by class assigned with the model and with color boxes showing true class - 2nd/3rd figure - pie charts showing sencsitivity and specificity in pie charts PS: I am working on better version ''' # .... idx_in_df = model_idx_in_sorted_summary_df # *** find names and models to load # sort summary df sorted_summary_df = summary_df.sort_values('model_acc_valid', ascending=False) sorted_summary_df.reset_index(inplace=True, drop=True) # get all variables, method = sorted_summary_df.method.iloc[idx_in_df] dataset_name = sorted_summary_df.dataset_name.iloc[idx_in_df] dataset_variant = sorted_summary_df.dataset_variant.iloc[idx_in_df] model_ID = sorted_summary_df.model_ID.iloc[idx_in_df] # its an ID number given to the model in that dictionary, # *** paths path_to_raw_images_sorted_into_batches = os.path.join(path_data, f'{dataset_name}__{dataset_variant}') path_to_batch_labels = os.path.join(path_data, f'{dataset_name}__{dataset_variant}__extracted_features') path_to_model_predictions = os.path.join(path_results, f'{method}__{dataset_name}__{dataset_variant}') # *** load data # load model predictions, os.chdir(path_to_model_predictions) model_predictions_file_name = re.sub("summary_table.csv", "model_predictions_dict.p", sorted_summary_df.file_name.iloc[idx_in_df]) with open(model_predictions_file_name , 'rb') as file: model_predictions_dict = pickle.load(file) # get class_label colors, class_labels_colors_toUse = class_labels_configs[dataset_variant]['class_labels_colors'] # caulate accuracy results acc_results = f'acc={np.round(sorted_summary_df.loc[:, f"model_acc_{subset_collection_name}"].iloc[idx_in_df],2)}' # display examples from best performing model, visual_model_summary( model_predictions_dict = model_predictions_dict, model_ID = model_ID, # applicable only with a given model_predictions_dict # what predicitons to display, n = N_displayed_images, # use "all" to display all examples_to_plot = "all", # correct and incorrect on the same plot, class_colors = class_labels_colors_toUse, # input data, dataset_name = dataset_name, subset_name = [subset_collection_name], # name used in xy_names eg: train, valid, test test_2 img_batch_subset_names = batch_names_list, # list, batch names that were placed in that collection, path_to_raw_img_batch = path_to_raw_images_sorted_into_batches, # ... settings for main plot, title_prefix = f"{subset_collection_name}, {acc_results}", make_plot_with_img_examples = True, # use False, to have only pie charts with classyfication summary add_proba_values_to_img_name = True, max_img_per_col = max_img_per_col, # ... settings for annot. pie charts, first_pie_title =f"Image Classyfication Results - True Class in pie chart ring\n{subset_collection_name} data", second_pie_title =f"Class Detection Results - True Class in pie chart center \n{subset_collection_name} data", pie_data_for_all_images_in_img_batch=True, pie_charts_in_ne_row = 7, # ... pie chart aestetics added later to tune pie charts PIE_legend_loc = "upper right", PIE_ax_title_fonsize_scale=0.6*fontsize_scale, PIE_legend_fontsize_scale=1.4*fontsize_scale, PIE_wedges_fontsize_scale=1*fontsize_scale, PIE_legend_ncol=4, PIE_tight_lyout=False, PIE_title_ha="right", PIE_figsze_scale=1.5, PIE_subplots_adjust_top=0.75, PIE_ax_title_fontcolor="black" ) # Function ............................................................................. def prepare_summary_df(*, dataset_name, dataset_variants, module_names, ai_methods, keywords, path_results, verbose=False ): ''' helper function that loads results from model evaluation, for all combinaiton of dataset_name, dataset_variants, module_names, ai_methods and keywords, that allow to find one or more csv file names (order of keywords is not important) it will provide only files wiht exact match for all keywords, if nothing is returned, set verbose==True, ai_method, dataset_name, and dataset_variants, are used to build folder names in path_results whereas keywords and module names are used to find files caution, the function load_summary_files requires module names for iteration, but these are not used to find files, it was an error that will be removed, if required results for speciffic module, place it name in keywords, and only files created for that module will be loaded ''' summary_df = load_summary_files( dataset_name = dataset_name, dataset_variants = dataset_variants, module_names = module_names, ai_methods = ai_methods, keywords = keywords, path_results = path_results, verbose = verbose ) summary_df = create_new_df_feature( df = summary_df, new_feature_name = "full_method_name", old_features_list = ["method", "method_variant"], ) summary_df = create_new_df_feature( df = summary_df, new_feature_name = "full_dataset_variant", old_features_list = ["dataset_variant", 'module'], verbose=True ) summary_df = create_new_df_feature( df = summary_df, new_feature_name = "full_results_group_name", old_features_list = ["method", "method_variant", "dataset_variant", 'module'], ) return summary_df # Function .............................................................................. def method_comparison_boxplot(*, title="Accuracy of models created with each method\n", data, # pd.DataFrame with the results, figsize=(10,4), # ... col_with_results, # df colname with values to display, eg: test_accuracy ... col_with_group_names, # df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID, # df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors, # df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) # ... colors cmap="tab10", cmap_colors_from=0, cmap_colors_to=1, # .. legend legend__bbox_to_anchor=(0.9, 1.15), subplots_adjust_top = 0.8, legend_ncols=4, # .. baseline baseline_title="", # "most frequent baseline", baseline_loc = -0.05, baseline = 0.25, top_results = 0.9, # green zone on a plot, # ... fontsize title_fontsize=20, legend_fontsize=10, xticks_fontsize=10, yticks_fontsize=15, axes_labels_fontsize=20, # ... axies labels xaxis_label = "Method", yaxis_label = "Accuracy\n", paint_xticks=False ): """ Nice function to create ngs-like boxplots for comparison of acc of differemnt model groups it is more generic version of the abofe function, """ # ............................................... # managment Stop_Function = False # ............................................... # data preparation - step.1 extraction # ............................................... # - extract unique values that will be searched, unique_group_ID = data.loc[:,col_with_group_ID].unique().tolist() unique_group_color_names = data.loc[:,col_with_group_colors].unique().tolist() # - map colors onto color_groups_names bx_color_dict = create_class_colors_dict( list_of_unique_names=unique_group_color_names, cmap_name=cmap, cmap_colors_from=cmap_colors_from, cmap_colors_to=cmap_colors_to ) # - lists with data for boxes, 'one item for one box in each' bx_data = [] bx_names = [] bx_colors = [] bx_id = [] bx_colors_dict_key = [] # - separate all boxes, and then find out what is the color and data associated with that box for one_group_ID in unique_group_ID: bx_id.append(one_group_ID) # get the data and other columns for one box data_df_for_one_box = data.loc[data.loc[:, col_with_group_ID]==one_group_ID,:] # find out, data, name and color to display # .... num. data .... bx_data.append(data_df_for_one_box.loc[:,col_with_results].values) # np.array # .... labels ..... one_bx_label = data_df_for_one_box.loc[:,col_with_group_names].unique().tolist() if len(one_bx_label)==1: bx_names.append(one_bx_label[0]) # np.array else: if verbose==1: print(f"{one_group_ID} contains more then one group to display wiht different names !") else: Stop_Function = True pass # .... colors .... one_box_color = data_df_for_one_box.loc[:,col_with_group_colors].map(bx_color_dict).iloc[0] color_test_values = data_df_for_one_box.loc[:,col_with_group_colors].unique().tolist() if len(color_test_values)==1: bx_colors.append(one_box_color) # np.array bx_colors_dict_key.append(color_test_values[0]) else: if verbose==1: print(f"{one_group_ID} contains more then one COLOR to display wiht different names !") else: Stop_Function = True pass # - check if everythign is in order if len(bx_colors)!=len(bx_names) and len(bx_names)!=len(bx_data): if verbose==True: print("Error: some data are missing or belong to different gorups, and can not be displayed as coherent bocplot") else: pass else: # ............................................... # data preparation - step.2 ordering # ............................................... # find memdians and reorder bx_medians = list() for i, d in enumerate(bx_data): bx_medians.append(np.median(d)) # ... ordered_data_df = pd.DataFrame({ "bx_data": bx_data, "bx_medians": bx_medians, "bx_names": bx_names, "bx_colors": bx_colors, "bx_id": bx_id, "bx_colors_dict_key":bx_colors_dict_key }) ordered_data_df = ordered_data_df.sort_values("bx_medians", ascending=True) ordered_data_df = ordered_data_df.reset_index(drop=True) # ............................................... # boxplot # ............................................... # ............................................... # boxplot, - plt.boxplot(ordered_bx_data); fig, ax = plt.subplots(figsize=figsize, facecolor="white") fig.suptitle(title, fontsize=title_fontsize) # add boxes, bx = ax.boxplot(ordered_data_df["bx_data"], showfliers=True, # remove outliers, because we are interested in a general trend, vert=True, # boxes are vertical labels=ordered_data_df["bx_names"], # x-ticks labels patch_artist=True, widths=0.3 ) ax.grid(ls="--") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.set_xticklabels(ordered_data_df["bx_names"], rotation=45, fontsize=xticks_fontsize, ha="right") ax.set_yticks([0, .2, .4, .6, .8, 1]) ax.set_yticklabels(["0.0", "0.2", "0.4", "0.6", "0.8", "1.0"], fontsize=yticks_fontsize) ax.set_ylabel(yaxis_label, fontsize=axes_labels_fontsize) ax.set_xlabel(xaxis_label, fontsize=axes_labels_fontsize) ax.set_ylim(0,1.02) # add colors to each box individually, for i, j in zip(range(len(bx['boxes'])),range(0, len(bx['caps']), 2)) : median_color ="black" box_color = bx_color_dict[ordered_data_df.loc[:,"bx_colors_dict_key"].iloc[i]] # set properties of items with the same number as boxes, plt.setp(bx['boxes'][i], color=box_color, facecolor=median_color, linewidth=2, alpha=0.8) plt.setp(bx["medians"][i], color=median_color, linewidth=2) plt.setp(bx["fliers"][i], markeredgecolor="black", marker=".") # outliers # set properties of items with the 2x number of features as boxes, plt.setp(bx['caps'][j], color=median_color) plt.setp(bx['caps'][j+1], color=median_color) plt.setp(bx['whiskers'][j], color=median_color) plt.setp(bx['whiskers'][j+1], color=median_color) # ............................................... # set colors for xtick labels, if paint_xticks==True: for i, xtick in enumerate(ax.get_xticklabels()): xtick.set_color(bx_color_dict[ordered_data_df["bx_colors_dict_key"].iloc[i]]) else: pass # ............................................... # legend, if ordered_data_df["bx_names"].shape[0]>0: # create patch for each dataclass, - adapted to even larger number of classes then selected for example images, patch_list_for_legend =[] for i, m_name in enumerate(list(bx_color_dict.keys())): label_text = f"{m_name}" patch_list_for_legend.append(mpl.patches.Patch(color=bx_color_dict[m_name], label=label_text)) # add patches to plot, fig.legend( handles=patch_list_for_legend, frameon=False, scatterpoints=1, ncol=legend_ncols, bbox_to_anchor=legend__bbox_to_anchor, fontsize=legend_fontsize) # ............................................... # create space for the legend fig.subplots_adjust(top=subplots_adjust_top) # ............................................... # ............................................... # add line with baseline ax.axhline(baseline, lw=2, ls="--", color="dimgrey") ax.text(ordered_data_df.shape[0]+0.4, baseline+baseline_loc, baseline_title, ha="right", color="dimgrey", fontsize=yticks_fontsize) # ............................................... # color patches behing boxplots, patch_width = 1 # ie. 1 = grey patch for 1 and 1 break patch_color = "lightgrey" pathces_starting_x = list(range(0, ordered_data_df.shape[0], patch_width*2)) # ... for i, sx in enumerate(pathces_starting_x): rect = plt.Rectangle((sx+0.5, 0), patch_width, 1000, color=patch_color, alpha=0.2, edgecolor=None) ax.add_patch(rect) # color patches for styling the accuracy, rect = plt.Rectangle((0,0), ordered_data_df.shape[0]*100, baseline, color="red", alpha=0.1, edgecolor=None) ax.add_patch(rect) rect = plt.Rectangle((0,baseline), ordered_data_df.shape[0]*100, top_results-baseline, color="orange", alpha=0.1, edgecolor=None) ax.add_patch(rect) rect = plt.Rectangle((0, top_results), ordered_data_df.shape[0]*100, 10, color="forestgreen", alpha=0.1, edgecolor=None) ax.add_patch(rect) return fig # Function ............................................................................. def create_boxplot_with_color_classes(*, summary_df, figsize = (10,6), col_with_results ="model_acc_valid", # df colname with values to display, eg: test_accuracy ... col_with_group_names ="full_method_name", # df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID ="full_results_group_name", # df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors="full_dataset_variant", # df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) baseline = 0.5, fontsize_scale=1, subplots_adjust_top = 0.6, baseline_title ="baseline", legend_ncols=1, legend__bbox_to_anchor=(0.5, 1.1), ): ''' Funtion returns boxplot showing accuracy or other metric displayed for any number of groups of results (eg methods), divided into larger groups shown as different colors of boyes, with color legen above the plot summary_df : summary dataframe created with prepare_summary_df function, col_with_results : str, df colname with values to display, eg: test_accuracy ... col_with_group_names : str, df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID : str, df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors: str, df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) ''' # boxplot fig = method_comparison_boxplot( title=f"Accuracy of models created with each method\n\n", data = summary_df, # pd.DataFrame with the results, figsize=figsize, # ... col_with_results =col_with_results, # df colname with values to display, eg: test_accuracy ... col_with_group_names =col_with_group_names , # df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID =col_with_group_ID, # df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors=col_with_group_colors, # df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) # ... colors cmap="tab10", cmap_colors_from=0, cmap_colors_to=0.5, # .. legend legend__bbox_to_anchor=(0.5, 1.1), subplots_adjust_top = subplots_adjust_top, legend_ncols=legend_ncols, # .. baseline baseline_title =baseline_title, baseline_loc =-0.09, baseline = baseline, top_results = 0.9, # green zone on a plot, # ... fontsize title_fontsize=20*fontsize_scale, legend_fontsize=10*fontsize_scale, xticks_fontsize=10*fontsize_scale, yticks_fontsize=15*fontsize_scale, axes_labels_fontsize=15*fontsize_scale, # ... axies labels xaxis_label = "Method", yaxis_label = "Accuracy\n", paint_xticks=True ) return fig # Function ............................................................................. def preapre_table_with_n_best_results_in_each_group(*, summary_df, n_top_methods = 1, sort_by = "model_acc_valid", feature_used_to_group_models = "full_results_group_name", display_table=False ): ''' Function that takes summary df, selectes max n requested best perfoming models, and return them all in sorted summary df table format, if display_table==True, displays selected columns from that table to show all examples, ''' # unique model group names method_full_name_list = summary_df.loc[:, feature_used_to_group_models].unique().tolist() # collect top methods, for i, method_full_name in enumerate(method_full_name_list): # . subset summary_df summary_df_subset = summary_df.loc[summary_df.loc[:, feature_used_to_group_models]==method_full_name, :] summary_df_subset = summary_df_subset.sort_values(sort_by, ascending=False) # . place in if i==0: best_methods_summary_df = summary_df_subset.iloc[0:n_top_methods,:] else: best_methods_summary_df = pd.concat([best_methods_summary_df, summary_df_subset.iloc[0:n_top_methods,:]]) best_methods_summary_df.reset_index(drop=True, inplace=True) # display examples: # show best model examples features_to_display = ["dataset_variant", "module","method", "method_variant", "model_acc_train", "model_acc_valid", "model_acc_test", "pca_components_used", "run_name"] sorted_best_methods_summary_df = best_methods_summary_df.sort_values("model_acc_valid", ascending=False) sorted_best_methods_summary_df.reset_index(drop=True, inplace=True) if display_table==True: features_to_display = ["dataset_variant", "module","method", "method_variant", "model_acc_train", "model_acc_valid", "model_acc_test", "baseline_acc_test", "pca_components_used", "run_name"] display(sorted_best_methods_summary_df.loc[:, features_to_display]) else: pass return sorted_best_methods_summary_df # Function ............................................................................. def model_summary_plot(*, # input data df, y, boxname, boxcolor, scatterpoints, baseline, # fig, general settings, title=None , figsize=(30,15) , # box colors boxcolor_dict = None, cmap="tab10", cmap_colors_from=0, cmap_colors_to=0.5, # axes xaxis_label = None, yaxis_label = None, # if Noene == ydata_colname grid_dct=dict(lw=1), # scatterpoints, full_model_marker ="*", full_model_markersize=60, full_model_markercolor="black", # legend add_legend=True, subplots_adjust_top = 0.7, legend_title=None, legend__bbox_to_anchor=(0.4, 0.9), legend_ncols=1, # baseline baseline_title = "baseline", baseline_loc =-0.09, use_fixed_baselines = True, baseline_limit_list = [0.5, 0.9, 1.5], # the last one baseline_color_list = ["red", "orange", "forestgreen"], # fontsizes fontsize_scale =1, title_fontsize =30, legend_fontsize=20, xticks_fontsize=20, yticks_fontsize=20, axes_labels_fontsize=25, ): ''' NGS-like boxplot for displaying accuracy, or other results obtained with large number of models # input data df : pd.DataFrame y : str, or list with values, df colname with values to display, eg: test_accuracy ... boxname : str, or list with values, df colname with values that will be displayed as names of each box, if None, (these, do not have to be unique, becaue box colors are also informative, and you may use shorter names to make the plot nicer, ) boxcolor : str, or list with values, if None, all boxes will hae the same colors, and there is no legend displayed, scatterpoints : list, with True/False values, data points in each group used as scatter points, not the part of boxplot, if None, noe will be made, baseline : str, or list with values, df colname with values for baseline thta will be displayed on a bacground, # horizontal patches use_fixed_baselines : bool , if True, three phorizontal patches of the same height will be added to plot, baseline_limit_list : list with 3 floats, eg: [0.5, 0.9, 1.5], each float is the upper limit of the horizontal patch, starting from the plot bottom ''' # setup assert type(df)==pd.DataFrame, "error: df is not pandas DataFrame" # . set plot x/y labels, if xaxis_label is None: if isinstance(boxname, str): xaxis_label=boxname else: xaxis_label="method" if yaxis_label is None: if isinstance(y, str): yaxis_label=y else: yaxis_label="y" # . fontsizes title_fontsize = title_fontsize*fontsize_scale legend_fontsize = legend_fontsize*fontsize_scale xticks_fontsize = xticks_fontsize*fontsize_scale yticks_fontsize = yticks_fontsize*fontsize_scale axes_labels_fontsize = axes_labels_fontsize*fontsize_scale # data preparation # . extract columns, as list if isinstance(y , str): y = df.loc[:, y].values.tolist() else: pass if isinstance(boxname , str): boxname = df.loc[:, boxname].values.tolist() else: pass #. optional values, if boxcolor is not None: if isinstance(boxcolor , str): boxcolor = df.loc[:, boxcolor].values.tolist() else: pass else: boxcolor = ["method"]*len(y) if baseline is not None: if isinstance(baseline , str): baseline = df.loc[:, baseline].values.tolist() else: pass else: baseline = [0.5]*len(y) if scatterpoints is not None: if isinstance(scatterpoints , str): scatterpoints = df.loc[:, scatterpoints].values.tolist() else: pass else: scatterpoints = [False]*len(y) # ie, No data wil be plotted as scatter point, # . create unique boxnames qwith colors and method names, if boxcolor is not None: boxname_full = [f"{x}__{y}" for (x,y) in zip (boxname, boxcolor)] # used to search values, else: boxname_full = boxname # assign colors to each boxcolor name # . define colors for each class in boccolor if boxcolor_dict is None: boxcolor_dict = create_class_colors_dict( list_of_unique_names = pd.Series(boxcolor).unique().tolist(), cmap_name = cmap, cmap_colors_from = cmap_colors_from, cmap_colors_to = cmap_colors_to ) else: pass # . map colors onto boxcolor, that are names boxcolor_value = pd.Series(boxcolor).map(boxcolor_dict) # build pandas df wiht all data boxplotdf = pd.DataFrame({ "y": y, # value on y-axis "boxname_full": boxname_full, # used to separate each box (combines x-axis anme and color) "boxcolor_value": boxcolor_value, # color for bocplot, "boxname":boxname, # displayed on x axis, "boxcolor":boxcolor, # displayed on legend, "baseline": baseline, # displayed as bacground value, "scatterpoints": scatterpoints, # it True, the point is plotted as scatterplot, }) # data preparation - part 2 - prepare array and ncols for plot # . lists with data for boxes, 'one item for one box in each' x_axis_name = [] # xtick labels x_axis_color = [] # xtick label color bx_x = [] bx_y = [] bx_color = [] # box color, (only for boxes) sc_y = [] sc_x = [] baseline_x = [] baseline_y = [] median_y = [] # . fill in values, in proper order with positons on x axis, for i, one_boxname_full in enumerate(pd.Series(boxname_full).unique().tolist()): # find data for boxes boxplotdf_bx_subset = boxplotdf.loc[(boxplotdf.boxname_full==one_boxname_full) & (boxplotdf.scatterpoints==False), :] if boxplotdf_bx_subset.shape[0]>0: bx_x.append(i) bx_y.append(boxplotdf_bx_subset.loc[:,"y"].values.tolist()) bx_color.append(boxplotdf_bx_subset.boxcolor_value.iloc[0]) else: pass # find data for scatter points, boxplotdf_sc_subset = boxplotdf.loc[(boxplotdf.boxname_full==one_boxname_full) & (boxplotdf.scatterpoints==True), :] sc_values = boxplotdf_sc_subset.loc[:,"y"].values.tolist() if len(sc_values)>0: sc_x.extend([i]*len(sc_values)) sc_y.extend(sc_values) else: pass # axis_name, baseline, boxplotdf_group_subset = boxplotdf.loc[boxplotdf.boxname_full==one_boxname_full, :] baseline_x.append(i) baseline_y.append(boxplotdf_group_subset.baseline.max()) median_y.append(boxplotdf_group_subset.y.median()) x_axis_name.append(boxplotdf_group_subset.boxname.iloc[0]) x_axis_color.append(boxplotdf_group_subset.boxcolor_value.iloc[0]) # order items on x axis, # . dict with key == old postion, value == new postion ''' I am using dict, because each item may have different number of elements, and they are not in order, (ie one category may be nmissing and present in sc or bx) that is completely normal ! ''' x_order = dict(zip(pd.Series(median_y).sort_values().index.values.tolist(), list(range(len(median_y))))) bx_x = pd.Series(bx_x).map(x_order).values.tolist() sc_x = pd.Series(sc_x).map(x_order).values.tolist() baseline_x = pd.Series(baseline_x).map(x_order).values.tolist() # . created ordered_xticks_labels tempdf = pd.concat([pd.Series(median_y), pd.Series(x_axis_color), pd.Series(x_axis_name), pd.Series(bx_color), pd.Series(bx_y)], axis=1) tempdf.columns=["median", "x_axis_color","x_axis_name", "bx_color", "by"] tempdf = tempdf.sort_values("median") tempdf.reset_index(drop=True, inplace=True) ordered_xticks_labels = tempdf.x_axis_name.values.tolist() ordered_xticks_colors = tempdf.x_axis_color.values.tolist() ordered_bx_color = tempdf.bx_color.dropna().values.tolist() ordered_b = tempdf.by.dropna().values.tolist() # . add small gausion noise to sc_x positions, sc_x = (np.random.normal(loc=0, scale=0.05, size=len(sc_x))+np.array(sc_x)).tolist() # figure fig, ax = plt.subplots(figsize=figsize, facecolor="white") if title is not None: fig.suptitle(title, fontsize=title_fontsize) else: pass # boxplots bx = ax.boxplot( bx_y, positions=bx_x, showfliers=True, # remove outliers, because we are interested in a general trend, vert=True, # boxes are vertical patch_artist=True, widths=0.3 ) # . add colors to each box individually, for i, j in zip(range(len(bx['boxes'])),range(0, len(bx['caps']), 2)) : median_color ="black" box_color = bx_color[i] # set properties of items with the same number as boxes, plt.setp(bx['boxes'][i], color=box_color, facecolor=median_color, linewidth=2, alpha=0.8) plt.setp(bx["medians"][i], color=median_color, linewidth=2) plt.setp(bx["fliers"][i], markeredgecolor="black", marker=".") # outliers # set properties of items with the 2x number of features as boxes, plt.setp(bx['caps'][j], color=median_color) plt.setp(bx['caps'][j+1], color=median_color) plt.setp(bx['whiskers'][j], color=median_color) plt.setp(bx['whiskers'][j+1], color=median_color) # points, if
pd.Series(scatterpoints)
pandas.Series
import gc import time from datetime import datetime from functools import partial from heamylab import mini_sample import pandas as pd import numpy as np # import lightgbm as lgb # from lightgbm.plotting import plot_importance, plot_metric, plot_tree, create_tree_digraph import xgboost as xgb from sklearn import metrics from xgboost import XGBClassifier from xgboost.plotting import plot_importance, plot_tree, to_graphviz from sklearn.metrics import mean_squared_error, accuracy_score, roc_auc_score from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier) from sklearn.preprocessing import LabelEncoder, StandardScaler, Normalizer from sklearn.model_selection import GridSearchCV, KFold, StratifiedKFold, learning_curve, ShuffleSplit from sklearn.model_selection import train_test_split # 训练集数据拆分 from sklearn.metrics import (roc_curve, auc, roc_auc_score, accuracy_score, precision_recall_fscore_support, classification_report) # 模型评估 from sklearn.ensemble import (GradientBoostingClassifier, VotingClassifier, BaggingClassifier, BaggingRegressor, RandomForestClassifier) from sklearn.externals import joblib from imblearn.over_sampling import SMOTE import matplotlib.pyplot as plt def load_data_source(trainf, testf=None): return pd.read_csv(trainf, sep=","),
pd.read_csv(testf, sep=",")
pandas.read_csv
""" Preprocess sites data. <NAME> February 2022 """ import sys import os import configparser import pandas as pd import geopandas as gpd import pyproj from shapely.ops import transform from shapely.geometry import shape, Point, mapping, LineString, MultiPolygon from tqdm import tqdm CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') def run_site_processing(iso3, level): """ Meta function for running site processing at GID 1 level. """ create_national_sites_csv(iso3) create_national_sites_shp(iso3) process_country_shapes(iso3) process_regions(iso3, level) create_regional_sites_layer_gid_1(iso3, level) tech_specific_sites_gid_1(iso3, level) if str(level) == "2": create_regional_sites_layer_gid_2(iso3, level) tech_specific_sites_gid_2(iso3, level) return def create_national_sites_csv(iso3): """ Create a national sites csv layer for a selected country. """ filename = '{}.csv'.format(iso3) folder = os.path.join(DATA_PROCESSED, iso3, 'sites') path_csv = os.path.join(folder, filename) ### Produce national sites data layers if not os.path.exists(path_csv): print('site.csv data does not exist') print('Subsetting site data for {}'.format(iso3)) if not os.path.exists(folder): os.makedirs(folder) filename = "mobile_codes.csv" path = os.path.join(DATA_RAW, filename) mobile_codes = pd.read_csv(path) mobile_codes = mobile_codes[['iso3', 'mcc']].drop_duplicates() subset = mobile_codes[mobile_codes['iso3'] == iso3] mcc = subset['mcc'].values[0] filename = "cell_towers.csv" path = os.path.join(DATA_RAW, filename) output = [] chunksize = 10 ** 6 for idx, chunk in enumerate(pd.read_csv(path, chunksize=chunksize)): country_data = chunk.loc[chunk['mcc'] == mcc] country_data = country_data.to_dict('records') output = output + country_data if len(output) == 0: print('{} had no data'.format(iso3)) return output =
pd.DataFrame(output)
pandas.DataFrame
from datetime import datetime from dateutil.tz import tzlocal import pytest from pandas.compat import IS64 from pandas import ( DateOffset, DatetimeIndex, Index, Series, bdate_range, date_range, ) import pandas._testing as tm from pandas.tseries.offsets import ( BDay, Day, Hour, ) START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps: def test_ops_properties_basic(self, datetime_series): # sanity check that the behavior didn't change # GH#7206 for op in ["year", "day", "second", "weekday"]: msg = f"'Series' object has no attribute '{op}'" with pytest.raises(AttributeError, match=msg): getattr(datetime_series, op) # attribute access should still work! s = Series({"year": 2000, "month": 1, "day": 10}) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday @pytest.mark.parametrize( "freq,expected", [ ("A", "day"), ("Q", "day"), ("M", "day"), ("D", "day"), ("H", "hour"), ("T", "minute"), ("S", "second"), ("L", "millisecond"), ("U", "microsecond"), ], ) def test_resolution(self, request, tz_naive_fixture, freq, expected): tz = tz_naive_fixture if freq == "A" and not IS64 and isinstance(tz, tzlocal): request.node.add_marker( pytest.mark.xfail(reason="OverflowError inside tzlocal past 2038") ) idx = date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_infer_freq(self, freq_sample): # GH 11018 idx = date_range("2011-01-01 09:00:00", freq=freq_sample, periods=10) result = DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq_sample @pytest.mark.parametrize("values", [["20180101", "20180103", "20180105"], []]) @pytest.mark.parametrize("freq", ["2D", Day(2), "2B", BDay(2), "48H", Hour(48)]) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_freq_setter(self, values, freq, tz): # GH 20678 idx = DatetimeIndex(values, tz=tz) # can set to an offset, converting from string if necessary idx._data.freq = freq assert idx.freq == freq assert isinstance(idx.freq, DateOffset) # can reset to None idx._data.freq = None assert idx.freq is None def test_freq_setter_errors(self): # GH 20678 idx = DatetimeIndex(["20180101", "20180103", "20180105"]) # setting with an incompatible freq msg = ( "Inferred frequency 2D from passed values does not conform to " "passed frequency 5D" ) with pytest.raises(ValueError, match=msg): idx._data.freq = "5D" # setting with non-freq string with pytest.raises(ValueError, match="Invalid frequency"): idx._data.freq = "foo" def test_freq_view_safe(self): # Setting the freq for one DatetimeIndex shouldn't alter the freq # for another that views the same data dti = date_range("2016-01-01", periods=5) dta = dti._data dti2 = DatetimeIndex(dta)._with_freq(None) assert dti2.freq is None # Original was not altered assert dti.freq == "D" assert dta.freq == "D" class TestBusinessDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_copy(self): cp = self.rng.copy() repr(cp) tm.assert_index_equal(cp, self.rng) def test_identical(self): t1 = self.rng.copy() t2 = self.rng.copy() assert t1.identical(t2) # name t1 = t1.rename("foo") assert t1.equals(t2) assert not t1.identical(t2) t2 = t2.rename("foo") assert t1.identical(t2) # freq t2v = Index(t2.values) assert t1.equals(t2v) assert not t1.identical(t2v) class TestCustomDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END, freq="C") def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_copy(self): cp = self.rng.copy() repr(cp)
tm.assert_index_equal(cp, self.rng)
pandas._testing.assert_index_equal
import logging import matplotlib.pyplot as plt import pandas as pd import seaborn as sns logger = logging.getLogger(__name__) def evaluate_agents(agent_manager_list, n_simulations=5, fignum=None, show=True, plot=True, sns_kwargs=None): """ Evaluate and compare each of the agents in agent_manager_list. Parameters ---------- agent_manager_list : list of AgentManager objects. n_simulations: int Number of calls to the eval() method of each AgentManager instance. fignum: string or int Identifier of plot figure. show: bool If true, calls plt.show(). plot: bool If false, do not plot. sns_kwargs: Extra parameters for sns.boxplot Returns ------- dataframe with the evaluation results. """ sns_kwargs = sns_kwargs or {} # # evaluation # eval_outputs = [] for agent_manager in agent_manager_list: logger.info(f'Evaluating {agent_manager.agent_name}...') outputs = agent_manager.eval_agents(n_simulations) if len(outputs) > 0: eval_outputs.append(outputs) if len(eval_outputs) == 0: logger.error('[evaluate_agents]: No evaluation data. Make sure AgentManager.fit() has been called.') return # # plot # # build unique agent IDs (in case there are two agents with the same ID) unique_ids = [] id_count = {} for agent_manager in agent_manager_list: name = agent_manager.agent_name if name not in id_count: id_count[name] = 1 else: id_count[name] += 1 unique_ids.append(name + "*" * (id_count[name] - 1)) # convert output to DataFrame data = {} for agent_id, out in zip(unique_ids, eval_outputs): data[agent_id] = out output = pd.DataFrame(data) # plot if plot: plt.figure(fignum) with sns.axes_style("whitegrid"): ax = sns.boxplot(data=output, **sns_kwargs) ax.set_xlabel("agent") ax.set_ylabel("evaluation output") if show: plt.show() return output def plot_writer_data(agent_manager, tag, fignum=None, show=True, preprocess_func=None, title=None, sns_kwargs=None): """ Given a list of AgentManager, plot data (corresponding to info) obtained in each episode. The dictionary returned by agents' .fit() method must contain a key equal to `info`. Parameters ---------- agent_manager : AgentManager, or list of AgentManager tag : str Tag of data to plot. fignum: string or int Identifier of plot figure. show: bool If true, calls plt.show(). preprocess_func: Callable Function to apply to 'tag' column before plot. For instance, if tag=episode_rewards, setting preprocess_func=np.cumsum will plot cumulative rewards title: str (Optional) Optional title to plot. If None, set to tag. sns_kwargs: dict Optional extra params for seaborn lineplot. """ sns_kwargs = sns_kwargs or {'ci': 'sd'} title = title or tag if preprocess_func is not None: ylabel = 'value' else: ylabel = tag preprocess_func = preprocess_func or (lambda x: x) agent_manager_list = agent_manager if not isinstance(agent_manager_list, list): agent_manager_list = [agent_manager_list] # preprocess agent stats data_list = [] for manager in agent_manager_list: # Important: since manager can be a RemoteAgentManager, # it is important to avoid repeated accesses to its methods and properties. # That is why writer_data is taken from the manager instance only in the line below. writer_data = manager.get_writer_data() agent_name = manager.agent_name if writer_data is not None: for idx in writer_data: df = writer_data[idx] df = pd.DataFrame(df[df['tag'] == tag]) df['value'] = preprocess_func(df['value'].values) # update name according to AgentManager name df['name'] = agent_name data_list.append(df) if len(data_list) == 0: logger.error('[plot_writer_data]: No data to be plotted.') return all_writer_data =
pd.concat(data_list, ignore_index=True)
pandas.concat
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ from datetime import datetime from inspect import signature from io import StringIO import os from pathlib import Path import sys import numpy as np import pytest from pandas.compat import PY310 from pandas.errors import ( EmptyDataError, ParserError, ParserWarning, ) from pandas import ( DataFrame, Index, Series, Timestamp, compat, ) import pandas._testing as tm from pandas.io.parsers import TextFileReader from pandas.io.parsers.c_parser_wrapper import CParserWrapper xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail") skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip") def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self) -> None: self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = { "usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ",", } parser.engine = "c" parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({"A": [1, 10], "B": [2334, 13], "C": [5, 10.0]}) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("squeeze", [True, False]) def test_squeeze(all_parsers, squeeze): data = """\ a,1 b,2 c,3 """ parser = all_parsers index = Index(["a", "b", "c"], name=0) expected = Series([1, 2, 3], name=1, index=index) result = parser.read_csv_check_warnings( FutureWarning, "The squeeze argument has been deprecated " "and will be removed in a future version. " 'Append .squeeze\\("columns"\\) to the call to squeeze.\n\n', StringIO(data), index_col=0, header=None, squeeze=squeeze, ) if not squeeze: expected = DataFrame(expected) tm.assert_frame_equal(result, expected) else: tm.assert_series_equal(result, expected) # see gh-8217 # # Series should not be a view. assert not result._is_view @xfail_pyarrow def test_unnamed_columns(all_parsers): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ parser = all_parsers expected = DataFrame( [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64, columns=["A", "B", "C", "Unnamed: 3", "Unnamed: 4"], ) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_csv_mixed_type(all_parsers): data = """A,B,C a,1,2 b,3,4 c,4,5 """ parser = all_parsers expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_read_csv_low_memory_no_rows_with_index(all_parsers): # see gh-21141 parser = all_parsers if not parser.low_memory: pytest.skip("This is a low-memory specific test") data = """A,B,C 1,1,1,2 2,2,3,4 3,3,4,5 """ result = parser.read_csv(StringIO(data), low_memory=True, index_col=0, nrows=0) expected = DataFrame(columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_read_csv_dataframe(all_parsers, csv1): parser = all_parsers result = parser.read_csv(csv1, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", [3, 3.0]) def test_read_nrows(all_parsers, nrows): # see gh-10476 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame( [["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"], ) parser = all_parsers result = parser.read_csv(StringIO(data), nrows=nrows) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", [1.2, "foo", -1]) def test_read_nrows_bad(all_parsers, nrows): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = r"'nrows' must be an integer >=0" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), nrows=nrows) def test_nrows_skipfooter_errors(all_parsers): msg = "'skipfooter' not supported with 'nrows'" data = "a\n1\n2\n3\n4\n5\n6" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=1, nrows=5) @xfail_pyarrow def test_missing_trailing_delimiters(all_parsers): parser = all_parsers data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = parser.read_csv(StringIO(data)) expected = DataFrame( [[1, 2, 3, 4], [1, 3, 3, np.nan], [1, 4, 5, np.nan]], columns=["A", "B", "C", "D"], ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_skip_initial_space(all_parsers): data = ( '"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' "1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, " "314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, " "70.06056, 344.98370, 1, 1, -0.689265, -0.692787, " "0.212036, 14.7674, 41.605, -9999.0, -9999.0, " "-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128" ) parser = all_parsers result = parser.read_csv( StringIO(data), names=list(range(33)), header=None, na_values=["-9999.0"], skipinitialspace=True, ) expected = DataFrame( [ [ "09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, 1.00361, 1.12551, 330.65659, 355626618.16711, 73.48821, 314.11625, 1917.09447, 179.71425, 80.0, 240.0, -350, 70.06056, 344.9837, 1, 1, -0.689265, -0.692787, 0.212036, 14.7674, 41.605, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0, 12, 128, ] ] ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_trailing_delimiters(all_parsers): # see gh-2442 data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=False) expected = DataFrame({"A": [1, 4, 7], "B": [2, 5, 8], "C": [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(all_parsers): # https://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv board","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals series","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa:E501 parser = all_parsers result = parser.read_csv( StringIO(data), escapechar="\\", quotechar='"', encoding="utf-8" ) assert result["SEARCH_TERM"][2] == 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals series' tm.assert_index_equal(result.columns, Index(["SEARCH_TERM", "ACTUAL_URL"])) @xfail_pyarrow def test_ignore_leading_whitespace(all_parsers): # see gh-3374, gh-6607 parser = all_parsers data = " a b c\n 1 2 3\n 4 5 6\n 7 8 9" result = parser.read_csv(StringIO(data), sep=r"\s+") expected = DataFrame({"a": [1, 4, 7], "b": [2, 5, 8], "c": [3, 6, 9]}) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("usecols", [None, [0, 1], ["a", "b"]]) def test_uneven_lines_with_usecols(all_parsers, usecols): # see gh-12203 parser = all_parsers data = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10""" if usecols is None: # Make sure that an error is still raised # when the "usecols" parameter is not provided. msg = r"Expected \d+ fields in line \d+, saw \d+" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) else: expected = DataFrame({"a": [0, 3, 8], "b": [1, 4, 9]}) result = parser.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "data,kwargs,expected", [ # First, check to see that the response of parser when faced with no # provided columns raises the correct error, with or without usecols. ("", {}, None), ("", {"usecols": ["X"]}, None), ( ",,", {"names": ["Dummy", "X", "Dummy_2"], "usecols": ["X"]}, DataFrame(columns=["X"], index=[0], dtype=np.float64), ), ( "", {"names": ["Dummy", "X", "Dummy_2"], "usecols": ["X"]}, DataFrame(columns=["X"]), ), ], ) def test_read_empty_with_usecols(all_parsers, data, kwargs, expected): # see gh-12493 parser = all_parsers if expected is None: msg = "No columns to parse from file" with pytest.raises(EmptyDataError, match=msg): parser.read_csv(StringIO(data), **kwargs) else: result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "kwargs,expected", [ # gh-8661, gh-8679: this should ignore six lines, including # lines with trailing whitespace and blank lines. ( { "header": None, "delim_whitespace": True, "skiprows": [0, 1, 2, 3, 5, 6], "skip_blank_lines": True, }, DataFrame([[1.0, 2.0, 4.0], [5.1, np.nan, 10.0]]), ), # gh-8983: test skipping set of rows after a row with trailing spaces. ( { "delim_whitespace": True, "skiprows": [1, 2, 3, 5, 6], "skip_blank_lines": True, }, DataFrame({"A": [1.0, 5.1], "B": [2.0, np.nan], "C": [4.0, 10]}), ), ], ) def test_trailing_spaces(all_parsers, kwargs, expected): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa:E501 parser = all_parsers result = parser.read_csv(StringIO(data.replace(",", " ")), **kwargs) tm.assert_frame_equal(result, expected) def test_raise_on_sep_with_delim_whitespace(all_parsers): # see gh-6607 data = "a b c\n1 2 3" parser = all_parsers with pytest.raises(ValueError, match="you can only specify one"): parser.read_csv(StringIO(data), sep=r"\s", delim_whitespace=True) def test_read_filepath_or_buffer(all_parsers): # see gh-43366 parser = all_parsers with pytest.raises(TypeError, match="Expected file path name or file-like"): parser.read_csv(filepath_or_buffer=b"input") @xfail_pyarrow @pytest.mark.parametrize("delim_whitespace", [True, False]) def test_single_char_leading_whitespace(all_parsers, delim_whitespace): # see gh-9710 parser = all_parsers data = """\ MyColumn a b a b\n""" expected = DataFrame({"MyColumn": list("abab")}) result = parser.read_csv( StringIO(data), skipinitialspace=True, delim_whitespace=delim_whitespace ) tm.assert_frame_equal(result, expected) # Skip for now, actually only one test fails though, but its tricky to xfail @skip_pyarrow @pytest.mark.parametrize( "sep,skip_blank_lines,exp_data", [ (",", True, [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0], [-70.0, 0.4, 1.0]]), (r"\s+", True, [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0], [-70.0, 0.4, 1.0]]), ( ",", False, [ [1.0, 2.0, 4.0], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5.0, np.nan, 10.0], [np.nan, np.nan, np.nan], [-70.0, 0.4, 1.0], ], ), ], ) def test_empty_lines(all_parsers, sep, skip_blank_lines, exp_data): parser = all_parsers data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ if sep == r"\s+": data = data.replace(",", " ") result = parser.read_csv(StringIO(data), sep=sep, skip_blank_lines=skip_blank_lines) expected = DataFrame(exp_data, columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_whitespace_lines(all_parsers): parser = all_parsers data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = DataFrame([[1, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"]) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "data,expected", [ ( """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """, DataFrame( [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]], columns=["A", "B", "C", "D"], index=["a", "b", "c"], ), ), ( " a b c\n1 2 3 \n4 5 6\n 7 8 9", DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["a", "b", "c"]), ), ], ) def test_whitespace_regex_separator(all_parsers, data, expected): # see gh-6607 parser = all_parsers result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) def test_sub_character(all_parsers, csv_dir_path): # see gh-16893 filename = os.path.join(csv_dir_path, "sub_char.csv") expected = DataFrame([[1, 2, 3]], columns=["a", "\x1ab", "c"]) parser = all_parsers result = parser.read_csv(filename) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("filename", ["sé-es-vé.csv", "ru-sй.csv", "中文文件名.csv"]) def test_filename_with_special_chars(all_parsers, filename): # see gh-15086. parser = all_parsers df = DataFrame({"a": [1, 2, 3]}) with tm.ensure_clean(filename) as path: df.to_csv(path, index=False) result = parser.read_csv(path) tm.assert_frame_equal(result, df) def test_read_table_same_signature_as_read_csv(all_parsers): # GH-34976 parser = all_parsers table_sign = signature(parser.read_table) csv_sign = signature(parser.read_csv) assert table_sign.parameters.keys() == csv_sign.parameters.keys() assert table_sign.return_annotation == csv_sign.return_annotation for key, csv_param in csv_sign.parameters.items(): table_param = table_sign.parameters[key] if key == "sep": assert csv_param.default == "," assert table_param.default == "\t" assert table_param.annotation == csv_param.annotation assert table_param.kind == csv_param.kind continue else: assert table_param == csv_param def test_read_table_equivalency_to_read_csv(all_parsers): # see gh-21948 # As of 0.25.0, read_table is undeprecated parser = all_parsers data = "a\tb\n1\t2\n3\t4" expected = parser.read_csv(StringIO(data), sep="\t") result = parser.read_table(StringIO(data)) tm.assert_frame_equal(result, expected) @pytest.mark.skipif( PY310, reason="GH41935 This test is leaking only on Python 3.10," "causing other tests to fail with a cryptic error.", ) @pytest.mark.parametrize("read_func", ["read_csv", "read_table"]) def test_read_csv_and_table_sys_setprofile(all_parsers, read_func): # GH#41069 parser = all_parsers data = "a b\n0 1" sys.setprofile(lambda *a, **k: None) result = getattr(parser, read_func)(StringIO(data)) sys.setprofile(None) expected = DataFrame({"a b": ["0 1"]}) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_first_row_bom(all_parsers): # see gh-26545 parser = all_parsers data = '''\ufeff"Head1"\t"Head2"\t"Head3"''' result = parser.read_csv(StringIO(data), delimiter="\t") expected = DataFrame(columns=["Head1", "Head2", "Head3"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_first_row_bom_unquoted(all_parsers): # see gh-36343 parser = all_parsers data = """\ufeffHead1\tHead2\tHead3""" result = parser.read_csv(StringIO(data), delimiter="\t") expected = DataFrame(columns=["Head1", "Head2", "Head3"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", range(1, 6)) def test_blank_lines_between_header_and_data_rows(all_parsers, nrows): # GH 28071 ref = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [1, 2], [np.nan, np.nan], [3, 4]], columns=list("ab"), ) csv = "\nheader\n\na,b\n\n\n1,2\n\n3,4" parser = all_parsers df = parser.read_csv(StringIO(csv), header=3, nrows=nrows, skip_blank_lines=False) tm.assert_frame_equal(df, ref[:nrows]) @xfail_pyarrow def test_no_header_two_extra_columns(all_parsers): # GH 26218 column_names = ["one", "two", "three"] ref = DataFrame([["foo", "bar", "baz"]], columns=column_names) stream = StringIO("foo,bar,baz,bam,blah") parser = all_parsers with tm.assert_produces_warning(ParserWarning): df = parser.read_csv(stream, header=None, names=column_names, index_col=False) tm.assert_frame_equal(df, ref) def test_read_csv_names_not_accepting_sets(all_parsers): # GH 34946 data = """\ 1,2,3 4,5,6\n""" parser = all_parsers with pytest.raises(ValueError, match="Names should be an ordered collection."): parser.read_csv(StringIO(data), names=set("QAZ")) @xfail_pyarrow def test_read_table_delim_whitespace_default_sep(all_parsers): # GH: 35958 f = StringIO("a b c\n1 -2 -3\n4 5 6") parser = all_parsers result = parser.read_table(f, delim_whitespace=True) expected = DataFrame({"a": [1, 4], "b": [-2, 5], "c": [-3, 6]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("delimiter", [",", "\t"]) def test_read_csv_delim_whitespace_non_default_sep(all_parsers, delimiter): # GH: 35958 f = StringIO("a b c\n1 -2 -3\n4 5 6") parser = all_parsers msg = ( "Specified a delimiter with both sep and " "delim_whitespace=True; you can only specify one." ) with pytest.raises(ValueError, match=msg): parser.read_csv(f, delim_whitespace=True, sep=delimiter) with pytest.raises(ValueError, match=msg): parser.read_csv(f, delim_whitespace=True, delimiter=delimiter) def test_read_csv_delimiter_and_sep_no_default(all_parsers): # GH#39823 f = StringIO("a,b\n1,2") parser = all_parsers msg = "Specified a sep and a delimiter; you can only specify one." with pytest.raises(ValueError, match=msg): parser.read_csv(f, sep=" ", delimiter=".") @pytest.mark.parametrize("kwargs", [{"delimiter": "\n"}, {"sep": "\n"}]) def test_read_csv_line_break_as_separator(kwargs, all_parsers): # GH#43528 parser = all_parsers data = """a,b,c 1,2,3 """ msg = ( r"Specified \\n as separator or delimiter. This forces the python engine " r"which does not accept a line terminator. Hence it is not allowed to use " r"the line terminator as separator." ) with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), **kwargs) def test_read_csv_posargs_deprecation(all_parsers): # GH 41485 f = StringIO("a,b\n1,2") parser = all_parsers msg = ( "In a future version of pandas all arguments of read_csv " "except for the argument 'filepath_or_buffer' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): parser.read_csv(f, " ") @pytest.mark.parametrize("delimiter", [",", "\t"]) def test_read_table_delim_whitespace_non_default_sep(all_parsers, delimiter): # GH: 35958 f = StringIO("a b c\n1 -2 -3\n4 5 6") parser = all_parsers msg = ( "Specified a delimiter with both sep and " "delim_whitespace=True; you can only specify one." ) with pytest.raises(ValueError, match=msg): parser.read_table(f, delim_whitespace=True, sep=delimiter) with pytest.raises(ValueError, match=msg): parser.read_table(f, delim_whitespace=True, delimiter=delimiter) @pytest.mark.parametrize("func", ["read_csv", "read_table"]) def test_names_and_prefix_not_None_raises(all_parsers, func): # GH#39123 f = StringIO("a,b\n1,2") parser = all_parsers msg = "Specified named and prefix; you can only specify one." with pytest.raises(ValueError, match=msg): with
tm.assert_produces_warning(FutureWarning)
pandas._testing.assert_produces_warning
#!/usr/bin/env python3 # Author: <NAME> import numpy as np import pandas as pd import gzip import subprocess import scipy.stats as stats import argparse import os import feather import rnaseqnorm def gtf_to_bed(annotation_gtf, feature='gene', exclude_chrs=[]): """ Parse genes from GTF, create placeholder DataFrame for BED output """ chrom = [] start = [] end = [] gene_id = [] with open(annotation_gtf, 'r') as gtf: for row in gtf: row = row.strip().split('\t') if row[0][0]=='#' or row[2]!=feature: continue # skip header chrom.append(row[0]) # TSS: gene start (0-based coordinates for BED) if row[6]=='+': start.append(np.int64(row[3])-1) end.append(np.int64(row[3])) elif row[6]=='-': start.append(np.int64(row[4])-1) # last base of gene end.append(np.int64(row[4])) else: raise ValueError('Strand not specified.') gene_id.append(row[8].split(';',1)[0].split(' ')[1].replace('"','')) bed_df =
pd.DataFrame(data={'chr':chrom, 'start':start, 'end':end, 'gene_id':gene_id}, columns=['chr', 'start', 'end', 'gene_id'], index=gene_id)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 18 17:37:59 2020 @author: bernice """ #%% Final Project import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats, integrate import seaborn as sns df = pd.read_csv('middleSchoolData.csv') #%% 1) What is the correlation between the number of applications # and admissions to HSPHS? df1 = df[['applications','acceptances']].dropna() x = df1['applications'] y = df1['acceptances'] # %matplotlib inline np.random.seed(20180514) sns.distplot(x) sns.distplot(y) plt.scatter(x, y) plt.title('A plot to show the correlation between applications and acceptances') plt.xlabel('applications') plt.ylabel('acceptances') plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))(np.unique(x)), color='yellow') plt.show() correlation = np.corrcoef(x,y) print(correlation) #%% 2)What is a better predictor of admission to HSPHS? # Raw number of applications or application “rate”? import statsmodels.api as sm df2 = df[['applications','acceptances','school_size']].dropna() rate1 = df2['applications'] / df2['school_size'] rate2 = df2['acceptances'] / df2['school_size'] # admission y1 = df2['acceptances'] y2 = rate2 x1 = df2['applications'] x2 = rate1 sns.distplot(x1) sns.distplot(x2) # Z-score the data: x1 = stats.zscore(x1) x2 = stats.zscore(x2) y1 = stats.zscore(y1) y2 = stats.zscore(y2) # visualize ( the same as 1) plt.scatter(x1, y1) plt.title('A plot to show the correlation between applications and acceptances') plt.xlabel('applications') plt.ylabel('acceptances') plt.plot(np.unique(x1), np.poly1d(np.polyfit(x1, y1, 1))(np.unique(x1)), color='yellow') plt.show() # linear regression x1 = sm.add_constant(x1) # vector of ones model = sm.OLS(y1,x1) # ordinary least squares from sm results = model.fit() # fit model print(results.summary()) # print summary print(results.params) # print parameters, beta0 beta1 # visualize plt.scatter(x2, y2) plt.title('A plot to show the correlation between applications rate and acceptances') plt.xlabel('applications rate') plt.ylabel('acceptances') plt.plot(np.unique(x2), np.poly1d(np.polyfit(x2, y2, 1))(np.unique(x2)), color='yellow') plt.show() # linear regression x2 = sm.add_constant(x2) # vector of ones model = sm.OLS(y2,x2) # ordinary least squares from sm results = model.fit() # fit model print(results.summary()) # print summary print(results.params) # print parameters, beta0 beta1 #%% 3) Which school has the best *per student* odds of sending someone to HSPHS? df3 = df[['school_name','applications','acceptances','school_size']].dropna() rate = df3['acceptances'] / df3['school_size'] odds = rate / (1 - rate) df3['odds'] = odds df3 = df3.sort_values(by=['odds'], ascending=False) #%% 4) Is there a relationship between how students perceive their school (as reported in columns # L-Q) and how the school performs on objective measures of achievement (as noted in # columns V-X). import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn import preprocessing import matplotlib.pyplot as plt df4 = df[['rigorous_instruction','collaborative_teachers','supportive_environment', 'effective_school_leadership','strong_family_community_ties','trust', 'student_achievement','reading_scores_exceed','math_scores_exceed']].dropna() # 1. find the principal components for School Climate df_school = df4[['rigorous_instruction','collaborative_teachers','supportive_environment', 'effective_school_leadership','strong_family_community_ties','trust']] # Compute correlation between each measure across all courses: r = np.corrcoef(df_school.values,rowvar=False) # Plot the data: plt.imshow(r) plt.colorbar() scaled_data = preprocessing.scale(df_school) pca = PCA() pca.fit(scaled_data) pca_data = pca.transform(scaled_data) eig_vals = pca.explained_variance_ labels = ['PC' + str(x) for x in range(1, len(eig_vals)+1)] plt.bar(x=range(1,len(eig_vals)+1), height=eig_vals, tick_label=labels) plt.ylabel('Eigenvalue') plt.xlabel('Principal Component') plt.title('Screet Plot for School Climate') plt.plot(eig_vals) plt.show() # from the plot, we could choose the most important component based on the Kaiser criterion line # 2. find the principal components for Objective Achievements df_objective = df4[['student_achievement','reading_scores_exceed','math_scores_exceed']] scaled_data2 = preprocessing.scale(df_objective) pca2 = PCA() pca2.fit(scaled_data2) pca_data2 = pca2.transform(scaled_data2) eig_vals2 = pca2.explained_variance_ labels2 = ['PC' + str(x) for x in range(1, len(eig_vals2)+1)] plt.bar(x=range(1,len(eig_vals2)+1), height=eig_vals2, tick_label=labels2) plt.ylabel('Eigenvalue') plt.xlabel('Principal Component') plt.title('Screet Plot for Objective Achievement') plt.plot(eig_vals2) plt.show() # from the plot, we could choose the most important component based on the Kaiser criterion line # find the relationship between them import statsmodels.api as sm y = pca_data2[:,0] # objective achievement x = pca_data[:,0] # school performance # visualize plt.scatter(x, y) plt.title('A plot to show the correlation between school climaete and objective achievement') plt.xlabel('school climate') plt.ylabel('objective achievements') plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))(np.unique(x)), color='yellow') plt.show() # linear regression x = sm.add_constant(x) # vector of ones model = sm.OLS(y,x) # ordinary least squares from sm results = model.fit() # fit model print(results.summary()) # print summary print(results.params) # print parameters, beta0 beta1 # They are negatively correlated #%% 5) Test a hypothesis of your choice as to which kind of school (e.g. small schools vs. large # schools or charter schools vs. not (or any other classification, such as rich vs. poor school)) # performs differently than another kind either on some dependent measure, # e.g. objective measures of achievement or admission to HSPHS (pick one). # I will classify schools as charter schools or public school to testify whether # their admission to HSPHS performs differntly df5 = df[['dbn','school_name','applications','acceptances','school_size']].dropna() admission = df5['acceptances'] / df5['school_size'] df5['admission'] = admission df5 = df5.sort_values(by=['school_size']) length = len(df5) # the length is an even number, so we can simply classify the schools by select # first half part and second half from the dataframe data = df5['admission'].values small_schools = data[:int(length/2),] large_schools = data[int(length/2):,] # I try t-test for the two groups (independent t-test) t,p = stats.ttest_ind(small_schools, large_schools) # independent t-test # Considering the sample may not derive from nomarl distribution population # I try ks test to further confirm: # the p-value is smaller than 0.05, thus we can conclude that there is a significant difference between two groups #%% 6) Is there any evidence that the availability of material resources (e.g. per student spending or class size) # impacts objective measures of achievement or admission to HSPHS? from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer df6 = df[['applications','acceptances','per_pupil_spending','school_size']].values imp = IterativeImputer(max_iter=10, random_state=0) imp.fit(df6) IterativeImputer(random_state=0) df6 = imp.transform(df6) dataset = pd.DataFrame({'applications':df6[:,0],'acceptances':df6[:,1],'per_pupil_spending':df6[:,2],'school_size':df6[:,3]}) admission = dataset['acceptances'] / dataset['school_size'] dataset['admission'] = admission df_new = dataset[['per_pupil_spending','admission']] data = df_new.values # 1. linear regression and correlation import statsmodels.api as sm y = data[:,1] # admission x = data[:,0] # student spending # visualize plt.scatter(x, y) plt.title('A plot to show the correlation between spending and admission') plt.xlabel('spending') plt.ylabel('admission') plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))(np.unique(x)), color='yellow') plt.show() x = sm.add_constant(x) # vector of ones model = sm.OLS(y,x) # ordinary least squares from sm results = model.fit() # fit model print(results.summary()) # print summary print(results.params) # print parameters, beta0 beta1 # 2. anova based on different groups df_new = df_new.sort_values(by=['per_pupil_spending'],ascending=True) data_new = df_new.values length = len(data_new) index = round(length / 4) sample1 = data_new[:index+1,1] sample2 = data_new[index:(2*index+1),1] sample3 = data_new[(2*index):(3*index+1),1] sample4 = data_new[(3*index):,1] sns.distplot(sample4) sns.distplot(sample1) sns.distplot(sample2) sns.distplot(sample3) f,p1 = stats.f_oneway(sample1,sample2,sample3,sample4) # one-way anova for 4 sample means # 3. kruskal-wallis on different groups h,p2 = stats.kruskal(sample1,sample2,sample3,sample4) # 4 sample medians #%% 7) What proportion of schools accounts for 90% of all students accepted to HSPHS? df7 = df[['dbn','school_name','applications','acceptances']].dropna() df7 = df7.sort_values(by=['acceptances'],ascending=False) data = df7['acceptances'].values num_acceptances = 0.9 * np.sum(data) analysis = np.empty(len(data)) analysis[:] = np.NAN for i in range(len(data)): analysis[i] = np.sum(data[:i+1]) index = np.argmin(abs(analysis - num_acceptances)) proportion = index / len(data) #bar graph labels = df7['dbn'] data_ = data[:21,] plt.barh(range(len(data_)), data_, align='center', alpha=0.5) plt.yticks(range(len(data_)), labels) plt.xlabel('Acceptances Count') plt.title('Students accepted to HSPHS') plt.show() #%% 8) Build a model of your choice – clustering, classification or prediction – that includes all # factors – as to what school characteristics are most important in terms of a) sending # students to HSPHS, b) achieving high scores on objective measures of achievement? # I found that these data for per_pupil_spending are absent in charter school, so I decided to separate # charter school and public school groups to make appropriate predictions. # pip install fancyimpute from fancyimpute import KNN from sklearn.decomposition import PCA from sklearn import preprocessing # charter school charter_school = df[df['school_name'].str.contains('CHARTER')] temp1 = charter_school.drop(['per_pupil_spending','avg_class_size'],axis=1) temp2 = temp1.drop(['dbn','school_name'],axis=1) c_filled_knn = KNN(k=3).fit_transform(temp2) for i in range(20): help_column_sc = np.log(c_filled_knn[:,i]+1) c_filled_knn[:,i] = preprocessing.normalize([help_column_sc]) # public school index_ = len(charter_school) public_school = df.drop(list(range(len(df)-index_,len(df)))) temp3 = public_school.drop(['dbn','school_name'],axis=1) p_filled_knn = KNN(k=3).fit_transform(temp3) for i in range(20): help_column_p = np.log(p_filled_knn[:,i]+1) p_filled_knn[:,i] = preprocessing.normalize([help_column_p]) # Charter School # Compute correlation between each measure across all variables in CHARTER SCHOOLS: r = np.corrcoef(c_filled_knn,rowvar=False) # Plot the data: plt.imshow(r) plt.colorbar() plt.title('correlation between each measure across all variables in CHARTER SCHOOL') # As we learned in the lecture and recitation we could firstly analyze which variables # we need to reduce. Therefore, we could easily see the middle light square so we nned to # do PCA as we already did in 4) # so we can replace the school climate columns by the most important principal component charter_school = pd.DataFrame(c_filled_knn,columns=['C','D','G','H','I','J','K','L','M','N','O','P','Q', 'R','S','T','U','V','W','X']) # 1. find PC for school climate school_climate = charter_school[['L','M','N','O','P','Q']].values scaled_data = preprocessing.scale(school_climate) pca = PCA() pca.fit(school_climate) pca_data = pca.transform(school_climate) eig_vals = pca.explained_variance_ labels = ['PC' + str(x) for x in range(1, len(eig_vals)+1)] plt.bar(x=range(1,len(eig_vals)+1), height=eig_vals, tick_label=labels) plt.ylabel('Eigenvalue') plt.xlabel('Principal Component') plt.title('Screet Plot') plt.plot(eig_vals) plt.plot([0,len(eig_vals)],[1,1],color='red',linewidth=1) # Kaiser criterion line plt.show() #2. find PC for objective achievements objective_achievement = charter_school[['V','W','X']] scaled_data2 = preprocessing.scale(objective_achievement) pca2 = PCA() pca2.fit(scaled_data2) pca_data2 = pca2.transform(scaled_data2) eig_vals2 = pca2.explained_variance_ labels2 = ['PC' + str(x) for x in range(1, len(eig_vals2)+1)] plt.bar(x=range(1,len(eig_vals2)+1), height=eig_vals2, tick_label=labels2) plt.ylabel('Eigenvalue') plt.xlabel('Principal Component') plt.title('Screet Plot') plt.plot(eig_vals) plt.plot([0,len(eig_vals2)],[1,1],color='red',linewidth=1) # Kaiser criterion line plt.show() charter_school = charter_school.drop(['L','M','N','O','P','Q','V','W','X'],axis=1) temp_sc = pca_data[:,0] school_climate_new = pca_data[:,0] charter_school['School Climate'] = school_climate_new objective_achievement_new = pca_data2[:,0] charter_school['Objective Achievement'] = objective_achievement_new admission = charter_school['D'] / charter_school['U'] help_admission = np.log(admission+1) admission = preprocessing.normalize([help_admission]) charter_school['Admission'] = admission.T # do multiple linear regression: a) admission from sklearn import linear_model X = charter_school[['C','G','H','I','J','K','R','S','T','U','School Climate','Objective Achievement']].values Y = charter_school['Admission'].values # admission regr = linear_model.LinearRegression() # linearRegression function from linear_model regr.fit(X,Y) # fit model COD = regr.score(X,Y) # r^2 beta = regr.coef_ # beta intercept = regr.intercept_ # intercept analysis = pd.DataFrame(beta.T,columns=['Weight']) IV = ['C','G','H','I','J','K','R','S','T','U','School Climate','Objective Achievement'] analysis['Name'] = IV analysis.sort_values(by=['Weight'],ascending=False) analysis['Absolute Weight'] = abs(beta.T) analysis.sort_values(by=['Absolute Weight'],ascending=False) #%% # b) objective achievement X = charter_school[['C','D','G','H','I','J','K','R','S','T','U','School Climate']].values Y = charter_school['Objective Achievement'] # high scores on objective measures of achievement regr = linear_model.LinearRegression() # linearRegression function from linear_model regr.fit(X,Y) # fit model COD = regr.score(X,Y) # r^2 beta = regr.coef_ # beta intercept = regr.intercept_ # intercept analysis =
pd.DataFrame(beta.T,columns=['Weight'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/24 15:02 Desc: 东方财富网-数据中心-新股数据-打新收益率 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html 东方财富网-数据中心-新股数据-新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html """ import pandas as pd import requests from tqdm import tqdm from akshare.utils import demjson def _get_page_num_dxsyl() -> int: """ 东方财富网-数据中心-新股数据-打新收益率-总页数 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 总页数 :rtype: int """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "st": "16", "sr": "-1", "ps": "500", "p": '1', "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) total_page = data_json["pages"] return total_page def stock_dxsyl_em() -> pd.DataFrame: """ 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 指定市场的打新收益率数据 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" page_num = _get_page_num_dxsyl() big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): params = { "st": "16", "sr": "-1", "ps": "500", "p": str(page), "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } res = requests.get(url, params=params) data_text = res.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json["data"]]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", "-", ] big_df = big_df[[ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", ]] big_df["发行价"] = pd.to_numeric(big_df["发行价"], errors='coerce') big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["网上-发行中签率"] = pd.to_numeric(big_df["网上-发行中签率"]) big_df["网上-有效申购股数"] = pd.to_numeric(big_df["网上-有效申购股数"]) big_df["网上-有效申购户数"] = pd.to_numeric(big_df["网上-有效申购户数"]) big_df["网上-超额认购倍数"] = pd.to_numeric(big_df["网上-超额认购倍数"]) big_df["网下-配售中签率"] = pd.to_numeric(big_df["网下-配售中签率"]) big_df["网下-有效申购股数"] = pd.to_numeric(big_df["网下-有效申购股数"]) big_df["网下-有效申购户数"] = pd.to_numeric(big_df["网下-有效申购户数"]) big_df["网下-配售认购倍数"] = pd.to_numeric(big_df["网下-配售认购倍数"]) big_df["总发行数量"] = pd.to_numeric(big_df["总发行数量"]) big_df["开盘溢价"] = pd.to_numeric(big_df["开盘溢价"]) big_df["首日涨幅"] = pd.to_numeric(big_df["首日涨幅"]) big_df["打新收益"] = pd.to_numeric(big_df["打新收益"]) return big_df def stock_xgsglb_em(symbol: str = "京市A股") -> pd.DataFrame: """ 新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame """ market_map = { "全部股票": """(APPLY_DATE>'2010-01-01')""", "沪市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE in ("069001001001","069001001003","069001001006"))""", "科创板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE="069001001006")""", "深市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE in ("069001002001","069001002002","069001002003","069001002005"))""", "创业板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE="069001002002")""", } url = "http://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "京市A股": params = { 'sortColumns': 'APPLY_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'columns': 'ALL', 'reportName': 'RPT_NEEQ_ISSUEINFO_LIST', 'quoteColumns': 'f14~01~SECURITY_CODE~SECURITY_NAME_ABBR', 'source': 'NEEQSELECT', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, 1+int(total_page)), leave=False): params.update({ 'pageNumber': page }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ '序号', '-', '代码', '-', '简称', '申购代码', '发行总数', '-', '发行价格', '发行市盈率', '申购日', '发行结果公告日', '上市日', '网上发行数量', '顶格申购所需资金', '申购上限', '网上申购缴款日', '网上申购退款日', '-', '网上获配比例', '最新价', '首日收盘价', '网下有效申购倍数', '每百股获利', '-', '-', '-', '-', '-', '-', ] big_df = big_df[[ '序号', '代码', '简称', '申购代码', '发行总数', '网上发行数量', '顶格申购所需资金', '申购上限', '发行价格', '最新价', '首日收盘价', '申购日', '网上申购缴款日', '网上申购退款日', '上市日', '发行结果公告日', '发行市盈率', '网上获配比例', '网下有效申购倍数', '每百股获利', ]] big_df['发行总数'] = pd.to_numeric(big_df['发行总数']) big_df['网上发行数量'] = pd.to_numeric(big_df['网上发行数量']) big_df['顶格申购所需资金'] = pd.to_numeric(big_df['顶格申购所需资金']) big_df['申购上限'] = pd.to_numeric(big_df['申购上限']) big_df['发行价格'] = pd.to_numeric(big_df['发行价格']) big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['首日收盘价'] = pd.to_numeric(big_df['首日收盘价']) big_df['发行市盈率'] = pd.to_numeric(big_df['发行市盈率']) big_df['网上获配比例'] = pd.to_numeric(big_df['网上获配比例']) big_df['网下有效申购倍数'] = pd.to_numeric(big_df['网下有效申购倍数']) big_df['每百股获利'] = pd.to_numeric(big_df['每百股获利']) big_df['申购日'] = pd.to_datetime(big_df['申购日']).dt.date big_df['网上申购缴款日'] = pd.to_datetime(big_df['网上申购缴款日']).dt.date big_df['网上申购退款日'] = pd.to_datetime(big_df['网上申购退款日']).dt.date big_df['上市日'] = pd.to_datetime(big_df['上市日']).dt.date big_df['发行结果公告日'] = pd.to_datetime(big_df['发行结果公告日']).dt.date return big_df else: params = { 'sortColumns': 'APPLY_DATE,SECURITY_CODE', 'sortTypes': '-1,-1', 'pageSize': '5000', 'pageNumber': '1', 'reportName': 'RPTA_APP_IPOAPPLY', 'columns': 'SECURITY_CODE,SECURITY_NAME,TRADE_MARKET_CODE,APPLY_CODE,TRADE_MARKET,MARKET_TYPE,ORG_TYPE,ISSUE_NUM,ONLINE_ISSUE_NUM,OFFLINE_PLACING_NUM,TOP_APPLY_MARKETCAP,PREDICT_ONFUND_UPPER,ONLINE_APPLY_UPPER,PREDICT_ONAPPLY_UPPER,ISSUE_PRICE,LATELY_PRICE,CLOSE_PRICE,APPLY_DATE,BALLOT_NUM_DATE,BALLOT_PAY_DATE,LISTING_DATE,AFTER_ISSUE_PE,ONLINE_ISSUE_LWR,INITIAL_MULTIPLE,INDUSTRY_PE_NEW,OFFLINE_EP_OBJECT,CONTINUOUS_1WORD_NUM,TOTAL_CHANGE,PROFIT,LIMIT_UP_PRICE,INFO_CODE,OPEN_PRICE,LD_OPEN_PREMIUM,LD_CLOSE_CHANGE,TURNOVERRATE,LD_HIGH_CHANG,LD_AVERAGE_PRICE,OPEN_DATE,OPEN_AVERAGE_PRICE,PREDICT_PE,PREDICT_ISSUE_PRICE2,PREDICT_ISSUE_PRICE,PREDICT_ISSUE_PRICE1,PREDICT_ISSUE_PE,PREDICT_PE_THREE,ONLINE_APPLY_PRICE,MAIN_BUSINESS', 'filter': market_map[symbol], 'source': 'WEB', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, total_page+1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "股票代码", "股票简称", "_", "申购代码", "_", "_", "_", "发行总数", "网上发行", "_", "顶格申购需配市值", "_", "申购上限", "_", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "中签率", "询价累计报价倍数", "_", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "行业市盈率", "_", "_", "_", ] big_df = big_df[ [ "股票代码", "股票简称", "申购代码", "发行总数", "网上发行", "顶格申购需配市值", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "行业市盈率", "中签率", "询价累计报价倍数", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", ] ] big_df['申购日期'] = pd.to_da
tetime(big_df['申购日期'])
pandas.to_datetime
import os import logging import json import glob import collections import yaml import pandas as pd import numpy as np from matplotlib import pyplot as plt from mathtools import utils logger = logging.getLogger(__name__) def load_vocabs(vocab_fn): def get_part_name(event_name): return utils.remove_prefix(event_name, 'pick up ') def get_action_name(event_name, part_vocab): if event_name.startswith('align'): return 'align' if event_name.startswith('attach'): return 'attach' if event_name.startswith('position'): return 'position' if event_name.startswith('slide'): return 'slide' if event_name.startswith('insert'): return 'insert' if event_name == '': return 'NA' if event_name == 'other': return event_name for part_name in part_vocab: if part_name != '' and event_name.endswith(part_name): return utils.remove_suffix(event_name, f" {part_name}") else: raise AssertionError(f"No part in vocab matching {event_name}") def get_event_tuple(event_name, part_vocab, action_vocab): if event_name == '': return ('NA', 'NA') + tuple(False for name in part_vocab if name != '') for name in action_vocab: if event_name.startswith(name): action_name = name break else: raise AssertionError(f"No action in vocab matching {event_name}") if event_name == 'align leg screw with table thread': part_name = 'leg' elif event_name == 'align side panel holes with front panel dowels': part_name = 'side panel' elif event_name == 'attach shelf to table': part_name = 'shelf' elif event_name == 'position the drawer right side up': part_name = 'drawer' elif event_name == 'slide bottom of drawer': part_name = 'bottom panel' elif event_name in ('NA', 'other'): part_name = '' else: for name in part_vocab: if name != '' and event_name.endswith(name): part_name = name break else: raise AssertionError(f"No part in vocab matching {event_name}") part_is_active = tuple(part_name == name for name in part_vocab if name != '') return (event_name, action_name) + part_is_active with open(vocab_fn, 'rt') as file_: event_vocab = file_.read().split('\n') part_vocab = ('',) + tuple( get_part_name(event_label) for event_label in event_vocab if event_label.startswith('pick up ') ) + ('table', 'drawer') action_vocab = tuple(set( get_action_name(event_label, part_vocab) for event_label in event_vocab )) event_df = pd.DataFrame( tuple(get_event_tuple(name, part_vocab, action_vocab) for name in event_vocab), columns=['event', 'action'] + [f"{name}_active" for name in part_vocab if name != ''] ) event_df = event_df.set_index('event') return event_df, part_vocab, action_vocab def load_action_labels(label_fn, event_vocab): with open(label_fn, 'r') as _file: gt_segments = json.load(_file) def get_metadata(seq_name, ann_seq): furn_name, string = seq_name.split('/') person, color, place = string.split('_')[:3] dir_name = seq_name.replace('/', '_') split_name = ann_seq['subset']['subset'] return (furn_name, person, color, place, split_name, dir_name) ignore_seqs = ( 'Lack_Side_Table_Special_Test', ) metadata = pd.DataFrame( tuple( get_metadata(seq_name, ann_seq) for seq_name, ann_seq in gt_segments['database'].items() if seq_name not in ignore_seqs ), columns=['furn_name', 'person', 'color', 'place', 'split_name', 'dir_name'] ) ann_seqs = { seq_name.replace('/', '_'): [ann for ann in ann_seq['annotation']] for seq_name, ann_seq in gt_segments['database'].items() if seq_name not in ignore_seqs } def make_action_labels(ann_seq): action_names = [d['label'] for d in ann_seq] action_bounds = [d['segment'] for d in ann_seq] action_labels = pd.concat( ( event_vocab.loc[action_names].reset_index(), pd.DataFrame(action_bounds, columns=['start', 'end']) ), axis=1 ) return action_labels seq_names = tuple(ann_seqs.keys()) action_labels = tuple(make_action_labels(ann_seqs[seq_name]) for seq_name in seq_names) return metadata.index.to_numpy(), action_labels, metadata def plot_event_labels( fn, event_index_seq, action_index_seq, part_activity_seq, event_vocab, action_vocab, part_vocab): f, axes = plt.subplots(3, sharex=True, figsize=(12, 12)) axes[0].plot(event_index_seq) axes[0].set_yticks(range(len(event_vocab))) axes[0].set_yticklabels(event_vocab) axes[1].plot(action_index_seq) axes[1].set_yticks(range(len(action_vocab))) axes[1].set_yticklabels(action_vocab) axes[2].imshow(part_activity_seq.T, interpolation='none', aspect='auto') axes[2].set_yticks(range(len(part_vocab))) axes[2].set_yticklabels(part_vocab) plt.tight_layout() plt.savefig(fn) plt.close() def make_labels(seg_bounds, seg_labels, default_val, num_samples=None): if num_samples is None: num_samples = seg_bounds.max() + 1 label_shape = (num_samples,) + seg_labels.shape[1:] labels = np.full(label_shape, default_val, dtype=seg_labels.dtype) for (start, end), l in zip(seg_bounds, seg_labels): labels[start:end + 1] = l return labels def make_event_data( event_seq, filenames, event_to_index, action_to_index, part_vocab, event_default, action_default, part_default): event_indices = np.array([event_to_index[name] for name in event_seq['event']]) action_indices = np.array([action_to_index[name] for name in event_seq['action']]) part_names = [name for name in part_vocab if name != ''] col_names = [f"{name}_active" for name in part_names] part_is_active = event_seq[col_names].values seg_bounds = event_seq[['start', 'end']].values event_index_seq = make_labels( seg_bounds, event_indices, event_default, num_samples=len(filenames) ) action_index_seq = make_labels( seg_bounds, action_indices, action_default, num_samples=len(filenames) ) part_activity_seq = make_labels( seg_bounds, part_is_active, part_default, num_samples=len(filenames) ) data_and_labels = pd.DataFrame({ 'fn': filenames, 'event': event_index_seq, 'action': action_index_seq }) data_and_labels = pd.concat( (data_and_labels, pd.DataFrame(part_activity_seq, columns=col_names)), axis=1 ) return data_and_labels def make_window_clips(event_data, event_vocab, action_vocab, stride=1, **win_params): num_samples = event_data.shape[0] win_indices = utils.slidingWindowSlices(event_data, stride=stride, **win_params) d = { # name: [utils.majorityVote(event_data.loc[indices][name]) for indices in win_indices] name: [event_data.iloc[i][name] for i in range(0, num_samples, stride)] for name in event_data.columns if name != 'fn' } d['event'] = [event_vocab[i] for i in d['event']] d['action'] = [action_vocab[i] for i in d['action']] d['start'] = [sl.start for sl in win_indices] d['end'] = [min(sl.stop, event_data.shape[0]) - 1 for sl in win_indices] window_clips = pd.DataFrame(d) return window_clips def make_slowfast_labels(segment_bounds, labels, fns, integerizer, col_format='standard'): if col_format == 'standard': col_dict = { 'video_name': fns[segment_bounds['start']].apply( lambda x: os.path.dirname(x).split('/')[-1] ).to_list(), 'start_index': segment_bounds['start'].to_list(), 'end_index': segment_bounds['end'].to_list(), 'label_id': [integerizer[name] for name in labels.to_list()] } elif col_format == 'ikea_tk': col_dict = { 'segment_id': [i for i, name in enumerate(labels.to_list())], 'label_id': [integerizer[name] for name in labels.to_list()], 'start_frame': fns[segment_bounds['start']].apply( lambda x: int(os.path.splitext(os.path.basename(x))[0]) ).to_list(), 'end_frame': fns[segment_bounds['end']].apply( lambda x: int(os.path.splitext(os.path.basename(x))[0]) ).to_list(), 'label_name': labels.to_list(), 'video_name': fns[segment_bounds['start']].apply( lambda x: os.path.dirname(x).split('/')[-1] ).to_list(), } else: accepted_args = ('standard', 'ikea_tk') err_str = f"Unrecognized argument col_format={col_format}; expected one of {accepted_args}" raise ValueError(err_str) slowfast_labels = pd.DataFrame(col_dict) return slowfast_labels def getActivePart(part_activity_segs, part_labels): is_active = part_activity_segs.to_numpy() if (is_active.sum(axis=1) > 1).any(): raise AssertionError('Some columns have more than one active object!') active_parts = [''] * len(part_activity_segs) for row, col in zip(*is_active.nonzero()): active_parts[row] = part_labels[col] active_parts = pd.DataFrame({'part': active_parts})['part'] return active_parts def main( out_dir=None, data_dir=None, annotation_dir=None, frames_dir=None, col_format='standard', win_params={}, slowfast_csv_params={}, label_types=('event', 'action', 'part')): out_dir = os.path.expanduser(out_dir) data_dir = os.path.expanduser(data_dir) annotation_dir = os.path.expanduser(annotation_dir) frames_dir = os.path.expanduser(frames_dir) annotation_dir = os.path.join(annotation_dir, 'action_annotations') logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_labels_dir = os.path.join(out_dir, 'labels') if not os.path.exists(out_labels_dir): os.makedirs(out_labels_dir) data_dirs = {name: os.path.join(out_dir, f"{name}-dataset") for name in label_types} for name, dir_ in data_dirs.items(): if not os.path.exists(dir_): os.makedirs(dir_) event_vocab_df, part_vocab, action_vocab = load_vocabs( os.path.join(data_dir, 'ANU_ikea_dataset', 'indexing_files', 'atomic_action_list.txt') ) event_vocab_df.to_csv(os.path.join(out_labels_dir, 'event-vocab.csv')) event_vocab = event_vocab_df.index.tolist() vocabs = { 'event': event_vocab, 'action': action_vocab, 'part': part_vocab } vocabs = {label_name: vocabs[label_name] for label_name in label_types} for name, vocab in vocabs.items(): utils.saveVariable(vocab, 'vocab', data_dirs[name]) label_fn = os.path.join(annotation_dir, 'gt_segments.json') seq_ids, event_labels, metadata = load_action_labels(label_fn, event_vocab_df) utils.saveMetadata(metadata, out_labels_dir) for name, dir_ in data_dirs.items(): utils.saveMetadata(metadata, dir_) logger.info(f"Loaded {len(seq_ids)} sequences from {label_fn}") part_names = [name for name in part_vocab if name != ''] col_names = [f"{name}_active" for name in part_names] integerizers = { label_name: {name: i for i, name in enumerate(label_vocab)} for label_name, label_vocab in vocabs.items() } all_slowfast_labels_seg = collections.defaultdict(list) all_slowfast_labels_win = collections.defaultdict(list) counts = np.zeros((len(action_vocab), len(part_vocab)), dtype=int) for i, seq_id in enumerate(seq_ids): seq_id_str = f"seq={seq_id}" seq_dir_name = metadata['dir_name'].loc[seq_id] event_segs = event_labels[i] if not event_segs.any(axis=None): logger.warning(f"No event labels for sequence {seq_id}") continue event_data = make_event_data( event_segs, sorted(glob.glob(os.path.join(frames_dir, seq_dir_name, '*.jpg'))), integerizers['event'], integerizers['action'], integerizers['part'], event_vocab.index('NA'), action_vocab.index('NA'), False ) event_wins = make_window_clips( event_data, vocabs['event'], vocabs['action'], **win_params ) event_data.to_csv(os.path.join(out_labels_dir, f"{seq_id_str}_data.csv"), index=False) event_segs.to_csv(os.path.join(out_labels_dir, f"{seq_id_str}_segs.csv"), index=False) filenames = event_data['fn'].to_list() label_indices = {} for name in label_types: if name == 'part': label_indices[name] = event_data[col_names].to_numpy() seg_labels_slowfast = make_slowfast_labels( event_segs[['start', 'end']], getActivePart(event_segs[col_names], part_names), event_data['fn'], integerizers[name], col_format=col_format ) win_labels_slowfast = make_slowfast_labels( event_wins[['start', 'end']], getActivePart(event_wins[col_names], part_names), event_data['fn'], integerizers[name], col_format=col_format ) else: label_indices[name] = event_data[name].to_numpy() seg_labels_slowfast = make_slowfast_labels( event_segs[['start', 'end']], event_segs[name], event_data['fn'], integerizers[name], col_format=col_format ) win_labels_slowfast = make_slowfast_labels( event_wins[['start', 'end']], event_wins[name], event_data['fn'], integerizers[name], col_format=col_format ) utils.saveVariable(filenames, f'{seq_id_str}_frame-fns', data_dirs[name]) utils.saveVariable(label_indices[name], f'{seq_id_str}_labels', data_dirs[name]) seg_labels_slowfast.to_csv( os.path.join(data_dirs[name], f'{seq_id_str}_slowfast-labels.csv'), **slowfast_csv_params ) win_labels_slowfast.to_csv( os.path.join(data_dirs[name], f'{seq_id_str}_slowfast-labels.csv'), **slowfast_csv_params ) all_slowfast_labels_seg[name].append(seg_labels_slowfast) all_slowfast_labels_win[name].append(win_labels_slowfast) plot_event_labels( os.path.join(fig_dir, f"{seq_id_str}.png"), label_indices['event'], label_indices['action'], label_indices['part'], event_vocab, action_vocab, part_names ) for part_activity_row, action_index in zip(label_indices['part'], label_indices['action']): for i, is_active in enumerate(part_activity_row): part_index = integerizers['part'][part_names[i]] counts[action_index, part_index] += int(is_active) for name, labels in all_slowfast_labels_seg.items(): pd.concat(labels, axis=0).to_csv( os.path.join(data_dirs[name], 'slowfast-labels_seg.csv'), **slowfast_csv_params ) for name, labels in all_slowfast_labels_win.items():
pd.concat(labels, axis=0)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2020, University of Oxford" __email__ = "<EMAIL>" __license__ = "MIT" import pandas as pd from haystac.workflow.scripts.utilities import REGEX_BLACKLIST def entrez_pick_sequences(config, nuccore_file, taxa_file, output_file): accessions =
pd.read_csv(nuccore_file, sep="\t")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 """Modified version of 'eval_reco_trkx.py' (runs after 'tracks_from_gnn.py') script from the exatrkx-iml2020. The code breakdown of the script is given in 'stt6_eval.ipynb' notebook.""" import os import glob import torch import numpy as np import pandas as pd from typing import Any device = 'cuda' if torch.cuda.is_available() else 'cpu' class SttTorchDataReader(object): """Torch Geometric Data Reader from an Input Directory.""" def __init__(self, input_dir: str): """Initialize Instance Variables in Constructor""" self.path = input_dir all_files = sorted(glob.glob(os.path.join(input_dir, "*"))) self.nevts = len(all_files) self.all_evtids = [os.path.basename(x) for x in all_files] def read(self, evtid: int = None): """Read an Event from the Input Directory.""" event_fname = os.path.join(self.path, "{}".format(evtid)) event = torch.load(event_fname, map_location=device) return event def __call__(self, evtid: int, *args: Any, **kwds: Any) -> Any: return self.read(evtid) def evaluate_reco_tracks(truth_df: pd.DataFrame, reco_df: pd.DataFrame, particles_df: pd.DataFrame, min_hits_truth: int = 9, min_hits_reco: int = 5, # min_pt: float = 1., frac_reco_matched: float = 0.5, frac_truth_matched=0.5, **kwargs): """ Args: truth_df: a dataframe with columns of ['hit_id', 'particle_id'] reco_df: a dataframe with columns of ['hit_id', 'track_id'] particles_df: a dataframe with columns of ['particle_id', 'pt', 'eta', 'radius', 'vz']. where radius = sqrt(vx**2 + vy**2) and ['vx', 'vy', 'vz'] are the production vertex of the particle min_hits_truth: minimum number of hits for truth tracks min_hits_reco: minimum number of hits for reconstructed tracks # min_pt: minimum pT to filter out frac_reco_matched: frac of reco tracks matched ??? (ADAK) frac_truth_matched: frac of true tracks matched ??? (ADAK) Returns: A tuple of ( num_true_tracks: int, number of true tracks num_reco_tracks: int, number of reconstructed tracks n_matched_reco_tracks: int, number of reconstructed tracks matched to true tracks matched_pids: np.narray, a list of particle IDs matched by reconstructed tracks ) """ # just in case particle_id == 0 included in truth. if 'particle_id' in truth_df.columns: truth_df = truth_df[truth_df.particle_id > 0] # get number of spacepoints in each reconstructed tracks n_reco_hits = reco_df.track_id.value_counts(sort=False) \ .reset_index().rename(columns={"index": "track_id", "track_id": "n_reco_hits"}) # only tracks with a minimum number of spacepoints are considered n_reco_hits = n_reco_hits[n_reco_hits.n_reco_hits >= min_hits_reco] reco_df = reco_df[reco_df.track_id.isin(n_reco_hits.track_id.values)] # get number of spacepoints in each particle hits = truth_df.merge(particles_df, on='particle_id', how='left') n_true_hits = hits.particle_id.value_counts(sort=False) \ .reset_index().rename(columns={"index": "particle_id", "particle_id": "n_true_hits"}) # only particles leaves at least min_hits_truth spacepoints # and with pT >= min_pt are considered. particles_df = particles_df.merge(n_true_hits, on=['particle_id'], how='left') is_trackable = particles_df.n_true_hits >= min_hits_truth # event has 3 columnes [track_id, particle_id, hit_id] event = pd.merge(reco_df, truth_df, on=['hit_id'], how='left') # n_common_hits and n_shared should be exactly the same # for a specific track id and particle id # Each track_id will be assigned to multiple particles. # To determine which particle the track candidate is matched to, # we use the particle id that yields a maximum value of n_common_hits / n_reco_hits, # which means the majority of the spacepoints associated with the reconstructed # track candidate comes from that true track. # However, the other way may not be true. reco_matching = event.groupby(['track_id', 'particle_id']).size() \ .reset_index().rename(columns={0: "n_common_hits"}) # Each particle will be assigned to multiple reconstructed tracks truth_matching = event.groupby(['particle_id', 'track_id']).size() \ .reset_index().rename(columns={0: "n_shared"}) # add number of hits to each of the maching dataframe reco_matching = reco_matching.merge(n_reco_hits, on=['track_id'], how='left') truth_matching = truth_matching.merge(n_true_hits, on=['particle_id'], how='left') # calculate matching fraction reco_matching = reco_matching.assign( purity_reco=np.true_divide(reco_matching.n_common_hits, reco_matching.n_reco_hits)) truth_matching = truth_matching.assign( purity_true=np.true_divide(truth_matching.n_shared, truth_matching.n_true_hits)) # select the best match reco_matching['purity_reco_max'] = reco_matching.groupby( "track_id")['purity_reco'].transform(max) truth_matching['purity_true_max'] = truth_matching.groupby( "track_id")['purity_true'].transform(max) matched_reco_tracks = reco_matching[ (reco_matching.purity_reco_max >= frac_reco_matched) & (reco_matching.purity_reco == reco_matching.purity_reco_max)] matched_true_particles = truth_matching[ (truth_matching.purity_true_max >= frac_truth_matched) & (truth_matching.purity_true == truth_matching.purity_true_max)] # now, let's combine the two majority criteria # reconstructed tracks must be in both matched dataframe # and the so matched particle should be the same # in this way, each track should be only assigned combined_match = matched_true_particles.merge( matched_reco_tracks, on=['track_id', 'particle_id'], how='inner') num_reco_tracks = n_reco_hits.shape[0] num_true_tracks = particles_df.shape[0] # For GNN, there are non-negaliable cases where GNN-based # track candidates are matched to particles not considered as interesting. # which means there are paticles in matched_pids that do not exist in particles. matched_pids = np.unique(combined_match.particle_id) is_matched = particles_df.particle_id.isin(matched_pids).values n_matched_particles = np.sum(is_matched) n_matched_tracks = reco_matching[ reco_matching.purity_reco >= frac_reco_matched].shape[0] n_matched_tracks_poi = reco_matching[ (reco_matching.purity_reco >= frac_reco_matched) & (reco_matching.particle_id.isin(particles_df.particle_id.values)) ].shape[0] # print(n_matched_tracks_poi, n_matched_tracks) # num_particles_matched_to = reco_matched.groupby("particle_id")['track_id']\ # .count().reset_index().rename(columns={"track_id": "n_tracks_matched"}) # n_duplicated_tracks = num_particles_matched_to.shape[0] n_duplicated_tracks = n_matched_tracks_poi - n_matched_particles particles_df = particles_df.assign(is_matched=is_matched, is_trackable=is_trackable) return (num_true_tracks, num_reco_tracks, n_matched_particles, n_matched_tracks, n_duplicated_tracks, n_matched_tracks_poi, particles_df) def run_one_evt(evtid, raw_trkx_data_reader, reco_trkx_data_reader, **kwargs): print("Running {}".format(evtid)) # access torch data using reader's raw_trkx_data = raw_trkx_data_reader(evtid) reco_trkx_data = reco_trkx_data_reader(evtid) # create truth, particles dataframes from torch data _truth = pd.DataFrame({'hit_id': raw_trkx_data.hid.numpy(), 'particle_id': raw_trkx_data.pid.int().numpy()}, columns=['hit_id', 'particle_id']) _particles = pd.DataFrame({'particle_id': raw_trkx_data.pid.int().numpy(), 'pt': raw_trkx_data.pt.numpy()}, columns=['particle_id', 'pt']).drop_duplicates(subset=['particle_id']) results = evaluate_reco_tracks(_truth, reco_trkx_data, _particles, **kwargs) return results[:-1] + (results[-1].assign(evtid=evtid),) # %% if __name__ == '__main__': import time import argparse from multiprocessing import Pool from functools import partial parser = argparse.ArgumentParser(description='Evaluating tracking reconstruction') add_arg = parser.add_argument add_arg('--reco-tracks-path', help='path to reconstructed tracks', required=True) add_arg('--raw-tracks-path', help='path to raw tracking data (for truth info)', required=True) add_arg('--outname', help='output name without postfix', required=True) add_arg('--max-evts', help='maximum number of events', type=int, default=1) add_arg('-e', '--event-id', help='evaluate a particular event', type=int, default=None) add_arg('-f', '--force', help='force to over write existing file', action='store_true') add_arg("--num-workers", help='number of workers', default=1, type=int) add_arg("--min-hits-truth", help='minimum number of hits in a truth track', default=7, type=int) add_arg("--min-hits-reco", help='minimum number of hits in a reconstructed track', default=4, type=int) add_arg('--min-pt', help='minimum pT of true track', type=float, default=1.0) add_arg("--frac-reco-matched", help='fraction of matched hits over total hits in a reco track', default=0.5, type=float) add_arg("--frac-truth-matched", help='fraction of matched hits over total hits in a truth track', default=0.5, type=float) args = parser.parse_args() reco_track_path = args.reco_tracks_path num_workers = args.num_workers outname = args.outname outdir = os.path.dirname(os.path.abspath(outname)) os.makedirs(outdir, exist_ok=True) # read reconstructed tracks reco_trkx_reader = SttTorchDataReader(args.reco_tracks_path) n_tot_files = reco_trkx_reader.nevts all_evtids = reco_trkx_reader.all_evtids max_evts = args.max_evts if 0 < args.max_evts <= n_tot_files else n_tot_files print("Out of {} events processing {} events with {} workers".format( n_tot_files, max_evts, args.num_workers)) print("Output directory:", outdir) # read raw Torch/CSV files to get truth information raw_trkx_reader = SttTorchDataReader(args.raw_tracks_path) out_array = '{}_particles.h5'.format(outname) if os.path.exists(out_array) and not args.force: print("{} is there, use -f to overwrite the file".format(out_array)) exit(1) if not args.event_id: if num_workers > 1: with Pool(num_workers) as p: fnc = partial(run_one_evt, raw_trkx_reader=raw_trkx_reader, reco_trkx_reader=reco_trkx_reader, **vars(args)) res = p.map(fnc, all_evtids[:max_evts]) else: res = [run_one_evt(evtid, raw_trkx_reader, reco_trkx_reader, **vars(args)) for evtid in all_evtids[:max_evts]] # merge results from each process n_true_tracks = sum([x[0] for x in res]) n_reco_tracks = sum([x[1] for x in res]) n_matched_true_tracks = sum([x[2] for x in res]) n_matched_reco_tracks = sum([x[3] for x in res]) n_duplicated_reco_tracks = sum([x[4] for x in res]) n_matched_reco_tracks_poi = sum([x[5] for x in res]) particles = pd.concat([x[-1] for x in res], axis=0) else: (n_true_tracks, n_reco_tracks, n_matched_true_tracks, n_matched_reco_tracks, n_duplicated_reco_tracks, n_matched_reco_tracks_poi, particles) = \ run_one_evt(args.event_id, raw_trkx_reader, reco_trkx_reader, **vars(args)) with
pd.HDFStore(out_array, 'w')
pandas.HDFStore
# Copyright 2021 AstroLab Software # Author: <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.types import DoubleType, StringType import pandas as pd import numpy as np import os from fink_science.conversion import mag2fluxcal_snana from fink_science.utilities import load_scikit_model, load_pcs from fink_science.kilonova.lib_kn import extract_all_filters_fink from fink_science.kilonova.lib_kn import get_features_name from fink_science import __file__ from fink_science.tester import spark_unit_tests @pandas_udf(DoubleType(), PandasUDFType.SCALAR) def knscore(jd, fid, magpsf, sigmapsf, model_path=None, pcs_path=None, npcs=None) -> pd.Series: """ Return the probability of an alert to be a Kilonova using a Random Forest Classifier. Parameters ---------- jd: Spark DataFrame Column JD times (float) fid: Spark DataFrame Column Filter IDs (int) magpsf, sigmapsf: Spark DataFrame Columns Magnitude from PSF-fit photometry, and 1-sigma error model_path: Spark DataFrame Column, optional Path to the trained model. Default is None, in which case the default model `data/models/KN_model_2PC.pkl` is loaded. pcs_path: Spark DataFrame Column, optional Path to the Principal Component file. Default is None, in which case the `data/models/components.csv` is loaded. npcs: Spark DataFrame Column, optional Integer representing the number of Principal Component to use. It should be consistent to the training model used. Default is None (i.e. default npcs for the default `model_path`, that is 1). Returns ---------- probabilities: 1D np.array of float Probability between 0 (non-KNe) and 1 (KNe). Examples ---------- >>> from fink_science.utilities import concat_col >>> from pyspark.sql import functions as F >>> df = spark.read.load(ztf_alert_sample) # Required alert columns >>> what = ['jd', 'fid', 'magpsf', 'sigmapsf'] # Use for creating temp name >>> prefix = 'c' >>> what_prefix = [prefix + i for i in what] # Append temp columns with historical + current measurements >>> for colname in what: ... df = concat_col(df, colname, prefix=prefix) # Perform the fit + classification (default model) >>> args = [F.col(i) for i in what_prefix] >>> df = df.withColumn('pKNe', knscore(*args)) # Note that we can also specify a model >>> extra_args = [F.lit(model_path), F.lit(comp_path), F.lit(2)] >>> args = [F.col(i) for i in what_prefix] + extra_args >>> df = df.withColumn('pKNe', knscore(*args)) # Drop temp columns >>> df = df.drop(*what_prefix) >>> df.agg({"pKNe": "min"}).collect()[0][0] 0.0 >>> df.agg({"pKNe": "max"}).collect()[0][0] < 1.0 True """ epoch_lim = [-50, 50] time_bin = 0.25 flux_lim = 0 # Flag empty alerts mask = magpsf.apply(lambda x: np.sum(np.array(x) == np.array(x))) > 1 if len(jd[mask]) == 0: return pd.Series(np.zeros(len(jd), dtype=float)) # add an exploded column with SNID df_tmp = pd.DataFrame.from_dict( { 'jd': jd[mask], 'SNID': range(len(jd[mask])) } ) df_tmp = df_tmp.explode('jd') # compute flux and flux error data = [mag2fluxcal_snana(*args) for args in zip( magpsf[mask].explode(), sigmapsf[mask].explode())] flux, error = np.transpose(data) # make a Pandas DataFrame with exploded series pdf = pd.DataFrame.from_dict({ 'SNID': df_tmp['SNID'], 'MJD': df_tmp['jd'], 'FLUXCAL': flux, 'FLUXCALERR': error, 'FLT': fid[mask].explode().replace({1: 'g', 2: 'r'}) }) # Load pre-trained model `clf` if model_path is not None: model = load_scikit_model(model_path.values[0]) else: curdir = os.path.dirname(os.path.abspath(__file__)) model_path = curdir + '/data/models/KN_model_2PC.pkl' model = load_scikit_model(model_path) # Load pcs if npcs is not None: npcs = int(npcs.values[0]) else: npcs = 2 if pcs_path is not None: pcs_path_ = pcs_path.values[0] else: curdir = os.path.dirname(os.path.abspath(__file__)) pcs_path_ = curdir + '/data/models/components.csv' pcs = load_pcs(pcs_path_, npcs=npcs) test_features = [] filters = ['g', 'r'] # extract features (all filters) for each ID for id in np.unique(pdf['SNID']): pdf_sub = pdf[pdf['SNID'] == id] pdf_sub = pdf_sub[pdf_sub['FLUXCAL'] == pdf_sub['FLUXCAL']] features = extract_all_filters_fink( epoch_lim=epoch_lim, pcs=pcs, time_bin=time_bin, filters=filters, lc=pdf_sub, flux_lim=flux_lim) test_features.append(features) # Remove pathological values names_root = [ 'npoints_', 'residuo_' ] + [ 'coeff' + str(i + 1) + '_' for i in range(len(pcs.keys())) ] + ['maxflux_'] columns = [i + j for j in ['g', 'r'] for i in names_root] matrix = pd.DataFrame(test_features, columns=columns) zeros = np.logical_or( matrix['coeff1_g'].values == 0, matrix['coeff1_r'].values == 0 ) matrix_clean = matrix[~zeros] # If all alerts are flagged as bad if np.shape(matrix_clean) == (0, len(get_features_name(npcs))): to_return = np.zeros(len(jd), dtype=float) return pd.Series(to_return) # Otherwise make predictions probabilities = model.predict_proba(matrix_clean.values) probabilities_notkne = np.zeros(len(test_features)) probabilities_kne = np.zeros(len(test_features)) probabilities_notkne[~zeros] = probabilities.T[0] probabilities_kne[~zeros] = probabilities.T[1] probabilities_ = np.array([probabilities_notkne, probabilities_kne]).T # Take only probabilities to be Ia to_return = np.zeros(len(jd), dtype=float) to_return[mask] = probabilities_.T[1] return
pd.Series(to_return)
pandas.Series
# pylint: disable=W0102 import unittest import nose import numpy as np from pandas import Index, MultiIndex, DataFrame, Series from pandas.sparse.array import SparseArray from pandas.core.internals import * import pandas.core.internals as internals import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, randn) from pandas.compat import zip, u def assert_block_equal(left, right): assert_almost_equal(left.values, right.values) assert(left.dtype == right.dtype) assert(left.items.equals(right.items)) assert(left.ref_items.equals(right.ref_items)) def get_float_mat(n, k, dtype): return np.repeat(np.atleast_2d(np.arange(k, dtype=dtype)), n, axis=0) TEST_COLS = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 's1', 's2'] N = 10 def get_float_ex(cols=['a', 'c', 'e'], dtype = np.float_): floats = get_float_mat(N, len(cols), dtype = dtype).T return make_block(floats, cols, TEST_COLS) def get_complex_ex(cols=['h']): complexes = (get_float_mat(N, 1, dtype = np.float_).T * 1j).astype(np.complex128) return make_block(complexes, cols, TEST_COLS) def get_obj_ex(cols=['b', 'd']): mat = np.empty((N, 2), dtype=object) mat[:, 0] = 'foo' mat[:, 1] = 'bar' return make_block(mat.T, cols, TEST_COLS) def get_bool_ex(cols=['f']): mat = np.ones((N, 1), dtype=bool) return make_block(mat.T, cols, TEST_COLS) def get_int_ex(cols=['g'], dtype = np.int_): mat = randn(N, 1).astype(dtype) return make_block(mat.T, cols, TEST_COLS) def get_dt_ex(cols=['h']): mat = randn(N, 1).astype(int).astype('M8[ns]') return make_block(mat.T, cols, TEST_COLS) def get_sparse_ex1(): sa1 = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) return make_block(sa1, ['s1'], TEST_COLS) def get_sparse_ex2(): sa2 = SparseArray([0, 0, 2, 3, 4, 0, 6, 7, 0, 8], fill_value=0) return make_block(sa2, ['s2'], TEST_COLS) def create_blockmanager(blocks): l = [] for b in blocks: l.extend(b.items) items = Index(l) for b in blocks: b.ref_items = items index_sz = blocks[0].shape[1] return BlockManager(blocks, [items, np.arange(index_sz)]) def create_singleblockmanager(blocks): l = [] for b in blocks: l.extend(b.items) items = Index(l) for b in blocks: b.ref_items = items return SingleBlockManager(blocks, [items]) class TestBlock(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): self.fblock = get_float_ex() self.cblock = get_complex_ex() self.oblock = get_obj_ex() self.bool_block = get_bool_ex() self.int_block = get_int_ex() def test_constructor(self): int32block = get_int_ex(['a'],dtype = np.int32) self.assert_(int32block.dtype == np.int32) def test_pickle(self): import pickle def _check(blk): pickled = pickle.dumps(blk) unpickled = pickle.loads(pickled) assert_block_equal(blk, unpickled) _check(self.fblock) _check(self.cblock) _check(self.oblock) _check(self.bool_block) def test_ref_locs(self): assert_almost_equal(self.fblock.ref_locs, [0, 2, 4]) def test_attrs(self): self.assert_(self.fblock.shape == self.fblock.values.shape) self.assert_(self.fblock.dtype == self.fblock.values.dtype) self.assert_(len(self.fblock) == len(self.fblock.values)) def test_merge(self): avals = randn(2, 10) bvals = randn(2, 10) ref_cols = ['e', 'a', 'b', 'd', 'f'] ablock = make_block(avals, ['e', 'b'], ref_cols) bblock = make_block(bvals, ['a', 'd'], ref_cols) merged = ablock.merge(bblock) exvals = np.vstack((avals, bvals)) excols = ['e', 'b', 'a', 'd'] eblock = make_block(exvals, excols, ref_cols) eblock = eblock.reindex_items_from(ref_cols) assert_block_equal(merged, eblock) # TODO: merge with mixed type? def test_copy(self): cop = self.fblock.copy() self.assert_(cop is not self.fblock) assert_block_equal(self.fblock, cop) def test_items(self): cols = self.fblock.items self.assert_(np.array_equal(cols, ['a', 'c', 'e'])) cols2 = self.fblock.items self.assert_(cols is cols2) def test_assign_ref_items(self): new_cols = Index(['foo', 'bar', 'baz', 'quux', 'hi']) self.fblock.set_ref_items(new_cols) self.assert_(np.array_equal(self.fblock.items, ['foo', 'baz', 'hi'])) def test_reindex_index(self): pass def test_reindex_items_from(self): new_cols = Index(['e', 'b', 'c', 'f']) reindexed = self.fblock.reindex_items_from(new_cols) assert_almost_equal(reindexed.ref_locs, [0, 2]) self.assertEquals(reindexed.values.shape[0], 2) self.assert_((reindexed.values[0] == 2).all()) self.assert_((reindexed.values[1] == 1).all()) def test_reindex_cast(self): pass def test_insert(self): pass def test_delete(self): newb = self.fblock.delete('a') assert_almost_equal(newb.ref_locs, [2, 4]) self.assert_((newb.values[0] == 1).all()) newb = self.fblock.delete('c') assert_almost_equal(newb.ref_locs, [0, 4]) self.assert_((newb.values[1] == 2).all()) newb = self.fblock.delete('e') assert_almost_equal(newb.ref_locs, [0, 2]) self.assert_((newb.values[1] == 1).all()) self.assertRaises(Exception, self.fblock.delete, 'b') def test_split_block_at(self): # with dup column support this method was taken out # GH3679 raise nose.SkipTest bs = list(self.fblock.split_block_at('a')) self.assertEqual(len(bs), 1) self.assertTrue(np.array_equal(bs[0].items, ['c', 'e'])) bs = list(self.fblock.split_block_at('c')) self.assertEqual(len(bs), 2) self.assertTrue(np.array_equal(bs[0].items, ['a'])) self.assertTrue(np.array_equal(bs[1].items, ['e'])) bs = list(self.fblock.split_block_at('e')) self.assertEqual(len(bs), 1) self.assertTrue(np.array_equal(bs[0].items, ['a', 'c'])) bblock = get_bool_ex(['f']) bs = list(bblock.split_block_at('f')) self.assertEqual(len(bs), 0) def test_unicode_repr(self): mat = np.empty((N, 2), dtype=object) mat[:, 0] = 'foo' mat[:, 1] = 'bar' cols = ['b', u("\u05d0")] str_repr = repr(make_block(mat.T, cols, TEST_COLS)) def test_get(self): pass def test_set(self): pass def test_fillna(self): pass def test_repr(self): pass class TestBlockManager(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): self.blocks = [get_float_ex(), get_obj_ex(), get_bool_ex(), get_int_ex(), get_complex_ex()] all_items = [b.items for b in self.blocks] items = sorted(all_items[0].append(all_items[1:])) items = Index(items) for b in self.blocks: b.ref_items = items self.mgr = BlockManager(self.blocks, [items, np.arange(N)]) def test_constructor_corner(self): pass def test_attrs(self): self.assertEquals(self.mgr.nblocks, len(self.mgr.blocks)) self.assertEquals(len(self.mgr), len(self.mgr.items)) def test_is_mixed_dtype(self): self.assert_(self.mgr.is_mixed_type) mgr = create_blockmanager([get_bool_ex(['a']), get_bool_ex(['b'])]) self.assert_(not mgr.is_mixed_type) def test_is_indexed_like(self): self.assert_(self.mgr._is_indexed_like(self.mgr)) mgr2 = self.mgr.reindex_axis(np.arange(N - 1), axis=1) self.assert_(not self.mgr._is_indexed_like(mgr2)) def test_block_id_vector_item_dtypes(self): expected = [0, 1, 0, 1, 0, 2, 3, 4] result = self.mgr.block_id_vector assert_almost_equal(expected, result) result = self.mgr.item_dtypes # as the platform may not exactly match this, pseudo match expected = ['float64', 'object', 'float64', 'object', 'float64', 'bool', 'int64', 'complex128'] for e, r in zip(expected, result): np.dtype(e).kind == np.dtype(r).kind def test_duplicate_item_failure(self): items = Index(['a', 'a']) blocks = [get_bool_ex(['a']), get_float_ex(['a'])] for b in blocks: b.ref_items = items # test trying to create _ref_locs with/o ref_locs set on the blocks self.assertRaises(AssertionError, BlockManager, blocks, [items, np.arange(N)]) blocks[0].set_ref_locs([0]) blocks[1].set_ref_locs([1]) mgr = BlockManager(blocks, [items, np.arange(N)]) mgr.iget(1) # invalidate the _ref_locs for b in blocks: b._ref_locs = None mgr._ref_locs = None mgr._items_map = None self.assertRaises(AssertionError, mgr._set_ref_locs, do_refs=True) def test_contains(self): self.assert_('a' in self.mgr) self.assert_('baz' not in self.mgr) def test_pickle(self): import pickle pickled = pickle.dumps(self.mgr) mgr2 = pickle.loads(pickled) # same result assert_frame_equal(DataFrame(self.mgr), DataFrame(mgr2)) # share ref_items self.assert_(mgr2.blocks[0].ref_items is mgr2.blocks[1].ref_items) # GH2431 self.assertTrue(hasattr(mgr2, "_is_consolidated")) self.assertTrue(hasattr(mgr2, "_known_consolidated")) # reset to False on load self.assertFalse(mgr2._is_consolidated) self.assertFalse(mgr2._known_consolidated) def test_get(self): pass def test_get_scalar(self): for item in self.mgr.items: for i, index in enumerate(self.mgr.axes[1]): res = self.mgr.get_scalar((item, index)) exp = self.mgr.get(item)[i] assert_almost_equal(res, exp) def test_set(self): pass def test_set_change_dtype(self): self.mgr.set('baz', np.zeros(N, dtype=bool)) self.mgr.set('baz', np.repeat('foo', N)) self.assert_(self.mgr.get('baz').dtype == np.object_) mgr2 = self.mgr.consolidate() mgr2.set('baz', np.repeat('foo', N)) self.assert_(mgr2.get('baz').dtype == np.object_) mgr2.set('quux', randn(N).astype(int)) self.assert_(mgr2.get('quux').dtype == np.int_) mgr2.set('quux', randn(N)) self.assert_(mgr2.get('quux').dtype == np.float_) def test_copy(self): shallow = self.mgr.copy(deep=False) # we don't guaranteee block ordering for blk in self.mgr.blocks: found = False for cp_blk in shallow.blocks: if cp_blk.values is blk.values: found = True break self.assert_(found == True) def test_sparse(self): mgr = create_blockmanager([get_sparse_ex1(),get_sparse_ex2()]) # what to test here? self.assert_(mgr.as_matrix().dtype == np.float64) def test_sparse_mixed(self): mgr = create_blockmanager([get_sparse_ex1(),get_sparse_ex2(),get_float_ex()]) self.assert_(len(mgr.blocks) == 3) self.assert_(isinstance(mgr,BlockManager)) # what to test here? def test_as_matrix_float(self): mgr = create_blockmanager([get_float_ex(['c'],np.float32), get_float_ex(['d'],np.float16), get_float_ex(['e'],np.float64)]) self.assert_(mgr.as_matrix().dtype == np.float64) mgr = create_blockmanager([get_float_ex(['c'],np.float32), get_float_ex(['d'],np.float16)]) self.assert_(mgr.as_matrix().dtype == np.float32) def test_as_matrix_int_bool(self): mgr = create_blockmanager([get_bool_ex(['a']), get_bool_ex(['b'])]) self.assert_(mgr.as_matrix().dtype == np.bool_) mgr = create_blockmanager([get_int_ex(['a'],np.int64), get_int_ex(['b'],np.int64), get_int_ex(['c'],np.int32), get_int_ex(['d'],np.int16), get_int_ex(['e'],np.uint8) ]) self.assert_(mgr.as_matrix().dtype == np.int64) mgr = create_blockmanager([get_int_ex(['c'],np.int32), get_int_ex(['d'],np.int16), get_int_ex(['e'],np.uint8) ]) self.assert_(mgr.as_matrix().dtype == np.int32) def test_as_matrix_datetime(self): mgr = create_blockmanager([get_dt_ex(['h']), get_dt_ex(['g'])]) self.assert_(mgr.as_matrix().dtype == 'M8[ns]') def test_astype(self): # coerce all mgr = create_blockmanager([get_float_ex(['c'],np.float32), get_float_ex(['d'],np.float16), get_float_ex(['e'],np.float64)]) for t in ['float16','float32','float64','int32','int64']: tmgr = mgr.astype(t) self.assert_(tmgr.as_matrix().dtype == np.dtype(t)) # mixed mgr = create_blockmanager([get_obj_ex(['a','b']),get_bool_ex(['c']),get_dt_ex(['d']),get_float_ex(['e'],np.float32), get_float_ex(['f'],np.float16), get_float_ex(['g'],np.float64)]) for t in ['float16','float32','float64','int32','int64']: tmgr = mgr.astype(t, raise_on_error = False).get_numeric_data() self.assert_(tmgr.as_matrix().dtype == np.dtype(t)) def test_convert(self): def _compare(old_mgr, new_mgr): """ compare the blocks, numeric compare ==, object don't """ old_blocks = set(old_mgr.blocks) new_blocks = set(new_mgr.blocks) self.assert_(len(old_blocks) == len(new_blocks)) # compare non-numeric for b in old_blocks: found = False for nb in new_blocks: if (b.values == nb.values).all(): found = True break self.assert_(found == True) for b in new_blocks: found = False for ob in old_blocks: if (b.values == ob.values).all(): found = True break self.assert_(found == True) # noops mgr = create_blockmanager([get_int_ex(['f']), get_float_ex(['g'])]) new_mgr = mgr.convert() _compare(mgr,new_mgr) mgr = create_blockmanager([get_obj_ex(['a','b']), get_int_ex(['f']), get_float_ex(['g'])]) new_mgr = mgr.convert() _compare(mgr,new_mgr) # there could atcually be multiple dtypes resulting def _check(new_mgr,block_type, citems): items = set() for b in new_mgr.blocks: if isinstance(b,block_type): for i in list(b.items): items.add(i) self.assert_(items == set(citems)) # convert mat = np.empty((N, 3), dtype=object) mat[:, 0] = '1' mat[:, 1] = '2.' mat[:, 2] = 'foo' b = make_block(mat.T, ['a','b','foo'], TEST_COLS) mgr = create_blockmanager([b, get_int_ex(['f']), get_float_ex(['g'])]) new_mgr = mgr.convert(convert_numeric = True) _check(new_mgr,FloatBlock,['b','g']) _check(new_mgr,IntBlock,['a','f']) mgr = create_blockmanager([b, get_int_ex(['f'],np.int32), get_bool_ex(['bool']), get_dt_ex(['dt']), get_int_ex(['i'],np.int64), get_float_ex(['g'],np.float64), get_float_ex(['h'],np.float16)]) new_mgr = mgr.convert(convert_numeric = True) _check(new_mgr,FloatBlock,['b','g','h']) _check(new_mgr,IntBlock,['a','f','i']) _check(new_mgr,ObjectBlock,['foo']) _check(new_mgr,BoolBlock,['bool']) _check(new_mgr,DatetimeBlock,['dt']) def test_xs(self): pass def test_interleave(self): pass def test_interleave_non_unique_cols(self): df = DataFrame([ [Timestamp('20130101'), 3.5], [Timestamp('20130102'), 4.5]], columns=['x', 'x'], index=[1, 2]) df_unique = df.copy() df_unique.columns = ['x', 'y'] np.testing.assert_array_equal(df_unique.values, df.values) def test_consolidate(self): pass def test_consolidate_ordering_issues(self): self.mgr.set('f', randn(N)) self.mgr.set('d', randn(N)) self.mgr.set('b', randn(N)) self.mgr.set('g', randn(N)) self.mgr.set('h', randn(N)) cons = self.mgr.consolidate() self.assertEquals(cons.nblocks, 1) self.assert_(cons.blocks[0].items.equals(cons.items)) def test_reindex_index(self): pass def test_reindex_items(self): def _check_cols(before, after, cols): for col in cols: assert_almost_equal(after.get(col), before.get(col)) # not consolidated vals = randn(N) self.mgr.set('g', vals) reindexed = self.mgr.reindex_items(['g', 'c', 'a', 'd']) self.assertEquals(reindexed.nblocks, 2) assert_almost_equal(reindexed.get('g'), vals.squeeze()) _check_cols(self.mgr, reindexed, ['c', 'a', 'd']) def test_xs(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.mgr.set_axis(1, index) result = self.mgr.xs('bar', axis=1) expected = self.mgr.get_slice(slice(3, 5), axis=1) assert_frame_equal(DataFrame(result), DataFrame(expected)) def test_get_numeric_data(self): int_ser = Series(np.array([0, 1, 2])) float_ser = Series(np.array([0., 1., 2.])) complex_ser = Series(np.array([0j, 1j, 2j])) str_ser = Series(np.array(['a', 'b', 'c'])) bool_ser = Series(np.array([True, False, True])) obj_ser = Series(np.array([1, 'a', 5])) dt_ser = Series(tm.makeDateIndex(3)) # check types df = DataFrame({'int': int_ser, 'float': float_ser, 'complex': complex_ser, 'str': str_ser, 'bool': bool_ser, 'obj': obj_ser, 'dt': dt_ser}) xp = DataFrame({'int': int_ser, 'float': float_ser, 'complex': complex_ser, 'bool': bool_ser}) rs = DataFrame(df._data.get_numeric_data()) assert_frame_equal(xp, rs) xp = DataFrame({'bool': bool_ser}) rs = DataFrame(df._data.get_bool_data()) assert_frame_equal(xp, rs) rs = DataFrame(df._data.get_bool_data()) df.ix[0, 'bool'] = not df.ix[0, 'bool'] self.assertEqual(rs.ix[0, 'bool'], df.ix[0, 'bool']) rs = DataFrame(df._data.get_bool_data(copy=True)) df.ix[0, 'bool'] = not df.ix[0, 'bool'] self.assertEqual(rs.ix[0, 'bool'], not df.ix[0, 'bool']) def test_missing_unicode_key(self): df =
DataFrame({"a": [1]})
pandas.DataFrame
from butterfree.data import loader from collections import defaultdict import networkx as nx import pygraphviz as pgv import matplotlib.pyplot as plt import pandas as pd import os import re import numpy as np import torch from scipy import linalg from networkx.drawing.nx_agraph import write_dot, graphviz_layout cols = loader.all_columns_metaphlan() def coo(A): rows = [] columns = [] values = [] for i in range(A.shape[0]): for j in range(A.shape[1]): if A[i,j]: rows.append(i) columns.append(j) values.append(A[i,j]) return rows, columns, values def coo_tensor(A): rows, columns, values = coo(A) return torch.tensor([rows, columns], dtype=torch.long) def get_eigenvectors(taxonomies): """ Returns eigenvectors and eigenvalues of Graph Laplacian. """ G = phylogenetic_tree(taxonomies) G2 = G.to_undirected() A = nx.convert_matrix.to_numpy_matrix(G2) # Align nodes with taxonomic names nodes = [x for x in G2.nodes()] indices = reorder_columns(nodes, taxonomies) A = A[indices, :][:, indices] # Shuffle rows and columns of adgacency matrix # Compute laplacian L = nx.laplacian_matrix(G2) L = L[indices, :][:, indices] # Shuffle rows and columns of laplacian matrix L = L.toarray() # Compute eigenvectors and eigenvalues W, V = linalg.eigh(L) return A, L, W, V def reorder_columns(nodes, taxonomies): """ Returns a list of indices to use to shuffle the elements of nodes such that shuffled(nodes) == taxonomies """ taxa = [t.split('|')[-1] for t in cols] if set(nodes) != set(taxa): raise ValueError("Elements of both lists must be the same.") indices = [taxa.index(x) for x in nodes] return indices def phylogenetic_tree(taxonomies): relationships = defaultdict(lambda : []) unaccounted_for = [] for taxa in taxonomies: components = taxa.split('|') child = components[-1] if len(components) > 1: parent = components[-2] relationships[parent].append(child) else: unaccounted_for.append(child) G = nx.DiGraph() for child in unaccounted_for: G.add_node(child) for parent, children in relationships.items(): for child in children: G.add_edge(parent, child) return G def map_values_to_graph(graph, values_dict): values = [values_dict.get(node, 0) for node in graph.nodes()] return values def plot_filtered(df, threshold, multiply=400, ax=None): """ Extracts rows where abs > threshold and plots tree along with in between vertices """ filtered = df.loc[abs(df[1])>threshold] cleaned_index = set() for x in filtered.index: components= x.split('|') for i in range(len(components)): cleaned_index.add('|'.join(components[:i+1])) cleaned = df.loc[cleaned_index] cleaned = cleaned*multiply plot_tree(cleaned, ax=ax) def plot_tree(df, ax=None): graph = phylogenetic_tree(df.index) values_dict = {k:v[0] for k,v in zip(df.index, df.values)} mapped_values = map_values_to_graph(graph, values_dict) pos = graphviz_layout(graph, prog='twopi') nx.draw(graph, pos, cmap=plt.get_cmap('viridis'), node_color=mapped_values, with_labels=True, font_color='black', arrows=True, ax=ax) def plot_intersection(df_dict, threshold, ax=None): """ Given a dict of {label:df} containing attribution values, finds the index containing rows that are above threshold for every label and plots that tree. """ thresholded = {k: df.loc[abs(df[1])>threshold] for k,df in df_dict.items()} intersection = None for k, v in thresholded.items(): if intersection is None: intersection = v.index else: intersection = intersection.intersection(v.index) df =
pd.DataFrame(index=intersection)
pandas.DataFrame
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7,
pd.Timestamp("2015-01-20")
pandas.Timestamp
from typing import Tuple import streamlit as st import pandas as pd import altair as alt from codex.utils import to_columnar from codex.measure import measure_vars1, measure_vars2 from codex.collection import load_collection, get_width_height_pixels STEPS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] DEFAULT_SCENARIO_ID = 7 NUM_SCENARIOS = DEFAULT_SCENARIO_ID + 1 @st.cache def load_data_frame(scenario_id: int, ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: # load the base matrix, and the callable that transforms it co_mat_original, transform = load_collection(scenario_id) steps1 = [] props1 = [] names1 = [] steps2 = [] props2 = [] names2 = [] transformations = [] for step in STEPS: # transform matrix co_mat_transformed = transform(co_mat_original, step) # measure properties props1i, names1i = measure_vars1(co_mat_transformed) props2i, names2i = measure_vars2(co_mat_transformed) # collect for line chart 1 steps1 += [step] * len(props1i) props1 += props1i names1 += names1i # collect for line chart 2 steps2 += [step] * len(props2i) props2 += props2i names2 += names2i # collect transformed matrix for heat chart transformations.append(co_mat_transformed) df1 =
pd.DataFrame(data={'Step': steps1, 'Proportion': props1, 'Quantity': names1})
pandas.DataFrame
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_pandas_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_pandas_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad =
pd.DataFrame(expect_collection_noExpand['pad'])
pandas.DataFrame
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected =
concat([frames[k] for k in sorted_keys], keys=sorted_keys)
pandas.concat
# -*- coding: utf-8 -*- import json import os from typing import Optional, Union, Iterator, List from functools import partial import pystow import pandas as pd from tqdm.auto import tqdm from prodec import Descriptor, Transform from .utils.IO import locate_file, process_data_version, TypeDecoder def read_papyrus(is3d: bool = False, version: str = 'latest', chunksize: Optional[int] = None, source_path: Optional[str] = None) -> Union[ Iterator[pd.DataFrame], pd.DataFrame]: """Read the Papyrus dataset. :param is3d: whether to consider stereochemistry or not (default: False) :param version: version of the dataset to be read :param chunksize: number of lines per chunk. To read without chunks, set to None :param source_path: folder containing the bioactivity dataset (default: pystow's home folder) :return: the Papyrus activity dataset """ # Determine default paths if source_path is not None: os.environ['PYSTOW_HOME'] = os.path.abspath(source_path) version = process_data_version(version=version, root_folder=source_path) source_path = pystow.module('papyrus', version) # Load data types dtype_file = source_path.join(name='data_types.json').as_posix() with open(dtype_file, 'r') as jsonfile: dtypes = json.load(jsonfile, cls=TypeDecoder)['papyrus'] # Find the file filenames = locate_file(source_path.base.as_posix(), f'*.*_combined_set_with{"out" if not is3d else ""}_stereochemistry.tsv*') return pd.read_csv(filenames[0], sep='\t', chunksize=chunksize, dtype=dtypes, low_memory=True) def read_protein_set(source_path: Optional[str] = None, version: str = 'latest') -> pd.DataFrame: """Read the protein targets of the Papyrus dataset. :param source_path: folder containing the molecular descriptor datasets :param version: version of the dataset to be read :return: the set of protein targets in the Papyrus dataset """ version = process_data_version(version=version, root_folder=source_path) # Determine default paths if source_path is not None: os.environ['PYSTOW_HOME'] = os.path.abspath(source_path) source_path = pystow.module('papyrus', version) # Find the file filenames = locate_file(source_path.base.as_posix(), f'*.*_combined_set_protein_targets.tsv*') return pd.read_csv(filenames[0], sep='\t', keep_default_na=False) def read_molecular_descriptors(desc_type: str = 'mold2', is3d: bool = False, version: str = 'latest', chunksize: Optional[int] = None, source_path: Optional[str] = None): """Get molecular descriptors :param desc_type: type of descriptor {'mold2', 'mordred', 'cddd', 'fingerprint', 'all'} :param is3d: whether to load descriptors of the dataset containing stereochemistry :param version: version of the dataset to be read :param chunksize: number of lines per chunk. To read without chunks, set to None :param source_path: folder containing the molecular descriptor datasets :return: the dataframe of molecular descriptors """ if desc_type not in ['mold2', 'mordred', 'cddd', 'fingerprint', 'moe', 'all']: raise ValueError("descriptor type not supported") # Determine default paths if source_path is not None: os.environ['PYSTOW_HOME'] = os.path.abspath(source_path) version = process_data_version(version=version, root_folder=source_path) source_path = pystow.module('papyrus', version) # Load data types dtype_file = source_path.join(name='data_types.json').as_posix() with open(dtype_file, 'r') as jsonfile: dtypes = json.load(jsonfile, cls=TypeDecoder) # Find the files if desc_type in ['mold2', 'all']: mold2_files = locate_file(source_path.join('descriptors').as_posix(), f'*.*_combined_{3 if is3d else 2}D_moldescs_mold2.tsv*') elif desc_type in ['mordred', 'all']: mordd_files = locate_file(source_path.join('descriptors').as_posix(), f'*.*_combined_{3 if is3d else 2}D_moldescs_mordred{3 if is3d else 2}D.tsv*') elif desc_type in ['cddd', 'all']: cddds_files = locate_file(source_path.join('descriptors').as_posix(), f'*.*_combined_{3 if is3d else 2}D_moldescs_CDDDs.tsv*') elif desc_type in ['fingerprint', 'all']: molfp_files = locate_file(source_path.join('descriptors').as_posix(), f'*.*_combined_{3 if is3d else 2}D_moldescs_{"E3FP" if is3d else "ECFP6"}.tsv*') elif desc_type in ['moe', 'all']: moe_files = locate_file(source_path.join('descriptors').as_posix(), f'*.*_combined_{3 if is3d else 2}D_moldescs_MOE.tsv*') if desc_type == 'mold2': return pd.read_csv(mold2_files[0], sep='\t', dtype=dtypes['mold2'], low_memory=True, chunksize=chunksize) elif desc_type == 'mordred': return pd.read_csv(mordd_files[0], sep='\t', dtype=dtypes[f'mordred_{3 if is3d else 2}D'], low_memory=True, chunksize=chunksize) elif desc_type == 'cddd': return pd.read_csv(cddds_files[0], sep='\t', dtype=dtypes['CDDD'], low_memory=True, chunksize=chunksize) elif desc_type == 'fingerprint': return pd.read_csv(molfp_files[0], sep='\t', dtype=dtypes[f'{"E3FP" if is3d else "ECFP6"}'], low_memory=True, chunksize=chunksize) elif desc_type == 'moe': return pd.read_csv(moe_files[0], sep='\t', low_memory=True, chunksize=chunksize) elif desc_type == 'all': mold2 = pd.read_csv(mold2_files[0], sep='\t', dtype=dtypes['mold2'], low_memory=True, chunksize=chunksize) mordd = pd.read_csv(mordd_files[0], sep='\t', dtype=dtypes[f'mordred_{3 if is3d else 2}D'], low_memory=True, chunksize=chunksize) cddds = pd.read_csv(cddds_files[0], sep='\t', dtype=dtypes['CDDD'], low_memory=True, chunksize=chunksize) molfp = pd.read_csv(molfp_files[0], sep='\t', dtype=dtypes[f'{"E3FP" if is3d else "ECFP6"}'], low_memory=True, chunksize=chunksize) moe = pd.read_csv(moe_files[0], sep='\t', low_memory=True, chunksize=chunksize) if chunksize is None: mold2.set_index('InChIKey' if is3d else 'connectivity', inplace=True) mordd.set_index('InChIKey' if is3d else 'connectivity', inplace=True) molfp.set_index('InChIKey' if is3d else 'connectivity', inplace=True) cddds.set_index('InChIKey' if is3d else 'connectivity', inplace=True) moe.set_index('InChIKey' if is3d else 'connectivity', inplace=True) data =
pd.concat([mold2, mordd, cddds, molfp, moe], axis=1)
pandas.concat
# -*- coding: utf-8 -*- # Copyright (c) May 2021, Wageningen Environmental Research # <NAME> (<EMAIL>) import sys, os import xarray as xr import pandas as pd CMD_MODE = True if os.environ["CMD_MODE"] == "1" else False from .util import create_agera5_fnames, convert_to_celsius def extract_point(agera5_dir, point, startday, endday, tocelsius=False): df_final = pd.DataFrame() for day in pd.date_range(startday, endday): fnames = create_agera5_fnames(agera5_dir, day) ds = xr.open_mfdataset(fnames) pnt = ds.sel(lon=point.longitude, lat=point.latitude, method="nearest") df = pnt.to_dataframe() df.reset_index(inplace=True) ix = df.Wind_Speed_10m_Mean.notnull() if not any(ix): print(f"No data for given lon/lat ({point.longitude:7.2f}/{point.latitude:7.2f})," f" probably over water...") if CMD_MODE: sys.exit() else: return None df_final = df_final.append(df[ix]) # convert to simple date df_final['time'] =
pd.to_datetime(df_final.time)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Wed Aug 4 2021, last edited 27 Oct 2021 Fiber flow emissions calculations module - class version Inputs: Excel file with old PPI market & emissions data ('FiberModelAll_Python_v3-yields.xlsx') Outputs: Dict of keys 'old','new','forest','trade' with emissions calcs (*testing inputs* x = 'FiberModelAll_Python_v2.xlsx' f2pVolOld = pd.read_excel(x, 'OldData', usecols="A:I", skiprows=1, nrows=21, index_col=0) pbpVolOld = pd.read_excel(x, 'OldData', usecols="K:R", skiprows=1, nrows=14, index_col=0) pbpVolOld.columns = [x[:-2] for x in pbpVolOld.columns] consCollOld = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=34, nrows=3, index_col=0) rLevel = pd.read_excel(x, 'Demand', usecols="F:K", skiprows=16, nrows=5) rLevel = {t: list(rLevel[t][np.isfinite(rLevel[t])].values) for t in fProd} fProd = [t for t in f2pVolOld.iloc[:,:6].columns] fProdM = [t for t in f2pVolOld.iloc[:,:7].columns] rFiber = f2pVolOld.index[:16] vFiber = f2pVolOld.index[16:] rPulp = [p for p in pbpVolOld.index if 'Rec' in p] vPulp = [q for q in pbpVolOld.index if 'Vir' in q] fPulp = [f for f in pbpVolOld.index] import numpy as np f2pYld = pd.read_excel(x, 'Fiber', usecols="I:O", skiprows=1, nrows=21) f2pYld.index = np.concatenate([rFiber.values, vFiber.values], axis=0) pulpYld = pd.read_excel(x, 'Pulp', usecols="D", skiprows=1, nrows=14) pulpYld.index = rPulp + vPulp transPct = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=32, nrows=11, index_col=0) transKM = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=46, nrows=11, index_col=0) transUMI = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=59, nrows=1, index_col=0) rsdlModes = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=32, nrows=6, index_col=0) rsdlbio = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=41, nrows=4, index_col=0) rsdlbio = rsdlbio.fillna(0) rsdlfos = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=48, nrows=4, index_col=0) rsdlfos = rsdlfos.fillna(0) woodint = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=58, nrows=1, index_col=0) wtotalGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=62, nrows=6, index_col=0) wtotalGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=71, nrows=6, index_col=0) wbioGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=80, nrows=6, index_col=0) wbioGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=89, nrows=6, index_col=0) wfosGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=98, nrows=6, index_col=0) wfosGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=107, nrows=6, index_col=0) exportOld = pd.read_excel(x, 'OldData', usecols="E:G", skiprows=31, nrows=16, index_col=0) exportOld.iloc[:,:-1] = exportOld.iloc[:,:-1] exportNew = exportOld.iloc[:,:-1] * 1.5 exportNew.columns = ['exportNew'] exportNew = exportNew.assign(TransCode=exportOld['TransCode'].values) fiberType = pd.read_excel(x, 'OldData', usecols="A:B", skiprows=31, nrows=20, index_col=0) chinaVals = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=66, nrows=3, index_col=0) chinaCons = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=72, nrows=6, index_col=0) fYield = pd.read_excel(x, 'EmTables', usecols="L:N", skiprows=81, nrows=5, index_col=0) ) @author: <NAME> """ import pandas as pd import numpy as np class en_emissions(): # energy & emissions def __init__(cls,xls,fProd,rLevel,f2pYld,pulpYld,f2pVolNew,pbpVolNew,consCollNew,exportNew,demandNew): # xls (str) - name of Excel spreadsheet to pull data from # fProd (list) - list of products in current scenario # rLevel (df) - recycled content level by product # f2pYld (df) - fiber to pulp yield by pulp product; indexed by fiber # pulpYld (df) - pulp to product yield; pulp as index # f2pVolNew (df) - fiber to pulp volume (in short tons); indexed by pulp name # pbpVolNew (df) - pulp by product volume; indexed by pulp name # consCollNew (df) - domestic consumption, collection, and recovery by product # demandNew (df) - new demand by product; indexed by rec level uC = 0.907185 # unit conversion of MM US ton to Mg/metric ton cls.fProd = fProd cls.fProdM = fProd + ['Market'] cls.rLevel = rLevel cls.f2pYld = f2pYld cls.pulpYld = pulpYld cls.f2pVolNew = f2pVolNew * uC cls.pbpVolNew = pbpVolNew * uC cls.consCollNew = consCollNew * uC cls.exportNew = exportNew * uC cls.demandNew = {t: demandNew[t] * uC for t in demandNew.keys()} with pd.ExcelFile(xls) as x: # Old data cls.f2pVolOld = pd.read_excel(x, 'OldData', usecols="A:I", skiprows=1, nrows=21, index_col=0) cls.f2pVolOld.iloc[:,:-1] = cls.f2pVolOld.iloc[:,:-1] * uC * 1000 cls.f2pVolNew = cls.f2pVolNew.assign(TransCode=cls.f2pVolOld['TransCode'].values) cls.pbpVolOld = pd.read_excel(x, 'OldData', usecols="K:R", skiprows=1, nrows=14, index_col=0) cls.pbpVolOld.columns = [x[:-2] for x in cls.pbpVolOld.columns] # has .1 after column names for pandas duplicate cls.pbpVolOld.iloc[:,:-1] = cls.pbpVolOld.iloc[:,:-1] * uC * 1000 cls.pbpVolNew = cls.pbpVolNew.assign(TransCode=cls.pbpVolOld['TransCode'].values) cls.prodLD = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=19, nrows=5, index_col=0) * uC * 1000 cls.prodDemand = pd.read_excel(x, 'OldData', usecols="A:G", skiprows=26, nrows=1, index_col=0) * uC * 1000 cls.consCollOld = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=29, nrows=3, index_col=0) * uC * 1000 cls.exportOld = pd.read_excel(x, 'OldData', usecols="E:G", skiprows=31, nrows=16, index_col=0) cls.exportOld.iloc[:,:-1] = cls.exportOld.iloc[:,:-1] * uC * 1000 cls.exportNew = cls.exportNew.assign(TransCode=cls.exportOld['TransCode'].values) cls.fiberType = pd.read_excel(x, 'OldData', usecols="A:B", skiprows=31, nrows=20, index_col=0) cls.rFiber = cls.f2pVolOld.index[:16] cls.vFiber = cls.f2pVolOld.index[16:] cls.rPulp = [p for p in cls.pbpVolOld.index if 'Rec' in p] cls.vPulp = [q for q in cls.pbpVolOld.index if 'Vir' in q] cls.fPulp = [f for f in cls.pbpVolOld.index] # Emissions Info cls.chemicals = pd.read_excel(x, 'nonFiber', usecols="A:B,E:L", skiprows=2, nrows=42, index_col=0) cls.eolEmissions = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=2, nrows=3, index_col=0) cls.bfEI = pd.read_excel(x, 'EmTables', usecols="J:P", skiprows=2, nrows=3, index_col=0) cls.bfEI.columns = [x[:-2] for x in cls.bfEI.columns] # has .1 after column names for some reason cls.bioPct = pd.read_excel(x, 'EmTables', usecols="J:P", skiprows=8, nrows=2, index_col=0) cls.pwpEI = pd.read_excel(x, 'EmTables', usecols="O:P", skiprows=14, nrows=5, index_col=0) cls.bfCO2 = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=9, nrows=2, index_col=0) cls.fuelTable = pd.read_excel(x, 'EmTables', usecols="A:M", skiprows=15, nrows=13, index_col=0) cls.fuelTable = cls.fuelTable.fillna(0) cls.rsdlModes = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=32, nrows=6, index_col=0) cls.rsdlbio = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=41, nrows=4, index_col=0) cls.rsdlbio = cls.rsdlbio.fillna(0) cls.rsdlfos = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=48, nrows=4, index_col=0) cls.rsdlfos = cls.rsdlfos.fillna(0) cls.transPct = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=32, nrows=11, index_col=0) cls.transKM = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=46, nrows=11, index_col=0) cls.transUMI = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=59, nrows=1, index_col=0) cls.woodint = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=58, nrows=1, index_col=0) cls.wtotalGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=62, nrows=6, index_col=0) cls.wtotalGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=71, nrows=6, index_col=0) cls.wbioGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=80, nrows=6, index_col=0) cls.wbioGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=89, nrows=6, index_col=0) cls.wfosGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=98, nrows=6, index_col=0) cls.wfosGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=107, nrows=6, index_col=0) cls.chinaVals = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=66, nrows=3, index_col=0) cls.chinaCons = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=72, nrows=6, index_col=0) cls.fYield = pd.read_excel(x, 'EmTables', usecols="L:N", skiprows=81, nrows=5, index_col=0) def calculateTrans(cls,transVol): # transVol [df] - item, volume (in Mg) by product, TransCode; indexed by fiberCode or other label # transPct [df] - % traversed for transMode by transCode; indexed by transCode # transKM [df] - distance traversed for transMode by transCode; indexed by transCode # transUMI [s] - unit impact by mode (truck, train, boat); indexed by "transUMI" transImpact = pd.Series(0, index = cls.fProd) tC = transVol['TransCode'] tC = tC[(tC != 0) & (tC != 1)] # index non-zero/non-NaN elements only transVol = transVol.loc[tC.index] for t in cls.fProd: for m in cls.transUMI.columns: transImpact[t] += sum(transVol[t] * cls.transPct.loc[tC,m].values * cls.transKM.loc[tC,m].values * cls.transUMI[m].values * 1) return transImpact def calculateChem(cls,chemicals,prodDemand): # chemicals [df] - nonfiber name, % use by product, transCode, impact factor; indexed by number # prodDemand [df] - total demand; indexed by product chemImpact = pd.Series(0, index = cls.fProd, name = 'chemImp') chemVol = pd.DataFrame(0, index = chemicals.index, columns = cls.fProd) for t in cls.fProd: chemImpact[t] = sum(prodDemand[t].values * chemicals[t] * chemicals['Impact Factor']) chemVol[t] = chemicals[t] * prodDemand[t].values chemVol = chemVol.join(chemicals['TransCode']) chemTrans = pd.Series(cls.calculateTrans(chemVol), name = 'chemTrans') chemImpact = pd.DataFrame(chemImpact) return pd.concat([chemImpact, chemTrans], axis=1) def calculateEoL(cls,eolEmissions,consColl): # eolEmissions [df] - biogenic and fossil CO2 emission factors & transportation code by product; indexed by bio/fosCO2 # consColl [df] - domestic consumption, collection, and recovery by product; indexed by name prod2landfill = pd.Series(consColl.loc['Domestic Consumption'] - consColl.loc['Recovery Volume'], index = cls.fProd, name = 'prod2landfill') mrf2landfill = pd.Series(consColl.loc['Collection Volume'] - consColl.loc['Recovery Volume'], index = cls.fProd, name = 'mrf2landfill') bioEoL = pd.Series(prod2landfill * eolEmissions.loc['bioCO2'], index = cls.fProd, name = 'bioEoL') mrf2landfill = pd.DataFrame(mrf2landfill) # works b/c all prods have same TransCode transEoL = pd.Series(cls.calculateTrans(mrf2landfill.T.assign(TransCode=eolEmissions.loc['TransCode'].values[0])), index = cls.fProd, name = 'eolTrans') fesTransEoL = pd.Series(prod2landfill * eolEmissions.loc['fossilCO2'] + transEoL, index = cls.fProd, name = 'fesTransEoL') bftEoL = pd.Series(bioEoL + fesTransEoL, name = 'bftEoL') return pd.concat([bioEoL, fesTransEoL, bftEoL, transEoL], axis=1) def getEnergyYldCoeff(cls,f2pVol,pbpVol): # f2pVol [df] - recycled fiber to pulp (in Mg); indexed by fiber code # pbpVol [df] - pulp by product (in Mg); indexed by pulp name # # PYCoeff [s] - pulp yield coeffient; indexed by pulp f2pByPulp = pd.Series(0, index = pbpVol.index, name = 'fiber2pulp') for p in cls.rPulp: f2pByPulp[p] = sum([f2pVol.loc[cls.rFiber,t].sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.rPulp.index(p)]) for q in cls.vPulp: f2pByPulp[q] = sum([f2pVol.loc[cls.vFiber,t].sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.vPulp.index(q)]) pulpProd = pd.Series([pbpVol.loc[i].sum() for i in pbpVol.index], index = pbpVol.index, name = 'pulpProd') PYCoeff = (pd.Series(f2pByPulp / pulpProd, name = 'pulpYldCoeff')) PYCoeff.replace([np.inf, -np.inf], np.nan, inplace=True) PYCoeff = PYCoeff.fillna(0) return PYCoeff def getEnergyPulpPct(cls,pbpVol): # pbpVol [df] - pulp by product (in Mg); indexed by pulp name # # pulpPct [df] - % of rec/vir pulp used in product; indexed by pulp name pulpPct = pbpVol.copy().drop(['TransCode'], axis=1) for t in pulpPct.columns: rTotalPulp = pulpPct.loc[cls.rPulp,t].sum() vTotalPulp = pulpPct.loc[cls.vPulp,t].sum() pulpPct.loc[cls.rPulp,t] = pulpPct.loc[cls.rPulp,t] / rTotalPulp pulpPct.loc[cls.vPulp,t] = pulpPct.loc[cls.vPulp,t] / vTotalPulp return pulpPct.fillna(0) def getEnergyMultiProd(cls,PYMult,pulpPct): # PYMult [s] - pulp yield multiplier; indexed by pulp name # pulpPct [df] - % of rec/vir pulp used in product; indexed by pulp name # # (return) [df] - rec/vir yield multiprod by product; index by r/vYldMultiProd rYldMultiProd = pd.Series([sum(pulpPct.loc[cls.rPulp,t] * PYMult[cls.rPulp]) for t in cls.fProd], index = cls.fProd, name = 'rYldMultiProd') vYldMultiProd = pd.Series([sum(pulpPct.loc[cls.vPulp,t] * PYMult[cls.vPulp]) for t in cls.fProd], index = cls.fProd, name = 'vYldMultiProd') rYldMultiProd.replace([np.inf, -np.inf], np.nan, inplace=True) vYldMultiProd.replace([np.inf, -np.inf], np.nan, inplace=True) return pd.concat([rYldMultiProd.fillna(0), vYldMultiProd.fillna(0)], axis=1) def calculateEnergy(cls,pbpVol,prodLD,multiProd,pwpEI,paperEI): # prodLD (df) - demand by product; indexed by % recycled content level # bfEI (df) - bio & fes energy intensity fitting parameters by product; indexed by name # bioPct (df) - bio fitting parameter for PWP; indexed by name # pwpEI (df) - energy intensity of PWP pulp; indexed by pulp name # paperEI (df) - paper production energy intensity; indexed by 'PPE' # pbpVol (df) - pulp by product (in Mg); indexed by pulp name # multiProd (df) - rec/vir yield multiprod by product; indexed by product bioEnergy = pd.Series(0, index = cls.fProd, name = "bioEnergy") fesEnergy = pd.Series(0, index = cls.fProd, name = 'fesEnergy') totalEnergy = pd.Series(0, index = cls.fProd, name = 'totalEnergy') for t in cls.fProd: bioEnergy[t] = sum(prodLD[t].values[:len(cls.rLevel[t])] * sum([r * cls.bfEI.loc['bioEI b1',t] + cls.bfEI.loc['bioEI b0',t] for r in cls.rLevel[t]])) fesEnergy[t] = sum(prodLD[t].values[:len(cls.rLevel[t])] * cls.bfEI.loc['fesEI',t] * multiProd.loc[t,'rYldMultiProd']) if 'P&W' or 'News' in t: avgrecPct = sum(prodLD[t].values[:len(cls.rLevel[t])] * cls.rLevel[t]) / prodLD[t].sum() bioPctPW = avgrecPct * cls.bioPct.loc['bioPct b1',t] + cls.bioPct.loc['bioPct b0',t] pulpProdEnergy = sum([pbpVol.loc[p,t] * pwpEI.loc[p].values[0] for p in pwpEI.index]) ppEnergy = pulpProdEnergy + prodLD[t].sum() * paperEI.values[0] bioEnergy[t] = bioPctPW * ppEnergy fesEnergy[t] = (1 - bioPctPW) * ppEnergy * multiProd.loc[t,'rYldMultiProd'] totalEnergy[t] = bioEnergy[t] + fesEnergy[t] return pd.concat([bioEnergy, fesEnergy, totalEnergy], axis=1) def calculateProduction(cls,calcEnergy): # calcEnergy (df) - bio, fes, and total energy from calculateEnergy; indexed by product # bfCO2 (df) - bio & fes CO2 fitting parameters; indexed by product bioCO2 = pd.Series(0, index = cls.fProd, name = 'bioCO2') fesCO2 = pd.Series(0, index = cls.fProd, name = 'fesCO2') totalCO2 = pd.Series(0, index = cls.fProd, name = 'totalCO2') for t in cls.fProd: bioCO2[t] = calcEnergy.loc[t,'bioEnergy'] * cls.bfCO2.loc['bioCO2 b1',t] fesCO2[t] = calcEnergy.loc[t,'fesEnergy'] * cls.bfCO2.loc['fesCO2 b1',t] totalCO2[t] = bioCO2[t] + fesCO2[t] return pd.concat([bioCO2, fesCO2, totalCO2], axis=1) def calculateFuel(cls,calcEnergy): # calcEnergy (df) - bio, fes, and total energy from calculateEnergy; indexed by product # fuelTable (df) - fuel impact by product; indexed by fuel type fuels = cls.fuelTable.index bioFI = pd.Series(0, index = cls.fProd, name = 'bioFuelImp') fesFI = pd.Series(0, index = cls.fProd, name = 'fesFuelImp') fuelImp = pd.Series(0, index = cls.fProd, name = 'fuelImp') for t in cls.fProd: bioFI[t] = calcEnergy.loc[t,'bioEnergy'] * sum([cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'Upstream Impact Factor'] for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 1]) fesFI[t] = calcEnergy.loc[t,'fesEnergy'] * sum([cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'Upstream Impact Factor'] for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 2]) fuelImp[t] = bioFI[t] + fesFI[t] fuelTransVol = cls.fuelTable.copy() fuel1 = [f for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 1] fuel2 = [f for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 2] for t in cls.fProd: fuelTransVol.loc[fuel1,t] = [calcEnergy.loc[t,'bioEnergy'] * cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'FU/GJ'] for f in fuel1] fuelTransVol.loc[fuel2,t] = [calcEnergy.loc[t,'fesEnergy'] * cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'FU/GJ'] for f in fuel2] fuelTrans = pd.Series(cls.calculateTrans(fuelTransVol), name = 'fuelTrans') return pd.concat([bioFI, fesFI, fuelImp, fuelTrans], axis=1) def calculateResidual(cls,pbpVol,f2pVol): # pbpVol [df] - pulp by product (in Mg); indexed by pulp name # f2pVol [df] - recycled fiber to pulp (in Mg); indexed by fiber code # f2pYld [df] - fiber to pulp yield by pulp product; indexed by fiber # pulpYld [df] - pulp to product yield; indexed by pulp # rsdlModes [df] - residual treatments modes; indexed by residual type # rsdlbio [df] - transport and biogenic emissions factors; indexed by residual treatment mode # rsdlfos [df] - transport and fossil emissions factors; indexed by residual treatment mode pulpProd = pd.Series(0, index = cls.rPulp + cls.vPulp, name = 'pulpProduced') fiberRes = pd.Series(0, index = cls.rPulp + cls.vPulp, name = 'fiberResidue') for p in cls.rPulp: # order of fPulp must match order of r/vPulp pulpProd[p] = sum([(f2pVol.loc[cls.rFiber,t].mul(cls.f2pYld.loc[cls.rFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.rPulp.index(p)]) fiberRes[p] = sum([(f2pVol.loc[cls.rFiber,t].mul(1 - cls.f2pYld.loc[cls.rFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.rPulp.index(p)]) for q in cls.vPulp: pulpProd[q] = sum([(f2pVol.loc[cls.vFiber,t].mul(cls.f2pYld.loc[cls.vFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.vPulp.index(q)]) fiberRes[q] = sum([(f2pVol.loc[cls.vFiber,t].mul(1 - cls.f2pYld.loc[cls.vFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.vPulp.index(q)]) pulpUP = pbpVol.iloc[:,:-1].div(pulpProd, axis=0).fillna(0) # pulpUsePct rFiberRsd = pd.Series((pulpUP.loc[cls.rPulp].mul(fiberRes[cls.rPulp], axis=0)).sum(), index = cls.fProd, name = 'rFiberRsd') rPulpRsd = pd.Series((pulpUP.loc[cls.rPulp].mul(1 - cls.pulpYld.iloc[:,0].loc[cls.rPulp], axis=0)).sum(), index = cls.fProd, name = 'rPulpRsd') rTotalRsd = rFiberRsd + rPulpRsd vFiberRsd = pd.Series((pulpUP.loc[cls.vPulp].mul(fiberRes[cls.vPulp], axis=0)).sum(), index = cls.fProd, name = 'vFiberRsd') vPulpRsd = pd.Series((pulpUP.loc[cls.vPulp].mul(1 - cls.pulpYld.iloc[:,0].loc[cls.vPulp], axis=0)).sum(), index = cls.fProd, name = 'vPulpRsd') vTotalRsd = vFiberRsd + vPulpRsd rsdlType = cls.rsdlModes.index rsdlQuantity = pd.DataFrame(0, index = rsdlType, columns = cls.fProd) for rt in rsdlType: if cls.rsdlModes.loc[rt,'Input Base'] == 1: rsdlQuantity.loc[rt,:] = rTotalRsd * cls.rsdlModes.loc[rt,'Intensity'] if cls.rsdlModes.loc[rt,'Input Base'] == 2: rsdlQuantity.loc[rt,:] = vTotalRsd * cls.rsdlModes.loc[rt,'Intensity'] rsdlMode = cls.rsdlModes.columns[:-2] rsdlModeVol = {rM: pd.DataFrame(0, index = rsdlType, columns = cls.fProd) for rM in rsdlMode} for rM in rsdlMode: rsdlModeVol[rM] = rsdlQuantity.mul(cls.rsdlModes[rM], axis=0) rsdlModeVol[rM] = rsdlModeVol[rM].assign(TransCode=cls.rsdlbio.loc[rM,'TransCode'] * np.ones(len(rsdlType))) rsdlModeVol[rM].replace([np.inf, -np.inf], np.nan, inplace=True) # TODO: what happens to make this inf? rsdlModeVol[rM].fillna(0) bioImp = pd.Series(0, index = cls.fProd, name = 'bioImp') fosImp = pd.Series(0, index = cls.fProd, name = 'fossilImp') for t in cls.fProd: bioImp[t] = sum([rsdlModeVol[rM][t].sum() * cls.rsdlbio.loc[rM,t] for rM in rsdlMode]) fosImp[t] = sum([rsdlModeVol[rM][t].sum() * cls.rsdlfos.loc[rM,t] for rM in rsdlMode]) biofosImp = pd.Series(bioImp + fosImp, name = 'bio+fos') rsdlTrans = pd.Series(0, index = cls.fProd, name = 'rsdlTrans') for rM in rsdlMode: rsdlTrans += cls.calculateTrans(rsdlModeVol[rM]) return pd.concat([bioImp, fosImp, biofosImp, rsdlTrans], axis=1) def getExportTrans(cls,transVol): transImpact = pd.Series(0, index = transVol.columns[:-1]) tC = transVol['TransCode'] tC = tC[(tC != 0) & (tC != 1)] # index non-zero/non-NaN elements only transVol = transVol.loc[tC.index] for n in transVol.columns[:-1]: for m in cls.transUMI.columns: transImpact[n] += sum(transVol[n] * cls.transPct.loc[tC,m].values * cls.transKM.loc[tC,m].values * cls.transUMI[m].values) return transImpact.values def calculateExport(cls,exportOld,exportNew): # exportOld [df] old export from US; indexed by rec fiber # exportNew [df] new export from US; indexed by rec fiber impChange = pd.Series(0, index = cls.fYield.index, name = 'impChangeByGroup') sumChange = pd.Series(0, index = cls.fYield.index, name = 'sumNetChange') for r in impChange.index: typeMask = cls.fiberType[cls.fiberType['fiberType'] == r].index # impChange[r] = (exportOld.loc[typeMask, 'exportOld'] - exportNew.loc[typeMask, 'exportNew']).sum() impChange[r] = (exportNew.loc[typeMask, 'exportNew'] - exportOld.loc[typeMask, 'exportOld']).sum() sumChange[r] = impChange[r] * (1 - cls.fYield.loc[r,'US'] / cls.fYield.loc[r,'China']) beta = sumChange.sum() / (cls.chinaCons.loc['totalVir'].values + cls.chinaCons.loc['domesticRec'].values + cls.chinaCons.loc['importRec-US'].values + cls.chinaCons.loc['importRec-nonUS'].values) # chinaTrans = cls.getExportTrans(exportOld) - cls.getExportTrans(exportNew) chinaTrans = cls.getExportTrans(exportNew) - cls.getExportTrans(exportOld) return cls.chinaVals.loc['Production'] * cls.chinaVals.loc['Energy Intensity'] * cls.chinaVals.loc['Emission Factor'] * beta + chinaTrans def getForestVirginGHG(cls,virCons,woodint,slope,intercept): # virCons [df] change in virgin consumption; products as columns # woodint [df] intervals of virgin wood consumption # slope [s] b1 value for GHG emissions # intercept[s] b0 value for GHG emissions for n in range(1,len(woodint.columns)): if (woodint[n].values <= virCons) & (virCons < woodint[n+1].values): return virCons * slope[n] + intercept[n] return 0 # catch values outside of interval def calculateForest(cls,virCons,forYear): # virCons [float] change in virgin consumption, sum of all products # forYear [int] forest year length for cumulative emissions calcs; 10-90 by ten deltaTotalGHG = pd.Series(cls.getForestVirginGHG(virCons / 1e6, cls.woodint, cls.wtotalGHGb1[forYear], cls.wtotalGHGb0[forYear]), name = 'totalGHG') * 1e6 deltabioGHG = pd.Series(cls.getForestVirginGHG(virCons / 1e6, cls.woodint, cls.wbioGHGb1[forYear], cls.wbioGHGb0[forYear]), name = 'bioGHG') * 1e6 deltafosGHG = pd.Series(cls.getForestVirginGHG(virCons / 1e6, cls.woodint, cls.wfosGHGb1[forYear], cls.wfosGHGb0[forYear]), name = 'fosGHG') * 1e6 return pd.concat([deltaTotalGHG, deltabioGHG, deltafosGHG], axis=1) def calculateEmissions(cls): # xls [df] - name of Excel spreadsheet to pull data from # fProd [df] - list of products in current scenario # rL [dict] - recycled content level by product # f2pYld [df] - fiber to pulp yield by pulp product; indexed by fiber # pulpYld [df] - pulp to product yield; indexed by pulp # f2pVolNew [df] - fiber to pulp volume (in Mg); indexed by fiber code # pbpVolNew [df] - pulp by product volume; indexed by pulp name # consCollNew [df] - domestic consumption, collection, and recovery by product pulpNames = cls.rPulp + cls.vPulp mvO = [cls.pbpVolOld.loc[p] for p in pulpNames if 'Deinked' in p or 'Market' in p] marketVolOld = pd.concat([mvO[0],mvO[1]], axis=1).T mvN = [cls.pbpVolNew.loc[p] for p in pulpNames if 'Deinked' in p or 'Market' in p] marketVolNew = pd.concat([mvN[0],mvN[1]], axis=1).T # Chemical chemImp = cls.calculateChem(cls.chemicals, cls.prodDemand) # EoL oldEoL = cls.calculateEoL(cls.eolEmissions, cls.consCollOld) newEoL = cls.calculateEoL(cls.eolEmissions, cls.consCollNew) # Energy oldPulpPct = cls.getEnergyPulpPct(cls.pbpVolOld) newPulpPct = cls.getEnergyPulpPct(cls.pbpVolNew) oldPYCoeff = cls.getEnergyYldCoeff(cls.f2pVolOld, cls.pbpVolOld) newPYCoeff = cls.getEnergyYldCoeff(cls.f2pVolNew, cls.pbpVolNew) oldYldMultiplier = (oldPYCoeff / oldPYCoeff).fillna(0) newYldMultiplier = (newPYCoeff / oldPYCoeff).fillna(0) oldMP = cls.getEnergyMultiProd(oldYldMultiplier, oldPulpPct) newMP = cls.getEnergyMultiProd(newYldMultiplier, newPulpPct) oldEnergy = cls.calculateEnergy(cls.pbpVolOld, cls.prodLD, oldMP, cls.pwpEI.iloc[:-1], cls.pwpEI.iloc[-1]) newEnergy = cls.calculateEnergy(cls.pbpVolNew, cls.demandNew, newMP, cls.pwpEI.iloc[:-1], cls.pwpEI.iloc[-1]) # Production oldProd = cls.calculateProduction(oldEnergy) newProd = cls.calculateProduction(newEnergy) # Fuel oldFuel = cls.calculateFuel(oldEnergy) newFuel = cls.calculateFuel(newEnergy) # Residual oldRsdl = cls.calculateResidual(cls.pbpVolOld, cls.f2pVolOld) newRsdl = cls.calculateResidual(cls.pbpVolNew, cls.f2pVolNew) # Transportation oldFiberTrans = pd.Series(cls.calculateTrans(cls.f2pVolOld), name = 'fiberTrans') oldMarketTrans = pd.Series(cls.calculateTrans(marketVolOld), name = 'marketTrans') oldTrans = pd.concat([oldFiberTrans, oldMarketTrans, chemImp['chemTrans'], oldFuel['fuelTrans'], oldRsdl['rsdlTrans'], oldEoL['eolTrans']], axis=1) newFiberTrans = pd.Series(cls.calculateTrans(cls.f2pVolNew), name = 'fiberTrans') newMarketTrans = pd.Series(cls.calculateTrans(marketVolNew), name = 'marketTrans') newTrans = pd.concat([newFiberTrans, newMarketTrans, chemImp['chemTrans'], newFuel['fuelTrans'], newRsdl['rsdlTrans'], newEoL['eolTrans']], axis=1) # Export exportImp = cls.calculateExport(cls.exportOld,cls.exportNew) # FASOM/LURA forestGHG = cls.calculateForest(cls.f2pVolNew.iloc[:,:-1].loc[cls.vFiber].sum().sum() - cls.f2pVolOld.iloc[:,:-1].loc[cls.vFiber].sum().sum(), 90) # Summary calcs for plotting oldSums = pd.concat([pd.Series(chemImp['chemImp'], name='chemImp'), pd.Series(oldFuel['bioFuelImp'], name='fuelbio'), pd.Series(oldFuel['fesFuelImp'], name='fuelfos'), pd.Series(oldProd['totalCO2'], name='prodImp'), pd.Series(oldProd['bioCO2'], name='prodbio'), pd.Series(oldProd['fesCO2'], name='prodfos'), pd.Series(oldEnergy['totalEnergy'], name='energy'), pd.Series(oldEnergy['bioEnergy'], name='energybio'), pd.Series(oldEnergy['fesEnergy'], name='energyfos'), pd.Series(oldRsdl['bio+fos'], name='residImp'), pd.Series(oldRsdl['bioImp'], name='residbio'), pd.Series(oldRsdl['fossilImp'], name='residfos'), pd.Series(oldEoL['bftEoL'], name='eolImp'), pd.Series(oldEoL['bioEoL'], name='eolbio'), pd.Series(oldEoL['fesTransEoL'], name='eolfos'), pd.Series(oldProd['bioCO2'] + oldRsdl['bioImp'] + oldEoL['bioEoL'], name='bioCO2'), pd.Series(oldTrans.sum(axis=1) + chemImp['chemImp'] + oldFuel['fuelImp'] + oldProd['fesCO2'] + oldRsdl['fossilImp'] + oldEoL['fesTransEoL'], name='fossilCO2'), pd.Series(oldProd['bioCO2'] + oldRsdl['bioImp'], name='g2gbio'), pd.Series(oldProd['fesCO2'] + oldRsdl['fossilImp'] + oldTrans.sum(axis=1), name='g2gfos')], axis=1) oldSums = pd.concat([oldSums, pd.Series(oldSums['bioCO2'] + oldSums['fossilCO2'], name='totalImp')], axis=1) oldSums = pd.concat([oldSums, pd.Series(oldSums['totalImp'] / cls.prodLD.sum(), name='unitImp')], axis=1, sort=True) newSums = pd.concat([pd.Series(chemImp['chemImp'], name='chemImp'), pd.Series(newFuel['bioFuelImp'], name='fuelbio'), pd.Series(newFuel['fesFuelImp'], name='fuelfos'),
pd.Series(newProd['totalCO2'], name='prodImp')
pandas.Series
import re import pandas import cobra from fractions import Fraction def ReadExcel(excel_file, parse="cobra_string", Print=False): """ parse = "cobra_string" | "cobra_position" cobra_string % INPUT % fileName xls spreadsheet, with one 'Reaction List' and one 'Metabolite List' tab % % 'Reaction List' tab: Required headers (case sensitive): % 'Abbreviation' HEX1 % 'Description' Hexokinase % 'Reaction' 1 atp[c] + 1 glc-D[c] --> 1 adp[c] + 1 g6p[c] + 1 h[c] % 'GPR' (3098.3) or (80201.1) or (2645.3) or ... % 'Genes' 2645.1,2645.2,2645.3,... (optional) % 'Proteins' Flj22761.1, Hk1.3, Gck.2,... (optional) % 'Subsystem' Glycolysis % 'Reversible' 0 (false) or 1 (true) % 'Lower bound' 0 % 'Upper bound' 1000 % 'Objective' 0 (optional) % 'Confidence Score' 0,1,2,3,4 % 'EC Number' 2.7.1.1,2.7.1.2 % 'Notes' 'Reaction also associated with EC 2.7.1.2' (optional) % 'References' PMID:2043117,PMID:7150652,... (optional) % % 'Metabolite List' tab: Required headers (case sensitive): (needs to be complete list of metabolites, i.e., if a metabolite appears in multiple compartments it has to be represented in multiple rows. Abbreviations need to overlap with use in Reaction List % 'Abbreviation' glc-D or glc-D[c] % 'Description' D-glucose % 'Neutral formula' C6H12O6 % 'Charged formula' C6H12O6 % 'Charge' 0 % 'Compartment' cytosol % 'KEGG ID' C00031 % 'PubChem ID' 5793 % 'ChEBI ID' 4167 % 'InChI string' InChI=1/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6?/m1/s1 % 'SMILES' OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O % 'HMDB ID' HMDB00122 % % OPTIONAL INPUT (may be required for input on unix macines) % biomassRxnEquation .xls may have a 255 character limit on each cell, % so pass the biomass reaction separately if it hits this maximum. % % OUTPUT % model COBRA Toolbox model cobra_position % INPUT % excel_file xls spreadsheet, with one 'reactions' and one 'metabolites' tab % % 'reactions' tab: Required headers: % col 0 Abbreviation HEX1 % col 1 Description Hexokinase % col 2 Reaction 1 atp[c] + 1 glc-D[c] --> 1 adp[c] + 1 g6p[c] + 1 h[c] % col 3 GPR b0001 % col 4 Genes b0001 (optional: column can be empty) % col 5 Proteins AlaS (optional: column can be empty) % col 6 Subsystem Glycolysis % col 7 Reversible 0 % col 8 Lower bound 0 % col 9 Upper bound 1000 % col 10 Objective 0 (optional: column can be empty) % col 11 Confidence Score 0,1,2,3,4 % col 12 EC. Number 1.1.1.1 % col 13 Notes N/A (optional: column can be empty) % col 14 References PMID: 1111111 (optional: column can be empty) % % 'metabolites' tab: Required headers: needs to be complete list of metabolites, i.e., if a metabolite appears in multiple compartments it has to be represented in multiple rows. Abbreviations needs to overlap with use in Reaction List % col 0 Abbreviation % col 1 Description % col 2 Neutral formula % col 3 Charge formula % col 4 Charge % col 5 Compartment % col 6 KEGG ID % col 7 PubChem ID % col 8 ChEBI ID % col 9 InChI string % col 10 SMILES % col 11 HMDB ID % % % OUTPUT % model cobrapy model """ excel = pandas.ExcelFile(excel_file) for sheet in excel.sheet_names: if sheet == "Reaction List" and parse == "cobra_string": reactions = excel.parse(sheet,index_col=None) elif 'reaction' in sheet.lower(): reactions = excel.parse(sheet,index_col=None) if sheet == "Metabolite List" and parse == "cobra_string": metabolites = excel.parse(sheet,index_col=None) elif 'metabolite' in sheet.lower(): metabolites = excel.parse(sheet,index_col=None) cobra_reaction_position = ['Abbreviation','Description','Reaction','GPR','Genes','Proteins','Subsystem','Reversible','Lower bound','Upper bound','Objective','Confidence Score','EC Number','Notes','References'] cobra_metabolite_position = ['Abbreviation','Description','Neutral formula','Charged formula','Charge','Compartment','KEGG ID','PubChem ID','ChEBI ID','InChI string','SMILES','HMDB ID'] if parse == "cobra_position": if len(reactions.columns) > 15: reactions = reactions.iloc[:,:15] reactions.columns = cobra_reaction_position else: reactions.columns = cobra_reaction_position[:len(reactions.columns)] if len(metabolites.columns) > 12: metabolites = metabolites.iloc[:,:12] metabolites.columns = cobra_metabolite_position else: metabolites.columns = cobra_metabolite_position[:len(metabolites.columns)] model = cobra.Model() metabolite_dic = {} element_re = re.compile("([A-Z][a-z]?)([0-9.]+[0-9.]?|(?=[A-Z])?)") for met in metabolites.index: met_row = metabolites.loc[met] # pandas.Series of the metabolites met_id = str(met_row['Abbreviation']) #met_name = str(met_row[1]) if pandas.notnull(met_row[1]) else None met_name = str(met_row['Description']) if ('Description' in met_row.index) and pandas.notnull(met_row['Description']) else None if ('Charged formula' in met_row.index) and pandas.notnull(met_row['Charged formula']): met_formula = str(met_row['Charged formula']) elif ('Neutral formula' in met_row.index) and pandas.notnull(met_row['Neutral formula']): if ('Charge' in met_row.index) and pandas.notnull(met_row['Charge']): met_formula = '' tmp_formula = str(met_row['Neutral formula']) tmp_formula = tmp_formula.replace("*", "") parsed = element_re.findall(tmp_formula) for (element, count) in parsed: if element != "H": met_formula += element + str(count) else: if count == '': count = 1 count = float(count) if count.is_integer(): count = int(count) charge = float(met_row['Charge']) if charge.is_integer(): charge = int(charge) count += charge if count == 1: met_formula += element elif count != 0: met_formula += element + str(count) else: met_formula = None else: met_formula = None met_compartment = str(met_row['Compartment']) if 'Compartment' in met_row.index and pandas.notnull(met_row['Compartment']) else None metabolite = cobra.Metabolite(met_id, formula=met_formula, name=met_name, compartment=met_compartment) if ('Charge' in met_row.index) and pandas.notnull(met_row['Charge']): metabolite.charge = float(met_row['Charge']) if metabolite.charge.is_integer(): metabolite.charge = int(metabolite.charge) if ('KEGG ID' in met_row.index) and pandas.notnull(met_row['KEGG ID']): metabolite.kegg_id = met_row['KEGG ID'] if 'PubChem ID' in met_row.index and pandas.notnull(met_row['PubChem ID']): metabolite.pubchem_id = str(met_row['PubChem ID']) if 'ChEBI ID' in met_row.index and pandas.notnull(met_row['ChEBI ID']): metabolite.chebi_id = str(met_row['ChEBI ID']) if 'InChI string' in met_row.index and pandas.notnull(met_row['InChI string']): metabolite.inchi_id = str(met_row['InChI string']) if 'SMILES' in met_row.index and pandas.notnull(met_row['SMILES']): metabolite.smiles = str(met_row['SMILES']) if 'HMDB ID' in met_row.index and pandas.notnull(met_row['HMDB ID']): metabolite.hmdb_id = str(met_row['HMDB ID']) metabolite_dic[met_id] = metabolite if Print: print(metabolite.id) for reac in reactions.index: reac_row = reactions.loc[reac] reaction = cobra.Reaction(str(reac_row['Abbreviation'])) stoichiometry_list = [] metabolite_list = [] new_metabolite = True product = False compartment = '' reaction_string = reac_row['Reaction'].split(' ') for s in reaction_string: if s.startswith('['): if s.endswith(']:'): compartment = s[:-1] else: compartment = s elif s == ":" or s == "": pass elif s == "+": new_metabolite = True elif s == "->" or s == "-->" or s == "=>" or s == u'\u2192': direction = 'LEFT-TO-RIGHT' product = True new_metabolite = True elif s == "<>" or s =="<=>" or s == "<==>" or s == "<->" or s == u'\u2194': direction = 'REVERSIBLE' product = True new_metabolite = True elif s == "<-" or s == "<--" or s == "<=" or s == u'\u2190': direction = 'RIGHT-TO-LEFT' product = True new_metabolite = True else: try: if s[0] == "(" and s[-1] == ")": s = s[1:-1] s = Fraction(s) s = float(s) if not product: s = -s stoichiometry_list.append(s) new_metabolite = False except ValueError: metabolite_list.append(s + compartment) if new_metabolite: if not product: stoichiometry_list.append(-1) else: stoichiometry_list.append(1) new_metabolite = True stoi_dic = {} for b in range(len(metabolite_list)): met_id = str(metabolite_list[b]) try: met = metabolite_dic[met_id] except KeyError: # try case-insensitive met_key = [] for key in metabolite_dic: if key.lower() == met_id.lower(): met_key.append(key) if len(met_key) == 1: met = metabolite_dic[met_key[0]] else: print(met_id + " added to metabolite list in " + str(reac_row['Abbreviation']) + " in row " + str(reac+2)) additional_metabolite = cobra.Metabolite(met_id) met = metabolite_dic[met_id] = additional_metabolite stoi_dic[met] = stoichiometry_list[b] reaction.add_metabolites(stoi_dic) # reaction.lower_bound = float('-inf') reaction.upper_bound = float('inf') if direction == 'LEFT-TO-RIGHT': reaction.lower_bound = 0.0 elif direction == 'RIGHT-TO-LEFT': reaction.upper_bound = 0.0 if ('Description' in reac_row.index) and pandas.notnull(reac_row['Description']): reaction.name = str(reac_row['Description']) if ('GPR' in reac_row.index) and pandas.notnull(reac_row['GPR']): reaction.gene_reaction_rule = str(reac_row['GPR']) if ('Proteins' in reac_row.index) and pandas.notnull(reac_row['Proteins']): reaction.proteins = str(reac_row['Proteins']) if ('Subsystem' in reac_row.index) and pandas.notnull(reac_row['Subsystem']): reaction.subsystem = str(reac_row['Subsystem']) if ('Lower bound' in reac_row.index) and
pandas.notnull(reac_row['Lower bound'])
pandas.notnull
from os import path, mkdir import feedparser import pandas as pd import datetime filename = "last.txt" date = datetime.datetime.now().strftime("%Y-%m-%d") project_url = "https://github.com/bwilliams18/risky-or-not" def format_perc(fl): return f"{int(round(fl * 100,0))}%" if __name__ == "__main__": RiskyOrNot = feedparser.parse("https://riskyornot.libsyn.com/rss") if path.exists(filename): with open(filename, "r") as f: last_analyzed = f.read() else: last_analyzed = None episodes = list() for entry in RiskyOrNot.entries: r = entry["summary"].find("☣️") nr = entry["summary"].find("👍🏼") if r == -1 and nr == -1: continue elif r == -1: don = "👍🏼" ben = "👍🏼" elif nr == -1: don = "☣️" ben = "☣️" elif nr < r: don = "👍🏼" ben = "☣️" elif r < nr: ben = "👍🏼" don = "☣️" else: continue episodes.append( { "title": entry["title"], "id": entry["id"], "link": entry["link"], "dr. don": don, "prof. ben": ben, } ) df =
pd.DataFrame(episodes)
pandas.DataFrame
# -*- coding: utf-8 -*- # This is a test file intended to be used with pytest # pytest automatically runs all the function starting with "test_" # see https://docs.pytest.org for more information import os import pytest import pandas as pd from nlp.spacy_tokenizer import MultilingualTokenizer def test_tokenize_df_english(): input_df = pd.DataFrame({"input_text": ["I hope nothing. I fear nothing. I am free. 💩 😂 #OMG"]}) tokenizer = MultilingualTokenizer() output_df = tokenizer.tokenize_df(df=input_df, text_column="input_text", language="en") tokenized_document = output_df[tokenizer.tokenized_column][0] assert len(tokenized_document) == 15 def test_tokenize_df_japanese(): input_df = pd.DataFrame({"input_text": ["期一会。 異体同心。 そうです。"]}) tokenizer = MultilingualTokenizer() output_df = tokenizer.tokenize_df(df=input_df, text_column="input_text", language="ja") tokenized_document = output_df[tokenizer.tokenized_column][0] assert len(tokenized_document) == 9 def test_tokenize_df_multilingual(): input_df = pd.DataFrame( { "input_text": [ "I hope nothing. I fear nothing. I am free.", " Les sanglots longs des violons d'automne", "子曰:“學而不思則罔,思而不學則殆。”", "期一会。 異体同心。 そうです。", ], "language": ["en", "fr", "zh", "ja"], } ) tokenizer = MultilingualTokenizer() output_df = tokenizer.tokenize_df(df=input_df, text_column="input_text", language_column="language") tokenized_documents = output_df[tokenizer.tokenized_column] tokenized_documents_length = [len(doc) for doc in tokenized_documents] assert tokenized_documents_length == [12, 8, 19, 9] def test_tokenize_df_long_text(): input_df = pd.DataFrame({"input_text": ["Long text"]}) tokenizer = MultilingualTokenizer(max_num_characters=1) with pytest.raises(ValueError): tokenizer.tokenize_df(df=input_df, text_column="input_text", language="en") def test_create_spacy_tokenizer_no_model(): input_df = pd.DataFrame({"input_text": ["I hope nothing. I fear nothing. I am free. 💩 😂 #OMG"]}) tokenizer = MultilingualTokenizer(add_pipe_components=["sentencizer"],enable_pipe_components=["sentencizer"],use_models=False) nlp = tokenizer._create_spacy_tokenizer("en") assert nlp.pipe_names == ["sentencizer"] def test_create_spacy_tokenizer_model(): input_df =
pd.DataFrame({"input_text": ["I hope nothing. I fear nothing. I am free. 💩 😂 #OMG"]})
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'], index=[0])) expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan])) tm.assert_frame_equal(df, expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_drop(self): # unique s = Series([1, 2], index=['one', 'two']) expected = Series([1], index=['one']) result = s.drop(['two']) assert_series_equal(result, expected) result = s.drop('two', axis='rows') assert_series_equal(result, expected) # non-unique # GH 5248 s = Series([1, 1, 2], index=['one', 'two', 'one']) expected =
Series([1, 2], index=['one', 'one'])
pandas.Series
from numpy import NaN import pandas as pd from tqdm import tqdm # Todo essa parte é só para funcionar a orientação à objeto # Ela não é obrigatória para chegar no resultado # O jeito mais fácil seria usar o Jupyter e sem Orientação à objeto # Fiz usando isso para poder aprender class MicrodadosENEM: def __init__(self, nome=None, colunas=None, ler_microdados=True, microdados=None): if ler_microdados: print("Importando...") self.microdados =
pd.read_csv(nome, sep=';', encoding='latin-1', usecols=colunas)
pandas.read_csv
import streamlit as st import numpy as np import pandas as pd import sqlite3 conn=sqlite3.connect('data.db') c=conn.cursor() import os import warnings warnings.filterwarnings('ignore') import tensorflow.keras as tf import joblib import base64 from io import BytesIO import bz2 import pickle import _pickle as cPickle from streamlit import caching # Pickle a file and then compress it into a file with extension def compressed_pickle(title, data): with bz2.BZ2File(title + '.pbz2','w') as f: cPickle.dump(data, f) # Load any compressed pickle file def decompress_pickle(file): data = bz2.BZ2File(file, 'rb') data = cPickle.load(data) return data ratings_data = decompress_pickle('rat1.pbz2') ratings_df1=ratings_data.sort_values(by="user_id",ascending=True).reset_index(drop=True) ratings_df=ratings_df1[ratings_df1["user_id"]<2501].reset_index(drop=True) del ratings_data,ratings_df1 new_model=tf.models.load_model("modelrecsys.h5") co=joblib.load("contentsfile.joblib") titlefile=joblib.load('title.joblib') ####To download dataframe recommondations def to_excel(df): output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, sheet_name='Sheet1') writer.save() processed_data = output.getvalue() return processed_data def get_table_download_link(df): #Generates a link allowing the data in a given panda dataframe to be downloaded #in: dataframe #out: href string val = to_excel(df) b64 = base64.b64encode(val) # val looks like b'...' return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="extract.xlsx">Download csv file</a>' # decode b'abc' => abc ##df = ... # your dataframe ##st.markdown(get_table_download_link(df), unsafe_allow_html=True) def create_usertable(): c.execute('CREATE TABLE IF NOT EXISTS userstable(username TEXT, password TEXT)') def add_userdata(username,password): c.execute('INSERT INTO userstable(username, password) VALUES(?,?)',(username,password)) conn.commit() def login_user(username,password): c.execute('SELECT * FROM userstable WHERE username=? AND password=?',(username,password)) data=c.fetchall() return data def view_all_users(): c.execute('SELECT * FROM userstable') data=c.fetchall() return data st.title(" GOODREADS BOOKS ") st.markdown("###***HYBRID BOOK RECOMMENDATION SYSTEM USING DEEP LEARNING***") menu=["Home", "Sign up", "Login","Books"] choice=st.sidebar.selectbox("Menu",menu) if choice=="Home": st.image("https://images.gr-assets.com/misc/1397605627-1397605627_goodreads_misc.png",width=850) st.markdown("Please use sidebar dropdown benu for ***Login/Signup***. (Login after Signing up entering custom username and password and tick login)") st.markdown("_you are in HOME view_") elif choice=="Login": st.subheader("Login Section") username=st.sidebar.text_input("username") password=st.sidebar.text_input("password",type='password') if st.sidebar.checkbox("Login"): # if password=="<PASSWORD>": create_usertable() result=login_user(username,password) if result: st.success("LOGGED IN SUCCESSFULLY AS {} ".format(username)) st.markdown("After Login please select any one of below Task options -**_Info_, _Start-Analytics_ (for Reccomondations), _Account Details_") task=st.selectbox("Task",["Info","Start-Analytics","Account Details"]) if task=="Info": st.subheader("use Start-Analytics for finding Reccomondations") st.image("http://knowledgequest.aasl.org/wp-content/uploads/2019/05/GoodReads-logo.jpg",width=500) st.markdown("""**What is Goodreads?** Goodreads is the largest site for connecting readers with books they will love. Keep track of books you have read, want to read, and are currently reading. Connect with other readers, leave reviews, and get book recommendations. You can even follow your favorite authors! (Follow me on goodreads) Goodreads has been around since 2006, but it gained momentum in 2013 when it was bought by Amazon. Now you can integrate goodreads with your kindle and read book samples from Amazon straight from the goodreads site! When most people think of goodreads, they think of book reviews and book recommendations. These are two of the most important features of goodreads, but there is so much more you can get from the website and app. Read on to learn how to use goodreads and take advantage of the lists, groups, giveaways, quotes, and so much more.""") elif task=="Start-Analytics": st.subheader("Top N number of Book Recommondations predicted realtime") st.markdown("Please click enter key after entering values to apply") #user_id = st.number_input('user_id', min_value=1, max_value=53424, value=1) user_id=st.text_input("Enter user_id {1-2500} default 1") if user_id!="": user_id=int(user_id) if user_id<1 or user_id>2500: user_id=1 else: user_id=1 num=st.text_input("Enter required_reccomondation_count (2-30) default 2") if num!="": num=int(num) if num<2 or num>30: num=2 else: num=2 us_id_temp=[user_id for i in range(len(co['book_id']))] @st.cache(suppress_st_warning=True) def pred(new_model,us_id_temp,co,ratings_df,user_id,titlefile): reccom = new_model.predict([pd.Series(us_id_temp),co['book_id'],co.iloc[:,1:]]) recc_df=
pd.DataFrame(reccom,columns=["rating"])
pandas.DataFrame
""" Helper functions to convert the data to the format expected by run_robot.py """ import sys import seir import pandas as pd import numpy as np import numpy.linalg as la import os.path as path # To use PyJulia print('Loading PyJulia module...') from julia.api import Julia jl = Julia(compiled_modules=False) from julia import Main as Julia Julia.eval('ENV["OMP_NUM_THREADS"] = 8') print('Loading PyJulia module... Ok!') print('Loading Robot-dance Julia module...') Julia.eval('include("robot_dance.jl")') print('Loading Robot-dance Julia module... Ok!') def save_basic_parameters(tinc=5.2, tinf=2.9, rep=2.5, ndays=400, window=14, min_level=1.0): """Save the basic_paramters.csv file using the data used in the report. All values are optional. If not present the values used in the report wihtout an initial hammer phase are used. """ basic_prm = pd.Series(dtype=np.float) basic_prm["tinc"] = tinc basic_prm["tinf"] = tinf basic_prm["rep"] = rep basic_prm["ndays"] = ndays basic_prm["window"] = window basic_prm["min_level"] = min_level basic_prm.to_csv(path.join("data", "basic_parameters.csv"), header=False) return basic_prm def initial_conditions(basic_prm, city_data, min_days, Julia, correction=1.0): """Fits data and define initial contidions of the SEIR model. """ population = city_data["estimated_population_2019"].iloc[0] confirmed = city_data["confirmed"] # Compute the new cases from the confirmed sum new_cases = confirmed.values[1:] - confirmed.values[:-1] # Use a mean in a week to smooth the data (specially to deal with weekends) observed_I = np.convolve(new_cases, np.ones(7, dtype=int), 'valid') / 7.0 # Now accumulate in the inf_window inf_window = int(round(basic_prm["tinf"])) observed_I = np.convolve(observed_I, np.ones(inf_window, dtype=int), 'valid') ndays = len(observed_I) if ndays >= min_days and sum(observed_I) > 0: observed_I /= population Julia.observed_I = correction*observed_I Julia.tinc = basic_prm["tinc"] Julia.tinf = basic_prm["tinf"] Julia.rep = basic_prm["rep"] Julia.eval('initialc = fit_initial(tinc, tinf, rep, observed_I)') S1 = Julia.initialc[0] E1 = Julia.initialc[1] I1 = Julia.initialc[2] R1 = Julia.initialc[3] return (S1, E1, I1, R1, ndays), observed_I, population else: raise ValueError("Not enough data for %s only %d days available" % (city_data["city"].iloc[0], len(observed_I))) def simulate(parameters, city_data, min_days): """Simulate from the computed initial parameters until the last day. """ c = city_data["city"].iloc[0] last_day = city_data["date"].iloc[-1] S1, E1, I1, R1, ndays = parameters[c] covid = seir.seir(ndays) print("Simulating", c, "until", last_day) result = covid.run((S1, E1, I1, R1)) return result[:, -1], last_day def compute_initial_condition_evolve_and_save(basic_prm, state, large_cities, min_pop, correction, raw_name="data/covid_with_cities.csv"): """Compute the initial conditions and population and save it to data/cities_data.csv. The population andinitial condition is estimated from a file with the information on the total number of confimed cases for the cities. See the example in data/covid_with_cities.csv. Parameters: large_cities: list with the name of cities tha are pre_selected. basic_prm: basic paramters for SEIR model. state: state to subselect or None. large_cinties: minimal subset of cities do be selected. min_pop: minimal population to select more cities. correction: a constant to multiply the observed cases to try to correct subnotification. raw_name: name of the file with the accumulated infected data to estimate the initial conditions. """ raw_epi_data = pd.read_csv(raw_name) if state is not None: raw_epi_data = raw_epi_data[raw_epi_data["state"] == state] large_cities.extend( raw_epi_data[raw_epi_data["estimated_population_2019"] > min_pop]["city"].unique() ) large_cities = list(set(large_cities)) large_cities.sort() # Create a new Dataframe with only the needed information raw_epi_data = raw_epi_data[["city", "date", "confirmed", "estimated_population_2019"]] epi_data = raw_epi_data[raw_epi_data["city"] == large_cities[0]].copy() epi_data.sort_values(by=["date"], inplace=True) for city_name in large_cities[1:]: city = raw_epi_data[raw_epi_data["city"] == city_name].copy() city.sort_values(by = ["date"], inplace=True) epi_data = epi_data.append(city) epi_data.reset_index(inplace=True, drop=True) # Compute initial parameters fitting the data min_days = 5 parameters = {} ignored = [] population = [] n_cities = len(large_cities) for i in range(n_cities): city_name = large_cities[i] print("%d/%d" %(i + 1, n_cities), city_name) try: city_data = epi_data[epi_data["city"] == city_name] parameters[city_name], observed_I, city_pop = initial_conditions(basic_prm, city_data, min_days, Julia, correction) population.append(city_pop) except ValueError: print("Ignoring ", city_name, "not enough data.") ignored.append(city_name) # Simulate the data until the last day to start the optimization phase. cities_data = {} for city_name in large_cities: if city_name in ignored: continue city_data = epi_data[epi_data["city"] == city_name] cities_data[city_name], last_day = simulate(parameters, city_data, min_days) # Save results cities_data = pd.DataFrame.from_dict(cities_data, orient="index", columns=["S1", "E1", "I1", "R1"]) cities_data["population"] = population cities_data.to_csv(path.join("data", "cities_data.csv")) return cities_data def convert_mobility_matrix_and_save(cities_data, max_neighbors, drs=False): """Read the mobility matrix data given by Pedro and save it in the format needed by robot_dance. cd: a data frame in the format of cities_data.csv max_neighbors: maximum number of neighbors allowed in the mobility matrix. """ # Read the mobility_matrix large_cities = cities_data.index if drs: mobility_matrix = pd.read_csv("data/drs_mobility.csv", index_col=0).T mobility_matrix = mobility_matrix.mask( mobility_matrix.rank(axis=1, method='min', ascending=False) > max_neighbors + 1, 0 ) elif path.exists("data/move_mat_SÃO PAULO_SP-Municipios_norm.csv"): mobility_matrix = pd.read_csv("data/move_mat_SÃO PAULO_SP-Municipios_norm.csv", header=None, sep=" ") cities_names = pd.read_csv("data/move_mat_SÃO PAULO_SP-Municipios_reg_names.txt", header=None) # Cut the matrix to see only the desired cities cities_names = [i.title() for i in cities_names[0]] mobility_matrix.index = cities_names mobility_matrix.columns = cities_names mobility_matrix = mobility_matrix.loc[large_cities, large_cities].T mobility_matrix = mobility_matrix.mask( mobility_matrix.rank(axis=1, method='min', ascending=False) > max_neighbors + 1, 0 ) else: ncities = len(large_cities) pre_M = np.zeros((ncities, ncities)) mobility_matrix =
pd.DataFrame(data=pre_M, index=large_cities, columns=large_cities)
pandas.DataFrame
from __future__ import division import pandas as pd import os.path import sys # parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parentddir) from base.uber_model import UberModel, ModelSharedInputs from .earthworm_functions import EarthwormFunctions class EarthwormInputs(ModelSharedInputs): """ Input class for Earthworm. """ def __init__(self): """Class representing the inputs for Earthworm""" super(EarthwormInputs, self).__init__() self.k_ow = pd.Series([], dtype="float") self.l_f_e = pd.Series([], dtype="float") self.c_s = pd.Series([], dtype="float") self.k_d = pd.Series([], dtype="float") self.p_s =
pd.Series([], dtype="float")
pandas.Series
from pathsetup import run_path_setup run_path_setup() import os import gl gl.isTrain = False from model_config import model_argparse config = model_argparse() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = config['device'] import tensorflow as tf tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True sess = tf.Session(config=tf_config) import numpy as np import pandas as pd import utils from ved import VEDModel from sklearn.model_selection import train_test_split np.random.seed(1337) if config['dataset'] == 'daily': train_data = pd.read_csv(config['data_dir'] + 'DailyDial/de_duplicated/df_daily_train.csv') val_data = pd.read_csv(config['data_dir'] + 'DailyDial/de_duplicated/df_daily_valid_without_duplicates.csv') test_data =
pd.read_csv(config['data_dir'] + 'DailyDial/de_duplicated/df_daily_test_without_duplicates.csv')
pandas.read_csv
import pandas as pd #drop unknow artist import matplotlib as mpl import matplotlib.pyplot as plt log_dir ='logs/' mpl.rcParams['figure.figsize'] = (22, 20) dataset=pd.read_csv('/content/MultitaskPainting100k_Dataset_groundtruth/groundtruth_multiloss_train_header.csv') # indexName=pf[pf['artist']=='Unknown photographer'].index # pf.drop(indexName,inplace=True) # grouped = pf.groupby(['artist']).size().reset_index(name='counts') # p=grouped.sort_values('counts', ascending=False).head(50) # top50=p['artist'].tolist() # dataset=pd.DataFrame() # for name,group in pf.groupby(['artist']): # if name in top50: # dataset=pd.concat([dataset,group],axis=0) # dataset=dataset.reset_index() import numpy as np from collections import Counter from sklearn.model_selection import StratifiedShuffleSplit def generate_classdict(label): counter = Counter(label) class_num=len(counter) class_list=list(counter.keys()) #? class_dict={} class_weight={} total = len(label) count=0 for name,num in counter.items(): class_dict[name]=count class_weight[count]=(total/(num*class_num)) count+=1 return class_num,class_list,class_dict,class_weight X=np.array(dataset['filename'].tolist()) y=np.array(dataset['style'].tolist()) Style_class_num,Style_class_list,Style_class_dict,Style_class_weight=generate_classdict(y) y=np.array(dataset['genre'].tolist()) Objtype_class_num,Objtype_class_list,Objtype_class_dict,Objtype_class_weight=generate_classdict(y) # y=np.array(dataset['Creation Date'].tolist()) # CreationDate_class_num,CreationDate_class_list,CreationDate_class_dict,CreationDate_class_weight=generate_classdict(y) y=np.array(dataset['artist'].tolist()) Artist_class_num,Artist_class_list,Artist_class_dict,Artist_class_weight=generate_classdict(y) sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0) print(sss.get_n_splits(X, y)) train_frame=pd.DataFrame() test_frame=
pd.DataFrame()
pandas.DataFrame
#This script is to do kinetic classification. #Make sure that you have setup your PYTHONPATH environment #variable as described in the github repository. from zipfile import ZIP_FILECOUNT_LIMIT from isort import file from SBMLKinetics import kinetics_classification import sys import numpy as np import os from sympy import * from libsbml import * # access functions in SBML import time import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import matplotlib # Column names SBMLID = "SBMLid" CLASSIFICATIONS = 'Classifications' REACTION = 'Reaction' KINETICLAW = 'kinetic law' PERCENTAGE = 'Percentage' class KineticAnalyzer: """ Load Dataset of SBML files. Args: dataSet: str-"biomodels", "curated", "metabolic", "signalling", "homo_sapiens", "non_homo", "cellular_organisms", "Mus_musculus", "Mammalia", "Saccharomyces_cerevisiae"; path: str-path to the file, with a format of ``D:\\path\\to``; model_indices: range-(initial_model_indx, final_model_indx) """ def __init__(self, path = os.path.dirname(os.path.abspath(__file__)), dataSet = "biomodels", model_indices = range(0,1000)): #In addition to dataSetName, allow users to inmport a zip of sbml files from a path initial_model_indx = min(model_indices) final_model_indx = max(model_indices) if type(dataSet) == str and dataSet in ["biomodels", "curated", "metabolic", "signalling", "homo_sapiens", "non_homo", "cellular_organisms", "Mus_musculus", "Mammalia", "Saccharomyces_cerevisiae"]: zip_filename = dataSet + '.zip' try: self.tuple = kinetics_classification._dataSetStatistics(zip_filename = zip_filename, initial_model_indx = initial_model_indx, final_model_indx = final_model_indx) except Exception as err: raise Exception (err) elif '.zip' in dataSet: try: self.tuple = kinetics_classification._dataSetStatistics(data_dir = path, zip_filename = dataSet, initial_model_indx = initial_model_indx, final_model_indx = final_model_indx) except Exception as err: raise Exception (err) else: raise Exception("Not a valid dataset input.") def getKineticLawDistribution(self, path = "", fileName = ""): """ Get the kinetic law distribution (and save the dataframe into an excel file). Args: path: str-path to the file, with a format like ``D:/path/to/`` (or ``D:\\\path\\\ to\\\``) fileName: str-file name with which the excel file save to, "" (do not save to excel file). Returns: df_gen_stat_final: dataFrame-kinetic law distribution. The column names are: "Classifications", "Percentage", "Percentage standard error", "Percentage per model", "Percentage per model standard error". In the column of "Classifications", there are "ZERO", "UNDR", "UNMO", "BIDR", "BIMO", "MM", "MMCAT", "HILL", "FR" and "NA" in detail. "ZERO" means "Zeroth order", "UNDR" means "Uni-directional mass action", "UNMO" means "Uni-term with moderator", "BIDR" means "Bi-directional mass action", "BIMO" means "Bi- terms with moderator", "MM" means "Michaelis-Menten kinetics", "MMCAT" means "Michaelis- Menten kinetics", "HILL" means "Hill equations", "FR" means kinetics in the format of fraction other than MM, MMCAT and HILL, "NA" means not classified kinetics. """ (_, df_gen_stat, _, _, _, _, _) = self.tuple df_gen_stat_final = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_final.insert(2, "Percentage standard error", 0) except: pass if fileName != "": # Create a Pandas Excel writer using XlsxWriter as the engine. path_fileName = path + fileName writer = pd.ExcelWriter(path_fileName, engine='xlsxwriter') df_gen_stat_final.to_excel(writer, sheet_name='general_statistics') # Close the Pandas Excel writer and output the Excel file. writer.save() return df_gen_stat_final def TopFrequentKineticLawType(self): """ Return the most frequent kinetic law type on average in the loaded SBML dataset . Returns: kinetics_type_list: list pf kinetics_type. kinetics_type: str-kinetic law type. """ (_, df_gen_stat, _, _, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] df_temp = df_gen_stat_plot # try: # kinetics_type_list = [] # max_idx = df_temp['Percentage'].idxmax() # kinetics_type = df_temp['Classifications'][max_idx] # kinetics_type_list.append(kinetics_type) # except: max_value = df_temp['Percentage'].max() idx_list = df_temp.index[df_temp['Percentage'] == max_value].tolist() kinetics_type_list =[] for i in range(len(idx_list)): kinetics_type_list.append(df_temp.iloc[idx_list[i]]["Classifications"]) return kinetics_type_list def plotKineticLawDistribution(self, fileName = 'KineticLawDistribution.pdf'): """ Plot the kinetic law distribution as save it as a pdf file. Args: fileName: str-file name with which the pdf file save to. """ (_, df_gen_stat, _, _, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass yerr = df_gen_stat_plot[["Percentage standard error", \ "Percentage per model standard error"]].to_numpy().T ax = df_gen_stat_plot.plot(kind="bar",x="Classifications", y=["Percentage","Percentage per model"],\ yerr=yerr, fontsize = 8) ax.set_ylim(0.,1.) ax.get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda y, p: str("{:.2%}".format(y)))) for p in ax.patches: ax.annotate(str("{:.2%}".format(p.get_height())), (p.get_x() * 1.005, p.get_height() * 1.005), fontsize = 4) #plt.show() fig = ax.get_figure() fig.savefig(fileName) def getKineticLawDistributionPerMassTransfer(self, rct_num, prd_num, path = "", fileName = ""): """ Get the kinetic law distribution for the certein mass transfer (and save the dataframe into an excel file). Args: rct_num: int-0, 1, 2, 3 (representing > 2). prd_num: int-0, 1, 2, 3 (representing > 2). path: str-path to the file, with a format like ``D:/path/to/`` (or ``D:\\\path\\\ to\\\``) fileName: str-file name with which the excel file save to, "" (do not save to excel file). Returns: df_gen_stat_PR_final: dataFrame-the kinetic law distribution for a certain mass trasfer. The column names are: "Classifications", "Percentage", "Percentage standard error", "Percentage per model", "Percentage per model standard error". In the column of "Classifications", there are "ZERO", "UNDR", "UNMO", "BIDR", "BIMO", "MM", "MMCAT", "HILL", "FR" and "NA" in detail. "ZERO" means "Zeroth order", "UNDR" means "Uni-directional mass action", "UNMO" means "Uni-term with moderator", "BIDR" means "Bi-directional mass action", "BIMO" means "Bi- terms with moderator", "MM" means "Michaelis-Menten kinetics", "MMCAT" means "Michaelis- Menten kinetics", "HILL" means "Hill equations", "FR" means kinetics in the format of fraction other than MM, MMCAT and HILL, "NA" means not classified kinetics. """ (_, df_gen_stat, _, df_gen_stat_PR, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass try: df_gen_stat_PR.insert(2, "Percentage standard error", 0) except: pass df_gen_stat_PR_plot = {} types = len(df_gen_stat_plot) if prd_num in [0,1,2,3] and rct_num in [0,1,2,3]: i = prd_num*4 + rct_num df_gen_stat_PR_plot[i] = pd.DataFrame(columns = df_gen_stat_PR.columns.tolist()) df_temp = df_gen_stat_PR[types*i:types*(i+1)] df_gen_stat_PR_plot[i] =
pd.concat([df_gen_stat_PR_plot[i],df_temp], ignore_index=True)
pandas.concat
"""The American Gut App.""" import dash import dash_daq as daq import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go import plotly.figure_factory as ff import numpy as np import pandas as pd from start import ( samples, find_closest, healthiest_sample, meta, describe, bact_plot, firm_plot, ) close =
pd.Series(0, index=samples.index)
pandas.Series
import datetime import numpy as np from numpy import nan import pandas as pd import pytest from pandas.util.testing import assert_frame_equal from numpy.testing import assert_allclose from pvlib.location import Location from pvlib import tracking SINGLEAXIS_COL_ORDER = ['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'] def test_solar_noon(): apparent_zenith = pd.Series([10]) apparent_azimuth = pd.Series([180]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'tracker_theta': 0, 'aoi': 10, 'surface_azimuth': 90, 'surface_tilt': 0}, index=[0], dtype=np.float64) expect = expect[SINGLEAXIS_COL_ORDER] assert_frame_equal(expect, tracker_data) def test_azimuth_north_south(): apparent_zenith = pd.Series([60]) apparent_azimuth = pd.Series([90]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=180, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'tracker_theta': -60, 'aoi': 0, 'surface_azimuth': 90, 'surface_tilt': 60}, index=[0], dtype=np.float64) expect = expect[SINGLEAXIS_COL_ORDER] assert_frame_equal(expect, tracker_data) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect['tracker_theta'] *= -1 assert_frame_equal(expect, tracker_data) def test_max_angle(): apparent_zenith = pd.Series([60]) apparent_azimuth = pd.Series([90]) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=45, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'aoi': 15, 'surface_azimuth': 90, 'surface_tilt': 45, 'tracker_theta': 45}, index=[0], dtype=np.float64) expect = expect[SINGLEAXIS_COL_ORDER] assert_frame_equal(expect, tracker_data) def test_backtrack(): apparent_zenith = pd.Series([80]) apparent_azimuth =
pd.Series([90])
pandas.Series
#!/usr/bin/env python # coding: utf-8 '''This script finds the best parameters for SVC and LGR models and fits the data to these two models and outputs the classification images and the classification reports as the csv documents. Usage: src/model.py --data_input=<data_input> --result_output=<result_output> Arguments: --data_input=<data_input> The path for all the clean data --result_output=<result_output> The path where to store the csv data ''' import numpy as np import pandas as pd from docopt import docopt from sklearn.model_selection import RandomizedSearchCV #from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC #from plot_classifier import plot_classifier import matplotlib.pyplot as plt from sklearn.metrics import classification_report import lightgbm as lgb opt = docopt(__doc__) def get_model_results(X, y, X_train, y_train, X_test, y_test, result_output): parameters_svc = {'C':np.logspace(-3,3,7), 'gamma':np.logspace(-4,2,7)} pd.DataFrame(parameters_svc).to_csv(result_output + '/hyper_parameters.csv') svc = SVC() svc_opt = RandomizedSearchCV(svc, parameters_svc, cv=5, iid=False, n_iter = 25) # svc_opt.fit(X_train, y_train) # train_score_svc = svc_opt.score(X_train,y_train) # test_score_svc= svc_opt.score(X_test,y_test) #svc_opt = GridSearchCV(svc, parameters_svc, cv=5, iid=False) svc_opt.fit(X_train.to_numpy(), y_train.to_numpy().ravel()) train_score_svc = svc_opt.score(X_train.to_numpy(),y_train.to_numpy().ravel()) test_score_svc = svc_opt.score(X_test.to_numpy(),y_test.to_numpy().ravel()) parameters_lgr = {'C':np.logspace(-3,3,7)} lgr = LogisticRegression() #lgr_opt = GridSearchCV(lgr, parameters_lgr, cv=5, iid=False) lgr_opt = RandomizedSearchCV(lgr, parameters_lgr, cv=5, iid=False, n_iter = 25) lgr_opt.fit(X_train.to_numpy(), y_train.to_numpy().ravel()) train_score_lgr = lgr_opt.score(X_train.to_numpy(),y_train.to_numpy().ravel()) test_score_lgr = lgr_opt.score(X_test.to_numpy(),y_test.to_numpy().ravel()) lgbm = lgb.LGBMClassifier() lgbm.fit(X_train.to_numpy(),y_train.to_numpy().ravel()) train_score_lgbm = lgbm.score(X_train.to_numpy(),y_train.to_numpy().ravel()) test_score_lgbm = lgbm.score(X_test.to_numpy(),y_test.to_numpy().ravel()) data = {'Train accuracy':[train_score_svc, train_score_lgr, train_score_lgbm], 'Validation accuracy':[test_score_svc, test_score_lgr,test_score_lgbm], 'Best parameters':[svc_opt.best_params_,lgr_opt.best_params_, 'NA']} accuracy_df = pd.DataFrame(data, index = ['SVC','LGR','LGBM']) accuracy_df.to_csv(result_output+'/accuracy.csv') predictions_svc = svc_opt.predict(X_test) predictions_lgr = lgr_opt.predict(X_test) predictions_lgbm = lgbm.predict(X_test) svc_report = pd.DataFrame(classification_report(y_test, predictions_svc, output_dict=True)) lgr_report = pd.DataFrame(classification_report(y_test, predictions_lgr, output_dict=True)) lgbm_report = pd.DataFrame(classification_report(y_test, predictions_lgbm, output_dict=True)) svc_report.to_csv(result_output+'/svc_classification_report.csv') lgr_report.to_csv(result_output+'/lgr_classification_report.csv') lgbm_report.to_csv(result_output+'/lgbm_classification_report.csv') try: pd.read_csv(result_output+'/svc_classification_report.csv') pd.read_csv(result_output+'/lgr_classification_report.csv') pd.read_csv(result_output+'/lgbm_classification_report.csv') except: raise Exception("result doesn't save successfully") return svc_opt, lgr_opt, lgbm def main(data_input, result_output): X_train = pd.read_csv(data_input+'/X_train_clean.csv') y_train =
pd.read_csv(data_input+'/y_train.csv',usecols = ["Target"])
pandas.read_csv
import numpy as np # Matrise pakke import pandas as pd # Database pakke import support # For error handling import matplotlib.pyplot as plt # Plottepakke import matplotlib.patches as mpatches # Legend in plot import sys # For aborting scripts import math # For floor import user_setup from PIL import Image # For saving as TIFF from io import BytesIO # For saving as TIFF #----------------------------------------------------------------------------------- ######## Function for making list of color codes ## Takes optional color scheme as input ## Returns vector of colors to be used in plot def adjust_color(color, amount=0.5): """ Lightens the given color by multiplying (1-luminosity) by the given amount. Input can be matplotlib color string, hex string, or RGB tuple. Examples: >> adjust_color('g', 0.3) >> adjust_color('#F034A3', 0.6) >> adjust_color((.3,.55,.1), 0.5) """ import matplotlib.colors as mc import colorsys try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2]) def get_colors(df, cycles=None, color=None, color_scheme=None): if not isinstance(df, pd.DataFrame): # If df is not dataframe, assumes df is list new_df =
pd.DataFrame()
pandas.DataFrame
# scraper_horse_racing.py # -*- coding: utf-8 -*- import os import time from selenium.webdriver import Firefox from selenium.webdriver.firefox.firefox_profile import FirefoxProfile from selenium.webdriver.firefox.options import Options from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import requests from bs4 import BeautifulSoup import pandas as pd # Variable with the URL of the website. my_url = "https://www.horseracing24.com/" # Preparing of the Tor browser for the work. # for my laptop # torexe = os.popen(\ # r"C:\Users\Oliver\Desktop\Tor Browser\Browser\firefox.exe") # for my mainframe torexe = os.popen(\ r"C:\Users\olive\OneDrive\Pulpit\Tor Browser\Browser\firefox.exe") # for my laptop # profile = FirefoxProfile(\ # r"C:\Users\Oliver\Desktop\Tor Browser\Browser\TorBrowser\Data\Browser"+\ # "\profile.default") # for my mainframe profile = FirefoxProfile(\ r"C:\Users\olive\OneDrive\Pulpit\Tor Browser\Browser\TorBrowser\Data"+\ "\Browser\profile.default") profile.set_preference("network.proxy.type", 1) profile.set_preference("network.proxy.socks", "127.0.0.1") profile.set_preference("network.proxy.socks_port", 9150) profile.set_preference("network.proxy.socks_remote_dns", False) profile.update_preferences() firefox_options = Options() driver = Firefox(firefox_profile=profile, options=firefox_options) # Adding the headers to the browser session = requests.Session() headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0)"+\ " Gecko/20100101 Firefox/97.0", "Accept": "text/html,application"+\ "/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8"} req = session.get(my_url, headers=headers) # Loads the website code as the Selenium object. driver.get(my_url) # Prepare the blank dictionary to fill in for pandas. dictionary_of_races = {} # Preparation of lists with scraped data. list_of_hippodromes = [] list_of_start_times = [] list_of_names_data = [] list_of_ratings = [] list_of_countries = [] list_of_horses = [] list_of_jockeys_trainers = [] list_of_age = [] list_of_weights = [] list_of_traveled_distances = [] list_of_bet_comments = [] list_of_each_way_bets = [] list_of_winner_comments = [] list_of_winners = [] # Wait for page to fully render try: element = WebDriverWait(driver, 120).until( EC.presence_of_element_located((By.CLASS_NAME, \ "boxOverContent__bannerLink"))) finally: # Loads the website code as the BeautifulSoup object. pageSource = driver.page_source bsObj = BeautifulSoup(pageSource, "lxml") # Determining the number of the hippodromes. hippodromes = bsObj.find_all("div", {"class":\ "subTabs subTabs--label"}) # Building the list with the selected times. selected_times = bsObj.find_all("div", {"class":\ "subTabs__tab selected"}) print(len(hippodromes)) # Scraping of the hippodromes. for ind in range(1, (len(hippodromes)+1)): hippodrom = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[1]').text list_of_hippodromes.append(hippodrom) list_of_hippodromes.append("") list_of_hippodromes.append("") # Inserting of the empty fields as many as participants in # the race. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(1, (count_iterations-1)): list_of_hippodromes.append("") # Scraping of the selected start times. for ind in range(1, (len(hippodromes)+1)): list_of_start_times.append("") list_of_start_times.append(selected_times[(ind-1)].get_text()) list_of_start_times.append("") # Inserting of the empty fields as many as participants in # the race. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(1, (count_iterations-1)): list_of_start_times.append("") print(selected_times[(ind-1)].get_text()) print(count_iterations) # Scraping of the racing names and the additional race data. for ind in range(1, (len(hippodromes)+1)): list_of_names_data.append("") # Scraping of the racing names. racing_name = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[1]/div[2]/div/span').text list_of_names_data.append(racing_name) # Scraping of the additional race data. try: racing_data_1 = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[2]/span[1]').text string_of_racing_data = (racing_data_1 + " ") except: racing_data_1 = "" string_of_racing_data = (racing_data_1 + " ") try: racing_length = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[2]/span[2]') racing_data_2 = racing_length.get_attribute("title") string_of_racing_data = string_of_racing_data + (racing_data_2 +\ " ") except: racing_data_2 = "" string_of_racing_data = string_of_racing_data + (racing_data_2 +\ " ") try: racing_data_3 = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[2]/span[3]').text string_of_racing_data = string_of_racing_data + (racing_data_3 +\ " ") except: racing_data_3 = "" string_of_racing_data = string_of_racing_data + (racing_data_3 +\ " ") try: racing_data_4 = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[2]/span[4]').text string_of_racing_data = string_of_racing_data + (racing_data_4 +\ " ") except: racing_data_4 = "" string_of_racing_data = string_of_racing_data + (racing_data_4 +\ " ") try: racing_data_5 = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[2]/span[5]').text string_of_racing_data = string_of_racing_data + (racing_data_5 +\ " ") except: racing_data_5 = "" string_of_racing_data = string_of_racing_data + (racing_data_5 +\ " ") # Scraping of the status data (e.g. Finished). try: racing_data_6 = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[1]/div[3]').text string_of_racing_data = string_of_racing_data + racing_data_6 string_of_racing_data.strip() list_of_names_data.append(string_of_racing_data) except: racing_data_6 = "" string_of_racing_data = string_of_racing_data + racing_data_6 string_of_racing_data.strip() list_of_names_data.append(string_of_racing_data) # Inserting of the empty fields as many as participants in # the race. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(1, (count_iterations-1)): list_of_names_data.append("") # Scraping of the ratings. for ind in range(1, (len(hippodromes)+1)): list_of_ratings.append("") list_of_ratings.append("") list_of_ratings.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: rating = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[2]').text list_of_ratings.append(rating) except: list_of_ratings.append("") # Scraping of the countries. for ind in range(1, (len(hippodromes)+1)): list_of_countries.append("") list_of_countries.append("") list_of_countries.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: country_string = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[3]/span') country=country_string.get_attribute("title") list_of_countries.append(country) except: list_of_countries.append("") # Scraping of the horse names. for ind in range(1, (len(hippodromes)+1)): list_of_horses.append("") list_of_horses.append("") list_of_horses.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: horse = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[3]').text list_of_horses.append(horse) except: list_of_horses.append("") # Scraping of the names of the jockeys and the trainers. for ind in range(1, (len(hippodromes)+1)): list_of_jockeys_trainers.append("") list_of_jockeys_trainers.append("") list_of_jockeys_trainers.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: jockey_trainer = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[4]').text list_of_jockeys_trainers.append(jockey_trainer) except: list_of_jockeys_trainers.append("") # Scraping of the age. for ind in range(1, (len(hippodromes)+1)): list_of_age.append("") list_of_age.append("") list_of_age.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: age = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[5]').text list_of_age.append(age) except: list_of_age.append("") # Scraping of the weights. for ind in range(1, (len(hippodromes)+1)): list_of_weights.append("") list_of_weights.append("") list_of_weights.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: weight = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[6]').text list_of_weights.append(weight) except: list_of_weights.append("") # Scraping of the traveled_distances. for ind in range(1, (len(hippodromes)+1)): list_of_traveled_distances.append("") list_of_traveled_distances.append("") list_of_traveled_distances.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: traveled_distance = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[7]').text list_of_traveled_distances.append(traveled_distance) except: list_of_traveled_distances.append("") # Scraping of the comments about the each way bets. for ind in range(1, (len(hippodromes)+1)): list_of_bet_comments.append("") list_of_bet_comments.append("") list_of_bet_comments.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): # Scraping of the comments about the each way bets. try: comment = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[8]/span') bet_comment_1 = comment.get_attribute("class") string_of_comments = (bet_comment_1 + " ") except: bet_comment_1 = "" string_of_comments = (bet_comment_1 + " ") try: comment = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[8]/span') bet_comment_2 = comment.get_attribute("alt") text_in_one_row = bet_comment_2.split() bet_comment_2 = " ".join(text_in_one_row) bet_comment_2 = bet_comment_2.replace("[d]", " » ") bet_comment_2 = bet_comment_2.replace("[u]", " » ") string_of_comments = string_of_comments + bet_comment_2 string_of_comments.strip() list_of_bet_comments.append(string_of_comments) except: bet_comment_2 = "" string_of_comments = string_of_comments + bet_comment_2 string_of_comments.strip() list_of_bet_comments.append(string_of_comments) # Scraping of the each way bets. for ind in range(1, (len(hippodromes)+1)): list_of_each_way_bets.append("") list_of_each_way_bets.append("") list_of_each_way_bets.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: each_way_bet = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[8]/span').text list_of_each_way_bets.append(each_way_bet) except: list_of_each_way_bets.append("") # Scraping of the comments about the winners. for ind in range(1, (len(hippodromes)+1)): list_of_winner_comments.append("") list_of_winner_comments.append("") list_of_winner_comments.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): # Scraping of the comments about the winners. try: comment = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[9]/span') winner_comment_1 = comment.get_attribute("class") string_of_winner_comments = (winner_comment_1 + " ") except: winner_comment_1 = "" string_of_winner_comments = (winner_comment_1 + " ") try: comment = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[9]/span') winner_comment_2 = comment.get_attribute("alt") winner_text_in_one_row = winner_comment_2.split() winner_comment_2 = " ".join(winner_text_in_one_row) winner_comment_2 = winner_comment_2.replace("[d]", " » ") winner_comment_2 = winner_comment_2.replace("[u]", " » ") string_of_winner_comments = string_of_winner_comments +\ winner_comment_2 string_of_winner_comments.strip() list_of_winner_comments.append(string_of_winner_comments) except: winner_comment_2 = "" string_of_winner_comments = string_of_winner_comments +\ winner_comment_2 string_of_winner_comments.strip() list_of_winner_comments.append(string_of_winner_comments) # Scraping of the winners. for ind in range(1, (len(hippodromes)+1)): list_of_winners.append("") list_of_winners.append("") list_of_winners.append("") # Enumeration of the race participants for the iteration. count_iterations = len(driver.find_elements(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div[*]/div[3]')) for i in range(4, (count_iterations+2)): try: winner = driver.find_element(By.XPATH ,\ '//div[@class="container__livetable"]/div[2]/div/section/div['\ +str(ind)+']/div[3]/div/div/div['+str(i)+']/div[9]/span').text list_of_winners.append(winner) print(winner) except: list_of_winners.append("") print("") # countries (<span class="flag fl_77" title="France"></span>) # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4] (<div class="container__livetable">) # //*[@id="fsbody"] # //*[@id="live-table"] # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section (<section class="event">) # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[1]/div[3] # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[1]/div[3]/div/div (<div class="sportName horse-racing">) # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[1]/div[3]/div/div/div[4]/div[3]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[1]/div[3]/div/div/div[5]/div[3]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[2]/div[3]/div/div/div[4]/div[3]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[2]/div[3]/div/div/div[5]/div[3]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[2]/div[3]/div/div/div[6]/div[3]/span # ... # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[3]/div[3]/div/div/div[4]/div[3]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[3]/div[3]/div/div/div[5]/div[3]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[3]/div[3]/div/div/div[6]/div[3]/span # winners (<span class="" alt="8.00">8.00</span>) # (<span class="down" alt="2.37[d]2.20">2.20</span>) # (<span class="" alt="3.00">3.00</span>) # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[9]/div[3]/div/div/div[4]/div[9]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[9]/div[3]/div/div/div[5]/div[9]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[9]/div[3]/div/div/div[6]/div[9]/span # /html/body/div[5]/div[1]/div/div[1]/div[2]/div[4]/div[2]/div/section/div[9]/div[3]/div/div/div[7]/div[9]/span # ... # Add lists with the scraped data to the dictionary in the correct # order. dictionary_of_races["Hippodrome"] = list_of_hippodromes dictionary_of_races["Start time"] = list_of_start_times dictionary_of_races["Racing name and data"] = list_of_names_data dictionary_of_races["Rating"] = list_of_ratings dictionary_of_races["Country"] = list_of_countries dictionary_of_races["Horse"] = list_of_horses dictionary_of_races["Jockey/Trainer"] = list_of_jockeys_trainers dictionary_of_races["Age"] = list_of_age dictionary_of_races["Weight"] = list_of_weights dictionary_of_races["Traveled distance"] = list_of_traveled_distances dictionary_of_races["Bet comment"] = list_of_bet_comments dictionary_of_races["Each way bet"] = list_of_each_way_bets dictionary_of_races["Winner comment"] = list_of_winner_comments dictionary_of_races["Winner"] = list_of_winners # Creating of the frame for the data. df_res =
pd.DataFrame(dictionary_of_races)
pandas.DataFrame
from pathlib import Path import numpy as np import pandas as pd import pickle import lightgbm as lgb import statsmodels.api as sm from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestNeighbors ############################################################################## dir = Path(__file__).parents[2] input_path = dir / "input/" estimation_path = dir / "src/estimation" model_path = dir / "src/estimation/models" from estimation.standard import data_birth, get_n_partners from estimation.extended import data_general ############################################################################## mortality = pd.read_csv(input_path / "mortality.csv") # fertility = pd.read_csv(input_path / "fertility.csv") ############################################################################## # Read in and transfrom fertility data def scale_fertility(): df_fertility = pd.read_csv(input_path / "fertility.csv") df_fertility.rename(columns={"Age": "age", "1968": "prob"}, inplace=True) df_fertility["prob"] = (df_fertility["prob"]/1000) return df_fertility def death(dataf): dataf = dataf.copy() dataf["deaths"] = 0 dataf.loc[dataf["age"]>=dataf["age_max"], "deaths"] = 1 if np.sum(dataf["deaths"])>0: death_count = np.sum(dataf["deaths"]) dataf = dataf.loc[dataf["deaths"]==0,:] else: death_count = 0 dataf.drop("deaths", axis=1, inplace=True) return dataf, death_count def dating_market(dataf): """ New couples finding together. Right now 20% of the singles find a new partner. """ dataf = dataf.copy() dataf.reset_index(drop=True, inplace=True) eligible = (dataf["in_couple"] == 0) & (dataf["child"] == 0) & (dataf["n_people"] - dataf["n_children"] == 1) female_singles = dataf.loc[eligible & (dataf["female"] == 1), :] male_singles = dataf.loc[eligible & (dataf["female"] == 0), :] not_single = dataf[~eligible] # Get rate for marriage from sample y = dataf["year"].max() rates = get_rates(y) n = rates["in_couple_in"][0] n_couples = n*sum(eligible)//2 # Since number of people is taken by two new_couples = round(min(len(female_singles), len(male_singles), n_couples)) if new_couples>0: matching_dict = _matching(female_singles, male_singles, new_couples) dataf_out = pd.concat((not_single, matching_dict["girls"], matching_dict["guys"]), axis=0) assert( len(matching_dict["girls"]) == len(female_singles) ), "Lenght of dataframe is not the same as before" else: dataf_out = dataf return dataf_out, new_couples def _matching(females, males, number): """ Finding the 5 best fitting matches and then choosing randomly. #TODO: think of a better way than this loop """ partners = females.copy() lucky_guys = males.sample(number) # partners.reset_index(drop=True, inplace=True) # lucky_guys.reset_index(drop=True, inplace=True) neigh = NearestNeighbors(n_neighbors=5) happy_girls = pd.DataFrame() # Looping since as soon as one couple matched, that woman is no longer available for i in np.arange(len(lucky_guys)): neigh.fit(partners[["age", "education", "migback", "east", "n_children"]]) bachelor = lucky_guys.iloc[i,:] bachelor = bachelor[["age", "education", "migback", "east", "n_children"]].to_numpy().reshape(1,-1) partner_choice = neigh.kneighbors(bachelor) partner = np.random.choice(np.ravel(partner_choice[1]), 1) happy_girls = pd.concat([happy_girls, partners.iloc[partner,:]]) partners.drop(partners.iloc[partner].index, inplace=True) happy_girls, lucky_guys = _adjust_values(happy_girls, lucky_guys) singles_dict = {"all_female": females, "all_male": males, "happy_girls": happy_girls, "lucky_guys": lucky_guys} out_dict = _concat_singles(singles_dict) return out_dict def _concat_singles(dici): """ Concating those who found new partners and those who didn"t """ unlucky_guys = dici["all_male"].loc[dici["all_male"].index.isin(dici["lucky_guys"].index) == False, :] unhappy_girls = dici["all_female"].loc[dici["all_female"].index.isin(dici["happy_girls"].index) == False, :] girls = pd.concat((dici["happy_girls"], unhappy_girls), axis = 0) guys = pd.concat((dici["lucky_guys"], unlucky_guys), axis = 0) assert( len(unlucky_guys) + len(dici["lucky_guys"]) == len(dici["all_male"]) ), "Error in concating guys" assert( len(unhappy_girls) + len(dici["happy_girls"]) == len(dici["all_female"]) ), "Error in concating girls" out_dict = {"girls" : girls, "guys": guys} return out_dict def _adjust_values(females, males): """ Adjusting the values as the man moves in with the woman """ females = females.copy() males = males.copy() males.loc[:,"hid"] = females["hid"].tolist() males.loc[:,"east"] = females["east"].tolist() males.loc[:,"hhweight"] = females["hhweight"].tolist() males.loc[:,"in_couple"] = 1 females.loc[:,"in_couple"] = 1 females.loc[:, "hhv"] = 0 # Make women the head of household males.loc[:, "hhv"] = 1 # Men are "only" partner return females, males def separations(dataf): """ Calculates the seperations in each period. Only those who are married or in a relationship (in_couple) can separate """ dataf = dataf.copy() # Get rate for marriage from sample y = dataf["year"].max() rates = get_rates(y) probability = np.random.uniform(0, 1, len(dataf)) condition_married = (dataf["married"] == 1) & (probability<rates["married_out"]) condition_incouple = (dataf["in_couple"] == 1) & (dataf["married"] == 0) & (probability<rates["in_couple_out"]) condition_separation = (condition_married | condition_incouple) males = (condition_separation) & (dataf["female"] == 0) dataf.loc[condition_separation, ["married", "in_couple"]] = [[0, 0]] # Men move out; resetting HID dataf.loc[males, "orighid"] = dataf.loc[males, "hid"].copy() dataf.loc[males, "hid"] += np.arange(1, np.sum(males)+1) dataf.loc[condition_separation, "hhv"] = 0 # Both become head of households in their respective HH separations_this_period = np.sum(condition_separation) return dataf, separations_this_period def marriage(dataf): dataf = dataf.copy() dataf = get_n_partners(dataf) eligible_hh = dataf["n_partners"]==2 eligible_people = dataf["hhv"]!=2 not_child = dataf["child"]==0 not_married = dataf["married"]==0 # Get rate for marriage from sample y = dataf["year"].max() rates = get_rates(y) n = rates["married_in"][0] n_weddings = n*sum(not_married & not_child & eligible_hh)//2 # Since number of people is taken by two dataf["hid"].nunique() draw_df = pd.DataFrame() draw_df["hid"] = dataf["hid"].unique() draw_df["draw"] = np.random.uniform(0, 1, len(draw_df)) dataf =
pd.merge(dataf, draw_df, on=["hid"], how="left")
pandas.merge
from datetime import datetime, timedelta from typing import Any import weakref import numpy as np from pandas._libs import index as libindex from pandas._libs.lib import no_default from pandas._libs.tslibs import frequencies as libfrequencies, resolution from pandas._libs.tslibs.parsing import parse_time_string from pandas._libs.tslibs.period import Period from pandas._typing import DtypeObj, Label from pandas.util._decorators import Appender, cache_readonly, doc from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_datetime64_any_dtype, is_dtype_equal, is_float, is_integer, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.arrays.period import ( PeriodArray, period_array, raise_on_incompatible, validate_dtype_freq, ) import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( InvalidIndexError, _index_shared_docs, ensure_index, maybe_extract_name, ) from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin from pandas.core.indexes.datetimes import DatetimeIndex, Index from pandas.core.indexes.extension import inherit_names from pandas.core.indexes.numeric import Int64Index from pandas.core.ops import get_op_result_name from pandas.core.tools.datetimes import DateParseError from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass="PeriodIndex or list of Periods")) # --- Period index sketch def _new_PeriodIndex(cls, **d): # GH13277 for unpickling values = d.pop("data") if values.dtype == "int64": freq = d.pop("freq", None) values = PeriodArray(values, freq=freq) return cls._simple_new(values, **d) else: return cls(values, **d) @inherit_names( ["strftime", "to_timestamp", "asfreq", "start_time", "end_time"] + PeriodArray._field_ops, PeriodArray, wrap=True, ) @inherit_names(["is_leap_year", "freq", "_format_native_types"], PeriodArray) class PeriodIndex(DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time. Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1d int np.ndarray or PeriodArray), optional Optional period-like data to construct index with. copy : bool Make a copy of input ndarray. freq : str or period object, optional One of pandas period strings or corresponding objects. year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods. dtype : str or PeriodDtype, default None Attributes ---------- day dayofweek dayofyear days_in_month daysinmonth end_time freq freqstr hour is_leap_year minute month quarter qyear second start_time week weekday weekofyear year Methods ------- asfreq strftime to_timestamp See Also -------- Index : The base pandas Index type. Period : Represents a period of time. DatetimeIndex : Index with datetime64 data. TimedeltaIndex : Index of timedelta64 data. period_range : Create a fixed-frequency PeriodIndex. Examples -------- >>> idx = pd.PeriodIndex(year=year_arr, quarter=q_arr) """ _typ = "periodindex" _attributes = ["name", "freq"] # define my properties & methods for delegation _is_numeric_dtype = False _infer_as_myclass = True _data: PeriodArray freq: DateOffset _engine_type = libindex.PeriodEngine _supports_partial_string_indexing = True # ------------------------------------------------------------------------ # Index Constructors def __new__( cls, data=None, ordinal=None, freq=None, tz=None, dtype=None, copy=False, name=None, **fields, ): valid_field_set = { "year", "month", "day", "quarter", "hour", "minute", "second", } if not set(fields).issubset(valid_field_set): argument = list(set(fields) - valid_field_set)[0] raise TypeError(f"__new__() got an unexpected keyword argument {argument}") name = maybe_extract_name(name, data, cls) if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(None, None, None, freq, fields) # PeriodArray._generate range does validation that fields is # empty when really using the range-based constructor. freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: PeriodArray, name: Label = None): """ Create a new PeriodIndex. Parameters ---------- values : PeriodArray Values that can be converted to a PeriodArray without inference or coercion. """ assert isinstance(values, PeriodArray), type(values) result = object.__new__(cls) result._data = values # For groupby perf. See note in indexes/base about _index_data result._index_data = values._data result.name = name result._cache = {} result._reset_identity() return result # ------------------------------------------------------------------------ # Data @property def values(self): return np.asarray(self) @property def _has_complex_internals(self): # used to avoid libreduction code paths, which raise or require conversion return True def _shallow_copy(self, values=None, name: Label = no_default): name = name if name is not no_default else self.name cache = self._cache.copy() if values is None else {} if values is None: values = self._data result = self._simple_new(values, name=name) result._cache = cache return result def _maybe_convert_timedelta(self, other): """ Convert timedelta-like input to an integer multiple of self.freq Parameters ---------- other : timedelta, np.timedelta64, DateOffset, int, np.ndarray Returns ------- converted : int, np.ndarray[int64] Raises ------ IncompatibleFrequency : if the input cannot be written as a multiple of self.freq. Note IncompatibleFrequency subclasses ValueError. """ if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, Tick): # _check_timedeltalike_freq_compat will raise if incompatible delta = self._data._check_timedeltalike_freq_compat(other) return delta elif isinstance(other, DateOffset): freqstr = other.rule_code base = libfrequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n raise raise_on_incompatible(self, other) elif is_integer(other): # integer is passed to .shift via # _add_datetimelike_methods basically # but ufunc may pass integer to _add_delta return other # raise when input doesn't have freq raise raise_on_incompatible(self, None) def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: """ Can we compare values of the given dtype to our own? """ if not isinstance(dtype, PeriodDtype): return False return dtype.freq == self.freq # ------------------------------------------------------------------------ # Rendering Methods def _mpl_repr(self): # how to represent ourselves to matplotlib return self.astype(object)._values @property def _formatter_func(self): return self.array._formatter(boxed=False) # ------------------------------------------------------------------------ # Indexing @cache_readonly def _engine(self): # To avoid a reference cycle, pass a weakref of self._values to _engine_type. period = weakref.ref(self._values) return self._engine_type(period, len(self)) @doc(Index.__contains__) def __contains__(self, key: Any) -> bool: if isinstance(key, Period): if key.freq != self.freq: return False else: return key.ordinal in self._engine else: hash(key) try: self.get_loc(key) return True except KeyError: return False @cache_readonly def _int64index(self) -> Int64Index: return Int64Index._simple_new(self.asi8, name=self.name) # ------------------------------------------------------------------------ # Index Methods def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if func is np.add: pass elif func is np.subtract: name = self.name left = context[1][0] right = context[1][1] if isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex): name = left.name if left.name == right.name else None return Index(result, name=name) elif isinstance(left, Period) or isinstance(right, Period): return Index(result, name=name) elif isinstance(func, np.ufunc): if "M->M" not in func.types: msg = f"ufunc '{func.__name__}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg) if is_bool_dtype(result): return result # the result is object dtype array of Period # cannot pass _simple_new as it is return type(self)(result, freq=self.freq, name=self.name) def asof_locs(self, where, mask: np.ndarray) -> np.ndarray: """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx._values, freq=self.freq) elif not isinstance(where_idx, PeriodIndex): raise TypeError("asof_locs `where` must be DatetimeIndex or PeriodIndex") elif where_idx.freq != self.freq: raise raise_on_incompatible(self, where_idx) locs = self.asi8[mask].searchsorted(where_idx.asi8, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where_idx.asi8 < self.asi8[first])] = -1 return result @doc(Index.astype) def astype(self, dtype, copy=True, how="start"): dtype = pandas_dtype(dtype) if is_datetime64_any_dtype(dtype): # 'how' is index-specific, isn't part of the EA interface. tz = getattr(dtype, "tz", None) return self.to_timestamp(how=how).tz_localize(tz) # TODO: should probably raise on `how` here, so we don't ignore it. return super().astype(dtype, copy=copy) @property def is_full(self) -> bool: """ Returns True if this PeriodIndex is range-like in that all Periods between start and end are present, in order. """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError("Index is not monotonic") values = self.asi8 return ((values[1:] - values[:-1]) < 2).all() @property def inferred_type(self) -> str: # b/c data is represented as ints make sure we can't have ambiguous # indexing return "period" @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): target = ensure_index(target) if isinstance(target, PeriodIndex): if target.freq != self.freq: # No matches no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches target = target.asi8 self_index = self._int64index else: self_index = self if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) if self_index is not self: # convert tolerance to i8 tolerance = self._maybe_convert_timedelta(tolerance) return Index.get_indexer(self_index, target, method, limit, tolerance) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) if not self._is_comparable_dtype(target.dtype): no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches, no_matches target = target.asi8 indexer, missing = self._int64index.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label. Parameters ---------- key : Period, NaT, str, or datetime String or datetime key must be parseable as Period. Returns ------- loc : int or ndarray[int64] Raises ------ KeyError Key is not present in the index. TypeError If key is listlike or otherwise not hashable. """ orig_key = key if not
is_scalar(key)
pandas.core.dtypes.common.is_scalar
import pandas as pd import lenskit.crossfold as xf import numpy as np from utils import * import json ratings = pd.read_csv('data/Clothing_Shoes_and_Jewelry/Home_and_Kitchen.csv', header=None, index_col=None) # dir_exists('data/Clothing_Shoes_and_Jewelry/th_0') dir_exists('data/Clothing_Shoes_and_Jewelry/th_4') dir_exists('data/Clothing_Shoes_and_Jewelry/th_5') columns = ['item', 'user', 'rating', 'timestamp'] ratings.columns = columns ratings = ratings[['user', 'item', 'rating', 'timestamp']] ratings = ratings.drop('timestamp', axis=1) n_user = len(
pd.unique(ratings.user)
pandas.unique
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56:
pd.Timestamp("2012-06-27 00:00:00")
pandas.Timestamp
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_unequal(): """I want datetime fields to match with dates stored as strings """ df = pd.DataFrame([{"a": "2017-01-01", "b": "2017-01-02"}, {"a": "2017-01-01"}]) df["a_dt"] = pd.to_datetime(df["a"]) df["b_dt"] = pd.to_datetime(df["b"]) assert datacompy.columns_equal(df.a, df.a_dt).all() assert datacompy.columns_equal(df.b, df.b_dt).all() assert datacompy.columns_equal(df.a_dt, df.a).all() assert datacompy.columns_equal(df.b_dt, df.b).all() assert not datacompy.columns_equal(df.b_dt, df.a).any() assert not datacompy.columns_equal(df.a_dt, df.b).any() assert not datacompy.columns_equal(df.a, df.b_dt).any() assert not datacompy.columns_equal(df.b, df.a_dt).any() def test_bad_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [{"a": "2017-01-01", "b": "2017-01-01"}, {"a": "2017-01-01", "b": "217-01-01"}] ) df["a_dt"] = pd.to_datetime(df["a"]) assert not datacompy.columns_equal(df.a_dt, df.b).any() def test_rounded_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [ {"a": "2017-01-01", "b": "2017-01-01 00:00:00.000000", "exp": True}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00.123456", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:01.000000", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00", "exp": True}, ] ) df["a_dt"] = pd.to_datetime(df["a"]) actual = datacompy.columns_equal(df.a_dt, df.b) expected = df["exp"] assert_series_equal(actual, expected, check_names=False) def test_decimal_float_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": False}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_float_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": True}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": False}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_infinity_and_beyond(): df = pd.DataFrame( [ {"a": np.inf, "b": np.inf, "expected": True}, {"a": -np.inf, "b": -np.inf, "expected": True}, {"a": -np.inf, "b": np.inf, "expected": False}, {"a": np.inf, "b": -np.inf, "expected": False}, {"a": 1, "b": 1, "expected": True}, {"a": 1, "b": 0, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column(): df = pd.DataFrame( [ {"a": "hi", "b": "hi", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1", "expected": False}, {"a": 1, "b": "yo", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True) expect_out = df["expected"]
assert_series_equal(expect_out, actual_out, check_names=False)
pandas.util.testing.assert_series_equal
from datetime import datetime import re import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype): # TODO: should this raise TypeError values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) with pytest.raises(ValueError, match="expand must be True or False"): values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) def test_extract_expand_kwarg(any_string_dtype): s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*") tm.assert_frame_equal(result, expected) result = s.str.extract(".*(BAD[_]+).*", expand=True) tm.assert_frame_equal(result, expected) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False) tm.assert_frame_equal(result, expected) def test_extract_expand_False_mixed_object(): ser = Series( ["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0] ) # two groups result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False) er = [np.nan, np.nan] # empty row expected = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(result, expected) # single group result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False) expected = Series( ["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] ) tm.assert_series_equal(result, expected) def test_extract_expand_index_raises(): # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(["A1", "A2", "A3", "A4", "B5"]) msg = "only one regex group is supported with Index" with pytest.raises(ValueError, match=msg): idx.str.extract("([AB])([123])", expand=False) def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype): s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" # no groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=False) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=False) def test_extract_expand_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False) expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype) if index_or_series == Series: tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) def test_extract_expand_capture_groups(any_string_dtype): s = Series(["A1", "B2", "C3"], dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=False) expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=False) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P<letter>[AB])", expand=False) expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_expand_capture_groups_index(index, any_string_dtype): # https://github.com/pandas-dev/pandas/issues/6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) < len(data): pytest.skip("Index too short") index = index[: len(data)] s = Series(data, index=index, dtype=any_string_dtype) result = s.str.extract(r"(\d)", expand=False) expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_series_equal(result, expected) result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_single_series_name_is_preserved(any_string_dtype): s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype) result = s.str.extract(r"(?P<sue>[a-z])", expand=False) expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype) tm.assert_series_equal(result, expected) def test_extract_expand_True(any_string_dtype): # Contains tests like those in test_match and some others. s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) def test_extract_expand_True_mixed_object(): er = [np.nan, np.nan] # empty row mixed = Series( [ "aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0, ] ) result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(result, expected) def test_extract_expand_True_single_capture_group_raises( index_or_series, any_string_dtype ): # these should work for both Series and Index # no groups s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=True) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=True) def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True) expected_dtype = "object" if index_or_series is Index else any_string_dtype expected = DataFrame({"uno": ["A", "A"]}, dtype=expected_dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("name", [None, "series_name"]) def test_extract_series(name, any_string_dtype): # extract should give the same result whether or not the series has a name. s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=True) expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=True) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P<letter>[AB])", expand=True) expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# Concatenate uber1, uber2, and uber3: row_concat row_concat = pd.concat([uber1, uber2, uber3]) # Print the shape of row_concat print(row_concat.shape) # Print the head of row_concat print(row_concat.head()) # Concatenate ebola_melt and status_country column-wise: ebola_tidy ebola_tidy = pd.concat([ebola_melt, status_country], axis=1) # Print the shape of ebola_tidy print(ebola_tidy.shape) # Print the head of ebola_tidy print(ebola_tidy.head()) # Import necessary modules import glob import pandas as pd # Write the pattern: pattern pattern = '*.csv' # Save all file matches: csv_files csv_files = glob.glob(pattern) # Print the file names print(csv_files) # Load the second file into a DataFrame: csv2 csv2 = pd.read_csv(csv_files[1]) # Print the head of csv2 print(csv2.head()) # Create an empty list: frames frames = [] # Iterate over csv_files for csv in csv_files: # Read csv into a DataFrame: df df = pd.read_csv(csv) # Append df to frames frames.append(df) # Concatenate frames into a single DataFrame: uber uber = pd.concat(frames) # Print the shape of uber print(uber.shape) # Print the head of uber print(uber.head()) # Merge the DataFrames: o2o o2o = pd.merge(left=site, right=visited, left_on="name", right_on="site") # Print o2o print(o2o) # Merge the DataFrames: m2o m2o =
pd.merge(left=site, right=visited, left_on="name", right_on="site")
pandas.merge
def grid_scanfish_wrapper(cast_as_ds,dx=500,dz=10,d_factor=500): import glob import os import numpy as np import xarray as xr import pandas as pd import gsw # use scipy.interpolate.Rbf to interpolate to grid; use d_factor to put more weight on values on x-axis, and not z-axis #d_factor = 500 #dx = 300 # m #dz = 5 # m xi,yi,ti,CT_grid,cast_as_ds_corrected = gridding_scanfish_data(cast_as_ds,varname='CT', dx=dx/d_factor,dz=dz,d_factor=d_factor) xi,yi,ti,SA_grid,cast_as_ds_corrected = gridding_scanfish_data(cast_as_ds,varname='SA', dx=dx/d_factor,dz=dz,d_factor=d_factor) # xi,yi,sigma_0_grid,cast_as_ds_corrected = gridding_scanfish_data(cast_as_ds,varname='sigma_0',dx=dx/d_factor,dz=dz,d_factor=d_factor) p_ref = 10.1325; # reference pressure # following scanfish calc Pot_dens = gsw.rho(SA_grid,CT_grid,p_ref) sigma_0_grid = Pot_dens - 1000; # convert to Dataset gridded_as_ds = xr.Dataset({'CT': (['z', 'time'], CT_grid ),'SA': (['z', 'time'], SA_grid ),'sigma_0': (['z', 'time'], sigma_0_grid )}, coords={'distance':(['z', 'time'], xi ),'z': (['z'], yi[:,0] ),'time':(['time'], ti[0,:] )}) return gridded_as_ds, cast_as_ds_corrected def load_process_scanfish_data(pathData): import glob import os import numpy as np import xarray as xr import pandas as pd import gsw # load scanfish #pathData = r'/Users/North/Drive/Work/UniH_Work/DataAnalysis/Data/MET_132/Scanfish/' # use your path data_files = glob.glob(os.path.join(pathData, "Scanfish_complete_cast*.nc")) # advisable to use os.path.join as this makes concatenation OS independent #from scanfish_functions import gridding_scanfish_data scanfish_data, scanfish_gridded= [], [] for ti,f in zip(range(len(data_files[0:3:2])),data_files[0:3:2]): # skipping second transect as it doesn't cross filament cast_as_ds = xr.open_dataset(f,decode_times=False) # Convert time axis to date form: cast_as_ds.time.values =
pd.to_datetime(cast_as_ds.time.values-719529, unit='D')
pandas.to_datetime
import os import urllib import requests import zipfile import pandas as pd import time from datetime import datetime from google.transit import gtfs_realtime_pb2 def RequestsWrite(APIkey, feed_id): ''' This function takes APIkey and feed_id as an input, and Requests MTA subway real-time status, and Writes a gtfs file. ''' url = 'http://datamine.mta.info/mta_esi.php?key=' + APIkey + '&feed_id=' + str(feed_id) response = requests.get(url) feed = gtfs_realtime_pb2.FeedMessage() feed.ParseFromString(response.content) timestamp = datetime.fromtimestamp(feed.header.timestamp) FolderName = '%04d'%(timestamp.year) + '%02d'%(timestamp.month) + '/' \ + '%04d'%(timestamp.year) + '%02d'%(timestamp.month) + '%02d'%(timestamp.day) if not os.path.isdir(FolderName): os.makedirs(FolderName) file = open(FolderName + "/gtfs_" + str(feed_id) + '_' + str(timestamp).replace(" ", "-").replace(":", "-") + ".gtfs", "wb") file.write(response.content) file.close() def collect(APIkey): ''' This function takes APIkey as an input, and Keep requesting real-time status for all MTA subway lines, and Writting gtfs files. Note: this is an endless loop; to stop this program in terminal, please press Control + C. ''' feed_id_lines = {'1': '123456S', '26': 'ACEHS', '16': 'NQRW', '21': 'BDFM', '2': 'L', '11': 'SIR', '31': 'G', '36': 'JZ', '51': '7' } var = 1 while var <= 1: # every loop takes about 1 seconds for all 9 feed_id for feed_id in feed_id_lines.keys(): try: RequestsWrite(APIkey, feed_id) except: continue time.sleep(3) # 15 seconds per update on average (confidence interval between 5 to 30 sec); # 3 seconds sleep (totally less than 5 seconds) for each loop to make sure the data integrity. def arrival(date): ''' This function takes date(e.g. 20190901) as an input, structure and integrate the gtfs files in the corresponding folder, output an arrival csv file. ''' errornum = 0 year, month, day = date[:4], date[4:6], date[6:8] FolderPath = year + month + '/' + year + month + day gtfsFileNames = os.listdir(FolderPath) dict1 = {} for gtfsFileName in gtfsFileNames: gtfsFilePath = FolderPath + '/' + gtfsFileName try: # read in gtfs f = open(gtfsFilePath, 'rb') raw_str = f.read() msg = gtfs_realtime_pb2.FeedMessage() msg.ParseFromString(raw_str) # structure gtfs gtfs_timestamp = msg.header.timestamp for i,entity in enumerate(msg.entity): if entity.HasField('trip_update'): try: arrival_time = entity.trip_update.stop_time_update[0].arrival.time stop_id = entity.trip_update.stop_time_update[0].stop_id trip_id = entity.trip_update.trip.trip_id route_id = entity.trip_update.trip.route_id entity2 = msg.entity[i+1] current_stop_sequence = entity2.vehicle.current_stop_sequence current_status = entity2.vehicle.current_status vehicle_timestamp = entity2.vehicle.timestamp vehicle_stop_id = entity2.vehicle.stop_id dict0 = {'gtfs_timestamp': gtfs_timestamp, 'trip_id': trip_id, 'arrival_time': arrival_time, 'stop_id': stop_id, 'route_id': route_id, 'current_stop_sequence': current_stop_sequence, 'current_status': current_status, 'vehicle_timestamp': vehicle_timestamp, 'vehicle_stop_id': vehicle_stop_id } try: # update record if gtfs_timestamp >= dict1[trip_id+ '//' + stop_id]['gtfs_timestamp']: dict1[trip_id+ '//' + stop_id] = dict0 except: # add new record dict1[trip_id+ '//' + stop_id] = dict0 except: continue except: # DecodeError: Error parsing message errornum+=1 continue print("%d GTFS files cannot be parsed"%errornum) df = pd.DataFrame.from_dict(dict1).T.reset_index(drop=True) df.to_csv(year + month + '/arrival_' + year + month + day + '.csv') def delay(date, date_schedule = 'latest'): ''' This function takes date as an input, calculate delays by actual arrivals and schedules, output a delay csv file. ** require actual arrival/ schedule csv files in the corresponding folder, ''' year, month, day = date[:4], date[4:6], date[6:8] #################### Actual Arrival #################### df = pd.read_csv(year + month + '/arrival_' + year + month + day + '.csv', index_col=0) df.arrival_time = df.arrival_time.apply(lambda x: datetime.fromtimestamp(x)) df.gtfs_timestamp = df.gtfs_timestamp.apply(lambda x: datetime.fromtimestamp(x)) df.vehicle_timestamp = df.vehicle_timestamp.apply(lambda x: datetime.fromtimestamp(x)) weekday_dict = {0:'Weekday', 1:'Weekday', 2:'Weekday', 3:'Weekday', 4:'Weekday', 5:'Saturday', 6:'Sunday'} df['weekday'] = df.arrival_time.apply(lambda x: weekday_dict[x.weekday()]) df['trip_id2'] = df['weekday'] + '-' + df['trip_id'] df['match_id'] = df['trip_id2'] + '//' + df['stop_id'].astype(str) #################### Schedules #################### # download schedule gtfs file # schedule default setting is the latest; for historical schedule, please refer to: https://transitfeeds.com/p/mta/79 FolderName = 'schedule_' + date_schedule FileName = FolderName + ".zip" url = 'https://transitfeeds.com/p/mta/79/' + date_schedule + '/download' if not os.path.isdir(FolderName): os.makedirs(FolderName) urllib.request.urlretrieve(url, FileName) with zipfile.ZipFile(FileName, 'r') as zip_ref: zip_ref.extractall(FolderName) stop_times = pd.read_csv(FolderName + "/stop_times.txt") stop_times['weekday'] = stop_times.trip_id.apply(lambda x: x.split('-')[-2]) # perfectly extracted stop_times['weekday'] = stop_times['weekday'].apply(lambda x: 'Weekday' if x == 'Wednesday' else x) # L train does not have Weekday! Only ['Saturday', 'Sunday', 'Wednesday'] stop_times['num_id'] = stop_times.trip_id.apply(lambda x: x.split('_')[1]) # perfectly extracted, fixed lenth stop_times['direction'] = stop_times['trip_id'].apply(lambda x: x.split('-')[-1].split('.')[-1][0]) stop_times['route_id'] = stop_times['trip_id'].apply(lambda x: x.split('_')[-1].split('.')[0]) stop_times['trip_id2'] = stop_times['weekday'] + '-' + stop_times['num_id'] + '_' + stop_times['route_id'] + '..' + stop_times['direction'] stop_times['match_id'] = stop_times['trip_id2'] + '//' + stop_times['stop_id'] stop_times.drop(['stop_headsign', 'pickup_type', 'drop_off_type', 'shape_dist_traveled'], axis=1, inplace=True) stop_times.rename(columns={'arrival_time':'arrival_time_scheduled', 'departure_time':'departure_time_scheduled'}, inplace=True) # conver timestamp stop_times = stop_times[stop_times.arrival_time_scheduled.apply(lambda x: int(x[:2])<24)] # filter abnormal arrival_time which is greater than 24 hour stop_times = stop_times[stop_times.arrival_time_scheduled.apply(lambda x: int(x[3:5])<60)] # filter abnormal arrival_time which is greater than 60 minutes stop_times.arrival_time_scheduled = pd.to_datetime(stop_times.arrival_time_scheduled.apply(lambda x: year + '-' + month + '-' + day + '-' + x)) #################### Match #################### df_match =
pd.merge(df, stop_times[['match_id', 'arrival_time_scheduled', 'departure_time_scheduled']], on='match_id', how='inner')
pandas.merge
# -*- coding: utf-8 -*- """ Created on Sat Jul 29 11:20:57 2017 @author: James """ from xgboost import XGBRegressor, XGBClassifier from sklearn.model_selection import cross_val_predict from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler import pandas as pd import pickle from sklearn import metrics #Load main data data =
pd.read_csv("filtered_background.csv",encoding="utf-8")
pandas.read_csv
# coding=utf-8 """ Log based system ID """ from typing import Dict, List import control import matplotlib.pyplot as plt import numpy as np import pandas as pd import pyulog import scipy.optimize import scipy.signal as sig import ulog_tools as ut # pylint: disable=no-member, invalid-name def ulog_to_dict(log: pyulog.ULog) -> Dict: """Convert ulog to a dict""" res = {} for topic in log.data_list: types = {} for field in topic.field_data: types[field.field_name] = field.type_str index = pd.TimedeltaIndex(data=np.array(topic.data['timestamp']), unit='us') cols = [] data = [] for k in sorted(topic.data.keys()): cols.append('f_{:s}'.format(k.replace('[', '_').replace(']', ''))) data.append(topic.data[k]) data = np.array(data).T df = pd.DataFrame(data, index=index, columns=cols) res['t_{:s}_{:d}'.format(topic.name, topic.multi_id)] = df return res def series_diff(series: pd.Series, order: int=1) -> pd.Series: """Derivative of a series""" dx = np.gradient(series.values, order) dt = np.gradient(series.index, order) dxdt = np.zeros(dx.shape) for i, dt_i in enumerate(dt): if dt_i <= 0: dxdt[i] = 0 else: dxdt[i] = dx[i] / dt[i] return
pd.Series(data=dxdt, index=series.index)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Aug 25 14:18:15 2017 @author: 53771 """ import pandas as pd import tushare as ts import fileInfo as fi import numpy as np def save_hist_data(code): data=ts.get_k_data(code,start='2011-01-01') data.to_csv("./stock/"+code+'.csv') #data.index=pd.to_datetime(data.index) #data.sort_index(inplace=True) #return data def read_hit_data(code): try: df=pd.read_csv('./stock/'+code+'.csv',index_col='date') df.index=pd.to_datetime(df.index) df.sort_index(inplace=True) except IOError: save_hist_data(code) df=pd.read_csv('./stock/'+code+'.csv',index_col='date') df.index=
pd.to_datetime(df.index)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on 2020-11-16 Code for Figure 6 Code runs multiple evolution run, each run is stored on disk independently Use mlsFig_evolutionFitnessLandscape with same settings to create reference parameter space scans @author: simonvanvliet <EMAIL> """ import sys sys.path.insert(0, '..') from mainCode import MlsGroupDynamics_evolve as mls from mainCode import MlsGroupDynamics_utilities as util import numpy as np import pandas as pd from joblib import Parallel, delayed """ SET SETTINGS """ #SET fileName is appended to file name fileName = 'evolutionRun' #SET number of cores to use numCore = 20 #SET group fission rates to scan gr_Sfission_Vec = np.array([0.1, 4]) # for S = 0, use K = 2E5; for S > 0 (0.1 or 4), use K = 3E4 #SET parName and par0Vec to scan over any parameter of choice par0Name = 'indv_NType' par0Vec = np.array([1, 2]) #SET initial locations of evolution runs init_Aray = np.array([[0.05,0.05],[0.05,0.5],[0.05,0.95],[0.25,0.5],[0.45,0.5]]) numInit = init_Aray.shape[0] #SET Model default settings model_par = { #time and run settings "maxPopSize": 0, "maxT": 1E6, # total run time "sampleInt": 1E3, # sampling interval "mav_window": 1E4, # average over this time window "rms_window": 1E4, # calc rms change over this time window # settings for initial condition "init_groupNum": 100, # initial # groups "init_fCoop": 1, "init_groupDens": 50, # initial total cell number in group # settings for individual level dynamics # complexity "indv_NType": 1, "indv_asymmetry": 1, # difference in growth rate b(j+1) = b(j) / asymmetry # mutation load "indv_cost": 0.01, # cost of cooperation "indv_migrR": 0, # migration rate # set mutation rates 'mutR_type': 1E-3, # mutation rate between cooperator and cheater 'mutR_size': 1E-2, # mutation rate in offsspring size trait value 'mutR_frac': 1E-2, # mutation rate in offsspring fraction trait value 'indv_tau' : 1, # multipies individual rates # group size control "indv_K": 100, # total group size at EQ if f_coop=1 "delta_indv": 1, # zero if death rate is simply 1/k, one if death rate decreases with group size # setting for group rates # fission rate 'gr_CFis': 0.01, 'gr_SFis': 0, # measured in units of 1 / indv_K 'grp_tau': 1, # constant multiplies group rates # extinction rate 'delta_grp': 0, # exponent of denisty dependence on group # 'K_grp': 0, # carrying capacity of groups 'delta_tot': 1, # exponent of denisty dependence on total #indvidual 'K_tot': 1E4, # carrying capacity of total individuals. 'delta_size': 0, # exponent of size dependence # initial settings for fissioning 'offspr_sizeInit': 0.25, # offspr_size <= 0.5 and 'offspr_fracInit': 0.5 # offspr_size < offspr_frac < 1-offspr_size' } """ Function definitions """ def run_single(model_par, mainName): parNameAbbrev = { 'delta_indv' : 'dInd', 'delta_grp' : 'dGrp', 'delta_tot' : 'dTot', 'delta_size' : 'dSiz', 'gr_CFis' : 'fisC', 'gr_SFis' : 'fisS', 'indv_NType' : 'nTyp', 'indv_asymmetry': 'asym', 'indv_cost' : 'cost', 'mutR_type' : 'muTy', 'mutR_size' : 'muSi', 'mutR_frac' : 'muFr', 'indv_migrR' : 'migR', 'indv_K' : 'kInd', 'K_grp' : 'kGrp', 'K_tot' : 'kTot', 'offspr_sizeInit':'siIn', 'offspr_fracInit':'frIn', 'indv_tau' : 'tInd'} parListName = ['indv_NType', 'gr_SFis', 'offspr_sizeInit', 'offspr_fracInit'] parName = ['_%s%.0g' %(parNameAbbrev[x], model_par[x]) for x in parListName] parName = ''.join(parName) fileName = mainName + parName + '.npz' fileNamePkl = mainName + parName + '.pkl' #run model and save data to disk try: outputMat, traitDistr = mls.run_model(model_par) np.savez(fileName, output=outputMat, traitDistr=traitDistr, model_par=[model_par]) try: df =
pd.DataFrame.from_records(outputMat)
pandas.DataFrame.from_records
import pandas as pd l = pd.DataFrame({ "id": [0, 1, 3, 4], "A": ['a', 'b', 'c', 'd'], "B": ['e', 'f', 'g', 'h'], }) r = pd.DataFrame({ "id": [0, 1, 3, 4], "B": ['e', 'f', 'z', 'h'], "C": ['i', 'j', 'k', 'l'], "d": ['m', 'n', 'o', 'p'], }) # when merge on="id" Spalten werden sortiert, ohne on= wird auf Indizes (default sind diese gleich) zu mergen df = pd.merge(l, r, on="id") df2 = pd.merge(l, r) df3 = pd.merge(l, r, on="id", how='outer') # Auch mit mehrern Spalten kann gejoint werden -> Liste # parameter für how: # inner: nur gleiche werden gesetzt # outer: alle werden gesetzt und mit NAN aufgefüllt # left: outer left # right: outer right # indicator gibt zusätzliche Info in neuer Spalte df4 = pd.merge(l, r, on=["id",'B'], how='outer') df5 =
pd.merge(l, r, on=["id",'B'], how='inner')
pandas.merge
from .CoreClasses import * from .InitializeFunctions import * import numpy as np import time import re import random import os import pickle import sys import copy import math ### DEPRECIATED!!!! def check_mass(original_mass, CRS, concentrations): ''' Checks conservation of mass Arguements - original_mass: integer mass of the original system - CRS: CRS object - concentrations: array of molecule abundances ''' print(concentrations) mass_conserved = False test_mass = 0.0 molecules = CRS.molecule_list for m in molecules: index = molecules.index(m) molecule_size = len(m) molecule_count = np.sum(concentrations[:, :, index]) mass = molecule_count*molecule_size test_mass += mass if test_mass == original_mass: mass_conserved = True return mass_conserved, test_mass def calculate_mass_fraction_by_composition(concentrations, CRS, total_mass): ''' Takes an abundace distribution and returns a mass fraction distribution (which is a dictionary, keys are composition, values are mass_fraction) ''' molecules = CRS.molecule_list mass_fraction = {} for m in molecules: index = molecules.index(m) comp = get_composition(m) molecule_size = len(m) molecule_count = float(np.sum(concentrations[:,:,index])) mass = molecule_count*molecule_size if comp in mass_fraction.keys(): mass_fraction[comp] += float(mass)/float(total_mass) else: mass_fraction[comp] = float(mass)/float(total_mass) return mass_fraction def calculate_molecule_fraction_by_composition(concentrations, CRS, total_mass): ''' Takes an abundace distribution and returns a mass fraction distribution (which is a dictionary, keys are composition, values are mass_fraction) ''' molecules = CRS.molecule_list molecule_fraction = {} total_molecules = 0.0 for m in molecules: index = molecules.index(m) comp = get_composition(m) molecule_size = len(m) molecule_count = float(np.sum(concentrations[:,:,index])) total_molecules += molecule_count #mass = molecule_count if comp in molecule_fraction.keys(): molecule_fraction[comp] += float(molecule_count) else: molecule_fraction[comp] = float(molecule_count) for comp in molecule_fraction.keys(): molecule_fraction[comp] = float(molecule_fraction[comp])/float(total_molecules) return molecule_fraction def get_aa(comp): ''' Returns the amino acids in a given composition string ''' aa = [] coef = re.findall(r'\d+', comp) for i in range(len(coef)): comp = comp.replace(coef[i], ' ') aa = comp.split() return aa def get_reaction_constants(CRS): ''' Returns a list of reaction constants for from a CRS ''' constants = {} for rID in range(len(CRS.reactions)): if sum(CRS.reactions[rID].product_coeff) == 1: rxn = CRS.reactions[rID] constants[rID] = rxn.constant return constants def generate_random_distribution(CRS, total_mass, N_L = 1): ''' Generates a random distribution of molecules for a given CRS ''' molecules = CRS.molecule_list concentrations = np.zeros( (N_L, N_L, len(molecules)) ) molecule_dict = CRS.molecule_dict mass = total_mass monomers_in_seqs = {} while mass > 0.1*(total_mass): m= random.choice(molecules) mID = molecule_dict[m] concentrations[0,0, mID] += 1 comp = get_composition(m) coef = map(int, re.findall(r'\d+', comp)) mass -= sum(coef) aa = get_aa(comp) for a in range(len(aa)): if aa[a] in monomers_in_seqs.keys(): monomers_in_seqs[aa[a]] += coef[a] else: monomers_in_seqs[aa[a]] = coef[a] diff = total_mass- mass monomer_names= monomers_in_seqs.keys() concentrations[0,0,0] += int( (monomers_in_seqs[monomer_names[0]] - monomers_in_seqs[monomer_names[1]])/(2.0) + (diff/2.0) ) concentrations[0,0,1] += int( (monomers_in_seqs[monomer_names[1]] - monomers_in_seqs[monomer_names[0]])/(2.0) + (diff/2.0) ) return concentrations def set_reaction_constants(original_CRS, new_constants ): ''' Sets the reaction constants in the CRS to new_constants Returns the CRS with updated constants''' newCRS = copy.deepcopy(original_CRS) for rID in new_constants.keys(): rxn = newCRS.reactions[rID] rxn.constant = copy.deepcopy(new_constants[rID]) newCRS.reactions[rID] = rxn return newCRS def get_composition(seq): '''Gets the composition of the seq. Returns a string which contains the stoichimetry of the seq. Monoomers are sorted alphabetically. ''' comp = '' monomers = sorted(list(set(seq))) for m in monomers: comp+= m +str(seq.count(m)) return comp def mutate(float_vec, mu, epsilion, as_percentage = True, targets = None): ''' Mutates a vector of floating point numbers. Mu is the fraction of numbers to be changed. Half of the changes result in the number being replaced by another number in the vector The remaining half of changes will cause small change to the number if as_percentage is True, the change will be scaled by the size of the original number ''' if targets ==None: new_vec = {} nV = len(float_vec.values()) nR = int(np.floor(0.25*nV*mu)) nM = nV - nR mutations = np.random.choice(float_vec.keys(), size= (nM), replace = False) replacements = np.random.choice(float_vec.keys(), size= (nR), replace = False) for i in mutations: # Mutate if as_percentage == True: delta = np.random.normal(0,float_vec[i]*epsilion) new_vec[i] = float_vec[i] + delta new_vec[i] = abs(new_vec[i]) else: new_vec[i] = float_vec[i] + np.random.normal(0, epsilion) new_vec[i] = abs(new_vec[i]) for i in replacements: # Replace new_vec[i] = float_vec[np.random.choice(list(float_vec.keys()), size = 1)[0]] return new_vec else: new_vec = {} nV = len(targets) nR = int(np.floor(0.5*nV)) nM = nV - nR mutations = np.random.choice(float_vec.keys(), size= (nM), replace = False) replacements = np.random.choice(float_vec.keys(), size= (nR), replace = False) for i in mutations: # Mutate if as_percentage == True: delta = np.random.normal(0,float_vec[i]*epsilion) new_vec[i] = float_vec[i] + delta new_vec[i] = abs(new_vec[i]) else: new_vec[i] = float_vec[i] + np.random.normal(0, epsilion) new_vec[i] = abs(new_vec[i]) for i in replacements: # Replace new_vec[i] = float_vec[np.random.choice(list(float_vec.keys()), size = 1)[0]] return new_vec def generate_concentrations_from_data(mass_fraction, CRS, total_mass, monomer_fraction = 0.25, N_L = 1): ''' Generates a concentration array from a given mass fraction Assumes that the mass of a given composition is distributed evenly Assumes that the mass of monomers is monomer_fraction of the total_mass''' # Determine the fraction of the system in monomers monomer_mass = np.floor(total_mass*monomer_fraction) #print "Monomer Mass", monomer_mass oligmer_mass = total_mass - monomer_mass #print 'oligmer Mass', oligmer_mass nM = len(CRS.molecule_list) concentrations = np.zeros((N_L, N_L, nM), dtype = int) m_dict = CRS.molecule_dict molecules = CRS.molecule_list new_mass = 0.0 comp_dict = {} # Maps compositions to lists of molecules num_monomers = 0 ### Iterate over all molecules for m in molecules: ## If it's a monomer take note if len(m) == 1: num_monomers += 1 # Get the composition, and record which molecules are associated with that composition comp = get_composition(m) #print comp if comp in comp_dict.keys(): comp_dict[comp].append(m) else: comp_dict[comp] = [m] #raw_input("Enter to continue, The composition of All molecules has been recorded") ### For all compositions distribute the mass equally monomers_in_seqs = [0,0] for comp in comp_dict.keys(): nM = len(comp_dict[comp]) frac = 1.0/float(nM) ### If the composition was contained in the data if comp in mass_fraction.keys(): comp_mass = mass_fraction[comp] # Determine the mass of that compostion coef = map(int, re.findall(r'\d+', comp)) # Determine the length l = sum(coef) particles_per_sequence = frac*float(oligmer_mass*comp_mass)/float(l) for m in comp_dict[comp]: ## FOr each molecule with that composition #print m index = CRS.molecule_dict[m] concentrations[0,0, index] = int(particles_per_sequence) for c in range(len(coef)): monomers_in_seqs[c] += int(coef[c]*particles_per_sequence) new_mass += int(particles_per_sequence)*int(l) oligomer_mass = sum(monomers_in_seqs) diff = int(total_mass - oligmer_mass) monomers = [total_mass/2.0, total_mass/2.0] monomers = np.array(monomers)- np.array(monomers_in_seqs) for i in range(2): concentrations[0,0,i] += monomers[i] return concentrations def generate_seq_peptides_CRS(amino_acids, max_length, kl = 0.0001, kd = 1.0, catalysts = False): ''' Generates all possible reactions between peptide molecules up to size max_length assigns all reactions the same constant and standard prorpenisty Arguements: - amino_acids: the amino acids used in the peptides - max_length: the maximum length of peptides - kl: reaction rate constant for forward reactions - kd: reaction rate constant for reverse reactions, if None given, it will be assigned to be equal to kl - catalysts: Boolean, whether or not catalysts should be included ''' import itertools rxn_IDs = [] reaction_list = [] molecule_list = [] molecule_dict = {} rxn_ID = 0 #molecule_ID = 0 # If the backward constant is not specified, make it equal the forward constant if kd == None: kd = kl for l in range(1,max_length+1): # Generate all sequences of length l+1 sequences = itertools.product(amino_acids, repeat = l) for seq in sequences: s = ''.join(seq) molecule_list.append(s) molecule_dict[s] = molecule_list.index(s) #print s for i in range(1,l): # Forward Reaction rxn_ID = len(reaction_list) reactants = [ molecule_dict[s[:i]], molecule_dict[s[i:]] ] reactant_coeff = [1,1] product_coeff = [1] products = [ molecule_dict[s] ] reaction_list.append( Reaction(rxn_ID, reactants = reactants, reactant_coeff = reactant_coeff , products = products, product_coeff = product_coeff, constant = np.random.normal(kl, 0.05*kl), prop = 'STD') ) #print 'Reaction List index: ', rxn_ID, 'Reaction ID: ', reaction_list[rxn_ID].ID rxn_IDs.append(rxn_ID) # Backward Reaction rxn_ID = len(reaction_list) reaction_list.append( Reaction(rxn_ID, products = reactants, product_coeff = reactant_coeff, reactants = products, reactant_coeff= reactant_coeff, constant = kd, prop = 'STD') ) #print 'Reaction List index: ', rxn_ID, 'Reaction ID: ', reaction_list[rxn_ID].ID rxn_IDs.append(rxn_ID) #print molecule_dict newCRS = CRS(molecule_list = molecule_list, molecule_dict = molecule_dict, reactions = reaction_list) #print newCRS.molecule_dict return newCRS def compare_distributions(target, current): ''' Compares two different mass distributions based on their euclidean distance ''' t = [] c = [] for i in current.keys(): t.append(target[i]) c.append(current[i]) dist = 0.0 for i in range(len(c)): dist += (c[i]- t[i])**2 return np.sqrt(dist) def compare_distributions_AE(target, current): ''' Compares two different mass distributions based on their Absolute difference ''' t = [] c = [] dist = 0.0 diffs = [] for i in current.keys(): diffs.append ( (i, target[i]-current[i] ) ) #if target[i] != 0.0 and current[i] != 0.0: dist += abs(target[i]-current[i]) return dist def compare_distributions_AE_targeted(target, current): ''' Compares two different mass distributions based on their Absolute difference, weighted by the value of the target ''' dist = 0.0 for i in current.keys(): #if target[i] != 0.0 and current[i] != 0.0: dist += target[i]*abs(target[i]-current[i]) return dist def mass_fraction_to_length_distribution(mass_fraction): '''Converts a mass fraction dictionary to a length dictionary ''' length_dist = {} for comp in mass_fraction.keys(): coef = map(int, re.findall(r'\d+', comp)) l = sum(coef) if l in length_dist.keys(): length_dist[l] += mass_fraction[comp] else: length_dist[l] = mass_fraction[comp] return length_dist def plot_length_dist(length_dist): import matplotlib.pylab as plt import scipy.stats as stats l = [] f = [] max_l = max(length_dist.keys()) for i in range(1,max_l+1): l.append(i) f.append(length_dist[i]) (m,b, r, p, std) = stats.linregress(l,np.log(f)) test_line = [np.exp(m*i + b) for i in l] plt.plot(l, f) plt.plot(test_line) #plt.yscale('log') print(m, b) plt.show() def EICname_to_composition(name): s = re.split('-', name) comp = get_composition(s[0]) return comp def load_affinity_data_normalized(fname, max_length): import pandas as pd ### Read File affinity = {} affinity_df = pd.read_csv(fname, index_col = 0) ### Drop peptides that were never observed header_names = list(affinity_df) molecule_dict= {} ### This will map the values from the EIC data to composition codes molecule_names = list(affinity_df[header_names[1]])## Names of molecules from EIC data total_intensity = 0.0 for index, row in affinity_df.iterrows(): comp = EICname_to_composition(row[header_names[1]]) coef = map(int, re.findall(r'\d+', comp)) l = sum(coef) if l <= max_length: molecule_dict[row[header_names[1]]] = comp if comp in affinity.keys(): affinity[comp] += (row['A.RT']) else: affinity[comp] = (row['A.RT']) total_intensity += (row['A.RT']) for comp in affinity.keys(): affinity[comp] = affinity[comp]/float(total_intensity) # print sum(mass_fraction.values()) # print mass_fraction.keys() return affinity def load_EIC_data_as_composition_data(fname, max_length): ''' Load EIC data from APS system into a mass fraction dictionary This process contains LOTS OF ASSUMPTIONS ASSUMPTION LIST: - Hydrated/ cyclic peptides are the same as linear ''' import pandas as pd mass_fraction = {} ### Read File EIC_df = pd.read_csv(fname) ### Drop peptides that were never observed EIC_df = EIC_df[EIC_df['EIC integral'] != 0.0] header_names = list(EIC_df) molecule_dict= {} ### This will map the values from the EIC data to composition codes molecule_names = list(EIC_df[header_names[0]])## Names of molecules from EIC data total_intensity = 0.0 for index, row in EIC_df.iterrows(): # if 'H2O' not in row[header_names[0]]: comp = EICname_to_composition(row[header_names[0]]) coef = map(int, re.findall(r'\d+', comp)) l = sum(coef) if l <= max_length: molecule_dict[row[header_names[0]]] = comp if comp in mass_fraction.keys(): mass_fraction[comp] += row['EIC integral'] else: mass_fraction[comp] = row['EIC integral'] total_intensity += row['EIC integral'] for comp in mass_fraction.keys(): mass_fraction[comp] = mass_fraction[comp]/float(total_intensity) # print sum(mass_fraction.values()) # print mass_fraction.keys() return mass_fraction def find_rxns(target, CRS): rIDs = [] for t in target: for rxn in CRS.reactions: products = rxn.products if len(products) == 1: seqs = [CRS.molecule_list[p] for p in products] comps = [get_composition(s) for s in seqs] if t in comps: rIDs.append(rxn.ID) return rIDs def update_temp(Tmax, t): return Tmax*(1.0 - np.sqrt(t)) def generate_flat_mass_frac(target): ''' Generate a flat mass distribution of the same dimensions as the target ''' flat = {} num_comps = len(target.keys()) flat_value = 1.0/num_comps for comp in target.keys(): flat[comp] = flat_value return flat def load_integrated_EIC_heatmap(fname): import pandas as pd input_df =
pd.read_csv(fname)
pandas.read_csv
import json import os import pickle as pkl from collections import Counter, defaultdict, OrderedDict from copy import deepcopy from itertools import product from typing import ( Any, Dict, Iterable, List, Optional, OrderedDict as OrderedDictType, Union, ) import numpy as np import quaternion # noqa: F401 import torch from pandas import DataFrame, read_csv from tabulate import tabulate from detectron2.data import MetadataCatalog from detectron2.evaluation.evaluator import DatasetEvaluator from detectron2.structures import Instances from roca.data import CategoryCatalog from roca.data.constants import ( CAD_TAXONOMY, CAD_TAXONOMY_REVERSE, IMAGE_SIZE, ) from roca.structures import Rotations from roca.utils.alignment_errors import ( rotation_diff, scale_ratio, translation_diff, ) from roca.utils.linalg import decompose_mat4, make_M_from_tqs NMS_TRANS = 0.4 NMS_ROT = 60 NMS_SCALE = 0.6 TRANS_THRESH = 0.2 ROT_THRESH = 20 SCALE_THRESH = 0.2 VOXEL_IOU_THRESH = 0.5 class Vid2CADEvaluator(DatasetEvaluator): def __init__( self, dataset_name: str, full_annot: Union[str, List[Dict[str, Any]]], cfg=None, output_dir: str = '', mocking: bool = False, exclude: Optional[Iterable[str]]=None, grid_file: Optional[str] = None, exact_ret: bool = False, key_prefix: str = '', info_file: str = '' ): self._dataset_name = dataset_name self._metadata = MetadataCatalog.get(self._dataset_name) self._category_manager = CategoryCatalog.get(self._dataset_name) self.mocking = mocking self._output_dir = output_dir self._exclude = exclude # Parse raw data if isinstance(full_annot, list): annots = full_annot else: with open(full_annot) as f: annots = json.load(f) self._full_annots = annots scene_alignments = {} scene_counts = defaultdict(lambda: Counter()) for annot in annots: scene = annot['id_scan'] trs = annot['trs'] to_scene = np.linalg.inv(make_M_from_tqs( trs['translation'], trs['rotation'], trs['scale'] )) alignment = [] for model in annot['aligned_models']: if int(model['catid_cad']) not in CAD_TAXONOMY: continue scene_counts[scene][int(model['catid_cad'])] += 1 mtrs = model['trs'] to_s2c = make_M_from_tqs( mtrs['translation'], mtrs['rotation'], mtrs['scale'] ) t, q, s = decompose_mat4(to_scene @ to_s2c) alignment.append({ 't': t.tolist(), 'q': q.tolist(), 's': s.tolist(), 'catid_cad': model['catid_cad'], 'id_cad': model['id_cad'], 'sym': model['sym'] }) scene_alignments[scene] = alignment self._scene_alignments = scene_alignments self._scene_counts = scene_counts self.with_grids = grid_file is not None self.grid_data = None if self.with_grids: with open(grid_file, 'rb') as f: self.grid_data = pkl.load(f) self.exact_ret = exact_ret self.key_prefix = key_prefix self.info_file = info_file def reset(self): self.results = defaultdict(list) self.poses = defaultdict(list) self.object_ids = defaultdict(list) self.info_data = defaultdict(list) def process( self, inputs: List[Dict[str, Any]], outputs: List[Dict[str, Any]] ): for input, output in zip(inputs, outputs): file_name = input['file_name'] scene_name = input['file_name'].split('/')[-3] if 'instances' not in output: continue instances = output['instances'] instances = instances[instances.scores > 0.5] has_alignment = instances.has_alignment if not has_alignment.any(): continue instances = instances[has_alignment] instances = deepcopy(instances) # avoid modification! if instances.has('pred_meshes'): instances.remove('pred_meshes') self.results[scene_name].append(instances.to('cpu')) if 'cad_ids' in output: object_ids = output['cad_ids'] object_ids = [ object_ids[i] for i in instances.pred_indices.tolist() ] self.object_ids[scene_name].append(object_ids) pose_file = file_name\ .replace('color', 'pose')\ .replace('.jpg', '.txt') with open(pose_file) as f: pose_mat = torch.tensor([ [float(v) for v in line.strip().split()] for line in f ]) pose_mat = pose_mat.unsqueeze(0).expand(len(instances), 4, 4) self.poses[scene_name].append(pose_mat) '''if len(self.poses) == 20: self.evaluate() exit(0)''' def process_mock( self, scene_name: str, instances: Instances, object_ids=None ): self.results[scene_name] = instances self.object_ids[scene_name] = object_ids def evaluate(self) -> OrderedDictType[str, Dict[str, float]]: self._collect_results() self._transform_results_to_world_space() path = self._write_raw_results() return eval_csv( self._dataset_name, path, self._full_annots, exact_ret=self.exact_ret, prefix=self.key_prefix, info_file=self.info_file ) def evaluate_mock(self) -> OrderedDictType[str, Dict[str, float]]: self._nms_results() self._apply_constraints() return self._compute_metrics() def _collect_results(self): print('INFO: Collecting results...', flush=True) for k, v in self.results.items(): instances = Instances.cat(v) indices = instances.scores.argsort(descending=True) self.results[k] = instances[indices] self.poses[k] = torch.cat(self.poses[k], dim=0)[indices] # NOTE: Objects corresponds to instances, # so sort them similar to results if k in self.object_ids: object_ids = [] for ids in self.object_ids[k]: object_ids.extend(ids) self.object_ids[k] = [object_ids[i] for i in indices.tolist()] def _transform_results_to_world_space(self): print('INFO: Transforming results to world space...', flush=True) for scene, instances in self.results.items(): poses = self.poses[scene] # TODO: This can be batched for i, (pose, t, q, s) in enumerate(zip( poses.unbind(0), instances.pred_translations.unbind(0), instances.pred_rotations.unbind(0), instances.pred_scales.unbind(0) )): pose = pose.numpy().reshape(4, 4) mat = make_M_from_tqs(t.tolist(), q.tolist(), s.tolist()) new_t, new_q, new_s = decompose_mat4(pose @ mat) instances.pred_translations[i] = torch.from_numpy(new_t) instances.pred_rotations[i] = torch.from_numpy(new_q) instances.pred_scales[i] = torch.from_numpy(new_s) self.results[scene] = instances self.poses[scene] = poses def _write_raw_results(self): output_dir = self._output_dir output_path = os.path.join(output_dir, 'raw_results.csv') print( 'INFO: Writing raw results to {}...'.format(output_path), flush=True ) data = defaultdict(lambda: []) results = sorted(self.results.items(), key=lambda x: x[0]) for scene, instances in results: data['id_scan'].extend((scene,) * len(instances)) for c in instances.pred_classes.tolist(): cid = CAD_TAXONOMY_REVERSE[self._category_manager.get_name(c)] data['objectCategory'].append(cid) data['alignedModelId'].extend( id_cad for _, id_cad in self.object_ids[scene] ) data['tx'].extend(instances.pred_translations[:, 0].tolist()) data['ty'].extend(instances.pred_translations[:, 1].tolist()) data['tz'].extend(instances.pred_translations[:, 2].tolist()) data['qw'].extend(instances.pred_rotations[:, 0].tolist()) data['qx'].extend(instances.pred_rotations[:, 1].tolist()) data['qy'].extend(instances.pred_rotations[:, 2].tolist()) data['qz'].extend(instances.pred_rotations[:, 3].tolist()) data['sx'].extend(instances.pred_scales[:, 0].tolist()) data['sy'].extend(instances.pred_scales[:, 1].tolist()) data['sz'].extend(instances.pred_scales[:, 2].tolist()) data['object_score'].extend(instances.scores.tolist()) frame =
DataFrame(data=data)
pandas.DataFrame
"""Classes for representing datasets of images and/or coordinates.""" import copy import inspect import json import logging import os.path as op import numpy as np import pandas as pd from nilearn._utils import load_niimg from .base import NiMAREBase from .utils import ( _dict_to_coordinates, _dict_to_df, _listify, _transform_coordinates_to_space, _try_prepend, _validate_df, _validate_images_df, get_masker, get_template, mm2vox, ) LGR = logging.getLogger(__name__) class Dataset(NiMAREBase): """Storage container for a coordinate- and/or image-based meta-analytic dataset/database. .. versionchanged:: 0.0.9 * [ENH] Add merge method to Dataset class .. versionchanged:: 0.0.8 * [FIX] Set ``nimare.dataset.Dataset.basepath`` in :func:`update_path` using absolute path. Parameters ---------- source : :obj:`str` or :obj:`dict` JSON file containing dictionary with database information or the dict() object target : :obj:`str`, optional Desired coordinate space for coordinates. Names follow NIDM convention. Default is 'mni152_2mm' (MNI space with 2x2x2 voxels). This parameter has no impact on images. mask : :obj:`str`, :class:`nibabel.nifti1.Nifti1Image`, \ :class:`nilearn.input_data.NiftiMasker` or similar, or None, optional Mask(er) to use. If None, uses the target space image, with all non-zero voxels included in the mask. Attributes ---------- ids : 1D :class:`numpy.ndarray` Identifiers masker : :class:`nilearn.input_data.NiftiMasker` or similar Masker object defining the space and location of the area of interest (e.g., 'brain'). space : :obj:`str` Standard space. Same as ``target`` parameter. annotations : :class:`pandas.DataFrame` Labels describing studies coordinates : :class:`pandas.DataFrame` Peak coordinates from studies images : :class:`pandas.DataFrame` Images from studies metadata : :class:`pandas.DataFrame` Metadata describing studies texts : :class:`pandas.DataFrame` Texts associated with studies Notes ----- Images loaded into a Dataset are assumed to be in the same space. If images have different resolutions or affines from the Dataset's masker, then they will be resampled automatically, at the point where they're used, by :obj:`Dataset.masker`. """ _id_cols = ["id", "study_id", "contrast_id"] def __init__(self, source, target="mni152_2mm", mask=None): if isinstance(source, str): with open(source, "r") as f_obj: data = json.load(f_obj) elif isinstance(source, dict): data = source else: raise Exception("`source` needs to be a file path or a dictionary") # Datasets are organized by study, then experiment # To generate unique IDs, we combine study ID with experiment ID # build list of ids id_columns = ["id", "study_id", "contrast_id"] all_ids = [] for pid in data.keys(): for expid in data[pid]["contrasts"].keys(): id_ = f"{pid}-{expid}" all_ids.append([id_, pid, expid]) id_df = pd.DataFrame(columns=id_columns, data=all_ids) id_df = id_df.set_index("id", drop=False) self._ids = id_df.index.values # Set up Masker if mask is None: mask = get_template(target, mask="brain") self.masker = mask self.space = target self.annotations = _dict_to_df(id_df, data, key="labels") self.coordinates = _dict_to_coordinates(data, masker=self.masker, space=self.space) self.images = _dict_to_df(id_df, data, key="images") self.metadata = _dict_to_df(id_df, data, key="metadata") self.texts = _dict_to_df(id_df, data, key="text") self.basepath = None def __repr__(self): """Show basic Dataset representation. It's basically the same as the NiMAREBase representation, but with the number of experiments in the Dataset represented as well. """ # Get default parameter values for the object signature = inspect.signature(self.__init__) defaults = { k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty } # Eliminate any sub-parameters (e.g., parameters for a MetaEstimator's KernelTransformer), # as well as default values params = self.get_params() params = {k: v for k, v in params.items() if "__" not in k} # Parameter "target" is stored as attribute "space" # and we want to show it regardless of whether it's the default or not params["space"] = self.space params.pop("target") params = {k: v for k, v in params.items() if defaults.get(k) != v} # Convert to strings param_strs = [] for k, v in params.items(): if isinstance(v, str): # Wrap string values in single quotes param_str = f"{k}='{v}'" else: # Keep everything else as-is based on its own repr param_str = f"{k}={v}" param_strs.append(param_str) params_str = ", ".join(param_strs) params_str = f"{len(self.ids)} experiments{', ' if params_str else ''}{params_str}" rep = f"{self.__class__.__name__}({params_str})" return rep @property def ids(self): """numpy.ndarray: 1D array of identifiers in Dataset. The associated setter for this property is private, as ``Dataset.ids`` is immutable. """ return self.__ids @ids.setter def _ids(self, ids): ids = np.sort(np.asarray(ids)) assert isinstance(ids, np.ndarray) and ids.ndim == 1 self.__ids = ids @property def masker(self): """:class:`nilearn.input_data.NiftiMasker` or similar: Masker object. Defines the space and location of the area of interest (e.g., 'brain'). """ return self.__masker @masker.setter def masker(self, mask): mask = get_masker(mask) if hasattr(self, "masker") and not np.array_equal( self.masker.mask_img.affine, mask.mask_img.affine ): # This message does not have an associated effect, # since matrix indices are calculated as necessary LGR.warning("New masker does not match old masker. Space is assumed to be the same.") self.__masker = mask @property def annotations(self): """:class:`pandas.DataFrame`: Labels describing studies in the dataset. Each study/experiment has its own row. Columns correspond to individual labels (e.g., 'emotion'), and may be prefixed with a feature group including two underscores (e.g., 'Neurosynth_TFIDF__emotion'). """ return self.__annotations @annotations.setter def annotations(self, df): _validate_df(df) self.__annotations = df.sort_values(by="id") @property def coordinates(self): """:class:`pandas.DataFrame`: Coordinates in the dataset. .. versionchanged:: 0.0.10 The coordinates attribute no longer includes the associated matrix indices (columns 'i', 'j', and 'k'). These columns are calculated as needed. Each study has one row for each peak. Columns include ['x', 'y', 'z'] (peak locations in mm) and 'space' (Dataset's space). """ return self.__coordinates @coordinates.setter def coordinates(self, df): _validate_df(df) self.__coordinates = df.sort_values(by="id") @property def images(self): """:class:`pandas.DataFrame`: Images in the dataset. Each image type has its own column (e.g., 'z') with absolute paths to files and each study has its own row. Additionally, relative paths to image files are stored in columns with the suffix '__relative' (e.g., 'z__relative'). Warnings -------- Images are assumed to be in the same space, although they may have different resolutions and affines. Images will be resampled as needed at the point where they are used, via :obj:`Dataset.masker`. """ return self.__images @images.setter def images(self, df): _validate_df(df) self.__images = _validate_images_df(df).sort_values(by="id") @property def metadata(self): """:class:`pandas.DataFrame`: Metadata describing studies in the dataset. Each metadata field has its own column (e.g., 'sample_sizes') and each study has its own row. """ return self.__metadata @metadata.setter def metadata(self, df): _validate_df(df) self.__metadata = df.sort_values(by="id") @property def texts(self): """:class:`pandas.DataFrame`: Texts in the dataset. Each text type has its own column (e.g., 'abstract') and each study has its own row. """ return self.__texts @texts.setter def texts(self, df): _validate_df(df) self.__texts = df.sort_values(by="id") def slice(self, ids): """Create a new dataset with only requested IDs. Parameters ---------- ids : array_like List of study IDs to include in new dataset Returns ------- new_dset : :obj:`~nimare.dataset.Dataset` Reduced Dataset containing only requested studies. """ new_dset = copy.deepcopy(self) new_dset._ids = ids for attribute in ("annotations", "coordinates", "images", "metadata", "texts"): df = getattr(new_dset, attribute) df = df.loc[df["id"].isin(ids)] setattr(new_dset, attribute, df) return new_dset def merge(self, right): """Merge two Datasets. .. versionadded:: 0.0.9 Parameters ---------- right : :obj:`~nimare.dataset.Dataset` Dataset to merge with. Returns ------- :obj:`~nimare.dataset.Dataset` A Dataset of the two merged Datasets. """ assert isinstance(right, Dataset) shared_ids = np.intersect1d(self.ids, right.ids) if shared_ids.size: raise Exception("Duplicate IDs detected in both datasets.") all_ids = np.concatenate((self.ids, right.ids)) new_dset = copy.deepcopy(self) new_dset._ids = all_ids for attribute in ("annotations", "coordinates", "images", "metadata", "texts"): df1 = getattr(self, attribute) df2 = getattr(right, attribute) new_df = df1.append(df2, ignore_index=True, sort=False) new_df.sort_values(by="id", inplace=True) new_df.reset_index(drop=True, inplace=True) new_df = new_df.where(~new_df.isna(), None) setattr(new_dset, attribute, new_df) new_dset.coordinates = _transform_coordinates_to_space( new_dset.coordinates, self.masker, self.space, ) return new_dset def update_path(self, new_path): """Update paths to images. Prepends new path to the relative path for files in Dataset.images. Parameters ---------- new_path : :obj:`str` Path to prepend to relative paths of files in Dataset.images. """ self.basepath = op.abspath(new_path) df = self.images relative_path_cols = [c for c in df if c.endswith("__relative")] for col in relative_path_cols: abs_col = col.replace("__relative", "") if abs_col in df.columns: LGR.info(f"Overwriting images column {abs_col}") df[abs_col] = df[col].apply(_try_prepend, prefix=self.basepath) self.images = df def copy(self): """Create a copy of the Dataset.""" return copy.deepcopy(self) def get(self, dict_, drop_invalid=True): """Retrieve files and/or metadata from the current Dataset. Parameters ---------- dict_ : :obj:`dict` Dictionary specifying images or metadata to collect. Keys should be variables to be used as keys for results dictionary. Values should be tuples with two values: type (e.g., 'image' or 'metadata') and specific field corresponding to column of type-specific DataFrame (e.g., 'z' or 'sample_sizes'). drop_invalid : :obj:`bool`, optional Whether to automatically ignore any studies without the required data or not. Default is False. Returns ------- results : :obj:`dict` A dictionary of lists of requested data. Keys correspond to the keys in ``dict_``. Examples -------- >>> dset.get({'z_maps': ('image', 'z'), 'sample_sizes': ('metadata', 'sample_sizes')}) >>> dset.get({'coordinates': ('coordinates', None)}) """ results = {} results["id"] = self.ids keep_idx = np.arange(len(self.ids), dtype=int) for k, vals in dict_.items(): if vals[0] == "image": temp = self.get_images(imtype=vals[1]) elif vals[0] == "metadata": temp = self.get_metadata(field=vals[1]) elif vals[0] == "coordinates": # Break DataFrame down into a list of study-specific DataFrames temp = [self.coordinates.loc[self.coordinates["id"] == id_] for id_ in self.ids] # Replace empty DataFrames with Nones temp = [t if t.size else None for t in temp] elif vals[0] == "annotations": # Break DataFrame down into a list of study-specific DataFrames temp = [self.annotations.loc[self.annotations["id"] == id_] for id_ in self.ids] # Replace empty DataFrames with Nones temp = [t if t.size else None for t in temp] else: raise ValueError(f"Input '{vals[0]}' not understood.") results[k] = temp temp_keep_idx = np.where([t is not None for t in temp])[0] keep_idx = np.intersect1d(keep_idx, temp_keep_idx) # reduce if drop_invalid and (len(keep_idx) != len(self.ids)): LGR.info(f"Retaining {len(keep_idx)}/{len(self.ids)} studies") elif len(keep_idx) != len(self.ids): raise Exception( f"Only {len(keep_idx)}/{len(self.ids)} in Dataset contain the necessary data. " "If you want to analyze the subset of studies with required data, " "set `drop_invalid` to True." ) for k in results: results[k] = [results[k][i] for i in keep_idx] if dict_.get(k, [None])[0] in ("coordinates", "annotations"): results[k] =
pd.concat(results[k])
pandas.concat
"""Covid Model""" __docformat__ = "numpy" import warnings import pandas as pd import numpy as np global_cases_time_series = ( "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_" "covid_19_time_series/time_series_covid19_confirmed_global.csv" ) global_deaths_time_series = ( "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_" "covid_19_time_series/time_series_covid19_deaths_global.csv" ) def get_global_cases(country: str) -> pd.DataFrame: """Get historical cases for given country Parameters ---------- country: str Country to search for Returns ------- pd.DataFrame Dataframe of historical cases """ cases = pd.read_csv(global_cases_time_series) cases = cases.rename(columns={"Country/Region": "Country"}) cases = ( cases.drop(columns=["Province/State", "Lat", "Long"]) .groupby("Country") .agg("sum") .T ) cases.index = pd.to_datetime(cases.index) cases = pd.DataFrame(cases[country]).diff().dropna() if cases.shape[1] > 1: return pd.DataFrame(cases.sum(axis=1)) return cases def get_global_deaths(country: str) -> pd.DataFrame: """Get historical deaths for given country Parameters ---------- country: str Country to search for Returns ------- pd.DataFrame Dataframe of historical deaths """ deaths = pd.read_csv(global_deaths_time_series) deaths = deaths.rename(columns={"Country/Region": "Country"}) deaths = ( deaths.drop(columns=["Province/State", "Lat", "Long"]) .groupby("Country") .agg("sum") .T ) deaths.index =
pd.to_datetime(deaths.index)
pandas.to_datetime
import pandas as pd import os.path import csv import matplotlib.pyplot as plt from modules.global_vars import * class metabolite_pool(object): def __init__(self, metabolite_name, number_of_carbons, pool_size): self.metabolite_name = metabolite_name self.number_of_carbons = number_of_carbons self.pool_size = pool_size # Initialize empty variables for later use self.pool = None self.tmp = None self.collection_total_excess = pd.DataFrame() self.collection_isotop_distr = pd.DataFrame() def initialize_pool(self): if verbose: print('running %s.initialize_pool' % self.metabolite_name) #Create dataframe according to number of carbons and pool size with unlabeled molecules columns = {} for i in range(self.number_of_carbons): # create dictionary from C1 to CX (number of carbons with unlabeled carbons (0) columns['C' + str(i+1)] = self.pool_size*[0] self.pool = pd.DataFrame(columns) if verbose: print(self.pool) print('') def calculate_enrichment(self): if verbose: print('running %s.calculate_enrichment' % self.metabolite_name) # Total excess number_13C = self.pool.values.sum() number_totalC = self.pool.shape[0]*self.pool.shape[1] self.total_excess = number_13C/number_totalC # Calculate isotopologue distribution # Sums up all rows individually, sum represents number of 13C in the molecule self.row_sum = pd.DataFrame({'Number_of_13C': self.pool.sum(axis = 1)}) # Calculates for every M+# the enrichment and stores it in a dict self.isotop_distr = {} for i in range(self.number_of_carbons): i = i+1 tmp = self.row_sum[self.row_sum.Number_of_13C == i] # Sum of row == i -> M+i count = tmp.shape[0] # count rows where sum of rows == i -> number of molecules with M+i enrichment = count/self.row_sum.shape[0] # relative to the total amount of rows self.isotop_distr['M+' + str(i)] = enrichment if verbose: print('Total excess: ' + str(self.total_excess)) print('Isotop. Distr.: ' + str(self.isotop_distr)) print('') # Collect dicts in dataframes self.collection_total_excess = self.collection_total_excess.append({'total_excess': self.total_excess}, ignore_index = True) self.collection_isotop_distr = self.collection_isotop_distr.append(self.isotop_distr, ignore_index = True) def export(self): if verbose: print('running %s export_csv' % self.metabolite_name) directory = os.path.join(os.getcwd(), 'output') if not os.path.exists(directory): os.makedirs(directory) self.collection_total_excess.to_csv(os.path.join(directory, str(self.metabolite_name) + '_total_excess.csv')) self.collection_isotop_distr.to_csv(os.path.join(directory, str(self.metabolite_name) + '_isotop_distr.csv')) # Calculate relative isotopologue distribution self.collection_relative_isotop_distr = pd.DataFrame() for i in range(len(self.collection_isotop_distr.columns)): self.collection_relative_isotop_distr['M+' + str(i+1)] = self.collection_isotop_distr.loc[:, 'M+' + str(i+1)]/self.collection_isotop_distr.sum(axis = 1) # Export relative isotopologue distribution self.collection_relative_isotop_distr.to_csv(os.path.join(directory, str(self.metabolite_name) + '_relative_isotop_distr.csv')) if verbose: #print(self.collection_total_excess) #print(self.collection_isotop_distr) print('exported to folder "csv"') print('') print('drawing total excess and relative isotopologue distribution') print('') # Draw figures ax = self.collection_total_excess.plot(legend = None) ax.set_xlabel('steps') ax.set_ylabel('total excess') ax.set_title('%s enrichment kinetic' % self.metabolite_name) plt.savefig(os.path.join(directory, str(self.metabolite_name) + '_total_excess.png')) #self.collection_isotop_distr.plot() # relative isotop distr fig, ax = plt.subplots() x = range(self.collection_relative_isotop_distr.shape[0]) ax.stackplot(x, self.collection_relative_isotop_distr.T) ax.margins(0, 0) # Set margins to avoid "whitespace" ax.set_xlabel('steps') ax.set_title('%s isotopologue distribution' % self.metabolite_name) ax.legend(self.collection_relative_isotop_distr.columns, loc = 'center left') #plt.show() plt.savefig(os.path.join(directory, str(self.metabolite_name) + '_isotop_distr.png')) plt.close() # Print last total excess and isotop distr print('%s:' % self.metabolite_name) print(str(self.collection_total_excess.iloc[-1:])) print(str(self.collection_isotop_distr.iloc[-1:])) print('') def to_tmp(self, number_of_molecules): if verbose: print('running %s.to_tmp' % self.metabolite_name) self.tmp = self.pool.sample(n = number_of_molecules) self.pool = self.pool.loc[~self.pool.index.isin(self.tmp.index)] # rows which are not in self.tmp if verbose: print(self.tmp) print('') def from_tmp(self, number_of_molecules, source): if verbose: print('running %s.from_tmp' % self.metabolite_name) tmp = source.tmp.sample(n = number_of_molecules) source.tmp = source.tmp.loc[~source.tmp.index.isin(tmp.index)] # Consume molecules from source pool self.pool = pd.concat([self.pool, tmp]) # Sanity check #if self.pool.shape[0] != self.pool_size: # print('ERROR in function "%s.from_tmp": Pool size changed' % self.metabolite_name) # quit() self.pool = self.pool.reset_index(drop=True) if verbose: print(self.pool) print('') def introduce_molecules(self, number_of_molecules, molecule): if verbose: print('running %s.introduce_molecules' % self.metabolite_name) # Sanity check if type(molecule) is not str: print('ERROR: variable "molecule" in function "introduce_molecules" is not a string.') quit() # Convert input string to dict molecule_tuple = tuple(molecule) # Sanity check if len(molecule_tuple) != self.number_of_carbons: print('ERROR in function introduce_molecules: Molecule specified has the wrong number of carbons') quit() molecule_dict = {} for i in range(len(molecule)): molecule_dict['C' + str(i+1)] = int(molecule_tuple[i]) new_molecules = pd.DataFrame(number_of_molecules*[molecule_dict]) self.pool = pd.concat([self.pool, new_molecules]) self.pool = self.pool.reset_index(drop = True) # Sanity check #if self.pool.shape[0] != self.pool_size: # print('ERROR in function "introduce_molecules": Pool size of %s changed' % self.metabolite_name) # quit() if verbose: print(self.pool) print('') def check_pool_size(self): if verbose: print('running %s.check_pool_size' % self.metabolite_name) if verbose: if self.pool.shape[0] == self.pool_size: print('+ Pool size unchanged') print('') else: print('- DANGER: Pool size changed') print('') def check_tmp_size(self, number_of_molecules = 0): # number_of molecules == number expected to be left over if verbose: print('running %s.check_tmp_size' % self.metabolite_name) if self.tmp.shape[0] == number_of_molecules: print('+ %d molecules in %s.tmp left' % (number_of_molecules, self.metabolite_name)) print('') else: print('- DANGER: %d molecules instead of %d molecules in %s.tmp left' % (self.tmp.shape[0], number_of_molecules, self.metabolite_name)) print('') def mirror_symmetry(self): if verbose: print('running %s.mirror_symmetry' % self.metabolite_name) # Randomly choose 50% of the rows to_be_rotated = self.pool.sample(frac=0.5) # Selects all rows which are NOT in rotate and updates pool self.pool = self.pool.loc[~self.pool.index.isin(to_be_rotated.index)] have_been_rotated = to_be_rotated.rename(columns={a: b for a, b in zip(to_be_rotated.columns, reversed(to_be_rotated.columns))}) print(have_been_rotated) # Concatenate dataframes self.pool =
pd.concat([have_been_rotated, self.pool])
pandas.concat
""" This module provides the BaseScraper class """ # Standard library imports from abc import ABCMeta, abstractmethod from datetime import date import logging from pathlib import Path import sys from typing import Dict, Union, Optional # Third party imports import pandas as pd from sqlalchemy.engine import Connection # Local imports from naccbis.Common import utils from naccbis.Common.splits import Split, GameLogSplit class BaseScraper(metaclass=ABCMeta): """This is the abstract base class for the scrapers. It provides only the shared functionality between all scrapers. Don't directly create an instance of the base class! General procedure that each scraper follows: 1. Scrape the data from the web 2. Clean the data 3. Export the data """ BASE_URL = "https://naccsports.org/sports/bsb/" TEAM_IDS = { "Aurora": "AUR", "Benedictine": "BEN", "Concordia Chicago": "CUC", "Concordia Wisconsin": "CUW", "Dominican": "DOM", "Edgewood": "EDG", "Illinois Tech": "ILLT", "Lakeland": "LAK", "MSOE": "MSOE", "Marian": "MAR", "Maranatha": "MARN", "Rockford": "ROCK", "Wisconsin Lutheran": "WLC", } TABLES: Dict[str, str] = {} VALID_OUTPUT = ["csv", "sql"] def __init__( self, year: str, split: Union[Split, GameLogSplit], output: str, inseason: bool = False, verbose: bool = False, conn: Optional[Connection] = None, ) -> None: """Class constructor :param year: The school year. A string. :param split: overall or conference stats. A string. :param output: Output format. Currently csv and sql. :param inseason: Is this scraping taking place in season? :param verbose: Print extra information to standard out? """ self._name = "Base Scraper" self._year = year self._split = split if output not in self.VALID_OUTPUT: raise ValueError("Invalid output: {}".format(output)) self._output = output self._inseason = inseason self._verbose = verbose self._data =
pd.DataFrame()
pandas.DataFrame
# from feature_generation.utils import convert_categorical_labels_to_numerical from feature_generation.Labels import Labels import pandas as pd from itertools import takewhile import time from feature_generation.datasets.Timeseries import Timeseries class EMIP(Timeseries): def __init__(self): super().__init__("emip-fixations") self.column_name_mapping = { "id": self.column_names["subject_id"], "fixationStart": self.column_names["time"], "x": self.column_names["x"], "y": self.column_names["y"], "averagePupilSize": self.column_names["pupil_diameter"], "duration": self.column_names["duration"], "fixationEnd": self.column_names["fixation_end"], } self.label = "expertise_programming" def prepare_files(self, file_references, metadata_references): labels = pd.DataFrame() dataset = [] with metadata_references[0].open("r") as f: metadata_file =
pd.read_csv(f)
pandas.read_csv
# Import Libraries import time import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # Import Libraries from scipy import stats import matplotlib.pyplot as plt # import time # Import Libraries import math class YinsDL: print("---------------------------------------------------------------------") print( """ Yin's Deep Learning Package Copyright © W.Y.N. Associates, LLC, 2009 – Present For more information, please go to https://wyn-associates.com/ """ ) print("---------------------------------------------------------------------") # Define function def NN3_Classifier( X_train, y_train, X_test, y_test, l1_act='relu', l2_act='relu', l3_act='softmax', layer1size=128, layer2size=64, layer3size=2, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], num_of_epochs=10, plotROC=True, verbose=True): """ MANUAL: # One can use the following example. house_sales = pd.read_csv('../data/kc_house_data.csv') house_sales.head(3) house_sales = house_sales.drop(['id', 'zipcode', 'lat', 'long', 'date'], axis=1) house_sales.info() X_all = house_sales.drop('price', axis=1) y = np.log(house_sales.price) y_binary = (y > y.mean()).astype(int) y_binary X_all.head(3), y_binary.head(3) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_all, y_binary, test_size=0.3, random_state=0) print(X_train.shape, X_test.shape) print(y_train) testresult = NN3_Classifier(X_train, y_train, X_test, y_test, l1_act='relu', l2_act='relu', l3_act='softmax', layer1size=128, layer2size=64, layer3size=2, num_of_epochs=50) """ # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt if verbose: print("Tensorflow Version:") print(tf.__version__) # Normalize # Helper Function def helpNormalize(X): return (X - X.mean()) / np.std(X) X_train = X_train.apply(helpNormalize, axis=1) X_test = X_test.apply(helpNormalize, axis=1) # Model model = tf.keras.Sequential([ keras.layers.Dense(units=layer1size, input_shape=[X_train.shape[1]]), keras.layers.Dense(units=layer2size, activation=l2_act), keras.layers.Dense(units=layer3size, activation=l3_act) ]) if verbose: print("Summary of Network Architecture:") model.summary() # Compile model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # Model Fitting model.fit(X_train, y_train, epochs=num_of_epochs) # Prediction predictions = model.predict(X_test) # Performance from sklearn.metrics import confusion_matrix import numpy as np import pandas as pd y_test_hat = np.argmax(predictions, axis=1) confusion = confusion_matrix(y_test, y_test_hat) confusion = pd.DataFrame(confusion) test_acc = sum(np.diag(confusion)) / sum(sum(np.array(confusion))) # Print if verbose: print("Confusion Matrix:") print(confusion) print("Test Accuracy:", round(test_acc, 4)) # ROCAUC if layer3size == 2: from sklearn.metrics import roc_curve, auc, roc_auc_score fpr, tpr, thresholds = roc_curve(y_test, y_test_hat) areaUnderROC = auc(fpr, tpr) resultsROC = { 'false positive rate': fpr, 'true positive rate': tpr, 'thresholds': thresholds, 'auc': round(areaUnderROC, 3) } if verbose: print(f'Test AUC: {areaUnderROC}') if plotROC: plt.figure() plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve') plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic: \ Area under the curve = {0:0.2f}'.format(areaUnderROC)) plt.legend(loc="lower right") plt.show() else: resultsROC = "Response not in two classes." # Output return { 'Data': [X_train, y_train, X_test, y_test], 'Shape': [X_train.shape, len(y_train), X_test.shape, len(y_test)], 'Model Fitting': model, 'Performance': { 'response': {'response': y_test, 'estimated response': y_test_hat}, 'test_acc': test_acc, 'confusion': confusion }, 'Results of ROC': resultsROC } # End of function # Define function def NN10_Classifier( X_train, y_train, X_test, y_test, l1_act='relu', l2_act='relu', l3_act='relu', l4_act='relu', l5_act='relu', l6_act='relu', l7_act='relu', l8_act='relu', l9_act='relu', l10_act='softmax', layer1size=128, layer2size=64, layer3size=64, layer4size=64, layer5size=64, layer6size=64, layer7size=64, layer8size=64, layer9size=64, layer10size=2, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], num_of_epochs=10, plotROC=True, verbose=True): """ MANUAL: # One can use the following example. house_sales = pd.read_csv('../data/kc_house_data.csv') house_sales.head(3) house_sales = house_sales.drop(['id', 'zipcode', 'lat', 'long', 'date'], axis=1) house_sales.info() X_all = house_sales.drop('price', axis=1) y = np.log(house_sales.price) y_binary = (y > y.mean()).astype(int) y_binary X_all.head(3), y_binary.head(3) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_all, y_binary, test_size=0.3, random_state=0) print(X_train.shape, X_test.shape) print(y_train) testresult = NN10_Classifier( X_train, y_train, X_test, y_test, l1_act='relu', l2_act='relu', l3_act='relu', l4_act='relu', l5_act='relu', l6_act='relu', l7_act='relu', l8_act='relu', l9_act='relu', l10_act='softmax', layer1size=128, layer2size=64, layer3size=64, layer4size=64, layer5size=64, layer6size=64, layer7size=64, layer8size=64, layer9size=64, layer10size=2, plotROC=True, num_of_epochs=50) """ # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt if verbose: print("Tensorflow Version:") print(tf.__version__) # Normalize # Helper Function def helpNormalize(X): return (X - X.mean()) / np.std(X) X_train = X_train.apply(helpNormalize, axis=1) X_test = X_test.apply(helpNormalize, axis=1) # Model model = tf.keras.Sequential([ keras.layers.Dense(units=layer1size, input_shape=[X_train.shape[1]]), keras.layers.Dense(units=layer2size, activation=l2_act), keras.layers.Dense(units=layer3size, activation=l3_act), keras.layers.Dense(units=layer4size, activation=l4_act), keras.layers.Dense(units=layer5size, activation=l5_act), keras.layers.Dense(units=layer6size, activation=l6_act), keras.layers.Dense(units=layer7size, activation=l7_act), keras.layers.Dense(units=layer8size, activation=l8_act), keras.layers.Dense(units=layer9size, activation=l9_act), keras.layers.Dense(units=layer10size, activation=l10_act) ]) if verbose: print("Summary of Network Architecture:") model.summary() # Compile model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # Model Fitting model.fit(X_train, y_train, epochs=num_of_epochs) # Prediction predictions = model.predict(X_test) # Performance from sklearn.metrics import confusion_matrix import numpy as np import pandas as pd y_test_hat = np.argmax(predictions, axis=1) confusion = confusion_matrix(y_test, y_test_hat) confusion = pd.DataFrame(confusion) test_acc = sum(np.diag(confusion)) / sum(sum(np.array(confusion))) # Print if verbose: print("Confusion Matrix:") print(confusion) print("Test Accuracy:", round(test_acc, 4)) # ROCAUC if layer10size == 2: from sklearn.metrics import roc_curve, auc, roc_auc_score fpr, tpr, thresholds = roc_curve(y_test, y_test_hat) areaUnderROC = auc(fpr, tpr) resultsROC = { 'false positive rate': fpr, 'true positive rate': tpr, 'thresholds': thresholds, 'auc': round(areaUnderROC, 3) } if verbose: print(f'Test AUC: {areaUnderROC}') if plotROC: plt.figure() plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve') plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic: \ Area under the curve = {0:0.2f}'.format(areaUnderROC)) plt.legend(loc="lower right") plt.show() else: resultsROC = "Response not in two classes." # Output return { 'Data': [X_train, y_train, X_test, y_test], 'Shape': [X_train.shape, len(y_train), X_test.shape, len(y_test)], 'Model Fitting': model, 'Performance': { 'response': {'response': y_test, 'estimated response': y_test_hat}, 'test_acc': test_acc, 'confusion': confusion }, 'Results of ROC': resultsROC } # End of function # Define function def plotOneImage( initialPosX = 1, initialPosY = 0, boxWidth = 1, boxHeight = 0, linewidth = 2, edgecolor = 'r', IMAGE = 0): import matplotlib.pyplot as plt import matplotlib.patches as patches from PIL import Image import numpy as np im = np.array(IMAGE, dtype=np.uint8) # Create figure and axes fig,ax = plt.subplots(1) # Display the image ax.imshow(im) # Create a Rectangle patch rect = patches.Rectangle( (initialPosX, initialPosY), boxWidth, boxHeight, linewidth=linewidth, edgecolor=edgecolor, facecolor='none') # Add the patch to the Axes ax.add_patch(rect) plt.show() # End of function # Define function def ConvOperationC1( X_train, y_train, X_test, y_test, inputSHAPEwidth=10, inputSHAPElenth=3, filter1 = [[1,0], [0,1]], verbose=True, printManual=True): if printManual: print("----------------------------------------------------------------------") print("Manual") print( """ This script input X_train, y_train, X_test, y_test with selected input width and height as well as a filter. Then the script executes convolutional operation to compute new features from combination of original variables and the filter. Note: the filter plays crucial role which is why this function the filter is user-friendly and can be updated as the user see fits. # Run newDataGenerated = YinsDL.ConvOperationC1( X_train, y_train, X_test, y_test, inputSHAPEwidth=10, inputSHAPElenth=3, filter1 = [[1,0], [0,1]], verbose=True, printManual=True) """ ) print("----------------------------------------------------------------------") # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt if verbose: print("Tensorflow Version:") print(tf.__version__) # Normalize # Helper Function def helpNormalize(X): return (X - X.mean()) / np.std(X) X_train = X_train.apply(helpNormalize, axis=1) X_test = X_test.apply(helpNormalize, axis=1) # Convolutional Operation X_train = np.reshape(np.array(X_train), (X_train.shape[0], inputSHAPEwidth, inputSHAPElenth)) X_test = np.reshape(np.array(X_test), (X_test.shape[0], inputSHAPEwidth, inputSHAPElenth)) if verbose: print('Shapes of X in training set', X_train.shape, 'Shapes of X in test set:', X_test.shape) # Filter filter1 = pd.DataFrame(filter1) # Convolutional Operation (called Yins to make it different from default function) def YinsConvOp(incidence=0, X=X_train, unitFilter=filter1): filterHeight = unitFilter.shape[0] filterWidth = unitFilter.shape[1] unitSample = [] for i in range(pd.DataFrame(X[incidence]).shape[0] - (filterHeight - 1)): for j in range(pd.DataFrame(X[incidence]).shape[1] - (filterWidth - 1)): unitSample.append( np.multiply( pd.DataFrame(X[incidence]).iloc[i:(i + filterWidth), j:(j + filterHeight)], unitFilter).sum(axis=1).sum()) return unitSample # Apply Operation X_train_new = pd.DataFrame([YinsConvOp(incidence=0, X=X_train, unitFilter=filter1)]) for i in range(1, X_train.shape[0]): X_train_new = pd.concat([ X_train_new, pd.DataFrame([YinsConvOp(incidence=i, X=X_train, unitFilter=filter1)]) ]) # For Prediction X_test_new = pd.DataFrame([YinsConvOp(incidence=0, X=X_test, unitFilter=filter1)]) for i in range(1, X_test.shape[0]): X_test_new = pd.concat([ X_test_new, pd.DataFrame([YinsConvOp(incidence=i, X=X_test, unitFilter=filter1)]) ]) # Output return { 'Data': [X_train, y_train, X_test, y_test, X_train_new, X_test_new], 'Shape': [X_train.shape, len(y_train), X_test.shape, len(y_test)] } # End function # Define function def C1NN3_Classifier( X_train, y_train, X_test, y_test, inputSHAPEwidth=10, inputSHAPElenth=3, filter1 = [[1,0], [0,1]], l1_act='relu', l2_act='relu', l3_act='softmax', layer1size=128, layer2size=64, layer3size=2, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], num_of_epochs=10, plotROC=True, verbose=True): """ MANUAL: # One can use the following example. house_sales = pd.read_csv('../data/kc_house_data.csv') house_sales.head(3) house_sales = house_sales.drop(['id', 'zipcode', 'lat', 'long', 'date'], axis=1) house_sales.info() X_all = house_sales.drop('price', axis=1) y = np.log(house_sales.price) y_binary = (y > y.mean()).astype(int) y_binary X_all.head(3), y_binary.head(3) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_all, y_binary, test_size=0.3, random_state=0) print(X_train.shape, X_test.shape) print(y_train) testresult = NN3_Classifier(X_train, y_train, X_test, y_test, l1_act='relu', l2_act='relu', l3_act='softmax', layer1size=128, layer2size=64, layer3size=2, num_of_epochs=50) """ # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt if verbose: print("Tensorflow Version:") print(tf.__version__) # Normalize # Helper Function def helpNormalize(X): return (X - X.mean()) / np.std(X) X_train = X_train.apply(helpNormalize, axis=1) X_test = X_test.apply(helpNormalize, axis=1) # Convolutional Operation X_train = np.reshape(np.array(X_train), (X_train.shape[0], inputSHAPEwidth, inputSHAPElenth)) X_test = np.reshape(np.array(X_test), (X_test.shape[0], inputSHAPEwidth, inputSHAPElenth)) if verbose: print('Shapes of X in training set', X_train.shape, 'Shapes of X in test set:', X_test.shape) # Filter filter1 = pd.DataFrame(filter1) # Convolutional Operation (called Yins to make it different from default function) def YinsConvOp(incidence=0, X=X_train, unitFilter=filter1): filterHeight = unitFilter.shape[0] filterWidth = unitFilter.shape[1] unitSample = [] for i in range(pd.DataFrame(X[incidence]).shape[0] - (filterHeight - 1)): for j in range(pd.DataFrame(X[incidence]).shape[1] - (filterWidth - 1)): unitSample.append( np.multiply( pd.DataFrame(X[incidence]).iloc[i:(i + filterWidth), j:(j + filterHeight)], unitFilter).sum(axis=1).sum()) return unitSample # Apply Operation X_train_new = pd.DataFrame([YinsConvOp(incidence=0, X=X_train, unitFilter=filter1)]) for i in range(1, X_train.shape[0]): X_train_new = pd.concat([ X_train_new, pd.DataFrame([YinsConvOp(incidence=i, X=X_train, unitFilter=filter1)]) ]) # Model model = tf.keras.Sequential([ keras.layers.Dense(units=layer1size, input_shape=[X_train_new.shape[1]]), keras.layers.Dense(units=layer2size, activation=l2_act), keras.layers.Dense(units=layer3size, activation=l3_act) ]) if verbose: print("Summary of Network Architecture:") model.summary() # Compile model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # Model Fitting model.fit(X_train_new, y_train, epochs=num_of_epochs) # Prediction X_test_new = pd.DataFrame([YinsConvOp(incidence=0, X=X_test, unitFilter=filter1)]) for i in range(1, X_test.shape[0]): X_test_new = pd.concat([ X_test_new, pd.DataFrame([YinsConvOp(incidence=i, X=X_test, unitFilter=filter1)]) ]) predictions = model.predict(X_test_new) # Performance from sklearn.metrics import confusion_matrix import numpy as np import pandas as pd y_test_hat = np.argmax(predictions, axis=1) confusion = confusion_matrix(y_test, y_test_hat) confusion = pd.DataFrame(confusion) test_acc = sum(np.diag(confusion)) / sum(sum(np.array(confusion))) # Print if verbose: print("Confusion Matrix:") print(confusion) print("Test Accuracy:", round(test_acc, 4)) # ROCAUC if layer3size == 2: from sklearn.metrics import roc_curve, auc, roc_auc_score fpr, tpr, thresholds = roc_curve(y_test, y_test_hat) areaUnderROC = auc(fpr, tpr) resultsROC = { 'false positive rate': fpr, 'true positive rate': tpr, 'thresholds': thresholds, 'auc': round(areaUnderROC, 3) } if verbose: print(f'Test AUC: {areaUnderROC}') if plotROC: plt.figure() plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve') plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic: \ Area under the curve = {0:0.2f}'.format(areaUnderROC)) plt.legend(loc="lower right") plt.show() else: resultsROC = "Response not in two classes." # Output return { 'Data': [X_train, y_train, X_test, y_test, X_train_new, X_test_new], 'Shape': [X_train.shape, len(y_train), X_test.shape, len(y_test)], 'Model Fitting': model, 'Performance': { 'response': {'response': y_test, 'estimated response': y_test_hat}, 'test_acc': test_acc, 'confusion': confusion }, 'Results of ROC': resultsROC } # End of function # Define function def C2NN3_Classifier( X_train, y_train, X_test, y_test, inputSHAPEwidth1=10, inputSHAPElenth1=3, inputSHAPEwidth2=8, inputSHAPElenth2=9, filter1 = [[1,0], [0,1]], filter2 = [[1,0], [0,1]], l1_act='relu', l2_act='relu', l3_act='softmax', layer1size=128, layer2size=64, layer3size=2, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], num_of_epochs=10, plotROC=True, verbose=True, printManual=False): if printManual: print("--------------------------------------------------------------------") print("MANUAL:") print( """ # One can use the following example. house_sales = pd.read_csv('../data/kc_house_data.csv') house_sales.head(3) house_sales = house_sales.drop(['id', 'zipcode', 'lat', 'long', 'date'], axis=1) house_sales.info() X_all = house_sales.drop('price', axis=1) y = np.log(house_sales.price) y_binary = (y > y.mean()).astype(int) y_binary X_all.head(3), y_binary.head(3) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_all, y_binary, test_size=0.3, random_state=0) print(X_train.shape, X_test.shape) print(y_train) testresult = C2NN3_Classifier( X_train, y_train, X_test, y_test, inputSHAPEwidth1=10, inputSHAPElenth1=3, inputSHAPEwidth2=8, inputSHAPElenth2=9, filter1 = [[1,0], [0,1]], filter2 = [[1,0], [0,1]], l1_act='relu', l2_act='relu', l3_act='softmax', layer1size=128, layer2size=64, layer3size=2, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], num_of_epochs=10, plotROC=True, verbose=True, printManual=True """ ) print("--------------------------------------------------------------------") # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import time if verbose: print("Tensorflow Version:") print(tf.__version__) # Normalize # Helper Function def helpNormalize(X): return (X - X.mean()) / np.std(X) X_train = X_train.apply(helpNormalize, axis=1) X_test = X_test.apply(helpNormalize, axis=1) # Convolutional Operation X_train = np.reshape(np.array(X_train), (X_train.shape[0], inputSHAPEwidth1, inputSHAPElenth1)) X_test = np.reshape(np.array(X_test), (X_test.shape[0], inputSHAPEwidth1, inputSHAPElenth1)) if verbose: print('Shapes of X in training set', X_train.shape, 'Shapes of X in test set:', X_test.shape) # Filter filter1 = pd.DataFrame(filter1) filter2 = pd.DataFrame(filter2) # Convolutional Operation (called Yins to make it different from default function) def YinsConvOp(incidence=0, X=X_train, unitFilter=filter1): filterHeight = unitFilter.shape[0] filterWidth = unitFilter.shape[1] unitSample = [] for i in range(
pd.DataFrame(X[incidence])
pandas.DataFrame
##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ## Soft sensing via XGBoost on UCI Wastewater Treatment Plant data ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%% read data import pandas as pd data_raw =
pd.read_csv('water-treatment.data', header=None,na_values="?" )
pandas.read_csv
# coding: utf8 from .tsv_utils import complementary_list, add_demographics, baseline_df, chi2 from ..deep_learning.iotools import return_logger from scipy.stats import ttest_ind import shutil import pandas as pd from os import path import numpy as np import os import logging sex_dict = {'M': 0, 'F': 1} def create_split(diagnosis, diagnosis_df, merged_df, n_test, age_name="age", pval_threshold_ttest=0.80, t_val_chi2_threshold=0.0642, logger=None): """ Split data at the subject-level in training and test set with equivalent age and sex distributions :param diagnosis: (str) diagnosis on which the split is done :param diagnosis_df: DataFrame with columns including ['participant_id', 'session_id', 'diagnosis'] :param merged_df: DataFrame with columns including ['age', 'sex'] and containing the same sessions as diagnosis_df :param n_test: (float) If >= 1 number of subjects to put in the test set. If < 1 proportion of subjects to put in the test set. :param age_name: (str) label of the age column in the dataset. :param pval_threshold_ttest: (float) threshold for the t-test on age :param t_val_chi2_threshold: (float) threshold for the chi2 test on sex :param logger: Logger object from logging library :return: train_df (DataFrame) subjects in the train set test_df (DataFrame) subjects in the test set """ if logger is None: logger = logging logger.basicConfig(level=logging.DEBUG) diagnosis_baseline_df = baseline_df(diagnosis_df, diagnosis) baseline_demographics_df = add_demographics(diagnosis_baseline_df, merged_df, diagnosis) if n_test >= 1: n_test = int(n_test) else: n_test = int(n_test * len(diagnosis_baseline_df)) sex = list(baseline_demographics_df.sex.values) age = list(baseline_demographics_df[age_name].values) idx = np.arange(len(diagnosis_baseline_df)) flag_selection = True n_try = 0 while flag_selection: idx_test = np.random.choice(idx, size=n_test, replace=False) idx_test.sort() idx_train = complementary_list(idx, idx_test) # Find the a similar distribution for the age variable if len(set(age)) != 1: age_test = [float(age[idx]) for idx in idx_test] age_train = [float(age[idx]) for idx in idx_train] t_age, p_age = ttest_ind(age_test, age_train) else: p_age = 1 # Find the a similar distribution for the sex variable if len(set(sex)) != 1: sex_test = [sex_dict[sex[idx]] for idx in idx_test] sex_train = [sex_dict[sex[idx]] for idx in idx_train] T_sex = chi2(sex_test, sex_train) else: T_sex = 0 if T_sex < t_val_chi2_threshold and p_age > pval_threshold_ttest: flag_selection = False test_df = baseline_demographics_df.loc[idx_test] train_df = baseline_demographics_df.loc[idx_train] n_try += 1 logger.info("Split for diagnosis %s was found after %i trials" % (diagnosis, n_try)) return train_df, test_df def split_diagnoses(merged_tsv, formatted_data_path, n_test=100, age_name="age", subset_name="test", MCI_sub_categories=True, t_val_threshold=0.0642, p_val_threshold=0.80, verbosity=0): """ Performs a single split for each label independently on the subject level. The train folder will contain two lists per diagnosis (baseline and longitudinal), whereas the test folder will only include the list of baseline sessions. The age and sex distributions between the two sets must be non-significant (according to T-test and chi-square). Args: merged_tsv (str): Path to the file obtained by the command clinica iotools merge-tsv. formatted_data_path (str): Path to the folder containing data extracted by clinicadl tsvtool getlabels. n_test (float): If > 1, number of subjects to put in set with name 'subset_name'. If < 1, proportion of subjects to put in set with name 'subset_name'. If 0, no training set is created and the whole dataset is considered as one set with name 'subset_name'. age_name (str): Label of the age column in the dataset. subset_name (str): Name of the subset that is complementary to train. MCI_sub_categories (bool): If True, manages MCI sub-categories to avoid data leakage. t_val_threshold (float): The threshold used for the chi2 test on sex distributions. p_val_threshold (float): The threshold used for the T-test on age distributions. verbosity (int): level of verbosity. Returns: writes three files per <label>.tsv file present in formatted_data_path: - formatted_data_path/train/<label>.tsv - formatted_data_path/train/<label>_baseline.tsv - formatted_data_path/<subset_name>/<label>_baseline.tsv """ logger = return_logger(verbosity, "split") # Read files merged_df = pd.read_csv(merged_tsv, sep='\t') merged_df.set_index(['participant_id', 'session_id'], inplace=True) results_path = formatted_data_path train_path = path.join(results_path, 'train') if path.exists(train_path): shutil.rmtree(train_path) if n_test > 0: os.makedirs(train_path) test_path = path.join(results_path, subset_name) if path.exists(test_path): shutil.rmtree(test_path) os.makedirs(test_path) diagnosis_df_paths = os.listdir(results_path) diagnosis_df_paths = [x for x in diagnosis_df_paths if x.endswith('.tsv')] diagnosis_df_paths = [x for x in diagnosis_df_paths if not x.endswith('_baseline.tsv')] MCI_special_treatment = False if 'MCI.tsv' in diagnosis_df_paths and n_test > 0: if MCI_sub_categories: diagnosis_df_paths.remove('MCI.tsv') MCI_special_treatment = True elif 'sMCI.tsv' in diagnosis_df_paths or 'pMCI.tsv' in diagnosis_df_paths: logger.warning("MCI special treatment was deactivated though MCI subgroups were found." "Be aware that it may cause data leakage in transfer learning tasks.") # The baseline session must be kept before or we are taking all the sessions to mix them for diagnosis_df_path in diagnosis_df_paths: diagnosis_df = pd.read_csv(path.join(results_path, diagnosis_df_path), sep='\t') diagnosis = diagnosis_df_path.split('.')[0] if n_test > 0: train_df, test_df = create_split(diagnosis, diagnosis_df, merged_df, age_name=age_name, n_test=n_test, t_val_chi2_threshold=t_val_threshold, pval_threshold_ttest=p_val_threshold, logger=logger) # Save baseline splits train_df = train_df[['participant_id', 'session_id', 'diagnosis']] train_df.to_csv(path.join(train_path, str(diagnosis) + '_baseline.tsv'), sep='\t', index=False) test_df = test_df[['participant_id', 'session_id', 'diagnosis']] test_df.to_csv(path.join(test_path, str(diagnosis) + '_baseline.tsv'), sep='\t', index=False) # Retrieve all sessions for the training set complete_train_df = pd.DataFrame() for idx in train_df.index.values: subject = train_df.loc[idx, 'participant_id'] subject_df = diagnosis_df[diagnosis_df.participant_id == subject] complete_train_df = pd.concat([complete_train_df, subject_df]) complete_train_df.to_csv(path.join(train_path, str(diagnosis) + '.tsv'), sep='\t', index=False) else: diagnosis_baseline_df = baseline_df(diagnosis_df, diagnosis) test_df = diagnosis_baseline_df[['participant_id', 'session_id', 'diagnosis']] test_df.to_csv(path.join(test_path, str(diagnosis) + '_baseline.tsv'), sep='\t', index=False) if MCI_special_treatment: # Extraction of MCI subjects without intersection with the sMCI / pMCI train diagnosis_df = pd.read_csv(path.join(results_path, 'MCI.tsv'), sep='\t') MCI_df = diagnosis_df.set_index(['participant_id', 'session_id']) supplementary_diagnoses = [] logger.debug('Before subjects removal for MCI special treatment') sub_df = diagnosis_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('%i subjects, %i scans' % (len(sub_df), len(diagnosis_df))) if 'sMCI.tsv' in diagnosis_df_paths: sMCI_baseline_train_df = pd.read_csv(path.join(train_path, 'sMCI_baseline.tsv'), sep='\t') sMCI_baseline_test_df = pd.read_csv(path.join(test_path, 'sMCI_baseline.tsv'), sep='\t') sMCI_baseline_df = pd.concat([sMCI_baseline_train_df, sMCI_baseline_test_df]) sMCI_baseline_df.reset_index(drop=True, inplace=True) for idx in sMCI_baseline_df.index.values: subject = sMCI_baseline_df.loc[idx, 'participant_id'] MCI_df.drop(subject, inplace=True) supplementary_diagnoses.append('sMCI') logger.debug('Removed %i subjects based on sMCI label' % len(sMCI_baseline_df)) sub_df = MCI_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('%i subjects, %i scans' % (len(sub_df), len(MCI_df))) if 'pMCI.tsv' in diagnosis_df_paths: pMCI_baseline_train_df = pd.read_csv(path.join(train_path, 'pMCI_baseline.tsv'), sep='\t') pMCI_baseline_test_df = pd.read_csv(path.join(test_path, 'pMCI_baseline.tsv'), sep='\t') pMCI_baseline_df = pd.concat([pMCI_baseline_train_df, pMCI_baseline_test_df]) pMCI_baseline_df.reset_index(drop=True, inplace=True) for idx in pMCI_baseline_df.index.values: subject = pMCI_baseline_df.loc[idx, 'participant_id'] MCI_df.drop(subject, inplace=True) supplementary_diagnoses.append('pMCI') logger.debug('Removed %i subjects based on pMCI label' % len(pMCI_baseline_df)) sub_df = MCI_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('%i subjects, %i scans' % (len(sub_df), len(MCI_df))) if len(supplementary_diagnoses) == 0: raise ValueError('The MCI_sub_categories flag is not needed as there are no intersections with' 'MCI subcategories.') # Construction of supplementary train supplementary_train_df = pd.DataFrame() for diagnosis in supplementary_diagnoses: sup_baseline_train_df = pd.read_csv(path.join(train_path, diagnosis + '_baseline.tsv'), sep='\t') supplementary_train_df = pd.concat([supplementary_train_df, sup_baseline_train_df]) sub_df = supplementary_train_df.reset_index().groupby('participant_id')['session_id'].nunique() logger.debug('supplementary_train_df %i subjects, %i scans' % (len(sub_df), len(supplementary_train_df))) supplementary_train_df.reset_index(drop=True, inplace=True) supplementary_train_df = add_demographics(supplementary_train_df, merged_df, 'MCI') # MCI selection MCI_df.reset_index(inplace=True) diagnosis_baseline_df = baseline_df(MCI_df, 'MCI') baseline_demographics_df = add_demographics(diagnosis_baseline_df, merged_df, 'MCI') complete_diagnosis_baseline_df = baseline_df(diagnosis_df, 'MCI') if n_test > 1: n_test = int(n_test) else: n_test = int(n_test * len(complete_diagnosis_baseline_df)) sex = list(baseline_demographics_df.sex.values) age = list(baseline_demographics_df[age_name].values) sup_train_sex = list(supplementary_train_df.sex.values) sup_train_age = list(supplementary_train_df[age_name].values) sup_train_sex = [sex_dict[x] for x in sup_train_sex] sup_train_age = [float(x) for x in sup_train_age] idx = np.arange(len(diagnosis_baseline_df)) flag_selection = True n_try = 0 while flag_selection: idx_test = np.random.choice(idx, size=n_test, replace=False) idx_test.sort() idx_train = complementary_list(idx, idx_test) # Find the value for different demographical values (age, MMSE, sex) age_test = [float(age[idx]) for idx in idx_test] age_train = [float(age[idx]) for idx in idx_train] + sup_train_age sex_test = [sex_dict[sex[idx]] for idx in idx_test] sex_train = [sex_dict[sex[idx]] for idx in idx_train] + sup_train_sex t_age, p_age = ttest_ind(age_test, age_train) T_sex = chi2(sex_test, sex_train) if T_sex < t_val_threshold and p_age > p_val_threshold: flag_selection = False MCI_baseline_test_df = baseline_demographics_df.loc[idx_test] train_df = baseline_demographics_df.loc[idx_train] MCI_baseline_train_df = pd.concat([train_df, supplementary_train_df]) logger.debug('Supplementary train df', len(supplementary_train_df)) MCI_baseline_train_df.reset_index(drop=True, inplace=True) n_try += 1 logger.info('Split for diagnosis MCI was found after %i trials' % n_try) # Write selection of MCI MCI_baseline_train_df = MCI_baseline_train_df[['participant_id', 'session_id', 'diagnosis']] MCI_baseline_train_df.to_csv(path.join(train_path, 'MCI_baseline.tsv'), sep='\t', index=False) MCI_baseline_test_df = MCI_baseline_test_df[['participant_id', 'session_id', 'diagnosis']] MCI_baseline_test_df.to_csv(path.join(test_path, 'MCI_baseline.tsv'), sep='\t', index=False) # Retrieve all sessions for the training set MCI_complete_train_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Authors: <NAME>, <NAME>, <NAME>, and <NAME> IHE Delft 2017 Contact: <EMAIL> Repository: https://github.com/gespinoza/hants Module: hants """ from __future__ import division import netCDF4 import pandas as pd import numpy as np import datetime import math import os import osr import glob from copy import deepcopy import matplotlib.pyplot as plt import warnings import gdal from joblib import Parallel, delayed def run_HANTS(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor = 0.001, epsg=4326, cores=1): ''' This function runs the python implementation of the HANTS algorithm. It takes a folder with geotiffs raster data as an input, creates a netcdf file, and optionally export the data back to geotiffs. ''' nc_paths = create_netcdf(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, Scaling_factor, epsg) args = [nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor] print('\tApply HANTS on tiles...') results = Parallel(n_jobs=cores)(delayed(HANTS_netcdf)(nc_path, args) for nc_path in nc_paths) if len(nc_paths) > 1: Merge_NC_Tiles(nc_paths, nc_path, start_date, end_date, latlim, lonlim, cellsize, epsg, Scaling_factor) return nc_path def create_netcdf(rasters_path, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, Scaling_factor, epsg=4326): ''' This function creates a netcdf file from a folder with geotiffs rasters to be used to run HANTS. ''' # Latitude and longitude lat_ls = pd.np.arange(latlim[0] + 0.5*cellsize, latlim[1], cellsize) lat_ls = lat_ls[::-1] # ArcGIS numpy lon_ls = pd.np.arange(lonlim[0] + 0.5*cellsize, lonlim[1], cellsize) lat_n = len(lat_ls) lon_n = len(lon_ls) spa_ref = Spatial_Reference(epsg) # ll_corner = [lonlim[0], latlim[0]] # Rasters dates_dt = pd.date_range(start_date, end_date, freq='D') dates_ls = [d.toordinal() for d in dates_dt] os.chdir(rasters_path) ras_ls = glob.glob('*.tif') # Create tile parts if (lat_n > 200 or lon_n > 200): lat_n_amount = np.maximum(1,int(np.floor(lat_n/100))) lon_n_amount = np.maximum(1,int(np.floor(lon_n/100))) nc_path_part_names = nc_path.split('.') nc_path_tiles = [] for lat_n_one in range(0, lat_n_amount): for lon_n_one in range(0, lon_n_amount): nc_path_tile = ''.join(nc_path_part_names[0] + "_h%03d_v%03d.nc" %(lon_n_one, lat_n_one)) nc_path_tiles = np.append(nc_path_tiles, nc_path_tile) else: nc_path_tiles = nc_path i = 0 # Loop over the nc_paths for nc_path_tile in nc_path_tiles: i += 1 if lat_n_amount > 1: lat_part = int(nc_path_tile[-6:-3]) lat_start = lat_part * 100 if int(lat_part) is not int(lat_n_amount-1): lat_end = int((lat_part + 1) * 100) else: lat_end = int(lat_n) else: lat_start = int(0) lat_end = int(lat_n) if lon_n_amount > 1: lon_part = int(nc_path_tile[-11:-8]) lon_start = int(lon_part * 100) if int(lon_part) is not int(lon_n_amount-1): lon_end = int((lon_part + 1) * 100) else: lon_end = int(lon_n) else: lon_start = int(0) lon_end = int(lon_n) # Define space dimention lat_range = lat_ls[lat_start:lat_end] lon_range = lon_ls[lon_start:lon_end] geo_ex = tuple([lon_range[0] - 0.5*cellsize, cellsize, 0, lat_range[0] + cellsize * 0.5, 0, -cellsize]) # Create netcdf file print('Creating netCDF file tile %s out of %s...' %(i,len(nc_path_tiles))) nc_file = netCDF4.Dataset(nc_path_tile, 'w', format="NETCDF4_CLASSIC") # Create Dimensions lat_dim = nc_file.createDimension('latitude', lat_end - lat_start) lon_dim = nc_file.createDimension('longitude', lon_end - lon_start) time_dim = nc_file.createDimension('time', len(dates_ls)) # Create Variables crso = nc_file.createVariable('crs', 'i4') crso.long_name = 'Lon/Lat Coords in WGS84' crso.standard_name = 'crs' crso.grid_mapping_name = 'latitude_longitude' crso.projection = spa_ref crso.longitude_of_prime_meridian = 0.0 crso.semi_major_axis = 6378137.0 crso.inverse_flattening = 298.257223563 crso.geo_reference = geo_ex lat_var = nc_file.createVariable('latitude', 'f8', ('latitude',)) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lon_var = nc_file.createVariable('longitude', 'f8', ('longitude',)) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' time_var = nc_file.createVariable('time', 'l', ('time',)) time_var.standard_name = 'time' time_var.calendar = 'gregorian' original_var = nc_file.createVariable('original_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) original_var.long_name = 'original_values' original_var.grid_mapping = 'crs' original_var.add_offset = 0.00 original_var.scale_factor = Scaling_factor original_var.set_auto_maskandscale(False) print('\tVariables created') # Fill in time and space dimention lat_var[:] = lat_range lon_var[:] = lon_range time_var[:] = dates_ls # Create memory example file # empty array empty_vec = pd.np.empty((lat_end - lat_start, lon_end - lon_start)) empty_vec[:] = -9999 * np.float(Scaling_factor) dest_ex = Save_as_MEM(empty_vec, geo_ex, str(epsg)) # Raster loop print('\tExtracting data from rasters...') for tt in range(len(dates_ls)): Date_now = datetime.datetime.fromordinal(dates_ls[tt]) yyyy = str(Date_now.year) mm = '%02d' %int(Date_now.month) dd = '%02d' %int(Date_now.day) # Raster ras = name_format.format(yyyy=yyyy,mm=mm,dd=dd) if ras in ras_ls: data_in = os.path.join(rasters_path, ras) dest = reproject_dataset_example(data_in, dest_ex) array_tt = dest.GetRasterBand(1).ReadAsArray() array_tt[array_tt<-9999] = -9999 * np.float(Scaling_factor) original_var[tt, :, :] = np.int_(array_tt * 1./np.float(Scaling_factor)) else: # Store values original_var[tt, :, :] = np.int_(empty_vec * 1./np.float(Scaling_factor)) # Close file nc_file.close() print('NetCDF %s file created' %i) # Return return nc_path_tiles def HANTS_netcdf(nc_path, args): ''' This function runs the python implementation of the HANTS algorithm. It takes the input netcdf file and fills the 'hants_values', 'combined_values', and 'outliers' variables. ''' nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor = args # Read netcdfs nc_file = netCDF4.Dataset(nc_path, 'r+', format="NETCDF4_CLASSIC") nc_file.set_fill_on() time_var = nc_file.variables['time'][:] original_values = nc_file.variables['original_values'][:] [ztime, rows, cols] = original_values.shape size_st = cols*rows values_hants = pd.np.empty((ztime, rows, cols)) outliers_hants = pd.np.empty((ztime, rows, cols)) values_hants[:] = pd.np.nan outliers_hants[:] = pd.np.nan # Additional parameters ni = len(time_var) ts = range(ni) # Loop counter = 1 #print('Running HANTS...') for m in range(rows): for n in range(cols): #print('\t{0}/{1}'.format(counter, size_st)) y = pd.np.array(original_values[:, m, n]) y[pd.np.isnan(y)] = -9999 [yr, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta) values_hants[:, m, n] = yr outliers_hants[:, m, n] = outliers counter = counter + 1 values_hants[values_hants<-9999] = -9999 * np.float(Scaling_factor) hants_var = nc_file.createVariable('hants_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) hants_var.long_name = 'hants_values' hants_var.grid_mapping = 'crs' hants_var.add_offset = 0.00 hants_var.scale_factor = Scaling_factor hants_var.set_auto_maskandscale(False) combined_var = nc_file.createVariable('combined_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) combined_var.long_name = 'combined_values' combined_var.grid_mapping = 'crs' combined_var.add_offset = 0.00 combined_var.scale_factor = Scaling_factor combined_var.set_auto_maskandscale(False) outliers_var = nc_file.createVariable('outliers', 'i4', ('time', 'latitude', 'longitude'), fill_value=-9999) outliers_var.long_name = 'outliers' outliers_var.grid_mapping = 'crs' hants_var[:,:,:]= np.int_(values_hants * 1./np.float(Scaling_factor)) outliers_var[:,:,:] = outliers_hants combined_var[:,:,:] = pd.np.where(outliers_hants, np.int_(values_hants * 1./np.float(Scaling_factor)), np.int_(original_values * 1./np.float(Scaling_factor))) # Close netcdf file nc_file.close() def HANTS_singlepoint(nc_path, point, nb, nf, HiLo, low, high, fet, dod, delta): ''' This function runs the python implementation of the HANTS algorithm for a single point (lat, lon). It plots the fit and returns a data frame with the 'original' and the 'hants' time series. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r', format="NETCDF4_CLASSIC") time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[pd.np.abs(lat - latx).argmin()] lon_closest = lon.flat[pd.np.abs(lon - lonx).argmin()] lat_i = pd.np.where(lat == lat_closest)[0][0] lon_i = pd.np.where(lon == lon_closest)[0][0] # Read values original_values = nc_file.variables['original_values'][:, lat_i, lon_i] # Additional parameters ni = len(time) ts = range(ni) # HANTS y = pd.np.array(original_values) y[pd.np.isnan(y)] = -9999 [hants_values, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta) # Plot top = 1.15*max(pd.np.nanmax(original_values), pd.np.nanmax(hants_values)) bottom = 1.15*min(pd.np.nanmin(original_values), pd.np.nanmin(hants_values)) ylim = [bottom, top] plt.plot(time, hants_values, 'r-', label='HANTS') plt.plot(time, original_values, 'b.', label='Original data') plt.ylim(ylim[0], ylim[1]) plt.legend(loc=4) plt.xlabel('time') plt.ylabel('values') plt.gcf().autofmt_xdate() plt.axes().set_title('Point: lon {0:.2f}, lat {1:.2f}'.format(lon_closest, lat_closest)) plt.axes().set_aspect(0.5*(time[-1] - time[0]).days/(ylim[1] - ylim[0])) plt.show() # Close netcdf file nc_file.close() # Data frame df = pd.DataFrame({'time': time, 'original': original_values, 'hants': hants_values}) # Return return df def HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta): ''' This function applies the Harmonic ANalysis of Time Series (HANTS) algorithm originally developed by the Netherlands Aerospace Centre (NLR) (http://www.nlr.org/space/earth-observation/). This python implementation was based on two previous implementations available at the following links: https://codereview.stackexchange.com/questions/71489/harmonic-analysis-of-time-series-applied-to-arrays http://nl.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-of-time-series--hants- ''' # Arrays mat = pd.np.zeros((min(2*nf+1, ni), ni)) # amp = np.zeros((nf + 1, 1)) # phi = np.zeros((nf+1, 1)) yr = pd.np.zeros((ni, 1)) outliers = pd.np.zeros((1, len(y))) # Filter sHiLo = 0 if HiLo == 'Hi': sHiLo = -1 elif HiLo == 'Lo': sHiLo = 1 nr = min(2*nf+1, ni) noutmax = ni - nr - dod # dg = 180.0/math.pi mat[0, :] = 1.0 ang = 2*math.pi*pd.np.arange(nb)/nb cs = pd.np.cos(ang) sn = pd.np.sin(ang) i = pd.np.arange(1, nf+1) for j in pd.np.arange(ni): index = pd.np.mod(i*ts[j], nb) mat[2 * i-1, j] = cs.take(index) mat[2 * i, j] = sn.take(index) p = pd.np.ones_like(y) bool_out = (y < low) | (y > high) p[bool_out] = 0 outliers[bool_out.reshape(1, y.shape[0])] = 1 nout = pd.np.sum(p == 0) if nout > noutmax: if pd.np.isclose(y, -9999).any(): ready = pd.np.array([True]) yr = y outliers = pd.np.zeros((y.shape[0]), dtype=int) outliers[:] = -9999 else: raise Exception('Not enough data points.') else: ready = pd.np.zeros((y.shape[0]), dtype=bool) nloop = 0 nloopmax = ni while ((not ready.all()) & (nloop < nloopmax)): nloop += 1 za = pd.np.matmul(mat, p*y) A = pd.np.matmul(pd.np.matmul(mat, pd.np.diag(p)), pd.np.transpose(mat)) A = A + pd.np.identity(nr)*delta A[0, 0] = A[0, 0] - delta zr = pd.np.linalg.solve(A, za) yr = pd.np.matmul(pd.np.transpose(mat), zr) diffVec = sHiLo*(yr-y) err = p*diffVec err_ls = list(err) err_sort = deepcopy(err) err_sort.sort() rankVec = [err_ls.index(f) for f in err_sort] maxerr = diffVec[rankVec[-1]] ready = (maxerr <= fet) | (nout == noutmax) if (not ready): i = ni - 1 j = rankVec[i] while ((p[j]*diffVec[j] > 0.5*maxerr) & (nout < noutmax)): p[j] = 0 outliers[0, j] = 1 nout += 1 i -= 1 if i == 0: j = 0 else: j = 1 return [yr, outliers] def plot_point(nc_path, point, ylim=None): ''' This function plots the original time series and the HANTS time series. It can be used to assess the fit. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r', format="NETCDF4_CLASSIC") time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[
pd.np.abs(lat - latx)
pandas.np.abs
from __future__ import print_function, division from warnings import warn, filterwarnings from matplotlib import rcParams import matplotlib.pyplot as plt from collections import OrderedDict import random import sys import pandas as pd import numpy as np import h5py import os import pickle from keras.models import Sequential from keras.layers import Dense, Conv1D, GRU, Bidirectional, Dropout from keras.utils import plot_model from sklearn.model_selection import train_test_split from keras.callbacks import ModelCheckpoint import keras.backend as K from nilmtk.utils import find_nearest from nilmtk.feature_detectors import cluster from nilmtk.disaggregate import Disaggregator from nilmtk.datastore import HDFDataStore import random import json from .util import * random.seed(10) np.random.seed(10) class WindowGRU(Disaggregator): def __init__(self, params): self.MODEL_NAME = "WindowGRU" self.save_model_path = params.get('save-model-path',None) self.load_model_path = params.get('pretrained-model-path',None) self.chunk_wise_training = params.get('chunk_wise_training',False) self.sequence_length = params.get('sequence_length',99) self.n_epochs = params.get('n_epochs', 10) self.models = OrderedDict() self.max_val = 800 self.batch_size = params.get('batch_size',512) def partial_fit(self,train_main,train_appliances,do_preprocessing=True,**load_kwargs): if do_preprocessing: train_main, train_appliances = self.call_preprocessing(train_main, train_appliances, 'train') train_main = pd.concat(train_main,axis=0).values train_main = train_main.reshape((-1,self.sequence_length,1)) new_train_appliances = [] for app_name, app_df in train_appliances: app_df = pd.concat(app_df,axis=0).values app_df = app_df.reshape((-1,1)) new_train_appliances.append((app_name, app_df)) train_appliances = new_train_appliances for app_name, app_df in train_appliances: if app_name not in self.models: print("First model training for ", app_name) self.models[app_name] = self.return_network() else: print("Started re-training model for ", app_name) model = self.models[app_name] mains = train_main.reshape((-1,self.sequence_length,1)) app_reading = app_df.reshape((-1,1)) filepath = 'windowgru-temp-weights-'+str(random.randint(0,100000))+'.h5' checkpoint = ModelCheckpoint(filepath,monitor='val_loss',verbose=1,save_best_only=True,mode='min') train_x, v_x, train_y, v_y = train_test_split(mains, app_reading, test_size=.15,random_state=10) model.fit(train_x,train_y,validation_data=[v_x,v_y],epochs=self.n_epochs,callbacks=[checkpoint],shuffle=True,batch_size=self.batch_size) model.load_weights(filepath) def disaggregate_chunk(self,test_main_list,model=None,do_preprocessing=True): if model is not None: self.models = model if do_preprocessing: test_main_list = self.call_preprocessing( test_main_list, submeters_lst=None, method='test') test_predictions = [] for mains in test_main_list: disggregation_dict = {} mains = mains.values.reshape((-1,self.sequence_length,1)) for appliance in self.models: prediction = self.models[appliance].predict(mains,batch_size=self.batch_size) prediction = np.reshape(prediction, len(prediction)) valid_predictions = prediction.flatten() valid_predictions = np.where(valid_predictions > 0, valid_predictions, 0) valid_predictions = self._denormalize(valid_predictions, self.max_val) df = pd.Series(valid_predictions) disggregation_dict[appliance] = df results = pd.DataFrame(disggregation_dict, dtype='float32') test_predictions.append(results) return test_predictions def call_preprocessing(self, mains_lst, submeters_lst, method): max_val = self.max_val if method == 'train': print("Training processing") processed_mains = [] for mains in mains_lst: # add padding values padding = [0 for i in range(0, self.sequence_length - 1)] paddf =
pd.DataFrame({mains.columns.values[0]: padding})
pandas.DataFrame
from pathlib import Path import numpy as np import pandas as pd import torch import cv2 import os from PIL import Image from .base_dataset import BaseDataset from .constants import COL_PATH, COL_STUDY class SUDataset(BaseDataset): def __init__(self, data_dir, transform_args, split, is_training, tasks_to, study_level, frontal_lateral=False, frac=1, subset=None, toy=False, return_info_dict=False): """ SU Dataset Args: data_dir (string): Name of the root data directory. transform_args (Namespace): Args for data transforms split (string): Name of the CSV to load. is_training (bool): True if training, False otherwise. tasks_to (string): Name of the sequence of tasks. study_level (bool): If true, each example is a study rather than an individual image. subset: String that specified as subset that should be loaded: AP, PA or Lateral. return_info_dict: If true, return a dict of info with each image. Notes: When study_level is true, the study folder is set as the index of the DataFrame. To retrieve images from a study, .loc[study_folder] is used. """ dataset_task_sequence = 'stanford' super().__init__(data_dir, transform_args, split, is_training, 'stanford', tasks_to, dataset_task_sequence) self.subset = subset self.study_level = study_level self.return_info_dict = return_info_dict df = self._load_df(self.data_dir, split, subset, self.original_tasks) self.studies = df[COL_STUDY].drop_duplicates() if toy and split == 'train': self.studies = self.studies.sample(n=10) df = df[df[COL_STUDY].isin(self.studies)] df = df.reset_index(drop=True) # Sample a fraction of the data for training. if frac != 1 and is_training: self.studies = self.studies.sample(frac=frac) df = df[df[COL_STUDY].isin(self.studies)] df = df.reset_index(drop=True) # Set Study folder as index. if study_level: self._set_study_as_index(df) # Get labels and image paths. self.frontal_lateral = frontal_lateral self.labels = self._get_labels(df) self.img_paths = self._get_paths(df) # Set class weights. self._set_class_weights(self.labels) @staticmethod def _load_df(data_dir, split, subset, original_tasks): csv_name = f"{split}.csv" if not split.endswith(".csv") else split chexpert_data_dir = "CheXpert-v1.0" codalab_data_dir = "CodaLab" uncertainty_data_dir = "Uncertainty" if 'test' in split: csv_path = data_dir / codalab_data_dir / f"{split}_image_paths.csv" specific_data_dir = codalab_data_dir elif 'uncertainty' in split: csv_path = data_dir / uncertainty_data_dir / csv_name specific_data_dir = chexpert_data_dir else: csv_path = data_dir / chexpert_data_dir / csv_name specific_data_dir = chexpert_data_dir df = pd.read_csv(csv_path) df[COL_PATH] = df[COL_PATH].apply(lambda x: data_dir / x.replace(str(chexpert_data_dir), str(specific_data_dir))) df[COL_STUDY] = df[COL_PATH].apply(lambda p: str(p.parent)) if 'test' in split: csv_name = "test_groundtruth.csv" gt_df =
pd.read_csv(data_dir / codalab_data_dir / csv_name)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Jul 8 14:37:03 2019 @author: ppradeep """ import os clear = lambda: os.system('cls') clear() ## Import packages import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import pickle # Classifiers from sklearn.ensemble import RandomForestRegressor from sklearn import svm, preprocessing path = 'C:/Users/Administrator/OneDrive/Profile/Desktop/HTTK/' #path = 'Z:/Projects/HTTK/' #%% # Normalize descriptors: Transform variables to mean=0, variance=1 def normalizeDescriptors(X): scaler = preprocessing.StandardScaler().fit(X) transformed = scaler.transform(X) x_norm = pd.DataFrame(transformed, index = X.index) x_norm.columns = X.columns return(scaler, x_norm) #%% ########################################################################### ########################################################################### ## Build the final models ########################################################################### ########################################################################### ####----------------------------------------------------------------------------------------------------------------- ## Read training data ####----------------------------------------------------------------------------------------------------------------- data1 = pd.read_csv(path+'data/Prachi-112117.txt', index_col = 'CAS').loc[:,['All.Compound.Names', 'Human.Funbound.plasma', 'Human.Clint']] data1.rename(columns={'All.Compound.Names' : 'Name'}, inplace = True) data2 = pd.read_excel(path+'data/AFFINITY_Model_Results-2018-02-27.xlsx', index_col = 'CAS').loc[:,['Name','Fup.Med']] data2.rename(columns={'Name': 'All.Compound.Names','Fup.Med':'Human.Funbound.plasma'}, inplace = True) data3 = pd.read_excel(path+'data/CLint-2018-03-01-Results.xlsx', index_col = 'CAS').loc[:,['Name','CLint.1uM.Median']] data3.rename(columns={'Name': 'All.Compound.Names','CLint.1uM.Median':'Human.Clint'}, inplace = True) #%% ####----------------------------------------------------------------------------------------------------------------- ## Read training fingerprints ####----------------------------------------------------------------------------------------------------------------- ## Chemotyper FPs: 779 Toxprints df_chemotypes = pd.read_csv(path+'data/toxprint.txt', sep = ';', index_col='M_NAME') #Rename 'M_NAME' to 'CAS' in data file ## PubChem FPs: 881 bits df_pubchem = pd.read_csv(path+'data/pubchem.txt', index_col='row ID') ####----------------------------------------------------------------------------------------------------------------- ## Read continuous descriptors ####----------------------------------------------------------------------------------------------------------------- ### OPERA descriptors df_opera =
pd.read_csv(path+'data/OPERA2.5_Pred.csv', index_col='MoleculeID')
pandas.read_csv
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result =
concat(frames)
pandas.concat
import numpy as np from .helpers import scale, scale_clean #from numba import jit import pandas as pd defs = { 'r9.4': { 'ed_params': { 'window_lengths': [3, 6], 'thresholds': [1.4, 1.1], 'peak_height': 0.2 } }, 'r9': { 'ed_params': { 'window_lengths': [6, 12], 'thresholds': [2.0, 1.1], 'peak_height': 1.2 } }, 'r9.5b': { 'ed_params': { 'window_lengths': [4, 5], 'thresholds': [1.4, 1.0], 'peak_height': 1 } }, 'r9.5': { 'ed_params': { 'window_lengths': [4, 6], 'thresholds': [1.4, 1.0], 'peak_height': 0.65 } }, 'rf': { 'ed_params': { 'window_lengths': [4, 6], 'thresholds': [1.4, 1.1], # [1.4, 1.1], 'peak_height': 1.2 # 1.2 } } } def smooth(ser, sc): return np.array(pd.Series(ser).rolling(sc, min_periods=1, center=True).mean()) def find_raw(raw, maxi=1000, safe=10): m = raw d2 = smooth(np.sqrt((m[1:]-m[:-1])**2), 1000) return min(np.argmax(d2[safe:] > 3)+safe, len(m)-1), min(len(d2)-np.argmax(d2[::-1] > 3)+safe, len(m)-1) def get_events(h5, already_detected=True, chemistry="r9.5", window_size=None, old=True, verbose=True, about_max_len=None, extra=False, tomb=False, bigf=False): if tomb: if bigf: racine = "BaseCalled_template/" else: racine = "Analyses/RawGenomeCorrected_000/BaseCalled_template/" try: # print(h5.filename) # print() if bigf: if "Event" in h5[racine].keys(): e = h5[racine+"Event"] else: e = h5[racine + "Events"] else: e = h5[racine+"Events"] # print(e) except: """ def printname(name, two=""): print(name, two) try: print(name, name.value) except: pass print("failed") print(h5[racine]) h5[racine].visit(printname) """ return None, None, None #e = list(e) return {"mean": e["norm_mean"], "bases": np.array(e["base"], dtype=str)},\ dict(h5[racine].attrs),\ dict(h5[racine+"/Alignment"].attrs) if already_detected: try: e = h5["Analyses/Basecall_RNN_1D_000/BaseCalled_template/Events"] return e except: pass try: e = h5["Analyses/Basecall_1D_000/BaseCalled_template/Events"] return e except: pass else: try: if not extra: return h5["Segmentation_Rep/events"] else: raw, sl = get_raw(h5) s, e = find_raw(raw) return h5["Segmentation_Rep/events"], raw[s:e], sl except: # print("la") return extract_events(h5, chemistry, window_size, old=old, verbose=verbose, about_max_len=about_max_len) def find2(event, maxi=1000, safe=10): m = event["mean"] d2 = np.sqrt((m[1:]-m[:-1])**2) return min(np.argmax(d2[safe:] > 30)+safe, len(m)-1), min(len(d2)-np.argmax(d2[::-1] > 30)+safe, len(m)-1) def scale_ratio(x): x -= np.percentile(x, 25) #scale = np.percentile(x, 75) - np.percentile(x, 25) # print(scale,np.percentile(x, 75) , np.percentile(x, 25)) #x /= scale x /= 20 if np.sum(x > 10) > len(x) * 0.05: print("Warning lotl of rare events") print(np.sum(x > 10 * scale), len(x)) x[x > 5] = 0 x[x < -5] = 0 return x def get_raw(h5): # print(h5["Raw/Reads"].keys()) rk = list(h5["Raw/Reads"].keys())[0] raw = h5["Raw/Reads"][rk]["Signal"] # print(list(h5["Raw/Reads"].keys())) meta = h5["UniqueGlobalKey/channel_id"].attrs offset = meta["offset"] raw_unit = meta['range'] / meta['digitisation'] raw = (raw + offset) * raw_unit sl = meta["sampling_rate"] # print(tracking return raw, sl def find_stall_old(events, threshold): count_above = 0 start_ev_ind = 0 for ev_ind, event in enumerate(events[:100]): if event['mean'] <= threshold: count_above = 0 else: count_above += 1 if count_above == 2: start_ev_ind = ev_ind - 1 break new_start = 0 count = 0 for idx in range(start_ev_ind, len(events)): if events['mean'][idx] > threshold: count = 0 else: count += 1 if count == 3: new_start = idx - 2 break return new_start def find_stall(events, start_threshold, end_threshold, raw, sampling_rate, max_under_threshold=10): std =
pd.Series(raw)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # Converting output files from "11c - Electric Futures Simulations BIFACIAL (PVSC) CLEANUP" # ## into OpenEi format for the various graphs shown on the PVSC PVICE wiki page # In[8]: import PV_ICE import numpy as np import pandas as pd import os,sys from pathlib import Path # In[9]: testfolder = str(Path().resolve().parent.parent /'PV_ICE' / 'TEMP') baselinesfolder = str(Path().resolve().parent.parent /'PV_ICE' / 'baselines') # Another option using relative address; for some operative systems you might need '/' instead of '\' # testfolder = os.path.abspath(r'..\..\PV_ICE\TEMP') print ("Your simulation will be stored in %s" % testfolder) print(baselinesfolder) # In[11]: yearly_results = pd.read_csv(r'C:\Users\ahegedus\Documents\PV ICE Open EI Data\PVSC PVICE Python Data Files to Convert to Open EI\CONVERT FROM THESE\Yearly_Results.csv') cumulative_results = pd.read_csv(r'C:\Users\ahegedus\Documents\PV ICE Open EI Data\PVSC PVICE Python Data Files to Convert to Open EI\CONVERT FROM THESE\PVSC_Cumulative_Results.csv') # ## Create "PVSC_Yearly, with Source Comparison, Materials Summed.csv" # In[12]: yearly_source_comparison = pd.DataFrame() # In[13]: scenario_col = ["Today"]*(2050-1994)+["Bifacial Projection"]*(2050-1994) yearly_source_comparison['@scenario|Module Composition Scenario'] = scenario_col # In[14]: yearly_source_comparison['@timeseries|Year'] = list(yearly_results['year'])*2 # ### Total Virgin Material Demand Columns # In[15]: virgin_material_demand_PVICE_bireduced = yearly_results['VirginStock_glass_Bifacial_ReducedInstalls'] + yearly_results['VirginStock_aluminium_frames_Bifacial_ReducedInstalls'] + yearly_results['VirginStock_silver_Bifacial_ReducedInstalls'] + yearly_results['VirginStock_silicon_Bifacial_ReducedInstalls'] + yearly_results['VirginStock_copper_Bifacial_ReducedInstalls'] yearly_source_comparison['@value|TotalVirginMaterialDemand|PV ICE Bifacial Reduced Installs#MetricTonnes'] = ["NA"]*(2050-1994) + list(virgin_material_demand_PVICE_bireduced.values) # In[16]: virgin_material_demand_PVICE_bi = yearly_results['VirginStock_glass_Bifacial_SameInstalls'] + yearly_results['VirginStock_aluminium_frames_Bifacial_SameInstalls'] + yearly_results['VirginStock_silver_Bifacial_SameInstalls'] + yearly_results['VirginStock_silicon_Bifacial_SameInstalls'] + yearly_results['VirginStock_copper_Bifacial_SameInstalls'] yearly_source_comparison['@value|TotalVirginMaterialDemand|PV ICE Bifacial#MetricTonnes'] = ["NA"]*(2050-1994) + list(virgin_material_demand_PVICE_bi.values) # In[17]: virgin_material_demand_PVICE_today = yearly_results['VirginStock_glass_PV_ICE_Today'] + yearly_results['VirginStock_aluminium_frames_PV_ICE_Today'] + yearly_results['VirginStock_silver_PV_ICE_Today'] + yearly_results['VirginStock_silicon_PV_ICE_Today'] + yearly_results['VirginStock_copper_PV_ICE_Today'] virgin_material_demand_PVICE_bifacialproj = yearly_results['VirginStock_glass_PV_ICE_Bifacial'] + yearly_results['VirginStock_aluminium_frames_PV_ICE_Bifacial'] + yearly_results['VirginStock_silver_PV_ICE_Bifacial'] + yearly_results['VirginStock_silicon_PV_ICE_Bifacial'] + yearly_results['VirginStock_copper_PV_ICE_Bifacial'] yearly_source_comparison['@value|TotalVirginMaterialDemand|PV ICE#MetricTonnes'] = list(virgin_material_demand_PVICE_today.values) + list(virgin_material_demand_PVICE_bifacialproj.values) # In[18]: lit_sources = ["PV_ICE","Irena_EL","Irena_RL"] pretty_sources = ['PV ICE','Irena EL','Irena RL'] #virgin material demand cols for lit_sources for source in lit_sources: virgin_material_demand_today = yearly_results['VirginStock_glass_' + source + '_Today'] + yearly_results['VirginStock_aluminium_frames_' + source + '_Today'] + yearly_results['VirginStock_silver_' + source + '_Today'] + yearly_results['VirginStock_silicon_' + source + '_Today'] + yearly_results['VirginStock_copper_' + source + '_Today'] virgin_material_demand_bifacialproj = yearly_results['VirginStock_glass_' + source + '_Bifacial'] + yearly_results['VirginStock_aluminium_frames_' + source + '_Bifacial'] + yearly_results['VirginStock_silver_' + source + '_Bifacial'] + yearly_results['VirginStock_silicon_' + source + '_Bifacial'] + yearly_results['VirginStock_copper_' + source + '_Bifacial'] better_source_name = pretty_sources[lit_sources.index(source)] yearly_source_comparison['@value|TotalVirginMaterialDemand|' + better_source_name + '#MetricTonnes'] = list(virgin_material_demand_today.values) + list(virgin_material_demand_bifacialproj.values) # ### Total EOL Material Columns # In[19]: bifacial_scenarios = ["Bifacial_ReducedInstalls","Bifacial_SameInstalls"] pretty_scenarios = ["PV ICE Bifacial Reduced Installs", "PV ICE Bifacial"] for myscenario in bifacial_scenarios: total_eol_material_bifacialproj = yearly_results['Waste_EOL_glass_' + myscenario] + yearly_results['Waste_EOL_aluminium_frames_' + myscenario] + yearly_results['Waste_EOL_silver_' + myscenario] + yearly_results['Waste_EOL_silicon_' + myscenario] + yearly_results['Waste_EOL_copper_' + myscenario] better_scenario_name = pretty_scenarios[bifacial_scenarios.index(myscenario)] yearly_source_comparison['@value|TotalEOLMaterial|' + better_scenario_name + '#MetricTonnes'] = ["NA"]*(2050-1994) + list(total_eol_material_bifacialproj.values) # In[20]: lit_sources = ["PV_ICE","Irena_EL","Irena_RL"] pretty_sources = ['PV ICE','Irena EL','Irena RL'] for source in lit_sources: total_eol_today = yearly_results['Waste_EOL_glass_' + source + '_Today'] + yearly_results['Waste_EOL_aluminium_frames_' + source + '_Today'] + yearly_results['Waste_EOL_silver_' + source + '_Today'] + yearly_results['Waste_EOL_silicon_' + source + '_Today'] + yearly_results['Waste_EOL_copper_' + source + '_Today'] total_eol_bifacialproj = yearly_results['Waste_EOL_glass_' + source + '_Bifacial'] + yearly_results['Waste_EOL_aluminium_frames_' + source + '_Bifacial'] + yearly_results['Waste_EOL_silver_' + source + '_Bifacial'] + yearly_results['Waste_EOL_silicon_' + source + '_Bifacial'] + yearly_results['Waste_EOL_copper_' + source + '_Bifacial'] better_source_name = pretty_sources[lit_sources.index(source)] yearly_source_comparison['@value|TotalEOLMaterial|' + better_source_name + '#MetricTonnes'] = list(total_eol_today.values) + list(total_eol_bifacialproj.values) # ### Manufacturing Scrap Columns # In[21]: bifacial_scenarios = ["Bifacial_ReducedInstalls","Bifacial_SameInstalls"] pretty_scenarios = ["PV ICE Bifacial Reduced Installs", "PV ICE Bifacial"] for myscenario in bifacial_scenarios: total_mfg_scrap_bifacialproj = yearly_results['Waste_MFG_glass_' + myscenario] + yearly_results['Waste_MFG_aluminium_frames_' + myscenario] + yearly_results['Waste_MFG_silver_' + myscenario] + yearly_results['Waste_MFG_silicon_' + myscenario] + yearly_results['Waste_MFG_copper_' + myscenario] better_scenario_name = pretty_scenarios[bifacial_scenarios.index(myscenario)] yearly_source_comparison['@value|ManufacturingScrap|' + better_scenario_name + '#MetricTonnes'] = ["NA"]*(2050-1994) + list(total_mfg_scrap_bifacialproj.values) # In[22]: lit_sources = ["PV_ICE","Irena_EL","Irena_RL"] pretty_sources = ['PV ICE','Irena EL','Irena RL'] for source in lit_sources: total_mfg_today = yearly_results['Waste_MFG_glass_' + source + '_Today'] + yearly_results['Waste_MFG_aluminium_frames_' + source + '_Today'] + yearly_results['Waste_MFG_silver_' + source + '_Today'] + yearly_results['Waste_MFG_silicon_' + source + '_Today'] + yearly_results['Waste_MFG_copper_' + source + '_Today'] total_mfg_bifacialproj = yearly_results['Waste_MFG_glass_' + source + '_Bifacial'] + yearly_results['Waste_MFG_aluminium_frames_' + source + '_Bifacial'] + yearly_results['Waste_MFG_silver_' + source + '_Bifacial'] + yearly_results['Waste_MFG_silicon_' + source + '_Bifacial'] + yearly_results['Waste_MFG_copper_' + source + '_Bifacial'] better_source_name = pretty_sources[lit_sources.index(source)] yearly_source_comparison['@value|ManufacturingScrap|' + better_source_name + '#MetricTonnes'] = list(total_mfg_today.values) + list(total_mfg_bifacialproj.values) # ### Manufacturing Scrap and EOL Material Columns # In[23]: bifacial_scenarios = ["Bifacial_ReducedInstalls","Bifacial_SameInstalls"] pretty_scenarios = ["PV ICE Bifacial Reduced Installs", "PV ICE Bifacial"] for myscenario in bifacial_scenarios: better_scenario_name = pretty_scenarios[bifacial_scenarios.index(myscenario)] total_waste = yearly_source_comparison['@value|TotalEOLMaterial|' + better_scenario_name + '#MetricTonnes'] + yearly_source_comparison['@value|ManufacturingScrap|' + better_scenario_name + '#MetricTonnes'] yearly_source_comparison['@value|ManufacturingScrapAndEOLMaterial|' + better_scenario_name + '#MetricTonnes'] = ["NA"]*(2050-1994) + list(total_waste.values)[56:] # In[24]: lit_sources = ["PV_ICE","Irena_EL","Irena_RL"] pretty_sources = ['PV ICE','Irena EL','Irena RL'] for source in lit_sources: better_source_name = pretty_sources[lit_sources.index(source)] total_waste = yearly_source_comparison['@value|TotalEOLMaterial|' + better_source_name + '#MetricTonnes'] + yearly_source_comparison['@value|ManufacturingScrap|' + better_source_name + '#MetricTonnes'] yearly_source_comparison['@value|ManufacturingScrapAndEOLMaterial|' + better_source_name + '#MetricTonnes'] = list(total_waste.values) # ### New Installed Capacity Columns # In[25]: bifacial_scenarios = ["Bifacial_ReducedInstalls","Bifacial_SameInstalls"] pretty_scenarios = ["PV ICE Bifacial Reduced Installs", "PV ICE Bifacial"] for myscenario in bifacial_scenarios: new_installs = yearly_results['new_Installed_Capacity_[MW]_' + myscenario] better_scenario_name = pretty_scenarios[bifacial_scenarios.index(myscenario)] yearly_source_comparison['@value|NewInstalledCapacity|' + better_scenario_name + '#MW'] = ["NA"]*(2050-1994) + list(new_installs.values) # In[26]: lit_sources = ["PV_ICE","Irena_EL","Irena_RL"] pretty_sources = ['PV ICE','Irena EL','Irena RL'] for source in lit_sources: new_installs = yearly_results['new_Installed_Capacity_[MW]_' + source] better_source_name = pretty_sources[lit_sources.index(source)] yearly_source_comparison['@value|NewInstalledCapacity|' + better_source_name + '#MW'] = list(new_installs.values) * 2 # ### Installed Capacity Columns # In[27]: bifacial_scenarios = ["Bifacial_ReducedInstalls","Bifacial_SameInstalls"] pretty_scenarios = ["PV ICE Bifacial Reduced Installs", "PV ICE Bifacial"] for myscenario in bifacial_scenarios: capacity = cumulative_results['Capacity_' + myscenario] better_scenario_name = pretty_scenarios[bifacial_scenarios.index(myscenario)] yearly_source_comparison['@value|InstalledCapacity|' + better_scenario_name + '#MW'] = ["NA"]*(2050-1994) + list(capacity.values/1000000) #convert to MW # In[28]: lit_sources = ["PV_ICE","Irena_EL","Irena_RL"] pretty_sources = ['PV ICE','Irena EL','Irena RL'] for source in lit_sources: capacity_today = cumulative_results['Capacity_' + source + '_Today'] capacity_bifacialproj = cumulative_results['Capacity_' + source + '_Bifacial'] better_source_name = pretty_sources[lit_sources.index(source)] yearly_source_comparison['@value|InstalledCapacity|' + better_source_name + '#MW'] = list(capacity_today.values) + list(capacity_bifacialproj.values/1000000) #convert to MW # In[29]: yearly_source_comparison['@value|InstalledCapacity|Cumulative New Installs#MW'] = cumulative_results['new_Installed_Capacity_[MW]_PV_ICE'] # In[30]: ### Save results as CSV, saves in tutorial folder yearly_source_comparison.to_csv('New_PVSC_Yearly, with Source Comparison, Materials Summed.csv') # ## Create "PVSC_Installed Capacity.csv" # ### Using Capacity_Today values # In[31]: installed_capacity =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR":
pandas.StringDtype()
pandas.StringDtype
import pandas as pd import numpy as np import math import os from scipy.interpolate import interp1d import time from sklearn.ensemble import RandomForestRegressor import xgboost as xgb from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from information_measures import * from joblib import Parallel, delayed #from arch import arch_model def rmspe(y_true, y_pred): return (np.sqrt(np.mean(np.square((y_true - y_pred) / y_true)))) def log_return(list_stock_prices): # Stock prices are estimated through wap values return np.log(list_stock_prices).diff() def realized_volatility(series_log_return): return np.sqrt(np.sum(series_log_return**2)) def compute_wap(book_pd): wap = (book_pd['bid_price1'] * book_pd['ask_size1'] + book_pd['ask_price1'] * book_pd['bid_size1']) / (book_pd['bid_size1']+ book_pd['ask_size1']) return wap def realized_volatility_from_book_pd(book_stock_time): wap = compute_wap(book_stock_time) returns = log_return(wap) volatility = realized_volatility(returns) return volatility def realized_volatility_per_time_id(file_path, prediction_column_name): df_book_data = pd.read_parquet(file_path) # Estimate stock price per time point df_book_data['wap'] = compute_wap(df_book_data) # Compute log return from wap values per time_id df_book_data['log_return'] = df_book_data.groupby(['time_id'])['wap'].apply(log_return) df_book_data = df_book_data[~df_book_data['log_return'].isnull()] # Compute the square root of the sum of log return squared to get realized volatility df_realized_vol_per_stock = pd.DataFrame(df_book_data.groupby(['time_id'])['log_return'].agg(realized_volatility)).reset_index() # Formatting df_realized_vol_per_stock = df_realized_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) stock_id = file_path.split('=')[1] df_realized_vol_per_stock['row_id'] = df_realized_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') return df_realized_vol_per_stock[['row_id',prediction_column_name]] def past_realized_volatility_per_stock(list_file,prediction_column_name): df_past_realized = pd.DataFrame() for file in list_file: df_past_realized = pd.concat([df_past_realized, realized_volatility_per_time_id(file,prediction_column_name)]) return df_past_realized def stupidForestPrediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test): naive_predictions_train = past_realized_volatility_per_stock(list_file=book_path_train,prediction_column_name=prediction_column_name) df_joined_train = train_targets_pd.merge(naive_predictions_train[['row_id','pred']], on = ['row_id'], how = 'left') X = np.array(df_joined_train['pred']).reshape(-1,1) y = np.array(df_joined_train['target']).reshape(-1,) regr = RandomForestRegressor(random_state=0) regr.fit(X, y) naive_predictions_test = past_realized_volatility_per_stock(list_file=book_path_test,prediction_column_name='target') yhat = regr.predict(np.array(naive_predictions_test['target']).reshape(-1,1)) updated_predictions = naive_predictions_test.copy() updated_predictions['target'] = yhat return updated_predictions def garch_fit_predict_volatility(returns_series, N=10000): model = arch_model(returns_series * N, p=1, q=1) model_fit = model.fit(update_freq=0, disp='off') yhat = model_fit.forecast(horizon=600, reindex=False) pred_volatility = np.sqrt(np.sum(yhat.variance.values)) / N return pred_volatility def garch_volatility_per_time_id(file_path, prediction_column_name): # read the data df_book_data = pd.read_parquet(file_path) # calculate the midprice (not the WAP) df_book_data['midprice'] =(df_book_data['bid_price1'] + df_book_data['ask_price1'])/2 # leave only WAP for now df_book_data = df_book_data[['time_id', 'seconds_in_bucket', 'midprice']] df_book_data = df_book_data.sort_values('seconds_in_bucket') # make the book updates evenly spaced df_book_data_evenly = pd.DataFrame({'time_id':np.repeat(df_book_data['time_id'].unique(), 600), 'second':np.tile(range(0,600), df_book_data['time_id'].nunique())}) df_book_data_evenly['second'] = df_book_data_evenly['second'].astype(np.int16) df_book_data_evenly = df_book_data_evenly.sort_values('second') df_book_data_evenly = pd.merge_asof(df_book_data_evenly, df_book_data, left_on='second',right_on='seconds_in_bucket', by = 'time_id') # Ordering for easier use df_book_data_evenly = df_book_data_evenly[['time_id', 'second', 'midprice']] df_book_data_evenly = df_book_data_evenly.sort_values(['time_id','second']).reset_index(drop=True) # calculate log returns df_book_data_evenly['log_return'] = df_book_data_evenly.groupby(['time_id'])['midprice'].apply(log_return) df_book_data_evenly = df_book_data_evenly[~df_book_data_evenly['log_return'].isnull()] # fit GARCH(1, 1) and predict the volatility of returns df_garch_vol_per_stock = \ pd.DataFrame(df_book_data_evenly.groupby(['time_id'])['log_return'].agg(garch_fit_predict_volatility)).reset_index() df_garch_vol_per_stock = df_garch_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) # add row_id column to the data stock_id = file_path.split('=')[1] df_garch_vol_per_stock['row_id'] = df_garch_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') # return the result return df_garch_vol_per_stock[['row_id', prediction_column_name]] def garch_volatility_per_stock(list_file, prediction_column_name): df_garch_predicted = pd.DataFrame() for file in list_file: df_garch_predicted = pd.concat([df_garch_predicted, garch_volatility_per_time_id(file, prediction_column_name)]) return df_garch_predicted def entropy_from_book(book_stock_time,last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 3: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_wap(wap,seconds,last_seconds): if last_seconds < 600: idx = np.where(seconds >= last_seconds)[0] if len(idx) < 3: return 0 else: wap = wap[idx] seconds = seconds[idx] # Closest neighbour interpolation (no changes in wap between lines) t_new = np.arange(np.min(seconds),np.max(seconds)) nearest = interp1d(seconds, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) # sampleEntropy = ApEn_new(resampled_wap,3,0.001) return sampleEntropy def linearFit(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = np.array(compute_wap(book_stock_time)) t_init = book_stock_time['seconds_in_bucket'] return (wap[-1] - wap[0])/(np.max(t_init) - np.min(t_init)) def wapStat(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) return np.std(resampled_wap) def entropy_Prediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test,all_stocks_ids,test_file): # Compute features book_features_encoded_test = computeFeatures_1(book_path_test,'test',test_file,all_stocks_ids) book_features_encoded_train = computeFeatures_1(book_path_train,'train',train_targets_pd,all_stocks_ids) X = book_features_encoded_train.drop(['row_id','target','stock_id'],axis=1) y = book_features_encoded_train['target'] # Modeling catboost_default = CatBoostRegressor(verbose=0) catboost_default.fit(X,y) # Predict X_test = book_features_encoded_test.drop(['row_id','stock_id'],axis=1) yhat = catboost_default.predict(X_test) # Formatting yhat_pd = pd.DataFrame(yhat,columns=['target']) predictions = pd.concat([test_file,yhat_pd],axis=1) return predictions def computeFeatures_1(book_path,prediction_column_name,train_targets_pd,all_stocks_ids): book_all_features = pd.DataFrame() encoder = np.eye(len(all_stocks_ids)) stocks_id_list, row_id_list = [], [] volatility_list, entropy2_list = [], [] linearFit_list, linearFit5_list, linearFit2_list = [], [], [] wap_std_list, wap_std5_list, wap_std2_list = [], [], [] for file in book_path: start = time.time() book_stock = pd.read_parquet(file) stock_id = file.split('=')[1] print('stock id computing = ' + str(stock_id)) stock_time_ids = book_stock['time_id'].unique() for time_id in stock_time_ids: # Access book data at this time + stock book_stock_time = book_stock[book_stock['time_id'] == time_id] # Create feature matrix stocks_id_list.append(stock_id) row_id_list.append(str(f'{stock_id}-{time_id}')) volatility_list.append(realized_volatility_from_book_pd(book_stock_time=book_stock_time)) entropy2_list.append(entropy_from_book(book_stock_time=book_stock_time,last_min=2)) linearFit_list.append(linearFit(book_stock_time=book_stock_time,last_min=10)) linearFit5_list.append(linearFit(book_stock_time=book_stock_time,last_min=5)) linearFit2_list.append(linearFit(book_stock_time=book_stock_time,last_min=2)) wap_std_list.append(wapStat(book_stock_time=book_stock_time,last_min=10)) wap_std5_list.append(wapStat(book_stock_time=book_stock_time,last_min=5)) wap_std2_list.append(wapStat(book_stock_time=book_stock_time,last_min=2)) print('Computing one stock entropy took', time.time() - start, 'seconds for stock ', stock_id) # Merge targets stocks_id_pd = pd.DataFrame(stocks_id_list,columns=['stock_id']) row_id_pd = pd.DataFrame(row_id_list,columns=['row_id']) volatility_pd = pd.DataFrame(volatility_list,columns=['volatility']) entropy2_pd = pd.DataFrame(entropy2_list,columns=['entropy2']) linearFit_pd = pd.DataFrame(linearFit_list,columns=['linearFit_coef']) linearFit5_pd = pd.DataFrame(linearFit5_list,columns=['linearFit_coef5']) linearFit2_pd = pd.DataFrame(linearFit2_list,columns=['linearFit_coef2']) wap_std_pd = pd.DataFrame(wap_std_list,columns=['wap_std']) wap_std5_pd = pd.DataFrame(wap_std5_list,columns=['wap_std5']) wap_std2_pd = pd.DataFrame(wap_std2_list,columns=['wap_std2']) book_all_features = pd.concat([stocks_id_pd,row_id_pd,volatility_pd,entropy2_pd,linearFit_pd,linearFit5_pd,linearFit2_pd, wap_std_pd,wap_std5_pd,wap_std2_pd],axis=1) # This line makes sure the predictions are aligned with the row_id in the submission file book_all_features = train_targets_pd.merge(book_all_features, on = ['row_id']) # Add encoded stock encoded = list() for i in range(book_all_features.shape[0]): stock_id = book_all_features['stock_id'][i] encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(book_all_features.shape[0],np.array(all_stocks_ids).shape[0])) book_all_features_encoded = pd.concat([book_all_features, encoded_pd],axis=1) return book_all_features_encoded def calc_wap(df): return (df['bid_price1'] * df['ask_size1'] + df['ask_price1'] * df['bid_size1']) / (df['bid_size1'] + df['ask_size1']) def calc_wap2(df): return (df['bid_price2'] * df['ask_size2'] + df['ask_price2'] * df['bid_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap3(df): return (df['bid_price2'] * df['bid_size2'] + df['ask_price2'] * df['ask_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap4(df): return (df['bid_price1'] * df['bid_size1'] + df['ask_price1'] * df['ask_size1']) / (df['bid_size1'] + df['ask_size1']) def mid_price(df): return df['bid_price1'] /2 + df['ask_price1'] / 2 def calc_rv_from_wap_numba(values, index): log_return = np.diff(np.log(values)) realized_vol = np.sqrt(np.sum(np.square(log_return[1:]))) return realized_vol def load_book_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'book_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def load_trades_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'trade_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def entropy_from_df(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df2(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap2'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df3(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap3'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy sampleEntropy = sampen(resampled_wap) return sampleEntropy def financial_metrics(df): wap_imbalance = np.mean(df['wap'] - df['wap2']) price_spread = np.mean((df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2)) bid_spread = np.mean(df['bid_price1'] - df['bid_price2']) ask_spread = np.mean(df['ask_price1'] - df['ask_price2']) # Abs to take total_volume = np.mean((df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2'])) volume_imbalance = np.mean(abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2']))) return [wap_imbalance,price_spread,bid_spread,ask_spread,total_volume,volume_imbalance] def financial_metrics_2(df): wap_imbalance = df['wap'] - df['wap2'] price_spread = (df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2) bid_spread = df['bid_price1'] - df['bid_price2'] ask_spread = df['ask_price1'] - df['ask_price2'] # Abs to take total_volume = (df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2']) volume_imbalance = abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2'])) # New features here wap_imbalance_mean = np.mean(wap_imbalance) wap_imbalance_sum = np.sum(wap_imbalance) wap_imbalance_std = np.std(wap_imbalance) wap_imbalance_max = np.max(wap_imbalance) wap_imbalance_min = np.min(wap_imbalance) price_spread_mean = np.mean(price_spread) price_spread_sum = np.sum(price_spread) price_spread_std = np.std(price_spread) price_spread_max = np.max(price_spread) price_spread_min = np.min(price_spread) bid_spread_mean = np.mean(bid_spread) bid_spread_sum = np.sum(bid_spread) bid_spread_std = np.std(bid_spread) bid_spread_max = np.max(bid_spread) bid_spread_min = np.min(bid_spread) ask_spread_mean = np.mean(ask_spread) ask_spread_sum = np.sum(ask_spread) ask_spread_std = np.std(ask_spread) ask_spread_max = np.max(ask_spread) ask_spread_min = np.min(ask_spread) total_volume_mean = np.mean(total_volume) total_volume_sum = np.sum(total_volume) total_volume_std = np.std(total_volume) total_volume_max = np.max(total_volume) total_volume_min = np.min(total_volume) volume_imbalance_mean = np.mean(volume_imbalance) volume_imbalance_sum = np.sum(volume_imbalance) volume_imbalance_std = np.std(volume_imbalance) volume_imbalance_max = np.max(volume_imbalance) volume_imbalance_min = np.min(volume_imbalance) return [wap_imbalance_mean,price_spread_mean,bid_spread_mean,ask_spread_mean,total_volume_mean,volume_imbalance_mean, wap_imbalance_sum,price_spread_sum,bid_spread_sum,ask_spread_sum,total_volume_sum,volume_imbalance_sum, wap_imbalance_std,price_spread_std,bid_spread_std,ask_spread_std,total_volume_std,volume_imbalance_std, wap_imbalance_max,price_spread_max,bid_spread_max,ask_spread_max,total_volume_max,volume_imbalance_max, wap_imbalance_min,price_spread_min,bid_spread_min,ask_spread_min,total_volume_min,volume_imbalance_min] def other_metrics(df): if df.shape[0] < 2: linearFit = 0 linearFit2 = 0 linearFit3 = 0 std_1 = 0 std_2 = 0 std_3 = 0 else: linearFit = (df['wap'].iloc[-1] - df['wap'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit2 = (df['wap2'].iloc[-1] - df['wap2'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit3 = (df['wap3'].iloc[-1] - df['wap3'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) # Resampling t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') nearest2 = interp1d(t_init, df['wap2'], kind='nearest') nearest3 = interp1d(t_init, df['wap3'], kind='nearest') std_1 = np.std(nearest(t_new)) std_2 = np.std(nearest2(t_new)) std_3 = np.std(nearest3(t_new)) return [linearFit, linearFit2, linearFit3, std_1, std_2, std_3] def load_book_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/book_{train_test}.parquet/stock_id={stock_id}') return df def load_trades_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/trade_{train_test}.parquet/stock_id={stock_id}') return df def computeFeatures_wEntropy(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) # Calculate realized volatility df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3']],axis=1) df_sub = df_sub.rename(columns={'time_id':'row_id','wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3'}) # Calculate realized volatility last 5 min isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_5['time_id']] df_sub_5 = pd.concat([df_sub_5,df_sub2_5['wap2'],df_sub3_5['wap3']],axis=1) df_sub_5 = df_sub_5.rename(columns={'time_id':'row_id','wap': 'rv_5', 'wap2': 'rv2_5', 'wap3': 'rv3_5'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_5']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_5']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_5']) df_sub_5 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) # Calculate realized volatility last 2 min isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_sub_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_2['time_id']] df_sub_2 = pd.concat([df_sub_2,df_sub2_2['wap2'],df_sub3_2['wap3']],axis=1) df_sub_2 = df_sub_2.rename(columns={'time_id':'row_id','wap': 'rv_2', 'wap2': 'rv2_2', 'wap3': 'rv3_2'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_2']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_2']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_2']) df_sub_2 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) list_rv.append(df_sub) list_rv2.append(df_sub_5) list_rv3.append(df_sub_2) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_book_feats5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats5 = df_sub_book_feats5.rename(columns={0:'embedding'}) df_sub_book_feats5[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats5.embedding.tolist(), index=df_sub_book_feats5.index) df_sub_book_feats5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats5['time_id']] df_sub_book_feats5 = df_sub_book_feats5.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats5 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin.append(df_sub_book_feats) list_fin2.append(df_sub_book_feats5) # Compute entropy isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_ent = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df).to_frame().reset_index().fillna(0) df_ent2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df2).to_frame().reset_index().fillna(0) df_ent3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df3).to_frame().reset_index().fillna(0) df_ent['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_ent['time_id']] df_ent = df_ent.rename(columns={'time_id':'row_id',0:'entropy'}) df_ent2 = df_ent2.rename(columns={0:'entropy2'}).drop(['time_id'],axis=1) df_ent3 = df_ent3.rename(columns={0:'entropy3'}).drop(['time_id'],axis=1) df_ent = pd.concat([df_ent,df_ent2,df_ent3],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp =
pd.DataFrame([0],columns=['entropy'])
pandas.DataFrame
import json import pathlib import altair as alt import pandas as pd import rbo import streamlit as st from tinydb import TinyDB, Query DL = "https://github.com/The57thPick/nba/releases/download/{year}-media-awards/{year}.zip" DB = TinyDB("db/db.json") YEARS = [ 2015, 2016, 2017, 2018, 2019, 2020, 2021, ] Q = Query() def truncate(df, col, limit): if limit >= len(df): limit = len(df) - 1 return df.sort_values(col)[0:limit] def award_box(year: str, award: str): """ """ with open("db/ranks.json") as f: ranks = json.load(f) data = ranks[award] return
pd.DataFrame(data, columns=["stat", "rank", "player", "year"])
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import pandas as pd from sdv.constraints.tabular import ( ColumnFormula, CustomConstraint, GreaterThan, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test__valid_separator_valid(self): """Test ``_valid_separator`` for a valid separator. If the separator and data are valid, result is ``True``. Input: - Table data (pandas.DataFrame) Output: - True (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data) # Assert assert is_valid def test__valid_separator_non_valid_separator_contained(self): """Test ``_valid_separator`` passing a column that contains the separator. If any of the columns contains the separator string, result is ``False``. Input: - Table data (pandas.DataFrame) with a column that contains the separator string ('#') Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', '#', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data) # Assert assert not is_valid def test__valid_separator_non_valid_name_joined_exists(self): """Test ``_valid_separator`` passing a column whose name is obtained after joining the column names using the separator. If the column name obtained after joining the column names using the separator already exists, result is ``False``. Input: - Table data (pandas.DataFrame) with a column name that will be obtained by joining the column names and the separator. Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'b#c': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data) # Assert assert not is_valid def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = set(table_data[columns].itertuples(index=False)) assert instance._separator == '#' assert instance._joint_column == 'b#c' assert instance._combinations == expected_combinations def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) pd.testing.assert_frame_equal(expected_out, out) def reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup transformed_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(transformed_data) # Run out = instance.reverse_transform(transformed_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. It is expected to create a new Constraint instance and receiving ``low`` and ``high``, names of the columns that contain the low and high value. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False def test___init___strict_true(self): """Test the ``GreaterThan.__init__`` method. It is expected to create a new Constraint instance and receiving ``low`` and ``high``, names of the columns that contain the low and high value. It also receives ``strict``, a bool that indicates the comparison of the values should be strict. Input: - low = 'a' - high = 'b' - strict = True Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True def test_fit(self): """Test the ``GreaterThan.fit`` method. It is expected to return the dtype of the ``high`` column. Input: - Table data (pandas.DataFrame) Output: - dtype of the ``high`` column. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts expected = table_data['b'].dtype assert instance._dtype == expected def test_is_valid_true_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are valid and the comparison is strict. If the columns satisfy the constraint, result is a series of ``True`` values. Input: - Table data, where the values of the ``low`` column are lower than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are not valid and the comparison is strict. If the columns do not satisfy the costraint, result is a series of ``False`` values. Input: - Table data, where the values of the ``low`` column are higher or equal than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [1, 1, 1], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_true_not_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are valid and the comparison is not strict. If the columns satisfy the constraint, result is a series of ``True`` values. Input: - Table data, where the values of the ``low`` column are lower or equal than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 3], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false_not_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are not valid and the comparison is not strict. If the columns do not satisfy the costraint, result is a series of ``False`` values. Input: - Table data, where the values of the ``low`` column are higher than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [0, 1, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``GreaterThan.transform`` method. The ``GreaterThan.transform`` method is expected to: - Transform the original table data. Input: - Table data (pandas.DataFrame) Output: - Table data transformed (pandas.DataFrame) """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [1.3862944, 1.3862944, 1.3862944] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform(self): """Test the ``GreaterThan.reverse_transform`` method. The ``GreaterThan.reverse_transform`` method is expected to: - Return the original table data. Input: - Table data transformed (pandas.DataFrame) Output: - Table data (pandas.DataFrame) Side effects: - Since ``reverse_transform`` uses the class variable ``_dtype``, the ``fit`` method must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance = GreaterThan(low='a', high='b', strict=True) instance.fit(table_data) # Run out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [55, 149, 405], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance and import the formula to use for the computation. Input: - column = 'c' - formula = new_column """ # Setup column = 'c' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False])
pd.testing.assert_series_equal(expected_out, out)
pandas.testing.assert_series_equal
import pandas as pd import numpy as np import tensorflow as tf import datetime import pickle import math from create_features import Features from binance import client class Trader(client.Client): """ This class adds functionalities to perform trades in Binance. It requires the api and secret key from binance. """ def __init__(self, api_key, secret_key): super().__init__(api_key, secret_key) def load_model(self, path): """ Loads a pre-trained tensorflow model Args: path: str. the model's path returns: model: tensorflow model """ model = tf.keras.models.load_model(path) return model def load_scaler(self, path): """ Loads a serialized sklearn scaler object. Normally StandardScaler() or MinMaxScaler() Args: path: str. The scaler's path returns: scaler: sklearn scaler object """ with open(path, "rb") as f: scaler = pickle.load(f) return scaler def save_scaler(self, path, scaler): """ Serializes a sklearn scaler object. Args: path: str. Where to save the scaler scaler: the sklearn scaler object used to transform the model's data """ with open(path, "wb") as f: pickle.dump(scaler, f) def timestamp2date(self, timestamp): """ converts the binance timestamp (miliseconds) to a normal date """ correct_date = datetime.datetime.fromtimestamp(timestamp / 1000) return correct_date def format_df(self, df): """ Takes the raw klines from binance and adds them the correct column names. It also keeps the most relevant columns and transforms the string values to numeric values. Args: df: pandas DataFrame. It contains the raw klines from binance returns: df_copy: pandas DataFrame. It contains correct column names and correct dtypes. """ df_copy = df.copy() # These are the column names from binance api data columns = [ "open_time", "open", "high", "low", "close", "volume", "close_time", "quote_asset_volume", "number_of_trades", "taker_buy_base_asset_volume", "taker_buy_quote_asset_volume", "ignore", ] df_copy.columns = columns # Columns that we are going to keep keep = [ "open_time", "open", "high", "low", "close", "volume", "number_of_trades", ] df_copy = df_copy[keep] # Change the timestamp values to real dates. df_copy["open_time"] = df_copy.open_time.apply(self.timestamp2date) df_copy["open_time"] = pd.to_datetime(df_copy["open_time"]) # Change dtypes for column in keep[1:]: df_copy[column] = pd.to_numeric(df_copy[column]) return df_copy def add_features(self, df, emas, volume_emas, indicators=True, patterns=True): """ Creates new features using the Feature class. We can add just technical indicators or candle patterns or both. Args: df: pandas dataframe (columns: open_time, open, high, low, close, volume, number_of_trades) emas: list of int. With the different ema periods volume_emas: list of int. With the different ema periods indicators: bool patterns: bool returns: df_copy: pandas dataframe. Contains the initial columns plus the new """ # instantiate the features object features = Features() df_copy = df.copy() if indicators: df_copy = features.handle_dates(df_copy) df_copy = features.add_rsi(df_copy) df_copy = features.add_macd(df_copy) df_copy = features.add_apo(df_copy) df_copy = features.add_ema(df_copy, emas) df_copy = features.add_volume_ema(df_copy, volume_emas) df_copy = features.add_bbands(df_copy) df_copy = features.add_psar(df_copy) if patterns: df_copy = features.three_inside_up_down(df_copy) df_copy = features.three_line_strike(df_copy) df_copy = features.three_stars_south(df_copy) df_copy = features.advancing_white_soldiers(df_copy) df_copy = features.belt_hold(df_copy) df_copy = features.breakaway(df_copy) df_copy = features.closing_marubozu(df_copy) df_copy = features.counteratack(df_copy) df_copy = features.doji_star(df_copy) df_copy = features.dragonfly_doji(df_copy) df_copy = features.engulfing(df_copy) df_copy = features.gravestone_doji(df_copy) df_copy = features.hammer(df_copy) df_copy = features.hanging_man(df_copy) df_copy = features.inverted_hammer(df_copy) df_copy = features.matching_low(df_copy) df_copy = features.morning_doji_star(df_copy) df_copy = features.separating_lines(df_copy) df_copy = features.shooting_star(df_copy) df_copy = features.unique3river(df_copy) # delete columns with na. Normally for emas calculations df_copy = df_copy.dropna() df_copy = df_copy.reset_index(drop=True) return df_copy def create_target(self, df, lag=1): """ Calculates the log returns using the requested lag. It also creates a signal column that is used for classification. Args: df: pandas dataframe lag: int returns: df_copy: pandas dataframe. The initial dataframe plus two new columns returns_lag, signal_lag """ df_copy = df.copy() df_copy[f"returns_{lag}"] = np.log(df_copy.close / df_copy.close.shift(lag)) df_copy[f"signal_{lag}"] = np.where(df_copy[f"returns_{lag}"] > 0, 1, 0) # Check for dropna df_copy.dropna(inplace=True) return df_copy def create_splits(self, df, lag=1, pct_split=0.95, scaler=None): """ Creates the training and validation splits for training the model. Args: df: pandas dataframe. Dataframe with the final columns to train lag: int. To retrieve the correct targets pct_split: float. Train percent to keep scaler: sklearn.preprocessing. A scaler to normalize the data helpful for neural nets. returns: train: pandas dataframe. X_train data test: pandas dataframe. X_valid data train_targets: pandas dataframe. y_train data test_targets: pandas dataframe. y_valid data scaler: sklearn.preprocessing. Scaler used later for inverse transforme the data. """ df_copy = df.copy() # Firts separate the target # also add open_time for backtesting target_columns = [f"returns_{lag}", f"signal_{lag}", "open_time"] targets = df_copy[target_columns] df_copy.drop(target_columns, axis=1, inplace=True) columns = df_copy.columns split = int(len(df_copy) * pct_split) train = df_copy.iloc[:split] train_targets = targets.iloc[:split] test = df_copy.iloc[split:] test_targets = targets.iloc[split:] if scaler: train = scaler.fit_transform(train) test = scaler.transform(test) train = pd.DataFrame(train, columns=columns) test = pd.DataFrame(test, columns=columns) print(f"train shape: {train.shape}") print(f"test shape: {test.shape}") return train, test, train_targets, test_targets, scaler def get_one_prediction_data(self, emas, volume_emas, num_candles=1, **kwargs): """ It gets the last LIMIT prices and adds the features. Then we return the resulting dataframe to be scaled. Args: emas: list. a list of int with the periods for the emas volume_emas: list. a list of int with the periods for the volume emas num_candles: int. the number of candles or rows that we return returns: data: pandas DataFrame. The candles to make predictions. There are not scaled date: pandas Series. The corresponding datetime for the data. """ candles = self.get_klines(**kwargs) df = pd.DataFrame(candles) df = self.format_df(df) df = self.add_features(df, emas, volume_emas) # Delete the last row because is the firts seconds of information # of the candle that we want to predict df.drop(df.tail(1).index, inplace=True) # We remove open_time because it is not use for prediction open_time = df["open_time"] df.drop("open_time", axis=1, inplace=True) data = df.tail(num_candles) date = open_time.tail(num_candles) return data, date def model_data( self, emas, volume_emas, lag, interval, start_date, scaler, symbol="BTCUSDT" ): """ It creates the datasets for training a ml model Args: emas: list. a list of int with the periods for the emas volume_emas: list. a list of int with the periods for the volume emas lag: int. the price to predict. If 1 it means the next candle interval: str. klines interval start_date: str. scaler: sklearn scaler object. Normally StandardScaler or MinMaxScaler symbol: str. returns: X_train: pandas dataframe. Features for training X_valid: pandas dataframe. Features for validation y_train: pandas dataframe. Targets for training y_valid: pandas dataframe. Targets for validation scaler: sklean scaler. Ready to transform new data """ candles = self.get_historical_klines(symbol, interval, start_date) df =
pd.DataFrame(candles)
pandas.DataFrame
#!C:\Users\RIchardC\Documents\digitizePlots\venv\Scripts\python.exe # Create Lyman/Fitz style long flat Design Files from plain-text onset files # EKK / June 2015 # Python 2/3 compatibile, depends on Pandas and Numpy/Scipy from __future__ import print_function from pandas import concat, read_csv from argparse import ArgumentParser, FileType from numpy import empty def main(args): runs_df = load_onsets(args.onsets_files, args) print("Saving designfile (%d rows) to %s" % (runs_df.shape[0], args.out)) runs_df.to_csv(args.out, index=False) def load_onsets(onsets_files, args): """Read onsets file and add metadata from their filenames. Return one concatenated pandas dataframe with all trials as rows.""" runs = [] for i, fid in enumerate(onsets_files): run =
read_csv(fid)
pandas.read_csv
# ***************************************************************************** # © Copyright IBM Corp. 2018. All Rights Reserved. # # This program and the accompanying materials # are made available under the terms of the Apache V2.0 license # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 # # ***************************************************************************** """ The Built In Functions module contains preinstalled functions """ import itertools as it import datetime as dt import importlib import logging import time import numpy as np import pandas as pd import scipy as sp from pyod.models.cblof import CBLOF import numpy as np import pandas as pd import scipy as sp from pyod.models.cblof import CBLOF import ruptures as rpt # for Spectral Analysis from scipy import signal, fftpack import skimage as ski from skimage import util as skiutil # for nifty windowing # for KMeans from sklearn import ensemble from sklearn import linear_model from sklearn import metrics from sklearn.covariance import MinCovDet from sklearn.neighbors import (KernelDensity, LocalOutlierFactor) from sklearn.pipeline import Pipeline, TransformerMixin from sklearn.model_selection import train_test_split from sklearn.preprocessing import (StandardScaler, RobustScaler, MinMaxScaler, minmax_scale, PolynomialFeatures) from sklearn.utils import check_array # for Matrix Profile import stumpy # for KDEAnomalyScorer import statsmodels.api as sm from statsmodels.nonparametric.kernel_density import KDEMultivariate from statsmodels.tsa.arima.model import ARIMA # EXCLUDED until we upgrade to statsmodels 0.12 #from statsmodels.tsa.forecasting.stl import STLForecast from .base import (BaseTransformer, BaseRegressor, BaseEstimatorFunction, BaseSimpleAggregator) from .bif import (AlertHighValue) from .ui import (UISingle, UIMulti, UIMultiItem, UIFunctionOutSingle, UISingleItem, UIFunctionOutMulti) # VAE import torch import torch.autograd import torch.nn as nn logger = logging.getLogger(__name__) try: # for gradient boosting import lightgbm except (AttributeError, ImportError): logger.exception('') logger.debug(f'Could not import lightgm package. Might have issues when using GBMRegressor catalog function') PACKAGE_URL = 'git+https://github.com/ibm-watson-iot/functions.git@' _IS_PREINSTALLED = True Error_SmallWindowsize = 0.0001 Error_Generic = 0.0002 FrequencySplit = 0.3 DefaultWindowSize = 12 SmallEnergy = 1e-20 KMeans_normalizer = 1 Spectral_normalizer = 100 / 2.8 FFT_normalizer = 1 Saliency_normalizer = 1 Generalized_normalizer = 1 / 300 # from # https://stackoverflow.com/questions/44790072/sliding-window-on-time-series-data def view_as_windows1(temperature, length, step): logger.info('VIEW ' + str(temperature.shape) + ' ' + str(length) + ' ' + str(step)) def moving_window(x, length, _step=1): if type(step) != 'int' or _step < 1: logger.info('MOVE ' + str(_step)) _step = 1 streams = it.tee(x, length) return zip(*[it.islice(stream, i, None, _step) for stream, i in zip(streams, it.count(step=1))]) x_ = list(moving_window(temperature, length, step)) return np.asarray(x_) def view_as_windows(temperature, length, step): return skiutil.view_as_windows(temperature, window_shape=(length,), step=step) def custom_resampler(array_like): # initialize if 'gap' not in dir(): gap = 0 if array_like.values.size > 0: gap = 0 return 0 else: gap += 1 return gap def min_delta(df): # minimal time delta for merging if df is None: return pd.Timedelta('5 seconds'), df elif len(df.index.names) > 1: df2 = df.reset_index(level=df.index.names[1:], drop=True) else: df2 = df try: mindelta = df2.index.to_series().diff().min() except Exception as e: logger.debug('Min Delta error: ' + str(e)) mindelta = pd.Timedelta('5 seconds') if mindelta == dt.timedelta(seconds=0) or pd.isnull(mindelta): mindelta = pd.Timedelta('5 seconds') return mindelta, df2 def set_window_size_and_overlap(windowsize, trim_value=2 * DefaultWindowSize): # make sure it exists if windowsize is None: windowsize = DefaultWindowSize # make sure it is positive and not too large trimmed_ws = np.minimum(np.maximum(windowsize, 1), trim_value) # overlap if trimmed_ws == 1: ws_overlap = 0 else: # larger overlap - half the window ws_overlap = trimmed_ws // 2 return trimmed_ws, ws_overlap def dampen_anomaly_score(array, dampening): if dampening is None: dampening = 0.9 # gradient dampening if dampening >= 1: return array if dampening < 0.01: return array if array.size <= 1: return array gradient = np.gradient(array) # dampened grad_damp = np.float_power(abs(gradient), dampening) * np.sign(gradient) # reconstruct (dampened) anomaly score by discrete integration integral = [] x = array[0] for x_el in np.nditer(grad_damp): x = x + x_el integral.append(x) # shift array slightly to the right to position anomaly score array_damp = np.roll(np.asarray(integral), 1) array_damp[0] = array_damp[1] # normalize return array_damp / dampening / 2 # Saliency helper functions # copied from https://github.com/y-bar/ml-based-anomaly-detection # remove the boring part from an image resp. time series def series_filter(values, kernel_size=3): """ Filter a time series. Practically, calculated mean value inside kernel size. As math formula, see https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html. :param values: :param kernel_size: :return: The list of filtered average """ filter_values = np.cumsum(values, dtype=float) logger.info('SERIES_FILTER: ' + str(values.shape) + ',' + str(filter_values.shape) + ',' + str(kernel_size)) filter_values[kernel_size:] = filter_values[kernel_size:] - filter_values[:-kernel_size] filter_values[kernel_size:] = filter_values[kernel_size:] / kernel_size for i in range(1, kernel_size): filter_values[i] /= i + 1 return filter_values # Saliency class # see https://www.inf.uni-hamburg.de/en/inst/ab/cv/research/research1-visual-attention.html class Saliency(object): def __init__(self, amp_window_size, series_window_size, score_window_size): self.amp_window_size = amp_window_size self.series_window_size = series_window_size self.score_window_size = score_window_size def transform_saliency_map(self, values): """ Transform a time-series into spectral residual, which is method in computer vision. For example, See https://docs.opencv.org/master/d8/d65/group__saliency.html :param values: a list or numpy array of float values. :return: silency map and spectral residual """ freq = np.fft.fft(values) mag = np.sqrt(freq.real ** 2 + freq.imag ** 2) # remove the boring part of a timeseries spectral_residual = np.exp(np.log(mag) - series_filter(np.log(mag), self.amp_window_size)) freq.real = freq.real * spectral_residual / mag freq.imag = freq.imag * spectral_residual / mag # and apply inverse fourier transform saliency_map = np.fft.ifft(freq) return saliency_map def transform_spectral_residual(self, values): saliency_map = self.transform_saliency_map(values) spectral_residual = np.sqrt(saliency_map.real ** 2 + saliency_map.imag ** 2) return spectral_residual def merge_score(dfEntity, dfEntityOrig, column_name, score, mindelta): """ Fit interpolated score to original entity slice of the full dataframe """ # equip score with time values, make sure it's positive score[score < 0] = 0 dfEntity[column_name] = score # merge dfEntityOrig = pd.merge_asof(dfEntityOrig, dfEntity[column_name], left_index=True, right_index=True, direction='nearest', tolerance=mindelta) if column_name + '_y' in dfEntityOrig: merged_score = dfEntityOrig[column_name + '_y'].to_numpy() else: merged_score = dfEntityOrig[column_name].to_numpy() return merged_score ####################################################################################### # Scalers ####################################################################################### class Standard_Scaler(BaseEstimatorFunction): """ Learns and applies standard scaling """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True def set_estimators(self): self.estimators['standard_scaler'] = (StandardScaler, self.params) logger.info('Standard Scaler initialized') def __init__(self, features=None, targets=None, predictions=None): super().__init__(features=features, targets=targets, predictions=predictions, keep_current_models=True) # do not run score and call transform instead of predict self.is_scaler = True self.experiments_per_execution = 1 self.normalize = True # support for optional scaling in subclasses self.prediction = self.predictions[0] # support for subclasses with univariate focus self.params = {} self.whoami = 'Standard_Scaler' # used by all the anomaly scorers based on it def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data for ' + self.prediction + ' column') # operate on simple timestamp index # needed for aggregated data with 3 or more indices if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # interpolate gaps - data imputation try: dfe = dfe.interpolate(method="time") except Exception as e: logger.error('Prepare data error: ' + str(e)) # one dimensional time series - named temperature for catchyness temperature = dfe[self.prediction].fillna(0).to_numpy(dtype=np.float64) return dfe, temperature # dummy function for scaler, can be replaced with anomaly functions def kexecute(self, entity, df_copy): return df_copy def execute(self, df): df_copy = df.copy() entities = np.unique(df_copy.index.levels[0]) logger.debug(str(entities)) missing_cols = [x for x in self.predictions if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None for entity in entities: normalize_entity = self.normalize try: check_array(df_copy.loc[[entity]][self.features].values, allow_nd=True) except Exception as e: normalize_entity = False logger.error( 'Found Nan or infinite value in feature columns for entity ' + str(entity) + ' error: ' + str(e)) # support for optional scaling in subclasses if normalize_entity: dfe = super()._execute(df_copy.loc[[entity]], entity) df_copy.loc[entity, self.predictions] = dfe[self.predictions] else: self.prediction = self.features[0] df_copy = self.kexecute(entity, df_copy) self.prediction = self.predictions[0] logger.info('Standard_Scaler: Found columns ' + str(df_copy.columns)) return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem(name='features', datatype=float, required=True)) inputs.append(UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) # define arguments that behave as function outputs outputs = [] return inputs, outputs class Robust_Scaler(BaseEstimatorFunction): """ Learns and applies robust scaling, scaling after outlier removal """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True def set_estimators(self): self.estimators['robust_scaler'] = (RobustScaler, self.params) logger.info('Robust Scaler initialized') def __init__(self, features=None, targets=None, predictions=None): super().__init__(features=features, targets=targets, predictions=predictions, keep_current_models=True) # do not run score and call transform instead of predict self.is_scaler = True self.experiments_per_execution = 1 self.params = {} def execute(self, df): df_copy = df.copy() entities = np.unique(df_copy.index.levels[0]) logger.debug(str(entities)) missing_cols = [x for x in self.predictions if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None for entity in entities: # per entity - copy for later inplace operations try: check_array(df_copy.loc[[entity]][self.features].values, allow_nd=True) except Exception as e: logger.error( 'Found Nan or infinite value in feature columns for entity ' + str(entity) + ' error: ' + str(e)) continue dfe = super()._execute(df_copy.loc[[entity]], entity) df_copy.loc[entity, self.predictions] = dfe[self.predictions] return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem(name='features', datatype=float, required=True)) inputs.append(UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) # define arguments that behave as function outputs outputs = [] return inputs, outputs class MinMax_Scaler(BaseEstimatorFunction): """ Learns and applies minmax scaling """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True def set_estimators(self): self.estimators['minmax_scaler'] = (MinMaxScaler, self.params) logger.info('MinMax Scaler initialized') def __init__(self, features=None, targets=None, predictions=None): super().__init__(features=features, targets=targets, predictions=predictions, keep_current_models=True) # do not run score and call transform instead of predict self.is_scaler = True self.experiments_per_execution = 1 self.params = {} def execute(self, df): df_copy = df.copy() entities = np.unique(df_copy.index.levels[0]) logger.debug(str(entities)) missing_cols = [x for x in self.predictions if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None for entity in entities: try: check_array(df_copy.loc[[entity]][self.features].values, allow_nd=True) except Exception as e: logger.error( 'Found Nan or infinite value in feature columns for entity ' + str(entity) + ' error: ' + str(e)) continue dfe = super()._execute(df_copy.loc[[entity]], entity) df_copy.loc[entity, self.predictions] = dfe[self.predictions] return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UIMultiItem(name='features', datatype=float, required=True)) inputs.append(UIMultiItem(name='targets', datatype=float, required=True, output_item='predictions', is_output_datatype_derived=True)) # define arguments that behave as function outputs outputs = [] return inputs, outputs ####################################################################################### # Anomaly Scorers ####################################################################################### class AnomalyScorer(BaseTransformer): """ Superclass of all unsupervised anomaly detection functions. """ def __init__(self, input_item, windowsize, output_items): super().__init__() logger.debug(input_item) self.input_item = input_item # use 12 by default self.windowsize, self.windowoverlap = set_window_size_and_overlap(windowsize) # assume 1 per sec for now self.frame_rate = 1 # step self.step = self.windowsize - self.windowoverlap self.output_items = output_items self.normalize = False self.whoami = 'Anomaly' def get_model_name(self, prefix='model', suffix=None): name = [] if prefix is not None: name.append(prefix) name.extend([self._entity_type.name, self.whoami]) name.append(self.output_items[0]) if suffix is not None: name.append(suffix) name = '.'.join(name) return name # make sure data is evenly spaced def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # interpolate gaps - data imputation try: dfe = dfe.dropna(subset=[self.input_item]).interpolate(method="time") except Exception as e: logger.error('Prepare data error: ' + str(e)) # one dimensional time series - named temperature for catchyness temperature = dfe[self.input_item].fillna(0).to_numpy(dtype=np.float64) return dfe, temperature def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df # no copy # check data type if not pd.api.types.is_numeric_dtype(df_copy[self.input_item].dtype): logger.error('Anomaly scoring on non-numeric feature:' + str(self.input_item)) return df_copy # set output columns to zero for output_item in self.output_items: df_copy[output_item] = 0 # delegate to _calc logger.debug('Execute ' + self.whoami + ' enter per entity execution') # group over entities group_base = [pd.Grouper(axis=0, level=0)] df_copy = df_copy.groupby(group_base).apply(self._calc) logger.debug('Scoring done') return df_copy def _calc(self, df): entity = df.index.levels[0][0] # get rid of entity id as part of the index df = df.droplevel(0) # Get new data frame with sorted index dfe_orig = df.sort_index() # remove all rows with only null entries dfe = dfe_orig.dropna(how='all') # minimal time delta for merging mindelta, dfe_orig = min_delta(dfe_orig) logger.debug('Timedelta:' + str(mindelta) + ' Index: ' + str(dfe_orig.index)) # one dimensional time series - named temperature for catchyness # interpolate gaps - data imputation by default # for missing data detection we look at the timestamp gradient instead dfe, temperature = self.prepare_data(dfe) logger.debug( self.whoami + ', Entity: ' + str(entity) + ', Input: ' + str(self.input_item) + ', Windowsize: ' + str( self.windowsize) + ', Output: ' + str(self.output_items) + ', Overlap: ' + str( self.windowoverlap) + ', Inputsize: ' + str(temperature.size)) if temperature.size <= self.windowsize: logger.debug(str(temperature.size) + ' <= ' + str(self.windowsize)) for output_item in self.output_items: dfe[output_item] = Error_SmallWindowsize else: logger.debug(str(temperature.size) + str(self.windowsize)) for output_item in self.output_items: dfe[output_item] = Error_Generic temperature = self.scale(temperature, entity) scores = self.score(temperature) # length of time_series_temperature, signal_energy and ets_zscore is smaller than half the original # extend it to cover the full original length logger.debug('->') try: for i,output_item in enumerate(self.output_items): # check for fast path, no interpolation required diff = temperature.size - scores[i].size # slow path - interpolate result score to stretch it to the size of the input data if diff > 0: dfe[output_item] = 0.0006 time_series_temperature = np.linspace(self.windowsize // 2, temperature.size - self.windowsize // 2 + 1, temperature.size - diff) linear_interpolate = sp.interpolate.interp1d(time_series_temperature, scores[i], kind='linear', fill_value='extrapolate') zScoreII = merge_score(dfe, dfe_orig, output_item, abs(linear_interpolate(np.arange(0, temperature.size, 1))), mindelta) # fast path - either cut off or just copy elif diff < 0: zScoreII = scores[i][0:temperature.size] else: zScoreII = scores[i] df[output_item] = zScoreII except Exception as e: logger.error(self.whoami + ' score integration failed with ' + str(e)) logger.debug('--->') return df def score(self, temperature): #scores = np.zeros((len(self.output_items), ) + temperature.shape) scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # super simple 1-dimensional z-score ets_zscore = abs(sp.stats.zscore(temperature)) scores[0] = ets_zscore # 2nd argument to return the modified input argument (for no data) if len(self.output_items) > 1: scores[1] = temperature except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) return scores def scale(self, temperature, entity): normalize_entity = self.normalize if not normalize_entity: return temperature temp = temperature.reshape(-1, 1) logger.info(self.whoami + ' scaling ' + str(temperature.shape)) try: check_array(temp, allow_nd=True) except Exception as e: logger.error('Found Nan or infinite value in input data, error: ' + str(e)) return temperature db = self._entity_type.db scaler_model = None # per entity - copy for later inplace operations model_name = self.get_model_name(suffix=entity) try: scaler_model = db.model_store.retrieve_model(model_name) logger.info('load model %s' % str(scaler_model)) except Exception as e: logger.error('Model retrieval failed with ' + str(e)) # failed to load a model, so train it if scaler_model is None: # all variables should be continuous scaler_model = StandardScaler().fit(temp) logger.debug('Created Scaler ' + str(scaler_model)) try: db.model_store.store_model(model_name, scaler_model) except Exception as e: logger.error('Model store failed with ' + str(e)) if scaler_model is not None: temp = scaler_model.transform(temp) return temp.reshape(temperature.shape) return temperature ##### # experimental function to interpolate over larger gaps #### class Interpolator(AnomalyScorer): """ Interpolates NaN and data to be interpreted as NaN (for example 0 as invalid sensor reading) The window size is typically set large enough to allow for "bridging" gaps Missing indicates sensor readings to be interpreted as invalid. """ def __init__(self, input_item, windowsize, missing, output_item): super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.missing = missing self.whoami = 'Interpolator' def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # remove Nan dfe = dfe[dfe[self.input_item].notna()] # remove self.missing dfe = dfe[dfe[self.input_item] != self.missing] # interpolate gaps - data imputation try: dfe = dfe.interpolate(method="time") except Exception as e: logger.error('Prepare data error: ' + str(e)) # one dimensional time series - named temperature for catchyness # replace NaN with self.missing temperature = dfe[self.input_item].fillna(0).to_numpy(dtype=np.float64) return dfe, temperature @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to interpolate')) inputs.append( UISingle(name='windowsize', datatype=int, description='Minimal size of the window for interpolating data.')) inputs.append(UISingle(name='missing', datatype=int, description='Data to be interpreted as not-a-number.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='Interpolated data')) return (inputs, outputs) class NoDataAnomalyScoreExt(AnomalyScorer): """ An unsupervised anomaly detection function. Uses z-score AnomalyScorer to find gaps in data. The function moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, [output_item]) self.whoami = 'NoDataExt' self.normalizer = 1 logger.debug('NoDataExt') def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names dfe = dfEntity.reset_index(index_names[1:]) else: dfe = dfEntity # count the timedelta in seconds between two events timeSeq = (dfe.index.values - dfe.index[0].to_datetime64()) / np.timedelta64(1, 's') #dfe = dfEntity.copy() # one dimensional time series - named temperature for catchyness # we look at the gradient of the time series timestamps for anomaly detection # might throw an exception - we catch it in the super class !! try: temperature = np.gradient(timeSeq) dfe[[self.input_item]] = temperature except Exception as pe: logger.info("NoData Gradient failed with " + str(pe)) dfe[[self.input_item]] = 0 temperature = dfe[[self.input_item]].values temperature[0] = 10 ** 10 temperature = temperature.astype('float64').reshape(-1) return dfe, temperature @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='No data anomaly score')) return inputs, outputs class ChangePointDetector(AnomalyScorer): ''' An unsupervised anomaly detection function. Applies a spectral analysis clustering techniqueto extract features from time series data and to create z scores. Moves a sliding window across the data signal and applies the anomalymodelto each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. ''' def __init__(self, input_item, windowsize, chg_pts): super().__init__(input_item, windowsize, [chg_pts]) logger.debug(input_item) self.whoami = 'ChangePointDetector' def score(self, temperature): scores = [] sc = np.zeros(temperature.shape) try: algo = rpt.BottomUp(model="l2", jump=2).fit(temperature) chg_pts = algo.predict(n_bkps=15) for j in chg_pts: x = np.arange(0, temperature.shape[0], 1) Gaussian = sp.stats.norm(j-1, temperature.shape[0]/20) # high precision y = Gaussian.pdf(x) * temperature.shape[0]/8 # max is ~1 sc += y except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) scores.append(sc) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='chg_pts', datatype=float, description='Change points')) return inputs, outputs ENSEMBLE = '_ensemble_' SPECTRALEXT = 'SpectralAnomalyScoreExt' class EnsembleAnomalyScore(BaseTransformer): ''' Call a set of anomaly detectors and return an joint vote along with the individual results ''' def __init__(self, input_item, windowsize, scorers, thresholds, output_item): super().__init__() self.input_item = input_item self.windowsize = windowsize self.output_item = output_item logger.debug(input_item) self.whoami = 'EnsembleAnomalyScore' self.list_of_scorers = scorers.split(',') self.thresholds = list(map(int, thresholds.split(','))) self.klasses = [] self.instances = [] self.output_items = [] module = importlib.import_module('mmfunctions.anomaly') for m in self.list_of_scorers: klass = getattr(module, m) self.klasses.append(klass) print(klass.__name__) if klass.__name__ == SPECTRALEXT: inst = klass(input_item, windowsize, output_item + ENSEMBLE + klass.__name__, output_item + ENSEMBLE + klass.__name__ + '_inv') else: inst = klass(input_item, windowsize, output_item + ENSEMBLE + klass.__name__) self.output_items.append(output_item + ENSEMBLE + klass.__name__) self.instances.append(inst) def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df # no copy binned_indices_list = [] for inst, output, threshold in zip(self.instances, self.output_items, self.thresholds): logger.info('Execute anomaly scorer ' + str(inst.__class__.__name__) + ' with threshold ' + str(threshold)) tic = time.perf_counter_ns() df_copy = inst.execute(df_copy) toc = time.perf_counter_ns() logger.info('Executed anomaly scorer ' + str(inst.__class__.__name__) + ' in ' +\ str((toc-tic)//1000000) + ' milliseconds') arr = df_copy[output] # sort results into bins that depend on the thresholds # 0 - below 3/4 threshold, 1 - up to the threshold, 2 - crossed the threshold, # 3 - very high, 4 - extreme if inst.__class__.__name__ == SPECTRALEXT and isinstance(threshold, int): # hard coded threshold for inverted values threshold_ = 5 bins = [threshold * 0.75, threshold, threshold * 1.5, threshold * 2] binned_indices_list.append(np.searchsorted(bins, arr, side='left')) if inst.__class__.__name__ == SPECTRALEXT: bins = [threshold_ * 0.75, threshold_, threshold_ * 1.5, threshold_ * 2] arr = df_copy[output + '_inv'] binned_indices_list.append(np.searchsorted(bins, arr, side='left')) binned_indices = np.vstack(binned_indices_list).mean(axis=0) # should we explicitly drop the columns generated by the ensemble members #df[self.output_item] = binned_indices df_copy[self.output_item] = binned_indices return df_copy @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name='output_item', datatype=float, description='Spectral anomaly score (z-score)')) return inputs, outputs class SpectralAnomalyScore(AnomalyScorer): ''' An unsupervised anomaly detection function. Applies a spectral analysis clustering techniqueto extract features from time series data and to create z scores. Moves a sliding window across the data signal and applies the anomalymodelto each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. ''' def __init__(self, input_item, windowsize, output_item): if isinstance(output_item, list): super().__init__(input_item, windowsize, output_item) else: super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.whoami = 'SpectralAnomalyScore' def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # Fourier transform: # frequency, time, spectral density frequency_temperature, time_series_temperature, spectral_density_temperature = signal.spectrogram( temperature, fs=self.frame_rate, window='hanning', nperseg=self.windowsize, noverlap=self.windowoverlap, detrend='l', scaling='spectrum') # cut off freqencies too low to fit into the window frequency_temperatureb = (frequency_temperature > 2 / self.windowsize).astype(int) frequency_temperature = frequency_temperature * frequency_temperatureb frequency_temperature[frequency_temperature == 0] = 1 / self.windowsize signal_energy = np.dot(spectral_density_temperature.T, frequency_temperature) signal_energy[signal_energy < SmallEnergy] = SmallEnergy inv_signal_energy = np.divide(np.ones(signal_energy.size), signal_energy) ets_zscore = abs(sp.stats.zscore(signal_energy)) * Spectral_normalizer inv_zscore = abs(sp.stats.zscore(inv_signal_energy)) scores[0] = ets_zscore if len(self.output_items) > 1: scores[1] = inv_zscore # 3rd argument to return the raw windowed signal energy if len(self.output_items) > 2: scores[2] = signal_energy # 4th argument to return the modified input argument (for no data) if len(self.output_items) > 3: scores[3] = temperature.copy() logger.debug( 'Spectral z-score max: ' + str(ets_zscore.max()) + ', Spectral inv z-score max: ' + str( inv_zscore.max())) except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name='output_item', datatype=float, description='Spectral anomaly score (z-score)')) return inputs, outputs class SpectralAnomalyScoreExt(SpectralAnomalyScore): ''' An unsupervised anomaly detection function. Applies a spectral analysis clustering techniqueto extract features from time series data and to create z scores. Moves a sliding window across the data signal and applies the anomalymodelto each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. ''' def __init__(self, input_item, windowsize, output_item, inv_zscore, signal_energy=None): if signal_energy is None: super().__init__(input_item, windowsize, [output_item, inv_zscore]) else: super().__init__(input_item, windowsize, [output_item, inv_zscore, signal_energy]) logger.debug(input_item) self.whoami = 'SpectralAnomalyScoreExt' @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name='output_item', datatype=float, description='Spectral anomaly score (z-score)')) outputs.append(UIFunctionOutSingle(name='inv_zscore', datatype=float, description='z-score of inverted signal energy - detects unusually low activity')) outputs.append(UIFunctionOutSingle(name='signal_enerty', datatype=float, description='signal energy')) return inputs, outputs class KMeansAnomalyScore(AnomalyScorer): """ An unsupervised anomaly detection function. Applies a k-means analysis clustering technique to time series data. Moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. Try several anomaly models on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item, expr=None): super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.whoami = 'KMeans' def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # Chop into overlapping windows slices = view_as_windows(temperature, self.windowsize, self.step) if self.windowsize > 1: n_cluster = 40 else: n_cluster = 20 n_cluster = np.minimum(n_cluster, slices.shape[0] // 2) logger.debug(self.whoami + 'params, Clusters: ' + str(n_cluster) + ', Slices: ' + str(slices.shape)) cblofwin = CBLOF(n_clusters=n_cluster, n_jobs=-1) try: cblofwin.fit(slices) except Exception as e: logger.info('KMeans failed with ' + str(e)) self.trace_append('KMeans failed with' + str(e)) return scores pred_score = cblofwin.decision_scores_.copy() * KMeans_normalizer scores[0] = pred_score logger.debug('KMeans score max: ' + str(pred_score.max())) except Exception as e: logger.error(self.whoami + ' failed with ' + str(e)) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='Anomaly score (kmeans)')) return inputs, outputs class GeneralizedAnomalyScore(AnomalyScorer): """ An unsupervised anomaly detection function. Applies the Minimum Covariance Determinant (FastMCD) technique to detect outliers. Moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, [output_item]) logger.debug(input_item) self.whoami = 'GAM' self.normalizer = Generalized_normalizer def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices = view_as_windows(temperature, self.windowsize, self.step) return slices def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) logger.debug(str(temperature.size) + "," + str(self.windowsize)) temperature -= np.mean(temperature.astype(np.float64), axis=0) mcd = MinCovDet() # Chop into overlapping windows (default) or run through FFT first slices = self.feature_extract(temperature) try: mcd.fit(slices) pred_score = mcd.mahalanobis(slices).copy() * self.normalizer except ValueError as ve: pred_score = np.zeros(temperature.shape) logger.info(self.whoami + ", Input: " + str( self.input_item) + ", WindowSize: " + str(self.windowsize) + ", Output: " + str( self.output_items[0]) + ", Step: " + str(self.step) + ", InputSize: " + str( slices.shape) + " failed in the fitting step with \"" + str(ve) + "\" - scoring zero") except Exception as e: pred_score = np.zeros(temperature.shape) logger.error(self.whoami + ", Input: " + str( self.input_item) + ", WindowSize: " + str(self.windowsize) + ", Output: " + str( self.output_items[0]) + ", Step: " + str(self.step) + ", InputSize: " + str( slices.shape) + " failed in the fitting step with " + str(e)) scores[0] = pred_score logger.debug(self.whoami + ' score max: ' + str(pred_score.max())) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (GeneralizedAnomaly)", )) return inputs, outputs class NoDataAnomalyScore(GeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Uses FastMCD to find gaps in data. The function moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'NoData' self.normalizer = 1 logger.debug('NoData') def prepare_data(self, dfEntity): logger.debug(self.whoami + ': prepare Data') # operate on simple timestamp index if len(dfEntity.index.names) > 1: index_names = dfEntity.index.names[1:] dfe = dfEntity.reset_index(index_names) else: dfe = dfEntity # count the timedelta in seconds between two events logger.debug('type of index[0] is ' + str(type(dfEntity.index[0]))) try: timeSeq = (dfe.index.values - dfe.index[0].to_datetime64()) / np.timedelta64(1, 's') except Exception: try: time_to_numpy = np.array(dfe.index[0], dtype='datetime64') print('5. ', type(time_to_numpy), dfe.index[0][0]) timeSeq = (time_to_numpy - dfe.index[0][0].to_datetime64()) / np.timedelta64(1, 's') except Exception: print('Nochens') timeSeq = 1.0 #dfe = dfEntity.copy() # one dimensional time series - named temperature for catchyness # we look at the gradient of the time series timestamps for anomaly detection # might throw an exception - we catch it in the super class !! try: temperature = np.gradient(timeSeq) dfe[[self.input_item]] = temperature except Exception as pe: logger.info("NoData Gradient failed with " + str(pe)) dfe[[self.input_item]] = 0 temperature = dfe[[self.input_item]].values temperature[0] = 10 ** 10 temperature = temperature.astype('float64').reshape(-1) return dfe, temperature @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='No data anomaly score')) return inputs, outputs class FFTbasedGeneralizedAnomalyScore(GeneralizedAnomalyScore): """ An unsupervised and robust anomaly detection function. Extracts temporal features from time series data using Fast Fourier Transforms. Applies the GeneralizedAnomalyScore to the features to detect outliers. Moves a sliding window across the data signal and applies the anomaly models to each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'FFT' self.normalizer = FFT_normalizer logger.debug('FFT') def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices_ = view_as_windows(temperature, self.windowsize, self.step) slicelist = [] for slice in slices_: slicelist.append(fftpack.rfft(slice)) return np.stack(slicelist, axis=0) @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (FFTbasedGeneralizedAnomalyScore)", )) return inputs, outputs class MatrixProfileAnomalyScore(AnomalyScorer): """ An unsupervised anomaly detection function. Applies matrix profile analysis on time series data. Moves a sliding window across the data signal to calculate the euclidean distance from one window to all others to build a distance profile. The window size is typically set to 12 data points. Try several anomaly models on your data and use the one that fits your data best. """ DATAPOINTS_AFTER_LAST_WINDOW = 1e-15 INIT_SCORES = 1e-20 ERROR_SCORES = 1e-16 def __init__(self, input_item, window_size, output_item): super().__init__(input_item, window_size, [output_item]) logger.debug(f'Input item: {input_item}') self.whoami = 'MatrixProfile' def score(self, temperature): scores = [] for output_item in self.output_items: scores.append(np.zeros(temperature.shape)) try: # calculate scores matrix_profile = stumpy.aamp(temperature, m=self.windowsize)[:, 0] # fill in a small value for newer data points outside the last possible window fillers = np.array([self.DATAPOINTS_AFTER_LAST_WINDOW] * (self.windowsize - 1)) matrix_profile = np.append(matrix_profile, fillers) except Exception as er: logger.warning(f' Error in calculating Matrix Profile Scores. {er}') matrix_profile = np.array([self.ERROR_SCORES] * temperature.shape[0]) scores[0] = matrix_profile logger.debug('Matrix Profile score max: ' + str(matrix_profile.max())) return scores @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [UISingleItem(name="input_item", datatype=float, description="Time series data item to analyze", ), UISingle(name="window_size", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")] # define arguments that behave as function outputs outputs = [UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (MatrixProfileAnomalyScore)", )] return inputs, outputs class SaliencybasedGeneralizedAnomalyScore(GeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Based on salient region detection models, it uses fast fourier transform to reconstruct a signal using the salient features of a the signal. It applies GeneralizedAnomalyScore to the reconstructed signal. The function moves a sliding window across the data signal and applies its analysis to each window. The window size is typically set to 12 data points. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'Saliency' self.saliency = Saliency(windowsize, 0, 0) self.normalizer = Saliency_normalizer logger.debug('Saliency') def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices = view_as_windows(temperature, self.windowsize, self.step) return slices @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze")) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.", )) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (SaliencybasedGeneralizedAnomalyScore)", )) return (inputs, outputs) ####################################################################################### # Anomaly detectors with scaling ####################################################################################### class KMeansAnomalyScoreV2(KMeansAnomalyScore): def __init__(self, input_item, windowsize, normalize, output_item, expr=None): super().__init__(input_item, windowsize, output_item) logger.debug(input_item) self.normalize = normalize self.whoami = 'KMeansV2' @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name='input_item', datatype=float, description='Data item to analyze')) inputs.append(UISingle(name='windowsize', datatype=int, description='Size of each sliding window in data points. Typically set to 12.')) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name='output_item', datatype=float, description='Anomaly score (kmeans)')) return (inputs, outputs) class GeneralizedAnomalyScoreV2(GeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Applies the Minimum Covariance Determinant (FastMCD) technique to detect outliers. Moves a sliding window across the data signal and applies the anomaly model to each window. The window size is typically set to 12 data points. The normalize switch allows to learn and apply a standard scaler prior to computing the anomaly score. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, normalize, output_item, expr=None): super().__init__(input_item, windowsize, output_item) logger.debug(input_item) # do not run score and call transform instead of predict self.normalize = normalize self.whoami = 'GAMV2' @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append( UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (GeneralizedAnomaly)", )) return inputs, outputs class FFTbasedGeneralizedAnomalyScoreV2(GeneralizedAnomalyScoreV2): """ An unsupervised and robust anomaly detection function. Extracts temporal features from time series data using Fast Fourier Transforms. Applies the GeneralizedAnomalyScore to the features to detect outliers. Moves a sliding window across the data signal and applies the anomaly models to each window. The window size is typically set to 12 data points. The normalize switch allows to learn and apply a standard scaler prior to computing the anomaly score. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, normalize, output_item): super().__init__(input_item, windowsize, normalize, output_item) self.normalize = normalize self.whoami = 'FFTV2' self.normalizer = FFT_normalizer logger.debug('FFT') def feature_extract(self, temperature): logger.debug(self.whoami + ': feature extract') slices_ = view_as_windows(temperature, self.windowsize, self.step) slicelist = [] for slice in slices_: slicelist.append(fftpack.rfft(slice)) return np.stack(slicelist, axis=0) @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze", )) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.")) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (FFTbasedGeneralizedAnomalyScore)", )) return inputs, outputs class SaliencybasedGeneralizedAnomalyScoreV2(SaliencybasedGeneralizedAnomalyScore): """ An unsupervised anomaly detection function. Based on salient region detection models, it uses fast fourier transform to reconstruct a signal using the salient features of a the signal. It applies GeneralizedAnomalyScore to the reconstructed signal. The function moves a sliding window across the data signal and applies its analysis to each window. The window size is typically set to 12 data points. The normalize switch allows to learn and apply a standard scaler prior to computing the anomaly score. Try several anomaly detectors on your data and use the one that fits your data best. """ def __init__(self, input_item, windowsize, normalize, output_item): super().__init__(input_item, windowsize, output_item) self.whoami = 'SaliencyV2' self.normalize = normalize logger.debug('SaliencyV2') @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze")) inputs.append(UISingle(name="windowsize", datatype=int, description="Size of each sliding window in data points. Typically set to 12.", )) inputs.append(UISingle(name='normalize', datatype=bool, description='Flag for normalizing data.')) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=float, description="Anomaly score (SaliencybasedGeneralizedAnomalyScore)", )) return inputs, outputs KMeansAnomalyScorev2 = KMeansAnomalyScoreV2 FFTbasedGeneralizedAnomalyScorev2 = FFTbasedGeneralizedAnomalyScoreV2 SaliencybasedGeneralizedAnomalyScorev2 = SaliencybasedGeneralizedAnomalyScoreV2 GeneralizedAnomalyScorev2 = GeneralizedAnomalyScoreV2 ####################################################################################### # Base class to handle models ####################################################################################### class SupervisedLearningTransformer(BaseTransformer): name = 'SupervisedLearningTransformer' """ Base class for anomaly scorers that can be trained with historic data in a notebook and automatically store a trained model in the tenant database Inferencing is run in the pipeline """ def __init__(self, features, targets): super().__init__() logging.debug("__init__" + self.name) # do NOT automatically train if no model is found (subclasses) self.auto_train = False self.delete_model = False self.features = features self.targets = targets parms = [] if features is not None: parms.extend(features) if targets is not None: parms.extend(targets) parms = '.'.join(parms) logging.debug("__init__ done with parameters: " + parms) ''' Generate unique model name from entity, optionally features and target for consistency checks ''' def get_model_name(self, prefix='model', features=None, targets=None, suffix=None): name = [] if prefix is not None: name.append(prefix) name.extend([self._entity_type.name, self.name]) if features is not None: name.extend(features) if targets is not None: name.extend(targets) if suffix is not None: name.append(suffix) name = '.'.join(name) return name def load_model(self, suffix=None): model_name = self.get_model_name(targets=self.targets, suffix=suffix) my_model = None try: my_model = self._entity_type.db.model_store.retrieve_model(model_name) logger.info('load model %s' % str(my_model)) except Exception as e: logger.error('Model retrieval failed with ' + str(e)) pass # ditch old model version = 1 if self.delete_model: if my_model is not None: if hasattr(my_model, 'version'): version = my_model.version + 1 logger.debug('Deleting robust model ' + str(version-1) + ' for entity: ' + str(suffix)) my_model = None return model_name, my_model, version def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df # no copy # check data type #if df[self.input_item].dtype != np.float64: for feature in self.features: if not pd.api.types.is_numeric_dtype(df_copy[feature].dtype): logger.error('Regression on non-numeric feature:' + str(feature)) return (df_copy) # delegate to _calc logger.debug('Execute ' + self.whoami + ' enter per entity execution') # group over entities group_base = [pd.Grouper(axis=0, level=0)] df_copy = df_copy.groupby(group_base).apply(self._calc) logger.debug('Scoring done') return df_copy ####################################################################################### # Outlier removal in pipeline ####################################################################################### class LocalOutlierFactor: def __init__(self): self.lof = LocalOutlierFactor() #**kwargs) self.version = 1 def fit(self, X): self.lof.fit(X.reshape(-1,1)) def predict(self, X, threshold): #return (X >= self.MinMax[0]) & (X <= self.MinMax[1]) return self.lof.negative_outlier_factor_ < threshold class KDEMaxMin: def __init__(self, version=1): self.version = version self.kde = KernelDensity(kernel='gaussian') self.Min = None self.Max = None def fit(self, X, alpha): self.kde.fit(X.reshape(-1,1)) kde_X = self.kde.score_samples(X.reshape(-1,1)) # find outliers of the kde score tau_kde = sp.stats.mstats.mquantiles(kde_X, 1. - alpha) # alpha = 0.995 # determine outliers X_outliers = X[np.argwhere(kde_X < tau_kde).flatten()] X_valid = X[np.argwhere(kde_X >= tau_kde).flatten()] # determine max of all sample that are not outliers self.Min = X_valid.min() self.Max = X_valid.max() if len(X_outliers) > 0: X_min = X_outliers[X_outliers < self.Min] X_max = X_outliers[X_outliers > self.Max] if len(X_min) > 0: self.Min = max(X_min.max(), self.Min) if len(X_max) > 0: self.Max = min(X_max.min(), self.Max) # self.Min = max(X_outliers[X_outliers < self.Min].max(), self.Min) # self.Max = min(X_outliers[X_outliers > self.Max].min(), self.Max) logger.info('KDEMaxMin - Min: ' + str(self.Min) + ', ' + str(self.Max)) return kde_X def predict(self, X, threshold=None): return (X >= self.Min) & (X <= self.Max) class RobustThreshold(SupervisedLearningTransformer): def __init__(self, input_item, threshold, output_item): super().__init__(features=[input_item], targets=[output_item]) self.input_item = input_item self.threshold = threshold self.output_item = output_item self.auto_train = True self.Min = dict() self.Max = dict() self.whoami = 'RobustThreshold' logger.info(self.whoami + ' from ' + self.input_item + ' quantile threshold ' + str(self.threshold) + ' exceeding boolean ' + self.output_item) def execute(self, df): # set output columns to zero logger.debug('Called ' + self.whoami + ' with columns: ' + str(df.columns)) df[self.output_item] = 0 return super().execute(df) def _calc(self, df): # per entity - copy for later inplace operations db = self._entity_type.db entity = df.index.levels[0][0] model_name, robust_model, version = self.load_model(suffix=entity) feature = df[self.input_item].values if robust_model is None and self.auto_train: robust_model = KDEMaxMin(version=version) try: robust_model.fit(feature, self.threshold) db.model_store.store_model(model_name, robust_model) except Exception as e: logger.error('Model store failed with ' + str(e)) robust_model = None if robust_model is not None: self.Min[entity] = robust_model.Min self.Max[entity] = robust_model.Max df[self.output_item] = robust_model.predict(feature, self.threshold) else: df[self.output_item] = 0 return df.droplevel(0) @classmethod def build_ui(cls): # define arguments that behave as function inputs inputs = [] inputs.append(UISingleItem(name="input_item", datatype=float, description="Data item to analyze")) inputs.append(UISingle(name="threshold", datatype=int, description="Threshold to determine outliers by quantile. Typically set to 0.95", )) # define arguments that behave as function outputs outputs = [] outputs.append(UIFunctionOutSingle(name="output_item", datatype=bool, description="Boolean outlier condition")) return (inputs, outputs) ####################################################################################### # Regressors ####################################################################################### class BayesRidgeRegressor(BaseEstimatorFunction): """ Linear regressor based on a probabilistic model as provided by sklearn """ eval_metric = staticmethod(metrics.r2_score) # class variables train_if_no_model = True num_rounds_per_estimator = 3 def BRidgePipeline(self): steps = [('scaler', StandardScaler()), ('bridge', linear_model.BayesianRidge(compute_score=True))] return Pipeline(steps) def set_estimators(self): params = {} self.estimators['bayesianridge'] = (self.BRidgePipeline, params) logger.info('Bayesian Ridge Regressor start searching for best model') def __init__(self, features, targets, predictions=None, deviations=None): super().__init__(features=features, targets=targets, predictions=predictions, stddev=True, keep_current_models=True) if deviations is not None: self.pred_stddev = deviations self.experiments_per_execution = 1 self.auto_train = True self.correlation_threshold = 0 self.stop_auto_improve_at = -2 self.whoami = 'BayesianRidgeRegressor' def execute(self, df): logger.debug('Execute ' + self.whoami) df_copy = df.copy() # Create missing columns before doing group-apply missing_cols = [x for x in self.predictions + self.pred_stddev if x not in df_copy.columns] for m in missing_cols: df_copy[m] = None # check data type #if df[self.input_item].dtype != np.float64: for feature in self.features: if not
pd.api.types.is_numeric_dtype(df_copy[feature].dtype)
pandas.api.types.is_numeric_dtype
# -*- coding: utf-8 -*- """ Reading data for WB, PRO, for kennisimpulse project to read data from province, water companies, and any other sources Created on Sun Jul 26 21:55:57 2020 @author: <NAME> """ import pytest import numpy as np import pandas as pd from pathlib import Path import pickle as pckl from hgc import ner from hgc import io import tests # import xlsxwriter def test_province(): # WD = Path(tests.__file__).parent / 'provincie_data_long_preprocessed.csv' WD = r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse'+'/provincie_data_long_preprocessed.csv' df_temp = pd.read_csv(WD, encoding='ISO-8859-1', header=None) # define the nrow here n_row = None feature_map, feature_unmapped, df_feature_map = ner.generate_feature_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 25].dropna())) unit_map, unit_unmapped, df_unit_map = ner.generate_unit_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 26].dropna())) # create a df to record what has been mapped and what has not df_map = pd.DataFrame((feature_map.keys(),feature_map.values(),unit_map.keys(),unit_map.values()), index=['Feature','Mapped feature','Unit','Mapped unit']).transpose() if not not feature_unmapped: df_map = df_map.join(pd.DataFrame(feature_unmapped, columns=['Unmapped feature'])) if not not unit_unmapped: df_map = df_map.join(pd.DataFrame(unit_unmapped, columns=['Unmapped unit'])) dct2_arguments = { 'file_path': WD, 'sheet_name': 'stacked', 'shape': 'stacked', 'slice_header': [1, slice(1, None)], 'slice_data': [slice(1, n_row), slice(1, None)], 'map_header': { **io.default_map_header(), 'MeetpuntId': 'LocationID', 'parameter':'Feature', 'eenheid': 'Unit', 'waarde': 'Value', 'Opgegeven bemonstering datum': 'Datetime', 'Monsternummer': 'SampleID', # "SampleID" already exists as header, but contains wrong date. Use "Sample number" as "SampleID" # 'SampleID': None # otherwise exists twice in output file }, 'map_features': {**feature_map,'pH(1)':'pH'}, 'map_units': {**unit_map, 'oC':'°C'}, } df2 = io.import_file(**dct2_arguments)[0] df2_hgc = io.stack_to_hgc(df2) with pd.ExcelWriter(r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse'+r'/provincie_processed.xlsx') as writer: df2_hgc.to_excel(writer, sheet_name='hgc_prov') df2.to_excel(writer, sheet_name='df_prov') df_map.to_excel(writer, sheet_name='mapAndUnmap') def test_KIWKZUID(): # WD = Path(tests.__file__).parent / 'provincie_data_long_preprocessed.csv' # WD = r'D:/DBOX/Dropbox/008KWR/0081Projects/kennisimpulse/Opkomende stoffen KIWK Zuid_preprocessed.csv' WD = r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse/Opkomende stoffen KIWK Zuid_preprocessed.csv' df_temp = pd.read_csv(WD, header=None, encoding='ISO-8859-1') # define the nrow here n_row = None feature_map, feature_unmapped, df_feature_map = ner.generate_feature_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 20].dropna())) unit_map, unit_unmapped, df_unit_map = ner.generate_unit_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 21].dropna())) # create a df to record what has been mapped and what has not df_map = pd.DataFrame((feature_map.keys(),feature_map.values(),unit_map.keys(),unit_map.values()), index=['Feature','Mapped feature','Unit','Mapped unit']).transpose() if not not feature_unmapped: df_map = df_map.join(pd.DataFrame(feature_unmapped, columns=['Unmapped feature'])) dct2_arguments = { 'file_path': WD, 'sheet_name': 'Export KoW 2.0', 'shape': 'stacked', 'slice_header': [1, slice(1, 24)], 'slice_data': [slice(1, n_row), slice(1, 24)], 'map_header': { **io.default_map_header(), 'Monsterpunt': 'LocationID', 'Parameter omschrijving':'Feature', 'Eenheid': 'Unit', 'Gerapporteerde waarde': 'Value', # Gerapporteerde waarde, right?! 'Monstername datum': 'Datetime', 'Analyse': 'SampleID', # Analyse !? # 'SampleID': None # otherwise exists twice in output file }, 'map_features': {**feature_map,'pH(1)':'pH'}, 'map_units': {**unit_map, 'oC':'°C'}, } df2 = io.import_file(**dct2_arguments)[0] df2_hgc = io.stack_to_hgc(df2) # with pd.ExcelWriter(r'D:/DBOX/Dropbox/008KWR/0081Projects/kennisimpulse/KIWK_Zuid_processed.xlsx') as writer: with pd.ExcelWriter(r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse/KIWK_Zuid_processed.xlsx') as writer: df2.to_excel(writer, sheet_name='KIWK_Zuid') df2_hgc.to_excel(writer, sheet_name='hgc_KIWK_Zuid') df_map.to_excel(writer, sheet_name='mapAndUnmap') def test_KIWKVenloschol(): # WD = Path(tests.__file__).parent / 'provincie_data_long_preprocessed.csv' # WD = r'D:/DBOX/Dropbox/008KWR/0081Projects/kennisimpulse/Opkomende stoffen KIWK Zuid_preprocessed.csv' WD = r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse/Opkomende stoffen KIWK Venloschol_preprocessed.xlsx' df_temp = pd.read_excel(WD, header=None, encoding='ISO-8859-1') # define the nrow here n_row = None feature_map, feature_unmapped, df_feature_map = ner.generate_feature_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 20].dropna())) unit_map, unit_unmapped, df_unit_map = ner.generate_unit_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 21].dropna())) # create a df to record what has been mapped and what has not df_map = pd.DataFrame((feature_map.keys(),feature_map.values(),unit_map.keys(),unit_map.values()), index=['Feature','Mapped feature','Unit','Mapped unit']).transpose() if not not feature_unmapped: df_map = df_map.join(pd.DataFrame(feature_unmapped, columns=['Unmapped feature'])) if not not unit_unmapped: df_map = df_map.join(pd.DataFrame(unit_unmapped, columns=['Unmapped unit'])) dct2_arguments = { 'file_path': WD, 'sheet_name': 'Export KoW 2.0', 'shape': 'stacked', 'slice_header': [1, slice(1, 24)], 'slice_data': [slice(1, n_row), slice(1, 24)], 'map_header': { **io.default_map_header(), 'Monsterpunt': 'LocationID', 'Parameter omschrijving':'Feature', 'Eenheid': 'Unit', 'Gerapporteerde waarde': 'Value', # Gerapporteerde waarde, right?! 'Monstername datum': 'Datetime', 'Analyse': 'SampleID', # Analyse !? }, 'map_features': {**feature_map,'pH(1)':'pH'}, 'map_units': {**unit_map, 'µg/l atrazine-D5':'µg/l'}, } df2 = io.import_file(**dct2_arguments)[0] df2_hgc = io.stack_to_hgc(df2) # with pd.ExcelWriter(r'D:/DBOX/Dropbox/008KWR/0081Projects/kennisimpulse/KIWK_Zuid_processed.xlsx') as writer: with pd.ExcelWriter(r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse/Opkomende stoffen KIWK Venloschol_processed.xlsx') as writer: df2_hgc.to_excel(writer, sheet_name='hgc_KIWK Venloschol') df2.to_excel(writer, sheet_name='KIWK Venloschol') df_map.to_excel(writer, sheet_name='mapAndUnmap') def test_KIWKRoerdalslenk(): WD = Path(tests.__file__).parent / 'provincie_data_long_preprocessed.csv' WD = r'D:/DBOX/Dropbox/008KWR/0081Projects/kennisimpulse/Opkomende stoffen KIWK Zuid_preprocessed.csv' WD = r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse/Opkomende stoffen KIWK Roerdalslenk_preprocessed.xlsx' df_temp = pd.read_excel(WD, header=None, encoding='ISO-8859-1') # define the nrow here n_row = None feature_map, feature_unmapped, df_feature_map = ner.generate_feature_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 20].dropna())) unit_map, unit_unmapped, df_unit_map = ner.generate_unit_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 21].dropna())) # create a df to record what has been mapped and what has not df_map = pd.DataFrame((feature_map.keys(),feature_map.values(),unit_map.keys(),unit_map.values()), index=['Feature','Mapped feature','Unit','Mapped unit']).transpose() if not not feature_unmapped: df_map = df_map.join(pd.DataFrame(feature_unmapped, columns=['Unmapped feature'])) if not not unit_unmapped: df_map = df_map.join(pd.DataFrame(unit_unmapped, columns=['Unmapped unit'])) dct2_arguments = { 'file_path': WD, 'sheet_name': 'Export KoW 2.0', 'shape': 'stacked', 'slice_header': [1, slice(1, 24)], 'slice_data': [slice(1, n_row), slice(1, 24)], 'map_header': { **io.default_map_header(), 'Monsterpunt': 'LocationID', 'Parameter omschrijving':'Feature', 'Eenheid': 'Unit', 'Gerapporteerde waarde': 'Value', # Gerapporteerde waarde, right?! 'Monstername datum': 'Datetime', 'Analyse': 'SampleID', # Analyse !? }, 'map_features': {**feature_map,'pH(1)':'pH'}, 'map_units': {**unit_map, 'µg/l Hxdcn-d34':'µg/l'}, } df2 = io.import_file(**dct2_arguments)[0] df2_hgc = io.stack_to_hgc(df2) # with pd.ExcelWriter(r'D:/DBOX/Dropbox/008KWR/0081Projects/kennisimpulse/KIWK_Zuid_processed.xlsx') as writer: with
pd.ExcelWriter(r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse/Opkomende stoffen KIWK Roerdalslenk_processed.xlsx')
pandas.ExcelWriter
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 4 15:00:57 2019 @author: <NAME> Input file: list of quantification tables Output files: quantification_stats_*.tsv, quantification_results_*.tsv (HTSeq option) or Description: Used to merge quantification results from all samples """ import argparse import pandas as pd # function to merge HTSeq quantification results def collect_quantification_data_HTseq(input_files, profile, gene_attribute): # initiate merged quantification data frame quant_merged_table = pd.DataFrame() for input_file in input_files: #iterate over sample results # read quantification data quant_table =
pd.read_csv(input_file,sep='\t',header=0)
pandas.read_csv
''' Created on 30.5.2017 @author: Markus.Walden - https://developers.arcgis.com/authentication/accessing-arcgis-online-services/ ''' import requests import pandas as pd import numpy as np def main(): return None def getStockData(): # df = df.sample(n = 20) # , frac, replace, weights, random_state, axis # result.fillna(method='ffill') df_stock = pd.read_csv('./data/stockFull.csv', sep = ';', encoding='latin-1', decimal=",") df_symbol =
pd.read_csv('./data/symbolLatLong.csv', sep = ';', encoding='latin-1', decimal=",", index_col = 'symbol')
pandas.read_csv