prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import unittest from nose.tools import assert_equal, assert_list_equal, nottest, raises from py_stringmatching.tokenizer.delimiter_tokenizer import DelimiterTokenizer from py_stringmatching.tokenizer.qgram_tokenizer import QgramTokenizer import numpy as np import pandas as pd from py_stringsimjoin.filter.overlap_filter import OverlapFilter from py_stringsimjoin.utils.converter import dataframe_column_to_str from py_stringsimjoin.utils.generic_helper import remove_redundant_attrs # test OverlapFilter.filter_pair method class FilterPairTestCases(unittest.TestCase): def setUp(self): self.dlm = DelimiterTokenizer(delim_set=[' '], return_set=True) def test_overlap_dlm_1_prune(self): self.test_filter_pair('aa bb cc', 'xx yy', self.dlm, 1, '>=', False, True) def test_overlap_dlm_1_pass(self): self.test_filter_pair('aa bb cc', 'xx yy aa', self.dlm, 1, '>=', False, False) def test_overlap_dlm_1_gt_prune(self): self.test_filter_pair('aa bb cc', 'xx yy aa', self.dlm, 1, '>', False, True) def test_overlap_dlm_1_eq_pass(self): self.test_filter_pair('aa bb cc', 'xx yy aa', self.dlm, 1, '=', False, False) def test_overlap_pass_missing_left(self): self.test_filter_pair(None, 'fg ty', self.dlm, 1, '>=', True, False) def test_overlap_pass_missing_right(self): self.test_filter_pair('fg ty', np.NaN, self.dlm, 1, '>=', True, False) def test_overlap_pass_missing_both(self): self.test_filter_pair(None, np.NaN, self.dlm, 1, '>=', True, False) # tests for empty string input def test_empty_lstring(self): self.test_filter_pair('ab', '', self.dlm, 1, '>=', False, True) def test_empty_rstring(self): self.test_filter_pair('', 'ab', self.dlm, 1, '>=', False, True) def test_empty_strings(self): self.test_filter_pair('', '', self.dlm, 1, '>=', False, True) @nottest def test_filter_pair(self, lstring, rstring, tokenizer, overlap_size, comp_op, allow_missing, expected_output): overlap_filter = OverlapFilter(tokenizer, overlap_size, comp_op, allow_missing) actual_output = overlap_filter.filter_pair(lstring, rstring) assert_equal(actual_output, expected_output) # test OverlapFilter.filter_tables method class FilterTablesTestCases(unittest.TestCase): def setUp(self): self.dlm = DelimiterTokenizer(delim_set=[' '], return_set=True) self.A = pd.DataFrame([{'id': 1, 'attr':'ab cd ef aa bb'}, {'id': 2, 'attr':''}, {'id': 3, 'attr':'ab'}, {'id': 4, 'attr':'ll oo pp'}, {'id': 5, 'attr':'xy xx zz fg'}, {'id': 6, 'attr':None}]) self.B = pd.DataFrame([{'id': 1, 'attr':'mn'}, {'id': 2, 'attr':'he ll'}, {'id': 3, 'attr':'xy pl ou'}, {'id': 4, 'attr':'aa'}, {'id': 5, 'attr':'fg cd aa ef'}, {'id': 6, 'attr':np.NaN}]) self.empty_table = pd.DataFrame(columns=['id', 'attr']) self.default_l_out_prefix = 'l_' self.default_r_out_prefix = 'r_' def test_overlap_dlm_1(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5']) self.test_filter_tables(self.dlm, 1, '>=', False, (self.A, self.B, 'id', 'id', 'attr', 'attr'), expected_pairs) def test_overlap_dlm_1_eq(self): expected_pairs = set(['1,4', '4,2', '5,3', '5,5']) self.test_filter_tables(self.dlm, 1, '=', False, (self.A, self.B, 'id', 'id', 'attr', 'attr'), expected_pairs) def test_overlap_dlm_1_gt(self): expected_pairs = set(['1,5']) self.test_filter_tables(self.dlm, 1, '>', False, (self.A, self.B, 'id', 'id', 'attr', 'attr'), expected_pairs) def test_overlap_dlm_3(self): expected_pairs = set(['1,5']) self.test_filter_tables(self.dlm, 3, '>=', False, (self.A, self.B, 'id', 'id', 'attr', 'attr'), expected_pairs) def test_overlap_dlm_1_with_allow_missing(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5', '6,1', '6,2', '6,3', '6,4', '6,5', '6,6', '1,6', '2,6', '3,6', '4,6', '5,6']) self.test_filter_tables(self.dlm, 1, '>=', True, (self.A, self.B, 'id', 'id', 'attr', 'attr'), expected_pairs) # test with n_jobs above 1 def test_overlap_dlm_1_njobs_above_1(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5']) self.test_filter_tables(self.dlm, 1, '>=', False, (self.A, self.B, 'id', 'id', 'attr', 'attr', ['attr'], ['attr'], 'ltable.', 'rtable.', False, 2), expected_pairs) def test_overlap_dlm_1_with_out_attrs(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5']) self.test_filter_tables(self.dlm, 1, '>=', False, (self.A, self.B, 'id', 'id', 'attr', 'attr', ['id', 'attr'], ['id', 'attr']), expected_pairs) def test_overlap_dlm_1_with_out_prefix(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5']) self.test_filter_tables(self.dlm, 1, '>=', False, (self.A, self.B, 'id', 'id', 'attr', 'attr', ['attr'], ['attr'], 'ltable.', 'rtable.'), expected_pairs) # tests for empty table input def test_empty_ltable(self): expected_pairs = set() self.test_filter_tables(self.dlm, 1, '>=', False, (self.empty_table, self.B, 'id', 'id', 'attr', 'attr'), expected_pairs) def test_empty_rtable(self): expected_pairs = set() self.test_filter_tables(self.dlm, 1, '>=', False, (self.A, self.empty_table, 'id', 'id', 'attr', 'attr'), expected_pairs) def test_empty_tables(self): expected_pairs = set() self.test_filter_tables(self.dlm, 1, '>=', False, (self.empty_table, self.empty_table, 'id', 'id', 'attr', 'attr'), expected_pairs) @nottest def test_filter_tables(self, tokenizer, overlap_size, comp_op, allow_missing, args, expected_pairs): overlap_filter = OverlapFilter(tokenizer, overlap_size, comp_op, allow_missing) actual_candset = overlap_filter.filter_tables(*args) expected_output_attrs = ['_id'] l_out_prefix = self.default_l_out_prefix r_out_prefix = self.default_r_out_prefix # Check for l_out_prefix in args. if len(args) > 8: l_out_prefix = args[8] expected_output_attrs.append(l_out_prefix + args[2]) # Check for r_out_prefix in args. if len(args) > 9: r_out_prefix = args[9] expected_output_attrs.append(r_out_prefix + args[3]) # Check for l_out_attrs in args. if len(args) > 6: if args[6]: l_out_attrs = remove_redundant_attrs(args[6], args[2]) for attr in l_out_attrs: expected_output_attrs.append(l_out_prefix + attr) # Check for r_out_attrs in args. if len(args) > 7: if args[7]: r_out_attrs = remove_redundant_attrs(args[7], args[3]) for attr in r_out_attrs: expected_output_attrs.append(r_out_prefix + attr) # verify whether the output table has the necessary attributes. assert_list_equal(list(actual_candset.columns.values), expected_output_attrs) actual_pairs = set() for idx, row in actual_candset.iterrows(): actual_pairs.add(','.join((str(row[l_out_prefix + args[2]]), str(row[r_out_prefix + args[3]])))) # verify whether the actual pairs and the expected pairs match. assert_equal(len(expected_pairs), len(actual_pairs)) common_pairs = actual_pairs.intersection(expected_pairs) assert_equal(len(common_pairs), len(expected_pairs)) # test OverlapFilter.filter_candset method class FilterCandsetTestCases(unittest.TestCase): def setUp(self): self.dlm = DelimiterTokenizer(delim_set=[' '], return_set=True) self.A = pd.DataFrame([{'l_id': 1, 'l_attr':'ab cd ef aa bb'}, {'l_id': 2, 'l_attr':''}, {'l_id': 3, 'l_attr':'ab'}, {'l_id': 4, 'l_attr':'ll oo pp'}, {'l_id': 5, 'l_attr':'xy xx zz fg'}, {'l_id': 6, 'l_attr':np.NaN}]) self.B = pd.DataFrame([{'r_id': 1, 'r_attr':'mn'}, {'r_id': 2, 'r_attr':'he ll'}, {'r_id': 3, 'r_attr':'xy pl ou'}, {'r_id': 4, 'r_attr':'aa'}, {'r_id': 5, 'r_attr':'fg cd aa ef'}, {'r_id': 6, 'r_attr':None}]) # generate cartesian product A x B to be used as candset self.A['tmp_join_key'] = 1 self.B['tmp_join_key'] = 1 self.C = pd.merge(self.A[['l_id', 'tmp_join_key']], self.B[['r_id', 'tmp_join_key']], on='tmp_join_key').drop('tmp_join_key', 1) self.empty_A = pd.DataFrame(columns=['l_id', 'l_attr']) self.empty_B = pd.DataFrame(columns=['r_id', 'r_attr']) self.empty_candset = pd.DataFrame(columns=['l_id', 'r_id']) def test_overlap_dlm_1(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5']) self.test_filter_candset(self.dlm, 1, '>=', False, (self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'r_attr'), expected_pairs) def test_overlap_dlm_1_allow_missing(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5', '6,1', '6,2', '6,3', '6,4', '6,5', '6,6', '1,6', '2,6', '3,6', '4,6', '5,6']) self.test_filter_candset(self.dlm, 1, '>=', True, (self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'r_attr'), expected_pairs) def test_njobs_above_1(self): expected_pairs = set(['1,4', '1,5', '4,2', '5,3', '5,5']) self.test_filter_candset(self.dlm, 1, '>=', False, (self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'r_attr', 2), expected_pairs) def test_candset_with_join_attr_of_type_int(self): A = pd.DataFrame([{'l_id': 1, 'l_attr':1990}, {'l_id': 2, 'l_attr':2000}, {'l_id': 3, 'l_attr':0}, {'l_id': 4, 'l_attr':-1}, {'l_id': 5, 'l_attr':1986}]) B = pd.DataFrame([{'r_id': 1, 'r_attr':2001}, {'r_id': 2, 'r_attr':1992}, {'r_id': 3, 'r_attr':1886}, {'r_id': 4, 'r_attr':2007}, {'r_id': 5, 'r_attr':2012}]) dataframe_column_to_str(A, 'l_attr', inplace=True) dataframe_column_to_str(B, 'r_attr', inplace=True) A['tmp_join_key'] = 1 B['tmp_join_key'] = 1 C = pd.merge(A[['l_id', 'tmp_join_key']], B[['r_id', 'tmp_join_key']], on='tmp_join_key').drop('tmp_join_key', 1) qg2_tok = QgramTokenizer(2, return_set=True) expected_pairs = set(['1,2', '1,3', '2,1', '2,4', '2,5', '4,1', '5,2', '5,3']) self.test_filter_candset(qg2_tok, 1, '>=', False, (C, 'l_id', 'r_id', A, B, 'l_id', 'r_id', 'l_attr', 'r_attr'), expected_pairs) # tests for empty candset input def test_empty_candset(self): expected_pairs = set() self.test_filter_candset(self.dlm, 1, '>=', False, (self.empty_candset, 'l_id', 'r_id', self.empty_A, self.empty_B, 'l_id', 'r_id', 'l_attr', 'r_attr'), expected_pairs) @raises(TypeError) def test_invalid_candset(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset([], 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'r_attr') @raises(TypeError) def test_invalid_ltable(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', [], self.B, 'l_id', 'r_id', 'l_attr', 'r_attr') @raises(TypeError) def test_invalid_rtable(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, [], 'l_id', 'r_id', 'l_attr', 'r_attr') @raises(AssertionError) def test_invalid_candset_l_key_attr(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'invalid_attr', 'r_id', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'r_attr') @raises(AssertionError) def test_invalid_candset_r_key_attr(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'invalid_attr', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'r_attr') @raises(AssertionError) def test_invalid_ltable_l_key_attr(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, self.B, 'invalid_attr', 'r_id', 'l_attr', 'r_attr') @raises(AssertionError) def test_invalid_ltable_l_filter_attr(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_id', 'invalid_attr', 'r_attr') @raises(AssertionError) def test_invalid_rtable_r_key_attr(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'invalid_attr', 'l_attr', 'r_attr') @raises(AssertionError) def test_invalid_rtable_r_filter_attr(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_id', 'l_attr', 'invalid_attr') @raises(AssertionError) def test_ltable_l_key_attr_with_missing_value(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, self.B, 'l_attr', 'r_id', 'l_attr', 'r_attr') @raises(AssertionError) def test_rtable_r_key_attr_with_missing_value(self): overlap_filter = OverlapFilter(self.dlm) overlap_filter.filter_candset(self.C, 'l_id', 'r_id', self.A, self.B, 'l_id', 'r_attr', 'l_attr', 'r_attr') @raises(AssertionError) def test_candset_with_numeric_l_filter_attr(self): A = pd.DataFrame([{'l_id': 1, 'l_attr':1990}]) B = pd.DataFrame([{'r_id': 1, 'r_attr':'2001'}]) A['tmp_join_key'] = 1 B['tmp_join_key'] = 1 C = pd.merge(A[['l_id', 'tmp_join_key']], B[['r_id', 'tmp_join_key']], on='tmp_join_key').drop('tmp_join_key', 1) qg2_tok = QgramTokenizer(2, return_set=True) overlap_filter = OverlapFilter(qg2_tok) overlap_filter.filter_candset(C, 'l_id', 'r_id', A, B, 'l_id', 'r_id', 'l_attr', 'r_attr') @raises(AssertionError) def test_candset_with_numeric_r_filter_attr(self): A = pd.DataFrame([{'l_id': 1, 'l_attr':'1990'}]) B = pd.DataFrame([{'r_id': 1, 'r_attr':2001}]) A['tmp_join_key'] = 1 B['tmp_join_key'] = 1 C = pd.merge(A[['l_id', 'tmp_join_key']], B[['r_id', 'tmp_join_key']], on='tmp_join_key').drop('tmp_join_key', 1) qg2_tok = QgramTokenizer(2, return_set=True) overlap_filter = OverlapFilter(qg2_tok) overlap_filter.filter_candset(C, 'l_id', 'r_id', A, B, 'l_id', 'r_id', 'l_attr', 'r_attr') @nottest def test_filter_candset(self, tokenizer, overlap_size, comp_op, allow_missing, args, expected_pairs): overlap_filter = OverlapFilter(tokenizer, overlap_size, comp_op, allow_missing) actual_output_candset = overlap_filter.filter_candset(*args) # verify whether the output table has the necessary attributes. assert_list_equal(list(actual_output_candset.columns.values), list(args[0].columns.values)) actual_pairs = set() for idx, row in actual_output_candset.iterrows(): actual_pairs.add(','.join((str(row[args[1]]), str(row[args[2]])))) # verify whether the actual pairs and the expected pairs match. assert_equal(len(expected_pairs), len(actual_pairs)) common_pairs = actual_pairs.intersection(expected_pairs) assert_equal(len(common_pairs), len(expected_pairs)) class OverlapFilterInvalidTestCases(unittest.TestCase): def setUp(self): self.A = pd.DataFrame([{'A.id':1, 'A.attr':'hello', 'A.int_attr':5}]) self.B =
pd.DataFrame([{'B.id':1, 'B.attr':'world', 'B.int_attr':6}])
pandas.DataFrame
# coding: utf-8 """Mapping of production and consumption mixes in Europe and their effect on the carbon footprint of electric vehicles This code performs the following: - Import data from ENTSO-E (production quantities, trades relationships) - Calculates the production and consumption electricity mixes for European countries - Calculates the carbon footprint (CF) for the above electricity mixes](#CF_el) - Calculates the production, use-phase and end-of-life emissions for battery electric vehicles (BEVs) under the following assumptions:](#BEV_calcs) - Production in Korea (with electricity intensity 684 g CO2-eq/kWh) - Use phase uses country-specific production and consumption mix - End-of-life emissions static for all countries Requires the following files for input: - ENTSO_production_volumes.csv (from hybridized_impact_factors.py) - final_emission_factors.csv (from hybridized_impact_factors.py) - trades.csv (from hybridized_impact_factors.py) - trade_ef_hv.csv (from hybridized_impact_factors.py) - API_EG.ELC.LOSS.ZS_DS2_en_csv_v2_673578.csv (transmission losses, from OECD) - car_specifications.xlsx """ import os from datetime import datetime import numpy as np import pandas as pd import country_converter as coco import logging #%% Main function def run_calcs(run_id, year, no_ef_countries, export_data=True, include_TD_losses=True, BEV_lifetime=180000, ICEV_lifetime=180000, flowtrace_el=True, allocation=True, production_el_intensity=679, incl_ei=False, energy_sens=False): """Run all electricity mix and vehicle calculations and exports results.""" # Korean el-mix 679 g CO2/kWh, from ecoinvent fp = os.path.curdir production, trades, trade_ef, country_total_prod_disagg, country_total_cons_disagg, g_raw, C = load_prep_el_data(fp, year) codecheck_file, elmixes, trade_only, country_el, CFEL, CFCI = el_calcs(flowtrace_el, run_id, fp, C, production, country_total_prod_disagg, country_total_cons_disagg, g_raw, trades, trade_ef, include_TD_losses, incl_ei, export_data) # Leontief electricity calculations results_toSI, ICEV_total_impacts, ICEV_prodEOL_impacts, ICEV_op_int = BEV_calcs(fp, country_el, production, elmixes, BEV_lifetime, ICEV_lifetime, production_el_intensity, CFCI, allocation, energy_sens) SI_fp = export_SI(run_id, results_toSI, production, trades, C, CFEL, no_ef_countries) pickle_results(run_id, results_toSI, CFEL, ICEV_total_impacts, codecheck_file, export_data) return results_toSI['BEV footprint'].xs('Consumption mix', level=1, axis=1), ICEV_prodEOL_impacts, ICEV_op_int, SI_fp #%% Load and format data for calculations def load_prep_el_data(fp, year): """Load electricity data and emissions factors.""" fp_output = os.path.join(fp, 'output') # Output from bentso.py filepath_production = os.path.join(fp_output, 'entsoe', 'ENTSO_production_volumes_'+ str(year) +'.csv') filepath_intensities = os.path.join(fp_output, 'final_emission_factors_'+ str(year) +'.csv') filepath_trades = os.path.join(fp_output, 'entsoe', 'trades_'+ str(year) +'.csv') filepath_tradeonly_ef = os.path.join(fp_output, 'ecoinvent_ef_hv.csv') # read in production mixes (annual average) production = pd.read_csv(filepath_production, index_col=0) production.rename_axis(index='', inplace=True) # matrix of total imports/exports of electricity between regions; aka Z matrix trades = pd.read_csv(filepath_trades, index_col=0) trades.fillna(0, inplace=True) # replace np.nan with 0 for matrix math, below # manually remove Cyprus for now production.drop(index='CY', inplace=True) trades = trades.drop(columns='CY').drop(index='CY') imports = trades.sum(axis=0) exports = trades.sum(axis=1) """ Make into sum of production and production + import - export""" country_total_prod_disagg = production.sum(axis=1) country_total_cons_disagg = country_total_prod_disagg + imports - exports waste = (production['Waste'] / production.sum(axis=1)) waste_min = waste[waste > 0].min() waste_max = waste.max() g_raw = production.sum(axis=1) # Vector of total electricity production (regionalized) """ Read power plant CO2 intensities [tech averages] """ # average technology CO2 intensities (i.e., non-regionalized) all_C = pd.read_csv(filepath_intensities, index_col=0) all_C.drop(index='CY', inplace=True) # use ecoinvent factors for these countries as a proxy to calculate consumption mixes for receiving countries trade_ef = pd.read_csv(filepath_tradeonly_ef, index_col=[0, 1, 2, 3], header=[0]) trade_ef.index = trade_ef.index.droplevel([0, 1, 3]) # remove DSID, activityName and productName (leaving geography) trade_ef.index.rename('geo', inplace=True) trade_ef.columns = ['emission factor'] # Generate regionalized tech generation matrix C = all_C.T C.sort_index(axis=1, inplace=True) C.sort_index(axis=0, inplace=True) return production, trades, trade_ef, country_total_prod_disagg, country_total_cons_disagg, g_raw, C #%% el_calcs def el_calcs(flowtrace_el, run_id, fp, C, production, country_total_prod_disagg, country_total_cons_disagg, g_raw, trades, trade_ef, include_TD_losses, incl_ei, export_data): fp_data = os.path.join(fp, 'data') # Make list of full-country resolution original_countries = list(production.index) # Make list of aggregated countries (affects Nordic countries + GB (UK+NI)) # read 3-letter ISO codes countries = list(trades.index) """ Calculates national production mixes and consumption mixes using Leontief assumption """ # Start electricity calculations (ELFP.m) # Calculate production and consumption mixes # Carbon intensity of production mix CFPI_no_TD = pd.DataFrame(production.multiply(C.T).sum(axis=1) / production.sum(axis=1), columns=['Production mix intensity']) # production mix intensity without losses CFPI_no_TD.fillna(0, inplace=True) # List of countries that have trade relationships, but no production data trade_only = list(set(trades.index) - set(production.loc[production.sum(axis=1) > 0].index)) # Add ecoinvent proxy emission factors for trade-only countries logging.info('Replacing missing production mix intensities with values from ecoinvent:') for country in trade_only: if CFPI_no_TD.loc[country, 'Production mix intensity'] == 0: logging.info(country) CFPI_no_TD.loc[country] = trade_ef.loc[country].values i = country_total_cons_disagg.size # Number of European regions g = g_raw g = g.sort_index() # total generation vector (local production for each country) total_imported = trades.sum(axis=0) # sum rows for total imports total_exported = trades.sum(axis=1) # sum columns for total exports y = total_imported + g - total_exported # total final demand (consumption) of electricity q = g + total_imported # vector of total consumption q.replace(np.nan, 0, inplace=True) if flowtrace_el: # For flow tracing approach: make Leontief production functions (normalize columns of A) # normalized trade matrix quadrant Atmx = pd.DataFrame(np.matmul(trades, np.linalg.pinv(np.diag(q)))) # normalized production matrix quadrant Agen = pd.DataFrame(np.diag(g) * np.linalg.pinv(np.diag(q)), index=countries, columns=countries) # coefficient matrix, generation # "Trade" Leontief inverse # Total imports from region i to j per unit demand on j Ltmx = pd.DataFrame(np.linalg.pinv(np.identity(i) - Atmx), trades.columns, trades.index) # Production in country i for trade to country j # Total generation in i (rows) per unit demand j Lgen = pd.DataFrame(np.matmul(Agen, Ltmx), index=Agen.index, columns=Ltmx.columns) y_diag = pd.DataFrame(np.diag(y), index=countries, columns=countries) # total imports for given demand Xtmx = pd.DataFrame(np.matmul(np.linalg.pinv(np.identity(i) - Atmx), y_diag)) # Total generation to satisfy demand (consumption) Xgen = np.matmul(np.matmul(Agen, Ltmx), y_diag) Xgen.sum(axis=0) Xgen_df = pd.DataFrame(Xgen, index=Agen.index, columns=y_diag.columns) # ### Check electricity generated matches demand totgen = Xgen.sum(axis=0) r_gendem = totgen / y # All countries should be 1 #%% Generation techonlogy matrix # TC is a country-by-generation technology matrix - normalized to share of total domestic generation, i.e., normalized generation/production mix # technology generation, kWh/ kWh domestic generated electricity TC = pd.DataFrame(np.matmul(np.linalg.pinv(np.diag(g)), production), index=g.index, columns=production.columns) TCsum = TC.sum(axis=1) # Quality assurance - each country should sum to 1 # Calculate technology generation mix in GWh based on production in each region TGP = pd.DataFrame(np.matmul(TC.transpose(), np.diag(g)), index=TC.columns, columns=g.index) #.== production # Carbon intensity of consumption mix CFCI_no_TD = pd.DataFrame(np.matmul(CFPI_no_TD.T.values, Lgen), columns=CFPI_no_TD.index).T else: # Use grid-average assumption for trade prod_emiss = production.multiply(C.T).sum(axis=1) trade_emiss = (pd.DataFrame(np.diag(CFPI_no_TD.iloc(axis=1)[0]), index=CFPI_no_TD.index, columns=CFPI_no_TD.index)).dot(trades) CFCI_no_TD = pd.DataFrame((prod_emiss + trade_emiss.sum(axis=0) - trade_emiss.sum(axis=1)) / y) CFCI_no_TD.columns = ['Consumption mix intensity'] # use ecoinvent for missing countries if incl_ei: CFCI_no_TD.update(trade_ef.rename(columns={'emission factor':'Consumption mix intensity'})) #%% Calculate losses # Transpose added after removing country aggregation as data pre-treatment if include_TD_losses: # Calculate technology characterization factors including transmission and distribution losses # First, read transmission and distribution losses, downloaded from World Bank economic indicators (most recent values from 2014) if isinstance(include_TD_losses, float): TD_losses = include_TD_losses # apply constant transmission and distribution losses to all countries elif isinstance(include_TD_losses, bool): losses_fp = os.path.join(fp_data, 'API_EG.ELC.LOSS.ZS_DS2_en_csv_v2_673578.csv') try: TD_losses = pd.read_csv(losses_fp, skiprows=[0,1,2,3], usecols=[1, 58], index_col=0) TD_losses = TD_losses.iloc[:, -7:].dropna(how='all', axis=1) TD_losses = TD_losses.apply(lambda x: x / 100 + 1) # convert losses to a multiplicative factor # ## Calculate total national carbon emissions from el - production and consumption mixes TD_losses.index = coco.convert(names=TD_losses.index.tolist(), to='ISO2', not_found=None) TD_losses = TD_losses.loc[countries] TD_losses = pd.Series(TD_losses.iloc[:, 0]) except: print("Warning! Transmission and distribution losses input files not found!") TD_losses = pd.Series(np.zeros(len(production.index)), index=production.index) else: print('invalid entry for losses') # Caclulate carbon intensity of production and consumption mixes including losses CFPI_TD_losses = CFPI_no_TD.multiply(TD_losses, axis=0).dropna(how='any', axis=0) # apply transmission and distribution losses to production mix intensity CFCI_TD_losses = CFCI_no_TD.multiply(TD_losses, axis=0).dropna(how='any', axis=0) if len(CFCI_TD_losses) < len(CFPI_TD_losses): CFCI_TD_losses = CFCI_no_TD.multiply(TD_losses, axis=0) CFPI = CFPI_TD_losses CFCI = CFCI_TD_losses else: CFPI = CFPI_no_TD CFCI = CFCI_no_TD elmixes = (CFPI.copy()).join(CFCI.copy()).T #%% # Aggregate multi-nodes to single countries using weighted average of production/consumption as appropriate country_total_prod_disagg.columns = ["Total production (TWh)"] country_total_prod_disagg.index = original_countries country_total_cons_disagg.columns = ["Total consumption (TWh)"] country_total_cons_disagg.index = original_countries country_el = pd.concat([country_total_prod_disagg, country_total_cons_disagg], axis=1) country_el.columns = ['Total production (TWh)', 'Total consumption (TWh)'] CFEL_mixes = elmixes.T CFEL = pd.concat([country_el, CFEL_mixes], axis=1) imports = trades.sum(axis=0) exports = trades.sum(axis=1) CFEL['Trade percentage, gross'] = (imports + exports) / CFEL['Total production (TWh)'] CFEL['Import percentage'] = imports / CFEL['Total production (TWh)'] CFEL['Export percentage'] = exports / CFEL['Total production (TWh)'] CFEL['imports'] = imports CFEL['exports'] = exports #Calculate total carbon footprint intensity ratio production vs consumption rCP = CFCI['Consumption mix intensity'].divide(CFPI['Production mix intensity']) rCP.columns = ["ratio consumption:production mix"] # Export intermediate variables from calculations for troubleshooting if export_data: keeper = run_id + "{:%d-%m-%y, %H_%M}".format(datetime.now()) fp_results = os.path.join(fp, 'results') codecheck_file = os.path.join(os.path.abspath(fp_results), 'code_check_' + keeper + '.xlsx') writer = pd.ExcelWriter(codecheck_file) g.to_excel(writer, "g") q.to_excel(writer, "q") y.to_excel(writer, 'y') if flowtrace_el: Atmx.to_excel(writer, "Atmx") Agen.to_excel(writer, "Agen") Ltmx.to_excel(writer, "LTmx") Lgen.to_excel(writer, "Lgen") Xtmx.to_excel(writer, "Xtmx") TGP.to_excel(writer, "TGP") CFPI.T.to_excel(writer, "CFPI") CFCI.T.to_excel(writer, "CFCI") rCP.to_excel(writer, "rCP") C.T.to_excel(writer, "C") writer.save() return codecheck_file, elmixes, trade_only, country_el, CFEL, CFCI #%% def BEV_calcs(fp, country_el, production, elmixes, BEV_lifetime, ICEV_lifetime, production_el_intensity, CFCI, allocation=True, energy_sens=False): """Calculate BEV lifecycle emissions.""" # First, setup calculations # read in data fp_data = os.path.join(fp, 'data') vehicle_fp = os.path.join(fp_data, 'car_specifications.xlsx') cars = pd.read_excel(vehicle_fp, sheet_name='veh_emiss', index_col=[0, 1, 2], usecols='A:G') cars = cars.sort_index() vehicle_CO2 = ["BEV", "ICEV"] if energy_sens: # if performing the experiment for battery energy demand in manufacturing, # update with new energy values alt_energy = pd.read_excel(vehicle_fp, sheet_name='alt_energy', index_col=[0,1,2], usecols='A:H') # column A is scenario name if isinstance(energy_sens, str): cars.update(alt_energy.loc[energy_sens]) # Impacts from electricity demand in cell production battery_prod_el = production_el_intensity / 1e6 * cars.loc["BEV", "Production el, battery"] # in t CO2/vehicle batt_prod_impacts = cars.loc["BEV", "Production, RObattery"].add(battery_prod_el, fill_value=0).sum(axis=0) if allocation: alloc_share = BEV_lifetime / ((cars.loc["BEV", "Max EFC", "cycles"] * (cars.loc["BEV", "Batt size", "kWh"]*.9) * 1000) / cars.loc["BEV", "Use phase", "Wh/km"]) else: alloc_share = 1 alloc_batt_prod_impacts = alloc_share * batt_prod_impacts # Total vehicle production impacts - sum of battery emissions + rest of vehicle BEV_prod_impacts = cars.loc["BEV", "Production, ROV"] + alloc_batt_prod_impacts # Modify for battery production in Europe # batt_prod_EU = pd.DataFrame(np.matmul(CFCI.values / 1e6, cars.loc["BEV", "Production el, battery"].values), index=CFCI.index, columns=cars.columns) batt_prod_EU = pd.DataFrame(np.matmul((elmixes.T['Consumption mix intensity'].values / 1e6).reshape(-1, 1), cars.loc["BEV", "Production el, battery"].values), index=elmixes.columns, columns=cars.columns) # Total battery production impacts in Europe batt_prod_EU = batt_prod_EU + cars.loc["BEV", "Production, RObattery", "t CO2"] alloc_batt_prod_EU = alloc_share * batt_prod_EU BEV_prod_EU = pd.DataFrame(index=elmixes.columns, columns=["A", "C", "JC", "JE"]) BEV_prod_EU = alloc_batt_prod_EU + cars.loc["BEV", "Production, ROV", "t CO2"] BEV_prod_EU.columns = pd.MultiIndex.from_product([["EUR production impacts BEV"], BEV_prod_EU.columns, ["Consumption mix"]], names=["", "Segment", "Elmix"]) # Calculate use phase emissions segs = cars.loc['BEV', 'Use phase', 'Wh/km'] mi = pd.MultiIndex.from_product([list(elmixes.index), list(segs.index)]) segs = segs.reindex(mi, level=1) segs = pd.DataFrame(segs) segs.columns = ['a'] segs = segs.reindex(elmixes.columns, axis=1, method='bfill') elmixes_for_calc = elmixes.reindex(mi, level=0, axis=0) BEV_use = (segs.multiply(elmixes_for_calc / 1000)).T # Add production and EOL intensity for BEVs BEV_other = BEV_prod_impacts + cars.loc["BEV", "EOL", "t CO2"].values BEV_other_intensity = BEV_other / BEV_lifetime * 1e6 # in g CO2-eq BEV_other_intensity.index = ["g CO2/km"] # Calculate full lifecycle intensity using production and consumption mixes BEVp = pd.DataFrame(BEV_use["Production mix intensity"] + BEV_other_intensity.loc["g CO2/km"]) BEVc = pd.DataFrame(BEV_use["Consumption mix intensity"] + BEV_other_intensity.loc["g CO2/km"]) # BEV impacts with production and consumption mixes # Check which technology lifetime to use as baseline for use phase # (use shortest lifetime between the two for comparison to avoid vehicle replacement) # if BEV_lifetime <= ICEV_lifetime: # lifetime = BEV_lifetime # elif BEV_lifetime > ICEV_lifetime: # # in the case for BEV lifetimes longer than ICEV lifetimes # lifetime = ICEV_lifetime # Calculate total absolute lifecycle emissions in t CO2e BEV_impactsp = (BEV_use['Production mix intensity'].T * BEV_lifetime / 1e6).add(BEV_other.loc['t CO2'], axis=0) BEV_impactsc = (BEV_use['Consumption mix intensity'].T * BEV_lifetime / 1e6).add(BEV_other.loc['t CO2'], axis=0) BEV_impacts = pd.concat([BEV_impactsp.T, BEV_impactsc.T], axis=1, keys=['Production mix', 'Consumption mix']) BEV_impacts = BEV_impacts.swaplevel(axis=1, i=0, j=1) BEV_impacts.sort_index(level=0, axis=1, inplace=True) # Calculate share of production phase in total BEV lifecycle emissions BEV_prod_sharesp = BEV_prod_impacts.values / (BEV_impactsp.T) BEV_prod_sharesc = BEV_prod_impacts.values / (BEV_impactsc.T) BEV_prod_sharesc.columns = pd.MultiIndex.from_product([BEV_prod_sharesc.columns, ['Consumption mix']]) # Calculate share of use phase in total BEV lifecycle emissions BEV_use_sharesp = (BEV_use['Production mix intensity'] * BEV_lifetime / 1e6) / (BEV_impactsp.T) BEV_use_sharesc = (BEV_use['Consumption mix intensity'] * BEV_lifetime / 1e6) / (BEV_impactsc.T) # Calculate BEV footprints with EUR (domestic) battery production BEV_fp_EU = (BEV_prod_EU.add(cars.loc["BEV", "EOL", "t CO2"], level=1, axis=1) / BEV_lifetime * 1e6) # Currently, EU production assumes consumption mix, so only examine using consumption mix for both manufacturing and use phase for consistency EU_BEVc = BEV_fp_EU.add(BEV_use['Consumption mix intensity'].reindex(BEV_fp_EU.columns, axis=1, level=1), axis=1) EU_BEVc.rename(columns={"EUR production impacts BEV": "BEV footprint, EUR production"}, inplace=True) # Calculate EU production:Asian production footprint ratios fp_ratio = EU_BEVc.divide(BEVc, level=1) # Calculate total lifecycle emissions for ICEVs ICEV_prodEOL_impacts = cars.loc['ICEV', 'Production', 't CO2'].add(cars.loc['ICEV', 'EOL', 't CO2'], axis=0) ICEV_total_impacts = ICEV_prodEOL_impacts.add(cars.loc['ICEV', 'Use phase', 'g CO2/km'] * ICEV_lifetime / 1e6, axis=0) ICEV_prod_EOL_fp = ICEV_prodEOL_impacts * 1e6 / ICEV_lifetime ICEV_lc_footprint = ICEV_prod_EOL_fp + cars.loc['ICEV', 'Use phase', 'g CO2/km'] ICEV_total_impacts = pd.DataFrame(ICEV_total_impacts).T # force to dataframe ICEV_lc_shares = cars.loc['ICEV'] / cars.loc['ICEV'].sum(axis=0) #%% # Calculate BEV:ICEV ratios ratio_use_prod = BEV_use["Production mix intensity"] / cars.loc["ICEV", "Use phase", "t CO2"] # Ratios comparing use phase only ratio_use_prod = pd.DataFrame(BEV_use["Production mix intensity"] / cars.loc["ICEV", "Use phase", "t CO2"]) ratio_use_cons = pd.DataFrame(BEV_use["Consumption mix intensity"] / cars.loc["ICEV", "Use phase", "t CO2"]) ratio_use_cons = ratio_use_cons.rename_axis("Segment", axis=1) ratio_use_cons = pd.concat([ratio_use_cons], keys=["RATIO: use phase"], axis=1) ratio_use_cons = pd.concat([ratio_use_cons], keys=["Consumption mix"], names=["Elmix"], axis=1) ratio_use_cons = ratio_use_cons.reorder_levels([1,2,0], axis=1) # Ratios with lifecycle impacts ratiop = pd.DataFrame(BEVp / (ICEV_lc_footprint)) ratioc = pd.DataFrame(BEVc / (ICEV_lc_footprint)) # Ratios with EU production ratioc_EU_prod = (EU_BEVc["BEV footprint, EUR production"].stack() / (ICEV_lc_footprint)).unstack() ratioc_EU_prod = pd.concat([ratioc_EU_prod], keys=["Ratio BEV:ICEV, European BEV production"], axis=1) # Extra calculations BEV_total_use = BEV_use * BEV_lifetime / 1e6 # absolute lifetime operation emissions # Assemble total results table # CFEL - the CO2 footprint of electricity in different European countries based on either i) production or ii) consumption perspective. # BEV – the gCO2/km for electric vehicles for i) all EU countries ii) all segments iii) production and consumption el mix. # RATIO - the ratio of the gCO2/km for BEVs vs ICEs for i) all EU countries ii) all segments iii) production and consumption el mix. fp = pd.concat({"Production mix": BEVp}, axis=1, names=["Elmix", "Segment"]) fp = pd.concat([fp, pd.concat({"Consumption mix": BEVc}, axis=1, names=["Elmix", "Segment"])], axis=1) fp = fp.swaplevel(axis=1).sort_index(axis=1, level="Segment", sort_remaining=False) fp = pd.concat({"BEV footprint": fp}, axis=1) RATIOS = pd.concat({"Production mix": ratiop}, axis=1, names=["Elmix", "Segment"]) RATIOS = pd.concat([RATIOS, pd.concat({"Consumption mix": ratioc}, axis=1, names=["Elmix", "Segment"])], axis=1) RATIOS = RATIOS.swaplevel(axis=1).sort_index(axis=1, level="Segment", sort_remaining=False) RATIOS = pd.concat({"RATIO BEV:ICEV": RATIOS}, axis=1) results = fp.join(pd.concat({'BEV impacts': BEV_impacts}, axis=1, names=['', 'Elmix', 'Segment'])) results = results.join(RATIOS) results = results.join(ratio_use_cons) results = results.join(BEV_prod_EU) results = results.join(EU_BEVc) results = results.join(ratioc_EU_prod) results = results.join(pd.concat({"Production as share of total footprint":BEV_prod_sharesc}, axis=1)) results_toSI = results.copy() return results_toSI, ICEV_total_impacts, ICEV_prodEOL_impacts, cars.loc['ICEV', 'Use phase', 'g CO2/km'] #%% Export functions def export_SI(run_id, results_toSI, production, trades, C, CFEL, no_ef_countries): """Format dataframes for export to SI tables.""" drop_countries = production.loc[production.sum(axis=1)==0].index CFEL_toSI = CFEL[['Production mix intensity', 'Consumption mix intensity']] CFEL_toSI = CFEL_toSI.round(0) CFEL_toSI.loc[drop_countries, 'Consumption mix intensity'] = '-' # remove ecoinvent-based countries CFEL_toSI.sort_index(inplace=True) country_intensities = C.round(0).fillna(value='-').T country_intensities.drop(index=drop_countries, inplace=True) production.drop(index=drop_countries, inplace=True) # drop countries with no production data production = production.round(2).replace(0, np.nan).fillna(value='-') trades_forSI = trades.round(2).replace(0, np.nan).fillna(value='-') trades_forSI = pd.concat([trades_forSI], keys=['Exporting countries']) trades_forSI = pd.concat([trades_forSI], keys=['Importing countries'], axis=1) trades_forSI.index = trades_forSI.index.rename([None, None]) trade_pct = CFEL['Trade percentage, gross'] trade_pcti = CFEL['Import percentage'] trade_pcte = CFEL['Export percentage'] trade_pct_toSI = pd.concat([trade_pct, trade_pcti, trade_pcte], axis=1) trade_pct_toSI.replace(np.inf, np.nan, inplace=True) trade_pct_toSI.dropna(how='all', inplace=True) # Export results for SI tables keeper = run_id + " {:%d-%m-%y, %H_%M}".format(datetime.now()) fp_results = os.path.join(os.path.curdir, 'results') excel_dict = {'Table S1 - El footprints': 'Data from Figure 2 in manuscript. Calculated national production and consumption mix hybridized lifecycle carbon intensities in g CO2-eq/kWh. Shaded values indicate countries with no production data; consumption mixes are therefore not calculated, and production intensity is obtained from ecoinvent 3.5.', 'Table S2 - intensity matrix':'Regionalized lifecycle carbon intensities of electricity generation technologies in g CO2-eq/kWh. Shaded cells indicate proxy data used (see Methods)', 'Table S3 - Production mix': ' Electricity generation mixes (2020), in TWh', 'Table S4 - trades': 'Trades between studied countries (2020), in TWh/year. Countries denoted in red italics are trade-only and do not have production data from ENTSO-E; ecoinvent values for production mix used for these.', 'Table S5 - trade shares':'Total (gross) electricity traded, total imports of electricity and total exports of electricity. Relative to domestic production. Used in colorbar, Figure 2 and Figure 1, Supplementary Information', 'Table S6 - BEV fp':'Data from Figure 3 in manuscript. BEV carbon intensities in (g CO2-eq/km) for consumption electricity mix', 'Table S7 - Prod share of fp':'Data from Figure 4 in manuscript. Contribution of vehicle production emissions to total carbon footprint', 'Table S8 - Abs BEV impacts':'Data used in Figure 5 in manuscript. Regionalized total lifecycle emissions from BEV in t CO2-eq, with 180 000 km lifetime, using consumption mixes', 'Table S9 - Ratio':'Ratio of BEV:ICEV carbon footprints using consumption electricity mix', 'Table S10 - EUR prod imp':'Production impacts of BEVs with domestic battery production using consumption electricity mix in t CO2-eq', 'Table S11 - EUR prod fp':'Data from Figure 7 in manuscript. Lifecycle BEV footprint with domestic battery production using consumption electricity mix, in g CO2-eq/km, and % change in lifecycle BEV impact from batteries with Asian production.', } results_filepath = os.path.join(fp_results, 'SI_results ' + keeper + '.xlsx') results_toSI.drop(index=drop_countries, inplace=True) # remove ecoinvent-based countries # select parts of results_toSI DataFrame for each table table6 = results_toSI.loc(axis=1)['BEV footprint', :, 'Consumption mix'].round(0) table7 = results_toSI.loc(axis=1)['Production as share of total footprint', :,'Consumption mix'] table8 = results_toSI.loc(axis=1)['BEV impacts', :, 'Consumption mix'].round(1) table9 = results_toSI.loc(axis=1)['RATIO BEV:ICEV', :, 'Consumption mix'].round(2) table10 = results_toSI.loc(axis=1)['EUR production impacts BEV', :, 'Consumption mix'].round(1) table11 = results_toSI.loc(axis=1)['BEV footprint, EUR production', :, 'Consumption mix'].round(0) # append data for building Figure 7 in mansucript to Table 11 A_diff = (results_toSI['BEV footprint, EUR production', 'A', 'Consumption mix'] - results_toSI['BEV footprint', 'A', 'Consumption mix']) / results_toSI['BEV footprint', 'A', 'Consumption mix'] F_diff = (results_toSI['BEV footprint, EUR production', 'JE', 'Consumption mix'] - results_toSI['BEV footprint', 'JE', 'Consumption mix']) / results_toSI['BEV footprint', 'JE', 'Consumption mix'] diff_cols = pd.MultiIndex.from_product([['% change from Asian production'], ['A', 'JE'],['']]) df = pd.DataFrame([A_diff, F_diff], index=diff_cols).T table11 = pd.concat([table11, df], axis=1) fig_data = pd.DataFrame([A_diff, F_diff], index=['A segment', 'F segment']) # reorder technologies in Tables S2 and S3 to place "other" categories at end tec_order = ['Biomass', 'Fossil Brown coal/Lignite', 'Fossil Coal-derived gas', 'Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'Fossil Oil shale', 'Fossil Peat', 'Geothermal', 'Hydro Pumped Storage', 'Hydro Run-of-river and poundage', 'Hydro Water Reservoir', 'Marine', 'Nuclear', 'Solar', 'Waste', 'Wind Offshore', 'Wind Onshore', 'Other', 'Other renewable' ] country_intensities = country_intensities.reindex(labels=tec_order, axis=1) country_intensities.index = country_intensities.index.rename(None) production = production.reindex(labels=tec_order, axis=1) # Build dictionary of cells to be shaded for Table S2. Keys are columns, # items are countries (may be a list) shade_dict = {key: val for key, val in no_ef_countries.items() if len(val)} # Write to Excel writer =
pd.ExcelWriter(results_filepath)
pandas.ExcelWriter
#%% from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import matplotlib.pyplot as plt from textblob import TextBlob import twitterscraper as ts import os import re import json import datetime as dt import yfinance as yf import plotly import plotly.express as px import plotly.graph_objs as go #%% # ------------------ # Got this method of pulling tweets form here: # ------------------ # https: // medium.com/@kevin.a.crystal/scraping-twitter-with-tweetscraper-and-python-ea783b40443b # https: // github.com/jenrhill/Power_Outage_Identification/blob/master/code/1_Data_Collection_and_EDA.ipynb # https: // www.youtube.com/watch?v = zF_Q2v_9zKY user = 'elonmusk' limit = 10000 tweets = ts.query_tweets_from_user(user=user, limit=limit) #%% class TweetAnalyzer(): """ Functionality for analyzing and categorizing content from tweets. """ #clean tweets def clean_tweet(self, tweet): return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split()) #creating sentimental score using TextBlob def analyze_sentiment_score(self, tweet): analysis_score = TextBlob(self.clean_tweet(tweet)) analysis_score = analysis_score.sentiment.polarity return analysis_score #Determining positive vs negative tweets def analyze_sentiment_result(self, tweet): analysis_result = TextBlob(self.clean_tweet(tweet)) if analysis_result.sentiment.polarity >= 0.3: return 'Positive' elif analysis_result.sentiment.polarity <= -0.3: return 'Negative' else: return '0' def tweets_to_data_frame(self, tweets): df2 = pd.DataFrame( data=[tweet.timestamp for tweet in tweets], columns=['Date']) df2['Tweet'] = np.array([tweet.text for tweet in tweets]) df2['Replied_Tweet'] = np.array([tweet.is_replied for tweet in tweets]) df2['Likes'] = np.array([tweet.likes for tweet in tweets]) df2['Reply_Count'] = np.array([tweet.replies for tweet in tweets]) df2['Retweets'] = np.array([tweet.retweets for tweet in tweets]) return df2 #%% if __name__ == '__main__': tweet_analyzer = TweetAnalyzer() df2 = tweet_analyzer.tweets_to_data_frame(tweets) df2['Sentiment_Score'] = np.array( [tweet_analyzer.analyze_sentiment_score(tweet) for tweet in df2['Tweet']]) df2['Sentiment_Result'] = np.array( [tweet_analyzer.analyze_sentiment_result(tweet) for tweet in df2['Tweet']]) mainData = df2.copy() mainData.head() #%% neg = mainData[mainData['Sentiment_Score'] == "Negative"] # .where('Sentiment Result'=='Positive') neg = neg.drop(columns = ['Replied_Tweet','Likes','Reply_Count','Retweets']) neg.sort_values('Sentiment_Score').to_csv('neg.csv') # %% # Truly determining what day the tweet will affect # Later than 4pm est then the tweet will affect the next day # Tweets during the day will affect the current day def checkDates(d): if d.date().weekday() == 4 and d.time().hour >= 16: return d +
pd.Timedelta(days=3)
pandas.Timedelta
# Celligner from re import sub from celligner.params import * from celligner import limma from genepy.utils import helper as h from genepy.utils import plot from sklearn.decomposition import PCA, IncrementalPCA from sklearn.linear_model import LinearRegression from scipy.spatial import cKDTree import umap.umap_ as umap from scanpy.tl import louvain from scanpy.pp import neighbors from anndata import AnnData # import louvain # import pynndescent from sklearn.cluster import KMeans from sklearn import metrics from collections import Counter import os import pickle import pandas as pd import numpy as np from contrastive import CPCA import mnnpy def runDiffExprOnCluster( expression, clustered, clust_covariates=None, ): """ Runs DESEQ2 on the clustered data. Args: expression (pd.Dataframe): expression data clustered (list): the clusters clust_covariates (pd.Dataframe, optional): covariates for the clustering. Defaults to None. Returns: (pd.Dataframe): limmapy results Raises: ValueError: if the number of genes in the expression matrix and the gene file do not match """ n_clusts = len(set(clustered)) print("running differential expression on " + str(n_clusts) + " clusters") clusts = set(clustered) - set([-1]) # TODO: add covariates if clust_covariates: if len(clust_covariates) != n_clusts: raise ValueError("number of covariates does not match number of clusters") design_matrix = clust_covariates # make a design matrix design_matrix = pd.DataFrame( index=expression.index, data=np.array([clustered == i for i in clusts]).T, columns=["C" + str(i) + "C" for i in clusts], ) design_matrix.index = design_matrix.index.astype(str).str.replace("-", ".") design_matrix = design_matrix[design_matrix.sum(1) > 0] # creating the matrix data = expression.T data = data[data.columns[clustered != -1].tolist()] # running limmapy print("running limmapy on the samples") res = ( limma.limmapy() .lmFit(data, design_matrix) .eBayes(trend=False) .topTable(number=len(data)) .iloc[:, len(clusts) :] ) return res.sort_values(by="F", ascending=False) class Celligner(object): def __init__( self, gene_file=None, onlyGenes=GENE_TYPE, ensemble_server="http://nov2020.archive.ensembl.org/biomart", umap_kwargs=UMAP_PARAMS, pca_kwargs=PCA_PARAMS, neightbors_kwargs=SC_NEIGH_PARAMS, topKGenes=TOP_K_GENES, cpca_kwargs=CPCA_PARAMS, cpca_ncomp=CPCA_NCOMP, mnn_kwargs=MNN_PARAMS, make_plots=False, low_mem=False, louvain_kwargs=LOUVAIN_PARAMS, method="mnn_marioni", priotize_fit=False, ): """initialize Celligner object Args: onlyGenes (str, optional): one of 'usefull', 'all', 'protein_coding'. Defaults to "usefull". gene_file (pd.Dataframe, optional): Needs to contain at least 15000 genes and an "ensembl_gene_id", columns. Defaults to None. ensemble_server (str, optional): the ensembl biomart server to map genes to. Defaults to "http://nov2020.archive.ensembl.org/biomart". umap_kwargs (dict, optional): see params.py . Defaults to {}. pca_kwargs (dict, optional): see see params.py . Defaults to {}. topKGenes (int, optional): see params.py. Defaults to 1000. cpca_kwargs (dict, optional): see see params.py . Defaults to {}. cpca_ncomp (int, optional): see params.py. Defaults to 10. mnn_kwargs (dict, optional): see params.py . Defaults to {}. make_plots (bool, optional): whether to log multiple plots along the way. Defaults to False. low_mem (bool, optional): adviced if you have less than 32Gb of RAM. Defaults to False. louvain_kwargs (dict, optional): see params.py . Defaults to {}. neightbors_kwargs (dict, optional): see params.py . Defaults to {}. method (str, optional): either "mnn_marioni" or "mnn". Defaults to "mnn_marioni". """ if gene_file: self.gene_file = gene_file else: self.gene_file = h.generateGeneNames( ensemble_server=ensemble_server, useCache=True ) if onlyGenes == "protein_coding": print("using only protein coding genes") self.gene_file[self.gene_file.gene_biotype == "protein_coding"] elif onlyGenes == "usefull": print("using only usefull genes") self.gene_file[self.gene_file.gene_biotype.isin(USEFUL_GENE_BIOTYPES)] else: print("using all genes") self.gene_file.ensembl_gene_id.drop_duplicates(keep="first", inplace=True) self.umap_kwargs = umap_kwargs self.pca_kwargs = pca_kwargs self.topKGenes = topKGenes self.cpca_kwargs = cpca_kwargs self.cpca_ncomp = cpca_ncomp self.mnn_kwargs = mnn_kwargs self.number_of_datasets = 0 self.make_plots = make_plots self.low_mem = low_mem self.louvain_kwargs = louvain_kwargs self.neightbors_kwargs = neightbors_kwargs self.method = method self.priotize_fit = priotize_fit self.fit_input = None self.fit_clusters = None self.differential_genes_input = None self.differential_genes_names = None self.fit_annotations = None self.transform_annotations = None self.transform_input = None self.transform_clusters = None self.corrected = None self.pca_fit = None self.pca_transform = None self.common_genes = None self.cpca_loadings = None def _check_Xpression(self, X_pression, gene_file): """ Args: X_pression (pd.Dataframe): expression data gene_file (pd.Dataframe): gene file with an ensembl_gene_id column Raises: ValueError: if the number of genes in the expression matrix and the gene file do not match ValueError: if the expression matrix contains nan values Returns: (pd.Dataframe): the expression matrix """ common_genes = set(X_pression.columns) & set(gene_file.ensembl_gene_id) if len(common_genes) < MIN_GENES: raise ValueError( "X_pression columns do not match gene_file enough only " + str(len(common_genes)) + " common genes" ) if self.fit_input is not None: common_genes = set(self.common_genes) & set(common_genes) if len(common_genes) < MIN_GENES: raise ValueError( "X_pression columns do not match gene_file enough only " + str(len(common_genes)) + " common genes" ) if self.cpca_loadings is not None: self.cpca_loadings = self.cpca_loadings[ :, self.fit_input.columns.isin(common_genes) ] if self.transform_input is not None: self.transform_input = self.transform_input.loc[:, common_genes] self.fit_input = self.fit_input.loc[:, common_genes] print("found " + str(len(common_genes)) + " common genes") # drop genes not in gene_file X_pression = X_pression.loc[:, common_genes].astype(float) # raise issue if there are any NaNs if X_pression.isnull().values.any(): raise ValueError("X_pression contains NaNs") return X_pression def addToFit( self, X_pression, annotations=None, do_fit=True, do_add=True, ): """adds expression data to the fit dataframe Args: X_pression (pd.Dataframe): expression data annotations (pd.Dataframe, optional): sample annotations. Defaults to None. Raises: ValueError: if the expression matrix and annotations matrix do not have the same index ValueError: if the new expression matrix has different gene names than the current one """ count = X_pression.shape[0] + ( self.fit_input.shape[0] if self.fit_input is not None else 0 ) print("looking at " + str(count) + " samples.") fit_input = self._check_Xpression(X_pression, self.gene_file) if annotations is not None: if len(annotations) != len(fit_input) or list(fit_input.index) != list( annotations.index ): raise ValueError("annotations do not match X_pression") else: # create fake annotations annotations = pd.DataFrame( index=X_pression.index, columns=["cell_type", "disease_type", "tissue_type"], data=np.zeros((len(X_pression), 3)) + self.number_of_datasets, ) if self.fit_input is None or not do_add: # it is the first time we run it. print("creating a fit dataset..") self.common_genes = fit_input.columns self.fit_input = fit_input self.fit_annotations = annotations else: print("adding to fit dataset..") # add annotations together self.fit_annotations = self.fit_annotations.append(annotations) # add fit_input together self.fit_input = self.fit_input.append(fit_input) self.number_of_datasets += 1 if do_fit: return self.fit() elif do_add: return self.fit(_rerun=False) def fit(self, X_pression=None, annotations=None, _rerun=True): """fit the model using X_pression Args: X_pression (pd.Dataframe): contains the expression data as RSEM expected counts with ensembl_gene_id as columns and samplenames as index. annotations (pd.Dataframe, optional): sample annotations, for each sample, needs to contain ['cell_type', 'disease_type', 'tissue_type']. Defaults to None (will create an empty dataframe). _rerun (bool, optional): whether to rerun the function entirely or not. Defaults to True. Raises: ValueError: if the expression matrix and annotations matrix do not have the same index ValueError: if the new expression matrix has different gene names than the current one """ # check if X_pression is compatible with the model if X_pression is not None: self.addToFit(X_pression, annotations, do_fit=False, do_add=False) elif self.fit_input is None: raise ValueError("no input provided") # mean center the dataframe # TODO? a bit different from R's version as it was using an approximate fast centering method self.fit_input = self.fit_input.sub(self.fit_input.mean(0), 1) # clustering: doing SNN on the reduced data print("clustering...") # anndata from df # TODO? a bit different from R's version. ScanPy and Seurat differ in their implementation. adata = AnnData(self.fit_input) neighbors(adata, **self.neightbors_kwargs) louvain(adata, **self.louvain_kwargs) self.fit_clusters = adata.obs["louvain"].values.astype(int) del adata # do differential expression between clusters and getting the top K most expressed genes if self.make_plots: # dimensionality reduction print("reducing dimensionality...") if _rerun: self.pca_fit = ( PCA(**self.pca_kwargs) if not self.low_mem else IncrementalPCA(**self.pca_kwargs) ) fit_reduced = self.pca_fit.fit_transform(self.fit_input) else: fit_reduced = self.pca_fit.transform(self.fit_input) # plotting plot.scatter( umap.UMAP(**self.umap_kwargs).fit_transform(fit_reduced), xname="UMAP1", yname="UMAP2", colors=self.fit_clusters, labels=["C" + str(i) for i in self.fit_clusters], title="SNN clusters", radi=0.1, ) if len(set(self.fit_clusters)) < 2: raise ValueError( "only one cluster found, no differential expression possible\ try to change your parameters..." ) if _rerun: print("doing differential expression analysis on the clusters") self.differential_genes_input = runDiffExprOnCluster( self.fit_input, self.fit_clusters ) # need enough genes to be significant if ( len(self.differential_genes_input[self.differential_genes_input.F > 10]) < self.topKGenes ): raise ValueError("not enough differentially expressed genes found..") print("done") return self def putAllToFit(self, redo_diff=False): """puts all the data to the fit dataframe""" self.fit_annotations = self.fit_annotations.append(self.transform_annotations) self.fit_input = self.fit_input.append(self.corrected) # clustering print("clustering...") adata = AnnData(self.fit_input) neighbors(adata, **self.neightbors_kwargs) louvain(adata, **self.louvain_kwargs) self.fit_clusters = adata.obs["louvain"].values.astype(int) del adata if redo_diff: print("doing differential expression analysis on the clusters") self.differential_genes_input = runDiffExprOnCluster( self.fit_input, self.fit_clusters ) # need enough genes to be significant if ( len(self.differential_genes_input[self.differential_genes_input.F > 10]) < self.topKGenes ): raise ValueError("not enough differentially expressed genes found..") # cleaning up transform self.transform_annotations = None self.corrected = None self.transform_input = None self.pca_transform = None print("done") def addToTransform( self, X_pression, annotations=None, do_transform=True, do_add=True, **kwargs ): """adds expression data to the transform dataframe Args: X_pression (pd.Dataframe): the expression data as RSEM expected counts with ensembl_gene_id as columns and samplenames as index. annotations (pd.Dataframe, optional): sample annotations, for each sample, do_transform (bool, optional): if True, will transform the data. Defaults to True. do_add (bool, optional): if True, will add the data to the transform dataframe. Returns: (, optional): transform()'s output Raises: ValueError: if the expression matrix and annotations matrix do not have the same index ValueError: if the new expression matrix has different gene names than the current one ValueError: if the model has not been fitted yet """ count = X_pression.shape[0] + ( self.transform_input.shape[0] if self.transform_input is not None and do_add else 0 ) print("looking at " + str(count) + " samples.") if self.fit_input is None: raise ValueError("no fit data available, need to run fit or addToFit first") transform_input = self._check_Xpression(X_pression, self.gene_file) if annotations is not None: if len(annotations) != len(transform_input) or list( transform_input.index ) != list(annotations.index): raise ValueError("annotations do not match X_pression") else: # create fake annotations annotations = pd.DataFrame( index=X_pression.index, columns=["cell_type", "disease_type", "tissue_type"], data=np.zeros((len(X_pression), 3)) + self.number_of_datasets, ) if self.transform_input is None or not do_add: # this is the first time we run it. print("creating a transform input..") self.common_genes = transform_input.columns self.transform_input = transform_input self.transform_annotations = annotations else: print("adding to transform..") # add annotations together self.transform_annotations = self.transform_annotations.append(annotations) # add transform_input together self.transform_input = self.transform_input.append(transform_input) self.number_of_datasets += 1 if do_transform: return self.transform(only_transform=True, **kwargs) elif do_add: return self.transform(**kwargs) def transform( self, X_pression=None, annotations=None, only_transform=False, _rerun=True, recompute_contamination=True, ): """transform the cell type for each sample in X_pression Args: X_pression (pd.Dataframe, optional): expression dataframe. Defaults to None. annotations (pd.Dataframe, optional): annotations dataframe. Defaults to None. only_transform (bool, optional): if True, will only transform the dataframe. _rerun (bool, optional): if True, will rerun the PCA and SNN. Defaults to True. Raises: ValueError: if the model has not been fitted yet ValueError: if the expression matrix and annotations matrix do not have the same index ValueError: if the new expression matrix has different gene names than the current one """ if X_pression is not None: self.addToTransform( X_pression, annotations, do_transform=False, do_add=False ) elif self.transform_input is None: raise ValueError("no transform Expression data provided") # mean center the dataframe self.transform_input = self.transform_input.sub(self.transform_input.mean(0), 1) if _rerun: # clustering: doing SNN on the reduced data print("clustering..") # anndata from df adata = AnnData(self.transform_input) neighbors(adata, **self.neightbors_kwargs) louvain(adata, **self.louvain_kwargs) self.transform_clusters = adata.obs["louvain"].values.astype(int) del adata if self.make_plots: # dimensionality reduction print("reducing dimensionality...") if _rerun: self.pca_transform = ( PCA(**self.pca_kwargs) if not self.low_mem else IncrementalPCA(**self.pca_kwargs) ) reduced = self.pca_transform.fit_transform(
pd.concat([self.transform_input, self.fit_input])
pandas.concat
from __future__ import division from builtins import str from builtins import range from builtins import object __copyright__ = "Copyright 2015 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections import os import sys import numpy as np import pandas as pd from .Error import DemandInputError from .Logger import FastTripsLogger from .Route import Route from .TAZ import TAZ from .Trip import Trip from .Util import Util class Passenger(object): """ Passenger class. One instance represents all of the households and persons that could potentially make transit trips. Stores household information in :py:attr:`Passenger.households_df` and person information in :py:attr:`Passenger.persons_df`, which are both :py:class:`pandas.DataFrame` instances. """ #: File with households INPUT_HOUSEHOLDS_FILE = "household.txt" #: Households column: Household ID HOUSEHOLDS_COLUMN_HOUSEHOLD_ID = 'hh_id' #: File with persons INPUT_PERSONS_FILE = "person.txt" #: Persons column: Household ID PERSONS_COLUMN_HOUSEHOLD_ID = HOUSEHOLDS_COLUMN_HOUSEHOLD_ID #: Persons column: Person ID (string) PERSONS_COLUMN_PERSON_ID = 'person_id' # ========== Added by fasttrips ======================================================= #: Persons column: Person ID number PERSONS_COLUMN_PERSON_ID_NUM = 'person_id_num' #: File with trip list INPUT_TRIP_LIST_FILE = "trip_list.txt" #: Trip list column: Person ID TRIP_LIST_COLUMN_PERSON_ID = PERSONS_COLUMN_PERSON_ID #: Trip list column: Person Trip ID TRIP_LIST_COLUMN_PERSON_TRIP_ID = "person_trip_id" #: Trip list column: Origin TAZ ID TRIP_LIST_COLUMN_ORIGIN_TAZ_ID = "o_taz" #: Trip list column: Destination TAZ ID TRIP_LIST_COLUMN_DESTINATION_TAZ_ID = "d_taz" #: Trip list column: Mode TRIP_LIST_COLUMN_MODE = "mode" #: Trip list column: Departure Time. DateTime. TRIP_LIST_COLUMN_DEPARTURE_TIME = 'departure_time' #: Trip list column: Arrival Time. DateTime. TRIP_LIST_COLUMN_ARRIVAL_TIME = 'arrival_time' #: Trip list column: Time Target (either 'arrival' or 'departure') TRIP_LIST_COLUMN_TIME_TARGET = 'time_target' # ========== Added by fasttrips ======================================================= #: Trip list column: Unique numeric ID for this passenger/trip TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM = "trip_list_id_num" #: Trip list column: Origin TAZ Numeric ID TRIP_LIST_COLUMN_ORIGIN_TAZ_ID_NUM = "o_taz_num" #: Trip list column: Destination Numeric TAZ ID TRIP_LIST_COLUMN_DESTINATION_TAZ_ID_NUM = "d_taz_num" #: Trip list column: Departure Time. Float, minutes after midnight. TRIP_LIST_COLUMN_DEPARTURE_TIME_MIN = 'departure_time_min' #: Trip list column: Departure Time. Float, minutes after midnight. TRIP_LIST_COLUMN_ARRIVAL_TIME_MIN = 'arrival_time_min' #: Trip list column: Transit Mode TRIP_LIST_COLUMN_TRANSIT_MODE = "transit_mode" #: Trip list column: Access Mode TRIP_LIST_COLUMN_ACCESS_MODE = "access_mode" #: Trip list column: Egress Mode TRIP_LIST_COLUMN_EGRESS_MODE = "egress_mode" #: Trip list column: Outbound (bool), true iff time target is arrival TRIP_LIST_COLUMN_OUTBOUND = "outbound" #: Option for :py:attr:`Passenger.TRIP_LIST_COLUMN_TIME_TARGET` (arrival time) TIME_TARGET_ARRIVAL = "arrival" #: Option for :py:attr:`Passenger.TRIP_LIST_COLUMN_TIME_TARGET` (departure time) TIME_TARGET_DEPARTURE = "departure" #: Generic transit. Specify this for mode when you mean walk, any transit modes, walk #: TODO: get rid of this? Maybe user should always specify. MODE_GENERIC_TRANSIT = "transit" #: Generic transit - Numeric mode number MODE_GENERIC_TRANSIT_NUM = 1000 #: Minumum Value of Time: 1 dollar shouldn't be worth 180 minutes MIN_VALUE_OF_TIME = 60.0/180.0 #: Trip list column: User class. String. TRIP_LIST_COLUMN_USER_CLASS = "user_class" #: Trip list column: Purpose. String. TRIP_LIST_COLUMN_PURPOSE = "purpose" #: Trip list column: Value of time. Float. TRIP_LIST_COLUMN_VOT = "vot" #: Trip list column: Trace. Boolean. TRIP_LIST_COLUMN_TRACE = "trace" #: Column names from pathfinding PF_COL_PF_ITERATION = 'pf_iteration' #: 0.01*pathfinding_iteration + iteration during which this path was found PF_COL_PAX_A_TIME = 'pf_A_time' #: time path-finder thinks passenger arrived at A PF_COL_PAX_B_TIME = 'pf_B_time' #: time path-finder thinks passenger arrived at B PF_COL_LINK_TIME = 'pf_linktime' #: time path-finder thinks passenger spent on link PF_COL_LINK_FARE = 'pf_linkfare' #: fare path-finder thinks passenger spent on link PF_COL_LINK_COST = 'pf_linkcost' #: cost (generalized) path-finder thinks passenger spent on link PF_COL_LINK_DIST = 'pf_linkdist' #: dist path-finder thinks passenger spent on link PF_COL_WAIT_TIME = 'pf_waittime' #: time path-finder thinks passenger waited for vehicle on trip links PF_COL_PATH_NUM = 'pathnum' #: path number, starting from 0 PF_COL_LINK_NUM = 'linknum' #: link number, starting from access PF_COL_LINK_MODE = 'linkmode' #: link mode (Access, Trip, Egress, etc) PF_COL_MODE = TRIP_LIST_COLUMN_MODE #: supply mode PF_COL_ROUTE_ID = Trip.TRIPS_COLUMN_ROUTE_ID #: link route ID PF_COL_TRIP_ID = Trip.TRIPS_COLUMN_TRIP_ID #: link trip ID PF_COL_DESCRIPTION = 'description' #: path text description #: todo replace/rename ?? PF_COL_PAX_A_TIME_MIN = 'pf_A_time_min' #: pathfinding results PF_PATHS_CSV = r"enumerated_paths.csv" PF_LINKS_CSV = r"enumerated_links.csv" #: results - PathSets PATHSET_PATHS_CSV = r"pathset_paths.csv" PATHSET_LINKS_CSV = r"pathset_links.csv" def __init__(self, input_dir, output_dir, today, stops, routes, capacity_constraint): """ Constructor from dictionary mapping attribute to value. """ # if no demand dir, nothing to do if input_dir == None: self.trip_list_df = pd.DataFrame() return FastTripsLogger.info("-------- Reading demand --------") FastTripsLogger.info("Capacity constraint? %x" % capacity_constraint ) self.trip_list_df = pd.read_csv(os.path.join(input_dir, Passenger.INPUT_TRIP_LIST_FILE), skipinitialspace=True, ##LMZ dtype={Passenger.TRIP_LIST_COLUMN_PERSON_ID :'S', Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID :'S', Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID :'S', Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID:'S', Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME :'S', Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME :'S', Passenger.TRIP_LIST_COLUMN_PURPOSE :'S'}) trip_list_cols = list(self.trip_list_df.columns.values) assert(Passenger.TRIP_LIST_COLUMN_PERSON_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_TIME_TARGET in trip_list_cols) assert(Passenger.TRIP_LIST_COLUMN_VOT in trip_list_cols) FastTripsLogger.debug("=========== TRIP LIST ===========\n" + str(self.trip_list_df.head())) FastTripsLogger.debug("\n"+str(self.trip_list_df.index.dtype)+"\n"+str(self.trip_list_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.trip_list_df), "person trips", Passenger.INPUT_TRIP_LIST_FILE)) # Error on missing person ids or person_trip_ids missing_person_ids = self.trip_list_df[pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_PERSON_ID])| pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID])] if len(missing_person_ids)>0: error_msg = "Missing person_id or person_trip_id fields:\n%s\n" % str(missing_person_ids) error_msg += "Use 0 for person_id for trips without corresponding person." FastTripsLogger.fatal(error_msg) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # Drop (warn) on missing origins or destinations missing_ods = self.trip_list_df[ pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID])| pd.isnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID]) ] if len(missing_ods)>0: FastTripsLogger.warn("Missing origin or destination for the following trips. Dropping.\n%s" % str(missing_ods)) self.trip_list_df = self.trip_list_df.loc[ pd.notnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID ])& pd.notnull(self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID]) ].reset_index(drop=True) FastTripsLogger.warn("=> Have %d person trips" % len(self.trip_list_df)) non_zero_person_ids = len(self.trip_list_df.loc[self.trip_list_df[Passenger.TRIP_LIST_COLUMN_PERSON_ID]!="0"]) if non_zero_person_ids > 0 and os.path.exists(os.path.join(input_dir, Passenger.INPUT_PERSONS_FILE)): self.persons_df = pd.read_csv(os.path.join(input_dir, Passenger.INPUT_PERSONS_FILE), skipinitialspace=True, dtype={Passenger.PERSONS_COLUMN_PERSON_ID:'S'}) self.persons_id_df = Util.add_numeric_column(self.persons_df[[Passenger.PERSONS_COLUMN_PERSON_ID]], id_colname=Passenger.PERSONS_COLUMN_PERSON_ID, numeric_newcolname=Passenger.PERSONS_COLUMN_PERSON_ID_NUM) self.persons_df = pd.merge(left=self.persons_df, right=self.persons_id_df, how="left") persons_cols = list(self.persons_df.columns.values) FastTripsLogger.debug("=========== PERSONS ===========\n" + str(self.persons_df.head())) FastTripsLogger.debug("\n"+str(self.persons_df.index.dtype)+"\n"+str(self.persons_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.persons_df), "persons", Passenger.INPUT_PERSONS_FILE)) self.households_df = pd.read_csv(os.path.join(input_dir, Passenger.INPUT_HOUSEHOLDS_FILE), skipinitialspace=True) household_cols = list(self.households_df.columns.values) FastTripsLogger.debug("=========== HOUSEHOLDS ===========\n" + str(self.households_df.head())) FastTripsLogger.debug("\n"+str(self.households_df.index.dtype)+"\n"+str(self.households_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.households_df), "households", Passenger.INPUT_HOUSEHOLDS_FILE)) else: self.persons_df = pd.DataFrame() self.households_df = pd.DataFrame() # make sure that each tuple TRIP_LIST_COLUMN_PERSON_ID, TRIP_LIST_COLUMN_PERSON_TRIP_ID is unique self.trip_list_df["ID_dupes"] = self.trip_list_df.duplicated(subset=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID], keep=False) if self.trip_list_df["ID_dupes"].sum() > 0: error_msg = "Duplicate IDs (%s, %s) found:\n%s" % \ (Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, self.trip_list_df.loc[self.trip_list_df["ID_dupes"]==True].to_string()) FastTripsLogger.fatal(error_msg) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # Create unique numeric index self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM] = self.trip_list_df.index + 1 # datetime version self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME].map(lambda x: Util.read_time(x)) self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME].map(lambda x: Util.read_time(x)) # float version self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME_MIN] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME].map(lambda x: \ 60*x.time().hour + x.time().minute + (x.time().second/60.0) ) self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME_MIN] = \ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME].map(lambda x: \ 60*x.time().hour + x.time().minute + (x.time().second/60.0) ) # TODO: validate fields? # value of time must be greater than a threshhold or any fare becomes prohibitively expensive low_vot = self.trip_list_df.loc[ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_VOT] < Passenger.MIN_VALUE_OF_TIME ] if len(low_vot) > 0: FastTripsLogger.warn("These trips have value of time lower than the minimum threshhhold (%f): raising to minimum.\n%s" % (Passenger.MIN_VALUE_OF_TIME, str(low_vot) )) self.trip_list_df.loc[ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_VOT] < Passenger.MIN_VALUE_OF_TIME, Passenger.TRIP_LIST_COLUMN_VOT] = Passenger.MIN_VALUE_OF_TIME if len(self.persons_df) > 0: # Join trips to persons self.trip_list_df = pd.merge(left=self.trip_list_df, right=self.persons_df, how='left', on=Passenger.TRIP_LIST_COLUMN_PERSON_ID) # are any null? no_person_ids = self.trip_list_df.loc[ pd.isnull(self.trip_list_df[Passenger.PERSONS_COLUMN_PERSON_ID_NUM])& (self.trip_list_df[Passenger.PERSONS_COLUMN_PERSON_ID]!="0")] if len(no_person_ids) > 0: error_msg = "Even though a person list is given, failed to find person information for %d trips" % len(no_person_ids) FastTripsLogger.fatal(error_msg) FastTripsLogger.fatal("\n%s\n" % no_person_ids.to_string()) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # And then to households self.trip_list_df = pd.merge(left=self.trip_list_df, right=self.households_df, how='left', on=Passenger.PERSONS_COLUMN_HOUSEHOLD_ID) else: # Give each passenger a unique person ID num self.trip_list_df[Passenger.PERSONS_COLUMN_PERSON_ID_NUM] = self.trip_list_df.index + 1 # add TAZ numeric ids (stored in the stop mapping) self.trip_list_df = stops.add_numeric_stop_id(self.trip_list_df, id_colname =Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID, numeric_newcolname=Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID_NUM, warn =True, warn_msg ="TAZ numbers configured as origins in demand file are not found in the network") self.trip_list_df = stops.add_numeric_stop_id(self.trip_list_df, id_colname =Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID, numeric_newcolname=Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID_NUM, warn =True, warn_msg ="TAZ numbers configured as destinations in demand file are not found in the network") # trips with invalid TAZs have been dropped FastTripsLogger.debug("Have %d person trips" % len(self.trip_list_df)) # figure out modes: if Passenger.TRIP_LIST_COLUMN_MODE not in trip_list_cols: # default to generic walk-transit-walk self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE] = Passenger.MODE_GENERIC_TRANSIT self.trip_list_df['mode_dash_count'] = 0 else: # count the dashes in the mode self.trip_list_df['mode_dash_count'] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: x.count('-')) # The only modes allowed are access-transit-egress or MODE_GENERIC_TRANSIT bad_mode_df = self.trip_list_df.loc[((self.trip_list_df['mode_dash_count']!=2)& ((self.trip_list_df['mode_dash_count']!=0)| (self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]!=Passenger.MODE_GENERIC_TRANSIT)))] if len(bad_mode_df) > 0: FastTripsLogger.fatal("Could not understand column '%s' in the following: \n%s" % (Passenger.TRIP_LIST_COLUMN_MODE, bad_mode_df[[Passenger.TRIP_LIST_COLUMN_MODE,'mode_dash_count']].to_string())) sys.exit(2) # Take care of the transit generic self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==0, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE] = Passenger.MODE_GENERIC_TRANSIT self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==0, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE ] = "%s" % TAZ.ACCESS_EGRESS_MODES[0] self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==0, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE ] = "%s" % TAZ.ACCESS_EGRESS_MODES[0] # Take care of the access-transit-egress self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==2, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: "%s" % x[:x.find('-')]) self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==2, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: x[x.find('-')+1:x.rfind('-')]) self.trip_list_df.loc[self.trip_list_df['mode_dash_count']==2, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE] = self.trip_list_df[Passenger.TRIP_LIST_COLUMN_MODE]\ .map(lambda x: "%s" % x[x.rfind('-')+1:]) # We're done with mode_dash_count, thanks for your service self.trip_list_df.drop('mode_dash_count', axis=1, inplace=True) # replace with cumsum # validate time_target invalid_time_target = self.trip_list_df.loc[ self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET].isin( [Passenger.TIME_TARGET_ARRIVAL, Passenger.TIME_TARGET_DEPARTURE])==False ] if len(invalid_time_target) > 0: error_msg = "Invalid value in column %s:\n%s" % (Passenger.TRIP_LIST_COLUMN_TIME_TARGET, str(invalid_time_target)) FastTripsLogger.fatal(error_msg) raise DemandInputError(Passenger.INPUT_TRIP_LIST_FILE, error_msg) # set outbound self.trip_list_df[Passenger.TRIP_LIST_COLUMN_OUTBOUND] = (self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == Passenger.TIME_TARGET_ARRIVAL) # Set the user class for each trip from .PathSet import PathSet PathSet.set_user_class(self.trip_list_df, Passenger.TRIP_LIST_COLUMN_USER_CLASS) # Verify that PathSet has all the configuration for these user classes + transit modes + access modes + egress modes # => Figure out unique user class + mode combinations self.modes_df = self.trip_list_df[[Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE]].set_index([Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE]) # stack - so before we have three columns: transit_mode, access_mode, egress_mode # after, we have two columns: demand_mode_type and the value, demand_mode self.modes_df = self.modes_df.stack().to_frame() self.modes_df.index.names = [Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE] self.modes_df.columns = [PathSet.WEIGHTS_COLUMN_DEMAND_MODE] self.modes_df.reset_index(inplace=True) self.modes_df.drop_duplicates(inplace=True) # fix demand_mode_type since transit_mode is just transit, etc self.modes_df[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE] = self.modes_df[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE].apply(lambda x: x[:-5]) FastTripsLogger.debug("Demand mode types by class & purpose: \n%s" % str(self.modes_df)) # Make sure we have all the weights required for these user_class/mode combinations self.trip_list_df = PathSet.verify_weight_config(self.modes_df, output_dir, routes, capacity_constraint, self.trip_list_df) # add column trace from .Assignment import Assignment if len(Assignment.TRACE_IDS) > 0: trace_df = pd.DataFrame.from_records(data=Assignment.TRACE_IDS, columns=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]).astype(object) trace_df[Passenger.TRIP_LIST_COLUMN_TRACE] = True # combine self.trip_list_df = pd.merge(left=self.trip_list_df, right=trace_df, how="left", on=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]) # make nulls into False self.trip_list_df.loc[pd.isnull( self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRACE]), Passenger.TRIP_LIST_COLUMN_TRACE] = False else: self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRACE] = False FastTripsLogger.info("Have %d person trips" % len(self.trip_list_df)) FastTripsLogger.debug("Final trip_list_df\n"+str(self.trip_list_df.index.dtype)+"\n"+str(self.trip_list_df.dtypes)) FastTripsLogger.debug("\n"+self.trip_list_df.head().to_string()) #: Maps trip_list_id to :py:class:`PathSet` instance. Use trip_list_id instead of (person_id, person_trip_id) for simplicity and to iterate sequentially #: in setup_passenger_pathsets() self.id_to_pathset = collections.OrderedDict() def add_pathset(self, trip_list_id, pathset): """ Stores this path set for the trip_list_id. """ self.id_to_pathset[trip_list_id] = pathset def get_pathset(self, trip_list_id): """ Retrieves a stored path set for the given trip_list_id """ return self.id_to_pathset[trip_list_id] def get_person_id(self, trip_list_id): to_ret = self.trip_list_df.loc[self.trip_list_df[Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM]==trip_list_id, [Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]] return(to_ret.iloc[0,0], to_ret.iloc[0,1]) def read_passenger_pathsets(self, pathset_dir, stops, modes_df, include_asgn=True): """ Reads the dataframes described in :py:meth:`Passenger.setup_passenger_pathsets` and returns them. :param pathset_dir: Location of csv files to read :type pathset_dir: string :param include_asgn: If true, read from files called :py:attr:`Passenger.PF_PATHS_CSV` and :py:attr:`Passenger.PF_LINKS_CSV`. Otherwise read from files called :py:attr:`Passenger.PATHSET_PATHS_CSV` and :py:attr:`Passenger.PATHSET_LINKS_CSV` which include assignment results. :return: See :py:meth:`Assignment.setup_passengers` for documentation on the passenger paths :py:class:`pandas.DataFrame` :rtype: a tuple of (:py:class:`pandas.DataFrame`, :py:class:`pandas.DataFrame`) """ # read existing paths paths_file = os.path.join(pathset_dir, Passenger.PATHSET_PATHS_CSV if include_asgn else Passenger.PF_PATHS_CSV) pathset_paths_df = pd.read_csv(paths_file, skipinitialspace=True, dtype={Passenger.TRIP_LIST_COLUMN_PERSON_ID :'S', Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID:'S'}) FastTripsLogger.info("Read %s" % paths_file) FastTripsLogger.debug("pathset_paths_df.dtypes=\n%s" % str(pathset_paths_df.dtypes)) from .Assignment import Assignment date_cols = [Passenger.PF_COL_PAX_A_TIME, Passenger.PF_COL_PAX_B_TIME] if include_asgn: date_cols.extend([Assignment.SIM_COL_PAX_BOARD_TIME, Assignment.SIM_COL_PAX_ALIGHT_TIME, Assignment.SIM_COL_PAX_A_TIME, Assignment.SIM_COL_PAX_B_TIME]) links_dtypes = {Passenger.TRIP_LIST_COLUMN_PERSON_ID :'S', Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID:'S', Trip.TRIPS_COLUMN_TRIP_ID :'S', "A_id" :'S', "B_id" :'S', Passenger.PF_COL_ROUTE_ID :'S', Passenger.PF_COL_TRIP_ID :'S'} # read datetimes as string initially for date_col in date_cols: links_dtypes[date_col] = 'S' links_file = os.path.join(pathset_dir, Passenger.PATHSET_LINKS_CSV if include_asgn else Passenger.PF_LINKS_CSV) pathset_links_df = pd.read_csv(links_file, skipinitialspace=True, dtype=links_dtypes) # convert time strings to datetimes for date_col in date_cols: if date_col in pathset_links_df.columns.values: pathset_links_df[date_col] = pathset_links_df[date_col].map(lambda x: Util.read_time(x)) # convert time duration columns to time durations link_cols = list(pathset_links_df.columns.values) if Passenger.PF_COL_LINK_TIME in link_cols: pathset_links_df[Passenger.PF_COL_LINK_TIME] = pd.to_timedelta(pathset_links_df[Passenger.PF_COL_LINK_TIME]) elif "%s min" % Passenger.PF_COL_LINK_TIME in link_cols: pathset_links_df[Passenger.PF_COL_LINK_TIME] = pd.to_timedelta(pathset_links_df["%s min" % Passenger.PF_COL_LINK_TIME], unit='m') if Passenger.PF_COL_WAIT_TIME in link_cols: pathset_links_df[Passenger.PF_COL_WAIT_TIME] = pd.to_timedelta(pathset_links_df[Passenger.PF_COL_WAIT_TIME]) elif "%s min" % Passenger.PF_COL_WAIT_TIME in link_cols: pathset_links_df[Passenger.PF_COL_WAIT_TIME] = pd.to_timedelta(pathset_links_df["%s min" % Passenger.PF_COL_WAIT_TIME], unit='m') # if simulation results are available if Assignment.SIM_COL_PAX_LINK_TIME in link_cols: pathset_links_df[Assignment.SIM_COL_PAX_LINK_TIME] = pd.to_timedelta(pathset_links_df[Assignment.SIM_COL_PAX_LINK_TIME]) elif "%s min" % Assignment.SIM_COL_PAX_WAIT_TIME in link_cols: pathset_links_df[Assignment.SIM_COL_PAX_LINK_TIME] = pd.to_timedelta(pathset_links_df["%s min" % Assignment.SIM_COL_PAX_LINK_TIME], unit='m') if Assignment.SIM_COL_PAX_WAIT_TIME in link_cols: pathset_links_df[Assignment.SIM_COL_PAX_WAIT_TIME] = pd.to_timedelta(pathset_links_df[Assignment.SIM_COL_PAX_WAIT_TIME]) elif "%s min" % Assignment.SIM_COL_PAX_WAIT_TIME in link_cols: pathset_links_df[Assignment.SIM_COL_PAX_WAIT_TIME] = pd.to_timedelta(pathset_links_df["%s min" % Assignment.SIM_COL_PAX_WAIT_TIME], unit='m') # and drop the numeric version if "%s min" % Passenger.PF_COL_LINK_TIME in link_cols: pathset_links_df.drop(["%s min" % Passenger.PF_COL_LINK_TIME, "%s min" % Passenger.PF_COL_WAIT_TIME], axis=1, inplace=True) if "%s min" % Assignment.SIM_COL_PAX_LINK_TIME in link_cols: pathset_links_df.drop(["%s min" % Assignment.SIM_COL_PAX_LINK_TIME, "%s min" % Assignment.SIM_COL_PAX_WAIT_TIME], axis=1, inplace=True) # if A_id_num isn't there, add it if "A_id_num" not in pathset_links_df.columns.values: pathset_links_df = stops.add_numeric_stop_id(pathset_links_df, id_colname="A_id", numeric_newcolname="A_id_num", warn=True, warn_msg="read_passenger_pathsets: invalid stop ID", drop_failures=False) if "B_id_num" not in pathset_links_df.columns.values: pathset_links_df = stops.add_numeric_stop_id(pathset_links_df, id_colname="B_id", numeric_newcolname="B_id_num", warn=True, warn_msg="read_passenger_pathsets: invalid stop ID", drop_failures=False) # if trip_list_id_num is in trip list and not in these, add it if Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM in self.trip_list_df.columns.values: if Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM not in pathset_paths_df.columns.values: pathset_paths_df = pd.merge(left =pathset_paths_df, right =self.trip_list_df[[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM]], how ="left") if Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM not in pathset_links_df.columns.values: pathset_links_df = pd.merge(left =pathset_links_df, right =self.trip_list_df[[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM]], how ="left") # add mode_num if it's not there if Route.ROUTES_COLUMN_MODE_NUM not in pathset_links_df.columns.values: pathset_links_df = pd.merge(left=pathset_links_df, right=modes_df[[Route.ROUTES_COLUMN_MODE_NUM, Route.ROUTES_COLUMN_MODE]], how="left") FastTripsLogger.info("Read %s" % links_file) FastTripsLogger.debug("pathset_links_df head=\n%s" % str(pathset_links_df.head())) FastTripsLogger.debug("pathset_links_df.dtypes=\n%s" % str(pathset_links_df.dtypes)) return (pathset_paths_df, pathset_links_df) @staticmethod def process_path(pathnum, pathset, pathset_id, pf_iteration, is_skimming=False): from .PathSet import PathSet from .Assignment import Assignment if is_skimming: origin = pathset_id pathlist_entry = [ origin, pathset.direction, # pathset.mode, # where does this come from? pathnum, ] else: trip_list_id = pathset_id pathlist_entry = [ pathset.person_id, pathset.person_trip_id, trip_list_id, (pathset.person_id, pathset.person_trip_id) in Assignment.TRACE_IDS, pathset.direction, pathset.mode, pf_iteration, pathnum, ] pathlist_entry.extend([ pathset.pathdict[pathnum][PathSet.PATH_KEY_COST], pathset.pathdict[pathnum][PathSet.PATH_KEY_FARE], pathset.pathdict[pathnum][PathSet.PATH_KEY_PROBABILITY], pathset.pathdict[pathnum][PathSet.PATH_KEY_INIT_COST], pathset.pathdict[pathnum][PathSet.PATH_KEY_INIT_FARE] ]) return pathlist_entry @staticmethod def process_path_state( pathnum, pathset, pathset_id, state_id, state, pf_iteration, linkmode, link_num, prev_linkmode, prev_state_id, state_list_for_logging, is_skimming=False, ): # OUTBOUND passengers have states like this: # stop: label departure dep_mode successor linktime # orig_taz Access b stop1 # b stop1 trip1 a stop2 # a stop2 Transfer b stop3 # b stop3 trip2 a stop4 # a stop4 Egress dest_taz # # stop: label dep_time dep_mode successor seq suc linktime cost arr_time # 460: 0:20:49.4000 17:41:10 Access 3514 -1 -1 0:03:08.4000 0:03:08.4000 17:44:18 # 3514: 0:17:41.0000 17:44:18 5131292 4313 30 40 0:06:40.0000 0:12:21.8000 17:50:59 # 4313: 0:05:19.2000 17:50:59 Transfer 5728 -1 -1 0:00:19.2000 0:00:19.2000 17:51:18 # 5728: 0:04:60.0000 17:57:00 5154302 5726 16 17 0:07:33.8000 0:03:02.4000 17:58:51 # 5726: 0:01:57.6000 17:58:51 Egress 231 -1 -1 0:01:57.6000 0:01:57.6000 18:00:49 # INBOUND passengers have states like this # stop: label arrival arr_mode predecessor linktime # dest_taz Egress a stop4 # a stop4 trip2 b stop3 # b stop3 Transfer a stop2 # a stop2 trip1 b stop1 # b stop1 Access orig_taz # # stop: label arr_time arr_mode predecessor seq pred linktime cost dep_time # 15: 0:36:38.4000 17:30:38 Egress 3772 -1 -1 0:02:38.4000 0:02:38.4000 17:28:00 # 3772: 0:34:00.0000 17:28:00 5123368 6516 22 14 0:24:17.2000 0:24:17.2000 17:05:50 # 6516: 0:09:42.8000 17:03:42 Transfer 4766 -1 -1 0:00:16.8000 0:00:16.8000 17:03:25 # 4766: 0:09:26.0000 17:03:25 5138749 5671 7 3 0:05:30.0000 0:05:33.2000 16:57:55 # 5671: 0:03:52.8000 16:57:55 Access 943 -1 -1 0:03:52.8000 0:03:52.8000 16:54:03 from .PathSet import PathSet from .Assignment import Assignment prev_linkmode = None prev_state_id = None mode_num = None trip_id = None waittime = None if linkmode in [PathSet.STATE_MODE_ACCESS, PathSet.STATE_MODE_TRANSFER, PathSet.STATE_MODE_EGRESS]: mode_num = state[PathSet.STATE_IDX_TRIP] else: # trip mode_num will need to be joined trip_id = state[PathSet.STATE_IDX_TRIP] linkmode = PathSet.STATE_MODE_TRIP if (not is_skimming) and pathset.outbound: a_id_num = state_id b_id_num = state[PathSet.STATE_IDX_SUCCPRED] a_seq = state[PathSet.STATE_IDX_SEQ] b_seq = state[PathSet.STATE_IDX_SEQ_SUCCPRED] b_time = state[PathSet.STATE_IDX_ARRDEP] a_time = b_time - state[PathSet.STATE_IDX_LINKTIME] trip_time = state[PathSet.STATE_IDX_ARRDEP] - state[PathSet.STATE_IDX_DEPARR] else: # skimming always inbound a_id_num = state[PathSet.STATE_IDX_SUCCPRED] b_id_num = state_id a_seq = state[PathSet.STATE_IDX_SEQ_SUCCPRED] b_seq = state[PathSet.STATE_IDX_SEQ] b_time = state[PathSet.STATE_IDX_DEPARR] a_time = b_time - state[PathSet.STATE_IDX_LINKTIME] trip_time = state[PathSet.STATE_IDX_DEPARR] - state[PathSet.STATE_IDX_ARRDEP] # trips: linktime includes wait if linkmode == PathSet.STATE_MODE_TRIP: waittime = state[PathSet.STATE_IDX_LINKTIME] - trip_time # two trips in a row -- this shouldn't happen if linkmode == PathSet.STATE_MODE_TRIP and prev_linkmode == PathSet.STATE_MODE_TRIP: if not is_skimming: warn_msg =("Two trip links in a row... this shouldn't happen. person_id is %s trip is %s\npathnum is %d\nstatelist (%d): %s\n" % ( pathset.person_id, pathset.person_trip_id, pathnum, len(state_list_for_logging), str(state_list_for_logging))) else: warn_msg = "Two trip links in a row... this shouldn't happen." FastTripsLogger.warn(warn_msg) sys.exit() if is_skimming: linklist_entry = [pathset_id] # origin else: linklist_entry = [ pathset.person_id, pathset.person_trip_id, pathset_id, # trip list id (pathset.person_id, pathset.person_trip_id) in Assignment.TRACE_IDS, pf_iteration, # 0.01 * pathfinding_iteration + iteration, ] linklist_entry.extend( [ pathnum, linkmode, mode_num, trip_id, a_id_num, b_id_num, a_seq, b_seq, a_time, b_time, state[PathSet.STATE_IDX_LINKTIME], state[PathSet.STATE_IDX_LINKFARE], state[PathSet.STATE_IDX_LINKCOST], state[PathSet.STATE_IDX_LINKDIST], waittime, link_num ] ) return linklist_entry def setup_passenger_pathsets(self, iteration, pathfinding_iteration, stops, trip_id_df, trips_df, modes_df, transfers, tazs, prepend_route_id_to_trip_id, ): """ Converts pathfinding results (which is stored in each Passenger :py:class:`PathSet`) into two :py:class:`pandas.DataFrame` instances. Returns two :py:class:`pandas.DataFrame` instances: pathset_paths_df and pathset_links_df. These only include pathsets for person trips which have just been sought (e.g. those in :py:attr:`Passenger.pathfind_trip_list_df`) pathset_paths_df has path set information, where each row represents a passenger's path: ================== =============== ===================================================================================================== column name column type description ================== =============== ===================================================================================================== `person_id` object person ID `person_trip_id` object person trip ID `trip_list_id_num` int64 trip list numerical ID `trace` bool Are we tracing this person trip? `pathdir` int64 the :py:attr:`PathSet.direction` `pathmode` object the :py:attr:`PathSet.mode` `pf_iteration` float64 iteration + 0.01*pathfinding_iteration in which these paths were found `pathnum` int64 the path number for the path within the pathset `pf_cost` float64 the cost of the entire path `pf_fare` float64 the fare of the entire path `pf_probability` float64 the probability of the path `pf_initcost` float64 the initial cost of the entire path `pf_initfare` float64 the initial fare of the entire path `description` object string representation of the path ================== =============== ===================================================================================================== pathset_links_df has path link information, where each row represents a link in a passenger's path: ================== =============== ===================================================================================================== column name column type description ================== =============== ===================================================================================================== `person_id` object person ID `person_trip_id` object person trip ID `trip_list_id_num` int64 trip list numerical ID `trace` bool Are we tracing this person trip? `pf_iteration` float64 iteration + 0.01*pathfinding_iteration in which these paths were found `pathnum` int64 the path number for the path within the pathset `linkmode` object the mode of the link, one of :py:attr:`PathSet.STATE_MODE_ACCESS`, :py:attr:`PathSet.STATE_MODE_EGRESS`, :py:attr:`PathSet.STATE_MODE_TRANSFER` or :py:attr:`PathSet.STATE_MODE_TRIP`. PathSets will always start with access, followed by trips with transfers in between, and ending in an egress following the last trip. `mode_num` int64 the mode number for the link `mode` object the supply mode for the link `route_id` object the route ID for trip links. Set to :py:attr:`numpy.nan` for non-trip links. `trip_id` object the trip ID for trip links. Set to :py:attr:`numpy.nan` for non-trip links. `trip_id_num` float64 the numerical trip ID for trip links. Set to :py:attr:`numpy.nan` for non-trip links. `A_id` object the stop ID at the start of the link, or TAZ ID for access links `A_id_num` int64 the numerical stop ID at the start of the link, or a numerical TAZ ID for access links `B_id` object the stop ID at the end of the link, or a TAZ ID for access links `B_id_num` int64 the numerical stop ID at the end of the link, or a numerical TAZ ID for access links `A_seq` int64 the sequence number for the stop at the start of the link, or -1 for access links `B_seq` int64 the sequence number for the stop at the start of the link, or -1 for access links `pf_A_time` datetime64[ns] the time the passenger arrives at `A_id` `pf_B_time` datetime64[ns] the time the passenger arrives at `B_id` `pf_linktime` timedelta64[ns] the time spent on the link `pf_linkfare` float64 the fare of the link `pf_linkcost` float64 the generalized cost of the link `pf_linkdist` float64 the distance for the link `A_lat` float64 the latitude of A (if it's a stop) `A_lon` float64 the longitude of A (if it's a stop) `B_lat` float64 the latitude of B (if it's a stop) `B_lon` float64 the longitude of B (if it's a stop) ================== =============== ===================================================================================================== """ from .PathSet import PathSet trip_list_id_nums = self.pathfind_trip_list_df[Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM].tolist() # only process if we just did pathfinding for this person trip pathset_dict = { trip_list_id: pathset for trip_list_id, pathset in self.id_to_pathset.items() if trip_list_id in trip_list_id_nums } pf_iteration = 0.01 * pathfinding_iteration + iteration pathlist, linklist = self.setup_pathsets_generic(pathset_dict, pf_iteration, is_skimming=False) FastTripsLogger.debug("setup_passenger_pathsets(): pathlist and linklist constructed") pathset_paths_df = pd.DataFrame(pathlist, columns=[ \ Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM, Passenger.TRIP_LIST_COLUMN_TRACE, 'pathdir', # for debugging 'pathmode', # for output Passenger.PF_COL_PF_ITERATION, Passenger.PF_COL_PATH_NUM, PathSet.PATH_KEY_COST, PathSet.PATH_KEY_FARE, PathSet.PATH_KEY_PROBABILITY, PathSet.PATH_KEY_INIT_COST, PathSet.PATH_KEY_INIT_FARE]) pathset_links_df = pd.DataFrame(linklist, columns=[ \ Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM, Passenger.TRIP_LIST_COLUMN_TRACE, Passenger.PF_COL_PF_ITERATION, Passenger.PF_COL_PATH_NUM, Passenger.PF_COL_LINK_MODE, Route.ROUTES_COLUMN_MODE_NUM, Trip.TRIPS_COLUMN_TRIP_ID_NUM, 'A_id_num', 'B_id_num', 'A_seq', 'B_seq', Passenger.PF_COL_PAX_A_TIME, Passenger.PF_COL_PAX_B_TIME, Passenger.PF_COL_LINK_TIME, Passenger.PF_COL_LINK_FARE, Passenger.PF_COL_LINK_COST, Passenger.PF_COL_LINK_DIST, Passenger.PF_COL_WAIT_TIME, Passenger.PF_COL_LINK_NUM]) FastTripsLogger.debug( "setup_passenger_pathsets(): pathset_paths_df(%d) and pathset_links_df(%d) dataframes constructed" % ( len(pathset_paths_df), len(pathset_links_df))) return self.clean_pathset_dfs( pathset_paths_df, pathset_links_df, stops, trip_id_df, trips_df, modes_df, prepend_route_id_to_trip_id=prepend_route_id_to_trip_id, is_skimming=False ) @staticmethod def clean_pathset_dfs(pathset_paths_df, pathset_links_df, stops, trip_id_df, trips_df, modes_df, *, prepend_route_id_to_trip_id, is_skimming): from .Skimming import Skimming from .PathSet import PathSet if prepend_route_id_to_trip_id and is_skimming: raise NotImplementedError("prepend_route_id_to_trip_id not implemented for skimming") # get A_id and B_id and trip_id pathset_links_df = stops.add_stop_id_for_numeric_id(pathset_links_df, 'A_id_num', 'A_id') pathset_links_df = stops.add_stop_id_for_numeric_id(pathset_links_df, 'B_id_num', 'B_id') # get A_lat, A_lon, B_lat, B_lon pathset_links_df = stops.add_stop_lat_lon(pathset_links_df, id_colname="A_id", new_lat_colname="A_lat", new_lon_colname="A_lon") pathset_links_df = stops.add_stop_lat_lon(pathset_links_df, id_colname="B_id", new_lat_colname="B_lat", new_lon_colname="B_lon") # get trip_id pathset_links_df = Util.add_new_id(input_df=pathset_links_df, id_colname=Trip.TRIPS_COLUMN_TRIP_ID_NUM, newid_colname=Trip.TRIPS_COLUMN_TRIP_ID, mapping_df=trip_id_df, mapping_id_colname=Trip.TRIPS_COLUMN_TRIP_ID_NUM, mapping_newid_colname=Trip.TRIPS_COLUMN_TRIP_ID) # get route id # mode_num will appear in left (for non-transit links) and right (for transit link) both, so we need to consolidate pathset_links_df = pd.merge(left=pathset_links_df, right=trips_df[ [Trip.TRIPS_COLUMN_TRIP_ID, Trip.TRIPS_COLUMN_ROUTE_ID, Route.ROUTES_COLUMN_MODE_NUM]], how="left", on=Trip.TRIPS_COLUMN_TRIP_ID) pathset_links_df[Route.ROUTES_COLUMN_MODE_NUM] = pathset_links_df["%s_x" % Route.ROUTES_COLUMN_MODE_NUM] pathset_links_df.loc[ pd.notnull(pathset_links_df["%s_y" % Route.ROUTES_COLUMN_MODE_NUM]), Route.ROUTES_COLUMN_MODE_NUM] = \ pathset_links_df["%s_y" % Route.ROUTES_COLUMN_MODE_NUM] pathset_links_df.drop(["%s_x" % Route.ROUTES_COLUMN_MODE_NUM, "%s_y" % Route.ROUTES_COLUMN_MODE_NUM], axis=1, inplace=True) if not is_skimming: # TODO should this apply in both cases>? # verify it's always set FastTripsLogger.debug("Have %d links with no mode number set" % len( pathset_links_df.loc[
pd.isnull(pathset_links_df[Route.ROUTES_COLUMN_MODE_NUM])
pandas.isnull
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import operator import warnings from functools import wraps, partial from numbers import Number, Integral from operator import getitem from pprint import pformat import numpy as np import pandas as pd from pandas.util import cache_readonly, hash_pandas_object from pandas.api.types import is_bool_dtype, is_timedelta64_dtype, \ is_numeric_dtype, is_datetime64_any_dtype from toolz import merge, first, unique, partition_all, remove try: from chest import Chest as Cache except ImportError: Cache = dict from .. import array as da from .. import core from ..utils import partial_by_order, Dispatch, IndexCallable from .. import threaded from ..compatibility import (apply, operator_div, bind_method, string_types, isidentifier, Iterator, Sequence) from ..context import globalmethod from ..utils import (random_state_data, pseudorandom, derived_from, funcname, memory_repr, put_lines, M, key_split, OperatorMethodMixin, is_arraylike, typename, skip_doctest) from ..array.core import Array, normalize_arg from ..array.utils import empty_like_safe from ..blockwise import blockwise, Blockwise from ..base import DaskMethodsMixin, tokenize, dont_optimize, is_dask_collection from ..delayed import delayed, Delayed, unpack_collections from ..highlevelgraph import HighLevelGraph from . import methods from .accessor import DatetimeAccessor, StringAccessor from .categorical import CategoricalAccessor, categorize from .optimize import optimize from .utils import (meta_nonempty, make_meta, insert_meta_param_description, raise_on_meta_error, clear_known_categories, is_categorical_dtype, has_known_categories, PANDAS_VERSION, index_summary, is_dataframe_like, is_series_like, is_index_like, valid_divisions) no_default = '__no_default__' pd.set_option('compute.use_numexpr', False) def _concat(args): if not args: return args if isinstance(first(core.flatten(args)), np.ndarray): return da.core.concatenate3(args) if not has_parallel_type(args[0]): try: return pd.Series(args) except Exception: return args # We filter out empty partitions here because pandas frequently has # inconsistent dtypes in results between empty and non-empty frames. # Ideally this would be handled locally for each operation, but in practice # this seems easier. TODO: don't do this. args2 = [i for i in args if len(i)] return args[0] if not args2 else methods.concat(args2, uniform=True) def finalize(results): return _concat(results) class Scalar(DaskMethodsMixin, OperatorMethodMixin): """ A Dask object to represent a pandas scalar""" def __init__(self, dsk, name, meta, divisions=None): # divisions is ignored, only present to be compatible with other # objects. if not isinstance(dsk, HighLevelGraph): dsk = HighLevelGraph.from_collections(name, dsk, dependencies=[]) self.dask = dsk self._name = name meta = make_meta(meta) if is_dataframe_like(meta) or is_series_like(meta) or is_index_like(meta): raise TypeError("Expected meta to specify scalar, got " "{0}".format(typename(type(meta)))) self._meta = meta def __dask_graph__(self): return self.dask def __dask_keys__(self): return [self.key] def __dask_tokenize__(self): return self._name def __dask_layers__(self): return (self.key,) __dask_optimize__ = globalmethod(optimize, key='dataframe_optimize', falsey=dont_optimize) __dask_scheduler__ = staticmethod(threaded.get) def __dask_postcompute__(self): return first, () def __dask_postpersist__(self): return Scalar, (self._name, self._meta, self.divisions) @property def _meta_nonempty(self): return self._meta @property def dtype(self): return self._meta.dtype def __dir__(self): o = set(dir(type(self))) o.update(self.__dict__) if not hasattr(self._meta, 'dtype'): o.remove('dtype') # dtype only in `dir` if available return list(o) @property def divisions(self): """Dummy divisions to be compat with Series and DataFrame""" return [None, None] def __repr__(self): name = self._name if len(self._name) < 10 else self._name[:7] + '...' if hasattr(self._meta, 'dtype'): extra = ', dtype=%s' % self._meta.dtype else: extra = ', type=%s' % type(self._meta).__name__ return "dd.Scalar<%s%s>" % (name, extra) def __array__(self): # array interface is required to support pandas instance + Scalar # Otherwise, above op results in pd.Series of Scalar (object dtype) return np.asarray(self.compute()) @property def _args(self): return (self.dask, self._name, self._meta) def __getstate__(self): return self._args def __setstate__(self, state): self.dask, self._name, self._meta = state @property def key(self): return (self._name, 0) @classmethod def _get_unary_operator(cls, op): def f(self): name = funcname(op) + '-' + tokenize(self) dsk = {(name, 0): (op, (self._name, 0))} meta = op(self._meta_nonempty) graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) return Scalar(graph, name, meta) return f @classmethod def _get_binary_operator(cls, op, inv=False): return lambda self, other: _scalar_binary(op, self, other, inv=inv) def to_delayed(self, optimize_graph=True): """Convert into a ``dask.delayed`` object. Parameters ---------- optimize_graph : bool, optional If True [default], the graph is optimized before converting into ``dask.delayed`` objects. """ dsk = self.__dask_graph__() if optimize_graph: dsk = self.__dask_optimize__(dsk, self.__dask_keys__()) name = 'delayed-' + self._name dsk = HighLevelGraph.from_collections(name, dsk, dependencies=()) return Delayed(self.key, dsk) def _scalar_binary(op, self, other, inv=False): name = '{0}-{1}'.format(funcname(op), tokenize(self, other)) dependencies = [self] dsk = {} return_type = get_parallel_type(other) if isinstance(other, Scalar): dependencies.append(other) other_key = (other._name, 0) elif is_dask_collection(other): return NotImplemented else: other_key = other if inv: dsk.update({(name, 0): (op, other_key, (self._name, 0))}) else: dsk.update({(name, 0): (op, (self._name, 0), other_key)}) other_meta = make_meta(other) other_meta_nonempty = meta_nonempty(other_meta) if inv: meta = op(other_meta_nonempty, self._meta_nonempty) else: meta = op(self._meta_nonempty, other_meta_nonempty) graph = HighLevelGraph.from_collections(name, dsk, dependencies=dependencies) if return_type is not Scalar: return return_type(graph, name, meta, [other.index.min(), other.index.max()]) else: return Scalar(graph, name, meta) class _Frame(DaskMethodsMixin, OperatorMethodMixin): """ Superclass for DataFrame and Series Parameters ---------- dsk: dict The dask graph to compute this DataFrame name: str The key prefix that specifies which keys in the dask comprise this particular DataFrame / Series meta: pandas.DataFrame, pandas.Series, or pandas.Index An empty pandas object with names, dtypes, and indices matching the expected output. divisions: tuple of index values Values along which we partition our blocks on the index """ def __init__(self, dsk, name, meta, divisions): if not isinstance(dsk, HighLevelGraph): dsk = HighLevelGraph.from_collections(name, dsk, dependencies=[]) self.dask = dsk self._name = name meta = make_meta(meta) if not self._is_partition_type(meta): raise TypeError("Expected meta to specify type {0}, got type " "{1}".format(type(self).__name__, typename(type(meta)))) self._meta = meta self.divisions = tuple(divisions) def __dask_graph__(self): return self.dask def __dask_keys__(self): return [(self._name, i) for i in range(self.npartitions)] def __dask_layers__(self): return (self._name,) def __dask_tokenize__(self): return self._name __dask_optimize__ = globalmethod(optimize, key='dataframe_optimize', falsey=dont_optimize) __dask_scheduler__ = staticmethod(threaded.get) def __dask_postcompute__(self): return finalize, () def __dask_postpersist__(self): return type(self), (self._name, self._meta, self.divisions) @property def _constructor(self): return new_dd_object @property def npartitions(self): """Return number of partitions""" return len(self.divisions) - 1 @property def size(self): """Size of the Series or DataFrame as a Delayed object. Examples -------- >>> series.size # doctest: +SKIP dd.Scalar<size-ag..., dtype=int64> """ return self.reduction(methods.size, np.sum, token='size', meta=int, split_every=False) @property def _meta_nonempty(self): """ A non-empty version of `_meta` with fake data.""" return meta_nonempty(self._meta) @property def _args(self): return (self.dask, self._name, self._meta, self.divisions) def __getstate__(self): return self._args def __setstate__(self, state): self.dask, self._name, self._meta, self.divisions = state def copy(self): """ Make a copy of the dataframe This is strictly a shallow copy of the underlying computational graph. It does not affect the underlying data """ return new_dd_object(self.dask, self._name, self._meta, self.divisions) def __array__(self, dtype=None, **kwargs): self._computed = self.compute() x = np.array(self._computed) return x def __array_wrap__(self, array, context=None): raise NotImplementedError def __array_ufunc__(self, numpy_ufunc, method, *inputs, **kwargs): out = kwargs.get('out', ()) for x in inputs + out: # ufuncs work with 0-dimensional NumPy ndarrays # so we don't want to raise NotImplemented if isinstance(x, np.ndarray) and x.shape == (): continue elif not isinstance(x, (Number, Scalar, _Frame, Array, pd.DataFrame, pd.Series, pd.Index)): return NotImplemented if method == '__call__': if numpy_ufunc.signature is not None: return NotImplemented if numpy_ufunc.nout > 1: # ufuncs with multiple output values # are not yet supported for frames return NotImplemented else: return elemwise(numpy_ufunc, *inputs, **kwargs) else: # ufunc methods are not yet supported for frames return NotImplemented @property def _elemwise(self): return elemwise def _repr_data(self): raise NotImplementedError @property def _repr_divisions(self): name = "npartitions={0}".format(self.npartitions) if self.known_divisions: divisions = pd.Index(self.divisions, name=name) else: # avoid to be converted to NaN divisions = pd.Index([''] * (self.npartitions + 1), name=name) return divisions def __repr__(self): data = self._repr_data().to_string(max_rows=5, show_dimensions=False) return """Dask {klass} Structure: {data} Dask Name: {name}, {task} tasks""".format(klass=self.__class__.__name__, data=data, name=key_split(self._name), task=len(self.dask)) @property def index(self): """Return dask Index instance""" return self.map_partitions(getattr, 'index', token=self._name + '-index', meta=self._meta.index) @index.setter def index(self, value): self.divisions = value.divisions result = map_partitions(methods.assign_index, self, value) self.dask = result.dask self._name = result._name self._meta = result._meta def reset_index(self, drop=False): """Reset the index to the default index. Note that unlike in ``pandas``, the reset ``dask.dataframe`` index will not be monotonically increasing from 0. Instead, it will restart at 0 for each partition (e.g. ``index1 = [0, ..., 10], index2 = [0, ...]``). This is due to the inability to statically know the full length of the index. For DataFrame with multi-level index, returns a new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- drop : boolean, default False Do not try to insert index into dataframe columns. """ return self.map_partitions(M.reset_index, drop=drop).clear_divisions() @property def known_divisions(self): """Whether divisions are already known""" return len(self.divisions) > 0 and self.divisions[0] is not None def clear_divisions(self): """ Forget division information """ divisions = (None,) * (self.npartitions + 1) return type(self)(self.dask, self._name, self._meta, divisions) def get_partition(self, n): """Get a dask DataFrame/Series representing the `nth` partition.""" if 0 <= n < self.npartitions: name = 'get-partition-%s-%s' % (str(n), self._name) divisions = self.divisions[n:n + 2] layer = {(name, 0): (self._name, n)} graph = HighLevelGraph.from_collections(name, layer, dependencies=[self]) return new_dd_object(graph, name, self._meta, divisions) else: msg = "n must be 0 <= n < {0}".format(self.npartitions) raise ValueError(msg) @derived_from(pd.DataFrame) def drop_duplicates(self, split_every=None, split_out=1, **kwargs): # Let pandas error on bad inputs self._meta_nonempty.drop_duplicates(**kwargs) if 'subset' in kwargs and kwargs['subset'] is not None: split_out_setup = split_out_on_cols split_out_setup_kwargs = {'cols': kwargs['subset']} else: split_out_setup = split_out_setup_kwargs = None if kwargs.get('keep', True) is False: raise NotImplementedError("drop_duplicates with keep=False") chunk = M.drop_duplicates return aca(self, chunk=chunk, aggregate=chunk, meta=self._meta, token='drop-duplicates', split_every=split_every, split_out=split_out, split_out_setup=split_out_setup, split_out_setup_kwargs=split_out_setup_kwargs, **kwargs) def __len__(self): return self.reduction(len, np.sum, token='len', meta=int, split_every=False).compute() def __bool__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.any() or a.all()." .format(self.__class__.__name__)) __nonzero__ = __bool__ # python 2 def _scalarfunc(self, cast_type): def wrapper(): raise TypeError("cannot convert the series to " "{0}".format(str(cast_type))) return wrapper def __float__(self): return self._scalarfunc(float) def __int__(self): return self._scalarfunc(int) __long__ = __int__ # python 2 def __complex__(self): return self._scalarfunc(complex) @insert_meta_param_description(pad=12) def map_partitions(self, func, *args, **kwargs): """ Apply Python function on each DataFrame partition. Note that the index and divisions are assumed to remain unchanged. Parameters ---------- func : function Function applied to each partition. args, kwargs : Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed *after*. Arguments and keywords may contain ``Scalar``, ``Delayed`` or regular python objects. DataFrame-like args (both dask and pandas) will be repartitioned to align (if necessary) before applying the function. $META Examples -------- Given a DataFrame, Series, or Index, such as: >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5], ... 'y': [1., 2., 3., 4., 5.]}) >>> ddf = dd.from_pandas(df, npartitions=2) One can use ``map_partitions`` to apply a function on each partition. Extra arguments and keywords can optionally be provided, and will be passed to the function after the partition. Here we apply a function with arguments and keywords to a DataFrame, resulting in a Series: >>> def myadd(df, a, b=1): ... return df.x + df.y + a + b >>> res = ddf.map_partitions(myadd, 1, b=2) >>> res.dtype dtype('float64') By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the ``meta`` keyword. This can be specified in many forms, for more information see ``dask.dataframe.utils.make_meta``. Here we specify the output is a Series with no name, and dtype ``float64``: >>> res = ddf.map_partitions(myadd, 1, b=2, meta=(None, 'f8')) Here we map a function that takes in a DataFrame, and returns a DataFrame with a new column: >>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y)) >>> res.dtypes x int64 y float64 z float64 dtype: object As before, the output metadata can also be specified manually. This time we pass in a ``dict``, as the output is a DataFrame: >>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y), ... meta={'x': 'i8', 'y': 'f8', 'z': 'f8'}) In the case where the metadata doesn't change, you can also pass in the object itself directly: >>> res = ddf.map_partitions(lambda df: df.head(), meta=df) Also note that the index and divisions are assumed to remain unchanged. If the function you're mapping changes the index/divisions, you'll need to clear them afterwards: >>> ddf.map_partitions(func).clear_divisions() # doctest: +SKIP """ return map_partitions(func, self, *args, **kwargs) @insert_meta_param_description(pad=12) def map_overlap(self, func, before, after, *args, **kwargs): """Apply a function to each partition, sharing rows with adjacent partitions. This can be useful for implementing windowing functions such as ``df.rolling(...).mean()`` or ``df.diff()``. Parameters ---------- func : function Function applied to each partition. before : int The number of rows to prepend to partition ``i`` from the end of partition ``i - 1``. after : int The number of rows to append to partition ``i`` from the beginning of partition ``i + 1``. args, kwargs : Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed *after*. $META Notes ----- Given positive integers ``before`` and ``after``, and a function ``func``, ``map_overlap`` does the following: 1. Prepend ``before`` rows to each partition ``i`` from the end of partition ``i - 1``. The first partition has no rows prepended. 2. Append ``after`` rows to each partition ``i`` from the beginning of partition ``i + 1``. The last partition has no rows appended. 3. Apply ``func`` to each partition, passing in any extra ``args`` and ``kwargs`` if provided. 4. Trim ``before`` rows from the beginning of all but the first partition. 5. Trim ``after`` rows from the end of all but the last partition. Note that the index and divisions are assumed to remain unchanged. Examples -------- Given a DataFrame, Series, or Index, such as: >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': [1, 2, 4, 7, 11], ... 'y': [1., 2., 3., 4., 5.]}) >>> ddf = dd.from_pandas(df, npartitions=2) A rolling sum with a trailing moving window of size 2 can be computed by overlapping 2 rows before each partition, and then mapping calls to ``df.rolling(2).sum()``: >>> ddf.compute() x y 0 1 1.0 1 2 2.0 2 4 3.0 3 7 4.0 4 11 5.0 >>> ddf.map_overlap(lambda df: df.rolling(2).sum(), 2, 0).compute() x y 0 NaN NaN 1 3.0 3.0 2 6.0 5.0 3 11.0 7.0 4 18.0 9.0 The pandas ``diff`` method computes a discrete difference shifted by a number of periods (can be positive or negative). This can be implemented by mapping calls to ``df.diff`` to each partition after prepending/appending that many rows, depending on sign: >>> def diff(df, periods=1): ... before, after = (periods, 0) if periods > 0 else (0, -periods) ... return df.map_overlap(lambda df, periods=1: df.diff(periods), ... periods, 0, periods=periods) >>> diff(ddf, 1).compute() x y 0 NaN NaN 1 1.0 1.0 2 2.0 1.0 3 3.0 1.0 4 4.0 1.0 If you have a ``DatetimeIndex``, you can use a ``pd.Timedelta`` for time- based windows. >>> ts = pd.Series(range(10), index=pd.date_range('2017', periods=10)) >>> dts = dd.from_pandas(ts, npartitions=2) >>> dts.map_overlap(lambda df: df.rolling('2D').sum(), ... pd.Timedelta('2D'), 0).compute() 2017-01-01 0.0 2017-01-02 1.0 2017-01-03 3.0 2017-01-04 5.0 2017-01-05 7.0 2017-01-06 9.0 2017-01-07 11.0 2017-01-08 13.0 2017-01-09 15.0 2017-01-10 17.0 dtype: float64 """ from .rolling import map_overlap return map_overlap(func, self, before, after, *args, **kwargs) @insert_meta_param_description(pad=12) def reduction(self, chunk, aggregate=None, combine=None, meta=no_default, token=None, split_every=None, chunk_kwargs=None, aggregate_kwargs=None, combine_kwargs=None, **kwargs): """Generic row-wise reductions. Parameters ---------- chunk : callable Function to operate on each partition. Should return a ``pandas.DataFrame``, ``pandas.Series``, or a scalar. aggregate : callable, optional Function to operate on the concatenated result of ``chunk``. If not specified, defaults to ``chunk``. Used to do the final aggregation in a tree reduction. The input to ``aggregate`` depends on the output of ``chunk``. If the output of ``chunk`` is a: - scalar: Input is a Series, with one row per partition. - Series: Input is a DataFrame, with one row per partition. Columns are the rows in the output series. - DataFrame: Input is a DataFrame, with one row per partition. Columns are the columns in the output dataframes. Should return a ``pandas.DataFrame``, ``pandas.Series``, or a scalar. combine : callable, optional Function to operate on intermediate concatenated results of ``chunk`` in a tree-reduction. If not provided, defaults to ``aggregate``. The input/output requirements should match that of ``aggregate`` described above. $META token : str, optional The name to use for the output keys. split_every : int, optional Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used, and all intermediates will be concatenated and passed to ``aggregate``. Default is 8. chunk_kwargs : dict, optional Keyword arguments to pass on to ``chunk`` only. aggregate_kwargs : dict, optional Keyword arguments to pass on to ``aggregate`` only. combine_kwargs : dict, optional Keyword arguments to pass on to ``combine`` only. kwargs : All remaining keywords will be passed to ``chunk``, ``combine``, and ``aggregate``. Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': range(50), 'y': range(50, 100)}) >>> ddf = dd.from_pandas(df, npartitions=4) Count the number of rows in a DataFrame. To do this, count the number of rows in each partition, then sum the results: >>> res = ddf.reduction(lambda x: x.count(), ... aggregate=lambda x: x.sum()) >>> res.compute() x 50 y 50 dtype: int64 Count the number of rows in a Series with elements greater than or equal to a value (provided via a keyword). >>> def count_greater(x, value=0): ... return (x >= value).sum() >>> res = ddf.x.reduction(count_greater, aggregate=lambda x: x.sum(), ... chunk_kwargs={'value': 25}) >>> res.compute() 25 Aggregate both the sum and count of a Series at the same time: >>> def sum_and_count(x): ... return pd.Series({'count': x.count(), 'sum': x.sum()}, ... index=['count', 'sum']) >>> res = ddf.x.reduction(sum_and_count, aggregate=lambda x: x.sum()) >>> res.compute() count 50 sum 1225 dtype: int64 Doing the same, but for a DataFrame. Here ``chunk`` returns a DataFrame, meaning the input to ``aggregate`` is a DataFrame with an index with non-unique entries for both 'x' and 'y'. We groupby the index, and sum each group to get the final result. >>> def sum_and_count(x): ... return pd.DataFrame({'count': x.count(), 'sum': x.sum()}, ... columns=['count', 'sum']) >>> res = ddf.reduction(sum_and_count, ... aggregate=lambda x: x.groupby(level=0).sum()) >>> res.compute() count sum x 50 1225 y 50 3725 """ if aggregate is None: aggregate = chunk if combine is None: if combine_kwargs: raise ValueError("`combine_kwargs` provided with no `combine`") combine = aggregate combine_kwargs = aggregate_kwargs chunk_kwargs = chunk_kwargs.copy() if chunk_kwargs else {} chunk_kwargs['aca_chunk'] = chunk combine_kwargs = combine_kwargs.copy() if combine_kwargs else {} combine_kwargs['aca_combine'] = combine aggregate_kwargs = aggregate_kwargs.copy() if aggregate_kwargs else {} aggregate_kwargs['aca_aggregate'] = aggregate return aca(self, chunk=_reduction_chunk, aggregate=_reduction_aggregate, combine=_reduction_combine, meta=meta, token=token, split_every=split_every, chunk_kwargs=chunk_kwargs, aggregate_kwargs=aggregate_kwargs, combine_kwargs=combine_kwargs, **kwargs) @derived_from(pd.DataFrame) def pipe(self, func, *args, **kwargs): # Taken from pandas: # https://github.com/pydata/pandas/blob/master/pandas/core/generic.py#L2698-L2707 if isinstance(func, tuple): func, target = func if target in kwargs: raise ValueError('%s is both the pipe target and a keyword ' 'argument' % target) kwargs[target] = self return func(*args, **kwargs) else: return func(self, *args, **kwargs) def random_split(self, frac, random_state=None): """ Pseudorandomly split dataframe into different pieces row-wise Parameters ---------- frac : list List of floats that should sum to one. random_state: int or np.random.RandomState If int create a new RandomState with this as the seed Otherwise draw from the passed RandomState Examples -------- 50/50 split >>> a, b = df.random_split([0.5, 0.5]) # doctest: +SKIP 80/10/10 split, consistent random_state >>> a, b, c = df.random_split([0.8, 0.1, 0.1], random_state=123) # doctest: +SKIP See Also -------- dask.DataFrame.sample """ if not np.allclose(sum(frac), 1): raise ValueError("frac should sum to 1") state_data = random_state_data(self.npartitions, random_state) token = tokenize(self, frac, random_state) name = 'split-' + token layer = {(name, i): (pd_split, (self._name, i), frac, state) for i, state in enumerate(state_data)} out = [] for i in range(len(frac)): name2 = 'split-%d-%s' % (i, token) dsk2 = {(name2, j): (getitem, (name, j), i) for j in range(self.npartitions)} graph = HighLevelGraph.from_collections(name2, merge(dsk2, layer), dependencies=[self]) out_df = type(self)(graph, name2, self._meta, self.divisions) out.append(out_df) return out def head(self, n=5, npartitions=1, compute=True): """ First n rows of the dataset Parameters ---------- n : int, optional The number of rows to return. Default is 5. npartitions : int, optional Elements are only taken from the first ``npartitions``, with a default of 1. If there are fewer than ``n`` rows in the first ``npartitions`` a warning will be raised and any found rows returned. Pass -1 to use all partitions. compute : bool, optional Whether to compute the result, default is True. """ return self._head(n=n, npartitions=npartitions, compute=compute, safe=True) def _head(self, n, npartitions, compute, safe): if npartitions <= -1: npartitions = self.npartitions if npartitions > self.npartitions: msg = "only {} partitions, head received {}" raise ValueError(msg.format(self.npartitions, npartitions)) name = 'head-%d-%d-%s' % (npartitions, n, self._name) if safe: head = safe_head else: head = M.head if npartitions > 1: name_p = 'head-partial-%d-%s' % (n, self._name) dsk = {} for i in range(npartitions): dsk[(name_p, i)] = (M.head, (self._name, i), n) concat = (_concat, [(name_p, i) for i in range(npartitions)]) dsk[(name, 0)] = (head, concat, n) else: dsk = {(name, 0): (head, (self._name, 0), n)} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) result = new_dd_object(graph, name, self._meta, [self.divisions[0], self.divisions[npartitions]]) if compute: result = result.compute() return result def tail(self, n=5, compute=True): """ Last n rows of the dataset Caveat, the only checks the last n rows of the last partition. """ name = 'tail-%d-%s' % (n, self._name) dsk = {(name, 0): (M.tail, (self._name, self.npartitions - 1), n)} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) result = new_dd_object(graph, name, self._meta, self.divisions[-2:]) if compute: result = result.compute() return result @property def loc(self): """ Purely label-location based indexer for selection by label. >>> df.loc["b"] # doctest: +SKIP >>> df.loc["b":"d"] # doctest: +SKIP """ from .indexing import _LocIndexer return _LocIndexer(self) def _partitions(self, index): if not isinstance(index, tuple): index = (index,) from ..array.slicing import normalize_index index = normalize_index(index, (self.npartitions,)) index = tuple(slice(k, k + 1) if isinstance(k, Number) else k for k in index) name = 'blocks-' + tokenize(self, index) new_keys = np.array(self.__dask_keys__(), dtype=object)[index].tolist() divisions = [self.divisions[i] for _, i in new_keys] + [self.divisions[new_keys[-1][1] + 1]] dsk = {(name, i): tuple(key) for i, key in enumerate(new_keys)} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) return new_dd_object(graph, name, self._meta, divisions) @property def partitions(self): """ Slice dataframe by partitions This allows partitionwise slicing of a Dask Dataframe. You can perform normal Numpy-style slicing but now rather than slice elements of the array you slice along partitions so, for example, ``df.partitions[:5]`` produces a new Dask Dataframe of the first five partitions. Examples -------- >>> df.partitions[0] # doctest: +SKIP >>> df.partitions[:3] # doctest: +SKIP >>> df.partitions[::10] # doctest: +SKIP Returns ------- A Dask DataFrame """ return IndexCallable(self._partitions) # Note: iloc is implemented only on DataFrame def repartition(self, divisions=None, npartitions=None, freq=None, force=False): """ Repartition dataframe along new divisions Parameters ---------- divisions : list, optional List of partitions to be used. If specified npartitions will be ignored. npartitions : int, optional Number of partitions of output. Only used if divisions isn't specified. freq : str, pd.Timedelta A period on which to partition timeseries data like ``'7D'`` or ``'12h'`` or ``pd.Timedelta(hours=12)``. Assumes a datetime index. force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> df = df.repartition(npartitions=10) # doctest: +SKIP >>> df = df.repartition(divisions=[0, 5, 10, 20]) # doctest: +SKIP >>> df = df.repartition(freq='7d') # doctest: +SKIP """ if npartitions is not None and divisions is not None: warnings.warn("When providing both npartitions and divisions to " "repartition only npartitions is used.") if npartitions is not None: return repartition_npartitions(self, npartitions) elif divisions is not None: return repartition(self, divisions, force=force) elif freq is not None: return repartition_freq(self, freq=freq) else: raise ValueError( "Provide either divisions= or npartitions= to repartition") @derived_from(pd.DataFrame) def fillna(self, value=None, method=None, limit=None, axis=None): axis = self._validate_axis(axis) if method is None and limit is not None: raise NotImplementedError("fillna with set limit and method=None") if isinstance(value, _Frame): test_value = value._meta_nonempty.values[0] else: test_value = value meta = self._meta_nonempty.fillna(value=test_value, method=method, limit=limit, axis=axis) if axis == 1 or method is None: # Control whether or not dask's partition alignment happens. # We don't want for a pandas Series. # We do want it for a dask Series if is_series_like(value) and not is_dask_collection(value): args = () kwargs = {'value': value} else: args = (value,) kwargs = {} return self.map_partitions(M.fillna, *args, method=method, limit=limit, axis=axis, meta=meta, **kwargs) if method in ('pad', 'ffill'): method = 'ffill' skip_check = 0 before, after = 1 if limit is None else limit, 0 else: method = 'bfill' skip_check = self.npartitions - 1 before, after = 0, 1 if limit is None else limit if limit is None: name = 'fillna-chunk-' + tokenize(self, method) dsk = {(name, i): (methods.fillna_check, (self._name, i), method, i != skip_check) for i in range(self.npartitions)} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) parts = new_dd_object(graph, name, meta, self.divisions) else: parts = self return parts.map_overlap(M.fillna, before, after, method=method, limit=limit, meta=meta) @derived_from(pd.DataFrame) def ffill(self, axis=None, limit=None): return self.fillna(method='ffill', limit=limit, axis=axis) @derived_from(pd.DataFrame) def bfill(self, axis=None, limit=None): return self.fillna(method='bfill', limit=limit, axis=axis) def sample(self, n=None, frac=None, replace=False, random_state=None): """ Random sample of items Parameters ---------- n : int, optional Number of items to return is not supported by dask. Use frac instead. frac : float, optional Fraction of axis items to return. replace : boolean, optional Sample with or without replacement. Default = False. random_state : int or ``np.random.RandomState`` If int we create a new RandomState with this as the seed Otherwise we draw from the passed RandomState See Also -------- DataFrame.random_split pandas.DataFrame.sample """ if n is not None: msg = ("sample does not support the number of sampled items " "parameter, 'n'. Please use the 'frac' parameter instead.") if isinstance(n, Number) and 0 <= n <= 1: warnings.warn(msg) frac = n else: raise ValueError(msg) if frac is None: raise ValueError("frac must not be None") if random_state is None: random_state = np.random.RandomState() name = 'sample-' + tokenize(self, frac, replace, random_state) state_data = random_state_data(self.npartitions, random_state) dsk = {(name, i): (methods.sample, (self._name, i), state, frac, replace) for i, state in enumerate(state_data)} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) return new_dd_object(graph, name, self._meta, self.divisions) @derived_from(pd.DataFrame) def replace(self, to_replace=None, value=None, regex=False): return self.map_partitions(M.replace, to_replace=to_replace, value=value, regex=regex) def to_dask_array(self, lengths=None): """Convert a dask DataFrame to a dask array. Parameters ---------- lengths : bool or Sequence of ints, optional How to determine the chunks sizes for the output array. By default, the output array will have unknown chunk lengths along the first axis, which can cause some later operations to fail. * True : immediately compute the length of each partition * Sequence : a sequence of integers to use for the chunk sizes on the first axis. These values are *not* validated for correctness, beyond ensuring that the number of items matches the number of partitions. Returns ------- """ if lengths is True: lengths = tuple(self.map_partitions(len).compute()) arr = self.values chunks = self._validate_chunks(arr, lengths) arr._chunks = chunks return arr def to_hdf(self, path_or_buf, key, mode='a', append=False, **kwargs): """ See dd.to_hdf docstring for more information """ from .io import to_hdf return to_hdf(self, path_or_buf, key, mode, append, **kwargs) def to_csv(self, filename, **kwargs): """ See dd.to_csv docstring for more information """ from .io import to_csv return to_csv(self, filename, **kwargs) def to_json(self, filename, *args, **kwargs): """ See dd.to_json docstring for more information """ from .io import to_json return to_json(self, filename, *args, **kwargs) def to_delayed(self, optimize_graph=True): """Convert into a list of ``dask.delayed`` objects, one per partition. Parameters ---------- optimize_graph : bool, optional If True [default], the graph is optimized before converting into ``dask.delayed`` objects. Examples -------- >>> partitions = df.to_delayed() # doctest: +SKIP See Also -------- dask.dataframe.from_delayed """ keys = self.__dask_keys__() graph = self.__dask_graph__() if optimize_graph: graph = self.__dask_optimize__(graph, self.__dask_keys__()) name = 'delayed-' + self._name graph = HighLevelGraph.from_collections(name, graph, dependencies=()) return [Delayed(k, graph) for k in keys] @classmethod def _get_unary_operator(cls, op): return lambda self: elemwise(op, self) @classmethod def _get_binary_operator(cls, op, inv=False): if inv: return lambda self, other: elemwise(op, other, self) else: return lambda self, other: elemwise(op, self, other) def rolling(self, window, min_periods=None, freq=None, center=False, win_type=None, axis=0): """Provides rolling transformations. Parameters ---------- window : int, str, offset Size of the moving window. This is the number of observations used for calculating the statistic. When not using a ``DatetimeIndex``, the window size must not be so large as to span more than one adjacent partition. If using an offset or offset alias like '5D', the data must have a ``DatetimeIndex`` .. versionchanged:: 0.15.0 Now accepts offsets and string offset aliases min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). center : boolean, default False Set the labels at the center of the window. win_type : string, default None Provide a window type. The recognized window types are identical to pandas. axis : int, default 0 Returns ------- a Rolling object on which to call a method to compute a statistic Notes ----- The `freq` argument is not supported. """ from dask.dataframe.rolling import Rolling if isinstance(window, Integral): if window < 0: raise ValueError('window must be >= 0') if min_periods is not None: if not isinstance(min_periods, Integral): raise ValueError('min_periods must be an integer') if min_periods < 0: raise ValueError('min_periods must be >= 0') return Rolling(self, window=window, min_periods=min_periods, freq=freq, center=center, win_type=win_type, axis=axis) @derived_from(pd.DataFrame) def diff(self, periods=1, axis=0): """ .. note:: Pandas currently uses an ``object``-dtype column to represent boolean data with missing values. This can cause issues for boolean-specific operations, like ``|``. To enable boolean- specific operations, at the cost of metadata that doesn't match pandas, use ``.astype(bool)`` after the ``shift``. """ axis = self._validate_axis(axis) if not isinstance(periods, Integral): raise TypeError("periods must be an integer") if axis == 1: return self.map_partitions(M.diff, token='diff', periods=periods, axis=1) before, after = (periods, 0) if periods > 0 else (0, -periods) return self.map_overlap(M.diff, before, after, token='diff', periods=periods) @derived_from(pd.DataFrame) def shift(self, periods=1, freq=None, axis=0): axis = self._validate_axis(axis) if not isinstance(periods, Integral): raise TypeError("periods must be an integer") if axis == 1: return self.map_partitions(M.shift, token='shift', periods=periods, freq=freq, axis=1) if freq is None: before, after = (periods, 0) if periods > 0 else (0, -periods) return self.map_overlap(M.shift, before, after, token='shift', periods=periods) # Let pandas error on invalid arguments meta = self._meta_nonempty.shift(periods, freq=freq) out = self.map_partitions(M.shift, token='shift', periods=periods, freq=freq, meta=meta, transform_divisions=False) return maybe_shift_divisions(out, periods, freq=freq) def _reduction_agg(self, name, axis=None, skipna=True, split_every=False, out=None): axis = self._validate_axis(axis) meta = getattr(self._meta_nonempty, name)(axis=axis, skipna=skipna) token = self._token_prefix + name method = getattr(M, name) if axis == 1: result = self.map_partitions(method, meta=meta, token=token, skipna=skipna, axis=axis) return handle_out(out, result) else: result = self.reduction(method, meta=meta, token=token, skipna=skipna, axis=axis, split_every=split_every) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return handle_out(out, result) @derived_from(pd.DataFrame) def abs(self): _raise_if_object_series(self, "abs") meta = self._meta_nonempty.abs() return self.map_partitions(M.abs, meta=meta) @derived_from(pd.DataFrame) def all(self, axis=None, skipna=True, split_every=False, out=None): return self._reduction_agg('all', axis=axis, skipna=skipna, split_every=split_every, out=out) @derived_from(pd.DataFrame) def any(self, axis=None, skipna=True, split_every=False, out=None): return self._reduction_agg('any', axis=axis, skipna=skipna, split_every=split_every, out=out) @derived_from(pd.DataFrame) def sum(self, axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None): result = self._reduction_agg('sum', axis=axis, skipna=skipna, split_every=split_every, out=out) if min_count: return result.where(self.notnull().sum(axis=axis) >= min_count, other=np.NaN) else: return result @derived_from(pd.DataFrame) def prod(self, axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None): result = self._reduction_agg('prod', axis=axis, skipna=skipna, split_every=split_every, out=out) if min_count: return result.where(self.notnull().sum(axis=axis) >= min_count, other=np.NaN) else: return result @derived_from(pd.DataFrame) def max(self, axis=None, skipna=True, split_every=False, out=None): return self._reduction_agg('max', axis=axis, skipna=skipna, split_every=split_every, out=out) @derived_from(pd.DataFrame) def min(self, axis=None, skipna=True, split_every=False, out=None): return self._reduction_agg('min', axis=axis, skipna=skipna, split_every=split_every, out=out) @derived_from(pd.DataFrame) def idxmax(self, axis=None, skipna=True, split_every=False): fn = 'idxmax' axis = self._validate_axis(axis) meta = self._meta_nonempty.idxmax(axis=axis, skipna=skipna) if axis == 1: return map_partitions(M.idxmax, self, meta=meta, token=self._token_prefix + fn, skipna=skipna, axis=axis) else: scalar = not is_series_like(meta) result = aca([self], chunk=idxmaxmin_chunk, aggregate=idxmaxmin_agg, combine=idxmaxmin_combine, meta=meta, aggregate_kwargs={'scalar': scalar}, token=self._token_prefix + fn, split_every=split_every, skipna=skipna, fn=fn) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return result @derived_from(pd.DataFrame) def idxmin(self, axis=None, skipna=True, split_every=False): fn = 'idxmin' axis = self._validate_axis(axis) meta = self._meta_nonempty.idxmax(axis=axis) if axis == 1: return map_partitions(M.idxmin, self, meta=meta, token=self._token_prefix + fn, skipna=skipna, axis=axis) else: scalar = not is_series_like(meta) result = aca([self], chunk=idxmaxmin_chunk, aggregate=idxmaxmin_agg, combine=idxmaxmin_combine, meta=meta, aggregate_kwargs={'scalar': scalar}, token=self._token_prefix + fn, split_every=split_every, skipna=skipna, fn=fn) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return result @derived_from(pd.DataFrame) def count(self, axis=None, split_every=False): axis = self._validate_axis(axis) token = self._token_prefix + 'count' if axis == 1: meta = self._meta_nonempty.count(axis=axis) return self.map_partitions(M.count, meta=meta, token=token, axis=axis) else: meta = self._meta_nonempty.count() result = self.reduction(M.count, aggregate=M.sum, meta=meta, token=token, split_every=split_every) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return result @derived_from(pd.DataFrame) def mean(self, axis=None, skipna=True, split_every=False, dtype=None, out=None): axis = self._validate_axis(axis) _raise_if_object_series(self, "mean") meta = self._meta_nonempty.mean(axis=axis, skipna=skipna) if axis == 1: result = map_partitions(M.mean, self, meta=meta, token=self._token_prefix + 'mean', axis=axis, skipna=skipna) return handle_out(out, result) else: num = self._get_numeric_data() s = num.sum(skipna=skipna, split_every=split_every) n = num.count(split_every=split_every) name = self._token_prefix + 'mean-%s' % tokenize(self, axis, skipna) result = map_partitions(methods.mean_aggregate, s, n, token=name, meta=meta) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return handle_out(out, result) @derived_from(pd.DataFrame) def var(self, axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None): axis = self._validate_axis(axis) _raise_if_object_series(self, "var") meta = self._meta_nonempty.var(axis=axis, skipna=skipna) if axis == 1: result = map_partitions(M.var, self, meta=meta, token=self._token_prefix + 'var', axis=axis, skipna=skipna, ddof=ddof) return handle_out(out, result) else: if self.ndim == 1: result = self._var_1d(self, skipna, ddof, split_every) return handle_out(out, result) count_timedeltas = len(self._meta_nonempty.select_dtypes(include=[np.timedelta64]).columns) if count_timedeltas == len(self._meta.columns): result = self._var_timedeltas(skipna, ddof, split_every) elif count_timedeltas > 0: result = self._var_mixed(skipna, ddof, split_every) else: result = self._var_numeric(skipna, ddof, split_every) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return handle_out(out, result) def _var_numeric(self, skipna=True, ddof=1, split_every=False): num = self.select_dtypes(include=['number', 'bool'], exclude=[np.timedelta64]) values_dtype = num.values.dtype array_values = num.values if not np.issubdtype(values_dtype, np.number): array_values = num.values.astype('f8') var = da.nanvar if skipna or skipna is None else da.var array_var = var(array_values, axis=0, ddof=ddof, split_every=split_every) name = self._token_prefix + 'var-numeric' + tokenize(num, split_every) cols = num._meta.columns if is_dataframe_like(num) else None var_shape = num._meta_nonempty.values.var(axis=0).shape array_var_name = (array_var._name,) + (0,) * len(var_shape) layer = {(name, 0): (methods.wrap_var_reduction, array_var_name, cols)} graph = HighLevelGraph.from_collections(name, layer, dependencies=[array_var]) return new_dd_object(graph, name, num._meta_nonempty.var(), divisions=[None, None]) def _var_timedeltas(self, skipna=True, ddof=1, split_every=False): timedeltas = self.select_dtypes(include=[np.timedelta64]) var_timedeltas = [self._var_1d(timedeltas[col_idx], skipna, ddof, split_every) for col_idx in timedeltas._meta.columns] var_timedelta_names = [(v._name, 0) for v in var_timedeltas] name = self._token_prefix + 'var-timedeltas-' + tokenize(timedeltas, split_every) layer = {(name, 0): (methods.wrap_var_reduction, var_timedelta_names, timedeltas._meta.columns)} graph = HighLevelGraph.from_collections(name, layer, dependencies=var_timedeltas) return new_dd_object(graph, name, timedeltas._meta_nonempty.var(), divisions=[None, None]) def _var_mixed(self, skipna=True, ddof=1, split_every=False): data = self.select_dtypes(include=['number', 'bool', np.timedelta64]) timedelta_vars = self._var_timedeltas(skipna, ddof, split_every) numeric_vars = self._var_numeric(skipna, ddof, split_every) name = self._token_prefix + 'var-mixed-' + tokenize(data, split_every) layer = {(name, 0): (methods.var_mixed_concat, (numeric_vars._name, 0), (timedelta_vars._name, 0), data._meta.columns)} graph = HighLevelGraph.from_collections(name, layer, dependencies=[numeric_vars, timedelta_vars]) return new_dd_object(graph, name, self._meta_nonempty.var(), divisions=[None, None]) def _var_1d(self, column, skipna=True, ddof=1, split_every=False): is_timedelta = is_timedelta64_dtype(column._meta) if is_timedelta: if not skipna: is_nan = column.isna() column = column.astype('i8') column = column.mask(is_nan) else: column = column.dropna().astype('i8') if PANDAS_VERSION >= '0.24.0': if pd.Int64Dtype.is_dtype(column._meta_nonempty): column = column.astype('f8') if not np.issubdtype(column.dtype, np.number): column = column.astype('f8') name = self._token_prefix + 'var-1d-' + tokenize(column, split_every) var = da.nanvar if skipna or skipna is None else da.var array_var = var(column.values, axis=0, ddof=ddof, split_every=split_every) layer = {(name, 0): (methods.wrap_var_reduction, (array_var._name,), None)} graph = HighLevelGraph.from_collections(name, layer, dependencies=[array_var]) return new_dd_object(graph, name, column._meta_nonempty.var(), divisions=[None, None]) @derived_from(pd.DataFrame) def std(self, axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None): axis = self._validate_axis(axis) _raise_if_object_series(self, "std") meta = self._meta_nonempty.std(axis=axis, skipna=skipna) if axis == 1: result = map_partitions(M.std, self, meta=meta, token=self._token_prefix + 'std', axis=axis, skipna=skipna, ddof=ddof) return handle_out(out, result) else: v = self.var(skipna=skipna, ddof=ddof, split_every=split_every) name = self._token_prefix + 'std' result = map_partitions(np.sqrt, v, meta=meta, token=name) return handle_out(out, result) @derived_from(pd.DataFrame) def sem(self, axis=None, skipna=None, ddof=1, split_every=False): axis = self._validate_axis(axis) _raise_if_object_series(self, "sem") meta = self._meta_nonempty.sem(axis=axis, skipna=skipna, ddof=ddof) if axis == 1: return map_partitions(M.sem, self, meta=meta, token=self._token_prefix + 'sem', axis=axis, skipna=skipna, ddof=ddof) else: num = self._get_numeric_data() v = num.var(skipna=skipna, ddof=ddof, split_every=split_every) n = num.count(split_every=split_every) name = self._token_prefix + 'sem' result = map_partitions(np.sqrt, v / n, meta=meta, token=name) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return result def quantile(self, q=0.5, axis=0, method='default'): """ Approximate row-wise and precise column-wise quantiles of DataFrame Parameters ---------- q : list/array of floats, default 0.5 (50%) Iterable of numbers ranging from 0 to 1 for the desired quantiles axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wise method : {'default', 'tdigest', 'dask'}, optional What method to use. By default will use dask's internal custom algorithm (``'dask'``). If set to ``'tdigest'`` will use tdigest for floats and ints and fallback to the ``'dask'`` otherwise. """ axis = self._validate_axis(axis) keyname = 'quantiles-concat--' + tokenize(self, q, axis) if axis == 1: if isinstance(q, list): # Not supported, the result will have current index as columns raise ValueError("'q' must be scalar when axis=1 is specified") return map_partitions(M.quantile, self, q, axis, token=keyname, meta=(q, 'f8')) else: _raise_if_object_series(self, "quantile") meta = self._meta.quantile(q, axis=axis) num = self._get_numeric_data() quantiles = tuple(quantile(self[c], q, method) for c in num.columns) qnames = [(_q._name, 0) for _q in quantiles] if isinstance(quantiles[0], Scalar): layer = {(keyname, 0): (pd.Series, qnames, num.columns, None, meta.name)} graph = HighLevelGraph.from_collections(keyname, layer, dependencies=quantiles) divisions = (min(num.columns), max(num.columns)) return Series(graph, keyname, meta, divisions) else: layer = {(keyname, 0): (methods.concat, qnames, 1)} graph = HighLevelGraph.from_collections(keyname, layer, dependencies=quantiles) return DataFrame(graph, keyname, meta, quantiles[0].divisions) @derived_from(pd.DataFrame) def describe(self, split_every=False, percentiles=None, percentiles_method='default', include=None, exclude=None): if self._meta.ndim == 1: return self._describe_1d(self, split_every, percentiles, percentiles_method) elif (include is None) and (exclude is None): data = self._meta.select_dtypes(include=[np.number, np.timedelta64]) # when some numerics/timedeltas are found, by default keep them if len(data.columns) == 0: chosen_columns = self._meta.columns else: # check if there are timedelta or boolean columns bools_and_timedeltas = self._meta.select_dtypes(include=[np.timedelta64, 'bool']) if len(bools_and_timedeltas.columns) == 0: return self._describe_numeric(self, split_every, percentiles, percentiles_method) else: chosen_columns = data.columns elif include == 'all': if exclude is not None: msg = "exclude must be None when include is 'all'" raise ValueError(msg) chosen_columns = self._meta.columns else: chosen_columns = self._meta.select_dtypes(include=include, exclude=exclude) stats = [self._describe_1d(self[col_idx], split_every, percentiles, percentiles_method) for col_idx in chosen_columns] stats_names = [(s._name, 0) for s in stats] name = 'describe--' + tokenize(self, split_every) layer = {(name, 0): (methods.describe_aggregate, stats_names)} graph = HighLevelGraph.from_collections(name, layer, dependencies=stats) meta = self._meta_nonempty.describe(include=include, exclude=exclude) return new_dd_object(graph, name, meta, divisions=[None, None]) def _describe_1d(self, data, split_every=False, percentiles=None, percentiles_method='default'): if is_bool_dtype(data._meta): return self._describe_nonnumeric_1d(data, split_every=split_every) elif is_numeric_dtype(data._meta): return self._describe_numeric( data, split_every=split_every, percentiles=percentiles, percentiles_method=percentiles_method) elif is_timedelta64_dtype(data._meta): return self._describe_numeric( data.dropna().astype('i8'), split_every=split_every, percentiles=percentiles, percentiles_method=percentiles_method, is_timedelta_column=True) else: return self._describe_nonnumeric_1d(data, split_every=split_every) def _describe_numeric(self, data, split_every=False, percentiles=None, percentiles_method='default', is_timedelta_column=False): num = data._get_numeric_data() if data.ndim == 2 and len(num.columns) == 0: raise ValueError("DataFrame contains only non-numeric data.") elif data.ndim == 1 and data.dtype == 'object': raise ValueError("Cannot compute ``describe`` on object dtype.") if percentiles is None: percentiles = [0.25, 0.5, 0.75] else: # always include the the 50%tle to calculate the median # unique removes duplicates and sorts quantiles percentiles = np.array(percentiles) percentiles = np.append(percentiles, 0.5) percentiles = np.unique(percentiles) percentiles = list(percentiles) stats = [num.count(split_every=split_every), num.mean(split_every=split_every), num.std(split_every=split_every), num.min(split_every=split_every), num.quantile(percentiles, method=percentiles_method), num.max(split_every=split_every)] stats_names = [(s._name, 0) for s in stats] colname = data._meta.name if isinstance(data._meta, pd.Series) else None name = 'describe-numeric--' + tokenize(num, split_every) layer = {(name, 0): (methods.describe_numeric_aggregate, stats_names, colname, is_timedelta_column)} graph = HighLevelGraph.from_collections(name, layer, dependencies=stats) meta = num._meta_nonempty.describe() return new_dd_object(graph, name, meta, divisions=[None, None]) def _describe_nonnumeric_1d(self, data, split_every=False): vcounts = data.value_counts(split_every) count_nonzero = vcounts[vcounts != 0] count_unique = count_nonzero.size stats = [ # nunique count_unique, # count data.count(split_every=split_every), # most common value vcounts._head(1, npartitions=1, compute=False, safe=False) ] if is_datetime64_any_dtype(data._meta): min_ts = data.dropna().astype('i8').min(split_every=split_every) max_ts = data.dropna().astype('i8').max(split_every=split_every) stats += [min_ts, max_ts] stats_names = [(s._name, 0) for s in stats] colname = data._meta.name name = 'describe-nonnumeric-1d--' + tokenize(data, split_every) layer = {(name, 0): (methods.describe_nonnumeric_aggregate, stats_names, colname)} graph = HighLevelGraph.from_collections(name, layer, dependencies=stats) meta = data._meta_nonempty.describe() return new_dd_object(graph, name, meta, divisions=[None, None]) def _cum_agg(self, op_name, chunk, aggregate, axis, skipna=True, chunk_kwargs=None, out=None): """ Wrapper for cumulative operation """ axis = self._validate_axis(axis) if axis == 1: name = '{0}{1}(axis=1)'.format(self._token_prefix, op_name) result = self.map_partitions(chunk, token=name, **chunk_kwargs) return handle_out(out, result) else: # cumulate each partitions name1 = '{0}{1}-map'.format(self._token_prefix, op_name) cumpart = map_partitions(chunk, self, token=name1, meta=self, **chunk_kwargs) name2 = '{0}{1}-take-last'.format(self._token_prefix, op_name) cumlast = map_partitions(_take_last, cumpart, skipna, meta=pd.Series([]), token=name2) suffix = tokenize(self) name = '{0}{1}-{2}'.format(self._token_prefix, op_name, suffix) cname = '{0}{1}-cum-last-{2}'.format(self._token_prefix, op_name, suffix) # aggregate cumulated partisions and its previous last element layer = {} layer[(name, 0)] = (cumpart._name, 0) for i in range(1, self.npartitions): # store each cumulative step to graph to reduce computation if i == 1: layer[(cname, i)] = (cumlast._name, i - 1) else: # aggregate with previous cumulation results layer[(cname, i)] = (aggregate, (cname, i - 1), (cumlast._name, i - 1)) layer[(name, i)] = (aggregate, (cumpart._name, i), (cname, i)) graph = HighLevelGraph.from_collections(cname, layer, dependencies=[cumpart, cumlast]) result = new_dd_object(graph, name, chunk(self._meta), self.divisions) return handle_out(out, result) @derived_from(pd.DataFrame) def cumsum(self, axis=None, skipna=True, dtype=None, out=None): return self._cum_agg('cumsum', chunk=M.cumsum, aggregate=operator.add, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna), out=out) @derived_from(pd.DataFrame) def cumprod(self, axis=None, skipna=True, dtype=None, out=None): return self._cum_agg('cumprod', chunk=M.cumprod, aggregate=operator.mul, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna), out=out) @derived_from(pd.DataFrame) def cummax(self, axis=None, skipna=True, out=None): return self._cum_agg('cummax', chunk=M.cummax, aggregate=methods.cummax_aggregate, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna), out=out) @derived_from(pd.DataFrame) def cummin(self, axis=None, skipna=True, out=None): return self._cum_agg('cummin', chunk=M.cummin, aggregate=methods.cummin_aggregate, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna), out=out) @derived_from(pd.DataFrame) def where(self, cond, other=np.nan): # cond and other may be dask instance, # passing map_partitions via keyword will not be aligned return map_partitions(M.where, self, cond, other) @derived_from(pd.DataFrame) def mask(self, cond, other=np.nan): return map_partitions(M.mask, self, cond, other) @derived_from(pd.DataFrame) def notnull(self): return self.map_partitions(M.notnull) @derived_from(pd.DataFrame) def isnull(self): return self.map_partitions(M.isnull) @derived_from(pd.DataFrame) def isna(self): if hasattr(pd, 'isna'): return self.map_partitions(M.isna) else: raise NotImplementedError("Need more recent version of Pandas " "to support isna. " "Please use isnull instead.") @derived_from(pd.DataFrame) def isin(self, values): if is_dataframe_like(self._meta): # DataFrame.isin does weird alignment stuff bad_types = (_Frame, pd.Series, pd.DataFrame) else: bad_types = (_Frame,) if isinstance(values, bad_types): raise NotImplementedError( "Passing a %r to `isin`" % typename(type(values)) ) meta = self._meta_nonempty.isin(values) # We wrap values in a delayed for two reasons: # - avoid serializing data in every task # - avoid cost of traversal of large list in optimizations return self.map_partitions(M.isin, delayed(values), meta=meta) @derived_from(pd.DataFrame) def astype(self, dtype): # XXX: Pandas will segfault for empty dataframes when setting # categorical dtypes. This operation isn't allowed currently anyway. We # get the metadata with a non-empty frame to throw the error instead of # segfaulting. if is_dataframe_like(self._meta) and is_categorical_dtype(dtype): meta = self._meta_nonempty.astype(dtype) else: meta = self._meta.astype(dtype) if hasattr(dtype, 'items'): set_unknown = [ k for k, v in dtype.items() if is_categorical_dtype(v) and getattr(v, 'categories', None) is None ] meta = clear_known_categories(meta, cols=set_unknown) elif (is_categorical_dtype(dtype) and getattr(dtype, 'categories', None) is None): meta = clear_known_categories(meta) return self.map_partitions(M.astype, dtype=dtype, meta=meta) @derived_from(pd.Series) def append(self, other, interleave_partitions=False): # because DataFrame.append will override the method, # wrap by pd.Series.append docstring from .multi import concat if isinstance(other, (list, dict)): msg = "append doesn't support list or dict input" raise NotImplementedError(msg) return concat([self, other], join='outer', interleave_partitions=interleave_partitions) @derived_from(pd.DataFrame) def align(self, other, join='outer', axis=None, fill_value=None): meta1, meta2 = _emulate(M.align, self, other, join, axis=axis, fill_value=fill_value) aligned = self.map_partitions(M.align, other, join=join, axis=axis, fill_value=fill_value) token = tokenize(self, other, join, axis, fill_value) name1 = 'align1-' + token dsk1 = {(name1, i): (getitem, key, 0) for i, key in enumerate(aligned.__dask_keys__())} dsk1.update(aligned.dask) result1 = new_dd_object(dsk1, name1, meta1, aligned.divisions) name2 = 'align2-' + token dsk2 = {(name2, i): (getitem, key, 1) for i, key in enumerate(aligned.__dask_keys__())} dsk2.update(aligned.dask) result2 = new_dd_object(dsk2, name2, meta2, aligned.divisions) return result1, result2 @derived_from(pd.DataFrame) def combine(self, other, func, fill_value=None, overwrite=True): return self.map_partitions(M.combine, other, func, fill_value=fill_value, overwrite=overwrite) @derived_from(pd.DataFrame) def combine_first(self, other): return self.map_partitions(M.combine_first, other) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ raise NotImplementedError @derived_from(pd.DataFrame) def resample(self, rule, closed=None, label=None): from .tseries.resample import Resampler return Resampler(self, rule, closed=closed, label=label) @derived_from(pd.DataFrame) def first(self, offset): # Let pandas error on bad args self._meta_nonempty.first(offset) if not self.known_divisions: raise ValueError("`first` is not implemented for unknown divisions") offset = pd.tseries.frequencies.to_offset(offset) date = self.divisions[0] + offset end = self.loc._get_partitions(date) include_right = offset.isAnchored() or not hasattr(offset, '_inc') if end == self.npartitions - 1: divs = self.divisions else: divs = self.divisions[:end + 1] + (date,) name = 'first-' + tokenize(self, offset) dsk = {(name, i): (self._name, i) for i in range(end)} dsk[(name, end)] = (methods.boundary_slice, (self._name, end), None, date, include_right, True, 'loc') graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) return new_dd_object(graph, name, self, divs) @derived_from(pd.DataFrame) def last(self, offset): # Let pandas error on bad args self._meta_nonempty.first(offset) if not self.known_divisions: raise ValueError("`last` is not implemented for unknown divisions") offset = pd.tseries.frequencies.to_offset(offset) date = self.divisions[-1] - offset start = self.loc._get_partitions(date) if start == 0: divs = self.divisions else: divs = (date,) + self.divisions[start + 1:] name = 'last-' + tokenize(self, offset) dsk = {(name, i + 1): (self._name, j + 1) for i, j in enumerate(range(start, self.npartitions))} dsk[(name, 0)] = (methods.boundary_slice, (self._name, start), date, None, True, False, 'loc') graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) return new_dd_object(graph, name, self, divs) def nunique_approx(self, split_every=None): """Approximate number of unique rows. This method uses the HyperLogLog algorithm for cardinality estimation to compute the approximate number of unique rows. The approximate error is 0.406%. Parameters ---------- split_every : int, optional Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used. Default is 8. Returns ------- a float representing the approximate number of elements """ from . import hyperloglog # here to avoid circular import issues return aca([self], chunk=hyperloglog.compute_hll_array, combine=hyperloglog.reduce_state, aggregate=hyperloglog.estimate_count, split_every=split_every, b=16, meta=float) @property def values(self): """ Return a dask.array of the values of this dataframe Warning: This creates a dask.array without precise shape information. Operations that depend on shape information, like slicing or reshaping, will not work. """ return self.map_partitions(methods.values) def _validate_chunks(self, arr, lengths): from dask.array.core import normalize_chunks if isinstance(lengths, Sequence): lengths = tuple(lengths) if len(lengths) != self.npartitions: raise ValueError( "The number of items in 'lengths' does not match " "the number of partitions. " "{} != {}".format(len(lengths), self.npartitions) ) if self.ndim == 1: chunks = normalize_chunks((lengths,)) else: chunks = normalize_chunks((lengths, (len(self.columns),))) return chunks elif lengths is not None: raise ValueError("Unexpected value for 'lengths': '{}'".format(lengths)) return arr._chunks def _is_index_level_reference(self, key): """ Test whether a key is an index level reference To be considered an index level reference, `key` must match the index name and must NOT match the name of any column (if a dataframe). """ return (self.index.name is not None and not is_dask_collection(key) and (np.isscalar(key) or isinstance(key, tuple)) and key == self.index.name and key not in getattr(self, 'columns', ())) def _contains_index_name(self, columns_or_index): """ Test whether the input contains a reference to the index of the DataFrame/Series """ if isinstance(columns_or_index, list): return any(self._is_index_level_reference(n) for n in columns_or_index) else: return self._is_index_level_reference(columns_or_index) def _raise_if_object_series(x, funcname): """ Utility function to raise an error if an object column does not support a certain operation like `mean`. """ if isinstance(x, Series) and hasattr(x, "dtype") and x.dtype == object: raise ValueError("`%s` not supported with object series" % funcname) class Series(_Frame): """ Parallel Pandas Series Do not use this class directly. Instead use functions like ``dd.read_csv``, ``dd.read_parquet``, or ``dd.from_pandas``. Parameters ---------- dsk: dict The dask graph to compute this Series _name: str The key prefix that specifies which keys in the dask comprise this particular Series meta: pandas.Series An empty ``pandas.Series`` with names, dtypes, and index matching the expected output. divisions: tuple of index values Values along which we partition our blocks on the index See Also -------- dask.dataframe.DataFrame """ _partition_type = pd.Series _is_partition_type = staticmethod(is_series_like) _token_prefix = 'series-' _accessors = set() def __array_wrap__(self, array, context=None): if isinstance(context, tuple) and len(context) > 0: if isinstance(context[1][0], np.ndarray) and context[1][0].shape == (): index = None else: index = context[1][0].index return pd.Series(array, index=index, name=self.name) @property def name(self): return self._meta.name @name.setter def name(self, name): self._meta.name = name renamed = _rename_dask(self, name) # update myself self.dask = renamed.dask self._name = renamed._name @property def ndim(self): """ Return dimensionality """ return 1 @property def shape(self): """ Return a tuple representing the dimensionality of a Series. The single element of the tuple is a Delayed result. Examples -------- >>> series.shape # doctest: +SKIP # (dd.Scalar<size-ag..., dtype=int64>,) """ return (self.size,) @property def dtype(self): """ Return data type """ return self._meta.dtype @cache_readonly def dt(self): """ Namespace of datetime methods """ return DatetimeAccessor(self) @cache_readonly def cat(self): return CategoricalAccessor(self) @cache_readonly def str(self): """ Namespace for string methods """ return StringAccessor(self) def __dir__(self): o = set(dir(type(self))) o.update(self.__dict__) # Remove the `cat` and `str` accessors if not available. We can't # decide this statically for the `dt` accessor, as it works on # datetime-like things as well. for accessor in ['cat', 'str']: if not hasattr(self._meta, accessor): o.remove(accessor) return list(o) @property def nbytes(self): """ Number of bytes """ return self.reduction(methods.nbytes, np.sum, token='nbytes', meta=int, split_every=False) def _repr_data(self): return _repr_data_series(self._meta, self._repr_divisions) def __repr__(self): """ have to overwrite footer """ if self.name is not None: footer = "Name: {name}, dtype: {dtype}".format(name=self.name, dtype=self.dtype) else: footer = "dtype: {dtype}".format(dtype=self.dtype) return """Dask {klass} Structure: {data} {footer} Dask Name: {name}, {task} tasks""".format(klass=self.__class__.__name__, data=self.to_string(), footer=footer, name=key_split(self._name), task=len(self.dask)) def rename(self, index=None, inplace=False, sorted_index=False): """Alter Series index labels or name Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. Parameters ---------- index : scalar, hashable sequence, dict-like or callable, optional If dict-like or callable, the transformation is applied to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. inplace : boolean, default False Whether to return a new Series or modify this one inplace. sorted_index : bool, default False If true, the output ``Series`` will have known divisions inferred from the input series and the transformation. Ignored for non-callable/dict-like ``index`` or when the input series has unknown divisions. Note that this may only be set to ``True`` if you know that the transformed index is monotonicly increasing. Dask will check that transformed divisions are monotonic, but cannot check all the values between divisions, so incorrectly setting this can result in bugs. Returns ------- renamed : Series See Also -------- pandas.Series.rename """ from pandas.api.types import is_scalar, is_list_like, is_dict_like if is_scalar(index) or (is_list_like(index) and not is_dict_like(index)): res = self if inplace else self.copy() res.name = index else: res = self.map_partitions(M.rename, index) if self.known_divisions: if sorted_index and (callable(index) or is_dict_like(index)): old = pd.Series(range(self.npartitions + 1), index=self.divisions) new = old.rename(index).index if not new.is_monotonic_increasing: msg = ("sorted_index=True, but the transformed index " "isn't monotonic_increasing") raise ValueError(msg) res.divisions = tuple(new.tolist()) else: res = res.clear_divisions() if inplace: self.dask = res.dask self._name = res._name self.divisions = res.divisions self._meta = res._meta res = self return res @derived_from(pd.Series) def round(self, decimals=0): return elemwise(M.round, self, decimals) @derived_from(pd.DataFrame) def to_timestamp(self, freq=None, how='start', axis=0): df = elemwise(M.to_timestamp, self, freq, how, axis) df.divisions = tuple(pd.Index(self.divisions).to_timestamp()) return df def quantile(self, q=0.5, method='default'): """ Approximate quantiles of Series Parameters ---------- q : list/array of floats, default 0.5 (50%) Iterable of numbers ranging from 0 to 1 for the desired quantiles method : {'default', 'tdigest', 'dask'}, optional What method to use. By default will use dask's internal custom algorithm (``'dask'``). If set to ``'tdigest'`` will use tdigest for floats and ints and fallback to the ``'dask'`` otherwise. """ return quantile(self, q, method=method) def _repartition_quantiles(self, npartitions, upsample=1.0): """ Approximate quantiles of Series used for repartitioning """ from .partitionquantiles import partition_quantiles return partition_quantiles(self, npartitions, upsample=upsample) def __getitem__(self, key): if isinstance(key, Series) and self.divisions == key.divisions: name = 'index-%s' % tokenize(self, key) dsk = partitionwise_graph(operator.getitem, name, self, key) graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self, key]) return Series(graph, name, self._meta, self.divisions) raise NotImplementedError( "Series getitem in only supported for other series objects " "with matching partition structure" ) @derived_from(pd.DataFrame) def _get_numeric_data(self, how='any', subset=None): return self @derived_from(pd.Series) def iteritems(self): for i in range(self.npartitions): s = self.get_partition(i).compute() for item in s.iteritems(): yield item @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 'index', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0}.get(axis, axis) @derived_from(pd.Series) def groupby(self, by=None, **kwargs): from dask.dataframe.groupby import SeriesGroupBy return SeriesGroupBy(self, by=by, **kwargs) @derived_from(pd.Series) def count(self, split_every=False): return super(Series, self).count(split_every=split_every) def unique(self, split_every=None, split_out=1): """ Return Series of unique values in the object. Includes NA values. Returns ------- uniques : Series """ return aca(self, chunk=methods.unique, aggregate=methods.unique, meta=self._meta, token='unique', split_every=split_every, series_name=self.name, split_out=split_out) @derived_from(pd.Series) def nunique(self, split_every=None): return self.drop_duplicates(split_every=split_every).count() @derived_from(pd.Series) def value_counts(self, split_every=None, split_out=1): return aca(self, chunk=M.value_counts, aggregate=methods.value_counts_aggregate, combine=methods.value_counts_combine, meta=self._meta.value_counts(), token='value-counts', split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index) @derived_from(pd.Series) def nlargest(self, n=5, split_every=None): return aca(self, chunk=M.nlargest, aggregate=M.nlargest, meta=self._meta, token='series-nlargest', split_every=split_every, n=n) @derived_from(pd.Series) def nsmallest(self, n=5, split_every=None): return aca(self, chunk=M.nsmallest, aggregate=M.nsmallest, meta=self._meta, token='series-nsmallest', split_every=split_every, n=n) @derived_from(pd.Series) def isin(self, values): # Added just to get the different docstring for Series return super(Series, self).isin(values) @insert_meta_param_description(pad=12) @derived_from(pd.Series) def map(self, arg, na_action=None, meta=no_default): if is_series_like(arg) and is_dask_collection(arg): return series_map(self, arg) if not (isinstance(arg, dict) or callable(arg) or is_series_like(arg) and not is_dask_collection(arg)): raise TypeError("arg must be pandas.Series, dict or callable." " Got {0}".format(type(arg))) name = 'map-' + tokenize(self, arg, na_action) dsk = {(name, i): (M.map, k, arg, na_action) for i, k in enumerate(self.__dask_keys__())} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) if meta is no_default: meta = _emulate(M.map, self, arg, na_action=na_action, udf=True) else: meta = make_meta(meta, index=getattr(make_meta(self), 'index', None)) return Series(graph, name, meta, self.divisions) @derived_from(pd.Series) def dropna(self): return self.map_partitions(M.dropna) @derived_from(pd.Series) def between(self, left, right, inclusive=True): return self.map_partitions(M.between, left=left, right=right, inclusive=inclusive) @derived_from(pd.Series) def clip(self, lower=None, upper=None, out=None): if out is not None: raise ValueError("'out' must be None") # np.clip may pass out return self.map_partitions(M.clip, lower=lower, upper=upper) @derived_from(pd.Series) def clip_lower(self, threshold): return self.map_partitions(M.clip_lower, threshold=threshold) @derived_from(pd.Series) def clip_upper(self, threshold): return self.map_partitions(M.clip_upper, threshold=threshold) @derived_from(pd.Series) def align(self, other, join='outer', axis=None, fill_value=None): return super(Series, self).align(other, join=join, axis=axis, fill_value=fill_value) @derived_from(pd.Series) def combine(self, other, func, fill_value=None): return self.map_partitions(M.combine, other, func, fill_value=fill_value) @derived_from(pd.Series) def squeeze(self): return self @derived_from(pd.Series) def combine_first(self, other): return self.map_partitions(M.combine_first, other) def to_bag(self, index=False): """ Create a Dask Bag from a Series """ from .io import to_bag return to_bag(self, index) @derived_from(pd.Series) def to_frame(self, name=None): return self.map_partitions(M.to_frame, name, meta=self._meta.to_frame(name)) @derived_from(pd.Series) def to_string(self, max_rows=5): # option_context doesn't affect return self._repr_data().to_string(max_rows=max_rows) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like Series.add to this class """ def meth(self, other, level=None, fill_value=None, axis=0): if level is not None: raise NotImplementedError('level must be None') axis = self._validate_axis(axis) meta = _emulate(op, self, other, axis=axis, fill_value=fill_value) return map_partitions(op, self, other, meta=meta, axis=axis, fill_value=fill_value) meth.__doc__ = skip_doctest(op.__doc__) bind_method(cls, name, meth) @classmethod def _bind_comparison_method(cls, name, comparison): """ bind comparison method like Series.eq to this class """ def meth(self, other, level=None, fill_value=None, axis=0): if level is not None: raise NotImplementedError('level must be None') axis = self._validate_axis(axis) if fill_value is None: return elemwise(comparison, self, other, axis=axis) else: op = partial(comparison, fill_value=fill_value) return elemwise(op, self, other, axis=axis) meth.__doc__ = skip_doctest(comparison.__doc__) bind_method(cls, name, meth) @insert_meta_param_description(pad=12) def apply(self, func, convert_dtype=True, meta=no_default, args=(), **kwds): """ Parallel version of pandas.Series.apply Parameters ---------- func : function Function to apply convert_dtype : boolean, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. $META args : tuple Positional arguments to pass to function in addition to the value. Additional keyword arguments will be passed as keywords to the function. Returns ------- applied : Series or DataFrame if func returns a Series. Examples -------- >>> import dask.dataframe as dd >>> s = pd.Series(range(5), name='x') >>> ds = dd.from_pandas(s, npartitions=2) Apply a function elementwise across the Series, passing in extra arguments in ``args`` and ``kwargs``: >>> def myadd(x, a, b=1): ... return x + a + b >>> res = ds.apply(myadd, args=(2,), b=1.5) # doctest: +SKIP By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the ``meta`` keyword. This can be specified in many forms, for more information see ``dask.dataframe.utils.make_meta``. Here we specify the output is a Series with name ``'x'``, and dtype ``float64``: >>> res = ds.apply(myadd, args=(2,), b=1.5, meta=('x', 'f8')) In the case where the metadata doesn't change, you can also pass in the object itself directly: >>> res = ds.apply(lambda x: x + 1, meta=ds) See Also -------- dask.Series.map_partitions """ if meta is no_default: meta = _emulate(M.apply, self._meta_nonempty, func, convert_dtype=convert_dtype, args=args, udf=True, **kwds) warnings.warn(meta_warning(meta)) return map_partitions(M.apply, self, func, convert_dtype, args, meta=meta, **kwds) @derived_from(pd.Series) def cov(self, other, min_periods=None, split_every=False): from .multi import concat if not isinstance(other, Series): raise TypeError("other must be a dask.dataframe.Series") df = concat([self, other], axis=1) return cov_corr(df, min_periods, scalar=True, split_every=split_every) @derived_from(pd.Series) def corr(self, other, method='pearson', min_periods=None, split_every=False): from .multi import concat if not isinstance(other, Series): raise TypeError("other must be a dask.dataframe.Series") if method != 'pearson': raise NotImplementedError("Only Pearson correlation has been " "implemented") df = concat([self, other], axis=1) return cov_corr(df, min_periods, corr=True, scalar=True, split_every=split_every) @derived_from(pd.Series) def autocorr(self, lag=1, split_every=False): if not isinstance(lag, Integral): raise TypeError("lag must be an integer") return self.corr(self if lag == 0 else self.shift(lag), split_every=split_every) @derived_from(pd.Series) def memory_usage(self, index=True, deep=False): result = self.map_partitions(M.memory_usage, index=index, deep=deep) return delayed(sum)(result.to_delayed()) def __divmod__(self, other): res1 = self // other res2 = self % other return res1, res2 def __rdivmod__(self, other): res1 = other // self res2 = other % self return res1, res2 class Index(Series): _partition_type = pd.Index _is_partition_type = staticmethod(is_index_like) _token_prefix = 'index-' _accessors = set() _dt_attributes = {'nanosecond', 'microsecond', 'millisecond', 'dayofyear', 'minute', 'hour', 'day', 'dayofweek', 'second', 'week', 'weekday', 'weekofyear', 'month', 'quarter', 'year'} _cat_attributes = {'known', 'as_known', 'as_unknown', 'add_categories', 'categories', 'remove_categories', 'reorder_categories', 'as_ordered', 'codes', 'remove_unused_categories', 'set_categories', 'as_unordered', 'ordered', 'rename_categories'} def __getattr__(self, key): if is_categorical_dtype(self.dtype) and key in self._cat_attributes: return getattr(self.cat, key) elif key in self._dt_attributes: return getattr(self.dt, key) raise AttributeError("'Index' object has no attribute %r" % key) def __dir__(self): out = super(Index, self).__dir__() out.extend(self._dt_attributes) if is_categorical_dtype(self.dtype): out.extend(self._cat_attributes) return out @property def index(self): msg = "'{0}' object has no attribute 'index'" raise AttributeError(msg.format(self.__class__.__name__)) def __array_wrap__(self, array, context=None): return pd.Index(array, name=self.name) def head(self, n=5, compute=True): """ First n items of the Index. Caveat, this only checks the first partition. """ name = 'head-%d-%s' % (n, self._name) dsk = {(name, 0): (operator.getitem, (self._name, 0), slice(0, n))} graph = HighLevelGraph.from_collections(name, dsk, dependencies=[self]) result = new_dd_object(graph, name, self._meta, self.divisions[:2]) if compute: result = result.compute() return result @derived_from(pd.Index) def max(self, split_every=False): return self.reduction(M.max, meta=self._meta_nonempty.max(), token=self._token_prefix + 'max', split_every=split_every) @derived_from(pd.Index) def min(self, split_every=False): return self.reduction(M.min, meta=self._meta_nonempty.min(), token=self._token_prefix + 'min', split_every=split_every) def count(self, split_every=False): return self.reduction(methods.index_count, np.sum, token='index-count', meta=int, split_every=split_every) @derived_from(pd.Index) def shift(self, periods=1, freq=None): if isinstance(self._meta, pd.PeriodIndex): if freq is not None: raise ValueError("PeriodIndex doesn't accept `freq` argument") meta = self._meta_nonempty.shift(periods) out = self.map_partitions(M.shift, periods, meta=meta, token='shift', transform_divisions=False) else: # Pandas will raise for other index types that don't implement shift meta = self._meta_nonempty.shift(periods, freq=freq) out = self.map_partitions(M.shift, periods, token='shift', meta=meta, freq=freq, transform_divisions=False) if freq is None: freq = meta.freq return maybe_shift_divisions(out, periods, freq=freq) @derived_from(pd.Index) def to_series(self): return self.map_partitions(M.to_series, meta=self._meta.to_series()) @derived_from(pd.Index, ua_args=['index']) def to_frame(self, index=True, name=None): if not index: raise NotImplementedError() if PANDAS_VERSION >= '0.24.0': return self.map_partitions(M.to_frame, index, name, meta=self._meta.to_frame(index, name)) else: if name is not None: raise ValueError("The 'name' keyword was added in pandas 0.24.0. " "Your version of pandas is '{}'.".format(PANDAS_VERSION)) else: return self.map_partitions(M.to_frame, meta=self._meta.to_frame()) class DataFrame(_Frame): """ Parallel Pandas DataFrame Do not use this class directly. Instead use functions like ``dd.read_csv``, ``dd.read_parquet``, or ``dd.from_pandas``. Parameters ---------- dsk: dict The dask graph to compute this DataFrame name: str The key prefix that specifies which keys in the dask comprise this particular DataFrame meta: pandas.DataFrame An empty ``pandas.DataFrame`` with names, dtypes, and index matching the expected output. divisions: tuple of index values Values along which we partition our blocks on the index """ _partition_type = pd.DataFrame _is_partition_type = staticmethod(is_dataframe_like) _token_prefix = 'dataframe-' _accessors = set() def __array_wrap__(self, array, context=None): if isinstance(context, tuple) and len(context) > 0: if isinstance(context[1][0], np.ndarray) and context[1][0].shape == (): index = None else: index = context[1][0].index return
pd.DataFrame(array, index=index, columns=self.columns)
pandas.DataFrame
import re from copy import copy from typing import Iterable, Optional, Union import pandas as pd import requests from bs4 import BeautifulSoup from pvoutput.consts import ( MAP_URL, PV_OUTPUT_COUNTRY_CODES, PV_OUTPUT_MAP_COLUMN_NAMES, REGIONS_URL, ) _MAX_NUM_PAGES = 1024 def get_pv_systems_for_country( country: Union[str, int], ascending: Optional[bool] = None, sort_by: Optional[str] = None, max_pages: int = _MAX_NUM_PAGES, region: Optional[str] = None, ) -> pd.DataFrame: """ Args: country: either a string such as 'United Kingdom' (see consts.PV_OUTPUT_COUNTRY_CODES for all recognised strings), or a PVOutput.org country code, in the range [1, 257]. ascending: if True, ask PVOutput.org to sort results by ascending. If False, sort by descending. If None, use PVOutput.org's default sort order. sort_by: The column to ask PVOutput.org to sort by. One of: timeseries_duration, average_generation_per_day, efficiency, power_generation, capacity, address, name max_pages: The maximum number of search pages to scrape. Returns: pd.DataFrame with index system_id (int) and these columns: name, system_DC_capacity_W, panel, inverter, address, orientation, array_tilt_degrees, shade, timeseries_duration, total_energy_gen_Wh, average_daily_energy_gen_Wh average_efficiency_kWh_per_kW """ country_code = _convert_to_country_code(country) regions = [region] if region else get_regions_for_country(country_code) all_metadata = [] for region in regions: for page_number in range(max_pages): print( "\rReading page {:2d} for region: {}".format(page_number, region), end="", flush=True, ) url = _create_map_url( country_code=country_code, page_number=page_number, ascending=ascending, sort_by=sort_by, region=region, ) soup = get_soup(url) if _page_is_blank(soup): break metadata = _process_metadata(soup) metadata["region"] = region all_metadata.append(metadata) if not _page_has_next_link(soup): break return pd.concat(all_metadata) ############ LOAD HTML ################### def _create_map_url( country_code: Optional[int] = None, page_number: Optional[int] = None, ascending: Optional[bool] = None, sort_by: Optional[str] = None, region: Optional[str] = None, ) -> str: """ Args: page_number: Get this page number of the search results. Zero-indexed. The first page is page 0, the second page is page 1, etc. """ _check_country_code(country_code) if ascending is None: sort_order = None else: sort_order = "asc" if ascending else "desc" if sort_by is None: sort_by_pv_output_col_name = None else: try: sort_by_pv_output_col_name = PV_OUTPUT_MAP_COLUMN_NAMES[sort_by] except KeyError: raise ValueError("sort_by must be one of {}".format(PV_OUTPUT_MAP_COLUMN_NAMES.keys())) url_params = { "country": country_code, "p": page_number, "d": sort_order, "o": sort_by_pv_output_col_name, "region": region, } url_params_list = [ "{}={}".format(key, value) for key, value in url_params.items() if value is not None ] query_string = "&".join(url_params_list) url = copy(MAP_URL) if query_string: url += "?" + query_string return url def _raise_country_error(country, msg=""): country_codes = PV_OUTPUT_COUNTRY_CODES.values() raise ValueError( "Wrong value country='{}'. {}country must be an integer country" " code in the range [{}, {}], or one of {}.".format( country, msg, min(country_codes), max(country_codes), ", ".join(PV_OUTPUT_COUNTRY_CODES.keys()), ) ) def _check_country_code(country_code: Union[None, int]): if country_code is None: return country_codes = PV_OUTPUT_COUNTRY_CODES.values() if not min(country_codes) <= country_code <= max(country_codes): _raise_country_error(country_code, "country outside of valid range! ") def _convert_to_country_code(country: Union[str, int]) -> int: if isinstance(country, str): try: return PV_OUTPUT_COUNTRY_CODES[country] except KeyError: _raise_country_error(country) elif isinstance(country, int): _check_country_code(country) return country def _page_has_next_link(soup: BeautifulSoup): return bool(soup.find_all("a", text="Next")) ############# PROCESS HTML ######################### def _process_metadata(soup: BeautifulSoup, return_constituents=False) -> pd.DataFrame: pv_system_size_metadata = _process_system_size_col(soup) index = pv_system_size_metadata.index pv_systems_metadata = [ pv_system_size_metadata, _process_output_col(soup, index), _process_generation_and_average_cols(soup, index), _process_efficiency_col(soup, index), ] df = pd.concat(pv_systems_metadata, axis="columns") df = _convert_metadata_cols_to_numeric(df) df["system_DC_capacity_W"] = df["capacity_kW"] * 1e3 del df["capacity_kW"] if return_constituents: pv_systems_metadata.append(df) return tuple(pv_systems_metadata) return df def _process_system_size_col(soup: BeautifulSoup) -> pd.DataFrame: pv_system_size_col = soup.find_all("a", href=re.compile("display\.jsp\?sid=")) metadata = [] for row in pv_system_size_col: metadata_for_row = {} # Get system ID href = row.attrs["href"] p = re.compile("^display\.jsp\?sid=(\d+)$") href_match = p.match(href) metadata_for_row["system_id"] = href_match.group(1) # Process title (lots of metadata in here!) title, title_meta = row.attrs["title"].split("|") # Name and capacity p = re.compile("(.*) (\d+\.\d+kW)") title_match = p.match(title) metadata_for_row["name"] = title_match.group(1) metadata_for_row["capacity"] = title_match.group(2) # Other key-value pairs: key_value = title_meta.split("<br/>") key_value_dict = {} for line in key_value: key_value_split = line.split(":") key = key_value_split[0].strip() # Some values have a colon(!) value = ":".join(key_value_split[1:]).strip() key_value_dict[key] = value metadata_for_row.update(key_value_dict) # Some cleaning # Remove <img ...> from Location location = metadata_for_row["Location"] p = re.compile("(<img .*\>)?(.*)") img_groups = p.search(location).groups() if img_groups[0] is not None: metadata_for_row["Location"] = img_groups[1].strip() metadata.append(metadata_for_row) df = pd.DataFrame(metadata) df["system_id"] = pd.to_numeric(df["system_id"]) df = df.set_index("system_id") df.columns = [col_name.lower() for col_name in df.columns] df.rename( { "location": "address", "panels": "panel", "array tilt": "array_tilt_degrees", "capacity": "capacity_kW", }, axis="columns", inplace=True, ) return df def _remove_str_and_convert_to_numeric(series: pd.Series, string_to_remove: str) -> pd.Series: series = series.str.replace(string_to_remove, "") return pd.to_numeric(series) def _convert_metadata_cols_to_numeric(df: pd.DataFrame) -> pd.DataFrame: for col_name, string_to_remove in [ # ('array_tilt_degrees', '°'), ("capacity_kW", "kW"), ("average_efficiency_kWh_per_kW", "kWh/kW"), ]: df[col_name] = _remove_str_and_convert_to_numeric(df[col_name], string_to_remove) return df def _process_output_col(soup: BeautifulSoup, index: Optional[Iterable] = None) -> pd.Series: outputs_col = soup.find_all(text=re.compile("\d Days")) duration =
pd.Series(outputs_col, name="timeseries_duration", index=index)
pandas.Series
import json import os import copy import numpy as np import pandas as pd import pytest from ..utils import sanitize_dataframe, nested_update, prepare_spec PANDAS_DATA = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]}) JSON_DATA = { "values": [ {"x": 1, "y": 4}, {"x": 2, "y": 5}, {"x": 3, "y": 6} ] } VEGALITE_SPEC = { "mark": "circle", "encoding": { "x": {"field": "x", "type": "quantitative"}, "y": {"field": "y", "type": "quantitative"} } } def test_nested_update(): D = {'A': {'a': 4, 'b': 5}} U = {'A': {'a': 40, 'c': 6}, 'B': {'foo': 'bar'}} output = nested_update(D, U) assert output is D assert D == {'A': {'a': 40, 'b': 5, 'c': 6}, 'B': {'foo': 'bar'}} def test_sanitize_dataframe(): # create a dataframe with various types df = pd.DataFrame({'s': list('abcde'), 'f': np.arange(5, dtype=float), 'i': np.arange(5, dtype=int), 'd':
pd.date_range('2012-01-01', periods=5, freq='H')
pandas.date_range
def read_table(filename, datadir='./out', levels=None): import pandas as pd import os file = os.path.join(datadir, filename) if levels is None: levels = 0 with open(file, 'r') as fd: for i in fd.readline().split(','): if i: break else: levels += 1 df = pd.read_csv(file, index_col=list(range(levels))) return df def import_datadict(datadir='./dat', filename='orb_datadict.txt'): '''Imports the data dictionary for raw survey data. See questions and field names in /doc/orb_questionnaire.pdf Args: datadir (:obj:`str`): name of directory where dictionary is located filename (:obj:`str`): name of dictionary file (.txt) Returns: A :obj:`dict` containing keys: * 'dict' which maps to a :obj:`dict` of field names (:obj:`str') mapped to a :obj:`dict` of values (:obj:`str`) mapped to recoded-vaues (:obj:`int`) * 'desc' which maps to a :obj:`dict` of field names (:obj:`str') mapped to their descriptions (:obj:`str`) ''' import os filepath = os.path.join(datadir, filename) with open(filepath, encoding='utf-8') as fd: data = fd.readlines() data = [d for d in data if d.strip()] for i in range(len(data)): if data[i][0]!='\t': data[i] = [x.strip() for x in data[i].split(':')] else: data[i] = [data[i].strip()] dmap = {} text = {} curr = '' multi = '' for d in data: if len(d)==1: tmp = d[0].split('\t') if len(tmp)==2: if tmp[0][0]=='[': curr = tmp[0][1:-1] desc = tmp[1].strip() text[curr] = desc dmap[curr] = dmap[multi].copy() else: dmap[curr][tmp[1]] = int(tmp[0]) elif len(d)>1: if d[0][0]=='[': curr = d[0][1:-1] desc = d[1].strip() text[curr] = desc dmap[curr] = {} elif d[0]!='Values': curr = d[0] desc = d[1].strip() text[curr] = desc dmap[curr] = {} multi = curr #rectify some encoding issues errata = {'DREL':{'Other Christian:':'Other Christian:\xa0'}, 'DPOLUK':{'Other:':'Other:\xa0'} } #recoding extra variables of age categories and treatment (ANTI) or control (PRO) group extras = {'imageseen':{'ANTI US':1, 'PRO US':0, 'ANTI UK':1, 'PRO UK':0}, 'agerecode':{ '18-24':1, '25-34':2, '35-44':3, '45-54':4, '55-64':5, '65+':6}} for key in errata: if key in dmap: for label in errata[key]: if label in dmap[key]: dmap[key][errata[key][label]] = dmap[key][label] del dmap[key][label] for key in extras: dmap[key] = extras[key] return {'dict':dmap,'desc':text} def import_data(datadir='./dat', filename='orb_200918.sav'): '''Reads a survey SPSS file and returns a :obj:`pd.DataFrame`. See questions and field names in /doc/orb_questionnaire.pdf Args: datadir (:obj:`str`): name of directory where SPSS file is located filename (:obj:`str`): name of the SPSS file (.sav) Returns: A :obj:`pd.DataFrame` containing field names as columns and record as rows, with values recoded ''' import os import pandas as pd filepath = os.path.join(datadir, filename) if filepath[-4:] == '.sav': df = pd.read_spss(filepath) else: df = pd.read_csv(filepath) for att in list(df): try: df[att].str.strip('\xa0') #funny encoding issue except: pass return df def transform_data(df, dd, country='UK', group=None, minimal=True, save=''): '''Cleans, recodes and transforms raw survey data. See questions and field names in /doc/orb_questionnaire.pdf Args: df (:obj:`pd.DataFrame`): contains raw survey data (see return value of ``import_data()``) dd (:obj:`dict`): contains data dictionary for the raw survey data (see return value of ``import_datadict()``) country (:obj:`str`=`{'UK', 'US'}`: name of country of interest; default=`UK` group (:obj:`int`=`{0, 1}`): name of the experiment group, where `0` is for control and `1` is for treatment; default=`None` (imports all samples) save (:obj:`str`): filepath to save the processed data (as a .csv) and data dictionary (as a .pkl); default='' (does not save anything) Returns: A size-2 :obj:`tuple` containing * A :obj:`pd.DataFrame` containing field names as columns and record as rows of the transformed data * A :obj:`dict` of field names (:obj:`str`) mapped to a :obj:`dict` of recoded-values (:obj:`int`) mapped to value-names (:obj:`str`) ''' #define all socio-demographic variables of interest if minimal: demo = {'UK': {'agerecode':'Age', 'DGEN':'Gender', 'DEDUUK':'Education_UK', 'DEMP':'Employment', 'DREL':'Religion', 'DPOLUK':'Political_UK', 'DETHUK':'Ethnicity_UK', 'DINCUK':'Income_UK'}, 'USA': {'agerecode':'Age', 'DGEN':'Gender', 'DEDUUS':'Education_US', 'DEMP':'Employment', 'DREL':'Religion', 'DPOLUS':'Political_US', 'DETHUS':'Ethnicity_US', 'DINCUS':'Income_US'}} else: demo = {'UK': {'agerecode':'Age', 'DGEN':'Gender', 'DEDUUK':'Education_UK', 'DEMP':'Employment', 'DREL':'Religion', 'DPOLUK':'Political_UK', 'DETHUK':'Ethnicity_UK', 'DINCUK':'Income_UK', 'DGEOUK':'Region'}, 'USA': {'agerecode':'Age', 'DGEN':'Gender', 'DEDUUS':'Education_US', 'DEMP':'Employment', 'DREL':'Religion', 'DPOLUS':'Political_US', 'DETHUS':'Ethnicity_US', 'DINCUS':'Income_US', 'DGEOUS':'Region'}} #define recoding of socio-demographics var_encoding = {'Gender':{(1,):'Male', (2,):'Female', (3, 4):'Other'}, 'Education_US':{(1, 2):'Level-0', (3,):'Level-1', (4,):'Level-2', (5,):'Level-3', (6,):'Level-4', (7, 8):'Other'}, 'Education_UK':{(1,):'Level-0', (2, 3):'Level-1', (5,):'Level-2', (6,):'Level-3', (7,):'Level-4', (4, 8, 9):'Other'}, 'Employment':{(1, 2):'Employed', (3,):'Unemployed', (4,):'Student', (6,):'Retired', (5, 7, 8):'Other'}, 'Religion':{(1, 2, 3):'Christian', (4,):'Jewish', (6,):'Muslim', (9,):'Atheist', (5, 7, 8, 10):'Other'}, 'Political_US':{(1,):'Republican', (2,):'Democrat', (3, 4, 5):'Other'}, 'Political_US_ind':{(1,):'Republican', (2,):'Democrat', (3, 4):'Other'}, 'Political_UK':{(1,):'Conservative', (2,):'Labour', (3,):'Liberal-Democrat', (4,):'SNP', (5,6,7):'Other'}, 'Ethnicity_US':{(1,):'White', (2,):'Hispanic', (3,):'Black', (5,):'Asian', (4, 6, 7, 8):'Other'}, 'Ethnicity_UK':{(1, 2, 3):'White', (4, 11):'Black', (5, 6, 7, 8, 9, 10):'Asian', (12, 13):'Other'}, 'Income_US':{(1,):'Level-0', (2, 3):'Level-1', (4, 5): 'Level-2', (6, 7, 8, 9):'Level-3', (10,):'Level-4', (11,):'Other'}, 'Income_UK':{(1,):'Level-0', (2,):'Level-1', (3,):'Level-2', (4, 5,):'Level-3', (6, 7, 8, 9, 10):'Level-4', (11,):'Other'} } #rename other survey variables of interest to make them human-comprehendable metrics_any = {'QINFr1': 'Nobody', 'QINFr2': 'Myself', 'QINFr3': 'Family inside HH', 'QINFr4': 'Family outside HH', 'QINFr5': 'Close friend', 'QINFr6': 'Colleague'} metrics_knl = {'QKNLr1': 'Washing hands', 'QKNLr2': 'Staying indoors for Self', 'QKNLr3': 'Staying indoors for Others', 'QKNLr4': 'Spread before symptoms', 'QKNLr5': 'R-Number', 'QKNLr6': 'Treatments already exist', 'QKNLr7': 'Wearing masks'} metrics_cov = {'QCOVVCIr3': 'COVID-19 Vax Importance', 'QCOVVCIr1': 'COVID-19 Vax Safety', 'QCOVVCIr2': 'COVID-19 Vax Efficacy', 'QCOVVCIr4': 'COVID-19 Vax Compatibility', 'QCOVVCIr5': 'Contract via COVID-19 Vax', 'QCOVVCIr6': 'COVID-19 Vax benefits outweigh risks'} metrics_vci = {'QVCIr1': 'Vax Importance', 'QVCIr2': 'Vax Safety', 'QVCIr3': 'Vax Efficacy', 'QVCIr4': 'Vax Compatibility'} metrics_aff = {'QCOVAFFr1': 'Mental health', 'QCOVAFFr2': 'Financial stability', 'QCOVAFFr3': 'Daily disruption', 'QCOVAFFr4': 'Social disruption'} trust = {'UK': {'QSRCUKr1': 'Television', 'QSRCUKr2': 'Radio', 'QSRCUKr3': 'Newspapers', 'QSRCUKr4': 'Govt. Briefings', 'QSRCUKr5': 'National Health Authorities', 'QSRCUKr6': 'International Health Authorities', 'QSRCUKr7': 'Healthcare Workers', 'QSRCUKr8': 'Scientists', 'QSRCUKr9': 'Govt. Websites', 'QSRCUKr10': 'Social Media', 'QSRCUKr11': 'Celebrities', 'QSRCUKr12': 'Search Engines', 'QSRCUKr13': 'Family and friends', 'QSRCUKr14': 'Work Guidelines', 'QSRCUKr15': 'Other', 'QSRCUKr16': 'None of these'}, 'USA': {'QSRCUSr1': 'Television', 'QSRCUSr2': 'Radio', 'QSRCUSr3': 'Newspapers', 'QSRCUSr4': 'White House Briefings', 'QSRCUSr5':'State Govt. Briefings', 'QSRCUSr6': 'National Health Authorities', 'QSRCUSr7': 'International Health Authorities', 'QSRCUSr8':'Healthcare Workers', 'QSRCUSr9': 'Scientists', 'QSRCUSr10': 'Govt. Websites', 'QSRCUSr11': 'Social Media', 'QSRCUSr12': 'Celebrities', 'QSRCUSr13': 'Search Engines', 'QSRCUSr14': 'Family and friends', 'QSRCUSr15': 'Work Guidelines', 'QSRCUSr16': 'Other', 'QSRCUSr17': 'None of these'}} reasons = {'QCOVSELFWHYr1': 'Unsure if safe', 'QCOVSELFWHYr2': 'Unsure if effective', 'QCOVSELFWHYr3': 'Not at risk', 'QCOVSELFWHYr4': 'Wait until others', 'QCOVSELFWHYr5': "Won't be ill", 'QCOVSELFWHYr6': 'Other effective treatments', 'QCOVSELFWHYr7': 'Already acquired immunity', 'QCOVSELFWHYr8': 'Approval may be rushed', 'QCOVSELFWHYr9': 'Other', 'QCOVSELFWHYr10': 'Do not know'} metrics_img = {'QPOSTVACX_Lr': 'Vaccine Intent', 'QPOSTBELIEFX_Lr': 'Agreement', 'QPOSTTRUSTX_Lr': 'Trust', 'QPOSTCHECKX_Lr': 'Fact-check', 'QPOSTSHARE_Lr': 'Share'} social_atts = {'QSOCTYPr': 'used', 'QSOCINFr': 'to receive info', 'QCIRSHRr': 'to share info'} if minimal: other_atts = {'QSOCUSE':'Social media usage', 'QPOSTSIM':'Seen such online content', 'QCOVSELF':'Vaccine Intent for self (Pre)', 'QPOSTCOVSELF':'Vaccine Intent for self (Post)', 'QCOVOTH':'Vaccine Intent for others (Pre)', 'QPOSTCOVOTH':'Vaccine Intent for others (Post)', 'imageseen':'Group'} else: other_atts = {'QSHD':'Shielding', 'QSOCUSE':'Social media usage', 'QCOVWHEN':'Expected vax availability', 'QPOSTSIM':'Seen such online content', 'QPOSTFRQ':'Frequency of such online content', 'Q31b':'Engaged with such online content', 'QCOVSELF':'Vaccine Intent for self (Pre)', 'QPOSTCOVSELF':'Vaccine Intent for self (Post)', 'QCOVOTH':'Vaccine Intent for others (Pre)', 'QPOSTCOVOTH':'Vaccine Intent for others (Post)', 'imageseen':'Group'} def expand_socc(code): names = ['Facebook', 'Twitter', 'YouTube', 'WhatsApp', 'Instagram', 'Pinterest', 'LinkedIN', 'Other', 'None of these'] out = {} for k in code: for i in range(len(names)): out['%s%i'%(k, i+1)] = '%s %s'%(names[i], code[k]) return out def demo_map(code): fwd, bwd = {}, {} for key in code: fwd[key] = dict(zip(code[key].values(), range(1, len(code[key])+1))) bwd[key] = dict(zip(range(1, len(code[key])+1), code[key].values())) return fwd, bwd def expand_imgc(code, num=5): out = {} for i in range(num): for c in code: out['%s%i'%(c, i+1)] = 'Image %i:%s'%(i+1, code[c]) return out def expand_code(code): new = {} for key in code: new[key] = {} for k, v in code[key].items(): for i in k: new[key][i] = v return new metrics_img = expand_imgc(metrics_img) social_atts = expand_socc(social_atts) var_fwd, var_bwd = demo_map(var_encoding) var_encoding = expand_code(var_encoding) if minimal: atts = [] else: atts = list(metrics_any.keys())+list(metrics_knl.keys())+list(metrics_cov.keys())+list(metrics_vci.keys())+list(metrics_aff.keys())+list(social_atts.keys()) atts += list(trust[country].keys())+list(reasons.keys())+list(metrics_img.keys()) atts += list(other_atts.keys())+list(demo[country].keys()) def recode_treatment(x): return int('ANTI' in x) def recode_bools(x): return int('NO TO:' not in x) def recode_likert(x, inverse=False): if inverse: m = {'Strongly agree': -2, 'Tend to agree': -1, 'Tend to disagree': 1, 'Strongly disagree': 2, 'Do not know': 0} else: m = {'Strongly agree': 2, 'Tend to agree': 1, 'Tend to disagree': -1, 'Strongly disagree': -2, 'Do not know': 0} return m[x] def recode_likert_num(x, inverse=False): if inverse: m = [-2,-1,0,1,2,0] else: m = [2,1,0,-1,-2,0] return m[x-1] def recode_age(x): if x>118: x = 118 return (x-18)/100 if group is None: idx = df['country']==country if country=='UK': idx = idx & ((df['imageseen']=='PRO UK')|(df['imageseen']=='ANTI UK')) #Country field is unreliable, has a bug elif country=='USA': idx = idx & ((df['imageseen']=='PRO US')|(df['imageseen']=='ANTI US')) else: if country=='UK': idx = df['imageseen']==group+' UK' elif country=='USA': idx = df['imageseen']==group+' US' df_new = df.loc[idx,atts] dd_new = {} if not minimal: for key in metrics_any: df_new[key] = df_new[key].apply(recode_bools) df_new.rename(columns={key:'Know anyone:%s'%metrics_any[key]}, inplace=True) dd_new['Know anyone:%s'%metrics_any[key]] = {1:'Checked', 0:'Unchecked'} for key in metrics_knl: df_new[key] = df_new[key].apply(recode_likert) df_new.rename(columns={key:'COVID-19 Knowledge:%s'%metrics_knl[key]}, inplace=True) dd_new['COVID-19 Knowledge:%s'%metrics_knl[key]] = {2:'Strongly agree',1:'Tend to agree',0:'Do not know',-1:'Tend to disagree',-2:'Strongly disagree'} for key in metrics_cov: df_new[key] = df_new[key].apply(recode_likert) df_new.rename(columns={key:'COVID-19 VCI:%s'%metrics_cov[key]}, inplace=True) dd_new['COVID-19 VCI:%s'%metrics_cov[key]] = {2:'Strongly agree',1:'Tend to agree',0:'Do not know',-1:'Tend to disagree',-2:'Strongly disagree'} for key in metrics_vci: df_new[key] = df_new[key].apply(recode_likert) df_new.rename(columns={key:'General VCI:%s'%metrics_vci[key]}, inplace=True) dd_new['General VCI:%s'%metrics_vci[key]] = {2:'Strongly agree',1:'Tend to agree',0:'Do not know',-1:'Tend to disagree',-2:'Strongly disagree'} for key in metrics_aff: df_new[key] = df_new[key].apply(recode_likert) df_new.rename(columns={key:'COVID-19 Impact:%s'%metrics_aff[key]}, inplace=True) dd_new['COVID-19 Impact:%s'%metrics_aff[key]] = {2:'Strongly agree',1:'Tend to agree',0:'Do not know',-1:'Tend to disagree',-2:'Strongly disagree'} for key in social_atts: df_new[key] = df_new[key].apply(recode_bools) df_new.rename(columns={key:'Social:%s'%social_atts[key]}, inplace=True) dd_new['Social:%s'%social_atts[key]] = {1:'Checked', 0:'Unchecked'} for key in trust[country]: df_new[key] = df_new[key].apply(recode_bools) df_new.rename(columns={key:'Trust:%s'%trust[country][key]}, inplace=True) dd_new['Trust:%s'%trust[country][key]] = {1:'Checked', 0:'Unchecked'} for key in reasons: df_new[key] = df_new[key].apply(recode_bools) df_new.rename(columns={key:'Reason:%s'%reasons[key]}, inplace=True) dd_new['Reason:%s'%reasons[key]] = {1:'Checked', 0:'Unchecked'} for key in metrics_img: df_new.replace({key: dd['dict'][key]}, inplace=True) df_new[key] = df_new[key].apply(recode_likert_num) df_new.rename(columns={key:metrics_img[key]}, inplace=True) dd_new[metrics_img[key]] = {2:'Strongly agree',1:'Tend to agree',0:'Do not know',-1:'Tend to disagree',-2:'Strongly disagree'} df_new.replace({att: dd['dict'][att] for att in other_atts if att!='imageseen'}, inplace=True) for att in other_atts: df_new.rename(columns={att:other_atts[att]}, inplace=True) if att!='imageseen': dd_new[other_atts[att]] = dict(zip(dd['dict'][att].values(), dd['dict'][att].keys())) df_new.replace({key: dd['dict'][key] for key in demo[country] if key not in ['agerecode', 'DGEOUK', 'DGEOUS']}, inplace=True) df_new.rename(columns=demo[country], inplace=True) df_new.replace(var_encoding, inplace=True) df_new.replace(var_fwd, inplace=True) for att in demo[country]: if demo[country][att] in var_fwd: dd_new[demo[country][att].split('_')[0]] = var_bwd[demo[country][att]] else: df_new.replace({demo[country][att]: dd['dict'][att]}, inplace=True) dd_new[demo[country][att]] = {b: a for (a, b) in dd['dict'][att].items()} df_new['Treatment'] = df_new['Group'].apply(recode_treatment) del df_new['Group'] dd_new['Treatment'] = {0: 'Control', 1:'Treatment'} df_new.rename(columns={i:i.split('_')[0] for i in list(df_new)}, inplace=True) if save: df_new.to_csv('%s.csv'%save) import pickle, json with open('%s.pkl'%save, 'wb') as fp: pickle.dump(dd_new, fp) with open('%s.json'%save, 'w') as fp: json.dump(dd_new, fp) return df_new, dd_new def import_transformed_data(filepath=''): '''Reads the transformed survey data. See questions and field names in /doc/orb_questionnaire.pdf, and refer to recoding in ``transform_data()`` Args: filepath (:obj:`str`): filepath to read the processed data (without the .csv/.pkl suffix) Returns: A size-2 :obj:`tuple` containing * A :obj:`pd.DataFrame` containing field names as columns and record as rows of the transformed data * A :obj:`dict` of field names (:obj:`str`) mapped to a :obj:`dict` of recoded-values (:obj:`int`) mapped to value-names (:obj:`str`) ''' import pandas as pd import pickle df = pd.read_csv('%s.csv'%filepath, index_col=0) with open('%s.pkl'%filepath, 'rb') as fp: dd = pickle.load(fp) return df, dd def get_socdem_counts(df, dd, by='Treatment'): '''Returns counts of different socio-demographics broken down by a variable of interest. Args: df (:obj:`pd.DataFrame`): contains transformed data (see return value of ``transform_data()``, ``import_transformed_data()``) dd (:obj:`dict`): contains data dictionary for transformed data (see return value of ``transform_data()``, ``import_transformed_data()``) by (:obj:`str`): variable of interest; default='Treatment' (returns distribution of demographics across the 2 experiment groups) Returns: A :obj:`pd.DataFrame` with 2-level index whose outer index corresponds to soc-demo name, inner index to soc-demo value, and columns correspond to % and counts across categories of variable of interest ''' import pandas as pd atts = ['Age', 'Gender', 'Education', 'Employment', 'Religion', 'Political', 'Ethnicity', 'Income', 'Social media usage'] out = [] for idx, d in df.groupby(by): out.append({}) for att in atts: tmp = d[att].value_counts().loc[list(dd[att].keys())] tmp.index = dd[att].values() tmp.name = '%s (N)'%dd[by][idx] tmp_perc = (100*tmp/tmp.sum()).round(1) tmp_perc.name = '%s (%%)'%dd[by][idx] out[-1][att] = pd.concat([tmp, tmp_perc], axis=1) out[-1] = pd.concat(out[-1], axis=0) out = pd.concat(out, axis=1) return out def count_attribute(df, att, by_att=None, norm=False, where=None, dd={}, plot=False, att_lab='', by_att_lab='', title='', dpi=90): '''Returns counts of any variable of interest, possibly conditioned on a second variable. Args: df (:obj:`pd.DataFrame`): contains transformed data (see return value of ``transform_data()``, ``import_transformed_data()``) att (:obj:`str`): primary variable of interest by_att (:obj:`str`): secondary variable of interest to condition counts of the first one on; default=`None` norm (:obj:`bool`): whether to normalise the counts to indicate Pr(att); if by_att is not `None` then counts are normalized such that summing Pr(att|by_att) over by_att gives 1 where (:obj:`list` of size-2 :obj:`tuple` of (:obj:`str`, :obj:`int`)): extra variables to subset the samples on where the tuple encodes a (variable-name, value) pair; default=[] dd (:obj:`dict`): contains data dictionary for transformed data (see return value of ``transform_data()``, ``import_transformed_data()``) for sorting counts by given variable-ordering; default={} plot (:obj: `bool`): whether to plot the counts; default=`False` att_lab (:obj:`str`): if plotting, label for y-axis (primary variable); default=`''` by_att_lab (:obj:`str`): if plotting, label for legend (secondary variable); default=`''` title (:obj:`str`): if plotting, plot title; default=`''` dpi (:obj:`int`): if plotting, dpi for figure; default=90 Returns: A :obj:`pd.DataFrame`/:obj:`pd.Series` whose index corresponds to att and columns to by_att ''' if where is not None: if not isinstance(where, list): where = [where] for w in where: if w[1] is None: df = df[df[w[0]].isnull()] else: df = df[df[w[0]]==w[1]] if by_att is None: counts = df[att].value_counts() else: from pandas import concat groups = df[[att, by_att]].groupby(by_att) names = list() counts = list() for name, group in groups: names.append(name) counts.append(group[att].value_counts()) counts = concat(counts, axis=1, keys=names, sort=True) if dd: if by_att in dd: counts = counts[dd[by_att].keys()] counts.rename(columns=dd[by_att], inplace=True) counts.fillna(0, inplace=True) if norm: counts = counts/counts.values.sum(0) if dd: if att in dd: counts = counts.loc[dd[att].keys()] counts.rename(index=dd[att], inplace=True) if plot: import matplotlib.pyplot as plt from seaborn import countplot plt.figure(dpi=dpi) order, hue_order = None, None if dd: if by_att is not None and by_att in dd and att in dd: df = df[[att,by_att]] df = df.replace({att: dd[att], by_att: dd[by_att]}) hue_order = dd[by_att].values() order = dd[att].values() else: if att in dd: df = df[[att]] df = df.replace({att: dd[att]}) order = dd[att].values() if by_att is None: countplot(y=att, data=df, order=order) else: countplot(y=att, hue=by_att, data=df, order=order, hue_order=hue_order) plt.gca().set_xlabel('Count') if att_lab: plt.gca().set_ylabel(att_lab) if by_att_lab: plt.gca().get_legend().set_title(by_att_lab) if not title and where is not None: title = ', '.join([str(w[0])+' = '+str(w[1]) for w in where]) plt.title(title) plt.show() return counts def stats(fit, statistics=['mean', '2.5%', '97.5%', 'n_eff', 'Rhat'], digits=2, exclude_lp=True, save=''): import pandas as pd sumobj = fit.summary() params = list(sumobj['summary_rownames']) stats = list(sumobj['summary_colnames']) out = pd.DataFrame(sumobj['summary'], index=params, columns=stats) if exclude_lp: out.drop(index='lp__', inplace=True) if statistics: out = out[statistics] roundmap = dict([(key, 0) if key=='n_eff' else (key, digits) for key in out]) out = out.round(roundmap) out = out.rename(columns={'mean':'Mean', 'n_eff':'ESS'}) if 'n_eff' in statistics: out = out.astype({'ESS':int}) if save: out.to_csv('%s.csv'%save) return out def stats_impact(fit, save=''): import numpy as np from .bayesoc import Outcome, Model import pandas as pd m = 2 k = 4 def foo(x): return np.diff(np.hstack([0, np.exp(x)/(1+np.exp(x)), 1])) df = Model(Outcome()).get_posterior_samples(fit=fit) prob = [] names = ['Yes, definitely', 'Unsure, lean yes', 'Unsure, lean no', 'No, definitely not'] for i in range(1, m+1): alpha = df[['alpha[%i,%i]'%(i, j) for j in range(1, k)]].values p = [] for a in alpha: p.append(foo(a)) p = np.vstack(p) prob.append(pd.DataFrame(p, columns=names)) prob.append(prob[1]-prob[0]) groups = ['Pre Exposure', 'Post Exposure', 'Post-Pre'] out = pd.concat({groups[i]: prob[i].describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']] for i in range(len(groups))}) if save: out.to_csv('%s.csv'%save) return out def stats_impact_causal(fit, save=''): import numpy as np from .bayesoc import Outcome, Model import pandas as pd m = 2 k = 4 def foo(x): return np.diff(np.hstack([0, np.exp(x)/(1+np.exp(x)), 1])) df = Model(Outcome()).get_posterior_samples(fit=fit) prob_full, prob = [], [] dfs_full, dfs = [], [[], [], []] names = ['Yes, definitely', 'Unsure, lean yes', 'Unsure, lean no', 'No, definitely not'] p_pre = [foo(x) for x in df[['alpha_pre[%i]'%j for j in range(1, k)]].values] for i in range(1, m+1): alpha_pre = df[['alpha_pre[%i]'%j for j in range(1, k)]].values beta = np.hstack([np.zeros((df.shape[0],1)), df[['beta[%i]'%i]].values*df[['delta[%i,%i]'%(i, j) for j in range(1, k)]].values.cumsum(axis=1)]) alpha = df[['alpha[%i,%i]'%(i, j) for j in range(1, k)]].values p_full, p = [], [] for (p_p, a, b) in zip(p_pre, alpha, beta): p.append(np.array([foo(a-b_) for b_ in b])) p_full.append((p_p[:,np.newaxis]*p[-1]).sum(axis=0)) prob_full.append(np.vstack(p_full)) prob.append(np.dstack(p)) dfs_full.append(pd.DataFrame(prob_full[-1], columns=names).describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']]) for j in range(k): dfs[i-1].append(pd.DataFrame(prob[-1][j].T, columns=names).describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']]) diff_full = prob_full[1] - prob_full[0] diff = prob[1]-prob[0] dfs_full.append(pd.DataFrame(diff_full, columns=names).describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']]) dfs_full.append(pd.DataFrame(p_pre, columns=names).describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']]) for i in range(k): dfs[-1].append(pd.DataFrame(diff[i].T, columns=names).describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']]) groups = ['Control', 'Treatment', 'Treatment-Control', 'Baseline'] out = pd.concat({groups[i]: pd.concat({names[j]: dfs[i][j] for j in range(len(names))}) for i in range(len(groups)-1)}) out_full = pd.concat({groups[i]: dfs_full[i] for i in range(len(groups))}) if save: out.to_csv('%s_CATE.csv'%save) out_full.to_csv('%s_ATE.csv'%save) return {'ATE':out_full, 'CATE':out} def multi2index(index, suffix=''): att_cat = {} for att in index: if ':' in att[0]: key, val = tuple(att[0].split(':')) if key in att_cat: att_cat[key]['idx'].append(att) att_cat[key]['val'].append(val+suffix) else: att_cat[key] = {'idx': [att], 'val': [val+suffix]} else: if att[0] in att_cat: att_cat[att[0]]['idx'].append(att) att_cat[att[0]]['val'].append(att[1]+suffix) else: att_cat[att[0]] = {'idx': [att], 'val': [att[1]+suffix]} return att_cat def plot_stats(df, demos=False, oddsratio=True, fig=None, ax=None, ax_outer=None, fignum=1, figidx=0, figsize=2, stack_h=True, title='', subtitle=[], xlabel='', subxlabel=[], tick_suffix='', label_suffix='', label_text='', ylabel=True, bars=False, factor=0.4, signsize=10, ticksize=10, labelsize=10, titlesize=12, subtitlesize=12, hspace=0.3, wspace=0.05, widespace=1, align_labels=False, title_loc=0.0, label_loc=0.0, highlight=False, show=True, capitalize=False, identical_counts=False, save='', fmt='pdf'): if not isinstance(df, list): df = [df] if isinstance(subtitle, str): subtitle = [subtitle]*len(df) if isinstance(subxlabel, str): subxlabel = [subxlabel]*len(df) import matplotlib.pyplot as plt import numpy as np cols = len(df) dem = ['Age', 'Gender', 'Education', 'Employment', 'Religion', 'Political', 'Ethnicity', 'Income'] for i in range(cols): atts = list(df[i].index) if not isinstance(atts[0], tuple): from pandas import concat df[i] = concat({'tmp': df[i]}) atts = list(df[i].index) ylabel = False if not demos: atts = [i for i in atts if i[0] not in dem] att_cat = multi2index(atts, tick_suffix) rows = len(att_cat) rows_per = [len(att_cat[k]['idx']) for k in att_cat] if fig is None: if fignum>1: if stack_h: fig = plt.figure(dpi=180, figsize=(figsize*(cols*fignum+(fignum-1)*widespace), factor*sum(rows_per))) grid = fig.add_gridspec(nrows=1, ncols=fignum, wspace=widespace/cols) ax = np.empty((rows, cols*fignum), dtype=object) ax_outer = np.empty(fignum, dtype=object) for i in range(fignum): ax_outer[i] = fig.add_subplot(grid[i], frame_on=False, xticks=[], yticks=[]) inner = grid[i].subgridspec(nrows=rows, ncols=cols, hspace=hspace/sum(rows_per), wspace=wspace, height_ratios=rows_per) for j in range(rows): for k in range(cols): ax[j,i*cols+k] = fig.add_subplot(inner[j, k]) else: fig = plt.figure(dpi=180, figsize=(figsize*cols, factor*(sum(rows_per)*fignum+(fignum-1)*widespace))) grid = fig.add_gridspec(nrows=fignum, ncols=1, hspace=widespace/sum(rows_per)) ax = np.empty((rows*fignum, cols), dtype=object) ax_outer = np.empty(fignum, dtype=object) for i in range(fignum): ax_outer[i] = fig.add_subplot(grid[i], frame_on=False, xticks=[], yticks=[]) inner = grid[i].subgridspec(nrows=rows, ncols=cols, hspace=hspace/sum(rows_per), wspace=wspace, height_ratios=rows_per) for j in range(rows): for k in range(cols): ax[i*rows+j,k] = fig.add_subplot(inner[j, k]) else: fig, ax = plt.subplots(nrows=rows, ncols=cols, dpi=180, figsize=(figsize*cols, factor*sum(rows_per)), gridspec_kw={'hspace':hspace, 'wspace':wspace, 'height_ratios': rows_per}, squeeze=False) ax_outer = [fig.add_subplot(111, frame_on=False, xticks=[], yticks=[])] names = list(att_cat.keys()) def plot_bars(ax, tmp, ticks=[], right=False, base=False): num = tmp.shape[0] if highlight: colors = ['k' if tmp['2.5%'][tmp.index[i]]<oddsratio<tmp['97.5%'][tmp.index[i]] else 'r' for i in range(num)] else: colors = 'k' if base: if bars: ax.barh(y=list(range(num+1, num+2-base, -1))+list(range(num+1-base, 0, -1)), width=tmp['mean'].values, xerr=np.vstack([(tmp['mean']-tmp['2.5%']).values, (tmp['97.5%']-tmp['mean']).values]), color='salmon') else: ax.errorbar(x=tmp['mean'].values, y=list(range(num+1, num+2-base, -1))+list(range(num+1-base, 0, -1)), xerr=np.vstack([(tmp['mean']-tmp['2.5%']).values, (tmp['97.5%']-tmp['mean']).values]), ecolor=colors, marker='o', color='k', ls='') ax.text(0, num+2-base, 'REFERENCE', size=ticksize) else: if bars: ax.barh(y=range(num, 0, -1), width=tmp['mean'].values, xerr=np.vstack([(tmp['mean']-tmp['2.5%']).values, (tmp['97.5%']-tmp['mean']).values]), color='salmon') else: ax.errorbar(x=tmp['mean'].values, y=range(num, 0, -1), xerr=np.vstack([(tmp['mean']-tmp['2.5%']).values, (tmp['97.5%']-tmp['mean']).values]), ecolor=colors, marker='o', color='k', ls='') if bars and highlight: for i in range(num): lb, ub = tmp['2.5%'][tmp.index[i]], tmp['97.5%'][tmp.index[i]] if not (lb<oddsratio<ub): if lb<0: ax.text(lb, num-i, '*', size=signsize) else: ax.text(ub, num-i, '*', size=signsize) else: ax.set_ylim(1-0.5, num+0.5) if ticks: t = range(1, num+1) if capitalize: ticks = [x.capitalize() if not x.isupper() else x for x in ticks] else: t = [] ax.axvline(oddsratio, ls=':', color='gray') ax.yaxis.set_ticklabels(reversed(ticks)) ax.yaxis.set_ticks(t) if right: ax.yaxis.tick_right() for i in range(rows): for j in range(cols): if stack_h: u, v = i, cols*figidx+j else: u, v = rows*figidx+i, j if j==0: plot_bars(ax[u,v], df[j].loc[att_cat[names[i]]['idx']], att_cat[names[i]]['val']) if ylabel: ax[u,v].set_ylabel(names[i]+label_suffix, fontweight='bold', fontsize=labelsize) elif j==cols-1: try: if identical_counts: c = list(map(lambda y: str(int(y)), df[0]['counts'][att_cat[names[i]]['idx']].values)) else: c = [', '.join(list(map(lambda y: str(int(y)), x))) for x in np.array([df[k]['counts'][att_cat[names[i]]['idx']].values for k in range(cols)]).T] except: c = [] plot_bars(ax[u,v], df[j].loc[att_cat[names[i]]['idx']], c, right=True) else: plot_bars(ax[u,v], df[j].loc[att_cat[names[i]]['idx']]) if i==0 and subtitle and (stack_h or not(figidx)): ax[u,v].set_title(subtitle[j], fontsize=subtitlesize) if i==rows-1 and subxlabel: ax[u,v].set_xlabel(subxlabel[j], fontsize=labelsize) if align_labels: fig.align_ylabels() if title: ax_outer[figidx].set_title(title, fontweight='bold', fontsize=titlesize, y=1+title_loc) if label_text and (stack_h or not(figidx)): ax_outer[figidx].text(1+label_loc, 1.01, label_text, size=subtitlesize, transform=ax_outer[figidx].transAxes) if xlabel and (stack_h or figidx==fignum-1): ax_outer[figidx].set_xlabel(xlabel) #plt.subplots_adjust(hspace=hspace, wspace=wspace) #fig.tight_layout() if save: plt.savefig('%s.%s'%(save, fmt), dpi=180, bbox_inches='tight') if show: plt.show() return fig, ax, ax_outer def plot_causal_flow(df, title='', save='', fmt='pdf'): def plot_sankey(group): import plotly.graph_objects as go src, tgt, val = [], [], [] labs = ['Yes, definitely', 'Unsure, lean yes', 'Unsure, lean no', 'No, definitely not']*2 for i in range(4): for j in range(4, 8): src.append(i) tgt.append(j) val.append(df['CATE'].loc[(group,labs[i],labs[j]), 'mean']*df['ATE'].loc[('Baseline',labs[i]), 'mean']) fig = go.Figure(data=[go.Sankey( node = dict(pad=15, thickness=40, line=dict(color='salmon', width=0.5), color='salmon', label=['[%i] %s'%(round(100*y), x) for x, y in zip(labs[:4], df['ATE'].loc['Baseline', 'mean'])]+['%s [%i]'%(x, round(100*y)) for x, y in zip(labs[4:], df['ATE'].loc[group, 'mean'])]), link = dict(source=src, target=tgt, value=val))]) fig.update_layout(title_text='%s %s'%(title, group), font_size=20) fig.show() if save: fig.write_image('%s_%s.%s'%(save, group, fmt), scale=4) plot_sankey('Treatment') plot_sankey('Control') def stats_socdem(fit, dd, df, atts=[], causal=True, group=None, oddsratio=True, save=''): import numpy as np import pandas as pd from .bayesoc import Dim, Outcome, Model import matplotlib.pyplot as plt cats = ['Age', 'Gender', 'Education', 'Employment', 'Religion', 'Political', 'Ethnicity', 'Income'] if isinstance(atts, str): atts = [atts] for att in atts: cats += [x for x in list(df) if x[:len(att)]==att] outs = ['Vaccine Intent for self (Pre)', 'Vaccine Intent for self (Post)', 'Treatment'] bases = [1]*len(cats) #default reference category for all socio-demographics bases[2] = 5 #reference category for education bases[7] = 5 #reference category for income tmp = Model(Outcome()) if causal: stats = {'Control':{}, 'Treatment':{}, 'Treatment-Control':{}} counts = {'Control':{}, 'Treatment':{}, 'Treatment-Control':{}} else: stats = {} counts = {} def foo(x): return np.exp(x) def getcounts(cat, base, group=None): vals = np.sort(list(dd[cat].keys())) if group is None: counts = df[cat].value_counts().loc[vals] else: counts = df[df['Treatment']==group][cat].value_counts().loc[vals] counts.index = [dd[cat][k] for k in vals] return counts.iloc[list(range(base-1))+list(range(base, len(vals)))] def summarize(stats, counts): if oddsratio: stats = stats.apply(foo) stats = stats.describe(percentiles=[0.025, 0.975]).T[['mean', '2.5%', '97.5%']] stats.drop('chain', inplace=True) stats.index = counts.index return stats def mergecats(stats, counts): stats = pd.concat(stats) counts = pd.concat(counts) counts.name = 'counts' return stats.merge(counts.to_frame(), left_index=True, right_index=True) for cat, base in zip(cats, bases): dim = Dim(name=cat) if causal: for idx, key in zip([1, 2], ['Control', 'Treatment']): counts[key][cat] = getcounts(cat, base, idx-1) stats[key][cat] = tmp.get_posterior_samples(pars=['beta_%s[%i,%i]'%(dim.name, idx, i+1) for i in range(len(dd[cat]))], contrast='beta_%s[%i,%i]'%(dim.name, idx, base), fit=fit) stats[key][cat].columns = ['beta_%s[%i]'%(dim.name, i+1) for i in range(len(dd[cat])) if i!=base-1]+['chain'] stats['Treatment-Control'][cat] = stats['Treatment'][cat] - stats['Control'][cat] counts['Treatment-Control'][cat] = counts['Treatment'][cat] + counts['Control'][cat] for key in stats: stats[key][cat] = summarize(stats[key][cat], counts[key][cat]) else: counts[cat] = getcounts(cat, base, group) stats[cat] = tmp.get_posterior_samples(pars=['beta_%s[%i]'%(dim.name, i+1) for i in range(len(dd[cat]))], contrast='beta_%s[%i]'%(dim.name, base), fit=fit) stats[cat] = summarize(stats[cat], counts[cat]) if causal: out = pd.concat({key: mergecats(stats[key], counts[key]) for key in stats}) else: out = mergecats(stats, counts) if save: out.to_csv('%s.csv'%save) return out def mean_image_perceptions(df, melt=True, save=''): import pandas as pd metrics = ['Vaccine Intent', 'Agreement', 'Trust', 'Fact-check', 'Share'] gmap = {0: 'Control', 1:'Treatment'} vmap = {i-2: 'p[%i]'%(i+1) for i in range(5)} out = {} for group, d in df.groupby('Treatment'): scores_all = {} for i in range(5): scores = {} for m in metrics: tmp = d['Image %i:%s'%(i+1, m)].value_counts().sort_index() tmp = tmp/tmp.sum() scores[m] = tmp.rename(vmap) if melt: scores_all[i+1] = pd.concat(scores).to_frame('mean') else: scores_all[i+1] = pd.DataFrame(scores) out[gmap[group]] = pd.concat(scores_all) out =
pd.concat(out)
pandas.concat
import pandas as pd import sqlite3 from sqlite3 import Error as SQLError from datetime import datetime import re import csv import os import json from fuzzywuzzy import fuzz import sys sys.path.insert(1, "../") from settings import DB_FP, CORPUS_META sql_get_members =""" SELECT c.PimsId, m.name, c.constituency FROM members as m INNER JOIN member_constituency as c ON c.PimsId = m.PimsId WHERE (((? BETWEEN c.start AND c.end) AND NOT (c.end IS NULL)) OR ((? >= c.start) AND (c.end IS NULL)));""".strip() sql_get_most_recent_constituency = """ SELECT c.PimsId, m.name, c.constituency, max(c.start) FROM members as m INNER JOIN member_constituency as c ON c.PimsId = m.PimsId GROUP BY c.PimsId;""".strip() def create_connection(filename): """ create a database connection to a database that resides in the memory """ connection = None try: connection = sqlite3.connect(filename) print(sqlite3.version) except SQLError as e: print(e) if connection: connection.close() print("Error occurred creating connection") connection = None return connection # This is the old function I was using for processing ref stances of mps # It attempts to match the names of the mps. # I have since realised it's probably a better idea to simple do it on consituency. def process_ref_using_names(mp_ref_fp, conn): members = pd.read_sql_query("SELECT * FROM members", conn) mp_ref = pd.read_csv(mp_ref_fp, header=0) mp_ref = mp_ref.loc[:, ["Title", "First_Name", "Surname", "Constituency", "Stance"]] pimsIds = [] for i, mp in mp_ref.iterrows(): loose_reg_name = ".* {0}".format(mp.Surname) tight_reg_name = "(({0}|Mr|Ms|Dr|Lord|Mrs|Sir|Baroness) )?{1} {2}".format(mp.Title, mp.First_Name, mp.Surname) loose_found = members[members['name'].str.match(loose_reg_name)] if len(loose_found) == 1: print("{0} - {1}".format(loose_reg_name, loose_found.iloc[0]['name'])) curr_pims_id = loose_found.iloc[0]['PimsId'] else: tight_found = members[members['name'].str.match(tight_reg_name)] if len(tight_found) == 1: print("{0} - {1}".format(tight_reg_name, tight_found.iloc[0]['name'])) curr_pims_id = tight_found.iloc[0]['PimsId'] else: for ci, curr in loose_found.iterrows(): found_constituency = loose_found[loose_found["curr_constituency"]==mp['Constituency']] if len(found_constituency) == 1: print("{0} - {1}".format(tight_reg_name, found_constituency['name'].iloc[0])) curr_pims_id = found_constituency.iloc[0]['PimsId'] else: print("{0} - {1}".format(tight_reg_name, loose_found)) curr_pims_id = None pimsIds.append(curr_pims_id) mp_ref['PimsId'] = pimsIds mp_ref.to_csv("MP_Stance_Thing.csv") def process_ref(fp, conn): stances =
pd.read_csv(fp, header=0)
pandas.read_csv
import requests from bs4 import BeautifulSoup from time import sleep import time from datetime import datetime import itertools import inspect import pandas as pd import numpy as np import re from classes import LRTlinks startTime = time.time() # To do # rename the Task class # create a class for the scraping of links # how to get the phone number and agent etc? use JSON? https://stackoverflow.com/questions/67515161/beautiful-soup-returns-an-empty-string-when-website-has-text # error handling, add some try, except clauses # when running for full list, script hung after 1800++ files # how to add Task class to classes.py? problem with detail_dict # make sure works for other train stations too etc gombak. alter the code for general use cases class Task(): """ This is a Task class to carry out all the scraping functions """ def rent_id(self): # START: Standard data on each property page if property_url != '': rent_id.append(property_url.split('/')[-2]) print('Rent ID : ' + 'Success') else: print('Rent ID : '+'NaN') rent_id.append('NaN') def prop_url(self): if property_url != '': prop_url.append(property_url) print('Property URL : ' + 'Success') else: print('Property URL : '+'NaN') prop_url.append('NaN') def title(self): if soup.find_all('title')[0].text != '': title.append(soup.find_all('title')[0].text) print('Title : ' + 'Success') else: print('Title : '+'NaN') title.append('NaN') def property_price(self): if soup.find_all('div', class_='ListingPrice__Price-cYBbuG cspQqH property-price')[ 0].text != '': str_price = soup.find_all('div', class_='ListingPrice__Price-cYBbuG cspQqH property-price')[ 0].text.split(' ')[2].replace(',', '') property_price.append( int(''.join(itertools.takewhile(str.isdigit, str_price)))) print('Property Price : ' + 'Success') else: print('Property Price : '+'NaN') title.append('NaN') def property_summary(self): if soup.find_all('h1', class_='PropertySummarystyle__ProjectTitleWrapper-kAhflS PNQmp')[0].text != '': property_summary.append(soup.find_all( 'h1', class_='PropertySummarystyle__ProjectTitleWrapper-kAhflS PNQmp')[0].text) print('Property Summary : ' + 'Success') else: print('Property Summary : '+'NaN') property_summary.append('NaN') def property_address(self): if soup.find_all( 'span', class_='property-address rent-default')[0].text != '': property_address.append(soup.find_all( 'span', class_='property-address rent-default')[0].text) print('Property Address : ' + 'Success') else: print('Property Address : '+'NaN') property_address.append('NaN') def built_up(self): if soup.find_all( 'li', class_='PropertySummarystyle__AreaInfoItem-NjZCY dUovgc')[0].text != '': built_up.append(soup.find_all( 'li', class_='PropertySummarystyle__AreaInfoItem-NjZCY dUovgc')[0].text.split(': ')[1]) print('Built Up : ' + 'Success') else: print('Built Up : '+'NaN') built_up.append('NaN') def land_area_sq_ft(self): if soup.find_all( 'li', class_='PropertySummarystyle__AreaInfoItem-NjZCY dUovgc')[1].text != '': land_area_sq_ft.append(soup.find_all( 'li', class_='PropertySummarystyle__AreaInfoItem-NjZCY dUovgc')[1].text.split(': ')[1]) print('Land Area_sq_ft : ' + 'Success') else: print('Land Area_sq_ft : '+'NaN') land_area_sq_ft.append('NaN') def property_details(self): if str(soup.find_all('pre')) != '': property_details.append(str(soup.find_all('pre'))) print('Property Details : ' + 'Success') else: print('Property Details : '+'NaN') property_details.append('NaN') def property_features(self): # END: Standard data on each property page if [i.text for i in soup.find_all('div', class_='attribute-title-container')] != []: property_features.append([i.text for i in soup.find_all( 'div', class_='attribute-title-container')]) print('Property Features : ' + 'Success') else: print('Property Features : '+'NaN') property_features.append('NaN') def property_type(self): # START: Data in property details container (can vary) if 'Property Type' in details_dict: temp = details_dict['Property Type'] property_type.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Property Type : ' + 'Success') else: print('Property Type : '+'NaN') property_type.append('NaN') def land_title(self): if 'Land Title' in details_dict: temp = details_dict['Land Title'] land_title.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Land Title : ' + 'Success') else: print('Land Title : '+'NaN') land_title.append('NaN') def property_title_type(self): if 'Property Title Type' in details_dict: temp = details_dict['Property Title Type'] property_title_type.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Property Title Type : '+'Success') else: print('Property Title Type : '+'NaN') property_title_type.append('NaN') def tenure(self): if 'Tenure' in details_dict: temp = details_dict['Tenure'] tenure.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Tenure : ' + 'Success') else: print('Tenure : ' + 'NaN') tenure.append('NaN') def built_up_size_sq_ft(self): if 'Built-up Size' in details_dict: temp = details_dict['Built-up Size'] built_up_size_sq_ft.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Built-up Size : ' + 'Success') else: print('Built-up Size : ' + 'NaN') built_up_size_sq_ft.append('NaN') def built_up_price_per_sq_ft(self): if 'Built-up Price' in details_dict: temp = details_dict['Built-up Price'] built_up_price_per_sq_ft.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Built-up Price : ' + 'Success') else: print('Built-up Price : ' + 'NaN') built_up_price_per_sq_ft.append('NaN') def furnishing(self): if 'Furnishing' in details_dict: temp = details_dict['Furnishing'] furnishing.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Furnishing : ' + 'Success') else: print('Furnishing : ' + 'NaN') furnishing.append('NaN') def occupancy(self): if 'Occupancy' in details_dict: temp = details_dict['Occupancy'] occupancy.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Occupancy : ' + 'Success') else: print('Occupancy : ' + 'NaN') occupancy.append('NaN') def unit_type(self): if 'Unit Type' in details_dict: temp = details_dict['Unit Type'] unit_type.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Unit Type : ' + 'Success') else: print('Unit Type : ' + 'NaN') unit_type.append('NaN') def facing_direction(self): if 'Facing Direction' in details_dict: temp = details_dict['Facing Direction'] facing_direction.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Facing Direction : '+'Success') else: print('Facing Direction : '+'NaN') facing_direction.append('NaN') def reference(self): if 'Reference No.' in details_dict: temp = details_dict['Reference No.'] reference.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Reference : ' + 'Success') else: print('Reference : ' + 'NaN') reference.append('NaN') def available_date(self): if 'Available Date' in details_dict: temp = details_dict['Available Date'] available_date.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Available Date : ' + 'Success') else: print('Available Date : ' + 'NaN') available_date.append('NaN') def posted_date(self): # END: Data in property details container (can vary) if 'Posted Date' in details_dict: temp = details_dict['Posted Date'] posted_date.append(soup.find_all( 'div', class_='PropertyDetailsListstyle__AttributeItemData-jpQfWB HUTFZ')[temp].text) print('Posted Date : ' + 'Success') else: print('Posted Date : ' + 'NaN') posted_date.append('NaN') # def get_method(self, method_name): # method1 = callbyname.get_method(method_name) # method = getattr(self, method_name) # return method() # ampang-park-89 # kl-sentral-438 # USER INPUT REQUIRED location_of_interest = 'ss-15-316' # 'usj-21-531' num_pages_to_scrape = 50 # 20 results per page print('\n| iProperty.com.my Scraper |') # Use the LRTlinks method # choose which Train Station ID here l = LRTlinks(location_of_interest) # choose how many pages to scrape (limit = 100) l.get_links(num_pages_to_scrape) file_to_be_read = 'rent-' + location_of_interest + '-property-links.csv' data_links =
pd.read_csv(file_to_be_read)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd pd.set_option('display.max_columns', None) import pandas as pd from sklearn import preprocessing from pandas.plotting import scatter_matrix from matplotlib import pyplot from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier import joblib # import numpy as np # In[2]: df=pd.read_csv("data/data500.csv") df.head(30) # In[3]: df.columns=["Name","gender","marks_1","caste","marks_2","Disabled","Attendance","marks_3","marks_4","marks_5","marks_6","Dropout"] # In[4]: df # In[5]: df_final=df[["Name","gender","caste","Disabled","Attendance","marks_1","marks_2","marks_3","marks_4","marks_5","marks_6","Dropout"]] # In[6]: df_final # In[7]: class MultiColumnLabelEncoder: def __init__(self, columns=None): self.columns = columns # array of column names to encode def fit(self, X, y=None): return self # not relevant here def transform(self, X): ''' Transforms columns of X specified in self.columns using LabelEncoder(). If no columns specified, transforms all columns in X. ''' output = X.copy() if self.columns is not None: for col in self.columns: output[col] = LabelEncoder().fit_transform(output[col]) else: for colname, col in output.iteritems(): output[colname] = LabelEncoder().fit_transform(col) return output def fit_transform(self, X, y=None): return self.fit(X, y).transform(X) # In[57]: def generateModel(file, _id): dataset = MultiColumnLabelEncoder(columns=['gender', 'caste']).fit_transform(file) array = dataset.values X = array[:, 1:10] Y = array[:, 11] # print(Y) Y = Y.astype('int') model = DecisionTreeClassifier() model.fit(X, Y) filename = 'schoolModels/' + _id + '.pkl' joblib.dump(model, filename) return True # In[20]: def get_prediction(data, _id): filename = 'schoolModels/' + _id + '.pkl' predict_from_joblib = joblib.load(filename) X_predict = {} for key, value in data.items(): X_predict[key] = [value] X_predict = pd.DataFrame(data, index=[0]) le = preprocessing.LabelEncoder() X_predict['gender'] = le.fit_transform(X_predict['gender']) X_predict['caste'] = le.fit_transform(X_predict['caste']) X_predict.to_numpy() prediction = predict_from_joblib.predict(X_predict) return prediction # In[58]: df_final = MultiColumnLabelEncoder(columns=['gender', 'caste']).fit_transform(df_final) array = df_final.values X = array[:, 1:10] Y = array[:, 11] # print(Y) Y = Y.astype('int') # In[59]: X # In[60]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=0) # In[61]: X_train # In[62]: y_test,len(y_test) # In[63]: model = DecisionTreeClassifier() model.fit(X_train, y_train) # In[64]: preds=model.predict(X_test) preds # In[65]: y_test # In[66]: df_pred=
pd.DataFrame({"original":y_test,"predictions":preds})
pandas.DataFrame
import os import pytz import logging import pymongo import multiprocessing import pandas as pd from datetime import datetime from collections import Counter, defaultdict from typing import List, Set, Tuple # For non-docker use, change to your url (e.g., localhost:27017) MONGO_URL = "mongodb://localhost:27017" CACHE_DIR = "cache/" if not os.path.exists(CACHE_DIR): os.mkdir(CACHE_DIR) def get_data() -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: """ Returns (projects, libraries, migrations, rules, dep_changes). This function should be used get the required data for analysis, to avoid data scope inconsistencies in different analysis modules. """ projects = select_projects_from_libraries_io() libraries = select_libraries() migrations = select_migrations() lib_names = set(libraries["name"]) rules = select_rules(lib_names) dep_changes = select_dependency_changes_all(lib_names) migrations.startCommitTime =
pd.to_datetime(migrations.startCommitTime, utc=True)
pandas.to_datetime
import json import pandas as pd from pprint import pprint def reader(reader_csv="reader_results.csv"): model_rename_map = { "deepset/roberta-base-squad2": "RoBERTa", "deepset/minilm-uncased-squad2": "MiniLM", "deepset/bert-base-cased-squad2": "BERT base", "deepset/bert-large-uncased-whole-word-masking-squad2": "BERT large", "deepset/xlm-roberta-large-squad2": "XLM-RoBERTa", } column_name_map = {"f1": "F1", "passages_per_second": "Speed", "reader": "Model"} df = pd.read_csv(reader_csv) df = df[["f1", "passages_per_second", "reader"]] df["reader"] = df["reader"].map(model_rename_map) df = df[list(column_name_map)] df = df.rename(columns=column_name_map) ret = [dict(row) for i, row in df.iterrows()] print("Reader overview") print(json.dumps(ret, indent=4)) return ret def retriever(index_csv="retriever_index_results.csv", query_csv="retriever_query_results.csv"): column_name_map = { "model": "model", "n_docs": "n_docs", "docs_per_second": "index_speed", "queries_per_second": "query_speed", "map": "map", } name_cleaning = { "dpr": "DPR", "elastic": "BM25", "elasticsearch": "Elasticsearch", "faiss": "FAISS", "faiss_flat": "FAISS (flat)", "faiss_hnsw": "FAISS (HNSW)", "milvus_flat": "Milvus (flat)", "milvus_hnsw": "Milvus (HNSW)", "sentence_transformers": "Sentence Transformers", "opensearch_flat": "OpenSearch (flat)", "opensearch_hnsw": "OpenSearch (HNSW)", } index =
pd.read_csv(index_csv)
pandas.read_csv
# -*- coding: utf-8 -*- # This code is initially based on the Kaggle kernel from <NAME>, which can be found in the following link # https://www.kaggle.com/neviadomski/how-to-get-to-top-25-with-simple-model-sklearn/notebook # and the Kaggle kernel from <NAME>, which can be found in the link below # https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python/notebook # Also, part of the preprocessing has been inspired by this kernel from Serigne # https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard # Adding needed libraries and reading data import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import ensemble, tree, linear_model, preprocessing from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import r2_score, mean_squared_error from sklearn.utils import shuffle from scipy import stats from scipy.stats import norm, skew, boxcox from scipy.special import boxcox1p import xgboost as xgb import warnings warnings.filterwarnings('ignore') train = pd.read_csv("../../train.csv") test =
pd.read_csv("../../test.csv")
pandas.read_csv
import pandas as pd import json import io from datetime import datetime, timedelta
pd.set_option('display.max_rows', None)
pandas.set_option
# authors: <NAME>, <NAME>, <NAME>, <NAME> # date: 2020-11-25 """Fits a SVR model on the preprocessed data from the IMDB review data set. Saves the model with optimized hyper-parameters, as well as the search result. Usage: imdb_rating_predict_model.py <train> <out> imdb_rating_predict_model.py (-h | --help) Options: <train> Path to the training data file <out> Path to the directory where output should be written to -h, --help Display help """ import os from pathlib import Path import joblib import numpy as np import pandas as pd from docopt import docopt from sklearn.compose import ColumnTransformer from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import ( OrdinalEncoder, StandardScaler, ) from sklearn.linear_model import Ridge numeric_features = ['n_words'] text_feature = 'Text' ordinal_features = ['sentiment'] drop_features = ['Id', 'Author'] target = 'Rating' def main(train, out): # Load data set train_df = pd.read_csv(train) X_train, y_train = train_df.drop(columns=[target] + drop_features), train_df[target] # Create ML pipeline preprocessor = ColumnTransformer( transformers=[ ('text', CountVectorizer(max_features=20_000, stop_words='english'), text_feature), ('num', StandardScaler(), numeric_features), ('ord', OrdinalEncoder(categories=[['neg', 'compound', 'neu', 'pos']]), ordinal_features) ] ) ml_pipe = Pipeline( steps=[ ('prepro', preprocessor), ('ridge', Ridge()) ] ) # Tune hyper-parameters print('Searching for hyper-parameters') param_grid = { 'ridge__alpha': np.arange(500, 1000, 50) } hyper_parameters_search = GridSearchCV(ml_pipe, param_grid=param_grid, n_jobs=-1, scoring='r2', return_train_score=True, verbose=1) hyper_parameters_search.fit(X_train, y_train) print(f'R2 score for best model: {hyper_parameters_search.best_score_}') # Write hyper-parameter search result to csv hyper_parameters_search_result =
pd.DataFrame(hyper_parameters_search.cv_results_)
pandas.DataFrame
''' This code will clean the OB datasets and combine all the cleaned data into one Dataset name: O-27-Da Yan semi-automate code, needs some hands work. LOL But God is so good to me. 1. 9 different buildings in this dataset, and each building has different rooms 3. each room has different window, door, ac, indoor, outdoor info 4. I processed building A to F by hand, then figured out that I can rename the files first, then use code to process 5. rename the file by type and number, such as window1, indoor1, ac1, door1, etc. 6. code automated G, H, I 7. the folder has multiple types of data, csv and xlsx, figure out the file type, then rean into pandas 8. concat the outdoor datetime and temperature with ac data, then judge if the ac is on or off ''' import os import glob import string import datetime import pandas as pd import matplotlib.pyplot as plt # specify the path data_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/2021-05-28-1130-raw-data/Annex 79 Data Collection/O-27-Da Yan/_yapan_processing/processed/' template_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/OB Database Consolidation/Templates/' save_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/2021-05-28-1130-raw-data/Annex 79 Data Collection/O-27-Da Yan/_yapan_processing/_sql/' # generate the name of different building folders alphabet_string = string.ascii_uppercase alphabet_list = list(alphabet_string) building_names = alphabet_list[:9] ''' 1. process data by folders ''' begin_time = datetime.datetime.now() # create dataframe to store the data combined_window = pd.DataFrame() combined_door = pd.DataFrame() combined_hvac = pd.DataFrame() combined_indoor = pd.DataFrame() combined_outdoor = pd.DataFrame() ''' process outdoor data ''' print(f'Process outdoor data') os.chdir(data_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path outdoor_files = list(filter(lambda name: 'outdoor_building' in name, root_files)) # filter out the door status files combined_outdoor = pd.concat([pd.read_csv(f) for f in outdoor_files]) ''' manual processed data ''' print(f'Process manually processed data') building_names_1 = building_names[:6] # unit test # i = 0 # folder_name = building_names_1[i] for index, bld_name in enumerate(building_names_1): print(f'Reading the data under building folder {bld_name}') building_path = data_path + bld_name + '/' os.chdir(building_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path # combine indoor_files = list(filter(lambda name: 'indoor' in name, root_files)) # filter out the indoor files window_files = list(filter(lambda name: 'window' in name, root_files)) # filter out the window files hvac_files = list(filter(lambda name: 'hvac' in name, root_files)) # filter out the ac files door_files = list(filter(lambda name: 'door_status' in name, root_files)) # filter out the door status files # read anc combine the files under this folder if indoor_files: # make sure it is not empty indoor_temp_df = pd.concat([pd.read_csv(f) for f in indoor_files]) combined_indoor = pd.concat([combined_indoor, indoor_temp_df], ignore_index=True) # concat the data else: pass if window_files: window_temp_df = pd.concat([pd.read_csv(f) for f in window_files]) combined_window = pd.concat([combined_window, window_temp_df], ignore_index=True) # concat the data else: pass if hvac_files: hvac_temp_df = pd.concat([pd.read_csv(f) for f in hvac_files]) combined_hvac = pd.concat([combined_hvac, hvac_temp_df], ignore_index=True) # concat the data # print(combined_hvac.isnull().sum()) # print(index) else: pass if door_files: door_temp_df = pd.concat([pd.read_csv(f) for f in door_files]) combined_door = pd.concat([combined_door, door_temp_df], ignore_index=True) # concat the data # print(combined_door.isnull().sum()) # print(index) else: pass ''' auto mated process by building level ''' building_names = ['G', 'H', 'I'] building_ids = [7, 8, 9] for index, bld_name in enumerate(building_names): print(f'Dealing with data under building folder {bld_name}') building_path = data_path + bld_name + '/' os.chdir(building_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path '''' room level ''' for room_id in sub_folders: print(f'Dealing with data under room folder {room_id}') room_path = building_path + room_id + '/' os.chdir(room_path) # pwd file_names = os.listdir() # get all the file names window_files = list(filter(lambda name: 'window' in name, file_names)) # filter out the window files hvac_files = list(filter(lambda name: 'ac' in name, file_names)) # filter out the ac files door_files = list(filter(lambda name: 'door' in name, file_names)) # filter out the door files # read and combine files if window_files: for window_name in window_files: name, extension = os.path.splitext(window_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df = pd.read_csv(window_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Window_Status'] # rename the columns else: temp_df = pd.read_excel(window_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Window_Status'] temp_df['Window_ID'] = int(name.split('_')[0][6:]) temp_df['Room_ID'] = int(room_id) # assign Room_ID temp_df['Building_ID'] = building_ids[index] # assign Building_ID combined_window = pd.concat([combined_window, temp_df], ignore_index=True) # concat the data else: pass if door_files: for door_name in door_files: name, extension = os.path.splitext(door_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df = pd.read_csv(door_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Door_Status'] # rename the columns else: temp_df =
pd.read_excel(door_name, usecols=[0, 1])
pandas.read_excel
""" *** <NAME> *** _________Shubbair__________ TODO Naive Bias """ from sklearn.naive_bayes import GaussianNB, MultinomialNB import pandas as pd from sklearn.model_selection import train_test_split from sklearn.datasets import load_wine wine = load_wine() print(dir(wine)) data_frame =
pd.DataFrame(wine.data, columns=wine.feature_names)
pandas.DataFrame
import pandas as pd import STRING import numpy as np import datetime from sklearn.cluster import AgglomerativeClustering from models.cluster_model import cluster_analysis pd.options.display.max_columns = 500 # SOURCE FILE offer_df = pd.read_csv(STRING.path_db + STRING.file_offer, sep=',', encoding='utf-8', quotechar='"') print(len(offer_df.index)) # FILTER RESULTS offer_df = offer_df[offer_df['oferta_sim_resultado_sinco'].isin(['00'])] offer_df = offer_df[offer_df['oferta_nivel_sinco'] != '?'] offer_df = offer_df[offer_df['oferta_bonus_simulacion'] != '?'] # offer_df = offer_df[offer_df['oferta_sim_anios_asegurado'] != '?'] # offer_df = offer_df[offer_df['oferta_sim_antiguedad_cia_actual'] != '?'] print(len(offer_df.index)) # DROP DUPLICATES ''' offer_df = offer_df.sort_values(by=['oferta_poliza', 'oferta_id'], ascending=[True, True]).reset_index(drop=True) print(offer_df) offer_df = offer_df.drop_duplicates(subset=['oferta_veh_marca', 'oferta_veh_modelo', 'oferta_veh_version', 'oferta_veh_valor', 'oferta_tomador_cp', 'oferta_conductor_fecha_nac', 'oferta_conductor_fecha_carne'], keep='last') ''' # INTERMEDIARY FILTER offer_df = offer_df[offer_df['oferta_cod_intermediario'] != '?'] offer_df['oferta_cod_intermediario'] = offer_df['oferta_cod_intermediario'].map(int) offer_df = offer_df[offer_df['oferta_cod_intermediario'] != 81083] # ZURICH PRUEBAS OFERTA WEB print(len(offer_df.index)) # Filter offer_df = offer_df[offer_df['oferta_prod_tec'] == 721] del offer_df['oferta_prod_tec'] offer_df = offer_df[offer_df['oferta_tomador_tipo_pers'] == 'F'] del offer_df['oferta_tomador_tipo_pers'] print(len(offer_df.index)) # SEX VALIDATE offer_df['oferta_tomador_sexo'] = offer_df['oferta_tomador_sexo'].replace('V', 1) offer_df['oferta_tomador_sexo'] = offer_df['oferta_tomador_sexo'].replace('M', 0) offer_df['oferta_tomador_sexo'] = offer_df['oferta_tomador_sexo'].replace('O', -1) offer_df['oferta_tomador_sexo'] = offer_df['oferta_tomador_sexo'].replace('?', -1) offer_df = offer_df[offer_df['oferta_tomador_sexo'].isin([0, 1])] print(len(offer_df.index)) # CP VALIDATE print(len(offer_df.index)) offer_df = offer_df[offer_df['oferta_tomador_cp'] != '?'] offer_df = offer_df[offer_df.oferta_tomador_cp.apply(lambda x: x.isnumeric())] # offer_df['oferta_tomador_cp'] = offer_df['oferta_tomador_cp'].replace('?', -1) offer_df = offer_df[offer_df.oferta_tomador_cp != 0] print(len(offer_df.index)) # STATE POLICY/OFFER offer_df = offer_df[offer_df['oferta_estado'].isin(['1', '2', '3', 'V', 'P'])] print(len(offer_df.index)) # 1: FORMALIZADA, 2: VIGOR OFERTA, 3: PENDIENTE OFERTA # CALCULATE AGE def calculate_age(birthdate, sep=''): birthdate = datetime.datetime.strptime(birthdate, '%Y' + sep + '%m' + sep + '%d') today = datetime.date.today() return today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day)) # REPLACE BIRTH offer_df.loc[offer_df['oferta_tomador_fecha_nac'] == 0, 'oferta_tomador_fecha_nac'] = offer_df[ 'oferta_propietario_fecha_nac'] offer_df.loc[offer_df['oferta_tomador_fecha_nac'] == 0, 'oferta_tomador_fecha_nac'] = offer_df[ 'oferta_conductor_fecha_nac'] offer_df.loc[offer_df['oferta_conductor_fecha_nac'] == 0, 'oferta_conductor_fecha_nac'] = offer_df[ 'oferta_tomador_fecha_nac'] offer_df.loc[offer_df['oferta_propietario_fecha_nac'] == 0, 'oferta_propietario_fecha_nac'] = offer_df[ 'oferta_tomador_fecha_nac'] print(len(offer_df.index)) offer_df = offer_df[offer_df['oferta_tomador_fecha_nac'] != 0] offer_df = offer_df[offer_df['oferta_conductor_fecha_nac'] != 0] print(len(offer_df.index)) offer_df['oferta_conductor_fecha_nac'] = offer_df['oferta_conductor_fecha_nac'].map(str) offer_df = offer_df[~offer_df['oferta_conductor_fecha_nac'].str.endswith('99')] offer_df['cliente_edad'] = offer_df.apply(lambda y: calculate_age(y['oferta_conductor_fecha_nac']), axis=1) offer_df = offer_df[offer_df['cliente_edad'].between(18, 99, inclusive=True)] offer_df['cliente_edad'] = offer_df['cliente_edad'].map(int) offer_df['cliente_edad_18_30'] = np.where(offer_df['cliente_edad'] <= 30, 1, 0) offer_df['cliente_edad_30_65'] = np.where(offer_df['cliente_edad'].between(31, 65), 1, 0) offer_df['cliente_edad_65'] = np.where(offer_df['cliente_edad'] > 65, 1, 0) print(len(offer_df.index)) # LICENSE YEARS FIRST DRIVER offer_df['oferta_conductor_fecha_carne'] = offer_df['oferta_conductor_fecha_carne'].map(str) offer_df = offer_df[offer_df['oferta_conductor_fecha_carne'] != '0'] offer_df['antiguedad_permiso'] = offer_df.apply(lambda y: calculate_age(y['oferta_conductor_fecha_carne']), axis=1) offer_df['antiguedad_permiso_riesgo'] = np.where(offer_df['antiguedad_permiso'] <= 1, 1, 0) offer_df = offer_df[offer_df['cliente_edad'] - offer_df['antiguedad_permiso'] >= 17] offer_df['cliente_edad'] = pd.cut(offer_df['cliente_edad'], range(18, offer_df['cliente_edad'].max(), 5), right=True) offer_df['cliente_edad'] = offer_df['cliente_edad'].fillna(offer_df['cliente_edad'].max()) offer_df.loc[offer_df['antiguedad_permiso'].between(0, 5, inclusive=True), 'antiguedad_permiso_range'] = '[0-5]' offer_df.loc[offer_df['antiguedad_permiso'].between(6, 10, inclusive=True), 'antiguedad_permiso_range'] = '[6-10]' offer_df.loc[offer_df['antiguedad_permiso'].between(11, 20, inclusive=True), 'antiguedad_permiso_range'] = '[11-20]' offer_df.loc[offer_df['antiguedad_permiso'].between(21, 30, inclusive=True), 'antiguedad_permiso_range'] = '[21-30]' offer_df.loc[offer_df['antiguedad_permiso'] >= 31, 'antiguedad_permiso_range'] = '[31-inf]' print(len(offer_df.index)) # SECOND DRIVER offer_df.loc[ offer_df['oferta_adicional_fecha_nac'].isin(['?', '0', 0]), 'oferta_adicional_fecha_nac'] = \ datetime.date.today().strftime('%Y%m%d') offer_df['oferta_adicional_fecha_nac'] = offer_df['oferta_adicional_fecha_nac'].map(str) offer_df['edad_segundo_conductor'] = offer_df.apply(lambda y: calculate_age(y['oferta_adicional_fecha_nac']), axis=1) offer_df['edad_segundo_conductor_riesgo'] = np.where(offer_df['edad_segundo_conductor'].between(18, 25), 1, 0) del offer_df['edad_segundo_conductor'] print(len(offer_df.index)) # LICENSE YEARS SECOND DRIVER offer_df.loc[offer_df['oferta_adicional_fecha_carne'].isin(['?', '0', 0]), 'oferta_adicional_fecha_carne'] = '19000101' offer_df['oferta_adicional_fecha_carne'] = offer_df['oferta_adicional_fecha_carne'].map(str) offer_df['antiguedad_permiso_segundo'] = offer_df.apply(lambda y: calculate_age(y['oferta_adicional_fecha_carne']), axis=1) offer_df['antiguedad_permiso_segundo_riesgo'] = np.where(offer_df['antiguedad_permiso_segundo'] <= 1, 1, 0) print(len(offer_df.index)) # WHO IS WHO offer_df = offer_df[offer_df['oferta_tom_cond'].isin(['S', 'N'])] offer_df = offer_df[offer_df['oferta_propietario_tom'].isin(['S', 'N'])] offer_df = offer_df[offer_df['oferta_propietario_cond'].isin(['S', 'N'])] offer_df['oferta_tom_cond'] = np.where(offer_df['oferta_tom_cond'] == 'S', 1, 0) offer_df['oferta_propietario_tom'] = np.where(offer_df['oferta_propietario_tom'] == 'S', 1, 0) offer_df['oferta_propietario_cond'] = np.where(offer_df['oferta_propietario_cond'] == 'S', 1, 0) print(len(offer_df.index)) # FILTER DRIVING COUNTRY offer_df = offer_df[offer_df['oferta_conductor_pais_circu'] == 'ESP'] print(len(offer_df.index)) # GROUPED NATIONALITY country_file = pd.read_csv(STRING.path_db_aux + STRING.file_country, sep=';', encoding='latin1') offer_df = pd.merge(offer_df, country_file[['REGION', 'ISO']], left_on='oferta_conductor_pais_exped_carne', right_on='ISO', how='left') dummy_region = pd.get_dummies(offer_df['REGION'], prefix='cliente_region', dummy_na=True) offer_df = pd.concat([offer_df, dummy_region], axis=1) offer_df['cliente_extranjero'] = np.where(offer_df['oferta_conductor_pais_exped_carne'] != 'ESP', 1, 0) print(len(offer_df.index)) # VEHICLE TYPE for i in ['oferta_veh_marca', 'oferta_veh_modelo', 'oferta_veh_version']: offer_df[i] = offer_df[i].map(str) offer_df = offer_df[offer_df['oferta_veh_valor'] != '?'] offer_df['oferta_veh_valor'] = offer_df['oferta_veh_valor'].map(float) offer_df = offer_df[offer_df['oferta_veh_valor'] >= 300] offer_df['veh_tipo_agrupacion'] = offer_df['oferta_veh_marca'].map(str) + '-' + offer_df['oferta_veh_modelo'].map( str) + '-' + offer_df['oferta_veh_version'].map(str) + '-' + offer_df['oferta_veh_accesorio'].map(str) car_ranking = offer_df[['veh_tipo_agrupacion', 'oferta_veh_plazas', 'oferta_veh_potencia', 'oferta_veh_cilindrada', 'oferta_veh_tara', 'oferta_veh_valor']] car_ranking = car_ranking.groupby(['veh_tipo_agrupacion', 'oferta_veh_plazas', 'oferta_veh_potencia', 'oferta_veh_cilindrada', 'oferta_veh_tara']).agg({'oferta_veh_valor': 'median'}) car_ranking = car_ranking.reset_index(drop=False) ward = AgglomerativeClustering(n_clusters=10, linkage='ward', connectivity=None) ward.fit(car_ranking.drop('veh_tipo_agrupacion', axis=1)) labels = ward.labels_ df = pd.DataFrame(labels, columns=['car_ranking'], index=car_ranking.index) car_ranking = pd.concat([car_ranking, df], axis=1) car_ranking.to_csv(STRING.path_db_aux + '\\cluster_ward_car.csv', index=False, sep=';') del car_ranking['oferta_veh_valor'] offer_df = pd.merge(offer_df, car_ranking, how='left', on=['veh_tipo_agrupacion', 'oferta_veh_plazas', 'oferta_veh_potencia', 'oferta_veh_cilindrada', 'oferta_veh_tara']) offer_df['oferta_veh_valor'] = offer_df['oferta_veh_valor'].round() offer_df['oferta_veh_valor'] = offer_df['oferta_veh_valor'].map(int) offer_df['oferta_veh_valor_unitary'] = offer_df['oferta_veh_valor'].copy() offer_df.loc[offer_df['oferta_veh_valor'] > 71000, 'oferta_veh_valor'] = 71000 offer_df['oferta_veh_valor'] = pd.cut(offer_df['oferta_veh_valor'], range(0, offer_df['oferta_veh_valor'].max(), 1000), right=True) offer_df['oferta_veh_valor'] = offer_df['oferta_veh_valor'].fillna(offer_df['oferta_veh_valor'].max()) print(len(offer_df.index)) # VEHICULE USE CODE offer_df['oferta_veh_uso'] = offer_df['oferta_veh_uso'].map(int) veh_use = pd.read_csv(STRING.path_db_aux + STRING.file_veh_use, sep=';', encoding='latin1', dtype={'oferta_veh_uso': int}) offer_df = pd.merge(offer_df, veh_use, how='left', on='oferta_veh_uso') offer_df['d_uso_particular'] = np.where(offer_df['vehiculo_uso_desc'].str.contains('PARTICULAR'), 1, 0) offer_df['d_uso_alquiler'] = np.where(offer_df['vehiculo_uso_desc'].str.contains('ALQUILER'), 1, 0) offer_df['veh_uso'] = pd.Series('OTRO', index=offer_df.index) offer_df.loc[offer_df['d_uso_particular'] == 1, 'veh_uso'] = 'PARTICULAR' offer_df.loc[offer_df['d_uso_alquiler'] == 1, 'veh_uso'] = 'ALQUILER' print(len(offer_df.index)) # VEHICLE TYPE tipo_dict = {'ciclomotor': 'PARTICULAR', 'furgoneta': 'FURGONETA', 'camion': 'CAMION', 'autocar': 'AUTOCAR', 'remolque': 'REMOLQUE', 'agricola': 'AGRICO', 'industrial': 'INDUSTRIAL', 'triciclo': 'TRICICLO'} for k, v in tipo_dict.items(): offer_df['d_tipo_' + k] = np.where(offer_df['vehiculo_uso_desc'].str.contains(v), 1, 0) del tipo_dict offer_df['veh_tipo'] = pd.Series('OTRO', index=offer_df.index) offer_df.loc[offer_df['d_tipo_ciclomotor'] == 1, 'veh_tipo'] = 'CICLOMOTOR' offer_df.loc[offer_df['d_tipo_furgoneta'] == 1, 'veh_tipo'] = 'FURGONETA' offer_df.loc[offer_df['d_tipo_camion'] == 1, 'veh_tipo'] = 'CAMION' offer_df.loc[offer_df['d_tipo_autocar'] == 1, 'veh_tipo'] = 'AUTOCAR' offer_df.loc[offer_df['d_tipo_remolque'] == 1, 'veh_tipo'] = 'REMOLQUE' offer_df.loc[offer_df['d_tipo_agricola'] == 1, 'veh_tipo'] = 'AGRICOLA' offer_df.loc[offer_df['d_tipo_industrial'] == 1, 'veh_tipo'] = 'INDUSTRIAL' offer_df.loc[offer_df['d_tipo_triciclo'] == 1, 'veh_tipo'] = 'TRICICLO' print(len(offer_df.index)) # VEHICLE CLASE offer_df['oferta_veh_tipo'] = offer_df['oferta_veh_tipo'].map(int) veh_use = pd.read_csv(STRING.path_db_aux + STRING.file_veh_clase, sep=';', encoding='latin1', dtype={'oferta_veh_tipo': int}) offer_df = pd.merge(offer_df, veh_use, how='left', on='oferta_veh_tipo') print(len(offer_df.index)) # VEHICLE HEAVY offer_df['vehiculo_heavy'] = np.where(offer_df['vehiculo_clase_agrupacion_descripcion'].str.contains('>'), 1, 0) offer_df['oferta_veh_tara'] = offer_df['oferta_veh_tara'].replace('?', 0) offer_df['oferta_veh_tara'] = offer_df['oferta_veh_tara'].map(int) offer_df['oferta_veh_tara'] = np.where(offer_df['oferta_veh_tara'] >= 3500, 1, 0) offer_df['oferta_veh_puertos'] = np.where(offer_df['oferta_veh_puertos'] == 'S', 1, 0) print(len(offer_df.index)) # PLATE LICENSE offer_df['oferta_fecha_matricula'] = offer_df['oferta_fecha_matricula'].map(int) offer_df = offer_df[offer_df['oferta_fecha_matricula'].between(1900, 2018, inclusive=True)] offer_df['antiguedad_vehiculo'] = pd.Series(2018 - offer_df['oferta_fecha_matricula'], index=offer_df.index) del offer_df['oferta_fecha_matricula'] print(len(offer_df.index)) # MATCH BONUS bonus_df =
pd.read_csv(STRING.path_db_aux + STRING.file_bonus, sep=';', encoding='latin1')
pandas.read_csv
# Globals # import re import numpy as np import pandas as pd import dateutil.parser as dp from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import * from itertools import islice from scipy.stats import boxcox from scipy.integrate import simps from realtime_talib import Indicator from sklearn.model_selection import train_test_split from sklearn.utils import resample from pprint import pprint from selenium import webdriver RANDOM_STATE = 42 # Sentiment Preprocessing def remove_special_chars(headline_list): """ Returns list of headlines with all non-alphabetical characters removed. """ rm_spec_chars = [re.sub('[^ A-Za-z]+', "", headline) for headline in headline_list] return rm_spec_chars def tokenize(headline_list): """ Takes list of headlines as input and returns a list of lists of tokens. """ tokenized = [] for headline in headline_list: tokens = word_tokenize(headline) tokenized.append(tokens) # print("tokenize") # pprint(tokenized) return tokenized def remove_stop_words(tokenized_headline_list): """ Takes list of lists of tokens as input and removes all stop words. """ filtered_tokens = [] for token_list in tokenized_headline_list: filtered_tokens.append([token for token in token_list if token not in set(stopwords.words('english'))]) # print("stop words") # pprint(filtered_tokens) return filtered_tokens def stem(token_list_of_lists): """ Takes list of lists of tokens as input and stems every token. Returns a list of lists of stems. """ stemmer = PorterStemmer() stemmed = [] for token_list in token_list_of_lists: # print(token_list) stemmed.append([stemmer.stem(token) for token in token_list]) # print("stem") # pprint(stemmed) return stemmed def make_bag_of_words(df, stemmed): """ Create bag of words model. """ print("\tCreating Bag of Words Model...") very_pos = set() slightly_pos = set() neutral = set() slightly_neg = set() very_neg = set() # Create sets that hold words in headlines categorized as "slightly_neg" or "slightly_pos" or etc for stems, sentiment in zip(stemmed, df["Sentiment"].tolist()): if sentiment == -2: very_neg.update(stems) elif sentiment == -1: slightly_neg.update(stems) elif sentiment == 0: neutral.update(stems) elif sentiment == 1: slightly_pos.update(stems) elif sentiment == 2: very_pos.update(stems) # Count number of words in each headline in each of the sets and encode it as a list of counts for each headline. bag_count = [] for x in stemmed: x = set(x) bag_count.append(list((len(x & very_neg), len(x & slightly_neg), len(x & neutral), len(x & slightly_pos), len(x & very_pos)))) df["sentiment_class_count"] = bag_count return df def sentiment_preprocessing(df): """ Takes a dataframe, removes special characters, tokenizes the headlines, removes stop-tokens, and stems the remaining tokens. """ specials_removed = remove_special_chars(df["Headline"].tolist()) tokenized = tokenize(specials_removed) tokenized_filtered = remove_stop_words(tokenized) stemmed = stem(tokenized_filtered) return df, stemmed def headlines_balanced_split(dataset, test_size): """ Randomly splits dataset into balanced training and test sets. """ print("\nSplitting headlines into *balanced* training and test sets...") # pprint(list(dataset.values)) # pprint(dataset) # Use sklearn.train_test_split to split all features into x_train and x_test, # and all expected values into y_train and y_test numpy arrays x_train, x_test, y_train, y_test = train_test_split(dataset.drop(["Sentiment", "Headline"], axis=1).values, dataset["Sentiment"].values, test_size=test_size, random_state=RANDOM_STATE) x_train = [x[0] for x in x_train] x_test = [x[0] for x in x_test] # Combine x_train and y_train (numpy arrays) into a single dataframe, with column labels train = pd.DataFrame(data=x_train, columns=["very_neg", "slightly_neg", "neutral", "slightly_pos", "very_pos"]) train["Sentiment"] = pd.Series(y_train) # Do the same for x_test and y_test test = pd.DataFrame(data=x_test, columns=["very_neg", "slightly_neg", "neutral", "slightly_pos", "very_pos"]) test["Sentiment"] = pd.Series(y_test) train_prediction = train["Sentiment"].values test_prediction = test["Sentiment"].values train_trimmed = train.drop(["Sentiment"], axis=1).values test_trimmed = test.drop(["Sentiment"], axis=1).values return train_trimmed, test_trimmed, train_prediction, test_prediction def split(dataset, test_size, balanced=True): if balanced: return headlines_balanced_split(dataset, test_size) else: # TODO: write imbalanced split function return None # Helpers # def sliding_window(seq, n=2): """ Returns a sliding window (of width n) over data from the iterable. https://stackoverflow.com/a/6822773/8740440 """ "s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ..." it = iter(seq) result = tuple(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result def integrate(avg_daily_sentiment, interval): """ Takes a list of average daily sentiment scores and returns a list of definite integral estimations calculated with Simpson's method. Each integral interval is determined by the `interval` variable. Shows accumulated sentiment. """ # Split into sliding window list of lists sentiment_windows = sliding_window(avg_daily_sentiment, interval) integral_simpson_est = [] # https://stackoverflow.com/a/13323861/8740440 for x in sentiment_windows: # Estimate area using composite Simpson's rule. dx indicates the spacing of the data on the x-axis. integral_simpson_est.append(simps(x, dx=1)) dead_values = list([None] * interval) dead_values.extend(integral_simpson_est) dead_values.reverse() return dead_values def random_undersampling(dataset): """ Randomly deleting rows that contain the majority class until the number in the majority class is equal with the number in the minority class. """ minority_set = dataset[dataset.Trend == -1.0] majority_set = dataset[dataset.Trend == 1.0] # print(dataset.Trend.value_counts()) # If minority set larger than majority set, swap if len(minority_set) > len(majority_set): minority_set, majority_set = majority_set, minority_set # Downsample majority class majority_downsampled = resample(majority_set, replace=False, # sample without replacement n_samples=len(minority_set), # to match minority class random_state=123) # reproducible results # Combine minority class with downsampled majority class return pd.concat([majority_downsampled, minority_set]) def get_popularity(headlines): # TODO: Randomize user-agents OR figure out how to handle popups if "Tweets" not in headlines.columns: counts = [] driver = webdriver.Chrome() for index, row in headlines.iterrows(): try: driver.get(row["URL"]) time.sleep(3) twitter_containers = driver.find_elements_by_xpath("//li[@class='twitter']") count = twitter_containers[0].find_elements_by_xpath("//span[@class='count']") if count[0].text == "": counts.append(1) else: counts.append(int(count[0].text)) except: counts.append(1) # QUESTION: Should it be None? headlines["Tweets"] = (pd.Series(counts)).values print(counts) return headlines def balanced_split(dataset, test_size): """ Randomly splits dataset into balanced training and test sets. """ print("\tSplitting data into *balanced* training and test sets") # Use sklearn.train_test_split to split original dataset into x_train, y_train, x_test, y_test numpy arrays x_train, x_test, y_train, y_test = train_test_split(dataset.drop(["Date", "Trend"], axis=1).values, dataset["Trend"].values, test_size=test_size, random_state=RANDOM_STATE) # Combine x_train and y_train (numpy arrays) into a single dataframe, with column labels train = pd.DataFrame(data=x_train, columns=dataset.columns[1:-1]) train["Trend"] = pd.Series(y_train) # Do the same for x_test and y__test test = pd.DataFrame(data=x_test, columns=dataset.columns[1:-1]) test["Trend"] = pd.Series(y_test) # Apply random undersampling to both data frames train_downsampled = random_undersampling(train) test_downsampled = random_undersampling(test) train_trend = train_downsampled["Trend"].values test_trend = test_downsampled["Trend"].values train_trimmed = train_downsampled.drop(["Trend"], axis=1).values test_trimmed = test_downsampled.drop(["Trend"], axis=1).values return train_trimmed, test_trimmed, train_trend, test_trend def unbalanced_split(dataset, test_size): """ Randomly splits dataset into unbalanced training and test sets. """ print("\tSplitting data into *unbalanced* training and test sets") dataset = dataset.drop("Date", axis=1) output = train_test_split(dataset.drop("Trend", axis=1).values, dataset["Trend"].values, test_size=test_size, random_state=RANDOM_STATE) return output # Main # def calculate_indicators(ohlcv): """ Extracts technical indicators from OHLCV data. """ print("\tCalculating technical indicators") ohlcv = ohlcv.drop(["Volume (BTC)", "Weighted Price"], axis=1) ohlcv.columns = ["Date", "Open", "High", "Low", "Close", "Volume"] temp_ohlcv = ohlcv.copy() # Converts ISO 8601 timestamps to UNIX unix_times = [int((dp.parse(temp_ohlcv.iloc[index]["Date"])).strftime("%s")) for index in range(temp_ohlcv.shape[0])] temp_ohlcv["Date"] = (pd.Series(unix_times)).values # Converts column headers to lowercase and sorts rows in chronological order temp_ohlcv.columns = ["date", "open", "high", "low", "close", "volume"] temp_ohlcv = temp_ohlcv.iloc[::-1] # Rate of Change Ratio rocr3 = ((Indicator(temp_ohlcv, "ROCR", 3)).getHistorical())[::-1] rocr6 = ((Indicator(temp_ohlcv, "ROCR", 6)).getHistorical())[::-1] # Average True Range atr = ((Indicator(temp_ohlcv, "ATR", 14)).getHistorical())[::-1] # On-Balance Volume obv = ((Indicator(temp_ohlcv, "OBV")).getHistorical())[::-1] # Triple Exponential Moving Average trix = ((Indicator(temp_ohlcv, "TRIX", 20)).getHistorical())[::-1] # Momentum mom1 = ((Indicator(temp_ohlcv, "MOM", 1)).getHistorical())[::-1] mom3 = ((Indicator(temp_ohlcv, "MOM", 3)).getHistorical())[::-1] # Average Directional Index adx14 = ((Indicator(temp_ohlcv, "ADX", 14)).getHistorical())[::-1] adx20 = ((Indicator(temp_ohlcv, "ADX", 20)).getHistorical())[::-1] # Williams %R willr = ((Indicator(temp_ohlcv, "WILLR", 14)).getHistorical())[::-1] # Relative Strength Index rsi6 = ((Indicator(temp_ohlcv, "RSI", 6)).getHistorical())[::-1] rsi12 = ((Indicator(temp_ohlcv, "RSI", 12)).getHistorical())[::-1] # Moving Average Convergence Divergence macd, macd_signal, macd_hist = (Indicator(temp_ohlcv, "MACD", 12, 26, 9)).getHistorical() macd, macd_signal, macd_hist = macd[::-1], macd_signal[::-1], macd_hist[::-1] # Exponential Moving Average ema6 = ((Indicator(temp_ohlcv, "MA", 6, 1)).getHistorical())[::-1] ema12 = ((Indicator(temp_ohlcv, "MA", 12, 1)).getHistorical())[::-1] # Append indicators to the input datasets min_length = min(len(mom1), len(mom3), len(adx14), len(adx20), len(willr), len(rsi6), len(rsi12), len(macd), len(macd_signal), len(macd_hist), len(ema6), len(ema12), len(rocr3), len(rocr6), len(atr), len(obv), len(trix)) ohlcv = ohlcv[:min_length].drop(["Open", "High", "Low"], axis=1) ohlcv["MOM (1)"], ohlcv["MOM (3)"], ohlcv["ADX (14)"] = (pd.Series(mom1[:min_length])).values, (pd.Series(mom3[:min_length])).values, (pd.Series(adx14[:min_length])).values ohlcv["ADX (20)"], ohlcv["WILLR"], ohlcv["RSI (6)"] = (pd.Series(adx20[:min_length])).values, (pd.Series(willr[:min_length])).values, (pd.Series(rsi6[:min_length])).values ohlcv["RSI (12)"], ohlcv["MACD"], ohlcv["MACD (Signal)"] = (pd.Series(rsi12[:min_length])).values, (pd.Series(macd[:min_length])).values, (pd.Series(macd_signal[:min_length])).values ohlcv["MACD (Historical)"], ohlcv["EMA (6)"], ohlcv["EMA (12)"] = (pd.Series(macd_hist[:min_length])).values, (pd.Series(ema6[:min_length])).values, (
pd.Series(ema12[:min_length])
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda:
Series([1, 2, 3])
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.center(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.center(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) result = values.str.split('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.split('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.split('_', expand=False) tm.assert_series_equal(result, exp) # regex split values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.split('[,_]') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) def test_rsplit(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.rsplit('__') tm.assert_series_equal(result, exp) result = values.str.rsplit('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.rsplit('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA,
u('f_g_h')
pandas.compat.u
import datetime from pathlib import Path import numpy as np import pandas as pd import pytest from pointcloudset import Dataset, PointCloud @pytest.fixture() def testdata_path() -> Path: return Path(__file__).parent.absolute() / "testdata" @pytest.fixture() def testbag1(): return Path(__file__).parent.absolute() / "testdata/test.bag" @pytest.fixture() def testlas1(): return Path(__file__).parent.absolute() / "testdata/las_files/diamond.las" @pytest.fixture() def testset(testbag1): return Dataset.from_file(testbag1, topic="/os1_cloud_node/points", keep_zeros=False) @pytest.fixture() def testset_withzero(testbag1): return Dataset.from_file(testbag1, topic="/os1_cloud_node/points", keep_zeros=True) @pytest.fixture() def testpointcloud(testset): return testset[1] @pytest.fixture() def testframe0(testset): return testset[0] @pytest.fixture() def testpointcloud_withzero(testset_withzero): return testset_withzero[1] @pytest.fixture() def testpointcloud_mini_df(): columns = [ "x", "y", "z", "intensity", "t", "reflectivity", "ring", "noise", "range", ] np.random.seed(5) df1 = pd.DataFrame(np.zeros(shape=(1, len(columns))), columns=columns) df2 = pd.DataFrame(np.ones(shape=(1, len(columns))), columns=columns) df3 = pd.DataFrame(-1.0 * np.ones(shape=(1, len(columns))), columns=columns) df4 = pd.DataFrame( np.random.randint(0, 1000, size=(5, len(columns))) * np.random.random(), columns=columns, ) return pd.concat([df1, df2, df3, df4]).reset_index(drop=True) @pytest.fixture() def reference_data_with_zero_dataframe(): filename = ( Path(__file__).parent.absolute() / "testdata/testpointcloud_withzero_dataframe.pkl" ) return pd.read_pickle(filename) @pytest.fixture() def reference_pointcloud_withzero_dataframe(): filename = ( Path(__file__).parent.absolute() / "testdata/testpointcloud_withzero_pointcloud.pkl" ) return
pd.read_pickle(filename)
pandas.read_pickle
import pymanda import pandas as pd import numpy as np import warnings """ ChoiceData --------- A container for a DataFrame that maintains relevant columns for mergers and acquisitions analyses """ class ChoiceData(): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Additionally, has parameters to identify variables of interest for calculating competition metrics using customer level data Parameters ---------- data : Non-Empty pandas.core.frame.DataFrame object choice_var : String of Column Name Column name that identifies the "choice" of each customer corp_var : String of Column Name, default None Column Name that identifies a higher level classification of Choice geog_var : String of Column Name, default None Column name that identifies a geography for Customer wght_var : String of Column Name, default None Column name that identifies weight for customer level Examples -------- Constructing ChoiceData from a DataFrame. >>> choices = ['a' for x in range(100)] >>> data = pandas.DataFrame({'choice': choices}) >>> cd = pymanda.ChoiceData(data, 'choice') """ def __init__( self, data, choice_var, corp_var= None, geog_var= None, wght_var= None): if corp_var is None: corp_var = choice_var self.params = {'choice_var' : choice_var, 'corp_var' : corp_var, 'geog_var' : geog_var, 'wght_var' : wght_var} self.data = data self.choice_var = choice_var self.corp_var = corp_var self.geog_var = geog_var self.wght_var = wght_var if type(data) != pd.core.frame.DataFrame: raise TypeError ('''Expected type pandas.core.frame.DataFrame Got {}'''.format(type(data))) if data.empty: raise ValueError ('''Dataframe is Empty''') defined_params = [x for x in [choice_var, corp_var, geog_var, wght_var] if x is not None] for param in defined_params: if param not in data.columns: raise KeyError ('''{} is not a column in Dataframe'''.format(param)) for nonull in [choice_var, corp_var]: if len(data[data['choice'] == ''].index) != 0: raise ValueError ('''{} has missing values'''.format(nonull)) def corp_map(self): """ Utility fuction to map corporation and choices in self.data Returns ------- corp_map : pandas.core.frame.DataFrame 2 column data frame with corporation name and choice names. """ if self.corp_var == self.choice_var: raise RuntimeError('''corp_map should only be called when self.corp_var is defined and different than self.choice_var''') corp_map = self.data.groupby([self.corp_var, self.choice_var]).count() corp_map = corp_map.reset_index() corp_map = corp_map[[self.corp_var, self.choice_var]] return corp_map def estimate_psa(self, centers, threshold=[.75, .9]): """ Return a dictionary idenftifying geographies in a choice's Primary Service Area (PSA) at a given threshold. Dictionary keys are labeled as "{center}_{threshold}" and values are a list of geographies falling within the threshold Default will use self.corp_var as choice and self.wght_var for count Parameters ---------- centers: List of choices to find threshold : float or list of floats, Threshold or levels of thresholds to find the PSA for each choice in centers. Default calculates 75% and 90% PSAs. Returns ------- Dictionary Dictionary keys are labeled as "{center}_{threshold}" and values are a list of geographies falling within the threshold Examples -------- >>> choices = ['a' for x in range(100)] >>> zips = [1 for x in range(20)] >>> zips += [2 for x in range(20)] >>> zips += [3 for x in range(20)] >>> zips += [4 for x in range(20)] >>> zips += [5 for x in range(20)] >>> data = pd.DataFrame({'choice': choices, 'geography': zips}) >>> cd = ChoiceData(data, 'choice', geog_var = 'geography') >>> cd.estimate_psa(['a']) {'a_0.75': [1, 2, 3, 4], 'a_0.9': [1, 2, 3, 4, 5]} """ if self.geog_var is None: raise KeyError ("geog_var is not defined") if type(threshold) != list: threshold = [threshold] if type(centers) != list: centers = [centers] for center in centers: if not self.data[self.corp_var].isin([center]).any(): raise ValueError ("{cen} is not in {corp}".format(cen=center, corp=self.corp_var)) for alpha in threshold: if type(alpha) != float: raise TypeError ('''Expected threshold to be type float. Got {}'''.format(type(alpha))) if not 0 < alpha <= 1: raise ValueError ('''Threshold value of {} is not between 0 and 1''').format(alpha) df = self.data.copy(deep=True) if self.wght_var is None: df['count'] = 1 weight = 'count' else: weight = self.wght_var df = df[[self.corp_var, self.geog_var, weight]] df = df.groupby([self.corp_var, self.geog_var]).sum().reset_index() #calculate counts by geography df['group_total'] = df[weight].groupby(df[self.corp_var]).transform('sum') #get group totals df['share'] = df[weight] / df['group_total'] # calculate share df = df.groupby([self.corp_var, self.geog_var]).sum() df = df.sort_values([self.corp_var, weight], ascending=False) df_start = df.groupby(level=0).cumsum().reset_index() output_dict = {} for alpha in threshold: df = df_start df['keep'] = np.where(df['share'].shift().fillna(1).replace(1, 0) < alpha, 1, 0) df = df[(df[self.corp_var].isin(centers)) & (df['keep']==1)] for center in centers: in_psa = list(df[self.geog_var][df[self.corp_var]==center]) in_psa.sort() output_dict.update({"{cen}_{a}".format(cen=center, a=alpha) : in_psa}) return output_dict def restriction_checks(self, restriction): """ Checks for custom restrictions """ if type(restriction) != pd.core.series.Series: raise TypeError ("Expected type pandas.core.series.Series. Got {}".format(type(restriction))) if restriction.dtype != np.dtype('bool'): raise TypeError ("Expected dtype('bool'). Got {}".format(restriction.dtype)) def restrict_data(self, restriction): """ Restrict the data is self.data using an inline series Parameters ---------- restriction: pandas.core.series.Series with dtyoe=Boolean Boolean series identifying which rows to keep given a restriction Examples -------- >>> choices = ['a' for x in range(10)] >>> zips = [1 for x in range(2)] >>> zips += [2 for x in range(2)] >>> zips += [3 for x in range(2)] >>> zips += [4 for x in range(2)] >>> zips += [5 for x in range(2)] >>> data = pd.DataFrame({'choice': choices, 'geography': zips}) >>> cd = ChoiceData(data, 'choice') >>> cd.data choice geography 0 a 1 1 a 1 2 a 2 3 a 2 4 a 3 5 a 3 6 a 4 7 a 4 8 a 5 9 a 5 >>> cd.restrict_data(data['geography'] != 5) >>> cd.data choice geography 0 a 1 1 a 1 2 a 2 3 a 2 4 a 3 5 a 3 6 a 4 7 a 4 """ self.restriction_checks(restriction) self.data = self.data[restriction] def calculate_shares(self, psa_dict=None, weight_var=None, restriction=None): """ Create Share Table of values in self.wght_var by self.choice_var Parameters ---------- psa_dict: dictionary dictionary of lists that contain values to be kept in self.geog_var If None, calculates shares for full data. weight_var : str, Optional Column Name in self.data to use as weight. Default is None, weighting every observation equally restriction: pandas.core.series.Series with dtyoe=Boolean Optional restriction to be applied to data before calculating shares Returns ------- Dictionary keys are the same as psa_dict if given or "Base Shares" values are corresponding pandas dataframes of the shares Examples -------- >>> choices = ['a' for x in range(30)] >>> choices += ['b' for x in range(20)] >>> choices += ['c' for x in range(20)] >>> choices += ['d' for x in range(5)] >>> choices += ['e' for x in range(25)] >>> df = pd.DataFrame({choice" : choices}) >>> cd = ChoiceData(df, "choice") >>> cd.calculate_shares() {'Base Shares': choice share 0 a 0.30 1 b 0.20 2 c 0.20 3 d 0.05 4 e 0.25} """ if type(psa_dict) != dict and psa_dict is not None: raise TypeError ("Expected type dict. Got {}".format(type(psa_dict))) if restriction is not None: self.restriction_checks(restriction) if weight_var is None: weight_var= self.wght_var if weight_var not in self.data.columns and weight_var is not None: raise KeyError("{} is not a Column in ChoiceData".format(weight_var)) if psa_dict is None: psa_dict= {'Base Shares': []} base_shares = True else: if self.geog_var is None: raise ValueError ("geog_var is not defined in ChoiceData") elif self.geog_var not in self.data.columns: raise KeyError("geog_var is not in ChoiceData") base_shares = False if self.corp_var == self.choice_var: group = [self.choice_var] else: group = [self.corp_var, self.choice_var] output_dict = {} for key in psa_dict.keys(): df = self.data.copy(deep=True) redefine_weight=False if weight_var is None: df['count'] = 1 weight_var = 'count' redefine_weight=True if restriction is not None: df = df[restriction] if not base_shares: for geo in psa_dict[key]: if not df[self.geog_var].isin([geo]).any(): raise ValueError ("{g} is not in {col}".format(g=geo, col=self.geog_var)) df = df[df[self.geog_var].isin(psa_dict[key])] df = df[group + [weight_var]] df_shares = (df.groupby(group).sum() / df[weight_var].sum()).reset_index() df_shares = df_shares.rename(columns = {weight_var: 'share'}) output_dict.update({key: df_shares}) if redefine_weight: weight_var = None return output_dict def shares_checks(self, df, share_col, data="Data"): """ Checks for columns that are supposed to contain shares Parameters ---------- df : pandas.core.frame.DataFrame() Dataframe containing share_col share_col : str Name of column in data frame to chekc. data : str, optional Name of parameter being checked for Error Message. The default is "Data". """ if share_col not in df.columns: raise KeyError("Column '{}' not in ChoiceData".format(share_col)) if (df[share_col] < 0).any(): raise ValueError ("Values of '{col}' in {d} contain negative values".format(col=share_col, d=data)) if df[share_col].sum() != 1: raise ValueError ("Values of '{col}' in {d} do not sum to 1".format(col=share_col, d=data)) def calculate_hhi(self, shares_dict, share_col="share", group_col=None): """ Calculates HHIs from precalculated shares at the corporation level Parameters ---------- shares_dict: dictionary of share tables share_col : Column name in dataframe, Optional column that holds float of shares. Default is 'share' group_col: Column name in dataframe, Optional column of names to calculate HHI on. Default is self.corp_var Returns ------- Dictionary keys are the same as shares_dict values are hhis Examples -------- >>> corps = ['x' for x in range(50)] >>> corps += ['y' for x in range(25)] >>> corps += ['z' for x in range(25)] >>> choices = ['a' for x in range(30)] >>> choices += ['b' for x in range(20)] >>> choices += ['c' for x in range(20)] >>> choices += ['d' for x in range(5)] >>> choices += ['e' for x in range(25)] >>> df = pd.DataFrame({"corporation": corps, "choice" : choices}) >>> cd = ChoiceData(df, "choice", corp_var="corporation") >>> shares = cd.calculate_shares() >>> cd.calculate_hhi(shares) {'Base Shares': 3750.0} """ if type(shares_dict) != dict: raise TypeError ("Expected type dict. Got {}".format(type(shares_dict))) if group_col is None: group_col = self.corp_var elif group_col not in self.data.columns: raise KeyError ('''"{}" is not a column in ChoiceData'''.format(group_col)) output_dict = {} for key in shares_dict.keys(): df = shares_dict[key] if type(df) != pd.core.frame.DataFrame: raise TypeError ('''Expected type pandas.core.frame.DataFrame Got {}'''.format(type(df))) self.shares_checks(df, share_col, data=key) df = df.groupby(group_col).sum() hhi = (df[share_col] * df[share_col]).sum()*10000 output_dict.update({key: hhi}) return output_dict def hhi_change(self, trans_list, shares, trans_var=None, share_col="share"): """ Calculates change in Herfindahl-Hirschman Index (HHI) from combining a set of choices. Parameters ---------- trans_list : list list of choices that will be combined for calculating combined hhi. shares : dict dictoinary of dataframes of shares to calculate HHIs on. trans_var : str, optional Column name containging objects in trans_list. The default (None) uses self.corp_var. share_col : str, optional Column name containing values of share. The default is "share". Returns ------- dictionary key(s) will match shares parameter values will be a list of [pre-merge HHI, post-merge HHI, HHI change]. """ if type(trans_list) != list: raise TypeError ('''trans_list expected list. got {}'''.format(type(trans_list))) if len(trans_list) < 2: raise ValueError ('''trans_list needs atleast 2 elements to compare HHI change''') if trans_var is None: trans_var = self.corp_var for elm in trans_list: if not self.data[trans_var].isin([elm]).any(): raise ValueError ('''{element} is not an element in column {col}'''.format(element=elm, col=trans_var)) output_dict = {} for key in shares.keys(): df = shares[key] self.shares_checks(df, share_col, data=key) if trans_var not in df.columns: raise KeyError ('''{var} is not column name in {data}'''.format(var=trans_var, data=key)) pre_hhi = self.calculate_hhi({"x" : df}, share_col, group_col=trans_var)['x'] post_df = df post_df[trans_var] = post_df[trans_var].where(~post_df[trans_var].isin(trans_list), 'combined') post_hhi = self.calculate_hhi({"x": post_df}, share_col, group_col=trans_var)['x'] hhi_change = post_hhi - pre_hhi output_dict.update({key : [pre_hhi, post_hhi, hhi_change]}) return output_dict class DiscreteChoice(): """ DiscreteChoice --------- A solver for estimating discrete choice models and post-estimation analysis. Parameters ---------- solver: str of solver to use copy_x: Bool, Optional whether to create copies of data in calculations. Default is True. coef_order: list, Optional coefficient order used for solver 'semiparametric' verbose: Boolean, Optional Verbosity in solvers. Default is False min_bin: int or float, Optional Minimum bin size used for solver 'semiparametric' Examples -------- DiscreteChoice(solver='semiparametric', coef_order = ['x1', 'x2', 'x3']) """ def __init__( self, solver='semiperametric', copy_x=True, coef_order= None, verbose= False, min_bin= 25): self.params = {'solver' : solver, 'copy_x' : True, 'coef_order' : coef_order, 'verbose': verbose, 'min_bin': min_bin} self.solver = solver self.copy_x = copy_x self.coef_order = coef_order self.verbose = verbose self.min_bin = min_bin current_solvers = ['semiparametric'] if solver not in current_solvers: raise ValueError ('''{a} is not supported solver. Solvers currently supported are {b}'''.format(a=solver, b=current_solvers)) if type(copy_x) is not bool: raise ValueError ('''{} is not bool type.'''.format(copy_x)) if type(coef_order) != list: raise ValueError ('''coef_order expected to be list. got {}'''.format(type(coef_order))) if len(coef_order) ==0: raise ValueError ('''coef_order must be a non-empty list''') if type(verbose) is not bool: raise ValueError ('''{} is not bool type.'''.format(verbose)) if type(min_bin) != float and type(min_bin) != int: raise ValueError('''min_bin must be a numeric value greater than 0''') if min_bin <= 0: raise ValueError('''min_bin must be greater than 0''') def check_is_fitted(self): """ Check that an Instance has been fitted """ try: self.coef_ except AttributeError: raise RuntimeError('''Instance of DiscreteChoice is not fitted''') def fit(self, cd, use_corp=False): """ Fit Estimator using ChoiceData and specified solver Parameters ---------- cd : pymanda.ChoiceData Contains data to be fitted using DiscreteChoice use_corp: Boolean Whether to fit using corp_var as choice. Default is False. """ # if type(cd) != pymanda.ChoiceData: # raise TypeError ('''Expected type pymanda.choices.ChoiceData Got {}'''.format(type(cd))) for coef in self.coef_order: if coef not in cd.data.columns: raise KeyError ('''{} is not a column in ChoiceData'''.format(coef)) if use_corp: choice= cd.corp_var else: choice= cd.choice_var # currently only supports 'semiparametric' solver. Added solvers should use elif statement if self.solver=='semiparametric': X = cd.data[self.coef_order + [choice]].copy() if cd.wght_var is not None: X['wght'] = cd.data[cd.wght_var] else: X['wght'] = 1 ## group observations X['grouped'] = False X['group'] = "" for i in range(4, len(self.coef_order)+4): bin_by_cols = X.columns[0:-i].to_list() if self.verbose: print(bin_by_cols) screen = X[~X['grouped']].groupby(bin_by_cols).agg({'wght':['sum']}) screen = (screen >= self.min_bin) screen.columns = screen.columns.droplevel(0) X = pd.merge(X, screen, how='left', left_on=bin_by_cols,right_index=True) X['sum'] = X['sum'].fillna(True) # update grouped and group X['group'] = np.where((~X['grouped']) & (X['sum']), X[bin_by_cols].astype(str).agg('\b'.join,axis=1), X['group']) X['grouped'] = X['grouped'] | X['sum'] X = X.drop('sum', axis=1) # group ungroupables X.loc[X['group']=="",'group'] = "ungrouped" # converts from observations to group descriptions X = X[[choice] + ['group', 'wght']].pivot_table(index='group', columns=choice, aggfunc='sum', fill_value=0) #convert from counts to shares X['rowsum'] = X.sum(axis=1) for x in X.columns: X[x] = X[x] / X['rowsum'] X = X.drop('rowsum', axis=1) X.columns = [col[1] for col in X.columns] X= X.reset_index() self.coef_ = X def predict(self, cd): """ Use Estimated model to predict individual choice Parameters ---------- cd : pymanda.ChoiceData ChoiceData to be predicted on. Returns ------- choice_probs : pandas.core.frame.DataFrame Dataframe of predictions for each choice. When solver ='semiparametric', each row contains probabilities of going to any of the choices. """ # if type(cd) != pymanda.ChoiceData: # raise TypeError ('''Expected type pymanda.choices.ChoiceData Got {}'''.format(type(cd))) self.check_is_fitted() if self.solver == 'semiparametric': #group based on groups X = cd.data[self.coef_order].copy() X['group'] = "" for n in range(len(self.coef_order)): X['g'] = X[self.coef_order[:len(self.coef_order) - n]].astype(str).agg('\b'.join,axis=1) X['group'] = np.where((X['g'].isin(self.coef_['group'])) & (X['group'] == ""), X['g'], X['group']) X.loc[X['group']=="",'group'] = "ungrouped" X = X['group'] choice_probs = pd.merge(X, self.coef_, how='left', on='group') choice_probs = choice_probs.drop(columns=['group']) return choice_probs def diversion(self, cd, choice_probs, div_choices, div_choices_var=None): ''' Calculate diversions given a DataFrame of observations with diversion probabilities Parameters ---------- cd: pymanda.ChoiceData ChoiceData to calculate diversions on. choice_probs : pandas.core.frame.DataFrame DataFrame of observations with diversion probabilities. div_choices : list list of choices to calculate diversions for. Returns ------- div_shares : pandas.core.frame.DataFrame Columns are name of choice being diverted, rows are shares of diversion. ''' # if type(cd) != pymanda.ChoiceData: # raise TypeError ('''Expected type pymanda.choices.ChoiceData Got {}'''.format(type(cd))) if type(div_choices) != list and div_choices is not None: raise TypeError('''choices is expected to be list. Got {}'''.format(type(div_choices))) if len(div_choices) == 0: raise ValueError ('''choices must have atleast a length of 1''') if type(choice_probs) != pd.core.frame.DataFrame: raise TypeError ('''Expected Type pandas.core.frame.DataFrame. Got {}'''.format(type(choice_probs))) if div_choices_var is None: choice = cd.choice_var if cd.corp_var != cd.choice_var: corp_map = cd.corp_map() elif div_choices_var not in cd.data.columns: raise KeyError("""div_choices_var not in cd.data""") else: choice = div_choices_var if len(choice_probs) != len(cd.data): raise ValueError('''length of choice_probs and cd.data should be the same''') choice_probs['choice'] = cd.data[choice] all_choices = list(choice_probs['choice'].unique()) for c in all_choices: if c not in choice_probs.columns: raise KeyError ('''{} is not a column in choice_probs'''.format(c)) if cd.wght_var is not None: choice_probs['wght'] = cd.data[cd.wght_var] else: choice_probs['wght'] = 1 div_shares =
pd.DataFrame(index=all_choices)
pandas.DataFrame
""" Created by adam on 11/8/16 """ __author__ = 'adam' import pandas as pd import environment as env import Models.TweetORM as TweetORM pd.options.display.max_rows = 999 # let pandas dataframe listings go long def isRetweet(text): """ Classifies whether a tweet is a retweet based on how it starts """ if text[:4] == "RT @": return True if text[:4] == "MT @": return True return False def isReply(tweetObject): if tweetObject.in_reply_to_screen_name != None: return True if tweetObject.text[0] == '@': return True return False search_terms = ['Spoonie', 'CRPS', 'Migraine', 'RSD', 'Fibro', 'Fibromyalgia', 'Vulvodynia', 'ChronicPain', 'pain', 'endometriosis', 'neuropathy', 'arthritis', 'neuralgia'] class Condition(object): """ Data holder """ def __init__(self, name, filepath=env.DATA_FOLDER): self.name = name self.datafile = "%s/%s.csv" % (filepath, self.name) self.indexer_ids = set([]) self.userids = set([]) self.users = '' def get_total(self): """ Returns the total number of users """ return len(self.userids) def get_maxid(self): """ Returns the highest indexerid """ return max(list(self.indexer_ids)) def add_userid(self, userid): """ Add userid to list """ self.userids.update([userid]) def add_indexer_id(self, indexer_id): """ Add indexerid """ self.indexer_ids.update([indexer_id]) class UserGetter(object): """ Retrieves user info and builds dataframe of users when given list of ids """ def __init__(self, sql_alchemy_engine): self.engine = sql_alchemy_engine def _get_user(self, searchterm, userid): query = "SELECT userID, indexer, '%s' AS term, description AS profile FROM users WHERE userid = %s" % ( searchterm, userid) return pd.read_sql_query(query, self.engine) def get_from_list(self, searchterm, userids): """ Args: searchterm: String that was searched for userids: List of userids to retrieve Returns: Dataframe with labels userID, indexer, term, profile """ frames = [] for uid in userids: frames.append(self._get_user(searchterm, uid)) return
pd.concat(frames)
pandas.concat
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, 'a', 'a']}) expected = DataFrame({'A': ['a', np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by='A').reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame(dict(A=date_range('2012-1-1', periods=3, freq='D'), B=date_range('2012-1-2', periods=3, freq='D'), C=Timestamp('20120101') - timedelta(minutes=5, seconds=5))) diffs = DataFrame(dict(A=df['A'] - df['C'], B=df['A'] - df['B'])) # min result = diffs.min() assert result[0] == diffs.loc[0, 'A'] assert result[1] == diffs.loc[0, 'B'] result = diffs.min(axis=1) assert (result == diffs.loc[0, 'B']).all() # max result = diffs.max() assert result[0] == diffs.loc[2, 'A'] assert result[1] == diffs.loc[2, 'B'] result = diffs.max(axis=1) assert (result == diffs['A']).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df['A'] - df['C'], B=df['B'] - df['A'])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed['C'] = 'foo' mixed['D'] = 1 mixed['E'] = 1. mixed['F'] = Timestamp('20130101') # results in an object array result = mixed.min() expected = Series([pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), 'foo', 1, 1.0, Timestamp('20130101')], index=mixed.columns) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[['A', 'B']].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[['A', 'B']].min() expected = Series([timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=['A', 'B']) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame({'time': date_range('20130102', periods=5), 'time2': date_range('20130105', periods=5)}) df['off1'] = df['time2'] - df['time'] assert df['off1'].dtype == 'timedelta64[ns]' df['off2'] = df['time'] - df['time2'] df._consolidate_inplace() assert df['off1'].dtype == 'timedelta64[ns]' assert df['off2'].dtype == 'timedelta64[ns]' def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize('method, unit', [ ('sum', 0), ('prod', 1), ]) def test_sum_prod_nanops(self, method, unit): idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(df, method)(min_count=0) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') tm.assert_series_equal(result, expected) result = getattr(df.iloc[1:], method)(min_count=1) expected = pd.Series([unit, np.nan, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count > 1 df = pd.DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5}) result = getattr(df, method)(min_count=5) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) result = getattr(df, method)(min_count=6) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) def test_sum_nanops_timedelta(self): # prod isn't defined on timedeltas idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]}) df2 = df.apply(pd.to_timedelta) # 0 by default result = df2.sum() expected = pd.Series([0, 0, 0], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = df2.sum(min_count=0) tm.assert_series_equal(result, expected) # min_count=1 result = df2.sum(min_count=1) expected = pd.Series([0, 0, np.nan], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) def test_sum_object(self, float_frame): values = float_frame.values.astype(int) frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns) deltas = frame * timedelta(1) deltas.sum() def test_sum_bool(self, float_frame): # ensure this works, bug report bools = np.isnan(float_frame) bools.sum(1) bools.sum(0) def test_mean_corner(self, float_frame, float_string_frame): # unit test when have object data the_mean = float_string_frame.mean(axis=0) the_sum = float_string_frame.sum(axis=0, numeric_only=True)
tm.assert_index_equal(the_sum.index, the_mean.index)
pandas.util.testing.assert_index_equal
"""Get data into JVM for prediction and out again as Spark Dataframe""" import logging logger = logging.getLogger('nlu') import pyspark from pyspark.sql.functions import monotonically_increasing_id import numpy as np import pandas as pd from pyspark.sql.types import StringType, StructType, StructField class DataConversionUtils(): # Modin aswell but optional, so we dont import the type yet supported_types = [pyspark.sql.DataFrame, pd.DataFrame, pd.Series, np.ndarray] @staticmethod def except_text_col_not_found(cols): print( f'Could not find column named "text" in input Pandas Dataframe. Please ensure one column named such exists. Columns in DF are : {cols} ') @staticmethod def sdf_to_sdf(data, spark_sess, raw_text_column='text'): """No casting, Spark to Spark. Just add index col""" logger.info(f"Casting Spark DF to Spark DF") output_datatype = 'spark' data = data.withColumn('origin_index', monotonically_increasing_id().alias('origin_index')) stranger_features = [] if raw_text_column in data.columns: # store all stranger features if len(data.columns) > 1: stranger_features = list(set(data.columns) - set(raw_text_column)) else: DataConversionUtils.except_text_col_not_found(data.columns) return data, stranger_features, output_datatype @staticmethod def pdf_to_sdf(data, spark_sess, raw_text_column='text'): """Casting pandas to spark and add index col""" logger.info(f"Casting Pandas DF to Spark DF") output_datatype = 'pandas' stranger_features = [] sdf = None # set first col as text column if there is none if raw_text_column not in data.columns: data.rename(columns={data.columns[0]: 'text'}, inplace=True) data['origin_index'] = data.index if raw_text_column in data.columns: if len(data.columns) > 1: # make Nans to None, or spark will crash data = data.where(pd.notnull(data), None) data = data.dropna(axis=1, how='all') stranger_features = list(set(data.columns) - set(raw_text_column)) sdf = spark_sess.createDataFrame(data) else: DataConversionUtils.except_text_col_not_found(data.columns) return sdf, stranger_features, output_datatype @staticmethod def pds_to_sdf(data, spark_sess, raw_text_column='text'): """Casting pandas series to spark and add index col. # for df['text'] colum/series passing casting follows pseries->pdf->spark->pd """ logger.info(f"Casting Pandas Series to Spark DF") output_datatype = 'pandas_series' sdf = None schema = StructType([StructField(raw_text_column, StringType(), True)]) data = pd.DataFrame(data).dropna(axis=1, how='all') # If series from a column is passed, its column name will be reused. if raw_text_column not in data.columns and len(data.columns) == 1: data[raw_text_column] = data[data.columns[0]] else: logger.info( f'INFO: NLU will assume {data.columns[0]} as label column since default text column could not be find') data[raw_text_column] = data[data.columns[0]] data['origin_index'] = data.index if raw_text_column in data.columns: sdf = spark_sess.createDataFrame(pd.DataFrame(data[raw_text_column]), schema=schema) else: DataConversionUtils.except_text_col_not_found(data.columns) if 'origin_index' not in sdf.columns: sdf = sdf.withColumn('origin_index', monotonically_increasing_id().alias('origin_index')) return sdf, [], output_datatype @staticmethod def np_to_sdf(data, spark_sess, raw_text_column='text'): """Casting numpy array to spark and add index col. This is a bit inefficient. Casting follow np->pd->spark->pd. We could cut out the first pd step """ logger.info(f"Casting Numpy Array to Spark DF") output_datatype = 'numpy_array' if len(data.shape) != 1: ValueError( f"Exception : Input numpy array must be 1 Dimensional for prediction.. Input data shape is{data.shape}") sdf = spark_sess.createDataFrame(pd.DataFrame({raw_text_column: data, 'origin_index': list(range(len(data)))})) return sdf, [], output_datatype @staticmethod def str_to_sdf(data, spark_sess, raw_text_column='text'): """Casting str to spark and add index col. This is a bit inefficient. Casting follow # inefficient, str->pd->spark->pd , we can could first pd""" logger.info(f"Casting String to Spark DF") output_datatype = 'string' sdf = spark_sess.createDataFrame(pd.DataFrame({raw_text_column: data, 'origin_index': [0]}, index=[0])) return sdf, [], output_datatype @staticmethod def str_list_to_sdf(data, spark_sess, raw_text_column='text'): """Casting str list to spark and add index col. This is a bit inefficient. Casting follow # # inefficient, list->pd->spark->pd , we can could first pd""" logger.info(f"Casting String List to Spark DF") output_datatype = 'string_list' if all(type(elem) == str for elem in data): sdf = spark_sess.createDataFrame( pd.DataFrame({raw_text_column: pd.Series(data), 'origin_index': list(range(len(data)))})) else: ValueError("Exception: Not all elements in input list are of type string.") return sdf, [], output_datatype @staticmethod def fallback_modin_to_sdf(data, spark_sess, raw_text_column='text'): """Casting potential Modin data to spark and add index col. # Modin tests, This could crash if Modin not installed """ logger.info(f"Casting Modin DF to Spark DF") sdf = None output_datatype = '' try: import modin.pandas as mpd if isinstance(data, mpd.DataFrame): data = pd.DataFrame(data.to_dict()) # create pandas to support type inference output_datatype = 'modin' data['origin_index'] = data.index if raw_text_column in data.columns: if len(data.columns) > 1: data = data.where(pd.notnull(data), None) # make Nans to None, or spark will crash data = data.dropna(axis=1, how='all') stranger_features = list(set(data.columns) - set(raw_text_column)) sdf = spark_sess.createDataFrame(data) else: DataConversionUtils.except_text_col_not_found(data.columns) if isinstance(data, mpd.Series): output_datatype = 'modin_series' data = pd.Series(data.to_dict()) # create pandas to support type inference data = pd.DataFrame(data).dropna(axis=1, how='all') data['origin_index'] = data.index index_provided = True if raw_text_column in data.columns: sdf = spark_sess.createDataFrame(data[['text']]) else: DataConversionUtils.except_text_col_not_found(data.columns) except: print( "If you use Modin, make sure you have installed 'pip install modin[ray]' or 'pip install modin[dask]' backend for Modin ") return sdf, [], output_datatype @staticmethod def to_spark_df(data, spark_sess, raw_text_column='text'): """Convert supported datatypes to SparkDF and extract extra data for prediction later on.""" try: if isinstance(data, pyspark.sql.dataframe.DataFrame): return DataConversionUtils.sdf_to_sdf(data, spark_sess, raw_text_column) elif isinstance(data, pd.DataFrame): return DataConversionUtils.pdf_to_sdf(data, spark_sess, raw_text_column) elif isinstance(data, pd.Series): return DataConversionUtils.pds_to_sdf(data, spark_sess, raw_text_column) elif isinstance(data, np.ndarray): return DataConversionUtils.np_to_sdf(data, spark_sess, raw_text_column) elif isinstance(data, str): return DataConversionUtils.str_to_sdf(data, spark_sess, raw_text_column) elif isinstance(data, list): return DataConversionUtils.str_list_to_sdf(data, spark_sess, raw_text_column) else: return DataConversionUtils.fallback_modin_to_sdf(data, spark_sess, raw_text_column) except: ValueError("Data could not be converted to Spark Dataframe for internal conversion.") @staticmethod def str_to_pdf(data,raw_text_column): logger.info(f"Casting String to Pandas DF") return pd.DataFrame({raw_text_column:[data]}).reset_index().rename(columns = {'index' : 'origin_index'} ), [], 'string' @staticmethod def str_list_to_pdf(data,raw_text_column): logger.info(f"Casting String List to Pandas DF") return pd.DataFrame({raw_text_column:data}).reset_index().rename(columns = {'index' : 'origin_index'} ), [], 'string_list' @staticmethod def np_to_pdf(data,raw_text_column): logger.info(f"Casting Numpy Array to Pandas DF") return pd.DataFrame({raw_text_column:data}).reset_index().rename(columns = {'index' : 'origin_index'} ), [], 'string_list' @staticmethod def pds_to_pdf(data,raw_text_column): return
pd.DataFrame({raw_text_column:data})
pandas.DataFrame
import datetime import os import sys import geopandas as gpd import numpy as np import pandas as pd from bokeh.io import output_file, save from bokeh.layouts import column from bokeh.models.widgets import Panel, Tabs from .plotting import PLOT_HEIGHT, PLOT_WIDTH, plot_map, plot_time_series from .utils import Data, get_data, logger, markdown_html today = datetime.date.today() def is_updated(filename): """ check if the file exist if yes, check if it's updated today """ if os.path.isfile(filename): creation_date = os.path.getmtime(filename) creation_date = datetime.datetime.fromtimestamp(creation_date) return creation_date.date() == today else: return False def ts_plots(ts_data_file): # read time series data and plot ts_data = ( pd.read_csv(ts_data_file) .assign(Date=lambda d:
pd.to_datetime(d.Date)
pandas.to_datetime
""" Monte Carlo-type tests for the BM model Note that that the actual tests that run are just regression tests against previously estimated values with small sample sizes that can be run quickly for continuous integration. However, this file can be used to re-run (slow) large-sample Monte Carlo tests. """ import numpy as np import pandas as pd import pytest from numpy.testing import assert_allclose from scipy.signal import lfilter from statsmodels.tsa.statespace import ( dynamic_factor_mq, sarimax, varmax, dynamic_factor) def simulate_k_factor1(nobs=1000): mod_sim = dynamic_factor.DynamicFactor(np.zeros((1, 4)), k_factors=1, factor_order=1, error_order=1) loadings = [1.0, -0.75, 0.25, -0.3, 0.5] p = np.r_[loadings[:mod_sim.k_endog], [10] * mod_sim.k_endog, 0.5, [0.] * mod_sim.k_endog] ix = pd.period_range(start='1935-01', periods=nobs, freq='M') endog = pd.DataFrame(mod_sim.simulate(p, nobs), index=ix) true = pd.Series(p, index=mod_sim.param_names) # Compute levels series (M and Q) ix = pd.period_range(start=endog.index[0] - 1, end=endog.index[-1], freq=endog.index.freq) levels_M = 1 + endog.reindex(ix) / 100 levels_M.iloc[0] = 100 levels_M = levels_M.cumprod() log_levels_M = np.log(levels_M) * 100 log_levels_Q = (np.log(levels_M).resample('Q', convention='e') .sum().iloc[:-1] * 100) # This is an alternative way to compute the quarterly levels # endog_M = endog.iloc[:, :3] # x = endog.iloc[:, 3:] # endog_Q = (x + 2 * x.shift(1) + 3 * x.shift(2) + 2 * x.shift(3) + # x.shift(4)).resample('Q', convention='e').last().iloc[:-1] / 3 # levels_Q = 1 + endog.iloc[:, 3:] / 100 # levels_Q.iloc[0] = 100 # Here is another alternative way to compute the quarterly levels # weights = np.array([1, 2, 3, 2, 1]) # def func(x, weights): # return np.sum(weights * x) # r = endog_M.rolling(5) # (r.apply(func, args=(weights,), raw=False).resample('Q', convention='e') # .last().iloc[:-1].tail()) # Compute the growth rate series that we'll actually run the model on endog_M = log_levels_M.iloc[:, :3].diff() endog_Q = log_levels_Q.iloc[:, 3:].diff() return endog_M, endog_Q, log_levels_M, log_levels_Q, true def simulate_k_factors3_blocks2(nobs=1000, idiosyncratic_ar1=False): # Simulate the first two factors ix = pd.period_range(start='2000-01', periods=1, freq='M') endog = pd.DataFrame(np.zeros((1, 2)), columns=['f1', 'f2'], index=ix) mod_f_12 = varmax.VARMAX(endog, order=(1, 0), trend='n') params = [0.5, 0.1, -0.2, 0.9, 1.0, 0, 1.0] f_12 = mod_f_12.simulate(params, nobs) # Simulate the third factor endog = pd.Series([0], name='f3', index=ix) mod_f_3 = sarimax.SARIMAX(endog, order=(2, 0, 0)) params = [0.7, 0.1, 1.] f_3 = mod_f_3.simulate(params, nobs) # Combine the factors f = pd.concat([f_12, f_3], axis=1) # Observed variables k_endog = 8 design = np.zeros((k_endog, 3)) design[0] = [1.0, 1.0, 1.0] design[1] = [0.5, -0.8, 0.0] design[2] = [1.0, 0.0, 0.0] design[3] = [0.2, 0.0, -0.1] design[4] = [0.5, 0.0, 0.0] design[5] = [-0.2, 0.0, 0.0] design[6] = [1.0, 1.0, 1.0] design[7] = [-1.0, 0.0, 0.0] rho = np.array([0.5, 0.2, -0.1, 0.0, 0.4, 0.9, 0.05, 0.05]) if not idiosyncratic_ar1: rho *= 0.0 eps = [lfilter([1], [1, -rho[i]], np.random.normal(size=nobs)) for i in range(k_endog)] endog = (design @ f.T).T + eps endog.columns = [f'y{i + 1}' for i in range(k_endog)] # True parameters tmp1 = design.ravel() tmp2 = np.linalg.cholesky(mod_f_12['state_cov']) tmp3 = rho if idiosyncratic_ar1 else [] true = np.r_[ tmp1[tmp1 != 0], mod_f_12['transition', :2, :].ravel(), mod_f_3['transition', :, 0], tmp2[np.tril_indices_from(tmp2)], mod_f_3['state_cov', 0, 0], tmp3, [1] * k_endog ] # Compute levels series (M and Q) ix =
pd.period_range(endog.index[0] - 1, endog.index[-1], freq='M')
pandas.period_range
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.Timestamp('2011-02-01')]) tm.assert_categorical_equal(res, exp) # all NaN res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical(['X'])]) exp = Categorical([np.nan, np.nan, 'X']) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical([np.nan, np.nan])]) exp = Categorical([np.nan, np.nan, np.nan, np.nan]) tm.assert_categorical_equal(res, exp) def test_union_categoricals_empty(self): # GH 13759 res = union_categoricals([pd.Categorical([]), pd.Categorical([])]) exp = Categorical([]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([]), pd.Categorical([1.0])]) exp = Categorical([1.0]) tm.assert_categorical_equal(res, exp) # to make dtype equal nanc = pd.Categorical(np.array([np.nan], dtype=np.float64)) res = union_categoricals([nanc, pd.Categorical([])]) tm.assert_categorical_equal(res, nanc) def test_union_categorical_same_category(self): # check fastpath c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4]) c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4]) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4]) tm.assert_categorical_equal(res, exp) c1 = Categorical(['z', 'z', 'z'], categories=['x', 'y', 'z']) c2 = Categorical(['x', 'x', 'x'], categories=['x', 'y', 'z']) res = union_categoricals([c1, c2]) exp = Categorical(['z', 'z', 'z', 'x', 'x', 'x'], categories=['x', 'y', 'z']) tm.assert_categorical_equal(res, exp) def test_union_categoricals_ordered(self): c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) res = union_categoricals([c1, c1]) exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_ignore_order(self): # GH 15219 c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) res = union_categoricals([c1, c1], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c1, c1], ignore_order=False) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, np.nan, 3, 2]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([4, 5, 6], ordered=True) result = union_categoricals([c1, c2], ignore_order=True) expected = Categorical([1, 2, 3, 4, 5, 6]) tm.assert_categorical_equal(result, expected) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_sort(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['a', 'b', 'c', 'x', 'y', 'z']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['a', 'b'], categories=['c', 'a', 'b']) c2 = Categorical(['b', 'c'], categories=['c', 'a', 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 = Categorical(['a', 'b'], categories=['a', 'b', 'c']) c2 = Categorical(['b', 'c'], categories=['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['x', np.nan]) c2 = Categorical([np.nan, 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', np.nan, np.nan, 'b'], categories=['b', 'x']) tm.assert_categorical_equal(result, expected) c1 = Categorical([np.nan]) c2 = Categorical([np.nan]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([np.nan, np.nan], categories=[]) tm.assert_categorical_equal(result, expected) c1 = Categorical([]) c2 = Categorical([]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([]) tm.assert_categorical_equal(result, expected) c1 = Categorical(['b', 'a'], categories=['b', 'a', 'c'], ordered=True) c2 = Categorical(['a', 'c'], categories=['b', 'a', 'c'], ordered=True) with pytest.raises(TypeError): union_categoricals([c1, c2], sort_categories=True) def test_union_categoricals_sort_false(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['a', 'b', 'b', 'c'], categories=['b', 'a', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 =
Categorical(['a', 'b'], categories=['a', 'b', 'c'])
pandas.Categorical
import pandas as pd import numpy as np import json import io import random def prepareSalesData(csvfile): #Read store 20 sales store20_sales = pd.read_csv(csvfile, index_col=None) # Create Year column for grouping data store20_sales['Date'] = pd.to_datetime(store20_sales['Date']) store20_sales['Year'] = store20_sales['Date'].dt.year #Sort weekly sales by department store20_sales = store20_sales.sort_values(['Date', 'Dept'], ascending=True).reset_index(drop=True) #Select columns of interest store20_mod_sales = store20_sales[['Year', 'Date', 'Weekly_Sales', 'Dept', 'IsHoliday']] #Select departments with 143 weekly sales store20_mod_sales = store20_mod_sales.groupby(store20_mod_sales.Dept, as_index=True).filter(lambda x: len(x['Weekly_Sales']) > 142) #Map department numbers to categorical variables dept_list = store20_mod_sales['Dept'].unique() cat_values = [i for i in range(0, len(dept_list))] df_dept =
pd.DataFrame(dept_list, index=cat_values, columns=['Dept'])
pandas.DataFrame
""" """ import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from src.utils.constants import REGIONS, LANDCOVER_PERIODS, DICTIONARY if __name__ == "__main__": # Project's root os.chdir("../..") fig, axs = plt.subplots(2, 2, figsize=(11.69, 4.14)) correlations =
pd.read_csv("results/csv/burned_area_landcover_change_corr.csv")
pandas.read_csv
#%% # -*- coding: utf-8 -*- import pandas as pd import numpy as np import networkx as nx import psycopg2 import datatable as dt import pickle import plotly.express as px # from plotly.subplots import make_subplots from collections import namedtuple, defaultdict from datetime import datetime import torch from torch.utils.data import TensorDataset, DataLoader from torch_geometric.data import Dataset, Data class DBconnector(): """ Connection to the database """ #host="172.18.0.1", port = 5555, database="base-ina", user="postgres", password="<PASSWORD>" def __init__(self, url: str, port: int, database: str, user: str, password: str) -> None: self.pg_conn = psycopg2.connect(host=url, port=port, database=database, user=user, password=password) def query(self, query:str): cur0 = self.pg_conn.cursor() cur0.execute(query) query_result = cur0.fetchall() return query_result class GraphEngine(): """ Initializes the graph of the whole model by doing the correponding queries to the database. """ def get_time_steps(self): time_range_query = f""" SELECT DISTINCT elapsed_time FROM events_nodes en WHERE event_id = '{self.event}' """ cur0 = self.conn.cursor() cur0.execute(time_range_query) time_range_query_result = cur0.fetchall() time_range_query_result = sorted([time for time in time_range_query_result]) time_range_query_result_formatted = sorted([time[0].strftime("%Y-%m-%d %H:%M:%S") for time in time_range_query_result]) return time_range_query_result, time_range_query_result_formatted def which_time_step(self): time_range = self.get_time_steps()[0] first_two = time_range[:2] time_step = (first_two[1][0] - first_two[0][0]).seconds // 60 return time_step, f'{time_step} minutes' def get_nodes(self): nodes_query = f""" SELECT node_id FROM nodes_coordinates nc WHERE nc.model_id = '{self.model}' """ cur1 = self.conn.cursor() cur1.execute(nodes_query) nodes_query_result = cur1.fetchall() nodes = sorted([node for nodes in nodes_query_result for node in nodes]) return nodes def nodal_linkage_query(self, elapsed_time:str, attrs:dict, persist:bool=True): link_attrs = ', '.join(['edge', 'link_id', 'from_node', 'to_node', 'elapsed_time']) + ', ' + ', '.join(attrs['edges']) nodal_linkage_query = f""" WITH links_event AS ( SELECT * FROM events_links el WHERE el.event_id = '{self.event}' AND el.elapsed_time = '{elapsed_time}' AND el.flow_rate != 0 ) , links_conduits_model AS ( SELECT * FROM links_conduits AS lc WHERE lc.model_id = '{self.model}' ) , links_orifices_model AS ( SELECT * FROM links_orifices AS lo WHERE lo.model_id = '{self.model}' ) , links_weirs_model AS ( SELECT * FROM links_weirs AS lw WHERE lw.model_id = '{self.model}' ) , links_types_event AS ( SELECT ( CASE WHEN links.flow_rate > 0 THEN concat(conduits.from_node, '->', conduits.to_node) ELSE concat(conduits.to_node, '->', conduits.from_node) END ) AS edge, links.link_id, ( CASE WHEN links.flow_rate > 0 THEN conduits.from_node ELSE conduits.to_node END ) AS from_node, ( CASE WHEN links.flow_rate < 0 THEN conduits.from_node ELSE conduits.to_node END ) AS to_node, elapsed_time, ABS(flow_rate) AS flow_rate , flow_depth, ABS(flow_velocity ) AS flow_velocity, froude_number, capacity, conduits.length, conduits.roughness FROM links_event AS links LEFT JOIN links_conduits_model AS conduits ON conduits.conduit_id = links.link_id WHERE from_node NOTNULL UNION SELECT ( CASE WHEN links.flow_rate > 0 THEN concat(orifices.from_node, '->', orifices.to_node) ELSE concat(orifices.to_node, '->', orifices.from_node) END ) AS edge, links.link_id, ( CASE WHEN links.flow_rate > 0 THEN orifices.from_node ELSE orifices.to_node END ) AS from_node, ( CASE WHEN links.flow_rate < 0 THEN orifices.from_node ELSE orifices.to_node END ) AS to_node, elapsed_time, ABS(flow_rate) AS flow_rate , flow_depth, ABS(flow_velocity ) AS flow_velocity, froude_number, capacity, 0 AS length, 0 AS roughness FROM links_event AS links LEFT JOIN links_orifices_model AS orifices ON orifices.orifice_id = links.link_id WHERE from_node NOTNULL UNION SELECT ( CASE WHEN links.flow_rate > 0 THEN concat(weirs.from_node, '->', weirs.to_node) ELSE concat(weirs.to_node, '->', weirs.from_node) END ) AS edge, links.link_id, ( CASE WHEN links.flow_rate > 0 THEN weirs.from_node ELSE weirs.to_node END ) AS from_node, ( CASE WHEN links.flow_rate < 0 THEN weirs.from_node ELSE weirs.to_node END ) AS to_node, elapsed_time, ABS(flow_rate) AS flow_rate , flow_depth, ABS(flow_velocity ) AS flow_velocity, froude_number, capacity, 0 AS length, 0 AS roughness FROM links_event AS links LEFT JOIN links_weirs_model AS weirs ON weirs.weir_id = links.link_id WHERE from_node NOTNULL ) -- , rain_mdata AS -- ( -- SELECT -- * -- FROM -- raingages_metadata rm -- WHERE -- rm.precipitation_id = '{self.precip}' -- ) -- , -- rain_tseries AS -- ( -- SELECT -- * -- FROM -- raingages_timeseries rt -- WHERE -- rt.precipitation_id = '{self.precip}' -- AND rt.elapsed_time = '{elapsed_time}' -- ) -- , -- rain AS -- ( -- SELECT -- rt.raingage_id, -- rt.elapsed_time, -- rt.VALUE, -- rm.format, -- rm.unit -- FROM -- raingages_timeseries rt -- JOIN -- raingages_metadata AS rm -- ON rt.precipitation_id = rm.precipitation_id -- ) , subc AS ( SELECT * FROM subcatchments s2 WHERE s2.model_id = '{self.model}' ) , event_subc AS ( SELECT * FROM events_subcatchments es WHERE es.event_id = '{self.event}' AND es.elapsed_time = '{elapsed_time}' ) , event_subc_outlet AS ( SELECT DISTINCT subc.subcatchment_id, subc.outlet, subc.raingage_id, elapsed_time, event_subc.rainfall FROM subc INNER JOIN event_subc ON subc.subcatchment_id = event_subc.subcatchment_id ) -- , -- event_subc_rainfall AS -- ( -- SELECT DISTINCT -- eso.*, -- rain.VALUE, -- rain.format, -- rain.unit -- FROM -- event_subc_outlet eso -- INNER JOIN -- rain -- ON rain.raingage_id = eso.raingage_id -- AND rain.elapsed_time = eso.elapsed_time -- ) , final AS ( SELECT DISTINCT lte.*, COALESCE (esr.rainfall, 0) AS rainfall--, -- COALESCE (esr.VALUE, 0) AS rainfall_acc FROM links_types_event lte LEFT JOIN event_subc_outlet esr ON lte.from_node = esr.outlet AND lte.elapsed_time = esr.elapsed_time ) SELECT {link_attrs} FROM final """ cur1 = self.conn.cursor() cur1.execute(nodal_linkage_query) nodal_linkage_query_result = cur1.fetchall() if persist: self.nodal_linkage_query_results[f'{self.event}_{elapsed_time}'] = nodal_linkage_query_result else: return nodal_linkage_query_result def get_nodal_linkage(self, elapsed_time:str, attrs:dict, persist:bool=True): link_attrs = ','.join(['edge', 'link_id', 'from_node', 'to_node', 'elapsed_time']) + ',' + ','.join(attrs['edges']) if persist: try: self.nodal_linkage_dict[f'{self.event}_{elapsed_time}'] except: self.nodal_linkage_query(elapsed_time, attrs) nodal_linkage = {i[0]: dict(zip(link_attrs.split(','), i)) for i in self.nodal_linkage_query_results[f'{self.event}_{elapsed_time}'] } self.nodal_linkage_dict[f'{self.event}_{elapsed_time}'] = nodal_linkage else: query = self.nodal_linkage_query(elapsed_time, attrs, persist=False) nodal_linkage = {i[0]: dict(zip(link_attrs.split(','), i)) for i in query } return nodal_linkage def nodal_data_query(self, elapsed_time:str, attrs:dict, persist:bool=True): node_attrs = ','.join(['node_id', 'subcatchment_id', 'elapsed_time', 'depth_above_invert']) + ',' + ','.join(attrs['nodes']) nodal_data_query = f""" WITH model_node_coordinates AS ( SELECT * FROM nodes_coordinates AS nc WHERE nc.model_id = '{self.model}' ) , junctions AS ( SELECT * FROM nodes_junctions nj WHERE nj.model_id = '{self.model}' ) , storages AS ( SELECT * FROM nodes_storage ns WHERE ns.model_id = '{self.model}' ) , outfalls AS ( SELECT * FROM nodes_outfalls AS no2 WHERE no2.model_id = '{self.model}' ) , nodes AS ( SELECT mnc.node_id, mnc.lat, mnc.lon, j.elevation, j.init_depth, j.max_depth FROM model_node_coordinates mnc JOIN junctions j ON mnc.node_id = j.junction_id WHERE elevation NOTNULL UNION ALL SELECT mnc.node_id, mnc.lat, mnc.lon, s.elevation, s.init_depth, s.max_depth FROM model_node_coordinates mnc JOIN storages s ON mnc.node_id = s.storage_id WHERE elevation NOTNULL UNION ALL SELECT mnc.node_id, mnc.lat, mnc.lon, o.elevation, 0 AS init_depth, 0 AS max_depth FROM model_node_coordinates mnc JOIN outfalls o ON mnc.node_id = o.outfall_id WHERE elevation NOTNULL ) , subcatch AS ( SELECT * FROM subcatchments s WHERE s.model_id = '{self.model}' ) , event_nodes AS ( SELECT * FROM events_nodes en WHERE event_id = '{self.event}' AND en.elapsed_time = '{elapsed_time}' ) , event_subc AS ( SELECT * FROM events_subcatchments es WHERE es.event_id = '{self.event}' AND es.elapsed_time = '{elapsed_time}' ) , event_subc_outlet AS ( SELECT event_subc.*, subcatch.outlet, subcatch.raingage_id FROM subcatch LEFT JOIN event_subc ON subcatch.subcatchment_id = event_subc.subcatchment_id ) , nodal_out_data AS ( SELECT en.node_id, COALESCE (subcatchment_id, 'SIN CUENCA DE APORTE') AS subcatchment_id, en.elapsed_time, en.depth_above_invert, en.flow_lost_flooding, en.hydraulic_head, en.lateral_inflow, en.total_inflow, en.volume_stored_ponded, COALESCE (eso.rainfall, 0) AS rainfall, COALESCE (eso.evaporation_loss, 0) AS evaporation_loss, COALESCE (eso.runoff_rate, 0) AS runoff_rate, COALESCE (eso.infiltration_loss, 0) AS infiltration_loss FROM event_nodes AS en LEFT JOIN event_subc_outlet AS eso ON eso.elapsed_time = en.elapsed_time AND eso.outlet = en.node_id ) , nodal_inp_data AS ( SELECT nodes.*, COALESCE (s.area, 0) AS area, COALESCE (s.imperv, 0) AS imperv, COALESCE (s.slope, 0) AS slope, COALESCE (s.width, 0) AS width, COALESCE (s.curb_len, 0) AS curb_len, COALESCE (s.raingage_id, '') AS raingage_id FROM nodes LEFT JOIN subcatch s ON s.outlet = nodes.node_id ) , nodal_data AS ( SELECT nod.*, nid.lon, nid.lat, nid.elevation, nid.init_depth, nid.max_depth, nid.area, nid.imperv, nid.slope, nid.width, nid.curb_len -- nid.raingage_id FROM nodal_out_data AS nod LEFT JOIN nodal_inp_data AS nid ON nod.node_id = nid.node_id ) -- , -- rain_mdata AS -- ( -- SELECT -- * -- FROM -- raingages_metadata rm -- WHERE -- rm.precipitation_id = '{self.precip}' -- ) -- , -- rain_tseries AS -- ( -- SELECT -- * -- FROM -- raingages_timeseries rt -- WHERE -- rt.precipitation_id = '{self.precip}' -- ) -- , -- rain AS -- ( -- SELECT -- rt.raingage_id, -- rt.elapsed_time, -- COALESCE (rt.VALUE, 0) AS rainfall_acc, -- rm.format, -- rm.unit -- FROM -- raingages_timeseries rt -- JOIN -- raingages_metadata AS rm -- ON rt.precipitation_id = rm.precipitation_id -- ) -- , -- final AS -- ( -- SELECT DISTINCT -- nd.*, -- COALESCE (r.rainfall_acc, 0) AS rainfall_acc, -- COALESCE (r.format, '') AS format, -- COALESCE (r.unit, '') AS unit -- FROM -- nodal_data nd -- LEFT JOIN -- rain r -- ON nd.raingage_id = r.raingage_id -- AND nd.elapsed_time = r.elapsed_time -- ) SELECT {node_attrs} FROM nodal_data """ cur2 = self.conn.cursor() cur2.execute(nodal_data_query) nodal_data_query_result = cur2.fetchall() if persist: self.nodal_data_query_results[f'{self.event}_{elapsed_time}'] = nodal_data_query_result else: return nodal_data_query_result def get_nodal_data(self, elapsed_time:str, attrs:dict, persist:bool=True): node_attrs = ','.join(['node_id', 'subcatchment_id', 'elapsed_time', 'depth_above_invert']) + ',' + ','.join(attrs['nodes']) if persist: try: self.nodal_data_dict[f'{self.event}_{elapsed_time}'] except: self.nodal_data_query(elapsed_time, attrs) nodal_data = { i[0]: dict(zip(node_attrs.split(','), i)) for i in self.nodal_data_query_results[f'{self.event}_{elapsed_time}'] } self.nodal_data_dict[f'{self.event}_{elapsed_time}'] = nodal_data else: query = self.nodal_data_query(elapsed_time, attrs, persist=False) nodal_data = {i[0]: dict(zip(node_attrs.split(','), i)) for i in query } return nodal_data # graph creation def build_digraph(self, elapsed_time:str, attrs:dict, persist:bool=True): if persist: self.get_nodal_data(elapsed_time, attrs, persist=True) self.get_nodal_linkage(elapsed_time, attrs, persist=True) #target definition def risk_classes(level): high_risk_level = 0.25 mid_risk_level = 0.15 if level < mid_risk_level: return 0 elif (level >= mid_risk_level) & (level < high_risk_level): return 1 else: return 2 try: self.digraphs[f'{self.event}_{elapsed_time}'] except: DG = nx.DiGraph(elapsed_time = elapsed_time, model=self.model, event=self.event) [DG.add_edge(i[1]['from_node'], i[1]['to_node'], **i[1]) for i in self.nodal_linkage_dict[f'{self.event}_{elapsed_time}'].items()] [DG.add_node(i[0], **i[1]) for i in self.nodal_data_dict[f'{self.event}_{elapsed_time}'].items()] #target definition [DG.add_node(i[0], **{'target': risk_classes(i[1]['depth_above_invert'])}) for i in self.nodal_data_dict[f'{self.event}_{elapsed_time}'].items()] if persist: self.digraphs[f'{self.event}_{elapsed_time}'] = DG self.num_nodes[f'{self.event}_{elapsed_time}'] = len(DG.nodes()) self.num_edges[f'{self.event}_{elapsed_time}'] = len(DG.edges()) else: nodal_data = self.get_nodal_data(elapsed_time, attrs, persist=False) nodal_linkage = self.get_nodal_linkage(elapsed_time, attrs, persist=False) #target definition def risk_classes(level): high_risk_level = 0.25 mid_risk_level = 0.15 if level < mid_risk_level: return 0 elif (level >= mid_risk_level) & (level < high_risk_level): return 1 else: return 2 DG = nx.DiGraph(elapsed_time = elapsed_time, model=self.model, event=self.event) [DG.add_edge(i[1]['from_node'], i[1]['to_node'], **i[1]) for i in nodal_linkage.items()] [DG.add_node(i[0], **i[1]) for i in nodal_data.items()] #target definition [DG.add_node(i[0], **{'target': risk_classes(i[1]['depth_above_invert'])}) for i in nodal_data.items()] self.num_nodes[f'{self.event}_{elapsed_time}'] = len(DG.nodes()) self.num_edges[f'{self.event}_{elapsed_time}'] = len(DG.edges()) return DG def build_coordinates_dict(self, elevation:bool=False): nodes_coordinates_query = f""" WITH node_coordinates_model AS ( SELECT * FROM nodes_coordinates AS nc WHERE nc.model_id = '{self.model}' ) SELECT nc.node_id, nc.lat, nc.lon, nj.elevation, nj.init_depth, nj.max_depth FROM node_coordinates_model nc JOIN nodes_junctions nj ON nc.node_id = nj.junction_id WHERE nj.model_id = '{self.model}' UNION ALL SELECT nc.node_id, nc.lat, nc.lon, ns.elevation, ns.init_depth, ns.max_depth FROM node_coordinates_model nc JOIN nodes_storage ns ON nc.node_id = ns.storage_id WHERE ns.model_id = '{self.model}' UNION ALL SELECT nc.node_id, nc.lat, nc.lon, no2.elevation, 0 AS init_depth, 0 AS max_depth FROM node_coordinates_model nc JOIN nodes_outfalls no2 ON nc.node_id = no2.outfall_id WHERE no2.model_id = '{self.model}' """ cur3 = self.conn.cursor() cur3.execute(nodes_coordinates_query) coordinates_query_result = cur3.fetchall() if elevation: coordinates = {i[0]: {'lat':i[1], 'lon':i[2], 'elevation':i[3]} for i in coordinates_query_result} return coordinates else: coordinates = {i[0]: {'lat':i[1], 'lon':i[2]} for i in coordinates_query_result} return coordinates def __init__(self, model:str, event:str, precip:str, conn) -> None: self.conn = conn.pg_conn # self.elapsed_time = elapsed_time self.model = model self.event = event self.precip = precip self.time_range = self.get_time_steps() self.nodal_linkage_query_results = {} self.nodal_linkage_dict = {} self.nodal_data_query_results = {} self.nodal_data_dict = {} self.digraphs = {} self.sub_digraphs = {} self.pos_dict = self.build_coordinates_dict() self.num_nodes = defaultdict(int) self.num_edges = defaultdict(int) self.torch_data = {} def build_subgraph(self, node:str, elapsed_time:str, attrs:dict, acc_data:bool, persist:bool=True): try: self.digraphs[f'{self.event}_{elapsed_time}'] except: self.build_digraph(elapsed_time, attrs) if persist: try: self.sub_digraphs[f'{self.event}_{node}_{elapsed_time}'] except: preds_list = [(i[0],i[1]) for i in nx.edge_dfs(self.digraphs[f'{self.event}_{elapsed_time}'], node, 'reverse')] if len(preds_list) == 0: preds_list = [node] graph_preds = nx.DiGraph(elapsed_time = elapsed_time, model= self.model, outlet_node = node) # own node data, for the cases without preds graph_preds.add_node(node, **self.nodal_data_dict[f'{self.event}_{elapsed_time}'][node]) #target definition def risk_classes(level): high_risk_level = 0.25 mid_risk_level = 0.15 if level < mid_risk_level: return 0 elif level == None: return 0 elif (level >= mid_risk_level) & (level < high_risk_level): return 1 else: return 2 if isinstance(preds_list[0], tuple): [graph_preds.add_edge(edge[0], edge[1], **self.nodal_linkage_dict[f'{self.event}_{elapsed_time}'][edge[0] + '->' + edge[1]]) for edge in preds_list] [graph_preds.add_node(i, **self.nodal_data_dict[f'{self.event}_{elapsed_time}'][i]) for i in set([i[0] for i in preds_list] + [i[1] for i in preds_list])] [graph_preds.add_node( i, **{'target': risk_classes(self.nodal_data_dict[f'{self.event}_{elapsed_time}'][i]['depth_above_invert'])} ) for i in set([i[0] for i in preds_list] + [i[1] for i in preds_list])] else: [graph_preds.add_node(i, **self.nodal_data_dict[f'{self.event}_{elapsed_time}'][i]) for i in preds_list] [graph_preds.add_node( i, **{'target': risk_classes(self.nodal_data_dict[f'{self.event}_{elapsed_time}'][i]['depth_above_invert'])} ) for i in preds_list] def division_exception(a, b, default_value): try: return a / b except: return default_value if acc_data: vars_acc = { 'area_aporte_ha': round(sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),2), 'perm_media_%': round( division_exception(sum( [graph_preds.nodes()[i]['area'] * graph_preds.nodes()[i]['imperv'] for i in graph_preds.nodes()] ) , sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),0), 4), 'manning_medio_flow_s/m^1/3': round( division_exception(sum( [ graph_preds.edges()[edge[0], edge[1]]['flow_rate'] * graph_preds.edges()[edge[0], edge[1]]['length'] * graph_preds.edges()[edge[0], edge[1]]['roughness'] for edge in graph_preds.edges() ]) , sum([graph_preds.edges()[edge[0], edge[1]]['flow_rate'] * graph_preds.edges()[edge[0], edge[1]]['length'] for edge in graph_preds.edges() ]),0), 3), 'manning_medio_s/m^1/3': round( division_exception(sum( [ graph_preds.edges()[edge[0], edge[1]]['length'] * graph_preds.edges()[edge[0], edge[1]]['roughness'] for edge in graph_preds.edges() ]) , sum([graph_preds.edges()[edge[0], edge[1]]['length'] for edge in graph_preds.edges() ]),0), 3), # 'precip_media_mm/ha': # division_exception( # round(max([graph_preds.edges()[edge[0], edge[1]]['rainfall_acc'] for edge in graph_preds.edges]) # , sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),2), # 0), 'infilt_media_mm/hs': round(np.average([graph_preds.nodes()[i]['infiltration_loss'] for i in graph_preds.nodes()]),2), # 'vol_almacenado_mm': round(max([graph_preds.edges()[edge[0], edge[1]]['rainfall_acc'] for edge in graph_preds.edges]) # - sum([graph_preds.nodes()[i]['infiltration_loss'] for i in graph_preds.nodes]) # - sum([graph_preds.nodes()[i]['evaporation_loss'] for i in graph_preds.nodes]) # - sum([graph_preds.nodes()[i]['runoff_rate'] * graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),2), # 'vol_precipitado_mm_acc': round(max([graph_preds.edges()[edge[0], edge[1]]['rainfall_acc'] for edge in graph_preds.edges()]),2), # 'vol_precipitado_mm': round(sum([graph_preds.edges()[edge[0], edge[1]]['rainfall'] for edge in graph_preds.edges()]),2), 'delta_h_medio_m/m': round( division_exception( ( max([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) - min([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) ) , np.sqrt(10000 * sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()])),0), 2), 'pendiente_media_m/m': division_exception( ( max([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) - min([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) ) , sum([graph_preds.edges()[edge[0], edge[1]]['length'] for edge in graph_preds.edges()]), 0) } graph_preds.add_node(node, **vars_acc) self.sub_digraphs[self.event + '_' + node + '_' + elapsed_time + '_acc'] = graph_preds else: try: graph = self.digraphs[f'{self.event}_{elapsed_time}'] except: graph = self.build_digraph(elapsed_time, attrs, persist=True) nodal_data_dict = self.get_nodal_data(elapsed_time, attrs, persist=False) nodal_linkage_dict = self.get_nodal_linkage(elapsed_time, attrs, persist=False) preds_list = [(i[0],i[1]) for i in nx.edge_dfs(graph, node, 'reverse')] if len(preds_list) == 0: preds_list = [node] graph_preds = nx.DiGraph(elapsed_time = elapsed_time, model= self.model, outlet_node = node) # own node data, for th cases without preds graph_preds.add_node(node, **nodal_data_dict[node]) #target definition def risk_classes(level): high_risk_level = 0.25 mid_risk_level = 0.15 if level < mid_risk_level: return 0 elif (level >= mid_risk_level) & (level < high_risk_level): return 1 else: return 2 if isinstance(preds_list[0], tuple): [graph_preds.add_edge(edge[0], edge[1], **nodal_linkage_dict[edge[0] + '->' + edge[1]]) for edge in preds_list] [graph_preds.add_node(i, **nodal_data_dict[i]) for i in set([i[0] for i in preds_list] + [i[1] for i in preds_list])] [graph_preds.add_node( i, **{'target': risk_classes(nodal_data_dict[i]['depth_above_invert'])} ) for i in set([i[0] for i in preds_list] + [i[1] for i in preds_list])] else: [graph_preds.add_node(i, **nodal_data_dict[i]) for i in preds_list] [graph_preds.add_node( i, **{'target': risk_classes(nodal_data_dict[i]['depth_above_invert'])} ) for i in preds_list] def division_exception(a, b, default_value): try: return a / b except: return default_value if acc_data: vars_acc = { 'area_aporte_ha': round(sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),2), 'perm_media_%': round( division_exception(sum( [graph_preds.nodes()[i]['area'] * graph_preds.nodes()[i]['imperv'] for i in graph_preds.nodes()] ) , sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),0), 4), 'manning_medio_flow_s/m^1/3': round( division_exception(sum( [ graph_preds.edges()[edge[0], edge[1]]['flow_rate'] * graph_preds.edges()[edge[0], edge[1]]['length'] * graph_preds.edges()[edge[0], edge[1]]['roughness'] for edge in graph_preds.edges() ]) , sum([graph_preds.edges()[edge[0], edge[1]]['flow_rate'] * graph_preds.edges()[edge[0], edge[1]]['length'] for edge in graph_preds.edges() ]),0), 3), 'manning_medio_s/m^1/3': round( division_exception(sum( [ graph_preds.edges()[edge[0], edge[1]]['length'] * graph_preds.edges()[edge[0], edge[1]]['roughness'] for edge in graph_preds.edges() ]) , sum([graph_preds.edges()[edge[0], edge[1]]['length'] for edge in graph_preds.edges() ]),0), 3), # 'precip_media_mm/ha': # division_exception( # round(max([graph_preds.edges()[edge[0], edge[1]]['rainfall_acc'] for edge in graph_preds.edges]) # , sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),2), # 0), # ' infilt_media_mm/hs': round(np.average([graph_preds.nodes()[i]['infiltration_loss'] for i in graph_preds.nodes()]),2), # 'vol_almacenado_mm': round(max([graph_preds.edges()[edge[0], edge[1]]['rainfall_acc'] for edge in graph_preds.edges]) # - sum([graph_preds.nodes()[i]['infiltration_loss'] for i in graph_preds.nodes]) # - sum([graph_preds.nodes()[i]['evaporation_loss'] for i in graph_preds.nodes]) # - sum([graph_preds.nodes()[i]['runoff_rate'] * graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()]),2), # 'vol_precipitado_mm_acc': round(max([graph_preds.edges()[edge[0], edge[1]]['rainfall_acc'] for edge in graph_preds.edges()]),2), # 'vol_precipitado_mm': round(sum([graph_preds.edges()[edge[0], edge[1]]['rainfall'] for edge in graph_preds.edges()]),2), 'delta_h_medio_m/m': round( division_exception( ( max([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) - min([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) ) , np.sqrt(10000 * sum([graph_preds.nodes()[i]['area'] for i in graph_preds.nodes()])),0), 2), 'pendiente_media_m/m': division_exception( ( max([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) - min([graph_preds.nodes()[i]['elevation'] for i in graph_preds.nodes()]) ) , sum([graph_preds.edges()[edge[0], edge[1]]['length'] for edge in graph_preds.edges()]), 0) } graph_preds.add_node(node, **vars_acc) return graph_preds else: return graph_preds def graph_to_torch_tensor(self, elapsed_time:str, attrs_dict:dict, raw_data_folder:str, detailed:bool=False, to_pickle:bool=True,): """Converts a :obj:`networkx.Graph` or :obj:`networkx.DiGraph` to a :class:`torch_geometric.data.Data` instance. Took it from torch_geometric.data.Data Args: G (networkx.Graph or networkx.DiGraph): A networkx graph. """ # node_attrs = attrs_dict['nodes'] # edge_attrs = attrs_dict['edges'] # graphtensors = {} # train_DataLoaders = {} # test_DataLoaders = {} DG = self.build_digraph(elapsed_time=elapsed_time, attrs=attrs_dict, persist=False) graph_ = DG.copy() graph_ = nx.convert_node_labels_to_integers(graph_) edge_index = torch.tensor(list(graph_.edges)).t().contiguous() torch_data = defaultdict(int) # torch_data['y'] = DG.nodes()[node]['target'] # graph_target = torch_data['y'] if detailed: for i, (_, feat_dict) in enumerate(graph_.nodes(data=True)): for key, value in feat_dict.items(): torch_data['node_' + str(key)] = [value] if i == 0 else torch_data['node_' + str(key)] + [value] for i, (_, _, feat_dict) in enumerate(graph_.edges(data=True)): for key, value in feat_dict.items(): torch_data['edge_' + str(key)] = [value] if i == 0 else torch_data['edge_' + str(key)] + [value] torch_data['x'] = [list(v[1].values())[4:-1] for v in graph_.nodes(data=True)] torch_data['x'] = [[v[1][i] for i in attrs_dict['nodes'][:-1]] for v in graph_.nodes(data=True)] torch_data['y'] = [list(v[1].values())[-1] for v in graph_.nodes(data=True)] torch_data['y'] = [v[1][attrs_dict['nodes'][-1]] for v in graph_.nodes(data=True)] # torch_data['edge_attrs'] = [list(v[2].values())[5:] for v in graph_.edges(data=True)] # torch_data['edge_attrs'] = [[v[1][i] for i in attrs_dict['edges'][-1]] for v in graph_.edges(data=True)] torch_data['edge_index'] = edge_index.view(2, -1) for key, data in torch_data.items(): try: if (key == 'x'):# | (key == 'edge_attrs'): # torch_data[key] = torch.tensor(item) torch_data[key] = torch.tensor(data) elif (key == 'y'):# | (key == 'edge_attrs'): # torch_data[key] = torch.tensor(item) torch_data[key] = torch.tensor(data, dtype=torch.long) elif (key == 'edge_index') | (key == 'edge_attrs'): torch_data[key] = torch.tensor(data, dtype=torch.long) # elif (key == 'y'): # torch_data[key] = torch.tensor(data, dtype=torch.long) except ValueError: print(data) pass # torch_data = Data.from_dict(torch_data) # torch_data.num_nodes = graph.number_of_nodes() if to_pickle: # open a file, where you ant to store the data file = open(f'{raw_data_folder}/{self.event}_{elapsed_time}.gpickle', 'wb') # dump information to that file pickle.dump(torch_data, file, pickle.HIGHEST_PROTOCOL) # close the file file.close() else: return torch_data def subgraphs_to_torch_tensors(self, elapsed_time:str, node:str, attrs_dict:dict, \ raw_data_folder:str, detailed:bool=False, to_pickle:bool=True,): """Converts a :obj:`networkx.Graph` or :obj:`networkx.DiGraph` to a :class:`torch_geometric.data.Data` instance. Took it from torch_geometric.data.Data Args: G (networkx.Graph or networkx.DiGraph): A networkx graph. """ node_attrs = attrs_dict['nodes'] edge_attrs = attrs_dict['edges'] graphtensors = {} train_DataLoaders = {} test_DataLoaders = {} DG = self.build_subgraph(node=node, elapsed_time=elapsed_time, attrs=attrs_dict, acc_data=False, persist=False) graph_ = DG.copy() graph_ = nx.convert_node_labels_to_integers(graph_) graph_ = graph_.to_directed() if not nx.is_directed(graph_) else graph_ edge_index = torch.tensor(list(graph_.edges)).t().contiguous() torch_data = defaultdict(int) torch_data['y'] = DG.nodes()[node]['target'] graph_target = torch_data['y'] if detailed: for i, (_, feat_dict) in enumerate(graph_.nodes(data=True)): for key, value in feat_dict.items(): torch_data['node_' + str(key)] = [value] if i == 0 else torch_data['node_' + str(key)] + [value] for i, (_, _, feat_dict) in enumerate(graph_.edges(data=True)): for key, value in feat_dict.items(): torch_data['edge_' + str(key)] = [value] if i == 0 else torch_data['edge_' + str(key)] + [value] torch_data['x'] = [list(v[1].values())[4:-1] for i,v in enumerate(graph_.nodes(data=True))] torch_data['edge_attrs'] = [list(v[2].values())[5:] for i,v in enumerate(graph_.edges(data=True))] torch_data['edge_index'] = edge_index.view(2, -1) for key, data in torch_data.items(): try: if (key == 'x'):# | (key == 'edge_attrs'): # torch_data[key] = torch.tensor(item) torch_data[key] = torch.tensor(data) elif (key == 'edge_index') | (key == 'edge_attrs'): torch_data[key] = torch.tensor(data, dtype=torch.long) elif (key == 'y'): torch_data[key] = torch.tensor(data, dtype=torch.long) except ValueError: print(data) pass # torch_data = Data.from_dict(torch_data) # torch_data.num_nodes = graph.number_of_nodes() if to_pickle: # open a file, where you ant to store the data file = open(f'{raw_data_folder}/{self.event}_{elapsed_time}_{node}_{graph_target}.gpickle', 'wb') # dump information to that file pickle.dump(torch_data, file, pickle.HIGHEST_PROTOCOL) # close the file file.close() else: return torch_data def sub_digraphs_timeseries(self, node:str, var:str, time_step:int = 4): # hardcoded attrs_dict = { 'nodes': ['area', 'imperv', 'infiltration_loss', 'elevation', 'rainfall' ], 'edges':['flow_rate', 'length', 'roughness', ], } [self.build_subgraph( node, elapsed_time=time, attrs=attrs_dict, acc_data=True, ) for time in (sorted(self.time_range[1])[::time_step]) ] df = pd.DataFrame( [(datetime.strptime(time, '%Y-%m-%d %H:%M:%S'), self.sub_digraphs[f'{self.event}_{node}_{time}_acc'].nodes()[node][var] ) for time in (sorted(self.time_range[1])[::time_step])])\ .rename({0:'elapsed_time', 1: var}, axis=1).set_index('elapsed_time') return df def multi_subgraph_tseries_viz(self, nodes:list, var:str, time_step:int): rainfall_step = max(self.which_time_step()[0], int((self.which_time_step()[0]) * time_step)) subfig = make_subplots(specs=[[{"secondary_y": True}]]) for i, node in enumerate(nodes): df_plot_0 = self.sub_digraphs_timeseries(node, 'rainfall', time_step=time_step,) df_plot_0 = df_plot_0.resample(f'{rainfall_step}min').mean() plot_rainfall_max = 1.5 * df_plot_0['rainfall'].max() df_plot_1 = self.sub_digraphs_timeseries(node, var,time_step=time_step) plot_var_max = 1.5 * df_plot_1[var].max() plot_var_min = 1.1 * df_plot_1[var].min() splitted_var = var.split('_') plot_var_legend = ' '.join([word.capitalize() for word in splitted_var][:-1]) + f' [{splitted_var[-1]}]' # create two independent figures with px.line each containing data from multiple columns fig = px.bar(df_plot_0, y='rainfall')#, render_mode="webgl",) fig2 = px.line(df_plot_1, y=var) fig2.update_traces(line={'width':5, 'color':'#125AEF'}) fig2.update_traces(yaxis="y2") # subfig.add_trace(fig, row=1, col=i+1) subfig.add_trace(fig2.data, row=1, col=i+1)# + fig3.data) subfig['layout']['yaxis1'].update(title='Precipitation intensity (mm/h)',range=[0, plot_rainfall_max], autorange='reversed') subfig['layout']['yaxis2'].update(title= plot_var_legend, range=[plot_var_min, plot_var_max], autorange=False) # subfig.for_each_trace(lambda t: t.update(marker=dict(color=['black']))) subfig['layout']['xaxis'].update(title='', tickformat='%d-%b %Hh') subfig['layout'].update(plot_bgcolor='white', font={'size':25})#, template='plotly_white') subfig.update_xaxes(showline=True, linewidth=3, linecolor='black', mirror=True) subfig.update_yaxes(showline=True, linewidth=3, linecolor='black', mirror=True) subfig.update_xaxes(ticks="inside", tickwidth=2, tickcolor='black', ticklen=10) subfig.update_yaxes(ticks="inside", tickwidth=2, tickcolor='black', ticklen=10) subfig['layout'].update(height=600, width=1200) subfig.update_layout(showlegend=False) return subfig def subgraph_tseries_viz(self, node:str, var:list, time_step:int): rainfall_step = max(self.which_time_step()[0], int((self.which_time_step()[0]) * time_step)) df_plot_0 = self.sub_digraphs_timeseries(node, 'rainfall', time_step=time_step,) df_plot_0 = df_plot_0.resample(f'{rainfall_step}min').mean() plot_rainfall_max = 1.5 * df_plot_0['rainfall'].max() df_plot_1 = self.sub_digraphs_timeseries(node, var,time_step=time_step) plot_var_max = 1.5 * df_plot_1[var].max() plot_var_min = 1.1 * df_plot_1[var].min() splitted_var = var.split('_') plot_var_legend = ' '.join([word.capitalize() for word in splitted_var][:-1]) + f' [{splitted_var[-1]}]' subfig = make_subplots(specs=[[{"secondary_y": True}]]) # create two independent figures with px.line each containing data from multiple columns fig = px.bar(df_plot_0, y='rainfall')#, render_mode="webgl",) fig2 = px.line(df_plot_1, y=var) fig2.update_traces(line={'width':5, 'color':'#125AEF'}) fig2.update_traces(yaxis="y2") subfig.add_traces(fig.data + fig2.data)# + fig3.data) subfig['layout']['yaxis1'].update(title='Precipitation intensity (mm/h)',range=[0, plot_rainfall_max], autorange='reversed') subfig['layout']['yaxis2'].update(title= plot_var_legend, range=[plot_var_min, plot_var_max], autorange=False) subfig.for_each_trace(lambda t: t.update(marker=dict(color=['black']))) subfig['layout']['xaxis'].update(title='', tickformat='%d-%b %Hh') subfig['layout'].update(plot_bgcolor='white', font={'size':25})#, template='plotly_white') subfig.update_xaxes(showline=True, linewidth=3, linecolor='black', mirror=True) subfig.update_yaxes(showline=True, linewidth=3, linecolor='black', mirror=True) subfig.update_xaxes(ticks="inside", tickwidth=2, tickcolor='black', ticklen=10) subfig.update_yaxes(ticks="inside", tickwidth=2, tickcolor='black', ticklen=10) subfig['layout'].update(height=600, width=1200) subfig.update_layout(showlegend=False) return subfig def timeseries(self, item: str, var:list): """ Generates the timeseries of any variable of any element. """ if item.startswith('NODO'): nodal_data_vars_query = f""" WITH model_node_coordinates AS ( SELECT * FROM nodes_coordinates AS nc WHERE nc.model_id = '{self.model}' AND nc.node_id = '%(node)' ) , junctions AS ( SELECT * FROM nodes_junctions nj WHERE nj.model_id = '{self.model}' AND nj.junction_id = '{item}' ) , storages AS ( SELECT * FROM nodes_storage ns WHERE ns.model_id = '{self.model}' AND ns.storage_id = '{item}' ) , outfalls AS ( SELECT * FROM nodes_outfalls AS no2 WHERE no2.model_id = '{self.model}' AND no2.outfall_id = '{item}' ) , nodes AS ( SELECT mnc.node_id, mnc.lat, mnc.lon, j.elevation, j.init_depth, j.max_depth FROM model_node_coordinates mnc JOIN junctions j ON mnc.node_id = j.junction_id WHERE elevation NOTNULL UNION ALL SELECT mnc.node_id, mnc.lat, mnc.lon, s.elevation, s.init_depth, s.max_depth FROM model_node_coordinates mnc JOIN storages s ON mnc.node_id = s.storage_id WHERE elevation NOTNULL UNION ALL SELECT mnc.node_id, mnc.lat, mnc.lon, o.elevation, 0 AS init_depth, 0 AS max_depth FROM model_node_coordinates mnc JOIN outfalls o ON mnc.node_id = o.outfall_id WHERE elevation NOTNULL ) , subcatch AS ( SELECT * FROM subcatchments s WHERE s.model_id = '{self.model}' AND s.outlet = '{item}' ) , event_nodes AS ( SELECT * FROM events_nodes en WHERE event_id = '{self.event}' AND en.node_id = '{item}' ) , event_subc AS ( SELECT * FROM events_subcatchments es WHERE es.event_id = '{self.event}' ) , event_subc_outlet AS ( SELECT event_subc.*, subcatch.outlet, subcatch.raingage_id FROM subcatch LEFT JOIN event_subc ON subcatch.subcatchment_id = event_subc.subcatchment_id ) , nodal_out_data AS ( SELECT en.node_id, COALESCE (subcatchment_id, 'SIN CUENCA DE APORTE') AS subcatchment_id, en.elapsed_time, en.depth_above_invert, en.flow_lost_flooding, en.hydraulic_head, en.lateral_inflow, en.total_inflow, en.volume_stored_ponded, COALESCE (eso.evaporation_loss, 0) AS evaporation_loss, COALESCE (eso.runoff_rate, 0) AS runoff_rate, COALESCE (eso.infiltration_loss, 0) AS infiltration_loss, COALESCE (eso.rainfall, 0) AS rainfall FROM event_nodes AS en LEFT JOIN event_subc_outlet AS eso ON eso.elapsed_time = en.elapsed_time AND eso.outlet = en.node_id ) , nodal_inp_data AS ( SELECT nodes.*, COALESCE (s.area, 0) AS area, COALESCE (s.imperv, 0) AS imperv, COALESCE (s.slope, 0) AS slope, COALESCE (s.width, 0) AS width, COALESCE (s.curb_len, 0) AS curb_len, COALESCE (s.raingage_id, '') AS raingage_id FROM nodes LEFT JOIN subcatch s ON s.outlet = nodes.node_id ) , nodal_data AS ( SELECT nod.*, nid.elevation, nid.init_depth, nid.max_depth, nid.area, nid.imperv, nid.slope, nid.width, nid.curb_len, nid.raingage_id FROM nodal_out_data AS nod LEFT JOIN nodal_inp_data AS nid ON nod.node_id = nid.node_id ) , rain_mdata AS ( SELECT * FROM raingages_metadata rm WHERE rm.precipitation_id = '{self.precip}' ) , rain_tseries AS ( SELECT * FROM raingages_timeseries rt WHERE rt.precipitation_id = '{self.precip}' ) , rain AS ( SELECT rt.raingage_id, rt.elapsed_time, COALESCE (rt.VALUE, 0) AS rainfall_acc, rm.format, rm.unit FROM raingages_timeseries rt LEFT JOIN raingages_metadata AS rm ON rt.precipitation_id = rm.precipitation_id ) SELECT DISTINCT nd.*, r.rainfall_acc, r.format, r.unit FROM nodal_data nd LEFT JOIN rain r ON nd.raingage_id = r.raingage_id AND nd.elapsed_time = r.elapsed_time ORDER by nd.elapsed_time """ cur5 = self.conn.cursor() cur5.execute(nodal_data_vars_query) nodal_data_result = cur5.fetchall() nodal_data_cols = [ 'node_id', 'subcatchment_id', 'elapsed_time', 'depth_above_invert', 'flow_lost_flooding', 'hydraulic_head', 'lateral_inflow', 'total_inflow', 'volume_stored_ponded', 'evaporation_loss', 'runoff_rate', 'infiltration_loss', 'rainfall', 'elevation', 'init_depth', 'max_depth', 'area', 'imperv', 'slope', 'width', 'curb_len', 'raingage_id', 'rainfall_acc', 'format', 'unit' ] NodeVars = namedtuple('NodeVars', nodal_data_cols) dt_nodes = dt.Frame([i for i in map(NodeVars._make, [i for i in nodal_data_result])], names=nodal_data_cols) if len(var) == 0: df = dt_nodes.to_pandas() df.loc[:,'elapsed_time'] = pd.to_datetime(df.loc[:,'elapsed_time']) df = df.set_index('elapsed_time') return df else: # if 'depth_above_invert' in var: df = dt_nodes[:, ['node_id','elapsed_time'] + var].to_pandas() df.loc[:,'elapsed_time'] = pd.to_datetime(df.loc[:,'elapsed_time']) df['time_to_peak'] = df.iloc[(df['depth_above_invert'].idxmax())]['elapsed_time'] df['peak'] = df['depth_above_invert'].max() df = df.set_index('elapsed_time') return df # else: # df = dt_nodes[:, ['node_id','elapsed_time'] + var].to_pandas() # df.loc[:,'elapsed_time'] = pd.to_datetime(df.loc[:,'elapsed_time']) # df = df.set_index('elapsed_time') # return df else: nodal_linkage_query_link = f""" WITH links_event AS ( SELECT * FROM events_links el WHERE el.event_id = '{self.event}' AND el.link_id = '{item}' ) , links_conduits_model AS ( SELECT * FROM links_conduits AS lc WHERE lc.model_id = '{self.model}' AND lc.conduit_id = '{item}' ) , links_orifices_model AS ( SELECT * FROM links_orifices AS lo WHERE lo.model_id = '{self.model}' AND lo.orifice_id = '{item}' ) , links_weirs_model AS ( SELECT * FROM links_weirs AS lw WHERE lw.model_id = '{self.model}' AND lw.weir_id = '{item}' ) , links_types_event AS ( SELECT links.link_id, from_node, to_node, elapsed_time, flow_rate AS flow_rate, flow_depth, flow_velocity AS flow_velocity, froude_number, capacity, conduits.length, conduits.roughness FROM links_event AS links LEFT JOIN links_conduits_model AS conduits ON conduits.conduit_id = links.link_id WHERE from_node NOTNULL UNION SELECT links.link_id, from_node, to_node, elapsed_time, flow_rate AS flow_rate, flow_depth, flow_velocity AS flow_velocity, froude_number, capacity, 0 AS length, 0 AS roughness FROM links_event AS links LEFT JOIN links_orifices_model AS orifices ON orifices.orifice_id = links.link_id WHERE from_node NOTNULL UNION SELECT links.link_id, from_node, to_node, elapsed_time, flow_rate AS flow_rate, flow_depth, flow_velocity AS flow_velocity, froude_number, capacity, 0 AS length, 0 AS roughness FROM links_event AS links LEFT JOIN links_weirs_model AS weirs ON weirs.weir_id = links.link_id WHERE from_node NOTNULL ) , rain_mdata AS ( SELECT * FROM raingages_metadata rm WHERE rm.precipitation_id = 'precipitation_{self.event}' ) , rain_tseries AS ( SELECT * FROM raingages_timeseries rt WHERE rt.precipitation_id = 'precipitation_{self.event}' ) , rain AS ( SELECT rt.raingage_id, rt.elapsed_time, rt.VALUE, rm.format, rm.unit FROM raingages_timeseries rt LEFT JOIN raingages_metadata AS rm ON rt.raingage_id = rm.raingage_id AND rt.precipitation_id = rm.precipitation_id ) , subc AS ( SELECT * FROM subcatchments s2 WHERE s2.model_id = '{self.model}' AND s2.outlet = ( SELECT DISTINCT from_node FROM links_types_event ) ) , event_subc AS ( SELECT * FROM events_subcatchments es WHERE es.event_id = '{self.event}' ) , event_subc_outlet AS ( SELECT DISTINCT subc.subcatchment_id, subc.outlet, subc.raingage_id, elapsed_time, event_subc.rainfall, subc.area FROM subc INNER JOIN event_subc ON subc.subcatchment_id = event_subc.subcatchment_id ) , event_subc_rainfall AS ( SELECT DISTINCT eso.*, rain.VALUE, rain.format, rain.unit FROM event_subc_outlet eso INNER JOIN rain ON rain.raingage_id = eso.raingage_id AND rain.elapsed_time = eso.elapsed_time ) SELECT lte.*, esr.rainfall --, coalesce (esr.value, 0) as rainfall_acc, esr.format, esr.unit FROM links_types_event lte LEFT JOIN event_subc_outlet esr ON lte.from_node = esr.outlet AND lte.elapsed_time = esr.elapsed_time ORDER BY outlet, elapsed_time """ cur4 = self.conn.cursor() cur4.execute(nodal_linkage_query_link) nodal_linkage_result_link = cur4.fetchall() nodal_linkage_cols = [ 'link_id', 'from_node', 'to_node', 'elapsed_time', 'flow_rate', 'flow_depth', 'flow_velocity', 'froude_number', 'capacity', 'length', 'roughness', 'rainfall', # 'rainfall_acc', # 'format', # 'unit' ] LinkVars = namedtuple('LinksVars', nodal_linkage_cols) dt_links = dt.Frame([i for i in map(LinkVars._make, [i for i in nodal_linkage_result_link])], names=nodal_linkage_cols) if len(var) == 0: df = dt_links.to_pandas() df.loc[:,'elapsed_time'] = pd.to_datetime(df.loc[:,'elapsed_time']) df = df.set_index('elapsed_time') return df else: df = dt_links[:, ['link_id','elapsed_time'] + var].to_pandas() df.loc[:,'elapsed_time'] =
pd.to_datetime(df.loc[:,'elapsed_time'])
pandas.to_datetime
#!/usr/bin/env python3 import os from datetime import date from pathlib import Path import pandas as pd import sys def load(path: Path, d: date, sex: str) -> pd.DataFrame: print(f"Loading input file {path}") df = pd.read_excel( path, header=2 ) # rename the columns to NUTS? code column_mapping = {} for col in df.columns: parts = col.split('\n') nuts, name = parts[0], ' '.join(parts[1:]) column_mapping[col] = nuts df = df.rename(column_mapping, axis='columns').rename({'Věk': 'age'}, axis='columns') # drop columns with missing values (rows bellow header) df = df.dropna() # drop the first row with total sum df = df.iloc[1:] # drop the last row with average df = df.drop(df[df.age.str.contains('Average')].index) # add extra columns to make it clear what type of data is there df['sex'] = sex df['date'] = d.isoformat() # set index df = df.set_index(['date', 'sex', 'age']) # and convert values to int df = df.astype({ k: int for k in column_mapping.values() if k in df.columns }) print(f"File: {path}; Date: {d}; Sex: {sex}") print(df.head()) print(df.tail()) return df def save(path_prefix: Path, input_df: pd.DataFrame) -> None: path_table = str(path_prefix) + '_table.csv' print(f"Saving as table into {path_table}") input_df.to_csv(path_table) data = [] i = 0 for col_name in input_df.columns: for index, value in input_df[col_name].items(): data.append(index + (col_name, value)) index_columns = ['date', 'sex', 'age', 'NUTS'] tuples = pd.DataFrame(data=data, columns=index_columns + ['population']).set_index(index_columns) path_tuples = str(path_prefix) + '_tuples.csv' print(f"Saving as tuples into {path_tuples}") tuples.to_csv(path_tuples) DIR_ACT = Path(__file__).parent.absolute() DIR_ORIGINAL = DIR_ACT / 'original' DIR_CONVERTED = DIR_ACT / 'converted' if __name__ == '__main__': # convert 2019 dir_original_2019 = DIR_ORIGINAL / '2019' dir_converted_2019 = DIR_CONVERTED / '2019' dir_converted_2019.mkdir(parents=True, exist_ok=True) # 2019-01-01 df_2019_01_01_B = load(dir_original_2019 / '1300642001.xlsx', date(2019, 1, 1), 'B') save(dir_converted_2019 / '1300642001', df_2019_01_01_B) df_2019_01_01_M = load(dir_original_2019 / '1300642002.xlsx', date(2019, 1, 1), 'M') save(dir_converted_2019 / '1300642002', df_2019_01_01_M) df_2019_01_01_F = load(dir_original_2019 / '1300642003.xlsx', date(2019, 1, 1), 'F') save(dir_converted_2019 / '1300642003', df_2019_01_01_F) df_2019_01_01 = pd.concat([df_2019_01_01_B, df_2019_01_01_M, df_2019_01_01_F]) save(dir_converted_2019 / '2019_01_01', df_2019_01_01) del df_2019_01_01_B del df_2019_01_01_M del df_2019_01_01_F del df_2019_01_01 # 2019-07-01 df_2019_07_01_B = load(dir_original_2019 / '1300642004.xlsx', date(2019, 7, 1), 'B') save(dir_converted_2019 / '1300642004', df_2019_07_01_B) df_2019_07_01_M = load(dir_original_2019 / '1300642005.xlsx', date(2019, 7, 1), 'M') save(dir_converted_2019 / '1300642005', df_2019_07_01_M) df_2019_07_01_F = load(dir_original_2019 / '1300642006.xlsx', date(2019, 7, 1), 'F') save(dir_converted_2019 / '1300642006', df_2019_07_01_F) df_2019_07_01 = pd.concat([df_2019_07_01_B, df_2019_07_01_M, df_2019_07_01_F]) save(dir_converted_2019 / '2019_07_01', df_2019_07_01) del df_2019_07_01_B del df_2019_07_01_M del df_2019_07_01_F del df_2019_07_01 # 2019-12-31 df_2019_12_31_B = load(dir_original_2019 / '1300642007.xlsx', date(2019, 12, 31), 'B') save(dir_converted_2019 / '1300642007', df_2019_12_31_B) df_2019_12_31_M = load(dir_original_2019 / '1300642008.xlsx', date(2019, 12, 31), 'M') save(dir_converted_2019 / '1300642008', df_2019_12_31_M) df_2019_12_31_F = load(dir_original_2019 / '1300642009.xlsx', date(2019, 12, 31), 'F') save(dir_converted_2019 / '1300642009', df_2019_12_31_F) df_2019_12_31 =
pd.concat([df_2019_12_31_B, df_2019_12_31_M, df_2019_12_31_F])
pandas.concat
from datetime import datetime import os import re import numpy as np import pandas as pd from fetcher.extras.common import MaRawData, zipContextManager from fetcher.utils import Fields, extract_arcgis_attributes NULL_DATE = datetime(2020, 1, 1) DATE = Fields.DATE.name TS = Fields.TIMESTAMP.name DATE_USED = Fields.DATE_USED.name def add_query_constants(df, query): for k, v in query.constants.items(): df[k] = v return df def build_leveled_mapping(mapping): tab_mapping = {x.split(":")[0]: {} for x in mapping.keys() if x.find(':') > 0} for k, v in mapping.items(): if k.find(':') < 0: continue tab, field = k.split(":") tab_mapping[tab][field] = v return tab_mapping def prep_df(values, mapping): df = pd.DataFrame(values).rename(columns=mapping).set_index(DATE) for c in df.columns: if c.find('status') >= 0: continue # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = pd.to_datetime(df.index, errors='coerce') return df def make_cumsum_df(data, timestamp_field=Fields.TIMESTAMP.name): df = pd.DataFrame(data) df.set_index(timestamp_field, inplace=True) df.sort_index(inplace=True) df = df.select_dtypes(exclude=['string', 'object']) # .groupby(level=0).last() # can do it here, but not mandatory cumsum_df = df.cumsum() cumsum_df[Fields.TIMESTAMP.name] = cumsum_df.index return cumsum_df def handle_ak(res, mapping): tests = res[0] collected = [x['attributes'] for x in tests['features']] df =
pd.DataFrame(collected)
pandas.DataFrame
import numpy as np import copy import logging from IPython.display import display, clear_output from collections import defaultdict import pailab.analysis.plot as paiplot import pailab.analysis.plot_helper as plt_helper import ipywidgets as widgets from pailab import MLObjectType, RepoInfoKey, FIRST_VERSION, LAST_VERSION from pailab.ml_repo.repo import NamingConventions import pailab.tools.checker as checker import pailab.tools.tools as tools import pailab.tools.interpretation as interpretation import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates logger = logging.getLogger(__name__) # set option so that long lines have a linebreak pd.set_option('display.max_colwidth', -1) # set widget use to True so that plotlys FigureWidget is used paiplot.use_within_widget = True if paiplot.has_plotly: import plotly.graph_objs as go beakerX = False if beakerX: from beakerx import TableDisplay # from beakerx.object import beakerx else: def TableDisplay(dt): display(dt) class _MLRepoModel: class _DataModel: def __init__(self, ml_repo): self._training_data = {} self._test_data = {} for k in ml_repo.get_names(MLObjectType.TRAINING_DATA): tmp = ml_repo.get(k) self._training_data[k] = tmp.n_data self._x_coord_names = tmp.x_coord_names self._y_coord_names = tmp.y_coord_names for k in ml_repo.get_names(MLObjectType.TEST_DATA): tmp = ml_repo.get(k) self._test_data[k] = tmp.n_data def get_data_names(self): result = [k for k in self._test_data.keys()] result.extend([k for k in self._training_data.keys()]) return result def get_num_data(self, data): result = [] for d in data: if d in self._test_data.keys(): result.append(self._test_data[d]) elif d in self._training_data.keys(): result.append(self._training_data[d]) else: raise Exception('Cannot find data ' + d) return result class _ModelModel: def __init__(self, ml_repo): self.labels = {} # dictionary label->model and version # dictionary (model,version)->labelname or None self.model_to_label = defaultdict(lambda: None) self._setup_labels(ml_repo) self._model_info_table = self._setup_model_info_table(ml_repo) self._model_names = ml_repo.get_names( MLObjectType.CALIBRATED_MODEL) def _setup_labels(self, ml_repo): label_names = ml_repo.get_names(MLObjectType.LABEL) if label_names is None: return if isinstance(label_names, str): label_names = [label_names] for l in label_names: label = ml_repo.get(l) self.labels[l] = {'model': label.name, 'version': label.version} self.model_to_label[(label.name, label.version,)] = l def _setup_model_info_table(self, ml_repo): model_rows = [] model_names = ml_repo.get_names(MLObjectType.CALIBRATED_MODEL) for model_name in model_names: models = ml_repo.get(model_name, version=( FIRST_VERSION, LAST_VERSION), full_object=False) if not isinstance(models, list): models = [models] for model in models: tmp = copy.deepcopy(model.repo_info.get_dictionary()) tmp['model'] = tmp['name'] del tmp['big_objects'] del tmp['modifiers'] del tmp['modification_info'] tmp['label'] = self.model_to_label[( tmp['model'], tmp['version'],)] tmp['widget_key'] = tmp['commit_date'][0:16] + ' | ' + \ tmp['author'] + ' | ' + \ str(tmp['label']) + ' | ' + tmp['version'] model_rows.append(tmp) model_info_table =
pd.DataFrame(model_rows)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[2]: import sys sys.path.append('..') # In[3]: import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import timedelta, datetime, date import os from utils import data_paths, load_config from pathlib import Path from nltk.metrics import edit_distance #(Levenshtein) import pycountry import math # # Estimating The Infected Population From Deaths # > Estimating the number of infected people by country based on the number of deaths and case fatality rate. # # - comments: true # - author: <NAME> # - categories: [growth, compare, interactive, estimation] # - hide: false # - image: images/covid-estimate-infections.png # - permalink: /covid-infected/ # - toc: true # In[4]: LOCAL_FILES=True #jupyter or script IS_SCRIPT = False # In[5]: os.getcwd() # In[6]: if IS_SCRIPT: RUN_PATH = Path(os.path.realpath(__file__)) DATA_PARENT = RUN_PATH.parent.parent else: #for jupyter cw = get_ipython().getoutput('pwd') RUN_PATH = Path(cw[0]) DATA_PARENT = RUN_PATH.parent # In[7]: if IS_SCRIPT: csse_data = data_paths('tools/csse_data_paths.yml') else: csse_data = data_paths('csse_data_paths.yml') # In[8]: if LOCAL_FILES: confirmed_url=csse_data.get("csse_ts_local", {}).get('confirmed', {}) deaths_url=csse_data.get("csse_ts_local", {}).get('deaths', {}) recovered_url=csse_data.get("csse_ts_local", {}).get('recovered', {}) confirmed_url = str(DATA_PARENT/confirmed_url) deaths_url = str(DATA_PARENT/deaths_url) recovered_url = str(DATA_PARENT/recovered_url) else: confirmed_url=csse_data.get("csse_ts_global", {}).get('confirmed', {}) deaths_url=csse_data.get("csse_ts_global", {}).get('deaths', {}) recovered_url=csse_data.get("csse_ts_global", {}).get('recovered', {}) # In[9]: ### UN stats # In[10]: df_un_pop_density_info=pd.read_csv(DATA_PARENT/'data/un/df_un_pop_density_info.csv') df_un_urban_growth_info=pd.read_csv(DATA_PARENT/'data/un/urban_growth_info.csv') df_un_health_info=pd.read_csv(DATA_PARENT/'data/un/df_un_health_info.csv') df_un_tourism_info=pd.read_csv(DATA_PARENT/'data/un/df_un_tourism_info.csv') df_un_gdp_info=pd.read_csv(DATA_PARENT/'data/un/df_un_gdp_info.csv') df_un_edu_info=pd.read_csv(DATA_PARENT/'data/un/df_un_edu_info.csv') df_un_pop_growth_info=pd.read_csv(DATA_PARENT/'data/un/df_un_pop_growth_info.csv') df_un_gdrp_rnd_info=pd.read_csv(DATA_PARENT/'data/un/df_un_gdrp_rnd_info.csv') df_un_education_info=pd.read_csv(DATA_PARENT/'data/un/df_un_education_info.csv') df_un_sanitation_info=pd.read_csv(DATA_PARENT/'data/un/df_un_sanitation_info.csv') df_un_health_expenditure_info=pd.read_csv(DATA_PARENT/'data/un/df_un_health_expenditure_info.csv') df_un_immigration_info=pd.read_csv(DATA_PARENT/'data/un/df_un_immigration_info.csv') df_un_trading_info=pd.read_csv(DATA_PARENT/'data/un/df_un_trading_info.csv') df_un_land_info=pd.read_csv(DATA_PARENT/'data/un/df_un_land_info.csv') # In[11]: df_un_health_info.head() #Health personnel: Pharmacists (per 1000 population) # In[12]: df_un_trading_info.tail(n=20) #column Major trading partner 1 (% of exports) #Major trading partner 1 (% of exports) #Major trading partner 2 (% of exports) #Major trading partner 3 (% of exports) # In[13]: df_population_density=df_un_pop_density_info.loc[df_un_pop_density_info['Series'] == 'Population density'] # In[14]: df_population_density.tail(n=50) #Population aged 60+ years old (percentage) #Population density #Population mid-year estimates (millions) # In[15]: df_population_density.loc[df_population_density.groupby('Country')['Year'].idxmax()] # In[16]: df_population_density # In[17]: ### Freedom House stats # In[18]: #Freedon House stats def country_freedom(): global_freedom = str(DATA_PARENT/'data/freedom_house/Global_Freedom.csv') df_global_free = pd.read_csv(global_freedom) internet_freedom = str(DATA_PARENT/'data/freedom_house/Internet_Freedom.csv') df_internet_free = pd.read_csv(internet_freedom) return df_global_free, df_internet_free df_global_freedom, df_internet_freedom = country_freedom() # In[19]: #csse countries df_deaths = pd.read_csv(deaths_url, error_bad_lines=False) df_confirmed = pd.read_csv(confirmed_url, error_bad_lines=False) df_recovered = pd.read_csv(recovered_url, error_bad_lines=False) csse_countries = [] for df in [df_deaths, df_confirmed, df_recovered]: c = set(df["Country/Region"].unique()) csse_countries.append(c) csse_countries = [item for sublist in csse_countries for item in sublist] csse_countries = list(set(csse_countries)) # ## CSSE # In[20]: # Get data on deaths D_t df_deaths =
pd.read_csv(deaths_url, error_bad_lines=False)
pandas.read_csv
import time import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import cm as cm import seaborn as sns sns.set_style("whitegrid") import sys import os from pathlib import Path from sklearn import metrics from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold, GridSearchCV, StratifiedKFold,RepeatedKFold, learning_curve from xgboost.sklearn import XGBClassifier from utils import data_handler from utils import bayesiantests as bt root_dir = str(Path(os.getcwd())) #.parent to_dir = root_dir + '/results/' import warnings warnings.filterwarnings('ignore') #res= None ##------------------------------ font, fig size setup------------------------------ plt.rc('font', family='serif') def set_fig_fonts(SMALL_SIZE=22, MEDIUM_SIZE=24,BIGGER_SIZE = 26): plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title set_fig_fonts() ##------------------------------functions---------------------------------------- def save_fig(fig, title): to_path = data_handler.format_title(to_dir,title,'.png') fig.savefig(to_path ,dpi=1000,bbox_inches="tight",pad_inches=0)#, bbox_inches='tight', pad_inches=10 print("Successfully saved to: ",to_path) return to_path def plot_correlation_matrix(X,title, col_list, toSaveFig=True): set_fig_fonts(12,14,16) # standardization scaler = StandardScaler() df_transf = scaler.fit_transform(X) df = pd.DataFrame(df_transf,columns = col_list) fig = plt.figure() ax1 = fig.add_subplot(111) cmap = cm.get_cmap('coolwarm', 30) #cax = ax1.pcolor(df.corr(), cmap=cmap, vmin=-1, vmax=1) mat = df.corr() flip_mat = mat.iloc[::-1] cax = ax1.imshow(flip_mat , interpolation="nearest", cmap=cmap,vmin=-1, vmax=1) ax1.grid(True) #plt.suptitle('Features\' Correlation', y =0) labels=df.columns.tolist() x_labels = labels.copy() labels.reverse() #ax1.xaxis.set_ticks_position('top') ax1.set_xticks(np.arange(len(labels)))#np.arange(len(labels)) ax1.set_yticks(np.arange(len(labels))) # want a more natural, table-like display #ax1.xaxis.tick_top() ax1.set_xticklabels(x_labels, rotation = -45, ha="left") #, , rotation = 45,horizontalalignment="left" ax1.set_yticklabels(labels, ha="right") #plt.xticks(rotation=90) # Add colorbar, make sure to specify tick locations to match desired ticklabels fig.colorbar(cax, boundaries=np.linspace(-1,1,21),ticks=np.linspace(-1,1,5)) plt.show() if(toSaveFig): save_fig(fig,title+'_confusion_matrix') set_fig_fonts() def plot_ROC_curve(pipe, tuned_parameters, title = 'roc_curve', save_csv = True,task=0): # cross validation settup Ntrials = 1 outter_nsplit = 10 inner_nsplit = 10 # Results store Y_true = pd.Series(name='Y_true') pred_results = pd.Series(name='pred_prob') # load data assert (task ==0 or task ==2),'Error: invalid task spec!' X_df, Y_df = data_handler.load_XY(task) X = X_df.values Y = Y_df.values for i in range(Ntrials): train_index = [] test_index = [] outer_cv = StratifiedKFold(n_splits=outter_nsplit, shuffle=True, random_state=i) for train_ind,test_ind in outer_cv.split(X,Y): train_index.append(train_ind.tolist()) test_index.append(test_ind.tolist()) for j in range(outter_nsplit):#outter_nsplit print("progress >> ",j,' / ',outter_nsplit) X_train = X[train_index[j]] Y_train = Y[train_index[j]] X_test = X[test_index[j]] Y_test = Y[test_index[j]] inner_cv = StratifiedKFold(n_splits=inner_nsplit, shuffle=False, random_state=j) clf = GridSearchCV(pipe,tuned_parameters, cv=inner_cv,scoring='roc_auc') clf.fit(X_train, Y_train) pred = pd.Series(clf.predict_proba(X_test)[:,1]) pred_results = pd.concat([pred_results, pred], axis=0,ignore_index=True) Y_test_df = pd.Series(Y_test,name='Y_test') Y_true = pd.concat([Y_true,Y_test_df], axis=0,ignore_index=True) # plotting fpr, tpr, thresholds = metrics.roc_curve(Y_true,pred_results) roc_auc = metrics.auc(fpr, tpr) auc_value = metrics.roc_auc_score(Y_true, pred_results) fig = plt.figure(figsize=(12,12/1.618)) ax1 = fig.add_subplot(111) labl = np.linspace(0,1,6) labels = [float("{0:.2f}".format(x)) for x in labl] ax1.set_xticks(labels) ax1.set_xticklabels(labels) labels[0] = '' ax1.set_yticklabels(labels) plt.grid(False) ax1.plot(fpr, tpr, lw=2, label='ROC curve (area = {:.2f})'.format(auc_value),marker='.', linestyle='-', color='b') ax1.plot([0,1],[0,1], linestyle='--', color='k') ax1.set_xlabel('False Positive Rate') ax1.set_ylabel('True Positive Rate') ax1.set_xlim(0, 1) ax1.set_ylim(0,1) ax1.legend(loc='lower right') color = 'black' plt.setp(ax1.spines.values(), color=color) ax1.yaxis.set_visible(True) ax1.xaxis.set_visible(True) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax1.get_yaxis().set_tick_params(direction='out', width=2) plt.show() fig.savefig(data_handler.format_title(to_dir,title+'_ROC_curve','.png'),dpi=1000,bbox_inches="tight",pad_inches=0) # save results to csv if true if save_csv: data_mat = np.array([fpr,tpr]).T ret = pd.DataFrame(data_mat,columns=['fpr','tpr']) data_handler.save_csv(ret,title+'_ROC_curve') return True; def plot_learning_curve_versus_tr_epoch(title='',ntrials=1, nfolds=10, save_csv=False,verbose=True, save_fig=False): X_df,Y_df = data_handler.load_XY() X = X_df.values Y = Y_df.values _ylabel = 'Mean AUROC' n_jobs=4 # cross validation settup Ntrials = ntrials outter_nsplit = nfolds tot_count = Ntrials * outter_nsplit # Results store train_mat = np.zeros((tot_count,500)) test_mat = np.zeros((tot_count,500)) for i in range(Ntrials): init_time = time.time() print("trial = ",i) train_index = [] test_index = [] outer_cv = StratifiedKFold(n_splits=outter_nsplit, shuffle=True, random_state=i) for train_ind,test_ind in outer_cv.split(X,Y): train_index.append(train_ind.tolist()) test_index.append(test_ind.tolist()) for j in range(outter_nsplit):#outter_nsplit count = i * outter_nsplit + j print(str(count), " / ",str(tot_count)) X_train = X[train_index[j]] Y_train = Y[train_index[j]] X_test = X[test_index[j]] Y_test = Y[test_index[j]] eval_sets = [(X_train, Y_train), (X_test,Y_test)] clf = XGBClassifier(objective="binary:logistic",min_child_weight=1,**{'tree_method':'exact'},silent=True, n_jobs=4,random_state=3,seed=3, learning_rate=0.01, colsample_bylevel=0.9, colsample_bytree=0.9, n_estimators=500, gamma=0.8, max_depth =11, reg_lambda = 0.8, subsample=0.4) clf.fit(X_train,Y_train, eval_metric=['auc'], eval_set = eval_sets, verbose=False) results = clf.evals_result() epochs = len(results['validation_0']['auc']) # record results train_mat[count] = results['validation_0']['auc'] test_mat[count] = results['validation_1']['auc'] if(verbose): print('Iter: %d, epochs: %d'%(count, epochs)) print('training result: %.4f, testing result: %.4f'%(train_mat[count][499], test_mat[count][499])) print('total time: %.4f mins'% ((time.time()-init_time)/60)) # Results store epoch_lists=list(range(1,epochs+1)) train_results = pd.DataFrame(data=train_mat,columns=['epoch_'+str(i) for i in epoch_lists]) test_results = pd.DataFrame(data=test_mat,columns=['epoch_'+str(i) for i in epoch_lists]) if(save_csv): data_handler.save_csv(train_results,title='mos2_learning_curve_train_raw') data_handler.save_csv(test_results,title='mos2_learning_curve_test_raw') print('end') _ylim=(0.5, 1.01) n_jobs=4 # create learning curve values train_scores_mean = np.mean(train_mat, axis=0) train_scores_std = np.std(train_mat, axis=0) test_scores_mean = np.mean(test_mat, axis=0) test_scores_std = np.std(test_mat, axis=0) tr_size_df = pd.Series(epoch_lists, name='training_epoch') tr_sc_m_df = pd.Series(train_scores_mean, name='training_score_mean') val_sc_m_df = pd.Series(test_scores_mean, name='val_score_mean') tr_sc_std_df = pd.Series(train_scores_std, name='training_score_std') val_sc_std_df = pd.Series(test_scores_std, name='val_score_std') if(save_csv): res = pd.concat([tr_size_df, tr_sc_m_df,val_sc_m_df,tr_sc_std_df,val_sc_std_df], axis=1) data_handler.save_csv(data=res,title=title+'_learning_curve') # plotting _ylim=(0.5, 1.01) fig = plt.figure(figsize=(12,12/1.618)) ax1 = fig.add_subplot(111) ax1.set_ylim(_ylim) ax1.set_xlabel("Number of Training Epochs") ax1.set_ylabel(_ylabel) plt.grid(False) ax1.plot(tr_size_df, tr_sc_m_df, color="r", label="Training") #'o-', ax1.plot(tr_size_df, val_sc_m_df, color="b", label="Validation") #'^--', # plot error bars #ax1.errorbar(tr_size_df, tr_sc_m_df, yerr=tr_sc_std_df,color="r", ) #ax1.errorbar(tr_size_df, val_sc_m_df, yerr=val_sc_std_df) plt.setp(ax1.spines.values(), color='black') plt.legend(loc="lower right") plt.show() to_path = None if save_fig: to_path = data_handler.format_title(to_dir,title+'_learning_curve','.png') fig.savefig(to_path,dpi=1000,bbox_inches="tight",pad_inches=0.1) return to_path def plot_learning_curve_versus_tr_set_size(title='',save_csv=True,scoring = 'roc_auc'): # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set X, Y = data_handler.load_XY() _ylabel = 'Mean AUROC' outer_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=6) inner_cv = StratifiedKFold(n_splits=5, shuffle=False, random_state=3) xgb_clf = XGBClassifier(objective="binary:logistic",min_child_weight=1,**{'tree_method':'exact'}, silent=True,n_jobs=1,random_state=3,seed=3); tuned_parameters = dict(learning_rate=[0.01,0.1], n_estimators=[100, 300, 500], colsample_bylevel = [0.5,0.7,0.9], gamma=[0,0.2,0.4], max_depth =[3,5,7], reg_lambda = [0.1,1,10], subsample=[0.4,0.7,1]) xgb_cv = GridSearchCV(xgb_clf,tuned_parameters, cv=inner_cv,scoring='roc_auc',verbose=0,n_jobs=1) _ylim=(0.5, 1.01) n_jobs=4 train_sizes=np.linspace(.2, 1.0, 5) # create learning curve values train_sizes, train_scores, test_scores = learning_curve( xgb_cv, X, Y, cv=outer_cv, n_jobs=4, train_sizes=train_sizes,scoring=scoring) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) tr_size_df = pd.Series(train_sizes, name='training_set_size') tr_sc_m_df = pd.Series(train_scores_mean, name='training_score_mean') cv_sc_m_df = pd.Series(test_scores_mean, name='cv_score_mean') tr_sc_std_df =
pd.Series(train_scores_std, name='training_score_std')
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # Exploratory Data Analysis # The purpose of this section of the notebook is to provide some key highlights of the baseline data being used. This showcases the various attributes, any specific transformations, and key relationships. # In[50]: import pandas as pd import matplotlib.pyplot as plt # Load the primary dataset df = pd.read_csv('./../datasets/original/WA_Fn-UseC_-Telco-Customer-Churn.csv') # As can be seen below, the dataset contains 21 columns and 7,043 rows # In[51]: df.shape # In[52]: df.info() # ## Attribute Definitions # - **customerID** is the unique identifier per customer. # - **MonthlyCharges** and **TotalCharges** identify the monthly and total spending to date for the population. Both should be float attributes. # - **tenure** is how long the customer has been with the service, measured in months. # - All other 16 attributes are categorical and highlight customer attributes (e.g. Senior Citizen) or usage of various features or (e.g. Phone Service). # In[53]: df.sample(n=5) # ## Basic Transformations # Converting **Total Charges** to a float attribute. # In[54]: df['TotalCharges'] = df['TotalCharges'].str.replace(r' ','0').astype(float) df['TotalCharges'].dtypes # - Changing **Churn** to better represent a binary attribute with 1s and 0s vs. "No" or "Yes". This aids further computation. # - Changing **Senior Citizen** to a categorical attribute (No/Yes) from 1s and 0s. # - Changing a number of other columns to showcase visualizations better. # In[55]: df['Churn'] = df['Churn'].apply(lambda x: 0 if x == "No" else 1) df['SeniorCitizen'] = df['SeniorCitizen'].apply(lambda x: "No" if x == 0 else "Yes") # Cosmetic edits to showcase visualizations better df['OnlineSecurity'] = df['OnlineSecurity'].apply(lambda x: "Other" if x == "No internet service" else x) df['OnlineBackup'] = df['OnlineBackup'].apply(lambda x: "Other" if x == "No internet service" else x) df['DeviceProtection'] = df['DeviceProtection'].apply(lambda x: "Other" if x == "No internet service" else x) df['TechSupport'] = df['TechSupport'].apply(lambda x: "Other" if x == "No internet service" else x) df['StreamingTV'] = df['StreamingTV'].apply(lambda x: "Other" if x == "No internet service" else x) df['StreamingMovies'] = df['StreamingMovies'].apply(lambda x: "Other" if x == "No internet service" else x) df['MultipleLines'] = df['MultipleLines'].apply(lambda x: "Other" if x == "No phone service" else x) df['PaymentMethod'] = df['PaymentMethod'].map({'Bank transfer (automatic)':'Bank','Credit card (automatic)':'Credit','Mailed check':'MCheck','Electronic check':'ECheck',}) df.head() # Bin the **tenure** attribute into 10 buckets. # In[56]: df['tenure_bins'] = pd.cut(df['tenure'], bins=10, include_lowest=True) # Bin the **MonthlyCharges** attribute into 10 buckets. # In[57]: df['monthlyCharges_bins'] = pd.cut(df['MonthlyCharges'], bins=10, include_lowest=True) # ## Basic Analyses # ### Customer counts by categorical attributes # In[58]: fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(16, 15)) column_list=['OnlineSecurity', 'PaymentMethod', 'Partner', 'Dependents','OnlineBackup', 'gender', 'SeniorCitizen', 'PhoneService', 'MultipleLines','InternetService', 'DeviceProtection', 'TechSupport','StreamingTV','StreamingMovies', 'Contract','PaperlessBilling'] # Iterate through all combinations for i, var in enumerate(column_list): # Adjusting for the multi-line assignments if i <=3: pos1=0 pos2=i elif i <=7: pos1=1 pos2=i-4 elif i <=11: pos1=2 pos2=i-8 elif i <=15: pos1=3 pos2=i-12 tt = df.groupby(var).size().to_frame() tt.index.rename('', inplace=True) # To remove extra index labels for visualizations tdf = tt.plot(kind='bar', ax=axes[pos1,pos2], title=str(var), legend=None) for container in tdf.containers: tdf.bar_label(container) plt.tight_layout() # ### Histogram of Customer Tenure (in months) # In[59]: ax = df['tenure'].plot( kind='hist', title="'tenure' histogram for all customers", figsize=(12,6), xticks=[1,5,12,20,24,30,36,40,48,50,60,70,72] ) # This is an interesting histogram where a large percentage of customers are fairly new (less than a year old) while a number of older customers (greater than 5 years) make up another large percentage. # In[60]: churned = df[ df['Churn']==1] ax = churned['tenure'].plot( kind='hist', title="'tenure' histogram for customers that churned", figsize=(12,6), xticks=[1,5,12,20,24,30,36,40,48,50,60,70,72]) # As one would expect, most of the churned customers are less than a year old. Many organizations find this to be the biggest segment of churn, i.e. customers fairly new to the service or product. # # (Note: A good lesson on survivorship bias.) # ### Churned customer population # *(Note: 0 = Not churned, 1 = Churned)* # In[61]: churn_pp = df.groupby('Churn').size().to_frame() ax = churn_pp.plot(kind='bar', legend=None) # ax.bar_label(ax.containers[0]) for container in ax.containers: ax.bar_label(container) # ### Churn ratio by categorical attributes # In[62]: fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(15, 15)) column_list=['OnlineSecurity', 'PaymentMethod', 'Partner', 'Dependents','OnlineBackup', 'gender', 'SeniorCitizen', 'PhoneService', 'MultipleLines','InternetService', 'DeviceProtection', 'TechSupport','StreamingTV','StreamingMovies', 'Contract','PaperlessBilling'] # Iterate through all combinations for i, var in enumerate(column_list): # Adjusting for the multi-line assignments if i <=3: pos1=0 pos2=i elif i <=7: pos1=1 pos2=i-4 elif i <=11: pos1=2 pos2=i-8 elif i <=15: pos1=3 pos2=i-12 c_df = df.groupby(var).agg({'Churn': ['sum','count']}) c_df.columns = ['sum', 'count'] c_df['percent'] = (c_df['sum']/c_df['count']).round(2) c_df = c_df[['percent']] c_df.index.rename('', inplace=True) # To remove extra index labels for visualizations tt = c_df.plot(kind='bar', ax=axes[pos1,pos2], title=str(var), legend=None) for container in tt.containers: tt.bar_label(container) plt.tight_layout() # ### Exploring the relationship between tenure and monthly and total charges # In[63]: ax = df.plot(x='tenure', y='MonthlyCharges', kind='scatter', title="Comparing 'tenure' and monthly charges") # No particular relationship seems to be apparent. # In[64]: ax = df.plot(x='tenure', y='TotalCharges', kind='scatter', title="Comparing 'tenure' and total charges") # As one would expect, there is a linear relationship between tenure and total charges, i.e. with time, one's total charges grow. # ### Monthly Charges by Uniform Spending Cohorts # In[65]: mc_bin = df.groupby(by='monthlyCharges_bins').size().to_frame() mc_bin.columns = ['Customer Count'] ax = mc_bin.plot(kind='barh') # By dividing the customer base into 10 uniform cohorts, one can see that a large proportion spend less than \$28 dollars per month. A non-trivial proportion also spends above \$100 per month. # ### Feature Importance # By focusing on most of the categorical attributes, and grouping tenure into specific bins, we can use a classifier to identify the attributes that have a stronger bearing on churn. The fact that being on a month to month contract, being early in the use of the service (tenure bin < 7 months), and paying by electronic check corroborates with the learning above around churn rates. # In[66]: feature_df = df.copy() # Drop un-needed columns, and convert categorical column to object feature_df = feature_df.drop(['customerID','TotalCharges', 'MonthlyCharges', 'monthlyCharges_bins', 'tenure'], axis=1) feature_df['tenure_bins'] = feature_df['tenure_bins'].astype(object) # One hot encode categorical columns feature_df = pd.get_dummies(feature_df) # feature_df.info() # Train the dataset with a Random Forest Classifier X,y = feature_df.drop('Churn', axis=1), feature_df.Churn from sklearn.ensemble import RandomForestClassifier params={'random_state':42, 'n_estimators':500} clf=RandomForestClassifier(**params) clf.fit(X,y) fv =
pd.Series(data=clf.feature_importances_,index=X.columns)
pandas.Series
import os import time import re import requests import pandas as pd from datetime import datetime, timedelta from dateutil import parser from concha.environment import FileHandler class NOAA: """Handles NOAA weather operations for finding stations, getting historical weather, and forecasts. The only setting for this class is the NOAA api key which the user needs to set, and which is saved in ".../concha_planners/importers/[name from __init__].json """ def __init__(self, name="noaa"): """ Initializes the NOAA service. Args: noaa (str): Name of the weather profile. """ # Assign a filehandler self.filehandler = FileHandler() importers_path = self.filehandler.check_importer_path() self.settings_path = os.path.join(importers_path, f"{name}.json") # Get the settings (i.e. the api if it is set) if os.path.exists(self.settings_path): self.settings = self.filehandler.dict_from_file(self.settings_path) else: # If not, make a [name].json file self.settings = {"type": "noaa", "name": name, "api_key": None} self.filehandler.dict_to_file(self.settings, self.settings_path) return def set_api_key(self, api_key): """Setter for the NOAA api key.""" self.settings["api_key"] = api_key self.filehandler.dict_to_file(self.settings, self.settings_path) print("NOAA API key saved.") def get_weather_history(self, start_date, end_date, station_id): """Looks up the weather within a date range at the station. Args: start_date (str): Format from: ['date'].dt.strftime('%Y-%m-%d'), so like '2020-07-15' end_date (str): End date of range in which to find weather history. station_id (str): The NOAA GHCND station name. (https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily) Return: weather_history (pd.DataFrame): fields: ['date', 'tmin', 'tmax'] and possibly ['prcp', 'snow'] """ # Assemble actual request to NOAA. "GHCND" is the Global Historical Climate Network Database try: api_key = self.settings["api_key"] except KeyError: print("An api_key not set up.") print(self.settings) headers = {"Accept": "application/json", "token": api_key} url = "https://www.ncdc.noaa.gov/cdo-web/api/v2/data" params = { "stationid": station_id, "startdate": start_date, "enddate": end_date, "datasetid": "GHCND", "units": "standard", "datatypeid": ["TMIN", "TMAX", "PRCP", "SNOW"], "sortorder": "DESC", "offset": 0, "limit": 1000, } # Loop through requests to the API if more than 1000 results are required. records = [] for i in range(10): req = requests.get(url, headers=headers, params=params) res = req.json() recs = pd.DataFrame(res["results"]) records.append(recs) count = res["metadata"]["resultset"]["count"] if count < params["limit"]: break else: params["offset"] += params["limit"] records = pd.concat(records) # Format the results and turn precipitation and snow levels into just yes/no booleans records["datatype"] = records["datatype"].str.lower() records = records.pivot( index="date", columns="datatype", values="value" ).reset_index() records["date"] = pd.to_datetime(records["date"]) use_fields = ["date", "tmin", "tmax"] for field in ["prcp", "snow"]: if field in records.columns: records[field] = records[field].apply(lambda x: x > 0) use_fields.append(field) return records[use_fields] def get_weather_forecast(self, forecast_url): """Finds the weather forecast at the grid covering the station location. The forecast API gives a day and an overnight forecast. This parses the min temperature from the *overnight/morning of* instead of that night. This was done because the morning before temperature has potentially more effect on demand than the min temperature after the store has closed. Args: forecast_url (str): The api.weather.gov forecast url for the given location. Returns: by_date (pd.DataFrame): The high/low temp by date with the precipitation and snow as booleans. """ # The forecast api is weird and sometimes won't respond for the first minute or so. headers = {"User-Agent": "project concha python application"} # Try to get the forecast 10 times. for i in range(5): req = requests.get(forecast_url, headers=headers) try: req.raise_for_status() except requests.exceptions.HTTPError: # Just ignore and try again later time.sleep(5) # If the first tries don't work - just tell the user to try again later. # The API is weird and sometimes just doesn't work. try: req.raise_for_status() except requests.exceptions.HTTPError as err: print( f"""The NOAA forecast site is weird and sometimes doesn't respond. Try the url in your browser, Then you get a respose, you should be able to run this again and get the forecast. URL: {forecast_url}""" ) print(err) res = req.json() forecast = pd.DataFrame(res["properties"]["periods"]) # Many fields are returned, this limits them to the ones needed. forecast = forecast[ ["startTime", "endTime", "isDaytime", "temperature", "shortForecast"] ] # Date is chosen such that the previous overnight temp, and day temp are assigned to the date forecast["date"] = forecast["endTime"].apply( lambda x: parser.parse(x).strftime("%Y-%m-%d") ) # String search used to figure out of rain is in the forecast forecast["prcp"] = forecast["shortForecast"].str.contains( "showers|rain|thunderstorms", flags=re.IGNORECASE, regex=True ) forecast["snow"] = forecast["shortForecast"].str.contains( "snow|blizzard|flurries", flags=re.IGNORECASE, regex=True ) # Because two values exist for each date, the they are aggregated to find one value for each date. by_date = forecast.groupby("date").agg( tmin=pd.NamedAgg(column="temperature", aggfunc="min"), tmax=pd.NamedAgg(column="temperature", aggfunc="max"), count=pd.NamedAgg(column="temperature", aggfunc="count"), prcp=pd.NamedAgg(column="prcp", aggfunc="any"), snow=
pd.NamedAgg(column="snow", aggfunc="any")
pandas.NamedAgg
""" Testing interaction between the different managers (BlockManager, ArrayManager) """ from pandas.core.dtypes.missing import array_equivalent import pandas as pd import pandas._testing as tm from pandas.core.internals import ( ArrayManager, BlockManager, SingleArrayManager, SingleBlockManager, ) def test_dataframe_creation(): with pd.option_context("mode.data_manager", "block"): df_block = pd.DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3], "c": [4, 5, 6]}) assert isinstance(df_block._mgr, BlockManager) with pd.option_context("mode.data_manager", "array"): df_array = pd.DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3], "c": [4, 5, 6]}) assert isinstance(df_array._mgr, ArrayManager) # also ensure both are seen as equal tm.assert_frame_equal(df_block, df_array) # conversion from one manager to the other result = df_block._as_manager("block") assert isinstance(result._mgr, BlockManager) result = df_block._as_manager("array") assert isinstance(result._mgr, ArrayManager) tm.assert_frame_equal(result, df_block) assert all( array_equivalent(left, right) for left, right in zip(result._mgr.arrays, df_array._mgr.arrays) ) result = df_array._as_manager("array") assert isinstance(result._mgr, ArrayManager) result = df_array._as_manager("block") assert isinstance(result._mgr, BlockManager) tm.assert_frame_equal(result, df_array) assert len(result._mgr.blocks) == 2 def test_series_creation(): with pd.option_context("mode.data_manager", "block"): s_block = pd.Series([1, 2, 3], name="A", index=["a", "b", "c"]) assert isinstance(s_block._mgr, SingleBlockManager) with
pd.option_context("mode.data_manager", "array")
pandas.option_context
# coding=utf-8 # pylint: disable-msg=E1101,W0612 """ test get/set & misc """ import pytest from datetime import timedelta import numpy as np import pandas as pd from pandas.core.dtypes.common import is_scalar from pandas import (Series, DataFrame, MultiIndex, Timestamp, Timedelta, Categorical) from pandas.tseries.offsets import BDay from pandas.compat import lrange, range from pandas.util.testing import (assert_series_equal) import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestMisc(TestData): def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') assert result == 4 expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] assert self.series[idx1] == self.series.get(idx1) assert self.objSeries[idx2] == self.objSeries.get(idx2) assert self.series[idx1] == self.series[5] assert self.objSeries[idx2] == self.objSeries[5] assert self.series.get(-1) == self.series.get(self.series.index[-1]) assert self.series[5] == self.series.get(self.series.index[5]) # missing d = self.ts.index[0] - BDay() pytest.raises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) assert result is None def test_getitem_int64(self): idx = np.int64(5) assert self.ts[idx] == self.ts[5] def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] assert self.series.index[2] == slice1.index[1] assert self.objSeries.index[2] == slice2.index[1] assert self.series[2] == slice1[1] assert self.objSeries[2] == slice2[1] def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) @pytest.mark.parametrize( 'result_1, duplicate_item, expected_1', [ [ pd.Series({1: 12, 2: [1, 2, 2, 3]}), pd.Series({1: 313}), pd.Series({1: 12, }, dtype=object), ], [ pd.Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), pd.Series({1: [1, 2, 3]}), pd.Series({1: [1, 2, 3], }), ], ]) def test_getitem_with_duplicates_indices( self, result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_out_of_bounds(self): # don't segfault, GH #495 pytest.raises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) pytest.raises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) assert s.iloc[0] == s['a'] s.iloc[0] = 5 tm.assert_almost_equal(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] assert isinstance(value, np.float64) def test_series_box_timestamp(self): rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng) assert isinstance(ser[5], pd.Timestamp) rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng, index=rng) assert isinstance(ser[5], pd.Timestamp) assert isinstance(ser.iat[5], pd.Timestamp) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) pytest.raises(KeyError, s.__getitem__, 1) pytest.raises(KeyError, s.loc.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) assert is_scalar(obj['c']) assert obj['c'] == 0 def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .loc internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = s.loc[['foo', 'bar', 'bah', 'bam']] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) pytest.raises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] assert result == s.loc['A'] result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.loc[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] assert self.series.index[9] not in numSlice.index assert self.objSeries.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert self.series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == self.series.index[11] assert tm.equalContents(numSliceEnd, np.array(self.series)[-10:]) # Test return view. sl = self.series[10:20] sl[:] = 0 assert (self.series[10:20] == 0).all() def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN assert np.isnan(self.ts[6]) assert np.isnan(self.ts[2]) self.ts[np.isnan(self.ts)] = 5 assert not np.isnan(self.ts[2]) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 assert (series[::2] == 0).all() # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = self.ts.set_value(idx, 0) assert res is self.ts assert self.ts[idx] == 0 # equiv s = self.series.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = s.set_value('foobar', 0) assert res is s assert res.index[-1] == 'foobar' assert res['foobar'] == 0 s = self.series.copy() s.loc['foobar'] = 0 assert s.index[-1] == 'foobar' assert s['foobar'] == 0 def test_setslice(self): sl = self.ts[5:20] assert len(sl) == len(sl.index) assert sl.index.is_unique def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assert_raises_regex(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assert_raises_regex(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK pytest.raises(Exception, self.ts.__getitem__, [5, slice(None, None)]) pytest.raises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.loc[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] assert result == expected result = s.iloc[0] assert result == expected result = s['a'] assert result == expected def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) assert orig.dtype == 'datetime64[ns, {0}]'.format(tz) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) assert vals.dtype == 'datetime64[ns, {0}]'.format(tz) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) assert orig.dtype == 'datetime64[ns, {0}]'.format(tz) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00-04:00', tz=tz), pd.Timestamp('2011-01-01 00:00-05:00', tz=tz), pd.Timestamp('2016-11-06 01:00-05:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) assert vals.dtype == 'datetime64[ns, {0}]'.format(tz) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_categorial_assigning_ops(self): orig = Series(Categorical(["b", "b"], categories=["a", "b"])) s = orig.copy() s[:] = "a" exp = Series(Categorical(["a", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[1] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[s.index > 0] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[[False, True]] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s.index = ["x", "y"] s["y"] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) tm.assert_series_equal(s, exp) # ensure that one can set something to np.nan s = Series(Categorical([1, 2, 3])) exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3])) s[1] = np.nan tm.assert_series_equal(s, exp) def test_take(self): s = Series([-1, 5, 6, 2, 4]) actual = s.take([1, 3, 4]) expected = Series([5, 2, 4], index=[1, 3, 4]) tm.assert_series_equal(actual, expected) actual = s.take([-1, 3, 4]) expected = Series([4, 2, 4], index=[4, 3, 4]) tm.assert_series_equal(actual, expected) pytest.raises(IndexError, s.take, [1, 10]) pytest.raises(IndexError, s.take, [2, 5]) with tm.assert_produces_warning(FutureWarning): s.take([-1, 3, 4], convert=False) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.loc[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.iloc[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.loc[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.loc[d1] = 4 self.series.loc[d2] = 6 assert self.series[d1] == 4 assert self.series[d2] == 6 def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # gets coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) pytest.raises(IndexError, s.__getitem__, 5) pytest.raises(IndexError, s.__setitem__, 5, 0) pytest.raises(KeyError, s.__getitem__, 'c') s = s.sort_index() pytest.raises(IndexError, s.__getitem__, 5) pytest.raises(IndexError, s.__setitem__, 5, 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame({c: [1, 2, 3] for c in ['a', 'b', 'c']}) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 assert df['bb'].iloc[0] == 0.15
pd.set_option('chained_assignment', 'raise')
pandas.set_option
import nose import unittest from numpy import nan import numpy as np from pandas import Series, DataFrame from pandas.util.compat import product from pandas.util.testing import (assert_frame_equal, assert_series_equal, assert_almost_equal) class TestRank(unittest.TestCase): _multiprocess_can_split_ = True s = Series([1, 3, 4, 2, nan, 2, 1, 5, nan, 3]) df = DataFrame({'A': s, 'B': s}) results = { 'average': np.array([1.5, 5.5, 7.0, 3.5, nan, 3.5, 1.5, 8.0, nan, 5.5]), 'min': np.array([1, 5, 7, 3, nan, 3, 1, 8, nan, 5]), 'max': np.array([2, 6, 7, 4, nan, 4, 2, 8, nan, 6]), 'first': np.array([1, 5, 7, 3, nan, 4, 2, 8, nan, 6]) } def test_rank_tie_methods(self): s = self.s def _check(s, expected, method='average'): result = s.rank(method=method) assert_almost_equal(result, expected) dtypes = [None, object] disabled = set([(object, 'first')]) results = self.results for method, dtype in product(results, dtypes): if (dtype, method) in disabled: continue series = s if dtype is None else s.astype(dtype) _check(series, results[method], method=method) def test_rank_descending(self): dtypes = ['O', 'f8', 'i8'] for dtype, method in product(dtypes, self.results): if 'i' in dtype: s = self.s.dropna() df = self.df.dropna() else: s = self.s.astype(dtype) df = self.df.astype(dtype) res = s.rank(ascending=False) expected = (s.max() - s).rank() assert_series_equal(res, expected) res = df.rank(ascending=False) expected = (df.max() - df).rank() assert_frame_equal(res, expected) if method == 'first' and dtype == 'O': continue expected = (s.max() - s).rank(method=method) res2 = s.rank(method=method, ascending=False)
assert_series_equal(res2, expected)
pandas.util.testing.assert_series_equal
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/12 15:47 Desc: 东方财富-沪深板块-概念板块 http://quote.eastmoney.com/center/boardlist.html#concept_board """ import requests import pandas as pd def stock_board_concept_name_em() -> pd.DataFrame: """ 东方财富-沪深板块-概念板块-名称 http://quote.eastmoney.com/center/boardlist.html#concept_board :return: 概念板块-名称 :rtype: pandas.DataFrame """ url = "http://79.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "2000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:90 t:3 f:!50", "fields": "f2,f3,f4,f8,f12,f14,f15,f16,f17,f18,f20,f21,f24,f25,f22,f33,f11,f62,f128,f124,f107,f104,f105,f136", "_": "1626075887768", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "排名", "最新价", "涨跌幅", "涨跌额", "换手率", "_", "板块代码", "板块名称", "_", "_", "_", "_", "总市值", "_", "_", "_", "_", "_", "_", "上涨家数", "下跌家数", "_", "_", "领涨股票", "_", "_", "领涨股票-涨跌幅", ] temp_df = temp_df[ [ "排名", "板块名称", "板块代码", "最新价", "涨跌额", "涨跌幅", "总市值", "换手率", "上涨家数", "下跌家数", "领涨股票", "领涨股票-涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["总市值"] = pd.to_
numeric(temp_df["总市值"])
pandas.to_numeric
#!/usr/bin/env python # coding: utf-8 from install import * from solvers import * from params import * import pandas as pd import matplotlib.pyplot as plt from scipy.stats import rayleigh, norm, kstest def plot_maxwell(vel, label=None, draw=True): speed = (vel*vel).sum(1)**0.5 loc, scale = rayleigh.fit(speed, floc=0) dist = rayleigh(scale=scale) if draw: plt.hist(speed, 20, normed=True) x = np.linspace(dist.ppf(0.01), dist.ppf(0.99), 1000) plt.plot(x, dist.pdf(x), label=label) if label: plt.legend() return kstest(speed, dist.cdf)[0] def plot_maxwell_x(vel, label=None, draw=True): loc, scale = norm.fit(vel[:, 0], floc=0) dist = norm(scale=scale) if draw: plt.hist(vel[:, 0], 20, normed=True) x = np.linspace(dist.ppf(0.01), dist.ppf(0.99), 1000) plt.plot(x, dist.pdf(x), label=label) if label: plt.legend() return kstest(vel[:, 0], dist.cdf)[0] def plot_particles(pos, vel): plt.xlabel("X") plt.ylabel("Y") plt.quiver(pos[:, 0], pos[:, 1], vel[:, 0], vel[:, 1]) def multi_particles(f, title=None, n=None, width=4.5, height=4): if n is None: n = min(5, len(f.data)) fig = plt.figure(figsize=(width*n, height)) if title: fig.suptitle(title) for i in range(n): plt.subplot(1, n, i+1) j = math.floor(i*(len(f.data)-1)/(n-1)) plt.title(f"t = {f.time[j]:.1f}") r = f.data[j] plot_particles(r.pos, r.vel) def multi_maxwell(f, title=None, n=None, draw=True, width=20, height=2): if n is None: n = len(f.data) if draw: fig = plt.figure(figsize=(width, height*n)) if title: fig.suptitle(title) max_vel = max((r.vel*r.vel).sum(1).max() for r in f.data)**0.5 max_x = max((np.abs(r.vel[:,0])).max() for r in f.data) fits = [] for i in range(n): j = i*(len(f.data)-1)/(n-1) r = f.data[j] if draw: plt.subplot(n, 2, 2*i+1) plt.xlim(0, max_vel) f1 = plot_maxwell(r.vel, f"t = {f.time[j]:.1f}", draw) if draw: plt.subplot(n, 2, 2*i+2) plt.xlim(-max_x, max_x) f2 = plot_maxwell_x(r.vel, f"t = {f.time[j]:.1f}", draw) fits.append({"t": f.time[j], "speed_stat":f1, "xvel_stat":f2}) return pd.DataFrame.from_records(fits, index='t') def run_simulation(generator, solver, compound_step=True, scale=16, time_steps=500, save_step=100): dt, n, size, data = generator.gen_on_scale(scale) frame = pd.DataFrame(solver.simulate(dt, n, size, time_steps, save_step, compound_step, data), columns=["t", "time", "perf", "data"]) return frame def plot_and_fit(frame, title="", draw_particles=True, draw_maxwell=True, particles_width=2.5, particles_height=2, maxwell_width=10, maxwell_height=1): if draw_particles: multi_particles(frame, None, width=particles_width, height=particles_height) fits = multi_maxwell(frame, title, draw=draw_maxwell, width=maxwell_width, height=maxwell_height) return fits # In[4]: import sys def check(generator, solver, compound, **sim_kwargs): result = run_simulation(generator, solver, compound, **sim_kwargs) fits = plot_and_fit(result, draw_maxwell=False, draw_particles=False) fits = pd.DataFrame( {"initial":fits.iloc[0], "final":fits.iloc[-1]}, columns = ("initial","final")) fits["improvement"] = fits.initial/fits.final return fits, result def check_fits(SolverClass, tpbs=one_tpbs, types=list(gen_sane_types()), params=list(gen_sane_params()), Generator=TaskGenerator, init_kwargs={}, **sim_kwargs): for t in types: for p in params: for tpb in (1,) if SolverClass.no_blocks else tpbs: solver = SolverClass(types=t, coord_format=p['form'], threadsperblock=tpb, scalar=p['scalar'], **init_kwargs) result = {k: v.__name__ for k, v in t.items()} result.update(p) result["tpb"] = tpb result["form"] = p["form"].name sys.stdout.write("\r" + str(result)) fits, data = check(Generator(scalar=p['scalar'], **t), solver, p['compound'], **sim_kwargs) result["fit_speed"] = fits.final.speed_stat result["fit_xvel"] = fits.final.xvel_stat result["data"] = data yield result def pick_outliers(checks): outliers = checks[np.logical_or(checks.fit_speed==checks.fit_speed.max(), checks.fit_xvel==checks.fit_xvel.max())] for d in outliers.data: multi_particles(d) return outliers def test_fits(SolverClass, gen_types=gen_sane_types, **sim_kwargs): checks = pd.DataFrame.from_records(check_fits(SolverClass, **sim_kwargs)) for k, c in checks[
pd.isnull(checks.fit_speed)
pandas.isnull
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """create csv file to train.""" import os import argparse import numpy as np import pandas as pd parser = argparse.ArgumentParser(description='create csv file to train') parser.add_argument('--out_path', type=str, default="./", help="Path of csv files, default is ./") parser.add_argument('--random', type=int, default=0, help='random to create csv files, 0 -- not random, 1 -- random') def split_train_eval(out_path, max_len=50, index_len=10, random=False, seed=0): """split train and eval sets""" np.random.seed(seed) number_list = np.arange(max_len) eval_list = np.random.choice(number_list, size=index_len, replace=False) if not random: eval_list = np.array([11, 15, 19, 30, 42, 43, 44, 46, 48, 49]) train_name_list = ['Case' + str(k).zfill(2) + '.mhd' for k in number_list if k not in eval_list] eval_name_list = ['Case' + str(k).zfill(2) + '.mhd' for k in eval_list] train_name_p = pd.DataFrame(train_name_list) train_name_p.to_csv(os.path.join(out_path, 'train.csv'), header=None, index=False) eval_name_p =
pd.DataFrame(eval_name_list)
pandas.DataFrame
""" omg: Omics Mock Generator Generates a mock dataset of omics data (importable in EDD): transcriptomics, proteomics, and metabolomics Requirements: Python 3.7.2, cobra, numpy, pandas. """ __author__ = 'LBL-QMM' __copyright__ = 'Copyright (C) 2019 Berkeley Lab' __license__ = '' __status__ = 'Alpha' __date__ = 'Dec 2019' __version__ = '0.1.1' import argparse import collections as col import os import random import re import statistics import sys import urllib.parse import urllib.request import warnings from shutil import copyfile from enum import Enum from typing import NewType, Dict, List, Any, OrderedDict, Counter import cobra from cobra.util.array import create_stoichiometric_matrix import numpy as np import pandas as pd from cobra.exceptions import OptimizationError, Infeasible # Type annotations Filename = NewType('Filename', str) # Enumerations class Omics(Enum): """Enumeration with supported omics data types.""" PROTEOMICS = 0 TRANSCRIPTOMICS = 1 METABOLOMICS = 2 def __str__(self): return f'{str(self.name).lower()}' # Constants UNIPROT_URL = '''https://www.uniprot.org/uploadlists/''' CTS_URL = '''https://cts.fiehnlab.ucdavis.edu/rest/convert/''' # HOST NAME HOST_NAME: str = 'ropacus' # TODO: Move some constants to variables by program arguments DATA_FILE_PATH: Filename = Filename('data') # Output file path OUTPUT_FILE_PATH: Filename = Filename('data/output') # INCHIKEY_TO_CID_MAP_FILE_PATH: mapping file path to map inchikey to cids INCHIKEY_TO_CID_MAP_FILE_PATH: Filename = Filename('mapping') # MODEL_FILENAME: Filename = Filename('iECIAI39_1322.xml') # E. coli MODEL_FILENAME: Filename = Filename('reannotated_base_v3.sbml') # R. opacus MODEL_FILEPATH: Filename = Filename('') # Training file name TRAINING_FILE_NAME: Filename = Filename('') TRAINING_FILE_PATH: Filename = Filename('') # Start time and stop time TIMESTART: float = 0.0 TIMESTOP: float = 8.0 NUMPOINTS: int = 9 # Initial OD value INITIAL_OD = 0.01 # number of reactions and instances NUM_REACTIONS: int = None NUM_INSTANCES: int = None # NOTE: user input to the program REACTION_ID_ECOLI: str = 'BIOMASS_Ec_iJO1366_core_53p95M' # E. coli REACTION_ID: str = 'biomass_target' # R. opacus # REACTION_ID: str = 'SRC_C00185_e' # R. opacus GENE_IDS_DBS: List[str] = ['kegg.genes'] # R. opacus # GENE_IDS_DBS: List[str] = ['uniprot', 'goa', 'ncbigi'] # E. coli UNITS: Dict[Omics, str] = { Omics.PROTEOMICS: 'proteins/cell', Omics.TRANSCRIPTOMICS: "FPKM", Omics.METABOLOMICS: "mM" } # Fix the flux value to -15 as we have data for this constraint LOWER_BOUND: int = -15 UPPER_BOUND: int = -15 # Internals _EPS = np.finfo(np.double).eps def ansi(num: int): """Return function that escapes text with ANSI color n.""" return lambda txt: f'\033[{num}m{txt}\033[0m' # pylint: disable=invalid-name gray, red, green, yellow, blue, magenta, cyan, white = map(ansi, range(90, 98)) # pylint: enable=invalid-name #============================================================================= def get_flux_time_series(model, ext_metabolites, grid, user_params): ''' Generate fluxes and OD ''' ## First unpack the time steps for the grid provided tspan, delt = grid ## Create a panda series containing the cell concentation for each time point cell = pd.Series(index=tspan) cell0 = user_params['initial_OD'] # in gDW/L t0 = user_params['timestart'] cell[t0] = cell0 ## Create a dataframe that constains external metabolite names and their concentrations # First organize external metabolites and their initial concentrations met_names = [] initial_concentrations = [] for met, init_conc in ext_metabolites.items(): met_names.append(met) initial_concentrations.append(init_conc) # Create dataframe containing external metabolites Emets = pd.DataFrame(index=tspan, columns=met_names) # Add initial concentrations for external metabolites Emets.loc[t0] = initial_concentrations # Create Dictionary mapping exchange reactions to the corresponding external metabolite Erxn2Emet = {r.id: r.reactants[0].id for r in model.exchanges if r.reactants[0].id in met_names} ## Create storage for timeseries of models and solutions # Model time series model_TS = pd.Series(index=tspan) # Solution time series solution_TS = pd.Series(index=tspan) ## Main for loop solving the model for each time step and adding the corresponding OD and external metabolites created volume = 1.0 # volume set arbitrarily to one because the system is extensive for t in tspan: # Adding constraints for each time point without permanent changes to the model with model: for rxn, met in Erxn2Emet.items(): # For each exchange reaction set lower bound such that the corresponding # external metabolite concentration does not become negative model.reactions.get_by_id(rxn).lower_bound = max(model.reactions.get_by_id(rxn).lower_bound, -Emets.loc[t,met]*volume/cell[t]/delt) # Calculate fluxes solution_t = model.optimize() # Store the solution and model for each timepoint for future use (e.g. MOMA) solution_TS[t] = solution_t model_TS[t] = model.copy() # Calculate OD and external metabolite concentrations for next time point t+delta cell[t+delt], Emets.loc[t+delt] = advance_OD_Emets(Erxn2Emet, cell[t], Emets.loc[t], delt, solution_t, user_params) print(t, solution_t.status, solution_t[user_params['BIOMASS_REACTION_ID']]) # Minimum output for testing return solution_TS, model_TS, cell, Emets, Erxn2Emet def advance_OD_Emets(Erxn2Emet, old_cell, old_Emets, delt, solution, user_params): # Output is same as input if nothing happens in the if clause new_cell = old_cell new_Emets = old_Emets # Obtain the value of mu (growth rate) mu = solution[user_params['BIOMASS_REACTION_ID']] # Calculate OD and external metabolite concentrations for next step if solution.status == 'optimal' and mu > 1e-6: # Update only if solution is optimal and mu is not zero, otherwise do not update # Calculating next time point's OD new_cell = old_cell *np.exp(mu*delt) # Calculating external external metabolite concentrations for next time point for rxn, met in Erxn2Emet.items(): new_Emets[met] = max(old_Emets.loc[met]-solution[rxn]/mu*old_cell*(1-np.exp(mu*delt)),0.0) return new_cell, new_Emets def getBEFluxes(model_TS, design, solution_TS, grid): ## Unpacking time points grid tspan, delt = grid ## Parameters for flux constraints high = 1.1 low = 0.50 ## Unpack information for desired flux changes # Get names for reaction targets reaction_names =list(design.index[1:]) # Find number of target reactions and number of designs (or strains changed) #n_reactions = design.shape[1] - 1 #n_instances = design.shape[0] - 1 ## Time series containing the flux solution obtained through MOMA solutionsMOMA_TS = pd.Series(index=tspan) ## Main loop: for each strain and at each time point, find new flux profile through MOMA #for i in range(0,n_instances): for t in tspan: model = model_TS[t] sol1 = solution_TS[t] # Reference solution calculated for each time point with model: # Adding the fluxed modifications for chosen reactions for reaction in reaction_names: flux = sol1.fluxes[reaction] lbcoeff =low ubcoeff =high if flux < 0: lbcoeff = high ubcoeff = low reaction_constraint = model.problem.Constraint(model.reactions.get_by_id(reaction).flux_expression, lb = sol1.fluxes[reaction]*design[reaction]*lbcoeff, ub = sol1.fluxes[reaction]*design[reaction]*ubcoeff) #lb = model.reactions.get_by_id(reaction).lower_bound*design[reaction], #ub = model.reactions.get_by_id(reaction).upper_bound*design[reaction]) model.add_cons_vars(reaction_constraint) # Reference solution calculated for each time point in above cell for wild type #sol1 = solution_TS[t] # Moma solution for each time point sol2 = cobra.flux_analysis.moma(model, solution=sol1, linear=False) # saving the moma solutions across timepoints solutionsMOMA_TS[t] = sol2 return solutionsMOMA_TS def integrate_fluxes(solution_TS, model_TS, ext_metabolites, grid, user_params): ## First unpack the time steps for the grid provided tspan, delt = grid ## Create a panda series containing the cell concentation for each time point cell = pd.Series(index=tspan) cell0 = user_params['initial_OD'] # in gDW/L t0 = user_params['timestart'] cell[t0] = cell0 ## Create a dataframe that constains external metabolite names and their concentrations (DUPLICATED CODE) # First organize external metabolites and their initial concentrations model = model_TS[0] met_names = [] initial_concentrations = [] for met, init_conc in ext_metabolites.items(): met_names.append(met) initial_concentrations.append(init_conc) # Create dataframe containing external metabolites Emets = pd.DataFrame(index=tspan, columns=met_names) # Add initial concentrations for external metabolites Emets.loc[t0] = initial_concentrations # Create Dictionary mapping exchange reactions to the corresponding external metabolite Erxn2Emet = {r.id: r.reactants[0].id for r in model.exchanges if r.reactants[0].id in met_names} ## Main loop adding contributions for each time step for t in tspan: # Calculate OD and external metabolite concentrations for next time point t+delta cell[t+delt], Emets.loc[t+delt] = advance_OD_Emets(Erxn2Emet, cell[t], Emets.loc[t], delt, solution_TS[t], user_params) return cell, Emets def get_proteomics_transcriptomics_data(model, solution): """ :param model: :param solution: :param condition: :return: """ # pre-determined linear constant (NOTE: Allow user to set this via parameter) # DISCUSS!! k = 0.8 q = 0.06 proteomics = {} transcriptomics = {} rxnIDs = solution.fluxes.keys() for rxnId in rxnIDs: reaction = model.reactions.get_by_id(rxnId) for gene in list(reaction.genes): # this will ignore all the reactions that does not have the gene.annotation property # DISCUSS!! if gene.annotation: if 'uniprot' not in gene.annotation: if 'goa' in gene.annotation: protein_id = gene.annotation['goa'] else: break else: protein_id = gene.annotation['uniprot'][0] # add random noise which is 5 percent of the signal noiseSigma = 0.05 * solution.fluxes[rxnId]/k; noise = noiseSigma*np.random.randn(); proteomics[protein_id] = abs((solution.fluxes[rxnId]/k) + noise) # create transcriptomics dict noiseSigma = 0.05 * proteomics[protein_id]/q; noise = noiseSigma*np.random.randn(); transcriptomics[gene.id] = abs((proteomics[protein_id]/q) + noise) return proteomics, transcriptomics def get_metabolomics_data(model, solution, mapping_file): """ :param model: :param condition: :return: """ metabolomics = {} metabolomics_with_old_ids = {} # get metabolites # read the inchikey to pubchem ids mapping file inchikey_to_cid = {} inchikey_to_cid = read_pubchem_id_file(mapping_file) # create the stoichoimetry matrix fomr the model as a Dataframe and convert all the values to absolute values sm = create_stoichiometric_matrix(model, array_type='DataFrame') # get all the fluxes across reactions from the solution fluxes = solution.fluxes # calculating the dot product of the stoichiometry matrix and the fluxes to calculate the net change # in concentration of the metabolites across reactions net_change_in_concentrations = sm.abs().dot(fluxes.abs()) #net_change_in_concentrations = net_change_in_concentrations.abs() # converting all na values to zeroes and counting the total number of changes that happens for each metabolite num_changes_in_metabolites = sm.fillna(0).astype(bool).sum(axis=1) for met_id, conc in net_change_in_concentrations.items(): metabolite = model.metabolites.get_by_id(met_id) # if there is an inchikey ID for the metabolite if 'inchi_key' in metabolite.annotation: # if it is a list get the first element if type(metabolite.annotation['inchi_key']) is list: inchi_key = metabolite.annotation['inchi_key'][0] else: inchi_key = metabolite.annotation['inchi_key'] if inchi_key in inchikey_to_cid.keys(): # if the CID is not in the metabolomics dict keys AND the mapped value is not None and the reactions flux is not 0 if (inchikey_to_cid[inchi_key] not in metabolomics.keys()) and (inchikey_to_cid[inchi_key] is not None): metabolomics[inchikey_to_cid[inchi_key]] = conc/num_changes_in_metabolites.iloc[num_changes_in_metabolites.index.get_loc(met_id)] metabolomics_with_old_ids[met_id] = conc/num_changes_in_metabolites.iloc[num_changes_in_metabolites.index.get_loc(met_id)] elif (inchikey_to_cid[inchi_key] is not None): metabolomics[inchikey_to_cid[inchi_key]] += conc/num_changes_in_metabolites.iloc[num_changes_in_metabolites.index.get_loc(met_id)] metabolomics_with_old_ids[met_id] = conc/num_changes_in_metabolites.iloc[num_changes_in_metabolites.index.get_loc(met_id)] return metabolomics, metabolomics_with_old_ids def get_multiomics(model, solution, mapping_file, old_ids=False): """ :param model: cobra model object :param solution: solution for the model optimization using cobra :param data_type: defines the type of -omics data to generate (all by default) :return: """ proteomics = {} transcriptomics = {} fluxomics = {} metabolomics = {} proteomics, transcriptomics = get_proteomics_transcriptomics_data(model, solution) metabolomics, metabolomics_with_old_ids = get_metabolomics_data(model, solution, mapping_file) if old_ids: return (proteomics, transcriptomics, metabolomics, metabolomics_with_old_ids) else: return (proteomics, transcriptomics, metabolomics) def read_pubchem_id_file(mapping_file): inchikey_to_cid = {} with open(mapping_file, 'r') as fh: try: line = fh.readline() while line: # checking to ignore inchikey records with no cid mappings if (len(line.split()) > 1): inchikey_to_cid[line.split()[0]] = 'CID:'+line.split()[1] else: inchikey_to_cid[line.strip()] = None line = fh.readline() # NOTE: propagated exception, raise except Exception as ex: print("Error in reading file!") print(ex) return inchikey_to_cid def write_experiment_description_file(output_file_path, line_name='WT', label=''): # HARD CODED ONLY FOR WILD TYPE! if not os.path.isdir(output_file_path): os.mkdir(output_file_path) # create the filename experiment_description_file_name = f'{output_file_path}/EDD_experiment_description_file{label}.csv' #write experiment description file try: with open(experiment_description_file_name, 'w') as fh: fh.write(f'Line Name, Line Description, Part ID, Media, Shaking Speed, Starting OD, Culture Volume, Flask Volume, Growth Temperature, Replicate Count\n') if line_name == 'WT': line_descr = 'Wild type E. coli' part_id = 'ABFPUB_000310' else: line_descr = '' part_id = 'ABFPUB_000310' #THIS SHOULD BE CHANGED! fh.write(f"{line_name}, {line_descr}, {part_id}, M9, 1, 0.1, 50, 200, 30, 1\n") except Exception as ex: print("Error in writing file!") print(ex) def write_in_al_format(time_series_omics_data, omics_type, user_params, label=''): try: output_file_path = user_params['al_omics_file_path'] if not os.path.isdir(output_file_path): os.mkdir(output_file_path) for timepoint, omics_dict in time_series_omics_data.items(): al_file_name = f'{output_file_path}/AL_{omics_type}_{timepoint}_hrs{label}.csv' with open(al_file_name, 'w') as ofh: dataframe = pd.DataFrame.from_dict(omics_dict, orient='index', columns=[f'{omics_type}_value']) for index, series in dataframe.iteritems(): for id, value in series.iteritems(): ofh.write(f'{id},{value}\n') except: print('Error in writing in Arrowland format') def write_in_edd_format(time_series_omics_data, omics_type, user_params, line_name, label=''): # Dictionary to map omics type with the units of measurement unit_dict = { "fluxomics": 'mmol/gdwh',\ "proteomics": 'proteins/cell',\ "transcriptomics": "FPKM",\ "metabolomics": "mM" } # write in EDD format output_file_path = user_params['edd_omics_file_path'] # create the filenames omics_file_name: str = f'{output_file_path}/EDD_{omics_type}{label}.csv' if not os.path.isdir(output_file_path): os.mkdir(output_file_path) # open a file to write omics data for each type and for all timepoints and constraints try: with open(omics_file_name, 'w') as fh: fh.write(f'Line Name,Measurement Type,Time,Value,Units\n') for timepoint, omics_dict in time_series_omics_data.items(): dataframe = pd.DataFrame.from_dict(omics_dict, orient='index', columns=[f'{omics_type}_value']) for index, series in dataframe.iteritems(): for id, value in series.iteritems(): fh.write((f'{line_name},{id},{timepoint},{value},{unit_dict[omics_type]}\n')) except Exception as ex: print("Error in writing file!") print(ex) def write_omics_files(time_series_omics_data, omics_type, user_params, line_name='WT', al_format=False, label=''): """ :param dataframe: :param data_type: :return: """ # check which format we have to create the data in if not al_format: # write the omics files in EDD format by separating in terms of the timepoints write_in_edd_format(time_series_omics_data, omics_type, user_params, line_name, label=label) else: # write the omics files in ARROWLAND format by separating in terms of the timepoints write_in_al_format(time_series_omics_data, omics_type, user_params, label=label) def write_OD_data(cell, output_file_path, line_name='WT', label=''): # create the filename OD_data_file: str = f'{output_file_path}/EDD_OD{label}.csv' if not os.path.isdir(output_file_path): os.mkdir(output_file_path) # write experiment description file try: with open(OD_data_file, 'w') as fh: fh.write(f'Line Name,Measurement Type,Time,Value,Units\n') for index, value in cell.items(): fh.write((f'{line_name},Optical Density,{index},{value},n/a\n')) except Exception as ex: print("Error in writing OD file") print(ex) def write_training_data_with_isopentenol(df, filename): filename = f'{OUTPUT_FILE_PATH}/{filename}' df.to_csv(filename, header=True, index=False) def write_external_metabolite(substrates, output_file_path, line_name='WT', label=''): # create the filename external_metabolites: str = f'{output_file_path}/EDD_external_metabolites{label}.csv' if not os.path.isdir(output_file_path): os.mkdir(output_file_path) # Table for metabolites to be exported glucose = substrates.loc[:, 'glc__D_e'] ammonium = substrates.loc[:, 'nh4_e'] isopentenol = substrates.loc[:, 'isoprenol_e'] acetate = substrates.loc[:, 'ac_e'] formate = substrates.loc[:, 'for_e'] lactate = substrates.loc[:, 'lac__D_e'] ethanol = substrates.loc[:, 'etoh_e'] # output_metabolites = { # "5793": glucose, "16741146": ammonium, "12988": isopentenol, "175": acetate, "283": formate, "612": #lactate, "702": ethanol} output_metabolites = { "5793": glucose, "12988": isopentenol, "175": acetate, "283": formate, "612": lactate, "702": ethanol} # Write file lines try: with open(external_metabolites,'w') as fh: # Top header fh.write(f'Line Name,Measurement Type,Time,Value,Units\n') # Metabolite lines for cid in output_metabolites: met = output_metabolites[cid] for index,value in met.items(): fh.write((f'{line_name},CID:{cid},{index},{value},mM\n')) except Exception as ex: print("Error in writing OD file") print(ex) def get_random_number(): """ :return: """ random.seed(12312) return random.random() def add_random_noise(): """ :return: """ pass def get_list_of_reactions(file_name): """ :param file_name: Name of the model file (has to be xml for now) :return: None (prints the list of reactions that has mass in them) """ # Load model¶depending on the kind of file (the file has to be xml) if file_name.endswith(".xml"): model = cobra.io.read_sbml_model(file_name) # Print out the reaction name and reaction id for all reactions related to BIOMASS production: print("List of reactions related to BIOMASS production:") for rxn in model.reactions: if rxn.name is not None and 'BIOMASS' in rxn.id: print("{}: {}".format(rxn.id, rxn.name)) def get_optimized_solution(model, reaction_id): """ :param model: :param reaction_id: :return solution: """ # fix the flux value to -15 as we have data for this constraint model.reactions.get_by_id(reaction_id).lower_bound = self.LOWER_BOUND model.reactions.get_by_id(reaction_id).upper_bound = self.UPPER_BOUND # print(model.reactions.get_by_id(reaction_id)) print("Displaying the reaction bounds after constraining them:") print(model.reactions.get_by_id(reaction_id).bounds) # optimizing the model for only the selected reaction # model.slim_optimize() # optimizing model solution = model.optimize() return solution def read_model(file_name): """ :param file_name: :return model: """ # Load model¶depending on the kind of file if file_name.endswith(".xml"): model = cobra.io.read_sbml_model(file_name) elif file_name.endswith(".json"): model = cobra.io.load_json_model(file_name) return model def model_has_IPP_pathway(model): ''' We check if the model has the following reactions if so then it has the isopentenol pathway ['HMGCOAS','HMGCOAR','MEVK1','PMD','IPMPP','IPtrpp','IPtex','EX_isoprenol_e'] ''' reaction_list = ['HMGCOAS','HMGCOAR','MEVK1','PMD','IPMPP','IPtrpp','IPtex','EX_isoprenol_e'] model_reactions = [r.id for r in model.reactions] for reac in reaction_list: if reac not in model_reactions: return False return True def add_isopentenol_pathway(model, sce): ''' Add isopentenol pathway by taking it from the model instance of S. cerevisiae, we used the iMM904.json model ''' # Load S. cerevisiae model # sce = cobra.io.load_json_model(f'data/{cerevisiae_modelfile}') # Add mevalonate pathway reactions from S. cerevisiae model for x in ['HMGCOAS','HMGCOAR','MEVK1','DPMVD']: r = sce.reactions.get_by_id(x).copy() r.gene_reaction_rule = '' model.add_reaction(r) # Update gene names model.reactions.get_by_id('HMGCOAS').gene_reaction_rule = 'HMGS' model.reactions.get_by_id('HMGCOAR').gene_reaction_rule = 'HMGR' model.reactions.get_by_id('MEVK1').gene_reaction_rule = 'MK' model.reactions.get_by_id('DPMVD').gene_reaction_rule = 'PMD' # Add IP to model m = model.metabolites.ipdp_c.copy() m.id = 'ipmp_c' m.name = 'Isopentenyl monophosphate' m.formula = 'C5H9O4P' m.charge = -2 model.add_metabolites([m]) # Update PMD reaction to convert mev-5p to IP model.reactions.get_by_id('DPMVD').id = 'PMD' model.reactions.get_by_id('PMD').add_metabolites({'5dpmev_c': 1.0, '5pmev_c': -1.0, 'ipdp_c': -1.0, 'ipmp_c': 1.0}) # Add isoprenol (isopentenol) m = model.metabolites.ipmp_c.copy() m.id = 'isoprenol_c' m.name = 'Isopentenol' m.formula = 'C5H10O' m.charge = 0 model.add_metabolites([m]) # Add phosphatase reaction by AphA r = model.reactions.CHLabcpp.copy() r.id = 'IPMPP' r.name = 'Isopentenyl monophosphate phosphatase' r.gene_reaction_rule = 'AphA' model.add_reactions([r]) r.add_metabolites({'chol_p': 1.0, 'atp_c': 1.0, 'chol_c': -1.0, 'adp_c': -1.0, 'h_c': -1.0, 'ipmp_c': -1.0, 'isoprenol_c': 1.0}) # Add periplasmic and extracellular isoprenol m = model.metabolites.isoprenol_c.copy() m.id = 'isoprenol_p' m.compartment = 'p' model.add_metabolites([m]) m = model.metabolites.isoprenol_c.copy() m.id = 'isoprenol_e' m.compartment = 'e' model.add_metabolites([m]) # Add periplasmic and extracellular transport reactions r = model.reactions.ETOHtrpp.copy() r.id = 'IPtrpp' r.name = 'Isopentenol reversible transport via diffusion (periplasm)' r.gene_reaction_rule = '' model.add_reactions([r]) r.add_metabolites({'etoh_p': 1.0, 'etoh_c': -1.0, 'isoprenol_p': -1.0, 'isoprenol_c': 1.0}) r = model.reactions.ETOHtex.copy() r.id = 'IPtex' r.name = 'Isopentenol transport via diffusion (extracellular to periplasm)' r.gene_reaction_rule = '' model.add_reactions([r]) r.add_metabolites({'etoh_e': 1.0, 'etoh_p': -1.0, 'isoprenol_e': -1.0, 'isoprenol_p': 1.0}) # Add a boundary reaction r = model.reactions.EX_etoh_e.copy() r.id = 'EX_isoprenol_e' r.name = 'Isopentenol exchange' r.gene_reaction_rule = '' model.add_reactions([r]) r.add_metabolites({'etoh_e': 1.0, 'isoprenol_e': -1.0}) # Write model to files outputfilename = user_params['modelfile'].split('.')[0] + '_IPP.json' cobra.io.save_json_model(model, f'data/{outputfilename}') return model #============================================================================= class Ropacus(): def __init__(self): self.time_series_omics_data = {} self.LOWER_BOUND = -15 self.UPPER_BOUND = -15 def generate_time_series_data(self, model): # intiializing omics dictionaries to contain data across timepoints proteomics_list: List = [] transcriptomics_list: List = [] fluxomics_list: List = [] metabolomics_list: List = [] # generating time series data for the following flux constraints # 6, 9, 12, 15 corresponding to the times 0, 3, 6, 9 hours # NOTE: The constraints and the timepoints should be supplied as command line inputs time_series_omics_data = {} experiment_timepoints = [0, 3, 6, 9] flux_constraints = [6, 9, 12, 15] # NOTE; constraints in flux_constraints, think about it for i in range(len(flux_constraints)): # Set global reactions bounds (in addition to local) self.LOWER_BOUND = flux_constraints[i] self.UPPER_BOUND = flux_constraints[i] cobra_config = cobra.Configuration() cobra_config.bounds = self.LOWER_BOUND, self.UPPER_BOUND # Print the list of reaction names related to BIOMASS production self.print_reactions(model) # get fake proteomics data and write it to XLSX file condition = 1 self.generate_mock_data(model, condition) def add_random_noise(self): # TODO """ :return: """ pass def chemical_translation(self, dict_in: Dict[str, Any], fmt_from: str = 'KEGG', fmt_to: str = 'PubChem CID') -> Dict[str, Any]: """ Proxy to UCDavis Chemical Translation Service (CTS). Maps the keys of the input dictionary keeping intact the values. Default behaviour: map KEGG Compounds into PubChem CIDs For details, see https://cts.fiehnlab.ucdavis.edu/services """ dict_out: Dict[str, float] = {} print(gray('Mapping metabolites ids using CTS'), end='', flush=True) ids_in: List[str] = list(dict_in.keys()) pattern = re.compile( r"""(?:"searchTerm":")(\w+)(?:","results":\[")(\w+)(?:"])""") for id_in in ids_in: mapping_str: str = f'{fmt_from}/{fmt_to}/{id_in}' mapping_data = urllib.parse.quote(mapping_str) mapping_req = urllib.request.Request(CTS_URL + mapping_data) with urllib.request.urlopen(mapping_req) as map_file: mapping = map_file.read().strip().decode('utf-8') match: re.Match = pattern.search(mapping) if match: assert match.group(1) == id_in id_out: str = match.group(2) if fmt_to == 'PubChem CID': id_out = 'CID:' + id_out dict_out[id_out] = dict_in[id_in] print(green('.'), end='', flush=True) dprint(f'Metabolite {id_in} mapped to {id_out}') else: print(red('.'), end='', flush=True) dprint(yellow(f'Metabolite {id_in} mapping failed!')) print(green('OK!')) self.vprint(gray('Number of unmapped genes from'), fmt_from, gray('to'), fmt_to, gray(':'), yellow(len(dict_in) - len(dict_out))) return dict_out def dict_to_edd(self, omics_dict: Dict[str, float], omics: Omics) -> pd.DataFrame: """Get dataframe with EDD format from dictionary with omics values""" edd: List[OrderedDict[str, Any]] = [] sample: OrderedDict[str, Any] for measurement, value in omics_dict.items(): sample = col.OrderedDict([ ('Line Name', 'WT'), ('Measurement Type', measurement), ('Time', 0), # TODO: Generalize for time-series ('Value', value), ('Units', UNITS[omics]) ]) edd.append(sample) return
pd.DataFrame(edd)
pandas.DataFrame
# %% from bs4 import BeautifulSoup import requests import math import pandas as pd import numpy as np import sys, os, fnmatch import plotly.graph_objects as go from plotly.subplots import make_subplots from datetime import datetime as dt # %% def get_version(s, version): for v in version: # split up '(F)SCIP' entry if v.startswith("(F)SCIP"): version.append(v.replace("(F)", "")) version.append(v.replace("(F)", "F")) version.remove(v) if s in ["SPLX", "SOPLX"]: s = "SoPlex" elif s in ["MDOPT"]: s = "MindOpt" elif s in ["GLOP"]: s = "Google-GLOP" elif s in ["MSK"]: s = "Mosek" match = [v for v in version if v.lower().find(s.lower()) >= 0] return match[0] if match else s # %% def parse_table(url, timelimit=3600, threads=1): """ parse a specific table to generate a dictionary with the runtimes and auxiliary information """ resp = requests.get(url) soup = BeautifulSoup(resp.text, features="html.parser") pre = soup.find_all("pre") stats = {} stats["date"] = pre[0].text.split("\n")[1].replace("=", "").replace("-", "").strip() stats["title"] = pre[0].text.split("\n")[2].strip() if url.find("lpsimp.html") >= 0: tab = pre[3].text.split("\n") tabmark = [ind for ind, i in enumerate(tab) if i.startswith("=====")] _version = pre[2].text.split("\n")[1:-1] _version = [x.split()[0].rstrip(":") for x in _version] _score = tab[tabmark[0] - 2].split()[2:] _solved = tab[tabmark[0] - 1].split()[1:] solver = tab[tabmark[0] + 1].split()[2:] stats["solver"] = solver stats["nprobs"] = len(tab[tabmark[1] + 1 : tabmark[-1]]) stats["score"] = {solver[i]: float(_score[i]) for i in range(len(solver))} stats["solved"] = {solver[i]: int(_solved[i]) for i in range(len(solver))} stats["version"] = {s: get_version(s, _version) for s in solver} stats["timelimit"] = int( pre[3].text.split("\n")[-2].split()[1].replace(",", "") ) stats["times"] = pd.DataFrame( [l.split() for l in tab[tabmark[1] + 1 : tabmark[-1]]], columns=["instance"] + solver, ) elif url.find("lpbar.html") >= 0: tab = pre[3].text.split("\n") tabmark = [ind for ind, i in enumerate(tab) if i.startswith("=====")] _version = pre[2].text.split("\n")[1:-1] _version = [x.split()[0].rstrip(":") for x in _version] _score = tab[tabmark[0] - 2].split()[2:] _solved = tab[tabmark[0] - 1].split()[1:] solver = tab[tabmark[0] + 1].split()[1:] stats["solver"] = solver stats["nprobs"] = len(tab[tabmark[1] + 1 : tabmark[-1]]) stats["score"] = {solver[i]: float(_score[i]) for i in range(len(solver))} stats["solved"] = {solver[i]: int(_solved[i]) for i in range(len(solver))} stats["version"] = {s: get_version(s, _version) for s in solver} stats["timelimit"] = timelimit stats["times"] = pd.DataFrame( [l.split() for l in tab[tabmark[0] + 3 : tabmark[-1]]], columns=["instance"] + solver, ) elif url.find("network.html") >= 0: tab = pre[2].text.split("\n") tabmark = [ind for ind, i in enumerate(tab) if i.startswith("=====")] _version = pre[1].text.split("\n")[1:-1] _version = [x.split()[1] for x in _version] _score = tab[3].split() solver = tab[5].split()[3:] stats["solver"] = solver stats["nprobs"] = len(tab[tabmark[0] + 3 : tabmark[-1]]) stats["score"] = {solver[i]: float(_score[i]) for i in range(len(solver))} stats["solved"] = {} stats["version"] = {s: get_version(s, _version) for s in solver} stats["timelimit"] = timelimit stats["times"] = pd.DataFrame( [l.split() for l in tab[tabmark[0] + 3 : tabmark[-1]]], columns=["instance", "nodes", "arcs"] + solver, ) stats["times"] = stats["times"].drop(["nodes", "arcs"], axis=1) for s in solver: stats["solved"][s] = ( stats["nprobs"] -
pd.to_numeric(stats["times"][s], errors="coerce")
pandas.to_numeric
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s = pd.Series(['1.0', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test errors and downcast s = pd.Series(['appple', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series, errors='ignore', downcast='signed') pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s, errors='ignore', downcast='signed')) # test list data l = ['1.0', 2, -3, '2.0'] r = to_numeric(l) np.testing.assert_array_equal(r.execute().fetch(), pd.to_numeric(l)) def test_q_cut_execution(setup): rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) series = from_pandas_series(s) r = qcut(series, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) r = qcut(s, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s) r = qcut(series, [0.3, 0.5, 0.7]) result = r.execute().fetch() expected = pd.qcut(s, [0.3, 0.5, 0.7]) pd.testing.assert_series_equal(result, expected) r = qcut(range(5), 3) result = r.execute().fetch() expected = pd.qcut(range(5), 3) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), [0.2, 0.5]) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), tensor([0.2, 0.5])) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) def test_shift_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=5) for periods in (2, -2, 6, -6): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df.shift(periods=periods, axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw.shift(periods=periods, axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected, check_dtype=False) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}' ) from e raw2 = raw.copy() raw2.index = pd.date_range('2020-1-1', periods=10) raw2.columns = pd.date_range('2020-3-1', periods=8) df2 = from_pandas_df(raw2, chunk_size=5) # test freq not None for periods in (2, -2): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}') from e # test tshift r = df2.tshift(periods=1) result = r.execute().fetch() expected = raw2.tshift(periods=1) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): _ = df.tshift(periods=1) # test series s = raw.iloc[:, 0] series = from_pandas_series(s, chunk_size=5) for periods in (0, 2, -2, 6, -6): for fill_value in (None, 0, 1.): r = series.shift(periods=periods, fill_value=fill_value) try: result = r.execute().fetch() expected = s.shift(periods=periods, fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e s2 = raw2.iloc[:, 0] # test freq not None series2 = from_pandas_series(s2, chunk_size=5) for periods in (2, -2): for fill_value in (None, 0, 1.): r = series2.shift(periods=periods, freq='D', fill_value=fill_value) try: result = r.execute().fetch() expected = s2.shift(periods=periods, freq='D', fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e def test_diff_execution(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) raw1 = raw.copy() raw1['col4'] = raw1['col4'] < 400 r = from_pandas_df(raw1, chunk_size=(10, 5)).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw1, chunk_size=5).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw, chunk_size=(5, 8)).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1)) r = from_pandas_df(raw, chunk_size=5).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1), check_dtype=False) # test series s = raw.iloc[:, 0] s1 = s.copy() < 400 r = from_pandas_series(s, chunk_size=10).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s, chunk_size=5).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s1, chunk_size=5).diff(1) pd.testing.assert_series_equal(r.execute().fetch(), s1.diff(1)) def test_value_counts_execution(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100), name='s') s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s, chunk_size=100) r = series.value_counts() pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) # test multi chunks series = from_pandas_series(s, chunk_size=30) r = series.value_counts(method='tree') pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(method='tree', normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(normalize=True)) # test bins and normalize r = series.value_counts(method='tree', bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) def test_astype(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) # single chunk df = from_pandas_df(raw) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # multiply chunks df = from_pandas_df(raw, chunk_size=6) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # dict type df = from_pandas_df(raw, chunk_size=5) r = df.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) pd.testing.assert_frame_equal(expected, result) # test arrow_string dtype df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c1': 'arrow_string'}) result = r.execute().fetch() expected = raw.astype({'c1': 'arrow_string'}) pd.testing.assert_frame_equal(expected, result) # test series s = pd.Series(rs.randint(5, size=20)) series = from_pandas_series(s) r = series.astype('int32') result = r.execute().fetch() expected = s.astype('int32') pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s, chunk_size=6) r = series.astype('arrow_string') result = r.execute().fetch() expected = s.astype('arrow_string') pd.testing.assert_series_equal(result, expected) # test index raw = pd.Index(rs.randint(5, size=20)) mix = from_pandas_index(raw) r = mix.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_index_equal(result, expected) # multiply chunks series = from_pandas_series(s, chunk_size=6) r = series.astype('str') result = r.execute().fetch() expected = s.astype('str') pd.testing.assert_series_equal(result, expected) # test category raw = pd.DataFrame(rs.randint(3, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=5) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=3) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=6) r = df.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c2': 'category'}) result = r.execute().fetch() expected = raw.astype({'c2': 'category'}) pd.testing.assert_frame_equal(expected, result) # test series category raw = pd.Series(np.random.choice(['a', 'b', 'c'], size=(10,))) series = from_pandas_series(raw, chunk_size=4) result = series.astype('category').execute().fetch() expected = raw.astype('category') pd.testing.assert_series_equal(expected, result) series = from_pandas_series(raw, chunk_size=3) result = series.astype( pd.CategoricalDtype(['a', 'c', 'b']), copy=False).execute().fetch() expected = raw.astype(pd.CategoricalDtype(['a', 'c', 'b']), copy=False) pd.testing.assert_series_equal(expected, result) series = from_pandas_series(raw, chunk_size=6) result = series.astype( pd.CategoricalDtype(['a', 'c', 'b', 'd'])).execute().fetch() expected = raw.astype(pd.CategoricalDtype(['a', 'c', 'b', 'd'])) pd.testing.assert_series_equal(expected, result) def test_drop(setup): # test dataframe drop rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=3) columns = ['c2', 'c4', 'c5', 'c6'] index = [3, 6, 7] r = df.drop(columns=columns, index=index) pd.testing.assert_frame_equal(r.execute().fetch(), raw.drop(columns=columns, index=index)) idx_series = from_pandas_series(pd.Series(index)) r = df.drop(idx_series) pd.testing.assert_frame_equal(r.execute().fetch(), raw.drop(pd.Series(index))) df.drop(columns, axis=1, inplace=True) pd.testing.assert_frame_equal(df.execute().fetch(), raw.drop(columns, axis=1)) del df['c3'] pd.testing.assert_frame_equal(df.execute().fetch(), raw.drop(columns + ['c3'], axis=1)) ps = df.pop('c8') pd.testing.assert_frame_equal(df.execute().fetch(), raw.drop(columns + ['c3', 'c8'], axis=1)) pd.testing.assert_series_equal(ps.execute().fetch(), raw['c8']) # test series drop raw = pd.Series(rs.randint(1000, size=(20,))) series = from_pandas_series(raw, chunk_size=3) r = series.drop(index=index) pd.testing.assert_series_equal(r.execute().fetch(), raw.drop(index=index)) # test index drop ser = pd.Series(range(20)) rs.shuffle(ser) raw = pd.Index(ser) idx = from_pandas_index(raw) r = idx.drop(index) pd.testing.assert_index_equal(r.execute().fetch(), raw.drop(index)) def test_melt(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=3) r = df.melt(id_vars=['c1'], value_vars=['c2', 'c4']) pd.testing.assert_frame_equal( r.execute().fetch().sort_values(['c1', 'variable']).reset_index(drop=True), raw.melt(id_vars=['c1'], value_vars=['c2', 'c4']).sort_values(['c1', 'variable']).reset_index(drop=True) ) def test_drop_duplicates(setup): # test dataframe drop rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 5)), columns=['c' + str(i + 1) for i in range(5)], index=['i' + str(j) for j in range(20)]) duplicate_lines = rs.randint(1000, size=5) for i in [1, 3, 10, 11, 15]: raw.iloc[i] = duplicate_lines with option_context({'combine_size': 2}): # test dataframe for chunk_size in [(8, 3), (20, 5)]: df = from_pandas_df(raw, chunk_size=chunk_size) if chunk_size[0] < len(raw): methods = ['tree', 'subset_tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for subset in [None, 'c1', ['c1', 'c2']]: for keep in ['first', 'last', False]: for ignore_index in [True, False]: try: r = df.drop_duplicates(method=method, subset=subset, keep=keep, ignore_index=ignore_index) result = r.execute().fetch() try: expected = raw.drop_duplicates(subset=subset, keep=keep, ignore_index=ignore_index) except TypeError: # ignore_index is supported in pandas 1.0 expected = raw.drop_duplicates(subset=subset, keep=keep) if ignore_index: expected.reset_index(drop=True, inplace=True) pd.testing.assert_frame_equal(result, expected) except Exception as e: # pragma: no cover raise AssertionError( f'failed when method={method}, subset={subset}, ' f'keep={keep}, ignore_index={ignore_index}') from e # test series and index s = raw['c3'] ind = pd.Index(s) for tp, obj in [('series', s), ('index', ind)]: for chunk_size in [8, 20]: to_m = from_pandas_series if tp == 'series' else from_pandas_index mobj = to_m(obj, chunk_size=chunk_size) if chunk_size < len(obj): methods = ['tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for keep in ['first', 'last', False]: try: r = mobj.drop_duplicates(method=method, keep=keep) result = r.execute().fetch() expected = obj.drop_duplicates(keep=keep) cmp = pd.testing.assert_series_equal \ if tp == 'series' else pd.testing.assert_index_equal cmp(result, expected) except Exception as e: # pragma: no cover raise AssertionError(f'failed when method={method}, keep={keep}') from e # test inplace series = from_pandas_series(s, chunk_size=11) series.drop_duplicates(inplace=True) result = series.execute().fetch() expected = s.drop_duplicates() pd.testing.assert_series_equal(result, expected) def test_duplicated(setup): # test dataframe drop rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 5)), columns=['c' + str(i + 1) for i in range(5)], index=['i' + str(j) for j in range(20)]) duplicate_lines = rs.randint(1000, size=5) for i in [1, 3, 10, 11, 15]: raw.iloc[i] = duplicate_lines with option_context({'combine_size': 2}): # test dataframe for chunk_size in [(8, 3), (20, 5)]: df = from_pandas_df(raw, chunk_size=chunk_size) if chunk_size[0] < len(raw): methods = ['tree', 'subset_tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for subset in [None, 'c1', ['c1', 'c2']]: for keep in ['first', 'last', False]: try: r = df.duplicated(method=method, subset=subset, keep=keep) result = r.execute().fetch() expected = raw.duplicated(subset=subset, keep=keep) pd.testing.assert_series_equal(result, expected) except Exception as e: # pragma: no cover raise AssertionError( f'failed when method={method}, subset={subset}, ' f'keep={keep}') from e # test series s = raw['c3'] for tp, obj in [('series', s)]: for chunk_size in [8, 20]: to_m = from_pandas_series if tp == 'series' else from_pandas_index mobj = to_m(obj, chunk_size=chunk_size) if chunk_size < len(obj): methods = ['tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for keep in ['first', 'last', False]: try: r = mobj.duplicated(method=method, keep=keep) result = r.execute().fetch() expected = obj.duplicated(keep=keep) cmp = pd.testing.assert_series_equal \ if tp == 'series' else pd.testing.assert_index_equal cmp(result, expected) except Exception as e: # pragma: no cover raise AssertionError(f'failed when method={method}, keep={keep}') from e def test_memory_usage_execution(setup): dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] data = dict([(t, np.ones(shape=500).astype(t)) for t in dtypes]) raw = pd.DataFrame(data) df = from_pandas_df(raw, chunk_size=(500, 2)) r = df.memory_usage(index=False) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=False)) df = from_pandas_df(raw, chunk_size=(500, 2)) r = df.memory_usage(index=True) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=True)) df = from_pandas_df(raw, chunk_size=(100, 3)) r = df.memory_usage(index=False) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=False)) r = df.memory_usage(index=True) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=True)) raw = pd.DataFrame(data, index=np.arange(500).astype('object')) df = from_pandas_df(raw, chunk_size=(100, 3)) r = df.memory_usage(index=True) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=True)) raw = pd.Series(np.ones(shape=500).astype('object'), name='s') series = from_pandas_series(raw) r = series.memory_usage(index=True) assert r.execute().fetch() == raw.memory_usage(index=True) series = from_pandas_series(raw, chunk_size=100) r = series.memory_usage(index=False) assert r.execute().fetch() == raw.memory_usage(index=False) series = from_pandas_series(raw, chunk_size=100) r = series.memory_usage(index=True) assert r.execute().fetch() == raw.memory_usage(index=True) raw = pd.Series(np.ones(shape=500).astype('object'), index=np.arange(500).astype('object'), name='s') series = from_pandas_series(raw, chunk_size=100) r = series.memory_usage(index=True) assert r.execute().fetch() == raw.memory_usage(index=True) raw = pd.Index(np.arange(500), name='s') index = from_pandas_index(raw) r = index.memory_usage() assert r.execute().fetch() == raw.memory_usage() index = from_pandas_index(raw, chunk_size=100) r = index.memory_usage() assert r.execute().fetch() == raw.memory_usage() def test_select_dtypes_execution(setup): raw = pd.DataFrame({'a': np.random.rand(10), 'b': np.random.randint(10, size=10)}) df = from_pandas_df(raw, chunk_size=5) r = df.select_dtypes(include=['float64']) result = r.execute().fetch() expected = raw.select_dtypes(include=['float64']) pd.testing.assert_frame_equal(result, expected) def test_map_chunk_execution(setup): raw = pd.DataFrame(np.random.rand(10, 5), columns=[f'col{i}' for i in range(5)]) df = from_pandas_df(raw, chunk_size=(5, 3)) def f1(pdf): return pdf + 1 r = df.map_chunk(f1) result = r.execute().fetch() expected = raw + 1 pd.testing.assert_frame_equal(result, expected) raw_s = raw['col1'] series = from_pandas_series(raw_s, chunk_size=5) r = series.map_chunk(f1) result = r.execute().fetch() expected = raw_s + 1 pd.testing.assert_series_equal(result, expected) def f2(pdf): return pdf.sum(axis=1) df = from_pandas_df(raw, chunk_size=5) r = df.map_chunk(f2, output_type='series') result = r.execute().fetch() expected = raw.sum(axis=1) pd.testing.assert_series_equal(result, expected) raw = pd.DataFrame({'a': [f's{i}'for i in range(10)], 'b': np.arange(10)}) df = from_pandas_df(raw, chunk_size=5) def f3(pdf): return pdf['a'].str.slice(1).astype(int) + pdf['b'] with pytest.raises(TypeError): r = df.map_chunk(f3) _ = r.execute().fetch() r = df.map_chunk(f3, output_type='series') result = r.execute(extra_config={'check_dtypes': False}).fetch() expected = f3(raw) pd.testing.assert_series_equal(result, expected) def f4(pdf): ret = pd.DataFrame(columns=['a', 'b']) ret['a'] = pdf['a'].str.slice(1).astype(int) ret['b'] = pdf['b'] return ret with pytest.raises(TypeError): r = df.map_chunk(f4, output_type='dataframe') _ = r.execute().fetch() r = df.map_chunk(f4, output_type='dataframe', dtypes=pd.Series([np.dtype(int), raw['b'].dtype], index=['a', 'b'])) result = r.execute().fetch() expected = f4(raw) pd.testing.assert_frame_equal(result, expected) raw2 = pd.DataFrame({'a': [np.array([1, 2, 3]), np.array([4, 5, 6])]}) df2 = from_pandas_df(raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = df2.map_chunk(lambda x: x['a'].apply(pd.Series), output_type='dataframe', dtypes=dtypes) assert r.shape == (2, 3) pd.testing.assert_series_equal(r.dtypes, dtypes) result = r.execute().fetch() expected = raw2.apply(lambda x: x['a'], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) raw = pd.DataFrame(np.random.rand(10, 5), columns=[f'col{i}' for i in range(5)]) df = from_pandas_df(raw, chunk_size=(5, 3)) def f5(pdf, chunk_index): return pdf + 1 + chunk_index[0] r = df.map_chunk(f5, with_chunk_index=True) result = r.execute().fetch() expected = (raw + 1).add(np.arange(10) // 5, axis=0) pd.testing.assert_frame_equal(result, expected) raw_s = raw['col1'] series = from_pandas_series(raw_s, chunk_size=5) r = series.map_chunk(f5, with_chunk_index=True) result = r.execute().fetch() expected = raw_s + 1 + np.arange(10) // 5 pd.testing.assert_series_equal(result, expected) def test_cartesian_chunk_execution(setup): rs = np.random.RandomState(0) raw1 = pd.DataFrame({'a': rs.randint(3, size=10), 'b': rs.rand(10)}) raw2 = pd.DataFrame({'c': rs.randint(3, size=10), 'd': rs.rand(10), 'e': rs.rand(10)}) df1 = from_pandas_df(raw1, chunk_size=(5, 1)) df2 = from_pandas_df(raw2, chunk_size=(5, 1)) def f(c1, c2): c1, c2 = c1.copy(), c2.copy() c1['x'] = 1 c2['x'] = 1 r = c1.merge(c2, on='x') r = r[(r['b'] > r['d']) & (r['b'] < r['e'])] return r[['a', 'c']] rr = df1.cartesian_chunk(df2, f) result = rr.execute().fetch() expected = f(raw1, raw2) pd.testing.assert_frame_equal( result.sort_values(by=['a', 'c']).reset_index(drop=True), expected.sort_values(by=['a', 'c']).reset_index(drop=True)) def f2(c1, c2): r = f(c1, c2) return r['a'] + r['c'] rr = df1.cartesian_chunk(df2, f2) result = rr.execute().fetch() expected = f2(raw1, raw2) pd.testing.assert_series_equal( result.sort_values().reset_index(drop=True), expected.sort_values().reset_index(drop=True)) # size_res = setup.executor.execute_dataframe(rr, mock=True)[0][0] # assert size_res > 0 def f3(c1, c2): cr = pd.DataFrame() cr['a'] = c1.str.slice(1).astype(np.int64) cr['x'] = 1 cr2 = pd.DataFrame() cr2['b'] = c2.str.slice(1).astype(np.int64) cr2['x'] = 1 return cr.merge(cr2, on='x')[['a', 'b']] s_raw = pd.Series([f's{i}' for i in range(10)]) series = from_pandas_series(s_raw, chunk_size=5) rr = series.cartesian_chunk(series, f3, output_type='dataframe', dtypes=pd.Series([np.dtype(np.int64)] * 2, index=['a', 'b'])) result = rr.execute().fetch() expected = f3(s_raw, s_raw) pd.testing.assert_frame_equal( result.sort_values(by=['a', 'b']).reset_index(drop=True), expected.sort_values(by=['a', 'b']).reset_index(drop=True)) with pytest.raises(TypeError): _ = series.cartesian_chunk(series, f3) def f4(c1, c2): r = f3(c1, c2) return r['a'] + r['b'] rr = series.cartesian_chunk(series, f4, output_type='series', dtypes=np.dtype(np.int64)) result = rr.execute().fetch() expected = f4(s_raw, s_raw) pd.testing.assert_series_equal( result.sort_values().reset_index(drop=True), expected.sort_values().reset_index(drop=True)) def test_rebalance_execution(setup): raw = pd.DataFrame(np.random.rand(10, 3), columns=list('abc')) df = from_pandas_df(raw) def _expect_count(n): def _tile_rebalance(op): tileable = yield from op.tile(op) assert len(tileable.chunks) == n return tileable return _tile_rebalance r = df.rebalance(num_partitions=3) extra_config = {'operand_tile_handlers': {DataFrameRebalance: _expect_count(3)}} result = r.execute(extra_config=extra_config).fetch() pd.testing.assert_frame_equal(result, raw) r = df.rebalance(factor=0.5) extra_config = {'operand_tile_handlers': {DataFrameRebalance: _expect_count(1)}} result = r.execute(extra_config=extra_config).fetch() pd.testing.assert_frame_equal(result, raw) # test worker has two cores r = df.rebalance() extra_config = {'operand_tile_handlers': {DataFrameRebalance: _expect_count(2)}} result = r.execute(extra_config=extra_config).fetch() pd.testing.assert_frame_equal(result, raw) def test_stack_execution(setup): raw = pd.DataFrame(np.random.rand(10, 3), columns=list('abc'), index=[f's{i}' for i in range(10)]) for loc in [(5, 1), (8, 2), (1, 0)]: raw.iloc[loc] = np.nan df = from_pandas_df(raw, chunk_size=(5, 2)) for dropna in (True, False): r = df.stack(dropna=dropna) result = r.execute().fetch() expected = raw.stack(dropna=dropna) pd.testing.assert_series_equal(result, expected) cols = pd.MultiIndex.from_tuples([ ('c1', 'cc1'), ('c1', 'cc2'), ('c2', 'cc3')]) raw2 = raw.copy() raw2.columns = cols df = from_pandas_df(raw2, chunk_size=(5, 2)) for level in [-1, 0, [0, 1]]: for dropna in (True, False): r = df.stack(level=level, dropna=dropna) result = r.execute().fetch() expected = raw2.stack(level=level, dropna=dropna) assert_method = \ pd.testing.assert_series_equal if expected.ndim == 1 \ else pd.testing.assert_frame_equal assert_method(result, expected) def test_explode_execution(setup): raw = pd.DataFrame({'a': np.random.rand(10), 'b': [np.random.rand(random.randint(1, 10)) for _ in range(10)], 'c': np.random.rand(10), 'd': np.random.rand(10)}) df = from_pandas_df(raw, chunk_size=(4, 2)) for ignore_index in [False, True]: r = df.explode('b', ignore_index=ignore_index) pd.testing.assert_frame_equal(r.execute().fetch(), raw.explode('b', ignore_index=ignore_index)) series = from_pandas_series(raw.b, chunk_size=4) for ignore_index in [False, True]: r = series.explode(ignore_index=ignore_index) pd.testing.assert_series_equal(r.execute().fetch(), raw.b.explode(ignore_index=ignore_index)) def test_eval_query_execution(setup): rs = np.random.RandomState(0) raw = pd.DataFrame({'a': rs.rand(100), 'b': rs.rand(100), 'c c': rs.rand(100)}) df = from_pandas_df(raw, chunk_size=(10, 2)) r = mars_eval('c = df.a * 2 + df["c c"]', target=df) pd.testing.assert_frame_equal(r.execute().fetch(), pd.eval('c = raw.a * 2 + raw["c c"]', engine='python', target=raw)) r = df.eval('a + b') pd.testing.assert_series_equal(r.execute().fetch(), raw.eval('a + b')) _val = 5.0 # noqa: F841 _val_array = [1, 2, 3] # noqa: F841 expr = """ e = -a + b + 1 f = b + `c c` + @_val + @_val_array[-1] """ r = df.eval(expr) pd.testing.assert_frame_equal(r.execute().fetch(), raw.eval(expr)) copied_df = df.copy() copied_df.eval('c = a + b', inplace=True) pd.testing.assert_frame_equal(copied_df.execute().fetch(), raw.eval('c = a + b')) expr = 'a > b | a < `c c`' r = df.query(expr) pd.testing.assert_frame_equal( r.execute(extra_config={'check_index_value': False}).fetch(), raw.query(expr)) expr = 'a > b & ~(a < `c c`)' r = df.query(expr) pd.testing.assert_frame_equal( r.execute(extra_config={'check_index_value': False}).fetch(), raw.query(expr)) expr = 'a < b < `c c`' r = df.query(expr) pd.testing.assert_frame_equal( r.execute(extra_config={'check_index_value': False}).fetch(), raw.query(expr)) copied_df = df.copy() copied_df.query('a < b', inplace=True) pd.testing.assert_frame_equal( copied_df.execute(extra_config={'check_index_value': False}).fetch(), raw.query('a < b')) def test_check_monotonic_execution(setup): idx_value = pd.Index(list(range(1000))) idx_increase = from_pandas_index(idx_value, chunk_size=100) assert idx_increase.is_monotonic_increasing.execute().fetch() is True assert idx_increase.is_monotonic_decreasing.execute().fetch() is False idx_decrease = from_pandas_index(idx_value[::-1], chunk_size=100) assert idx_decrease.is_monotonic_increasing.execute().fetch() is False assert idx_decrease.is_monotonic_decreasing.execute().fetch() is True idx_mixed = from_pandas_index( pd.Index(list(range(500)) + list(range(500))), chunk_size=100) assert idx_mixed.is_monotonic_increasing.execute().fetch() is False assert idx_mixed.is_monotonic_decreasing.execute().fetch() is False ser_mixed = from_pandas_series( pd.Series(list(range(500)) + list(range(499, 999))), chunk_size=100) assert ser_mixed.is_monotonic_increasing.execute().fetch() is True assert ser_mixed.is_monotonic_decreasing.execute().fetch() is False def test_pct_change_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)], index=pd.date_range('2021-1-1', periods=10)) df = from_pandas_df(raw, chunk_size=5) r = df.pct_change() result = r.execute().fetch() expected = raw.pct_change()
pd.testing.assert_frame_equal(expected, result)
pandas.testing.assert_frame_equal
import pandas as pd from datetime import datetime from multiprocessing import Pool import seaborn as sns from matplotlib import pyplot as plt from pathlib import Path # ================================ # MARKING SCHEME NOTES # =============================== # 1. In the accompanying assignment Python file, students are supposed to fill in required code # in all places where it says "YOUR CODE HERE" # 2. In order to find points for that particular line, please refer to the # corresponding line here where it has comment POINTS at the end of the line def get_date_range_by_chunking(large_csv): """ In this function, the idea is to use pandas chunk feature. :param large_csv: Full path to activity_log_raw.csv :return: """ # ====================================== # EXPLORE THE DATA # ====================================== # Read the first 100,000 rows in the dataset df_first_100k = pd.read_csv(large_csv, nrows=100000) # POINTS: 1 print(df_first_100k) # Identify the time column in the dataset str_time_col = 'ACTIVITY_TIME' # POINTS: 1 # ============================================================ # FIND THE FIRST [EARLIEST] AND LAST DATE IN THE WHOLE DATASET # BY USING CHUNKING # ============================================================= # set chunk size chunksize = 1000000 # POINTS: 1 # declare a list to hold the dates dates = [] # POINTS: 1 with pd.read_csv(large_csv, chunksize=chunksize) as reader: # POINTS: 1 for chunk in reader: # convert the string to Python datetime object # add a new column to hold this datetime object time_col = 'activ_time' # POINTS: 1 chunk[time_col] = chunk[str_time_col].apply(lambda x: pd.to_datetime(x[:9])) chunk.sort_values(by=time_col, inplace=True) top_date = chunk.iloc[0][time_col] dates.append(top_date) # POINTS: 1 chunk.sort_values(by=time_col, ascending=False, inplace=True) bottom_date = chunk.iloc[0][time_col] dates.append(bottom_date) # POINTS: 1 # Find the earliest and last date by sorting the dates list sorted_dates = sorted(dates, reverse=False) # POINTS: 1 first = sorted_dates[0] # POINTS: 2 last = sorted_dates[-1] # POINTS: 2 print("First date is {} and the last date is {}".format(first, last)) return first, last def quadratic_func(x, a): """ Define the quadratic function: y = 2x^2 + y-1 :param x: :return: """ y = 2*(x**2) + a-1 # POINTS: 3 return y def run_the_quad_func_without_multiprocessing(list_x, list_y): """ Run the quadratic function on a huge list of X and Ys without using parallelism :param list_x: List of xs :param list_y: List of ys :return: """ results = [quadratic_func(x, y) for x, y in zip(list_x, list_y)] return results def run_the_quad_func_with_multiprocessing(list_x, list_y, num_processors): """ Run the quadratic function with multiprocessing :param list_x: List of xs :param list_y: List of xs :param num_processors: Number of processors to use :return: """ processors = Pool(num_processors) # POINTS: 2 params = [i for i in zip(list_x, list_y)] results = processors.starmap(quadratic_func, params) # POINTS: 3 processors.close() return results def multiprocessing_vs_sequential_quadratic(list_len, out_plot, out_csv): """ Compare how :param list_len: :return: """ data = [] for i in range(1, list_len): list_length = 10 ** i x = [i for i in range(list_len)] # POINTS: 2 y = [i for i in range(list_len)] # POINTS: 2 start_time = datetime.now() run_the_quad_func_without_multiprocessing(x, y) # POINTS: 2 end_time = datetime.now() time_taken_seq = (end_time - start_time).total_seconds() data.append({'ListLen': list_length, 'Type' : 'Parallel', 'TimeTaken': time_taken_seq}) start_time = datetime.now() run_the_quad_func_with_multiprocessing(x, y, 4) # POINTS: 2 end_time = datetime.now() time_taken_mult = (end_time - start_time).total_seconds() data.append({'ListLen': list_length, 'Type' : 'Sequential', 'TimeTaken': time_taken_mult}) df = pd.DataFrame(data) # POINTS: 1 plt.figure(figsize=(12, 8)) sns.lineplot(data=df, x='ListLen', y='TimeTaken', hue='Type') plt.savefig(out_plot) # POINTS: 1 df.to_csv(out_csv, index=False) # POINTS: 1 def get_num_uniq_users(csv_file, userid_col): """ A Helper function to help get the number of unique users :param csv_file: path to CSV file :param userid_col: Column for user ID :return: """ df =
pd.read_csv(csv_file)
pandas.read_csv
# allocation.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 """ Methods of allocating datasets """ import pandas as pd from flowsa.common import fbs_activity_fields, sector_level_key, \ load_crosswalk, check_activities_sector_like from flowsa.settings import log, vLogDetailed from flowsa.dataclean import replace_NoneType_with_empty_cells, \ replace_strings_with_NoneType from flowsa.flowbyfunctions import sector_aggregation, \ sector_disaggregation, subset_and_merge_df_by_sector_lengths def allocate_by_sector(df_w_sectors, attr, allocation_method, group_cols, **kwargs): """ Create an allocation ratio for df :param df_w_sectors: df with column of sectors :param attr: dictionary, attributes of activity set :param allocation_method: currently written for 'proportional' and 'proportional-flagged' :param group_cols: columns on which to base aggregation and disaggregation :return: df with FlowAmountRatio for each sector """ # first determine if there is a special case with how # the allocation ratios are created if allocation_method == 'proportional-flagged': # if the allocation method is flagged, subset sectors that are # flagged/notflagged, where nonflagged sectors have flowamountratio=1 if kwargs != {}: if 'flowSubsetMapped' in kwargs: fsm = kwargs['flowSubsetMapped'] flagged = fsm[fsm['disaggregate_flag'] == 1] if flagged['SectorProducedBy'].isna().all(): sector_col = 'SectorConsumedBy' else: sector_col = 'SectorProducedBy' flagged_names = flagged[sector_col].tolist() nonflagged = fsm[fsm['disaggregate_flag'] == 0] nonflagged_names = nonflagged[sector_col].tolist() # subset the original df so rows of data that run through the # proportional allocation process are # sectors included in the flagged list df_w_sectors_nonflagged = df_w_sectors.loc[ (df_w_sectors[fbs_activity_fields[0]].isin( nonflagged_names)) | (df_w_sectors[fbs_activity_fields[1]].isin( nonflagged_names))].reset_index(drop=True) df_w_sectors_nonflagged = \ df_w_sectors_nonflagged.assign(FlowAmountRatio=1) df_w_sectors = \ df_w_sectors.loc[(df_w_sectors[fbs_activity_fields[0]] .isin(flagged_names)) | (df_w_sectors[fbs_activity_fields[1]] .isin(flagged_names) )].reset_index(drop=True) else: log.error('The proportional-flagged allocation ' 'method requires a column "disaggregate_flag" ' 'in the flow_subset_mapped df') # run sector aggregation fxn to determine total flowamount # for each level of sector if len(df_w_sectors) == 0: return df_w_sectors_nonflagged else: df1 = sector_aggregation(df_w_sectors) # run sector disaggregation to capture one-to-one # naics4/5/6 relationships df2 = sector_disaggregation(df1) # if statements for method of allocation # either 'proportional' or 'proportional-flagged' allocation_df = [] if allocation_method in ('proportional', 'proportional-flagged'): allocation_df = proportional_allocation(df2, attr) else: log.error('Must create function for specified ' 'method of allocation') if allocation_method == 'proportional-flagged': # drop rows where values are not in flagged names allocation_df =\ allocation_df.loc[(allocation_df[fbs_activity_fields[0]] .isin(flagged_names)) | (allocation_df[fbs_activity_fields[1]] .isin(flagged_names) )].reset_index(drop=True) # concat the flagged and nonflagged dfs allocation_df = \ pd.concat([allocation_df, df_w_sectors_nonflagged], ignore_index=True).sort_values(['SectorProducedBy', 'SectorConsumedBy']) return allocation_df def proportional_allocation(df, attr): """ Creates a proportional allocation based on all the most aggregated sectors within a location Ensure that sectors are at 2 digit level - can run sector_aggregation() prior to using this function :param df: df, includes sector columns :param attr: dictionary, attributes for an activity set :return: df, with 'FlowAmountRatio' column """ # tmp drop NoneType df = replace_NoneType_with_empty_cells(df) # determine if any additional columns beyond location and sector by which # to base allocation ratios if 'allocation_merge_columns' in attr: groupby_cols = ['Location'] + attr['allocation_merge_columns'] denom_subset_cols = ['Location', 'LocationSystem', 'Year', 'Denominator'] + attr['allocation_merge_columns'] else: groupby_cols = ['Location'] denom_subset_cols = ['Location', 'LocationSystem', 'Year', 'Denominator'] cw_load = load_crosswalk('sector_length') cw = cw_load['NAICS_2'].drop_duplicates() denom_df = df.loc[(df['SectorProducedBy'].isin(cw)) | (df['SectorConsumedBy'].isin(cw))] # generate denominator based on identified groupby cols denom_df = denom_df.assign(Denominator=denom_df.groupby( groupby_cols)['FlowAmount'].transform('sum')) # subset select columns by which to generate ratios denom_df_2 = denom_df[denom_subset_cols].drop_duplicates() # merge the denominator column with fba_w_sector df allocation_df = df.merge(denom_df_2, how='left') # calculate ratio allocation_df.loc[:, 'FlowAmountRatio'] = \ allocation_df['FlowAmount'] / allocation_df['Denominator'] allocation_df = allocation_df.drop(columns=['Denominator']).reset_index( drop=True) # add nonetypes allocation_df = replace_strings_with_NoneType(allocation_df) return allocation_df def proportional_allocation_by_location_and_activity(df_load, sectorcolumn): """ Creates a proportional allocation within each aggregated sector within a location :param df_load: df with sector columns :param sectorcolumn: str, sector column for which to create allocation ratios :return: df, with 'FlowAmountRatio' and 'HelperFlow' columns """ # tmp replace NoneTypes with empty cells df = replace_NoneType_with_empty_cells(df_load).reset_index(drop=True) # want to create denominator based on shortest length naics for each # activity/location grouping_cols = [e for e in ['FlowName', 'Location', 'Activity', 'ActivityConsumedBy', 'ActivityProducedBy', 'Class', 'SourceName', 'Unit', 'FlowType', 'Compartment', 'Year'] if e in df.columns.values.tolist()] activity_cols = [e for e in ['Activity', 'ActivityConsumedBy', 'ActivityProducedBy'] if e in df.columns.values.tolist()] # trim whitespace df[sectorcolumn] = df[sectorcolumn].str.strip() # to create the denominator dataframe first add a column that captures # the sector length denom_df = df.assign(sLen=df[sectorcolumn].str.len()) denom_df = denom_df[denom_df['sLen'] == denom_df.groupby(activity_cols)[ 'sLen'].transform(min)].drop(columns='sLen') denom_df.loc[:, 'Denominator'] = \ denom_df.groupby(grouping_cols)['HelperFlow'].transform('sum') # list of column headers, that if exist in df, should be aggregated # using the weighted avg fxn possible_column_headers = ('Location', 'LocationSystem', 'Year', 'Activity', 'ActivityConsumedBy', 'ActivityProducedBy') # list of column headers that do exist in the df being aggregated column_headers = [e for e in possible_column_headers if e in denom_df.columns.values.tolist()] merge_headers = column_headers.copy() column_headers.append('Denominator') # create subset of denominator values based on Locations and Activities denom_df_2 = \ denom_df[column_headers].drop_duplicates().reset_index(drop=True) # merge the denominator column with fba_w_sector df allocation_df = df.merge(denom_df_2, how='left', left_on=merge_headers, right_on=merge_headers) # calculate ratio allocation_df.loc[:, 'FlowAmountRatio'] = \ allocation_df['HelperFlow'] / allocation_df['Denominator'] allocation_df = allocation_df.drop( columns=['Denominator']).reset_index(drop=True) # where parent NAICS are not found in the allocation dataset, make sure # those child NAICS are not dropped allocation_df['FlowAmountRatio'] = \ allocation_df['FlowAmountRatio'].fillna(1) # fill empty cols with NoneType allocation_df = replace_strings_with_NoneType(allocation_df) # fill na values with 0 allocation_df['HelperFlow'] = allocation_df['HelperFlow'].fillna(0) return allocation_df def equally_allocate_parent_to_child_naics( df_load, method, overwritetargetsectorlevel=None): """ Determine rows of data that will be lost if subset data at target sector level. Equally allocate parent NAICS to child NAICS where child NAICS missing :param df_load: df, FBS format :param overwritetargetsectorlevel: str, optional, specify what sector level to allocate to :return: df, with all child NAICS at target sector level """ # determine which sector level to use, use the least aggregated level sector_level = method.get('target_sector_level') if overwritetargetsectorlevel is not None: sector_level = overwritetargetsectorlevel # if secondary sector levels are identified, set the sector level to the # least aggregated sector_level_list = [sector_level] if 'target_subset_sector_level' in method: sector_level_dict = method.get('target_subset_sector_level') for k, v in sector_level_dict.items(): sector_level_list = sector_level_list + [k] sector_subset_dict = dict((k, sector_level_key[k]) for k in sector_level_list if k in sector_level_key) sector_level = max(sector_subset_dict, key=sector_subset_dict.get) # exclude nonsectors df = replace_NoneType_with_empty_cells(df_load) # determine if activities are sector-like, if aggregating a df with a # 'SourceName' sector_like_activities = check_activities_sector_like(df_load) # if activities are source like, drop from df, # add back in as copies of sector columns columns to keep if sector_like_activities: # subset df df_cols = [e for e in df.columns if e not in ('ActivityProducedBy', 'ActivityConsumedBy')] df = df[df_cols] rows_lost =
pd.DataFrame()
pandas.DataFrame
# Data container for ESI data from pathlib import Path import geopandas as gpd import numpy as np import pandas as pd from scipy.spatial import cKDTree from .grs import GRS class ESI: """ ESI data container. Attributes: ----------- path: Path Path to ESI data gdf: geopandas.GeoDataFrame ESI data locs: pandas.DataFrame Points along every ESI segment including segment identifier (esi_id) and ESI code (esi_code) tree: scipy.spatial.cKDTree Tree to query closest ESI point to look up ESI segment identifier and ESI code """ def __init__(self, fpath: Path): self.path = fpath self.gdf = gpd.read_parquet(self.path) # Need tree + location lookup because gpd.query only looks over overlapping features # - Get (lon, lat) of every point in the geometry column to make a tree self.locs = esi_to_locs(self.gdf) self.tree = cKDTree(np.vstack((self.locs.lon.values, self.locs.lat.values)).T) def get_grs_region_for_each_row(self, grs: GRS) -> np.ndarray: """Given GRS data container, return GRS code for each row in ESI data as array""" grs_codes_for_each_esi_row = self._get_grs_intersects(grs) grs_codes_for_each_esi_row = self._fill_grs_nonintersects(grs_codes_for_each_esi_row, grs) return grs_codes_for_each_esi_row def _get_grs_intersects(self, grs: GRS, grs_code_column_name: str = 'OBJECTID') -> np.ndarray: """Given GRS data container, return ndarray of GRS codes for each row in ESI data. Notes: - Filled with -9999 which is used as a missing value flag to identify rows that do not intersect """ nrows = len(self.gdf) esi_to_grs_region = np.ones((nrows,)) * -9999 for ix, row in self.gdf.iterrows(): for grs_region in grs.gdf.index: if row.geometry.intersects(grs.loc[grs_region, 'geometry']): esi_to_grs_region[ix] = grs.loc[grs_region, grs_code_column_name] break return esi_to_grs_region def _fill_grs_nonintersects(self, grs_codes_for_each_esi_row: np.ndarray, grs: GRS) -> np.ndarray: """Given array of GRS code for each ESI row, fill in missing GRS code using nearest neighbor. Notes: - Many points in ESI data do not intersect the GRS shape files - The points missing a GRS code (flagged as -9999) use a nearest neighbor lookup to fill in """ esi_rows_missing_grs_ix = np.argwhere(grs_codes_for_each_esi_row == -9999) for missing_ix in esi_rows_missing_grs_ix: # There must be nicer syntax? But, this is robust x = self.gdf.iloc[esi_rows_missing_grs_ix[0]].geometry.values[0].geoms[0].xy[0][0] y = self.gdf.iloc[esi_rows_missing_grs_ix[0]].geometry.values[0].geoms[0].xy[1][0] _, grs_locs_ix = grs.grs_tree.query((x, y)) missing_grs_code = grs.grs_locs[grs_locs_ix, 2] grs_codes_for_each_esi_row[missing_ix] = missing_grs_code return grs_codes_for_each_esi_row def __str__(self): return f'ESI for {self.path}' def __repr__(self): return f'ESI for {self.path}' def get_esi_npoints(gdf: gpd.GeoDataFrame) -> int: """Given exploded ESI, return the number of points in the file. Notes: - Can't extract this from the GDF because the points are exploded and encoded as linestrings. """ count = 0 for _, row in gdf.iterrows(): # row[0] - ORI # row[1] - geometry which is LineString. len is number of points npoints = len(np.array(row.geometry.xy).T) count += npoints return count def clean_esi_code(esi_column: pd.Series) -> np.ndarray: """Given column of ESI codes, clean values, remove letters and return as integer array.""" cleaned_esi_codes = np.zeros(len(esi_column), dtype='i2') for i, row in esi_column.iterrows(): cleaned_esi_codes[i] = clean_esi_string(row) return cleaned_esi_codes def esi_to_locs(esi: gpd.GeoDataFrame) -> pd.DataFrame: """Given ESI GeoDataFrame, return DataFrame of points with ESI codes and ids. Notes: - Array is returned needed for look-ups """ esi_exploded = esi.explode() npoints = get_esi_npoints(esi_exploded) # lon, lat, esilgen_, esilgen_id, esi value, esi row in dataframe lons = np.zeros((npoints,), dtype='f4') lats = np.zeros((npoints,), dtype='f4') # max string length is 15 characters esi_ids = np.empty((npoints,), dtype='U15') esi_codes = np.zeros((npoints,), dtype='i4') esi_rows = np.zeros((npoints,), dtype='i4') # Iterate over each row # - Extract x, y points from each point in the line start_ix = 0 for ix, row in esi_exploded.iterrows(): # x,y = row[1] and transpose to be (n, 2) line_locs = np.array(row.geometry.xy).T # number of points in the line nline_locs = len(line_locs) end_ix = start_ix + nline_locs lons[start_ix:end_ix] = line_locs[:, 0] lats[start_ix:end_ix] = line_locs[:, 1] esi_ids[start_ix:end_ix] = row.esi_id esi_codes[start_ix:end_ix] = clean_esi_string(row.esi) # Knowing the row number in the original DataFrame is useful for look-ups esi_rows[start_ix:end_ix] = int(ix[0]) start_ix = end_ix # return as a dataframe df = pd.DataFrame( { 'lon': lons, 'lat': lats, 'esi_id': pd.Series(esi_ids, dtype='U15'), 'esi_code': pd.Series(esi_codes, dtype='i4'), 'esi_row':
pd.Series(esi_rows, dtype='i4')
pandas.Series
import numpy as np import pandas as pd from imblearn.over_sampling import SMOTE from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.neighbors import LocalOutlierFactor from sklearn.preprocessing import StandardScaler train_data_path = "train_data.csv" labels_path = "train_labels.csv" test_data_path = "test_data.csv" def load_data_train_test_data(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None)) pca = PCA(79) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] # sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_rythym_only(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None))[:, :168] pca = PCA(100) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) # training_data_set = preprocessing.normalize(training_data_set, norm='l2') training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_chroma_only(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None))[:, 169:216] pca = PCA(40) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] # sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_MFCC_only(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None))[:, 217:] pca = PCA(40) scaler = StandardScaler() training_data_set = scaler.fit_transform(training_data_set) training_data_set = pca.fit_transform(training_data_set) training_data_set = np.append(training_data_set, genres_labels, 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] # sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler, pca def load_train_data_with_PCA_per_type(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres_labels = genres_labels.reshape((genres_labels.shape[0],)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None)) rythym = np.concatenate((training_data_set[:, :73], training_data_set[:, 74:168]), axis=1) chroma = training_data_set[:, 169:216] mfcc = training_data_set[:, 220:] # pca_rythym = PCA(0.8) # pca_chroma = PCA(0.8) # pca_mfcc = PCA(0.8) scaler_rythym = StandardScaler() scaler_chroma = StandardScaler() scaler_mfcc = StandardScaler() rythym = scaler_rythym.fit_transform(rythym) chroma = scaler_chroma.fit_transform(chroma) mfcc = scaler_mfcc.fit_transform(mfcc) rythym = preprocessing.normalize(rythym, norm='l2') chroma = preprocessing.normalize(chroma, norm='l2') mfcc = preprocessing.normalize(mfcc, norm='l2') # rythym = pca_rythym.fit_transform(rythym) # chroma = pca_chroma.fit_transform(chroma) # mfcc = pca_mfcc.fit_transform(mfcc) training_data_set = np.concatenate((rythym, chroma, mfcc), axis=1) # sm = SMOTE() # train_x, train_y = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') training_data_set = np.append(training_data_set, genres_labels[:, np.newaxis], 1) number_of_cols = training_data_set.shape[1] train, test = train_test_split(training_data_set, test_size=0.25, random_state=12, stratify=training_data_set[:, number_of_cols - 1]) train_x = train[:, :number_of_cols - 1] train_y = train[:, number_of_cols - 1] # sm = SMOTE() # x_train_res, y_train_res = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') test_x = test[:, :number_of_cols - 1] test_y = test[:, number_of_cols - 1] return train_x, train_y, test_x, test_y, genres, scaler_rythym, scaler_chroma, scaler_mfcc def visualisation_data(): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres_labels = genres_labels.reshape((genres_labels.shape[0],)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None)) pca = PCA(2) training_data_set = pca.fit_transform(training_data_set, genres_labels) # sm = SMOTE() # train_x, train_y = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') return training_data_set, genres_labels, genres def load_train_data_with_PCA_per_type_drop_column(which_column): genres_labels = np.array(pd.read_csv(labels_path, index_col=False, header=None)) genres_labels = genres_labels.reshape((genres_labels.shape[0],)) genres = range(1, 11) training_data_set = np.array(pd.read_csv(train_data_path, index_col=False, header=None)) if 0 <= which_column < 168: rythym = np.concatenate((training_data_set[:, :which_column], training_data_set[:, which_column + 1:168]), axis=1) chroma = training_data_set[:, 169:216] mfcc = training_data_set[:, 220:] elif 169 <= which_column < 216: rythym = training_data_set[:, :168] chroma = np.concatenate((training_data_set[:, 169:which_column], training_data_set[:, which_column + 1:216]), axis=1) mfcc = training_data_set[:, 220:] else: rythym = training_data_set[:, :168] chroma = training_data_set[:, 169:216] mfcc = np.concatenate((training_data_set[:, 220:which_column], training_data_set[:, which_column + 1:]), axis=1) # pca_rythym = PCA(0.8) # pca_chroma = PCA(0.8) # pca_mfcc = PCA(0.8) scaler_rythym = StandardScaler() scaler_chroma = StandardScaler() scaler_mfcc = StandardScaler() rythym = scaler_rythym.fit_transform(rythym) chroma = scaler_chroma.fit_transform(chroma) mfcc = scaler_mfcc.fit_transform(mfcc) rythym = preprocessing.normalize(rythym, norm='l2') chroma = preprocessing.normalize(chroma, norm='l2') mfcc = preprocessing.normalize(mfcc, norm='l2') # rythym = pca_rythym.fit_transform(rythym) # chroma = pca_chroma.fit_transform(chroma) # mfcc = pca_mfcc.fit_transform(mfcc) training_data_set = np.concatenate((rythym, chroma, mfcc), axis=1) # sm = SMOTE() # train_x, train_y = sm.fit_resample(train_x, train_y) # train_x = preprocessing.normalize(train_x, norm='l2') return training_data_set, genres_labels, genres, scaler_rythym, scaler_chroma, scaler_mfcc \ # pca_rythym, pca_chroma, pca_mfcc def load_test_data(): return np.array(pd.read_csv(test_data_path, index_col=False, header=None)) def load_train_data(): return np.array(
pd.read_csv(train_data_path, index_col=False, header=None)
pandas.read_csv
from contextlib import contextmanager, ExitStack from copy import deepcopy from functools import partial, reduce import itertools import re import tempfile from typing import Callable, Iterable, Optional, Union import warnings import humanize import IPython.display from IPython.core.getipython import get_ipython import matplotlib as mpl import matplotlib.pyplot as plt from mizani.transforms import trans from more_itertools import flatten import numpy as np import pandas as pd import PIL import plotnine # For export from plotnine import * # For export from plotnine.data import * # For export from plotnine.stats.binning import freedman_diaconis_bins import potoo.mpl_backend_xee # Used by ~/.matplotlib/matplotlibrc from potoo.util import or_else, puts, singleton, tap ipy = get_ipython() # None if not in ipython def get_figsize_named(size_name): # Determined empirically, and fine-tuned for atom splits with status-bar + tab-bar mpl_aspect = 2/3 # Tuned using plotnine, but works the same for mpl/sns R_aspect = mpl_aspect # Seems fine figsizes_mpl = dict( # Some common sizes that are useful; add more as necessary inline_short = dict(width=12, aspect_ratio=mpl_aspect * 1/2), inline = dict(width=12, aspect_ratio=mpl_aspect * 1), square = dict(width=12, aspect_ratio=1), half = dict(width=12, aspect_ratio=mpl_aspect * 2), full = dict(width=24, aspect_ratio=mpl_aspect * 1), half_dense = dict(width=24, aspect_ratio=mpl_aspect * 2), full_dense = dict(width=48, aspect_ratio=mpl_aspect * 1), ) figsizes = dict( mpl=figsizes_mpl, R={ k: dict(width=v['width'], height=v['width'] * v['aspect_ratio'] / mpl_aspect * R_aspect) for k, v in figsizes_mpl.items() }, ) if size_name not in figsizes['mpl']: raise ValueError(f'Unknown figsize name[{size_name}]') return {k: figsizes[k][size_name] for k in figsizes.keys()} def plot_set_defaults(): figsize() plot_set_default_mpl_rcParams() plot_set_plotnine_defaults() plot_set_jupyter_defaults() plot_set_R_defaults() def figure_format(figure_format: str = None): """ Set figure_format: one of 'svg', 'retina', 'png' """ if figure_format: assert figure_format in ['svg', 'retina', 'png'], f'Unknown figure_format[{figure_format}]' ipy.run_line_magic('config', f"InlineBackend.figure_format = {figure_format!r}") return or_else(None, lambda: ipy.run_line_magic('config', 'InlineBackend.figure_format')) # XXX if the new version of figsize works # @contextmanager # def with_figsize(*args, **kwargs): # saved_kwargs = get_figsize() # try: # figsize(*args, **kwargs) # yield # plt.show() # Because ipy can't evaluate the result of the nested block to force the automatic plt.show() # finally: # figsize(**saved_kwargs) def figsize(*args, **kwargs): """ Set theme_figsize(...) as global plotnine.options + mpl.rcParams: - https://plotnine.readthedocs.io/en/stable/generated/plotnine.themes.theme.html - http://matplotlib.org/users/customizing.html Can be used either as a global mutation (`figsize(...)`) or a context manager (`with figsize(...)`) """ to_restore = get_figsize() _set_figsize(*args, **kwargs) @contextmanager def ctx(): try: yield plt.show() # Because ipy can't evaluate the result of the nested block to force the automatic plt.show() finally: # TODO RESTORE figsize(**to_restore) return ctx() def _set_figsize(*args, **kwargs): # TODO Unwind conflated concerns: # - (See comment in get_figsize, below) kwargs.pop('_figure_format', None) kwargs.pop('_Rdefaults', None) # Passthru to theme_figsize t = theme_figsize(*args, **kwargs) [width, height] = figure_size = t.themeables['figure_size'].properties['value'] aspect_ratio = t.themeables['aspect_ratio'].properties['value'] dpi = t.themeables['dpi'].properties['value'] # Set mpl figsize mpl.rcParams.update(t.rcParams) # Set plotnine figsize plotnine.options.figure_size = figure_size plotnine.options.aspect_ratio = aspect_ratio plotnine.options.dpi = dpi # (Ignored for figure_format='svg') # Set %R figsize Rdefaults = plot_set_R_figsize( width=width, height=height, units='in', # TODO Does this work with svg? (works with png, at least) res=dpi * 2, # Make `%Rdevice png` like mpl 'retina' (ignored for `%Rdevice svg`) ) # Show feedback to user return get_figsize() def get_figsize(): return dict( width=plotnine.options.figure_size[0], height=plotnine.options.figure_size[1], aspect_ratio=plotnine.options.aspect_ratio, dpi=plotnine.options.dpi, # TODO Unwind conflated concerns: # - We return _figure_format/_Rdefaults to the user so they have easy visibility into them # - But our output is also used as input to figsize(**get_figsize()), so figsize has to filter them out _figure_format=figure_format(), _Rdefaults=plot_get_R_figsize(), ) # For plotnine class theme_figsize(theme): """ plotnine theme with defaults for figure_size width + aspect_ratio (which overrides figure_size height if defined): - aspect is allowed as an alias for aspect_ratio - https://plotnine.readthedocs.io/en/stable/generated/plotnine.themes.theme.html#aspect_ratio-and-figure_size """ def __init__(self, name='inline', width=None, height=None, aspect_ratio=None, aspect=None, dpi=72): aspect_ratio = aspect_ratio or aspect # Alias if name: size = get_figsize_named(name)['mpl'] width = width or size.get('width') height = height or size.get('height') aspect_ratio = aspect_ratio or size.get('aspect_ratio') if not width and height and aspect_ratio: width = height / aspect_ratio if width and not height and aspect_ratio: height = width * aspect_ratio if width and height and not aspect_ratio: aspect_ratio = height / width super().__init__( # height is ignored by plotnine when aspect_ratio is given, but supply anyway so that we can set theme.rcParams # into mpl.rcParams since the latter has no notion of aspect_ratio [TODO Submit PR to fix] figure_size=[width, height], aspect_ratio=aspect_ratio, dpi=dpi, ) @property def rcParams(self): rc = theme.rcParams.fget(self) # (Idiom to do super() for a property) # Manual retina, since plt.savefig doesn't respond to `%config InlineBackend.figure_format` like plt.show # - TODO plt.savefig produces 2x bigger imgs than plt.show. Figure out how to achieve 1x with non-blurry fonts if figure_format() == 'retina': if rc['savefig.dpi'] == 'figure': rc['savefig.dpi'] = rc['figure.dpi'] rc['savefig.dpi'] *= 2 return rc @property def figsize(self): return self.themeables['figure_size'].properties['value'] # ~/.matploblib/matploblibrc isn't read by ipykernel, so we call this from ~/.pythonrc which is # - TODO What's the right way to init mpl.rcParams? def plot_set_default_mpl_rcParams(): mpl.rcParams['figure.facecolor'] = 'white' # Match savefig.facecolor mpl.rcParams['savefig.bbox'] = 'tight' # Else plt.savefig adds lots of surrounding whitespace that plt.show doesn't mpl.rcParams['image.interpolation'] = 'nearest' # Don't interpolate, show square pixels # http://matplotlib.org/users/colormaps.html # - TODO Looks like no way to set default colormap for pandas df.plot? [yes, but hacky: https://stackoverflow.com/a/41598326/397334] mpl.rcParams['image.cmap'] = 'magma_r' # [2] perceptually uniform (light -> dark) # mpl.rcParams['image.cmap'] = 'inferno_r' # [2] perceptually uniform (light -> dark) # mpl.rcParams['image.cmap'] = 'magma' # [2] perceptually uniform (dark -> light) # mpl.rcParams['image.cmap'] = 'inferno' # [2] perceptually uniform (dark -> light) # mpl.rcParams['image.cmap'] = 'Greys' # [2] black-white (nonlinear) # mpl.rcParams['image.cmap'] = 'gray_r' # [1] black-white # TODO Sync more carefully with ~/.matploblib/matploblibrc? def plot_set_plotnine_defaults(): ignore_warning_plotnine_stat_bin_binwidth() def ignore_warning_plotnine_stat_bin_binwidth(): # Don't warn from geom_histogram/stat_bin if you use the default bins/binwidth # - Default bins is computed via freedman_diaconis_bins, which is dynamic and pretty good, so don't discourage it warnings.filterwarnings('ignore', category=plotnine.exceptions.PlotnineWarning, module=re.escape('plotnine.stats.stat_bin'), message=r"'stat_bin\(\)' using 'bins = \d+'\. Pick better value with 'binwidth'\.", ) def plot_set_jupyter_defaults(): if ipy: # 'svg' is pretty, 'retina' is the prettier version of 'png', and 'png' is ugly (on retina macs) # - But the outside world prefers png to svg (e.g. uploading images to github, docs, slides) figure_format('retina') # # plotnine # # HACK Add white bg to theme_minimal/theme_void, which by default have transparent bg theme_minimal = lambda **kwargs: plotnine.theme_minimal (**kwargs) + theme(plot_background=element_rect('white')) theme_void = lambda **kwargs: plotnine.theme_void (**kwargs) + theme(plot_background=element_rect('white')) def gg_to_img(g: ggplot, **kwargs) -> PIL.Image.Image: """Render a ggplot as an image""" g.draw() return plt_to_img(**kwargs) def ggbar(df, x='x', **geom_kw): return _gg(df, mapping=aes(x=x), geom=geom_bar, geom_kw=geom_kw) def ggcol(df, x='x', y='y', **geom_kw): return _gg(df, mapping=aes(x=x, y=y), geom=geom_col, geom_kw=geom_kw) def ggbox(df, x='x', y='y', **geom_kw): return _gg(df, mapping=aes(x=x, y=y), geom=geom_boxplot, geom_kw=geom_kw) def gghist(df, x='x', **geom_kw): return _gg(df, mapping=aes(x=x), geom=geom_histogram, geom_kw=geom_kw) def ggdens(df, x='x', **geom_kw): return _gg(df, mapping=aes(x=x), geom=geom_density, geom_kw=geom_kw) def ggpoint(df, x='x', y='y', **geom_kw): return _gg(df, mapping=aes(x=x, y=y), geom=geom_point, geom_kw=geom_kw) def ggline(df, x='x', y='y', **geom_kw): return _gg(df, mapping=aes(x=x, y=y), geom=geom_line, geom_kw=geom_kw) def _gg(df, mapping, geom, geom_kw): if isinstance(df, np.ndarray): df = pd.Series(df) if isinstance(df, pd.Series): k = df.name or 'x' df =
pd.DataFrame({k: df})
pandas.DataFrame
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert
inference.is_list_like(result)
pandas.core.dtypes.inference.is_list_like
import re import pandas import spacy from spacytextblob.spacytextblob import SpacyTextBlob from nltk.sentiment.vader import SentimentIntensityAnalyzer sid = SentimentIntensityAnalyzer() # nlp = spacy.load('en_core_web_lg') nlp = spacy.load('en_core_web_md') nlp.add_pipe('spacytextblob') def subcatego(cat_mess: str) -> str: r = re.compile('slug...([a-zA-Z 0-9]+)/([a-zA-Z 0-9]+)') f = r.findall(cat_mess) if len(f)>0: return f[0][-1] # only difference here else: s = re.compile('slug...([a-zA-Z 0-9]+)') g = s.findall(cat_mess) return g[0] # because some without subcat def catego(cat_mess: str) -> str: r = re.compile('slug...([a-zA-Z 0-9]+)/([a-zA-Z 0-9]+)') f = r.findall(cat_mess) if len(f)>0: return f[0][0] # only difference here else: s = re.compile('slug...([a-zA-Z 0-9]+)') g = s.findall(cat_mess) return g[0] # because some without subcat def wrangle2(df): """ For cleaning pd.DataFrame read from csv available at <https://webrobots.io/kickstarter-datasets/> """ df = df.copy() observation_threshold = len(df)/2 df.dropna(thresh=observation_threshold , axis=1, inplace=True) df.dropna(subset=['blurb'], inplace=True) df.dropna(subset=['location'], inplace=True) df.drop_duplicates('id',inplace=True) # df.set_index('id',inplace=True) df.reset_index(drop=True,inplace=True) # class_to_drop1 = df[df['state'] == 'canceled'].index # df.drop(class_to_drop1, inplace=True) df = df.loc[df.state != 'live'] df.loc[df.state == 'canceled', 'state'] = 0 df.loc[df.state == 'failed', 'state'] = 0 df.loc[df.state == 'successful', 'state'] = 1 #this was it :) df = df.rename(columns={'state': 'success'}) df['goal_usd'] = round(df['goal'] * df['static_usd_rate'],2) for col in ['created_at', 'deadline', 'launched_at']: df[col] =
pandas.to_datetime(df[col], origin='unix', unit='s')
pandas.to_datetime
""" MCH API ver 0.1 Author: <NAME> License: CC-BY-SA 4.0 2020 Mexico """ import os from flask import Flask, jsonify, json, Response from flask_restful import Api, Resource, reqparse, abort from flask_mysqldb import MySQL import pandas as pd import numpy as np import json from os.path import abspath, dirname, join app = Flask(__name__) # Mysql connection app.config['MYSQL_HOST'] = os.getenv('MCH_DB_HOST') app.config['MYSQL_USER'] = os.getenv('MCH_DB_USER') app.config['MYSQL_PASSWORD'] = os.getenv('MCH_DB_PASSWORD') app.config['MYSQL_DB'] = os.getenv('MCH_DB_NAME') app.config['MYSQL_PORT'] = int(os.getenv('MCH_DB_PORT')) app.config['SECRET_KEY'] = os.getenv("APP_SECRET") mysql = MySQL(app) api = Api(app) # dataframe for stations table stnmdata = pd.DataFrame() # read MCH languaje definition from mch.dbn filemch = open('mch.dbn', 'r') filemch.readline() # odbc connector filemch.readline() # mysql5 filemch.readline() # interface languaje mchlang = filemch.readline() # database languaje # read fields and tables names definition file deftbfl = pd.read_csv('MCHtablasycampos.def', sep = "\t", names = ['sec','type', 'id_sec', 'esp', 'eng', 'fra', '4', 'comment'], encoding='utf_8') # new dataframe for especific languaje ltbfl = pd.DataFrame() # looking for especific fields and tables for the languaje if int(mchlang) == 1: ltbfl = deftbfl[['id_sec','esp']] ltbfl.set_index('id_sec') if int(mchlang) == 2: ltbfl = deftbfl[['id_sec','eng']] ltbfl.set_index('id_sec') if int(mchlang) == 3: ltbfl = deftbfl[['id_sec','fra']] ltbfl.set_index('id_sec') def deg_to_dms(deg): d = int(deg) md = abs(deg - d) * 60 m = int(md) sd = (md - m) * 60 return [d, m, sd] class stations(Resource): def get(self): qry = mysql.connection.cursor() stntable = ltbfl[ltbfl['id_sec'] == 'ntEstaciones'] stnfield = ltbfl[ltbfl['id_sec'] == 'ncEstacion'] strqry='select * from ' +stntable.iloc[0,1] +' order by ' +stnfield.iloc[0,1] strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close stnmdata = pd.DataFrame(data=dataqry,columns=['Station','StationName','StationName2','TimeZone','Longitude','Latitude','Altitude','Longitude2','Latitude2','DMSlongitude','DMSLatitude','Statee','RegManagmt','Catchment','Subcatchment', 'OperatnlRegion','HydroReg','RH(2)','Municipality','CodeB','CodeG','CodeCB','CodePB','CodeE','CodeCL','CodeHG','CodePG','CodeNw','Code1','Code2','Code3','MaxOrdStrgLvl','MaxOrdStrgVol', 'MaxExtStrgLvl','MaxExtStrgVol','SpillwayLevel','SpillwayStorage','FreeSpillwayLevel','FreeSpillwayStorage','DeadStrgLevel','DeadStrgCapac','UsableStorageCapLev','UsableStorage','HoldingStorage', 'Key1fil','Key2fil','Key3fil','CritLevelSta','MinLevelSta','MaxLevelSta','CritFlow','MinDischarge','MaxDischarge','Stream','Distance','Infrastructure','Type','Usee']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) return parsed api.add_resource(stations, "/API/stations") qry_station_req_arg = reqparse.RequestParser() pars = qry_station_req_arg.add_argument("stn_id",type=str,help="Station ID",required=True) class qry_station(Resource): def get(self): qry = mysql.connection.cursor() stntable = ltbfl[ltbfl['id_sec'] == 'ntEstaciones'] stnfield = ltbfl[ltbfl['id_sec'] == 'ncEstacion'] parser = reqparse.RequestParser() parser.add_argument('stn_id') args = parser.parse_args() stn_id = args.get('stn_id') strqry='select * from ' +stntable.iloc[0,1] +' where ' +stnfield.iloc[0,1] +'="'+ stn_id +'"' strqry=strqry.lower() qry.execute(strqry) qrystation = qry.fetchall() rcount=qry.rowcount qry.close if rcount > 0: stnmdata = pd.DataFrame(data=qrystation,columns=['Station','StationName','StationName2','TimeZone','Longitude','Latitude','Altitude','Longitude2','Latitude2','DMSlongitude','DMSLatitude','Statee','RegManagmt','Catchment','Subcatchment', 'OperatnlRegion','HydroReg','RH','Municipality','CodeB','CodeG','CodeCB','CodePB','CodeE','CodeCL','CodeHG','CodePG','CodeNw','Code1','Code2','Code3','MaxOrdStrgLvl','MaxOrdStrgVol', 'MaxExtStrgLvl','MaxExtStrgVol','SpillwayLevel','SpillwayStorage','FreeSpillwayLevel','FreeSpillwayStorage','DeadStrgLevel','DeadStrgCapac','UsableStorageCapLev','UsableStorage','HoldingStorage', 'Key1fil','Key2fil','Key3fil','CritLevelSta','MinLevelSta','MaxLevelSta','CritFlow','MinDischarge','MaxDischarge','Stream','Distance','Infrastructure','Type','Usee']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) else: abort(404, message="Station not found...") #abort_if_stn_not_exist("stn_id") return parsed def post(self): qry = mysql.connection.cursor() stntable = ltbfl[ltbfl['id_sec'] == 'ntEstaciones'] stnfield = ltbfl[ltbfl['id_sec'] == 'ncEstacion'] parser = reqparse.RequestParser() parser.add_argument('file') parser.add_argument('stn_id') parser.add_argument('stn_name') parser.add_argument('stn_name2') parser.add_argument('t_zone') parser.add_argument('long') parser.add_argument('lat') parser.add_argument('alt') parser.add_argument('state_id') parser.add_argument('reg_m') parser.add_argument('catchm') parser.add_argument('s_cat') parser.add_argument('o_reg') parser.add_argument('hydro_r') parser.add_argument('rh') parser.add_argument('mun_id') parser.add_argument('mosl') parser.add_argument('mosv') parser.add_argument('mesl') parser.add_argument('mesv') parser.add_argument('s_level') parser.add_argument('s_stor') parser.add_argument('fs_level') parser.add_argument('fs_stor') parser.add_argument('ds_level') parser.add_argument('ds_cap') parser.add_argument('us_capl') parser.add_argument('ustor') parser.add_argument('hstor') parser.add_argument('crl_s') parser.add_argument('mnl_s') parser.add_argument('mxl_s') parser.add_argument('cr_f') parser.add_argument('mn_dis') parser.add_argument('mx_dis') parser.add_argument('stream') parser.add_argument('dist') parser.add_argument('infr') parser.add_argument('type') parser.add_argument('use') args = parser.parse_args() # retrieve parameters jfile = args.get('file') stn_id = args.get('stn_id') stn_name = args.get('stn_name') stn_name2 = args.get('stn_name2') t_zone = args.get('t_zone') long2 = args.get('long') lat2 = args.get('lat') alt = args.get('alt') state_id = args.get('state_id') reg_m = args.get('reg_m') catchm = args.get('catchm') s_cat = args.get('s_cat') o_reg = args.get('o_reg') hydro_r = args.get('hydro_r') rh = args.get('rh') mun_id = args.get('mun_id') mosl = args.get('mosl') mosv = args.get('mosv') mesl = args.get('mesl') mesv = args.get('mesv') s_level = args.get('s_level') s_stor = args.get('s_stor') fs_level = args.get('fs_level') fs_stor = args.get('fs_stor') ds_level = args.get('ds_level') ds_cap = args.get('ds_cap') us_capl = args.get('us_capl') ustor = args.get('ustor') hstor = args.get('hstor') crl_s = args.get('crl_s') mnl_s = args.get('mnl_s') mxl_s = args.get('mxl_s') cr_f = args.get('cr_f') mn_dis = args.get('mn_dis') mx_dis = args.get('mx_dis') stream = args.get('stream') dist = args.get('dist') infr = args.get('infr') typee = args.get('type') usee = args.get('use') # check if input is at file if jfile in (None, ''): Latitude=deg_to_dms(float(lat2)) Longitude=deg_to_dms(float(long2)) slong2=str(Longitude[0])+'°'+str(Longitude[1]) +'´' +str(Longitude[2]) slat2=str(Latitude[0])+'°'+str(Latitude[1]) +'´' +str(Latitude[2]) strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +str(stn_id) +'","' +str(stn_name) +'","' +str(stn_name2) +'","' +str(t_zone) +'","' + str(long2) + '","' +str(lat2) +'","' +str(alt) +'","' +str(long2) +'","' +str(lat2) +'","' +slong2 +'","' +slat2 +'","' +str(state_id) +'","' +str(reg_m) + '","' +str(catchm) +'","' +str(s_cat) +'","' +str(o_reg) +'","' +str(hydro_r) +'","' +str(rh) +'","' +str(mun_id) +'","","","","","","","","","","","","","' + str(mosl) + '","' +str(mosv) +'","' +str(mesl) +'","' +str(mesv) +'","' +str(s_level) +'","' +str(s_stor) +'","' +str(fs_level) +'","' + str(fs_stor) + '","' +str(ds_level) +'","' +str(ds_cap) +'","' +str(us_capl) +'","' +str(ustor) +'","' +str(hstor) +'","","","","' +str(crl_s) +'","' + str(mnl_s) + '","' +str(mxl_s) +'","' +str(cr_f) +'","' +str(mn_dis) +'","' +str(mx_dis) +'","' +str(stream) +'","' +str(dist) +'","' +str(infr) +'","' + str(typee) + '","' +str(usee) +'")') qry.execute(strqry) else: f=open(jfile,'r') filej = f.read() f.close() jdata = json.loads(filej) data = pd.DataFrame(jdata) fields = data.columns.tolist() tdata=len(data.index) rows=list(range(0,tdata)) if int(tdata) > 1: for n in rows: strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +data.iloc[int(n),0] +'","' +data.iloc[int(n),1] +'","' +data.iloc[int(n),2] +'","' +data.iloc[int(n),3] +'","' + data.iloc[int(n),4] + '","' +data.iloc[int(n),5] +'","' +str(data.iloc[int(n),6]) +'","' +str(data.iloc[int(n),7]) +'","' +str(data.iloc[int(n),8]) +'","' +data.iloc[int(n),9] +'","' +data.iloc[int(n),10] +'","' +data.iloc[int(n),11] + '","' +data.iloc[int(n),12] + '","' +data.iloc[int(n),13] +'","' +data.iloc[int(n),14] +'","' +data.iloc[int(n),15] +'","' +data.iloc[int(n),16] +'","' +data.iloc[int(n),17] +'","' +data.iloc[int(n),18] + '","' +data.iloc[int(n),19] +'","' +data.iloc[int(n),20] +'","' +data.iloc[int(n),21] +'","' +data.iloc[int(n),22] +'","' +data.iloc[int(n),23] +'","' +data.iloc[int(n),24] +'","' +data.iloc[int(n),25] + '","' +data.iloc[int(n),26] + '","' +data.iloc[int(n),27] +'","' +data.iloc[int(n),28] +'","' +data.iloc[int(n),29] +'","' +data.iloc[int(n),30] +'","' +data.iloc[int(n),31] + '","' +data.iloc[int(n),32] +'","' +data.iloc[int(n),33] +'","' +data.iloc[int(n),34] +'","' +data.iloc[int(n),35] +'","' +data.iloc[int(n),36] +'","' +data.iloc[int(n),37] +'","' + data.iloc[int(n),38] + '","' +data.iloc[int(n),39] +'","' +data.iloc[int(n),40] +'","' +data.iloc[int(n),41] +'","' +data.iloc[int(n),42] +'","' +data.iloc[int(n),43] +'","' +data.iloc[int(n),44] +'","' +data.iloc[int(n),45] + '","' +data.iloc[int(n),46] +'","' +data.iloc[int(n),47] +'","' + data.iloc[int(n),48] +'","' +data.iloc[int(n),49] +'","' +data.iloc[int(n),50] +'","' +data.iloc[int(n),51] +'","' +data.iloc[int(n),52] + '","' +data.iloc[int(n),53] +'","' +data.iloc[int(n),54] +'","' +data.iloc[int(n),55] +'","' +data.iloc[int(n),56] +'","' +data.iloc[int(n),57] +'")') qry.execute(strqry) else: strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +data.iloc[0,0] +'","' +data.iloc[0,1] +'","' +data.iloc[0,2] +'","' +data.iloc[0,3] +'","' + data.iloc[0,4] + '","' +data.iloc[0,5] +'","' +str(data.iloc[0,6]) +'","' +str(data.iloc[0,7]) +'","' +str(data.iloc[0,8]) +'","' +data.iloc[0,9] +'","' +data.iloc[0,10] +'","' +data.iloc[0,11] + '","' +data.iloc[0,12] + '","' +data.iloc[0,13] +'","' +data.iloc[0,14] +'","' +data.iloc[0,15] +'","' +data.iloc[0,16] +'","' +data.iloc[0,17] +'","' +data.iloc[0,18] + '","' +data.iloc[0,19] +'","' +data.iloc[0,20] +'","' +data.iloc[0,21] +'","' +data.iloc[0,22] +'","' +data.iloc[0,23] +'","' +data.iloc[0,24] +'","' +data.iloc[0,25] + '","' +data.iloc[0,26] + '","' +data.iloc[0,27] +'","' +data.iloc[0,28] +'","' +data.iloc[0,29] +'","' +data.iloc[0,30] +'","' +data.iloc[0,31] + '","' +data.iloc[0,32] +'","' +data.iloc[0,33] +'","' +data.iloc[0,34] +'","' +data.iloc[0,35] +'","' +data.iloc[0,36] +'","' +data.iloc[0,37] +'","' + data.iloc[0,38] + '","' +data.iloc[0,39] +'","' +data.iloc[0,40] +'","' +data.iloc[0,41] +'","' +data.iloc[0,42] +'","' +data.iloc[0,43] +'","' +data.iloc[0,44] +'","' +data.iloc[0,45] + '","' +data.iloc[0,46] +'","' +data.iloc[0,47] +'","' + data.iloc[0,48] +'","' +data.iloc[0,49] +'","' +data.iloc[0,50] +'","' +data.iloc[0,51] +'","' +data.iloc[0,52] + '","' +data.iloc[0,53] +'","' +data.iloc[0,54] +'","' +data.iloc[0,55] +'","' +data.iloc[0,56] +'","' +data.iloc[0,57] +'")') qry.execute(strqry) return 'Station stored',201 def delete(self): qry = mysql.connection.cursor() stntable = ltbfl[ltbfl['id_sec'] == 'ntEstaciones'] stnfield = ltbfl[ltbfl['id_sec'] == 'ncEstacion'] parser = reqparse.RequestParser() parser.add_argument('stn_id') args = parser.parse_args() stn_id = args.get('stn_id') strqry='delete from ' +stntable.iloc[0,1] +' where ' +stnfield.iloc[0,1] +'="'+ stn_id +'"' strqry=strqry.lower() qry.execute(strqry) return 'Station deleted',204 api.add_resource(qry_station, "/API/stations/qry_station") class stngroups(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntGruposestac'] nfield = ltbfl[ltbfl['id_sec'] == 'ncGrupoEstac'] strqry='select distinct(' +nfield.iloc[0,1] +') from ' +ntable.iloc[0,1] +' order by ' +nfield.iloc[0,1] strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close stnmdata = pd.DataFrame(data=dataqry,columns=['Stngroup']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) return parsed api.add_resource(stngroups, "/API/stngroups") class qry_stngroup(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntGruposestac'] nfield = ltbfl[ltbfl['id_sec'] == 'ncGrupoEstac'] parser = reqparse.RequestParser() parser.add_argument('stngp_id') args = parser.parse_args() stngp_id = args.get('stngp_id') strqry='select * from ' +ntable.iloc[0,1] +' where ' +nfield.iloc[0,1] +'="'+ stngp_id +'"' strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close if rcount > 0: stnmdata = pd.DataFrame(data=dataqry,columns=['Stngroup','Secuen','Station']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) else: abort(404, message="Stationgroup not found...") return parsed def post(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntGruposestac'] nfield = ltbfl[ltbfl['id_sec'] == 'ncGrupoEstac'] parser = reqparse.RequestParser() parser.add_argument('file') f=open(jfile,'r') filej = f.read() f.close() jdata = json.loads(filej) data = pd.DataFrame(jdata) tdata=len(data.index) rows=list(range(0,tdata)) for n in rows: strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +data.iloc[int(n),0] +'","' +data.iloc[int(n),1] +'","' +data.iloc[int(n),2] +'")') qry.execute(strqry) return 'Stationgroup stored',201 def delete(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntGruposestac'] nfield = ltbfl[ltbfl['id_sec'] == 'ncGrupoEstac'] parser = reqparse.RequestParser() parser.add_argument('stngp_id') args = parser.parse_args() stngp_id = args.get('stngp_id') strqry='delete from ' +ntable.iloc[0,1] +' where ' +nfield.iloc[0,1] +'="'+ stngp_id +'"' strqry=strqry.lower() qry.execute(strqry) return 'Stationgroup deleted',204 api.add_resource(qry_stngroup, "/API/stngroups/qry_stngroup") class variables(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntVariables'] nfield = ltbfl[ltbfl['id_sec'] == 'ncVariable'] strqry='select distinct(' +nfield.iloc[0,1] +') from ' +ntable.iloc[0,1] +' order by ' +nfield.iloc[0,1] strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close stnmdata = pd.DataFrame(data=dataqry,columns=['Variable']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) return parsed api.add_resource(variables, "/API/variables") class qry_variable(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntVariables'] nfield = ltbfl[ltbfl['id_sec'] == 'ncVariable'] parser = reqparse.RequestParser() parser.add_argument('var_id') args = parser.parse_args() var_id = args.get('var_id') strqry='select * from ' +ntable.iloc[0,1] +' where ' +nfield.iloc[0,1] +'="'+ var_id +'"' strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close if rcount > 0: stnmdata = pd.DataFrame(data=dataqry,columns=['Variable','VariabAbbrev','VariabDescrn','TableName','Unit','TypeDDorDE','CumulType','NbrDecimal','CalcbyGrp','CalcDTaD']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) else: abort(404, message="Variable not found...") return parsed api.add_resource(qry_variable, "/API/variables/qry_variable") class states(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntEstados'] nfield = ltbfl[ltbfl['id_sec'] == 'ncEstado'] strqry='select * from ' +ntable.iloc[0,1] +' order by ' +nfield.iloc[0,1] strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close stnmdata = pd.DataFrame(data=dataqry,columns=['Statee','State2','Statename']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) return parsed api.add_resource(states, "/API/states") class qry_state(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntEstados'] nfield = ltbfl[ltbfl['id_sec'] == 'ncEstado'] parser = reqparse.RequestParser() parser.add_argument('state_id') args = parser.parse_args() state_id = args.get('state_id') strqry='select * from ' +ntable.iloc[0,1] +' where ' +nfield.iloc[0,1] +'="'+ state_id +'"' strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close if rcount > 0: stnmdata = pd.DataFrame(data=dataqry,columns=['Statee','State2','Statename']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) else: abort(404, message="State not found...") return parsed def post(self): qry = mysql.connection.cursor() stntable = ltbfl[ltbfl['id_sec'] == 'ntEstados'] stnfield = ltbfl[ltbfl['id_sec'] == 'ncEstado'] parser = reqparse.RequestParser() parser.add_argument('file') parser.add_argument('state_id') parser.add_argument('state_2') parser.add_argument('state_name') args = parser.parse_args() # retrieve parameters jfile = args.get('file') state_id = args.get('state_id') state_2 = args.get('state_2') state_name = args.get('state_name') # check if input is at file if jfile in (None, ''): strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +str(state_id) +'","' +str(state_2) +'","' +str(state_name) +'")') qry.execute(strqry) else: f=open(jfile,'r') filej = f.read() f.close() jdata = json.loads(filej) data = pd.DataFrame(jdata) fields = data.columns.tolist() tdata=len(data.index) rows=list(range(0,tdata)) if int(tdata) > 1: for n in rows: strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +data.iloc[int(n),0] +'","' +data.iloc[int(n),1] +'","' +data.iloc[int(n),2] +'")') qry.execute(strqry) else: strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +data.iloc[0,0] +'","' +data.iloc[0,1] +'","' +data.iloc[0,2] +'")') qry.execute(strqry) return 'State stored',201 def delete(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntEstados'] nfield = ltbfl[ltbfl['id_sec'] == 'ncEstado'] parser = reqparse.RequestParser() parser.add_argument('state_id') args = parser.parse_args() stngp_id = args.get('state_id') strqry='delete from ' +ntable.iloc[0,1] +' where ' +nfield.iloc[0,1] +'="'+ state_id +'"' strqry=strqry.lower() qry.execute(strqry) return 'State deleted',204 api.add_resource(qry_state, "/API/states/qry_state") class municipalities(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntMunicipios'] nfield = ltbfl[ltbfl['id_sec'] == 'ncMunicipio'] strqry='select * from ' +ntable.iloc[0,1] +' order by ' +nfield.iloc[0,1] strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close stnmdata = pd.DataFrame(data=dataqry,columns=['Municipality','Municipality2','MunicipalityName']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) return parsed api.add_resource(municipalities, "/API/municipalities") class qry_municipality(Resource): def get(self): qry = mysql.connection.cursor() ntable = ltbfl[ltbfl['id_sec'] == 'ntMunicipios'] nfield = ltbfl[ltbfl['id_sec'] == 'ncMunicipio'] parser = reqparse.RequestParser() parser.add_argument('mun_id') args = parser.parse_args() mun_id = args.get('mun_id') strqry='select * from ' +ntable.iloc[0,1] +' where ' +nfield.iloc[0,1] +'="'+ mun_id +'"' strqry=strqry.lower() qry.execute(strqry) dataqry = qry.fetchall() rcount=qry.rowcount qry.close if rcount > 0: stnmdata = pd.DataFrame(data=dataqry,columns=['Municipality','Municipality2','MunicipalityName']) jsondata = stnmdata.to_json(orient="records") parsed = json.loads(jsondata) else: abort(404, message="Municipality not found...") return parsed def post(self): qry = mysql.connection.cursor() stntable = ltbfl[ltbfl['id_sec'] == 'ntMunicipios'] stnfield = ltbfl[ltbfl['id_sec'] == 'ncMunicipio'] parser = reqparse.RequestParser() parser.add_argument('file') parser.add_argument('mun_id') parser.add_argument('mun_2') parser.add_argument('mun_name') args = parser.parse_args() # retrieve parameters jfile = args.get('file') mun_id = args.get('mun_id') mun_2 = args.get('mun_2') mun_name = args.get('mun_name') # check if input is at file if jfile in (None, ''): strqry = ('insert ignore into ' +stntable.iloc[0,1] +' values("' +str(mun_id) +'","' +str(mun_2) +'","' +str(mun_name) +'")') qry.execute(strqry) else: f=open(jfile,'r') filej = f.read() f.close() jdata = json.loads(filej) data =
pd.DataFrame(jdata)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Jun 19 15:36:56 2020 @author: suyu """ from surprise import SVD from surprise import Dataset from surprise import Reader from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error,roc_auc_score,mean_absolute_error,log_loss import numpy as np import pandas as pd import sys sys.path.append('../') from gammli.DataReader import data_initialize def svd(wc, data, meta_info_ori, task_type="Regression", random_state=0): base = SVD(n_factors=3) cold_mae = [] cold_rmse = [] warm_mae = [] warm_rmse = [] cold_auc = [] cold_logloss = [] warm_auc = [] warm_logloss = [] for j in range(10): train, test = train_test_split(data, test_size=0.2, random_state=j) tr_x, tr_Xi, tr_y, tr_idx, te_x, te_Xi, te_y, val_x, val_Xi, val_y, val_idx, meta_info, model_info, sy, sy_t = data_initialize(train, test, meta_info_ori, task_type, 'warm', random_state=0, verbose=False) Xi = tr_x[:,-2:] Xi_t = te_x[:,-2:] tr_ratings_dict = {'itemID': Xi[:,1].tolist(), 'userID': Xi[:,0].tolist(), 'rating': tr_y.ravel().tolist()} tr_df =
pd.DataFrame(tr_ratings_dict)
pandas.DataFrame
""" Analysis dashboards module. """ import copy from datetime import timedelta import numpy as np import pandas as pd import logging from flask_login import login_required from flask import render_template, request from sqlalchemy import and_ from app.dashboards import blueprint from utilities.utils import parse_date_range_argument from __app__.crop.structure import SQLA as db from __app__.crop.structure import ( SensorClass, ReadingsAdvanticsysClass, ReadingsEnergyClass, ReadingsZensieTRHClass, ) from __app__.crop.constants import CONST_MAX_RECORDS, CONST_TIMESTAMP_FORMAT # Temperature constants TEMP_BINS = [0.0, 17.0, 21.0, 24.0, 30.0] # Ventilation constants CONST_SFP = 2.39 # specific fan power CONST_VTOT = 20337.0 # total volume – m3 def resample(df, bins, dt_from, dt_to): """ Resamples (adds missing date/temperature bin combinations) to a dataframe. Arguments: df: dataframe with temperature assign to bins bins: temperature bins as a list dt_from: date range from dt_to: date range to Returns: bins_list: a list of temperature bins df_list: a list of df corresponding to temperature bins """ bins_list = [] for i in range(len(bins) - 1): bins_list.append("(%.1f, %.1f]" % (bins[i], bins[i + 1])) date_min = min(df["date"].min(), dt_from) date_max = max(df["date"].max(), dt_to) for n in range(int((date_max - date_min).days) + 1): day = date_min + timedelta(n) for temp_range in bins_list: if len(df[(df["date"] == day) & (df["temp_bin"] == temp_range)].index) == 0: df2 = pd.DataFrame( {"date": [day], "temp_bin": [temp_range], "temp_cnt": [0]} ) df = df.append(df2) df = df.sort_values(by=["date", "temp_bin"], ascending=True) df.reset_index(inplace=True, drop=True) df_list = [] for bin_range in bins_list: df_bin = df[df["temp_bin"] == bin_range] del df_bin["temp_bin"] df_bin.reset_index(inplace=True, drop=True) df_list.append(df_bin) return bins_list, df_list def lights_energy_use(dt_from_, dt_to_): """ Energy use from Carpenter's place (with lights - called Clapham in the database) Arguments: dt_from_: date range from dt_to_: date range to Returns: lights_results_df - a pandas dataframe with mean lights on values """ dt_from = pd.to_datetime(dt_from_.date()) + timedelta(hours=14) dt_to = pd.to_datetime(dt_to_.date()) + timedelta(days=1, hours=15) d_from = pd.to_datetime(dt_from_.date()) d_to = pd.to_datetime(dt_to_.date()) col_ec = "electricity_consumption" sensor_device_id = "Clapham" lights_on_cols = [] lights_results_df = None # getting eneregy data for the analysis query = db.session.query( ReadingsEnergyClass.timestamp, ReadingsEnergyClass.electricity_consumption, ).filter( and_( SensorClass.device_id == sensor_device_id, ReadingsEnergyClass.sensor_id == SensorClass.id, ReadingsEnergyClass.timestamp >= dt_from, ReadingsEnergyClass.timestamp <= dt_to, ) ) df = pd.read_sql(query.statement, query.session.bind) if not df.empty: # Reseting index df.sort_values(by=["timestamp"], ascending=True).reset_index(inplace=True) # grouping data by date-hour energy_hour = ( df.groupby( by=[ df["timestamp"].map( lambda x: pd.to_datetime( "%04d-%02d-%02d-%02d" % (x.year, x.month, x.day, x.hour), format="%Y-%m-%d-%H", ) ), ] )["electricity_consumption"] .sum() .reset_index() ) # Sorting and reseting index energy_hour.sort_values(by=["timestamp"], ascending=True).reset_index( inplace=True ) # energy dates. Energy date starts from 4pm each day and lasts for 24 hours energy_hour.loc[ energy_hour["timestamp"].dt.hour < 15, "energy_date" ] = pd.to_datetime((energy_hour["timestamp"] + timedelta(days=-1)).dt.date) energy_hour.loc[ energy_hour["timestamp"].dt.hour >= 15, "energy_date" ] =
pd.to_datetime(energy_hour["timestamp"].dt.date)
pandas.to_datetime
from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas.api.types import is_numeric_dtype import matplotlib as plt from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import train_test_split as sk_train_test_split from multiprocessing import Pool import gc class Featurizer(): def __init__(self, assetId='assetCode', n_lag=[3,7,14], shift_size=1, return_features=['returnsClosePrevMktres10','returnsClosePrevRaw10', 'returnsOpenPrevMktres1', 'returnsOpenPrevRaw1', 'open','close'] ): self.assetId = assetId self.n_lag = n_lag self.shift_size = shift_size self.return_features = return_features def transform(self, df): new_df = self.generate_lag_features(df) df =
pd.merge(df, new_df, how='left', on=['time', self.assetId])
pandas.merge
#encoding=utf-8 from nltk.corpus import stopwords from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import FeatureUnion from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.linear_model import Ridge from scipy.sparse import hstack, csr_matrix import pandas as pd import numpy as np import xgboost as xgb #import matplotlib.pyplot as plt import gc, re from sklearn.utils import shuffle from contextlib import contextmanager from sklearn.externals import joblib import time print("Starting job at time:",time.time()) debug = True print("loading data ...") used_cols = ["item_id", "user_id"] if debug == False: train_df = pd.read_csv("../input/train.csv", parse_dates = ["activation_date"]) y = train_df["deal_probability"] test_df = pd.read_csv("../input/test.csv", parse_dates = ["activation_date"]) train_active = pd.read_csv("../input/train_active.csv", usecols=used_cols) test_active = pd.read_csv("../input/test_active.csv", usecols=used_cols) train_periods = pd.read_csv("../input/periods_train.csv", parse_dates=["date_from", "date_to"]) test_periods = pd.read_csv("../input/periods_test.csv", parse_dates=["date_from", "date_to"]) else: train_df = pd.read_csv("../input/train.csv", parse_dates = ["activation_date"]) train_df = shuffle(train_df, random_state=1234); train_df = train_df.iloc[:10000] y = train_df["deal_probability"] test_df = pd.read_csv("../input/test.csv", nrows=1000, parse_dates = ["activation_date"]) train_active = pd.read_csv("../input/train_active.csv", nrows=1000, usecols=used_cols) test_active = pd.read_csv("../input/test_active.csv", nrows=1000, usecols=used_cols) train_periods = pd.read_csv("../input/periods_train.csv", nrows=1000, parse_dates=["date_from", "date_to"]) test_periods = pd.read_csv("../input/periods_test.csv", nrows=1000, parse_dates=["date_from", "date_to"]) print("loading data done!") # ============================================================================= # Add image quality: by steeve # ============================================================================= import pickle with open('../input/inception_v3_include_head_max_train.p','rb') as f: x = pickle.load(f) train_features = x['features'] train_ids = x['ids'] with open('../input/inception_v3_include_head_max_test.p','rb') as f: x = pickle.load(f) test_features = x['features'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_features, columns = ['image_quality']) incep_test_image_df = pd.DataFrame(test_features, columns = ['image_quality']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') del incep_train_image_df, incep_test_image_df gc.collect() with open('../input/train_image_features.p','rb') as f: x = pickle.load(f) train_blurinesses = x['blurinesses'] train_ids = x['ids'] with open('../input/test_image_features.p','rb') as f: x = pickle.load(f) test_blurinesses = x['blurinesses'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_blurinesses, columns = ['blurinesses']) incep_test_image_df = pd.DataFrame(test_blurinesses, columns = ['blurinesses']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding whitenesses ...') with open('../input/train_image_features.p','rb') as f: x = pickle.load(f) train_whitenesses = x['whitenesses'] train_ids = x['ids'] with open('../input/test_image_features.p','rb') as f: x = pickle.load(f) test_whitenesses = x['whitenesses'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_whitenesses, columns = ['whitenesses']) incep_test_image_df = pd.DataFrame(test_whitenesses, columns = ['whitenesses']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding dullnesses ...') with open('../input/train_image_features.p','rb') as f: x = pickle.load(f) train_dullnesses = x['dullnesses'] train_ids = x['ids'] with open('../input/test_image_features.p','rb') as f: x = pickle.load(f) test_dullnesses = x['dullnesses'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_dullnesses, columns = ['dullnesses']) incep_test_image_df = pd.DataFrame(test_dullnesses, columns = ['dullnesses']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') # ============================================================================= # new image data # ============================================================================= print('adding average_pixel_width ...') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_average_pixel_width = x['average_pixel_width'] train_ids = x['ids'] with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_average_pixel_width = x['average_pixel_width'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_average_pixel_width, columns = ['average_pixel_width']) incep_test_image_df = pd.DataFrame(test_average_pixel_width, columns = ['average_pixel_width']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding average_reds ...') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_average_reds = x['average_reds'] train_ids = x['ids'] with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_average_reds = x['average_reds'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_average_reds, columns = ['average_reds']) incep_test_image_df = pd.DataFrame(test_average_reds, columns = ['average_reds']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding average_blues ...') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_average_blues = x['average_blues'] train_ids = x['ids'] with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_average_blues = x['average_blues'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_average_blues, columns = ['average_blues']) incep_test_image_df = pd.DataFrame(test_average_blues, columns = ['average_blues']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding average_greens ...') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_average_greens = x['average_greens'] train_ids = x['ids'] with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_average_greens = x['average_greens'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_average_greens, columns = ['average_greens']) incep_test_image_df = pd.DataFrame(test_average_greens, columns = ['average_greens']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding widths ...') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_widths = x['widths'] train_ids = x['ids'] with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_widths = x['widths'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_widths, columns = ['widths']) incep_test_image_df = pd.DataFrame(test_widths, columns = ['widths']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') print('adding heights ...') with open('../input/train_image_features_1.p','rb') as f: x = pickle.load(f) train_heights = x['heights'] train_ids = x['ids'] with open('../input/test_image_features_1.p','rb') as f: x = pickle.load(f) test_heights = x['heights'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_heights, columns = ['heights']) incep_test_image_df = pd.DataFrame(test_heights, columns = ['heights']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) train_df = train_df.join(incep_train_image_df.set_index('image'), on='image') test_df = test_df.join(incep_test_image_df.set_index('image'), on='image') del test_average_blues, test_average_greens, test_average_reds, incep_test_image_df del train_average_blues, train_average_greens, train_average_reds, incep_train_image_df gc.collect() #============================================================================== # image features by Qifeng #============================================================================== print('adding image features @ qifeng ...') with open('../input/train_image_features_cspace.p','rb') as f: x = pickle.load(f) x_train = pd.DataFrame(x, columns = ['average_HSV_Ss',\ 'average_HSV_Vs',\ 'average_LUV_Ls',\ 'average_LUV_Us',\ 'average_LUV_Vs',\ 'average_HLS_Hs',\ 'average_HLS_Ls',\ 'average_HLS_Ss',\ 'average_YUV_Ys',\ 'average_YUV_Us',\ 'average_YUV_Vs',\ 'ids' ]) #x_train.rename(columns = {'$ids':'image'}, inplace = True) with open('../input/test_image_features_cspace.p','rb') as f: x = pickle.load(f) x_test = pd.DataFrame(x, columns = ['average_HSV_Ss',\ 'average_HSV_Vs',\ 'average_LUV_Ls',\ 'average_LUV_Us',\ 'average_LUV_Vs',\ 'average_HLS_Hs',\ 'average_HLS_Ls',\ 'average_HLS_Ss',\ 'average_YUV_Ys',\ 'average_YUV_Us',\ 'average_YUV_Vs',\ 'ids' ]) #x_test.rename(columns = {'$ids':'image'}, inplace = True) train_df = train_df.join(x_train.set_index('ids'), on='image') test_df = test_df.join(x_test.set_index('ids'), on='image') del x, x_train, x_test; gc.collect() # ============================================================================= # add geo info: https://www.kaggle.com/frankherfert/avito-russian-region-cities/data # ============================================================================= #tmp = pd.read_csv("../input/avito_region_city_features.csv", usecols=["region", "city", "latitude","longitude"]) #train_df = train_df.merge(tmp, on=["city","region"], how="left") #train_df["lat_long"] = train_df["latitude"]+train_df["longitude"] #test_df = test_df.merge(tmp, on=["city","region"], how="left") #test_df["lat_long"] = test_df["latitude"]+test_df["longitude"] #del tmp; gc.collect() # ============================================================================= # Add region-income # ============================================================================= tmp =
pd.read_csv("../input/region_income.csv", sep=";", names=["region", "income"])
pandas.read_csv
from tkinter import ttk,filedialog from tkinter import * import pandas as pd # import argparse from openpyxl import Workbook,worksheet from openpyxl.styles import Border, Side, Font, Alignment from openpyxl.utils.dataframe import dataframe_to_rows from openpyxl.utils import get_column_letter root = Tk() root.title('eagel bom tool') isOctoPart = BooleanVar() isOctoPart.set(False) octoPartUser = StringVar() octoPartUser.set('<EMAIL>') pathLabelText = 'Select file' path = '' def selectFile(): global path path = filedialog.askopenfilename(initialdir = "`~`",title = "Select file",filetypes = (("csv files","*.csv"),("all files","*.*"))) if len(path) > 0: print(path) pathEntry.delete(0, END) pathEntry.insert(END, path) def get_col_widths(dataframe): # First we find the maximum length of the index column idx_max = max([len(str(s)) for s in dataframe.index.values] + [len(str(dataframe.index.name))]) # Then, we concatenate this to the max of the lengths of column name and its values for each column, left to right return [idx_max] + [max([len(str(s)) for s in dataframe[col].values] + [len(col)]) for col in dataframe.columns] def runScript(): filePath = pathEntry.get() print(filePath) if isOctoPart.get() == True: print("bulding an Octopart BOM") if len(filePath) > 0: cuurencyFormat = '#,##0.00$' #Import CSV file as dataframe bomDf = pd.read_csv(filePath,sep=';') #Remove any exluded parts from dataframe if 'BOM' in bomDf.columns: indexNames = bomDf[bomDf['BOM'] == 'EXCLUDE'].index bomDf.drop(indexNames, inplace=True) #copy the importent columes to a new dataframe newDf =
pd.DataFrame()
pandas.DataFrame
from .database import CodingSystem, CodingProperty, GlobalProperty, GlobalRating, GlobalValue, Interview, \ PropertyValue, Utterance, UtteranceCode from .utils import sanitize_for_spss from pandas import DataFrame, Index, MultiIndex, notna from pandas.api.types import is_string_dtype, is_object_dtype from peewee import Case, Cast, fn, JOIN, Value from savReaderWriter.savWriter import SavWriter from numpy import NaN import logging import pandas.api.types as ptypes logging.getLogger('caastools.dataset').addHandler(logging.NullHandler()) __all__ = ['sequential', 'session_level', 'create_sl_variable_labels', 'save_as_spss'] def _global_query_(included_interviews=None, included_globals=None, client_as_numeric=True, exclude_reliability=True): """ Constructs the globals query for session-level datasets :param included_interviews: iterable of str specifying names of interviews to include :param included_globals: :param client_as_numeric: Whether to cast client_id as a numeric type. Default True :param exclude_reliability: Whether to exclude (True, default) or include (False) interviews of type 'reliability' :return: ModelSelect, Cte - The full query for global ratings and the CTE associated object """ client_column = Cast(Interview.client_id, "INT").alias('client_id') if client_as_numeric else Interview.client_id # May want only certain interviews included or certain properties included, # so construct some predicates for where clauses, if necessary types = ['general'] if exclude_reliability else ['general', 'reliability'] predicate = Interview.interview_type.in_(types) if included_interviews is not None: predicate = predicate & Interview.interview_name.in_(included_interviews) if included_globals is not None: predicate = predicate & GlobalProperty.gp_name.in_(included_globals) """ Logic above replaces this global_predicate = ((p1) & (p2) & (p3)) if included_interviews is not None and included_globals is not None else \ ((p1) & (p3)) if included_interviews is not None else \ ((p2) & (p3)) if included_globals is not None else \ p3 """ # For any session-level/decile dataset, we want scores for all session-level globals. # Thus, there will need to be either a UNION ALL of counts and global ratings # or a separate query for globals. # Below constructs the global ratings part of the UNION ALL global_query = (GlobalRating.select(GlobalRating.interview_id, GlobalProperty.gp_name, Cast(GlobalValue.gv_value, "INT"), GlobalValue.global_property_id) .join(GlobalValue).join(GlobalProperty, JOIN.LEFT_OUTER)) global_cte = global_query.cte("global_cte", columns=['interview_id', 'gp_name', 'gv_value', 'global_property_id']) outer_global_query = (Interview .select(Interview.interview_name, Interview.interview_type, client_column, Interview.rater_id, Interview.session_number, GlobalProperty.gp_name, global_cte.c.gv_value) .join(CodingSystem) .join(GlobalProperty)) full_global_query = outer_global_query.join( global_cte, JOIN.LEFT_OUTER, on=((Interview.interview_id == global_cte.c.interview_id) & (GlobalProperty.global_property_id == global_cte.c.global_property_id)) ) # Append the predicate full_global_query = full_global_query.where(predicate) return full_global_query, global_cte def quantile_level(quantiles=10, included_interviews=None, included_properties=None, included_globals=None, client_as_numeric=True, exclude_reliability=True): """ Constructs a quantile-level dataset :param quantiles: Integer specifying number of quantiles into which data is to be divided. Default 10 :param included_interviews: Sequence of strings specifying interview names to be included in the dataset, None to include all interviews. Default None :param included_properties: Sequence of int specifying CodingProperty whose data is to be included in the dataset, None to include all coding properties. Default None :param included_globals: sequence of int specifying GlobalProperties to be included. None to include all. Default None :param client_as_numeric: Whether to cast client_id to a numeric type. Default True :param exclude_reliability: Whether to exclude (True, default) or include (False) interviews of type 'reliability' :return: DataFrame """ included_types = ['general'] if exclude_reliability else ['general', 'reliability'] # In order to build the quantile-level dataset, each utterance needs to be placed into its quantile # Frist step in that operation is to determine the length of a quantile by interview decile_lens = Utterance.select(Utterance.interview_id, fn.MIN(Utterance.utt_start_time), fn.MAX(Utterance.utt_end_time), (fn.MAX(Utterance.utt_end_time) - fn.MIN(Utterance.utt_start_time)) / quantiles) \ .group_by(Utterance.interview_id) \ .cte('decile_lens', columns=['interview_id', 'start_time', 'end_time', 'length']) # Once the length of a quantile is known, the next step is to compute a CTE # in which each utterance has its quantile number assigned utt_deciles = Utterance.select( Utterance.interview_id, Utterance.utterance_id, Cast((Utterance.utt_start_time - decile_lens.c.start_time) / decile_lens.c.length + 1, "INT") ).join(decile_lens, JOIN.LEFT_OUTER, on=(Utterance.interview_id == decile_lens.c.interview_id)) \ .cte('utt_deciles', columns=['interview_id', 'utterance_id', 'quantile']) # Once an utterance has a quantile number assigned, the last step in getting the counts # is to select codes and group by interview, quantile, and property_value decile_counts = UtteranceCode.select(utt_deciles.c.interview_id, utt_deciles.c.quantile, UtteranceCode.property_value_id, fn.COUNT(UtteranceCode.utterance_code_id)) \ .join(utt_deciles, JOIN.LEFT_OUTER, on=(UtteranceCode.utterance_id == utt_deciles.c.utterance_id)) \ .group_by(utt_deciles.c.interview_id, utt_deciles.c.quantile, UtteranceCode.property_value_id) \ .cte('decile_counts', columns=['interview_id', 'quantile', 'property_value_id', 'cnt']) case = Case(None, ((decile_counts.c.cnt.is_null(), 0),), (decile_counts.c.cnt)) client_column = Cast(Interview.client_id, "INT").alias('client_id') if client_as_numeric else Interview.client_id var_column = CodingProperty.cp_display_name.concat("_").concat(PropertyValue.pv_value).alias('property') # In order to construct the quantile-level dataset, we first need a recursive CTE # that defines every code for every quantile and interview # This will require a recursive CTE # Start with the base case quantile = Value(quantiles).alias('quantile') base_case = (Interview.select(Interview.interview_id, Interview.interview_type, PropertyValue.property_value_id, Interview.interview_name, client_column, Interview.rater_id, Interview.session_number, quantile, var_column) .join(CodingSystem) .join(CodingProperty) .join(PropertyValue)).cte('base', recursive=True) # Now, define the recursive terms rquantile = (base_case.c.quantile - 1).alias('quantile') rterm = base_case.select(base_case.c.interview_id, base_case.c.interview_type, base_case.c.property_value_id, base_case.c.interview_name, base_case.c.client_id, base_case.c.rater_id, base_case.c.session_number, rquantile, base_case.c.property).where(rquantile > 1) # The full expression is the union all of the base case with the recursive term qt = base_case.union_all(rterm) outer_query = qt.select_from(qt.c.interview_id, qt.c.property_value_id, qt.c.interview_name, qt.c.interview_type, qt.c.client_id, qt.c.rater_id, qt.c.session_number, qt.c.quantile, qt.c.property, case.alias('var_count')) # Join the recursive CTE for interview/quantiles to the actual count data full_query = ( outer_query.join( decile_counts, JOIN.LEFT_OUTER, on=((qt.c.property_value_id == decile_counts.c.property_value_id) & (qt.c.interview_id == decile_counts.c.interview_id) & (qt.c.quantile == decile_counts.c.quantile))) ) # Filter the included data as specified, for type and name predicate = qt.c.interview_type.in_(included_types) if included_interviews is not None: predicate = predicate & qt.c.interview_name.in_(included_interviews) full_query = full_query.where(predicate) # Include the required table expressions to create the full query full_query = full_query.with_cte(decile_counts, utt_deciles, decile_lens, qt) full_query = full_query.order_by(qt.c.client_id, qt.c.session_number, qt.c.rater_id, qt.c.property, qt.c.quantile) # WIth the full query constructed, can build the dataframe from the returned rows df = DataFrame.from_records(full_query.tuples().execute(), columns=['interview_id', 'property_value_id', 'interview_name', 'interview_type', 'client_id', 'rater_id', 'session_number', 'quantile', 'var_name', 'var_value']) # Compute a column for quantile x code df['decile_var_name'] = df['var_name'] + "_q" + df['quantile'].astype(str).apply(lambda x: x.zfill(2)) # Reshape the dataframe and index on client_id df = df.loc[:, ['interview_name', 'client_id', 'rater_id', 'session_number', 'decile_var_name', 'var_value']] \ .set_index(['interview_name', 'client_id', 'rater_id', 'session_number', 'decile_var_name']) \ .unstack('decile_var_name').loc[:, 'var_value'].reset_index().set_index('client_id') # To add the globals data, first get the appropriate query # Then put into dataframe # then, reshape and reindex like the count data global_query, global_cte = _global_query_( included_interviews=included_interviews, included_globals=included_globals, exclude_reliability=exclude_reliability ) global_query = global_query.with_cte(global_cte) gdf = ( DataFrame.from_records( global_query.tuples().execute(), columns=['interview_name', 'client_id', 'rater_id', 'session_number', 'var_name', 'var_value'] ) .loc[:, ['client_id', 'var_name', 'var_value']].set_index(['client_id', 'var_name']) .unstack('var_name').loc[:, 'var_value']) df = df.join(gdf).sort_index() return df def sequential(included_interviews, included_properties, client_as_numeric=True, exclude_reliability=True, quantiles=1): """ datasets.sequential(included_interviews, included_properties) -> pandas.DataFrame Builds a sequential dataset with including those interviews specified in included_interviews and the properties specified in included_properties :param included_interviews: sequence of interviews to be included in the dataset. None for all interviews :param included_properties: Sequence of str specifying display_name of CodingProperty to include in the query :param client_as_numeric: Whether client_id should be a numeric variable (default True) :param exclude_reliability: Whether to exclude (True, default) or include (False) interviews of type 'reliability' :param quantiles: Number of quantiles per interview. Default 1 :return: pandas.DataFrame """ included_types = ['general'] if exclude_reliability else ['general', 'reliability'] type_predicate = Interview.interview_type.in_(included_types) # No need to include properties twice included_properties = sorted(set(included_properties)) table_expressions = [] display_names = [] property_cases = [] cast_columns = [] property_query = UtteranceCode.select(UtteranceCode.utterance_id, PropertyValue.pv_value, CodingProperty.cp_data_type) \ .join(PropertyValue) \ .join(CodingProperty) STR_MSNG = '-999999999999999' NUM_MSNG = -999999999999999 client_column = Cast(Interview.client_id, "INT").alias('client_id') if client_as_numeric else Interview.client_id # The dataset construction needs to be atomic to avoid race conditions with UtteranceCode._meta.database.atomic() as transaction: # each utterance needs to be placed into its quantile # Frist step in that operation is to determine the length of a quantile by interview quantile_lens = Utterance.select(Utterance.interview_id, fn.MIN(Utterance.utt_start_time), fn.MAX(Utterance.utt_end_time) + 0.5, (fn.MAX(Utterance.utt_end_time) - fn.MIN( Utterance.utt_start_time) + 0.5) / quantiles) \ .group_by(Utterance.interview_id) \ .cte('decile_lens', columns=['interview_id', 'start_time', 'end_time', 'length']) # Once the length of a quantile is known, the next step is to compute a CTE # in which each utterance has its quantile number assigned utt_quantiles = Utterance.select( Utterance.interview_id, Utterance.utterance_id, Cast((Utterance.utt_start_time - quantile_lens.c.start_time) / quantile_lens.c.length + 1, "INT") ) \ .join(quantile_lens, JOIN.LEFT_OUTER, on=(Utterance.interview_id == quantile_lens.c.interview_id)) \ .cte('utt_deciles', columns=['interview_id', 'utterance_id', 'quantile']) # Need the property's data type, so that appropriate casts can be made cp_dict = {itm[0]: (itm[1], itm[2]) for itm in CodingProperty.select(CodingProperty.cp_display_name, CodingProperty.coding_property_id, CodingProperty.cp_data_type ) .where(CodingProperty.cp_display_name.in_(included_properties)) .tuples().execute()} # Need a CTE for each property whose data is to be included, so construct queries and convert to CTE # Need to conditionally create a CAST expression as well because some properties are Numeric, some are STR for cp_display_name in included_properties: prop_pk, cp_data_type = cp_dict.get(cp_display_name, (None, None)) if cp_display_name is None: logging.warning(f"CodingProperty with display name of {cp_display_name} " + "not found. This data will not be included") continue # If a numeric type specified, add it to the columns to be cast to numeric if cp_data_type == 'numeric': cast_columns.append(cp_display_name) cte = property_query.where(PropertyValue.coding_property_id == prop_pk) \ .cte(f"cte_{cp_display_name}", columns=['utterance_id', cp_display_name, 'cp_data_type']) data_field = getattr(cte.c, cp_display_name) table_expressions.append(cte) pc = Case(None, ((data_field.is_null(), STR_MSNG),), data_field) property_cases.append(pc) display_names.append(cp_display_name) # The outer query will select the Utterances of the interview. # any CTE will match on the Utterannce.utterance_id field and insert the appropriate fields with codes # outer query needs to include the fields of the CTE as well, so start there basic_query = Interview.select( Interview.interview_name, Interview.interview_type, Interview.rater_id, client_column, Interview.session_number, Utterance.utt_line, Utterance.utt_enum, Utterance.utt_role, *(Cast(pc, "FLOAT").alias(name) if name in cast_columns else pc.alias(name) for name, pc in zip(display_names, property_cases)), Utterance.utt_text, Utterance.utt_start_time, Utterance.utt_end_time, utt_quantiles.c.quantile ) \ .join(Utterance) \ .join(utt_quantiles, JOIN.LEFT_OUTER, on=(Utterance.utterance_id == utt_quantiles.c.utterance_id)) # Once the basic query is constructed, the joins need to be added into the query # so that the fields of the CTE can be queried property for name, cte in zip(display_names, table_expressions): basic_query = basic_query.join(cte, JOIN.LEFT_OUTER, on=(Utterance.utterance_id == cte.c.utterance_id)) # Add the quantile CTE to the list of CTE to be included in the query later table_expressions.extend([quantile_lens, utt_quantiles]) # Final step of query preparation is to add in the CTE themselves and narrow the results basic_query = basic_query.with_cte(*table_expressions) if included_interviews is not None: basic_query = basic_query.where((Interview.interview_name.in_(included_interviews)) & (type_predicate)) else: basic_query = basic_query.where(type_predicate) basic_query = basic_query.order_by(client_column, Interview.session_number, Utterance.utt_enum) results = basic_query.tuples().execute() columns = [itm[0] for itm in results.cursor.description] df = DataFrame(data=results, columns=columns).replace([NUM_MSNG, STR_MSNG], [NaN, '']) return df def session_level(included_interviews=None, included_properties=None, included_globals=None, client_as_numeric=True, exclude_reliability=True): """ session_level(interview_names) -> pandas.DataFrame Builds a session-level DataFrame with counts for interviews named in interview_names :param included_interviews: iterable of Interview.interview_names to be included in the Dataset :param included_properties: iterable of str specifying the display_name of any properties to be included :param included_globals: iterable of GlobalProperty.global_property_id to be included :param client_as_numeric: Whether to cast client_id as a numeric variable. Default True :param exclude_reliability: Whether to exclude (True, default) or include (False) interviews of type 'reliability' :return: pandas.DataFrame """ # Used to create a predicate to exclude reliability interviews, if specified included_types = ['general'] if exclude_reliability else ['general', 'reliability'] # may want the client_id cast as numeric client_column = Cast(Interview.client_id, "INT").alias('client_id') if client_as_numeric else Interview.client_id var_column = CodingProperty.cp_display_name.concat("_").concat(PropertyValue.pv_value).alias('property') # May want only certain interviews included or certain properties included, # so construct some predicates for where clauses, if necessary predicate = Interview.interview_type.in_(included_types) if included_interviews is not None: predicate = predicate & Interview.interview_name.in_(included_interviews) if included_properties is not None: predicate = predicate & CodingProperty.cp_display_name.in_(included_properties) # Construct the global query and associated CTE full_global_query, global_cte = _global_query_(included_interviews=included_interviews, included_globals=included_globals, client_as_numeric=client_as_numeric) # Below constructs the code frequency part of the UNION ALL # inner_query is the CTE that selects the existing count data. Is later joined with an outer inner_query = ( UtteranceCode.select(Utterance.interview_id, UtteranceCode.property_value_id, fn.COUNT(UtteranceCode.property_value_id)) .join(Utterance) .group_by(Utterance.interview_id, UtteranceCode.property_value_id)) # The inner query needs to be used as a table expression, so that it can be joined with the outer query properly cte = inner_query.cte('cte', columns=('interview_id', 'pvid', 'cnt')) # We want to enter zero when the result of the join is NULL # (Null indicates that a count for a PropertyValue was zero # because there is no related record in the UtteranceCode table having the specified PropertyValue) case = Case(None, ((cte.c.cnt.is_null(), 0),), (cte.c.cnt)) outer_query = (Interview .select(Interview.interview_name, Interview.interview_type, client_column, Interview.rater_id, Interview.session_number, var_column, case.alias('var_count')) .join(CodingSystem) .join(CodingProperty) .join(PropertyValue)) # Perform the joins on the CTE and do the union all for the final query full_query = (outer_query.join(cte, JOIN.LEFT_OUTER, on=((PropertyValue.property_value_id == cte.c.pvid) & (Interview.interview_id == cte.c.interview_id))) .with_cte(cte, global_cte)) full_query = full_query.where(predicate) full_query = (full_query.union_all(full_global_query) .order_by(client_column, Interview.session_number, Interview.rater_id, var_column)) # pull the query results into a dataframe, then reshape it # Some DBMS lack the pivot function so reshaping the DataFrame itself rather than the query is necessary df = DataFrame.from_records(data=full_query.tuples().execute(), columns=['interview_name', 'interview_type', 'client_id', 'rater_id', 'session_number', 'var_name', 'var_value']) df = df.set_index(['interview_name', 'interview_type', 'client_id', 'rater_id', 'session_number', 'var_name']) \ .unstack('var_name').loc[:, 'var_value'].reset_index().sort_index() return df def create_sequential_variable_labels(coding_system_id, find, replace): """ datasets.create_sequential_variable_labels(coding_system_id, find, replace) -> dict Creates a dictionary of variable labels suitable for building an SPSS sequential dataset :param coding_system_id: the ID of the coding system for which to create labels :param find: sequence of strings to be replaced in the variable names :param replace: sequence of strings with which to replace corresponding entries in find. May also be a callable which determines the appropriate replacement values :return: dict """ cp_query = (CodingProperty.select(CodingProperty.cp_name, CodingProperty.cp_description) .join(CodingSystem) .where(CodingSystem.coding_system_id == coding_system_id) .order_by(CodingProperty.coding_property_id)) labels = {sanitize_for_spss(tpl[0], find=find, repl=replace): tpl[1] for tpl in cp_query.tuples().execute()} return labels def create_sl_variable_labels(coding_system_id, find, replace): """ datasets.create_variable_labels(coding_system_id) -> dict creates a dictionary of variable labels suitable for building an SPSS session-level dataset :param coding_system_id: the coding system for which to create variable labels :param find: sequence of strings to be replaced in the variable names :param replace: sequence of strings with which to replace corresponding entries in find. May also be a function which determines the appropriate replacement characters :return: dict """ # In the SL dataset, each PropertyValue and each GlobalProperty become its own variable, # so need to query those tables for the right entities gp_query = (GlobalProperty.select(GlobalProperty.gp_name, GlobalProperty.gp_description) .where(GlobalProperty.coding_system == coding_system_id)) pv_query = (PropertyValue.select(CodingProperty.cp_name.concat("_").concat(PropertyValue.pv_value)) .join(CodingProperty) .join(CodingSystem) .where(CodingProperty.coding_system == coding_system_id) .union_all(gp_query) .order_by(CodingProperty.coding_property_id, PropertyValue.pv_value)) sl_labels = {sanitize_for_spss(row[0], find=find, repl=replace): row[1] for row in pv_query.tuples().execute()} return sl_labels def save_as_spss(data_frame: DataFrame, out_path: str, labels: dict = None, find=None, repl=None) -> None: """ caastools.utils.save_as_spss(data_frame: pandas.DataFrame, out_path: str) -> None saves data_frame as an SPSS dataset at out_path :param data_frame: the pandas DataFrame to save :param out_path: the path at which to save the file :param labels: a dictionary mapping column labels in the data frame to a variable label in the SPSS dataset :param find: a sequence of characters within variable names to be replaced with other values. Default None :param repl: a sequence of characters with which to replace corresponding entries in find, or a function which yields their replacements. Default None :return: None :raise ValueError: if either find/repl is None and the other is not :raise ValueError: if find and repl are sequences of unequal length """ cols = data_frame.columns # type: pandas.Index is_multi_index = isinstance(cols, MultiIndex) var_names = [] var_types = {} var_formats = {} var_labels = {} if labels is None else labels # Construct the various information that the SPSS dictionary will contain about each variable for col in cols: var_name = sanitize_for_spss(".".join(str(i) for i in col) if is_multi_index else str(col), find=find, repl=repl) var_names.append(var_name) # Need to know the data type and format of each column so that the SPSS file can be written properly # 0 is a numeric type, any positive integer is a string type where the number represents the number # of bytes the string can hold. if is_string_dtype(data_frame[col]) or is_object_dtype(data_frame[col]): lens = list(filter(lambda x: notna(x) and x is not None, set(data_frame[col].str.len()))) var_types[var_name] = int(max(lens)) * 2 if len(lens) > 0 else 255 else: var_types[var_name] = 0 var_formats[var_name] = "F10.2" if
ptypes.is_float_dtype(data_frame[col].dtype)
pandas.api.types.is_float_dtype
import ccxt import pandas as pd import datetime import os import time import numpy as np class binance_data(): now = datetime.datetime.now() timestamp_now = int(time.time()*1000) addtime = {'1m':60000, '15m':900000, '30m':1800000,'1h':3600000, '12h':43200000,'1d':86400000} def __init__(self,api_key,secret,ticker,t_frame): self.ticker = ticker self.t_frame = t_frame self.file = f'./data/binance_ETH_{self.t_frame}.csv' if api_key != '': self.binance = ccxt.binance(config={ 'apiKey': api_key, 'secret': secret, 'enableRateLimit': True, 'options': { 'defaultType': 'future' } }) else: pass def updating_coin_csv(self): ##ethsince = 1577059200000 if not os.path.isfile(self.file): if not os.path.isdir('./data'): os.mkdir('data') ethsince = 1577059200000 else: # else it exists so append without writing the header ethsince = int(
pd.read_csv(self.file)
pandas.read_csv
# Imports import streamlit as st import streamlit.components.v1 as components import pandas as pd import matplotlib.pyplot as plt import numpy as np import time import os.path # ML dependency imports from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.cluster import KMeans from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_regression from sklearn.linear_model import LinearRegression, Lasso from sklearn.model_selection import train_test_split from streamlit.type_util import Key # Page Settings st.set_page_config(page_title="California Wildfire ML", page_icon="./img/fav.png", initial_sidebar_state="collapsed") #""" #-------------------------- #---- MACHINE LEARNING ---- #-------------------------- #""" def main(): print("IN MAIN") # If data has not been cleaned, then clean it if os.path.isfile("./data/clean/fire_data_clean.csv") == False: print("CLEANING FIRE") clean_fire() if os.path.isfile("./data/clean/drought_data_clean.csv") == False: print("CLEANING DROUGHT") clean_drought() if os.path.isfile("./data/clean/precip_data_clean.csv") == False: print("CLEANING RAIN") clean_percip() # # Init sidebar with header text # st.sidebar.header("Menu") # # Add URL for github repository # st.sidebar.write("[View on GitHub](https://github.com/josephchancey/ca-wildfire-ml)") def old_fire_dataset(): unclean_fire = pd.read_csv("./data/fire_data.csv") return unclean_fire def old_precip_dataset(): unclean_precip = pd.read_csv("./data/precip_data.csv") return unclean_precip def old_drought_dataset(): unclean_drought = pd.read_csv("./data/drought_data.csv") return unclean_drought def clean_fire(): if os.path.isfile("./data/clean/fire_data_clean.csv") == False: # import fire data csv fireFile = "./data/fire_data.csv" # read the file and store in a data frame fireData = pd.read_csv(fireFile) # remove extraneous columns fireData = fireData[["incident_id","incident_name","incident_county","incident_acres_burned", "incident_dateonly_created","incident_dateonly_extinguished"]] # rename columns fireData = fireData.rename(columns={"incident_id":"ID","incident_name":"Name","incident_county":"County", "incident_acres_burned":"AcresBurned","incident_dateonly_created":"Started", "incident_dateonly_extinguished":"Extinguished"}) # check for duplicates, then drop ID column fireData.drop_duplicates(subset=["ID"]) fireData = fireData[["Name","County","AcresBurned","Started","Extinguished"]] # create a column that contains the duration # first convert date columns to datetime fireData["Started"] = pd.to_datetime(fireData["Started"]) fireData["Extinguished"] = pd.to_datetime(fireData["Extinguished"]) # subtract the dates fireData["Duration"] = fireData["Extinguished"] - fireData["Started"] # convert duration to string and remove "days" fireData["Duration"] = fireData["Duration"].astype(str) fireData["Duration"] = fireData["Duration"].str.replace("days","") # replace NaT with NaN and convert back to float fireData["Duration"] = fireData["Duration"].replace(["NaT"],"NaN") fireData["Duration"] = fireData["Duration"].astype(float) # add one day to duration to capture fires that started and were extinguished in the same day fireData["Duration"] = fireData["Duration"] + 1 # create a column for year and filter for fires during or after 2013 fireData["Year"] = fireData["Started"].dt.year fireData = fireData.loc[(fireData["Year"]>=2013),:] # create a column to hold the year and month of the start date fireData["Date"] = fireData["Started"].apply(lambda x: x.strftime('%Y-%m')) fireData = fireData[["Date", "County", "Duration", "AcresBurned"]] # drop nulls fireData = fireData.dropna() # reset the index fireData.reset_index(inplace=True,drop=True) # export as csv fireData.to_csv("./data/clean/fire_data_clean.csv",index=False) return fireData else: # This prevents the cleaning from being ran each time this function is called, checks if cleaning is done already fireData = pd.read_csv("./data/clean/fire_data_clean.csv") return fireData def clean_percip(): if os.path.isfile("./data/clean/precip_data_clean.csv") == False: # import precipitation data csv precipFile = "./data/precip_data.csv" # read the file and store in a data frame precipData = pd.read_csv(precipFile) # remove extraneous columns precipData = precipData[["Date","Location","Value"]] # rename columns precipData = precipData.rename(columns = {"Location":"County","Value":"Precip"}) # remove "county" from county column to be consistent with other datasets precipData["County"] = precipData["County"].astype(str) precipData["County"] = precipData["County"].str.replace(" County","") # convert date column precipData["Date"] = pd.to_datetime(precipData["Date"].astype(str), format='%Y%m') # create a column for year and filter for data during or after 2013 precipData["Year"] = precipData["Date"].dt.year precipData = precipData.loc[(precipData["Year"]>=2013),:] # drop the year column precipData = precipData[["Date","County","Precip"]] # edit the date column to match the format of the other datasets precipData["Date"] = precipData["Date"].apply(lambda x: x.strftime('%Y-%m')) precipData = precipData.dropna() precipData.reset_index(inplace=True,drop=True) # export as csv precipData.to_csv("./data/clean/precip_data_clean.csv",index=False) return precipData else: precipData = pd.read_csv("./data/clean/precip_data_clean.csv") return precipData def clean_drought(): if os.path.isfile("./data/clean/precip_data_clean.csv") == False: # import drought data csv droughtFile = "./data/drought_data.csv" # read the file and store in a dataframe droughtData = pd.read_csv(droughtFile) droughtData = droughtData[["ValidStart","County","None","D0","D1","D2", "D3","D4"]] # rename columns droughtData = droughtData.rename(columns={"ValidStart":"Date"}) # remove "county" from county column to be consistent with other datasets droughtData["County"] = droughtData["County"].astype(str) droughtData["County"] = droughtData["County"].str.replace(" County","") # edit the date column to match the format of the other datasets droughtData["Date"] = pd.to_datetime(droughtData["Date"]) droughtData["Date"] = droughtData["Date"].apply(lambda x: x.strftime('%Y-%m')) # drop nulls and reset the index droughtData = droughtData.dropna() droughtData.reset_index(inplace=True,drop=True) # group by date and county and average the drought levels of each week to obtain a monthly summary groupedDrought = droughtData.groupby(["Date","County"]) groupedDrought = groupedDrought.mean() # export as csv groupedDrought.to_csv("./data/clean/drought_data_clean.csv") return groupedDrought else: groupedDrought = pd.read_csv("./data/clean/drought_data_clean.csv") return groupedDrought def lin_model(): print("MODEL RAN") # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) droughtML = pd.get_dummies(droughtMerged) precipML = pd.get_dummies(precipMerged) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) reg = LinearRegression().fit(X_train_scaled, y_train) reg_score_val = reg.score(X_test_scaled, y_test) return reg_score_val def lasso_model(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) lasso = Lasso().fit(X_train_scaled, y_train) lasso_score_val = lasso.score(X_test_scaled, y_test) return lasso_score_val def random_forest(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) clf = RandomForestClassifier() clf.fit(X_train, y_train) clf.score(X_train, y_train) random_forest_val = clf.score(X_test, y_test) return random_forest_val def plot_rnd_frst(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) clf = RandomForestClassifier() clf.fit(X_train, y_train) clf.score(X_train, y_train) random_forest_val = clf.score(X_test, y_test) plt.scatter(list(X_test["Precip"]), list(y_test.values), c="Green", label="Training Data") plt.scatter(list(X_test["Precip"]), clf.predict(X_test), c="Red", label="Prediction") plt.ylabel('Acres Burned') plt.xlabel('Precipitation Level by County') plt.legend() #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Random Forest Classification on Precipitation") return plt def plot_lin_reg(): print("MODEL RAN") # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) droughtML = pd.get_dummies(droughtMerged) precipML = pd.get_dummies(precipMerged) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) reg = LinearRegression().fit(X_train_scaled, y_train) reg_score_val = reg.score(X_test_scaled, y_test) plt.cla() plt.scatter(list(X_test["Precip"]), list(y_test.values), c="Green", label="Training Data") plt.scatter(list(X_test["Precip"]), reg.predict(X_test), c="Red", label="Predictions") plt.ylabel('Acres Burned') plt.xlabel('Precipitation Level by County') plt.legend() #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Linear Regression Model on Precipitation") return plt def rfc_training_drought(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) clf = RandomForestClassifier() clf.fit(X_train, y_train) clf.score(X_train, y_train) random_forest_val = clf.score(X_test, y_test) st.set_option('deprecation.showPyplotGlobalUse', False) plt.cla() plt.scatter(list(X_test["D3"]), list(y_test.values), c="green", label="Training Data") # plt.scatter(list(X_test["Precip"]), clf.predict(X_test), c="red", label="Prediction") plt.legend() plt.ylabel('Acres Burned') plt.xlabel('Percent of County in Drought Level 3') #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Random Forest Training on Drought D3") return plt def rfc_prediction_drought(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) clf = RandomForestClassifier() clf.fit(X_train, y_train) clf.score(X_train, y_train) random_forest_val = clf.score(X_test, y_test) st.set_option('deprecation.showPyplotGlobalUse', False) plt.cla() plt.scatter(list(X_test["Precip"]), clf.predict(X_test), c="red", label="Prediction") plt.legend() plt.ylabel('Acres Burned') plt.xlabel('Percent of County in Drought Level 3') #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Random Forest Testing on Drought D3") return plt def rfc_drought_four_training(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) clf = RandomForestClassifier() clf.fit(X_train, y_train) clf.score(X_train, y_train) random_forest_val = clf.score(X_test, y_test) st.set_option('deprecation.showPyplotGlobalUse', False) plt.cla() plt.scatter(list(X_test["D4"]), list(y_test.values), c="green", label="Training Data") # plt.scatter(list(X_test["Precip"]), clf.predict(X_test), c="red", label="Prediction") plt.legend() plt.ylabel('Acres Burned') plt.xlabel('Severe Drought Level 4') #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Random Forest Training on Drought D4") return plt def rfc_drought_four_prediction(): # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) clf = RandomForestClassifier() clf.fit(X_train, y_train) clf.score(X_train, y_train) random_forest_val = clf.score(X_test, y_test) st.set_option('deprecation.showPyplotGlobalUse', False) plt.cla() plt.scatter(list(X_test["D4"]), clf.predict(X_test), c="red", label="Prediction") plt.legend() plt.ylabel('Acres Burned') plt.xlabel('Severe Drought Level 4') #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Random Forest Testing on Drought D4") return plt def lin_reg_d4(): print("MODEL RAN") # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) droughtML = pd.get_dummies(droughtMerged) precipML = pd.get_dummies(precipMerged) masterML = pd.get_dummies(masterMerge) masterML.drop(columns='None', inplace=True) df = masterML X = df y = df["AcresBurned"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) reg = LinearRegression().fit(X_train_scaled, y_train) reg_score_val = reg.score(X_test_scaled, y_test) plt.cla() st.set_option('deprecation.showPyplotGlobalUse', False) plt.scatter(list(X_test["D4"]), list(y_test.values), c="green", label="Training Data") plt.scatter(list(X_test["D4"]), reg.predict(X_test), c="red", label="Prediction") plt.legend() plt.ylabel('Acres Burned') plt.xlabel('Drought Level 4') #plt.hlines(y=0, xmin=y.min(), xmax=y.max()) plt.title("Linear Regression Severe Drought Level 4") return plt def lin_reg_d3(): print("MODEL RAN") # import fire data fireFile = "./data/clean/fire_data_clean.csv" fireData = pd.read_csv(fireFile) droughtFile = "./data/clean/drought_data_clean.csv" droughtData = pd.read_csv(droughtFile) precipFile = "./data/clean/precip_data_clean.csv" precipData = pd.read_csv(precipFile) droughtMerged = pd.merge(droughtData, fireData, on = ["Date", "County"]) precipMerged = pd.merge(precipData, fireData, on = ["Date","County"]) masterMerge = pd.merge(droughtMerged, precipData, on = ["Date","County"]) droughtML = pd.get_dummies(droughtMerged) precipML = pd.get_dummies(precipMerged) masterML =
pd.get_dummies(masterMerge)
pandas.get_dummies
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # Use seaborn for pairplot #pip install -q seaborn # visualization tools #%matplotlib inline import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns # Make numpy printouts easier to read. np.set_printoptions(precision=3, suppress=True) import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing print(tf.__version__) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] raw_dataset = pd.read_csv(url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) dataset = raw_dataset.copy() dataset.tail() dataset.isna().sum() dataset = dataset.dropna() dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'}) dataset = pd.get_dummies(dataset, prefix='', prefix_sep='') dataset.tail() train_dataset = dataset.sample(frac=0.8, random_state=0) test_dataset = dataset.drop(train_dataset.index) sns.pairplot(train_dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']], diag_kind='kde') train_dataset.describe().transpose() train_features = train_dataset.copy() test_features = test_dataset.copy() train_labels = train_features.pop('MPG') test_labels = test_features.pop('MPG') train_dataset.describe().transpose()[['mean', 'std']] normalizer = preprocessing.Normalization() normalizer.adapt(np.array(train_features)) print(normalizer.mean.numpy()) first = np.array(train_features[:1]) with np.printoptions(precision=2, suppress=True): print('First example:', first) print() print('Normalized:', normalizer(first).numpy()) horsepower = np.array(train_features['Horsepower']) horsepower_normalizer = preprocessing.Normalization(input_shape=[1,]) horsepower_normalizer.adapt(horsepower) horsepower_model = tf.keras.Sequential([ horsepower_normalizer, layers.Dense(units=1) ]) horsepower_model.summary() horsepower_model.predict(horsepower[:10]) horsepower_model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.1), loss='mean_absolute_error') #%%time history = horsepower_model.fit( train_features['Horsepower'], train_labels, epochs=100, # suppress logging verbose=0, # Calculate validation results on 20% of the training data validation_split = 0.2) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch hist.tail() def plot_loss(history): plt.plot(history.history['loss'], label='loss') plt.plot(history.history['val_loss'], label='val_loss') plt.ylim([0, 10]) plt.xlabel('Epoch') plt.ylabel('Error [MPG]') plt.legend() plt.grid(True) #plt.show() plt.draw() plt.pause(0.001) input("Open Ports --> Open Preview or Browser --> push enter to continue") plot_loss(history) test_results = {} test_results['horsepower_model'] = horsepower_model.evaluate( test_features['Horsepower'], test_labels, verbose=0) x = tf.linspace(0.0, 250, 251) y = horsepower_model.predict(x) def plot_horsepower(x, y): plt.scatter(train_features['Horsepower'], train_labels, label='Data') plt.plot(x, y, color='k', label='Predictions') plt.xlabel('Horsepower') plt.ylabel('MPG') plt.legend() #plt.show() plt.draw() plt.pause(0.001) input("Open Ports --> Open Preview or Browser --> push enter to continue") plot_horsepower(x,y) linear_model = tf.keras.Sequential([ normalizer, layers.Dense(units=1) ]) linear_model.predict(train_features[:10]) linear_model.layers[1].kernel linear_model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.1), loss='mean_absolute_error') #%%time history = linear_model.fit( train_features, train_labels, epochs=100, # suppress logging verbose=0, # Calculate validation results on 20% of the training data validation_split = 0.2) plot_loss(history) test_results['linear_model'] = linear_model.evaluate( test_features, test_labels, verbose=0) def build_and_compile_model(norm): model = keras.Sequential([ norm, layers.Dense(64, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(1) ]) model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam(0.001)) return model dnn_horsepower_model = build_and_compile_model(horsepower_normalizer) dnn_horsepower_model.summary() #%%time history = dnn_horsepower_model.fit( train_features['Horsepower'], train_labels, validation_split=0.2, verbose=0, epochs=100) plot_loss(history) x = tf.linspace(0.0, 250, 251) y = dnn_horsepower_model.predict(x) plot_horsepower(x, y) test_results['dnn_horsepower_model'] = dnn_horsepower_model.evaluate( test_features['Horsepower'], test_labels, verbose=0) dnn_model = build_and_compile_model(normalizer) dnn_model.summary() #%%time history = dnn_model.fit( train_features, train_labels, validation_split=0.2, verbose=0, epochs=100) plot_loss(history) test_results['dnn_model'] = dnn_model.evaluate(test_features, test_labels, verbose=0)
pd.DataFrame(test_results, index=['Mean absolute error [MPG]'])
pandas.DataFrame
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from datetime import time from os.path import abspath, dirname, join from unittest import TestCase import typing import re import functools import itertools import pathlib from collections import abc import pytest import numpy as np import pandas as pd import pandas.testing as tm from pandas import Timedelta, read_csv from parameterized import parameterized import pytz from pytz import UTC from toolz import concat from exchange_calendars import get_calendar from exchange_calendars.calendar_utils import ( ExchangeCalendarDispatcher, _default_calendar_aliases, _default_calendar_factories, ) from exchange_calendars.errors import ( CalendarNameCollision, InvalidCalendarName, NoSessionsError, ) from exchange_calendars.exchange_calendar import ExchangeCalendar, days_at_time from .test_utils import T class FakeCalendar(ExchangeCalendar): name = "DMY" tz = "Asia/Ulaanbaatar" open_times = ((None, time(11, 13)),) close_times = ((None, time(11, 49)),) class CalendarRegistrationTestCase(TestCase): def setup_method(self, method): self.dummy_cal_type = FakeCalendar self.dispatcher = ExchangeCalendarDispatcher({}, {}, {}) def teardown_method(self, method): self.dispatcher.clear_calendars() def test_register_calendar(self): # Build a fake calendar dummy_cal = self.dummy_cal_type() # Try to register and retrieve the calendar self.dispatcher.register_calendar("DMY", dummy_cal) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(dummy_cal, retr_cal) # Try to register again, expecting a name collision with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) # Deregister the calendar and ensure that it is removed self.dispatcher.deregister_calendar("DMY") with self.assertRaises(InvalidCalendarName): self.dispatcher.get_calendar("DMY") def test_register_calendar_type(self): self.dispatcher.register_calendar_type("DMY", self.dummy_cal_type) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(self.dummy_cal_type, type(retr_cal)) def test_both_places_are_checked(self): dummy_cal = self.dummy_cal_type() # if instance is registered, can't register type with same name self.dispatcher.register_calendar("DMY", dummy_cal) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) self.dispatcher.deregister_calendar("DMY") # if type is registered, can't register instance with same name self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) def test_force_registration(self): self.dispatcher.register_calendar("DMY", self.dummy_cal_type()) first_dummy = self.dispatcher.get_calendar("DMY") # force-register a new instance self.dispatcher.register_calendar("DMY", self.dummy_cal_type(), force=True) second_dummy = self.dispatcher.get_calendar("DMY") self.assertNotEqual(first_dummy, second_dummy) class DefaultsTestCase(TestCase): def test_default_calendars(self): dispatcher = ExchangeCalendarDispatcher( calendars={}, calendar_factories=_default_calendar_factories, aliases=_default_calendar_aliases, ) # These are ordered aliases first, so that we can deregister the # canonical factories when we're done with them, and we'll be done with # them after they've been used by all aliases and by canonical name. for name in concat([_default_calendar_aliases, _default_calendar_factories]): self.assertIsNotNone( dispatcher.get_calendar(name), "get_calendar(%r) returned None" % name ) dispatcher.deregister_calendar(name) class DaysAtTimeTestCase(TestCase): @parameterized.expand( [ # NYSE standard day ( "2016-07-19", 0, time(9, 31), pytz.timezone("America/New_York"), "2016-07-19 9:31", ), # CME standard day ( "2016-07-19", -1, time(17, 1), pytz.timezone("America/Chicago"), "2016-07-18 17:01", ), # CME day after DST start ( "2004-04-05", -1, time(17, 1), pytz.timezone("America/Chicago"), "2004-04-04 17:01", ), # ICE day after DST start ( "1990-04-02", -1, time(19, 1), pytz.timezone("America/Chicago"), "1990-04-01 19:01", ), ] ) def test_days_at_time(self, day, day_offset, time_offset, tz, expected): days = pd.DatetimeIndex([pd.Timestamp(day, tz=tz)]) result = days_at_time(days, time_offset, tz, day_offset)[0] expected = pd.Timestamp(expected, tz=tz).tz_convert(UTC) self.assertEqual(result, expected) class ExchangeCalendarTestBase(object): # Override in subclasses. answer_key_filename = None calendar_class = None # Affects test_start_bound. Should be set to earliest date for which # calendar can be instantiated, or None if no start bound. START_BOUND: pd.Timestamp | None = None # Affects test_end_bound. Should be set to latest date for which # calendar can be instantiated, or None if no end bound. END_BOUND: pd.Timestamp | None = None # Affects tests that care about the empty periods between sessions. Should # be set to False for 24/7 calendars. GAPS_BETWEEN_SESSIONS = True # Affects tests that care about early closes. Should be set to False for # calendars that don't have any early closes. HAVE_EARLY_CLOSES = True # Affects tests that care about late opens. Since most do not, defaulting # to False. HAVE_LATE_OPENS = False # Affects test_for_breaks. True if one or more calendar sessions has a # break. HAVE_BREAKS = False # Affects test_session_has_break. SESSION_WITH_BREAK = None # None if no session has a break SESSION_WITHOUT_BREAK = T("2011-06-15") # None if all sessions have breaks # Affects test_sanity_check_session_lengths. Should be set to the largest # number of hours that ever appear in a single session. MAX_SESSION_HOURS = 0 # Affects test_minute_index_to_session_labels. # Change these if the start/end dates of your test suite don't contain the # defaults. MINUTE_INDEX_TO_SESSION_LABELS_START = pd.Timestamp("2011-01-04", tz=UTC) MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp("2011-04-04", tz=UTC) # Affects tests around daylight savings. If possible, should contain two # dates that are not both in the same daylight savings regime. DAYLIGHT_SAVINGS_DATES = ["2004-04-05", "2004-11-01"] # Affects test_start_end. Change these if your calendar start/end # dates between 2010-01-03 and 2010-01-10 don't match the defaults. TEST_START_END_FIRST = pd.Timestamp("2010-01-03", tz=UTC) TEST_START_END_LAST = pd.Timestamp("2010-01-10", tz=UTC) TEST_START_END_EXPECTED_FIRST = pd.Timestamp("2010-01-04", tz=UTC) TEST_START_END_EXPECTED_LAST = pd.Timestamp("2010-01-08", tz=UTC) @staticmethod def load_answer_key(filename): """ Load a CSV from tests/resources/{filename}.csv """ fullpath = join( dirname(abspath(__file__)), "./resources", filename + ".csv", ) return read_csv( fullpath, index_col=0, # NOTE: Merely passing parse_dates=True doesn't cause pandas to set # the dtype correctly, and passing all reasonable inputs to the # dtype kwarg cause read_csv to barf. parse_dates=[0, 1, 2], date_parser=lambda x: pd.Timestamp(x, tz=UTC), ) @classmethod def setup_class(cls): cls.answers = cls.load_answer_key(cls.answer_key_filename) cls.start_date = cls.answers.index[0] cls.end_date = cls.answers.index[-1] cls.calendar = cls.calendar_class(cls.start_date, cls.end_date) cls.one_minute = pd.Timedelta(1, "T") cls.one_hour = pd.Timedelta(1, "H") cls.one_day = pd.Timedelta(1, "D") cls.today = pd.Timestamp.now(tz="UTC").floor("D") @classmethod def teardown_class(cls): cls.calendar = None cls.answers = None def test_bound_start(self): if self.START_BOUND is not None: cal = self.calendar_class(self.START_BOUND, self.today) self.assertIsInstance(cal, ExchangeCalendar) start = self.START_BOUND - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): self.calendar_class(start, self.today) else: # verify no bound imposed cal = self.calendar_class(pd.Timestamp("1902-01-01", tz="UTC"), self.today) self.assertIsInstance(cal, ExchangeCalendar) def test_bound_end(self): if self.END_BOUND is not None: cal = self.calendar_class(self.today, self.END_BOUND) self.assertIsInstance(cal, ExchangeCalendar) end = self.END_BOUND + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): self.calendar_class(self.today, end) else: # verify no bound imposed cal = self.calendar_class(self.today, pd.Timestamp("2050-01-01", tz="UTC")) self.assertIsInstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self): # make sure that no session is longer than self.MAX_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.MAX_SESSION_HOURS) def test_calculated_against_csv(self): tm.assert_index_equal(self.calendar.schedule.index, self.answers.index) def test_adhoc_holidays_specification(self): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(self.calendar.adhoc_holidays) assert dti.tz is None def test_is_open_on_minute(self): one_minute = pd.Timedelta(minutes=1) m = self.calendar.is_open_on_minute for market_minute in self.answers.market_open[1:]: market_minute_utc = market_minute # The exchange should be classified as open on its first minute self.assertTrue(m(market_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # Decrement minute by one, to minute where the market was not # open pre_market = market_minute_utc - one_minute self.assertFalse(m(pre_market, _parse=False)) for market_minute in self.answers.market_close[:-1]: close_minute_utc = market_minute # should be open on its last minute self.assertTrue(m(close_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # increment minute by one minute, should be closed post_market = close_minute_utc + one_minute self.assertFalse(m(post_market, _parse=False)) def _verify_minute( self, calendar, minute, next_open_answer, prev_open_answer, next_close_answer, prev_close_answer, ): next_open = calendar.next_open(minute, _parse=False) self.assertEqual(next_open, next_open_answer) prev_open = self.calendar.previous_open(minute, _parse=False) self.assertEqual(prev_open, prev_open_answer) next_close = self.calendar.next_close(minute, _parse=False) self.assertEqual(next_close, next_close_answer) prev_close = self.calendar.previous_close(minute, _parse=False) self.assertEqual(prev_close, prev_close_answer) def test_next_prev_open_close(self): # for each session, check: # - the minute before the open (if gaps exist between sessions) # - the first minute of the session # - the second minute of the session # - the minute before the close # - the last minute of the session # - the first minute after the close (if gaps exist between sessions) opens = self.answers.market_open.iloc[1:-2] closes = self.answers.market_close.iloc[1:-2] previous_opens = self.answers.market_open.iloc[:-1] previous_closes = self.answers.market_close.iloc[:-1] next_opens = self.answers.market_open.iloc[2:] next_closes = self.answers.market_close.iloc[2:] for ( open_minute, close_minute, previous_open, previous_close, next_open, next_close, ) in zip( opens, closes, previous_opens, previous_closes, next_opens, next_closes ): minute_before_open = open_minute - self.one_minute # minute before open if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, minute_before_open, open_minute, previous_open, close_minute, previous_close, ) # open minute self._verify_minute( self.calendar, open_minute, next_open, previous_open, close_minute, previous_close, ) # second minute of session self._verify_minute( self.calendar, open_minute + self.one_minute, next_open, open_minute, close_minute, previous_close, ) # minute before the close self._verify_minute( self.calendar, close_minute - self.one_minute, next_open, open_minute, close_minute, previous_close, ) # the close self._verify_minute( self.calendar, close_minute, next_open, open_minute, next_close, previous_close, ) # minute after the close if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, close_minute + self.one_minute, next_open, open_minute, next_close, close_minute, ) def test_next_prev_minute(self): all_minutes = self.calendar.all_minutes # test 20,000 minutes because it takes too long to do the rest. for idx, minute in enumerate(all_minutes[1:20000]): self.assertEqual( all_minutes[idx + 2], self.calendar.next_minute(minute, _parse=False) ) self.assertEqual( all_minutes[idx], self.calendar.previous_minute(minute, _parse=False) ) # test a couple of non-market minutes if self.GAPS_BETWEEN_SESSIONS: for open_minute in self.answers.market_open[1:]: hour_before_open = open_minute - self.one_hour self.assertEqual( open_minute, self.calendar.next_minute(hour_before_open, _parse=False), ) for close_minute in self.answers.market_close[1:]: hour_after_close = close_minute + self.one_hour self.assertEqual( close_minute, self.calendar.previous_minute(hour_after_close, _parse=False), ) def test_date_to_session_label(self): m = self.calendar.date_to_session_label sessions = self.answers.index[:30] # first 30 sessions # test for error if request session prior to first calendar session. date = self.answers.index[0] - self.one_day error_msg = ( "Cannot get a session label prior to the first calendar" f" session ('{self.answers.index[0]}'). Consider passing" " `direction` as 'next'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "previous", _parse=False) # direction as "previous" dates = pd.date_range(sessions[0], sessions[-1], freq="D") last_session = None for date in dates: session_label = m(date, "previous", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # direction as "next" last_session = None for date in dates.sort_values(ascending=False): session_label = m(date, "next", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # test for error if request session after last calendar session. date = self.answers.index[-1] + self.one_day error_msg = ( "Cannot get a session label later than the last calendar" f" session ('{self.answers.index[-1]}'). Consider passing" " `direction` as 'previous'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "next", _parse=False) if self.GAPS_BETWEEN_SESSIONS: not_sessions = dates[~dates.isin(sessions)][:5] for not_session in not_sessions: error_msg = ( f"`date` '{not_session}' does not represent a session. Consider" " passing a `direction`." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "none", _parse=False) # test default behaviour with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, _parse=False) # non-valid direction (can only be thrown if gaps between sessions) error_msg = ( "'not a direction' is not a valid `direction`. Valid `direction`" ' values are "next", "previous" and "none".' ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "not a direction", _parse=False) def test_minute_to_session_label(self): m = self.calendar.minute_to_session_label # minute is prior to first session's open minute_before_first_open = self.answers.iloc[0].market_open - self.one_minute session_label = self.answers.index[0] minutes_that_resolve_to_this_session = [ m(minute_before_first_open, _parse=False), m(minute_before_first_open, direction="next", _parse=False), ] unique_session_labels = set(minutes_that_resolve_to_this_session) self.assertTrue(len(unique_session_labels) == 1) self.assertIn(session_label, unique_session_labels) with self.assertRaises(ValueError): m(minute_before_first_open, direction="previous", _parse=False) with self.assertRaises(ValueError): m(minute_before_first_open, direction="none", _parse=False) # minute is between first session's open and last session's close for idx, (session_label, open_minute, close_minute, _, _) in enumerate( self.answers.iloc[1:-2].itertuples(name=None) ): hour_into_session = open_minute + self.one_hour minute_before_session = open_minute - self.one_minute minute_after_session = close_minute + self.one_minute next_session_label = self.answers.index[idx + 2] previous_session_label = self.answers.index[idx] # verify that minutes inside a session resolve correctly minutes_that_resolve_to_this_session = [ m(open_minute, _parse=False), m(open_minute, direction="next", _parse=False), m(open_minute, direction="previous", _parse=False), m(open_minute, direction="none", _parse=False), m(hour_into_session, _parse=False), m(hour_into_session, direction="next", _parse=False), m(hour_into_session, direction="previous", _parse=False), m(hour_into_session, direction="none", _parse=False), m(close_minute), m(close_minute, direction="next", _parse=False), m(close_minute, direction="previous", _parse=False), m(close_minute, direction="none", _parse=False), session_label, ] if self.GAPS_BETWEEN_SESSIONS: minutes_that_resolve_to_this_session.append( m(minute_before_session, _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_before_session, direction="next", _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_after_session, direction="previous", _parse=False) ) self.assertTrue( all( x == minutes_that_resolve_to_this_session[0] for x in minutes_that_resolve_to_this_session ) ) minutes_that_resolve_to_next_session = [ m(minute_after_session, _parse=False), m(minute_after_session, direction="next", _parse=False), next_session_label, ] self.assertTrue( all( x == minutes_that_resolve_to_next_session[0] for x in minutes_that_resolve_to_next_session ) ) self.assertEqual( m(minute_before_session, direction="previous", _parse=False), previous_session_label, ) if self.GAPS_BETWEEN_SESSIONS: # Make sure we use the cache correctly minutes_that_resolve_to_different_sessions = [ m(minute_after_session, direction="next", _parse=False), m(minute_after_session, direction="previous", _parse=False), m(minute_after_session, direction="next", _parse=False), ] self.assertEqual( minutes_that_resolve_to_different_sessions, [next_session_label, session_label, next_session_label], ) # make sure that exceptions are raised at the right time with self.assertRaises(ValueError): m(open_minute, "asdf", _parse=False) if self.GAPS_BETWEEN_SESSIONS: with self.assertRaises(ValueError): m(minute_before_session, direction="none", _parse=False) # minute is later than last session's close minute_after_last_close = self.answers.iloc[-1].market_close + self.one_minute session_label = self.answers.index[-1] minute_that_resolves_to_session_label = m( minute_after_last_close, direction="previous", _parse=False ) self.assertEqual(session_label, minute_that_resolves_to_session_label) with self.assertRaises(ValueError): m(minute_after_last_close, _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="next", _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="none", _parse=False) @parameterized.expand( [ (1, 0), (2, 0), (2, 1), ] ) def test_minute_index_to_session_labels(self, interval, offset): minutes = self.calendar.minutes_for_sessions_in_range( self.MINUTE_INDEX_TO_SESSION_LABELS_START, self.MINUTE_INDEX_TO_SESSION_LABELS_END, ) minutes = minutes[range(offset, len(minutes), interval)] np.testing.assert_array_equal( pd.DatetimeIndex(minutes.map(self.calendar.minute_to_session_label)), self.calendar.minute_index_to_session_labels(minutes), ) def test_next_prev_session(self): session_labels = self.answers.index[1:-2] max_idx = len(session_labels) - 1 # the very first session first_session_label = self.answers.index[0] with self.assertRaises(ValueError): self.calendar.previous_session_label(first_session_label, _parse=False) # all the sessions in the middle for idx, session_label in enumerate(session_labels): if idx < max_idx: self.assertEqual( self.calendar.next_session_label(session_label, _parse=False), session_labels[idx + 1], ) if idx > 0: self.assertEqual( self.calendar.previous_session_label(session_label, _parse=False), session_labels[idx - 1], ) # the very last session last_session_label = self.answers.index[-1] with self.assertRaises(ValueError): self.calendar.next_session_label(last_session_label, _parse=False) @staticmethod def _find_full_session(calendar): for session_label in calendar.schedule.index: if session_label not in calendar.early_closes: return session_label return None def test_minutes_for_period(self): # full session # find a session that isn't an early close. start from the first # session, should be quick. full_session_label = self._find_full_session(self.calendar) if full_session_label is None: raise ValueError("Cannot find a full session to test!") minutes = self.calendar.minutes_for_session(full_session_label) _open, _close = self.calendar.open_and_close_for_session(full_session_label) _break_start, _break_end = self.calendar.break_start_and_end_for_session( full_session_label ) if not pd.isnull(_break_start): constructed_minutes = np.concatenate( [ pd.date_range(start=_open, end=_break_start, freq="min"), pd.date_range(start=_break_end, end=_close, freq="min"), ] ) else: constructed_minutes = pd.date_range(start=_open, end=_close, freq="min") np.testing.assert_array_equal( minutes, constructed_minutes, ) # early close period if self.HAVE_EARLY_CLOSES: early_close_session_label = self.calendar.early_closes[0] minutes_for_early_close = self.calendar.minutes_for_session( early_close_session_label ) _open, _close = self.calendar.open_and_close_for_session( early_close_session_label ) np.testing.assert_array_equal( minutes_for_early_close, pd.date_range(start=_open, end=_close, freq="min"), ) # late open period if self.HAVE_LATE_OPENS: late_open_session_label = self.calendar.late_opens[0] minutes_for_late_open = self.calendar.minutes_for_session( late_open_session_label ) _open, _close = self.calendar.open_and_close_for_session( late_open_session_label ) np.testing.assert_array_equal( minutes_for_late_open, pd.date_range(start=_open, end=_close, freq="min"), ) def test_sessions_in_range(self): # pick two sessions session_count = len(self.calendar.schedule.index) first_idx = session_count // 3 second_idx = 2 * first_idx first_session_label = self.calendar.schedule.index[first_idx] second_session_label = self.calendar.schedule.index[second_idx] answer_key = self.calendar.schedule.index[first_idx : second_idx + 1] rtrn = self.calendar.sessions_in_range( first_session_label, second_session_label, _parse=False ) np.testing.assert_array_equal(answer_key, rtrn) def get_session_block(self): """ Get an "interesting" range of three sessions in a row. By default this tries to find and return a (full session, early close session, full session) block. """ if not self.HAVE_EARLY_CLOSES: # If we don't have any early closes, just return a "random" chunk # of three sessions. return self.calendar.all_sessions[10:13] shortened_session = self.calendar.early_closes[0] shortened_session_idx = self.calendar.schedule.index.get_loc(shortened_session) session_before = self.calendar.schedule.index[shortened_session_idx - 1] session_after = self.calendar.schedule.index[shortened_session_idx + 1] return [session_before, shortened_session, session_after] def test_minutes_in_range(self): sessions = self.get_session_block() first_open, first_close = self.calendar.open_and_close_for_session(sessions[0]) minute_before_first_open = first_open - self.one_minute middle_open, middle_close = self.calendar.open_and_close_for_session( sessions[1] ) last_open, last_close = self.calendar.open_and_close_for_session(sessions[-1]) minute_after_last_close = last_close + self.one_minute # get all the minutes between first_open and last_close minutes1 = self.calendar.minutes_in_range(first_open, last_close, _parse=False) minutes2 = self.calendar.minutes_in_range( minute_before_first_open, minute_after_last_close, _parse=False ) if self.GAPS_BETWEEN_SESSIONS: np.testing.assert_array_equal(minutes1, minutes2) else: # if no gaps, then minutes2 should have 2 extra minutes np.testing.assert_array_equal(minutes1, minutes2[1:-1]) # manually construct the minutes ( first_break_start, first_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[0]) ( middle_break_start, middle_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[1]) ( last_break_start, last_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[-1]) intervals = [ (first_open, first_break_start, first_break_end, first_close), (middle_open, middle_break_start, middle_break_end, middle_close), (last_open, last_break_start, last_break_end, last_close), ] all_minutes = [] for _open, _break_start, _break_end, _close in intervals: if pd.isnull(_break_start): all_minutes.append( pd.date_range(start=_open, end=_close, freq="min"), ) else: all_minutes.append( pd.date_range(start=_open, end=_break_start, freq="min"), ) all_minutes.append( pd.date_range(start=_break_end, end=_close, freq="min"), ) all_minutes = np.concatenate(all_minutes) np.testing.assert_array_equal(all_minutes, minutes1) def test_minutes_for_sessions_in_range(self): sessions = self.get_session_block() minutes = self.calendar.minutes_for_sessions_in_range(sessions[0], sessions[-1]) # do it manually session0_minutes = self.calendar.minutes_for_session(sessions[0]) session1_minutes = self.calendar.minutes_for_session(sessions[1]) session2_minutes = self.calendar.minutes_for_session(sessions[2]) concatenated_minutes = np.concatenate( [session0_minutes.values, session1_minutes.values, session2_minutes.values] ) np.testing.assert_array_equal(concatenated_minutes, minutes.values) def test_sessions_window(self): sessions = self.get_session_block() np.testing.assert_array_equal( self.calendar.sessions_window(sessions[0], len(sessions) - 1, _parse=False), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) np.testing.assert_array_equal( self.calendar.sessions_window( sessions[-1], -1 * (len(sessions) - 1), _parse=False ), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) def test_session_distance(self): sessions = self.get_session_block() forward_distance = self.calendar.session_distance( sessions[0], sessions[-1], _parse=False, ) self.assertEqual(forward_distance, len(sessions)) backward_distance = self.calendar.session_distance( sessions[-1], sessions[0], _parse=False, ) self.assertEqual(backward_distance, -len(sessions)) one_day_distance = self.calendar.session_distance( sessions[0], sessions[0], _parse=False, ) self.assertEqual(one_day_distance, 1) def test_open_and_close_for_session(self): for session_label, open_answer, close_answer, _, _ in self.answers.itertuples( name=None ): found_open, found_close = self.calendar.open_and_close_for_session( session_label, _parse=False ) # Test that the methods for just session open and close produce the # same values as the method for getting both. alt_open = self.calendar.session_open(session_label, _parse=False) self.assertEqual(alt_open, found_open) alt_close = self.calendar.session_close(session_label, _parse=False) self.assertEqual(alt_close, found_close) self.assertEqual(open_answer, found_open) self.assertEqual(close_answer, found_close) def test_session_opens_in_range(self): found_opens = self.calendar.session_opens_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_opens.index.freq = None tm.assert_series_equal(found_opens, self.answers["market_open"]) def test_session_closes_in_range(self): found_closes = self.calendar.session_closes_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_closes.index.freq = None tm.assert_series_equal(found_closes, self.answers["market_close"]) def test_daylight_savings(self): # 2004 daylight savings switches: # Sunday 2004-04-04 and Sunday 2004-10-31 # make sure there's no weirdness around calculating the next day's # session's open time. m = dict(self.calendar.open_times) m[pd.Timestamp.min] = m.pop(None) open_times = pd.Series(m) for date in self.DAYLIGHT_SAVINGS_DATES: next_day = pd.Timestamp(date, tz=UTC) open_date = next_day + Timedelta(days=self.calendar.open_offset) the_open = self.calendar.schedule.loc[next_day].market_open localized_open = the_open.tz_localize(UTC).tz_convert(self.calendar.tz) self.assertEqual( (open_date.year, open_date.month, open_date.day), (localized_open.year, localized_open.month, localized_open.day), ) open_ix = open_times.index.searchsorted(pd.Timestamp(date), side="right") if open_ix == len(open_times): open_ix -= 1 self.assertEqual(open_times.iloc[open_ix].hour, localized_open.hour) self.assertEqual(open_times.iloc[open_ix].minute, localized_open.minute) def test_start_end(self): """ Check ExchangeCalendar with defined start/end dates. """ calendar = self.calendar_class( start=self.TEST_START_END_FIRST, end=self.TEST_START_END_LAST, ) self.assertEqual( calendar.first_trading_session, self.TEST_START_END_EXPECTED_FIRST, ) self.assertEqual( calendar.last_trading_session, self.TEST_START_END_EXPECTED_LAST, ) def test_has_breaks(self): has_breaks = self.calendar.has_breaks() self.assertEqual(has_breaks, self.HAVE_BREAKS) def test_session_has_break(self): if self.SESSION_WITHOUT_BREAK is not None: self.assertFalse( self.calendar.session_has_break(self.SESSION_WITHOUT_BREAK) ) if self.SESSION_WITH_BREAK is not None: self.assertTrue(self.calendar.session_has_break(self.SESSION_WITH_BREAK)) # TODO remove this class when all calendars migrated. No longer requried as # `minute_index_to_session_labels` comprehensively tested under new suite. class OpenDetectionTestCase(TestCase): # This is an extra set of unit tests that were added during a rewrite of # `minute_index_to_session_labels` to ensure that the existing # calendar-generic test suite correctly covered edge cases around # non-market minutes. def test_detect_non_market_minutes(self): cal = get_calendar("NYSE") # NOTE: This test is here instead of being on the base class for all # calendars because some of our calendars are 24/7, which means there # aren't any non-market minutes to find. day0 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-03", tz=UTC), pd.Timestamp("2013-07-03", tz=UTC), ) for minute in day0: self.assertTrue(cal.is_open_on_minute(minute)) day1 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-05", tz=UTC), pd.Timestamp("2013-07-05", tz=UTC), ) for minute in day1: self.assertTrue(cal.is_open_on_minute(minute)) def NYSE_timestamp(s): return pd.Timestamp(s, tz="America/New_York").tz_convert(UTC) non_market = [ # After close. NYSE_timestamp("2013-07-03 16:01"), # Holiday. NYSE_timestamp("2013-07-04 10:00"), # Before open. NYSE_timestamp("2013-07-05 9:29"), ] for minute in non_market: self.assertFalse(cal.is_open_on_minute(minute), minute) input_ = pd.to_datetime( np.hstack([day0.values, minute.asm8, day1.values]), utc=True, ) with self.assertRaises(ValueError) as e: cal.minute_index_to_session_labels(input_) exc_str = str(e.exception) self.assertIn("First Bad Minute: {}".format(minute), exc_str) # TODO remove this class when all calendars migrated. No longer requried as # this case is handled by new test base internally. class NoDSTExchangeCalendarTestBase(ExchangeCalendarTestBase): def test_daylight_savings(self): """ Several countries in Africa / Asia do not observe DST so we need to skip over this test for those markets """ pass def get_csv(name: str) -> pd.DataFrame: """Get csv file as DataFrame for given calendar `name`.""" filename = name.replace("/", "-").lower() + ".csv" path = pathlib.Path(__file__).parent.joinpath("resources", filename) df = pd.read_csv( path, index_col=0, parse_dates=[0, 1, 2, 3, 4], infer_datetime_format=True, ) df.index = df.index.tz_localize("UTC") for col in df: df[col] = df[col].dt.tz_localize("UTC") return df class Answers: """Inputs and expected output for testing a given calendar and side. Inputs and expected outputs are provided by public instance methods and properties. These either read directly from the corresponding .csv file or are evaluated from the .csv file contents. NB Properites / methods MUST NOT make evaluations by way of repeating the code of the ExchangeCalendar method they are intended to test! Parameters ---------- calendar_name Canonical name of calendar for which require answer info. For example, 'XNYS'. side {'both', 'left', 'right', 'neither'} Side of sessions to treat as trading minutes. """ ONE_MIN = pd.Timedelta(1, "T") TWO_MIN = pd.Timedelta(2, "T") ONE_DAY = pd.Timedelta(1, "D") LEFT_SIDES = ["left", "both"] RIGHT_SIDES = ["right", "both"] def __init__( self, calendar_name: str, side: str, ): self._name = calendar_name.upper() self._side = side # --- Exposed constructor arguments --- @property def name(self) -> str: """Name of corresponding calendar.""" return self._name @property def side(self) -> str: """Side of calendar for which answers valid.""" return self._side # --- Properties read (indirectly) from csv file --- @functools.lru_cache(maxsize=4) def _answers(self) -> pd.DataFrame: return get_csv(self.name) @property def answers(self) -> pd.DataFrame: """Answers as correspoding csv.""" return self._answers() @property def sessions(self) -> pd.DatetimeIndex: """Session labels.""" return self.answers.index @property def opens(self) -> pd.Series: """Market open time for each session.""" return self.answers.market_open @property def closes(self) -> pd.Series: """Market close time for each session.""" return self.answers.market_close @property def break_starts(self) -> pd.Series: """Break start time for each session.""" return self.answers.break_start @property def break_ends(self) -> pd.Series: """Break end time for each session.""" return self.answers.break_end # --- get and helper methods --- def get_next_session(self, session: pd.Timestamp) -> pd.Timestamp: """Get session that immediately follows `session`.""" assert ( session != self.last_session ), "Cannot get session later than last answers' session." idx = self.sessions.get_loc(session) + 1 return self.sessions[idx] def session_has_break(self, session: pd.Timestamp) -> bool: """Query if `session` has a break.""" return session in self.sessions_with_break @staticmethod def get_sessions_sample(sessions: pd.DatetimeIndex): """Return sample of given `sessions`. Sample includes: All sessions within first two years of `sessions`. All sessions within last two years of `sessions`. All sessions falling: within first 3 days of any month. from 28th of any month. from 14th through 16th of any month. """ if sessions.empty: return sessions mask = ( (sessions < sessions[0] + pd.DateOffset(years=2)) | (sessions > sessions[-1] - pd.DateOffset(years=2)) | (sessions.day <= 3) | (sessions.day >= 28) | (14 <= sessions.day) & (sessions.day <= 16) ) return sessions[mask] def get_sessions_minutes( self, start: pd.Timestamp, end: pd.Timestamp | int = 1 ) -> pd.DatetimeIndex: """Get trading minutes for 1 or more consecutive sessions. Parameters ---------- start Session from which to get trading minutes. end Session through which to get trading mintues. Can be passed as: pd.Timestamp: return will include trading minutes for `end` session. int: where int represents number of consecutive sessions inclusive of `start`, for which require trading minutes. Default is 1, such that by default will return trading minutes for only `start` session. """ idx = self.sessions.get_loc(start) stop = idx + end if isinstance(end, int) else self.sessions.get_loc(end) + 1 indexer = slice(idx, stop) dtis = [] for first, last, last_am, first_pm in zip( self.first_minutes[indexer], self.last_minutes[indexer], self.last_am_minutes[indexer], self.first_pm_minutes[indexer], ): if pd.isna(last_am): dtis.append(pd.date_range(first, last, freq="T")) else: dtis.append(pd.date_range(first, last_am, freq="T")) dtis.append(pd.date_range(first_pm, last, freq="T")) return dtis[0].union_many(dtis[1:]) # --- Evaluated general calendar properties --- @functools.lru_cache(maxsize=4) def _has_a_session_with_break(self) -> pd.DatetimeIndex: return self.break_starts.notna().any() @property def has_a_session_with_break(self) -> bool: """Does any session of answers have a break.""" return self._has_a_session_with_break() @property def has_a_session_without_break(self) -> bool: """Does any session of answers not have a break.""" return self.break_starts.isna().any() # --- Evaluated properties for first and last sessions --- @property def first_session(self) -> pd.Timestamp: """First session covered by answers.""" return self.sessions[0] @property def last_session(self) -> pd.Timestamp: """Last session covered by answers.""" return self.sessions[-1] @property def sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last sessions covered by answers.""" return self.first_session, self.last_session @property def first_session_open(self) -> pd.Timestamp: """Open time of first session covered by answers.""" return self.opens[0] @property def last_session_close(self) -> pd.Timestamp: """Close time of last session covered by answers.""" return self.closes[-1] @property def first_trading_minute(self) -> pd.Timestamp: open_ = self.first_session_open return open_ if self.side in self.LEFT_SIDES else open_ + self.ONE_MIN @property def last_trading_minute(self) -> pd.Timestamp: close = self.last_session_close return close if self.side in self.RIGHT_SIDES else close - self.ONE_MIN @property def trading_minutes_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last trading minutes covered by answers.""" return self.first_trading_minute, self.last_trading_minute # --- out-of-bounds properties --- @property def minute_too_early(self) -> pd.Timestamp: """Minute earlier than first trading minute.""" return self.first_trading_minute - self.ONE_MIN @property def minute_too_late(self) -> pd.Timestamp: """Minute later than last trading minute.""" return self.last_trading_minute + self.ONE_MIN @property def session_too_early(self) -> pd.Timestamp: """Date earlier than first session.""" return self.first_session - self.ONE_DAY @property def session_too_late(self) -> pd.Timestamp: """Date later than last session.""" return self.last_session + self.ONE_DAY # --- Evaluated properties covering every session. --- @functools.lru_cache(maxsize=4) def _first_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.opens.copy() else: minutes = self.opens + self.ONE_MIN minutes.name = "first_minutes" return minutes @property def first_minutes(self) -> pd.Series: """First trading minute of each session (UTC).""" return self._first_minutes() @property def first_minutes_plus_one(self) -> pd.Series: """First trading minute of each session plus one minute.""" return self.first_minutes + self.ONE_MIN @property def first_minutes_less_one(self) -> pd.Series: """First trading minute of each session less one minute.""" return self.first_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.closes.copy() else: minutes = self.closes - self.ONE_MIN minutes.name = "last_minutes" return minutes @property def last_minutes(self) -> pd.Series: """Last trading minute of each session.""" return self._last_minutes() @property def last_minutes_plus_one(self) -> pd.Series: """Last trading minute of each session plus one minute.""" return self.last_minutes + self.ONE_MIN @property def last_minutes_less_one(self) -> pd.Series: """Last trading minute of each session less one minute.""" return self.last_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_am_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.break_starts.copy() else: minutes = self.break_starts - self.ONE_MIN minutes.name = "last_am_minutes" return minutes @property def last_am_minutes(self) -> pd.Series: """Last pre-break trading minute of each session. NaT if session does not have a break. """ return self._last_am_minutes() @property def last_am_minutes_plus_one(self) -> pd.Series: """Last pre-break trading minute of each session plus one minute.""" return self.last_am_minutes + self.ONE_MIN @property def last_am_minutes_less_one(self) -> pd.Series: """Last pre-break trading minute of each session less one minute.""" return self.last_am_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _first_pm_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.break_ends.copy() else: minutes = self.break_ends + self.ONE_MIN minutes.name = "first_pm_minutes" return minutes @property def first_pm_minutes(self) -> pd.Series: """First post-break trading minute of each session. NaT if session does not have a break. """ return self._first_pm_minutes() @property def first_pm_minutes_plus_one(self) -> pd.Series: """First post-break trading minute of each session plus one minute.""" return self.first_pm_minutes + self.ONE_MIN @property def first_pm_minutes_less_one(self) -> pd.Series: """First post-break trading minute of each session less one minute.""" return self.first_pm_minutes - self.ONE_MIN # --- Evaluated session sets and ranges that meet a specific condition --- @property def _mask_breaks(self) -> pd.Series: return self.break_starts.notna() @functools.lru_cache(maxsize=4) def _sessions_with_break(self) -> pd.DatetimeIndex: return self.sessions[self._mask_breaks] @property def sessions_with_break(self) -> pd.DatetimeIndex: return self._sessions_with_break() @functools.lru_cache(maxsize=4) def _sessions_without_break(self) -> pd.DatetimeIndex: return self.sessions[~self._mask_breaks] @property def sessions_without_break(self) -> pd.DatetimeIndex: return self._sessions_without_break() @property def sessions_without_break_run(self) -> pd.DatetimeIndex: """Longest run of consecutive sessions without a break.""" s = self.break_starts.isna() if s.empty: return pd.DatetimeIndex([], tz="UTC") trues_grouped = (~s).cumsum()[s] group_sizes = trues_grouped.value_counts() max_run_size = group_sizes.max() max_run_group_id = group_sizes[group_sizes == max_run_size].index[0] run_without_break = trues_grouped[trues_grouped == max_run_group_id].index return run_without_break @property def sessions_without_break_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest session range that does not include a session with a break. Returns None if all sessions have a break. """ sessions = self.sessions_without_break_run if sessions.empty: return None return sessions[0], sessions[-1] @property def _mask_sessions_without_gap_after(self) -> pd.Series: if self.side == "neither": # will always have gap after if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if next open is one minute after previous close closes_plus_min = self.closes + pd.Timedelta(1, "T") return self.opens.shift(-1) == closes_plus_min else: return self.opens.shift(-1) == self.closes @property def _mask_sessions_without_gap_before(self) -> pd.Series: if self.side == "neither": # will always have gap before if neither open or close are trading # minutes (assuming sessions cannot overlap) return
pd.Series(False, index=self.sessions)
pandas.Series
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_difference(self): # diff rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=5) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=3) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = rng4 rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex( ['2000-01-01 09:01', '2000-01-01 09:05'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:03'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=3) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('2006-01-01', freq='A', periods=2) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7), ]: result_union = rng.difference(other) tm.assert_index_equal(result_union, expected) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected =
pd.period_range('2009', '2019', freq='A')
pandas.period_range
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import timeit __author__ = ['<NAME>'] __email__ = ['<EMAIL>'] __package__ = 'Gemm testing' NUM_REPEATS = 10 NUMBER = 500 def gemm_nn (N, M, K): SETUP_CODE = ''' import numpy as np np.random.seed(123) N, M, K = ({N}, {M}, {K}) a = np.random.uniform(low=0., high=1., size=(N, M)) b = np.random.uniform(low=0., high=1., size=(M, K)) '''.format(**{'N' : N, 'M' : M, 'K' : K }) TEST_CODE = ''' c = np.einsum('ij, jk -> ik', a, b, optimize=True) ''' times = timeit.repeat(setup=SETUP_CODE, stmt=TEST_CODE, repeat=NUM_REPEATS, number=NUMBER) return times def gemm_nt (N, M, K): SETUP_CODE = ''' import numpy as np np.random.seed(123) N, M, K = ({N}, {M}, {K}) a = np.random.uniform(low=0., high=1., size=(N, M)) b = np.random.uniform(low=0., high=1., size=(M, K)) bt = b.T '''.format(**{'N' : N, 'M' : M, 'K' : K }) TEST_CODE = ''' c = np.einsum('ij, kj -> ik', a, bt, optimize=True) ''' times = timeit.repeat(setup=SETUP_CODE, stmt=TEST_CODE, repeat=NUM_REPEATS, number=NUMBER) return times if __name__ == '__main__': import seaborn as sns import pylab as plt import pandas as pd import numpy as np N, M, K = (100, 200, 300) times_nn = gemm_nn(N, M, K) times_nt = gemm_nt(N, M, K) ref = np.asarray(times_nn) val = np.asarray(times_nt) times_nt = np.asarray(times_nt)/ref times_nn = np.asarray(times_nn)/ref times_nn = pd.DataFrame(data=times_nn, columns=['Times']) times_nn['Gemm'] = 'GEMM_NN' times_nt =
pd.DataFrame(data=times_nt, columns=['Times'])
pandas.DataFrame
import logging import os import gc import pandas as pd from src.data_models.tdidf_model import FrequencyModel from src.evaluations.statisticalOverview import StatisticalOverview from src.globalVariable import GlobalVariable from src.kemures.tecnics.content_based import ContentBased from src.preprocessing.preferences_analytics import PreferenceAnalytics from src.preprocessing.preprocessing import Preprocessing def execute_by_scenario_list(): application_class_df = pd.DataFrame() application_results_df = pd.DataFrame() for scenario in GlobalVariable.SCENARIO_SIZE_LIST: gc.collect() scenario_class_df = pd.DataFrame() scenario_results_df = pd.DataFrame() for run in range(GlobalVariable.RUN_TIMES): os.system('cls||clear') logger.info("+ Round -> " + str(run + 1)) logger.info("+ Scenario -> " + str(scenario)) songs_base_df, users_preference_base_df = Preprocessing.load_data_test(scenario) run_class_df, run_results_df = ContentBased.run_recommenders( users_preference_base_df, FrequencyModel.mold(songs_base_df), scenario, run + 1 ) scenario_results_df = pd.concat([scenario_results_df, run_results_df]) scenario_class_df = pd.concat([scenario_class_df, run_class_df]) StatisticalOverview.result_info(scenario_results_df) StatisticalOverview.print_scenario(scenario_results_df, scenario) StatisticalOverview.save_scenario_as_csv(scenario_results_df, scenario) StatisticalOverview.scenario_graphic(scenario_results_df) StatisticalOverview.save_class_results_as_cdv(scenario_class_df, scenario) os.system('cls||clear') application_results_df =
pd.concat([scenario_results_df, application_results_df])
pandas.concat
#!/usr/bin/env python3 import sys import numpy as np import pandas as pd from functools import partial from multiprocessing import Pool from sklearn.ensemble import RandomForestClassifier def input_validator(filename, indel_class): """Validate and shuffle data Args: filename (str): path to input training data indel_class (str): "s" for 1-nt, "m" for >1-nt indels Returns df (pandas.DataFrame) """ df =
pd.read_csv(filename, sep="\t")
pandas.read_csv
import numpy as np import pandas as pd import pandas.core.computation.expressions as expressions from proto.common.v1 import common_pb2 from proto.aiengine.v1 import aiengine_pb2 from types import SimpleNamespace import math import threading from exception import RewardInvalidException from metrics import metrics from exec import somewhat_safe_exec class DataManager: def init( self, epoch_time: pd.Timestamp, period_secs: pd.Timedelta, interval_secs: pd.Timedelta, granularity_secs: pd.Timedelta, fields: "dict[str]", action_rewards: "dict[str]", actions_order: "dict[int]", laws: "list[str]", ): self.fields = fields self.laws = laws self.interval_secs = interval_secs self.granularity_secs = granularity_secs self.epoch_time = epoch_time self.period_secs = period_secs self.end_time = epoch_time + self.period_secs new_series = dict() for field_name in fields: new_series[field_name] = [fields[field_name].initializer] self.massive_table_sparse = pd.DataFrame(new_series, index={self.epoch_time}) self.massive_table_sparse = self.massive_table_sparse.resample( self.granularity_secs ).mean() self.fill_table() self.interpretations: common_pb2.IndexedInterpretations = None self.current_time: pd.Timestamp = None self.action_rewards = action_rewards self.table_lock = threading.Lock() self.action_names = [None] * len(actions_order) for action in actions_order: self.action_names[actions_order[action]] = action def get_window_span(self): return math.floor(self.interval_secs / self.granularity_secs) def overwrite_data(self, new_data): self.massive_table_sparse = new_data self.fill_table() def fill_table(self): metrics.start("resample") self.massive_table_sparse = self.massive_table_sparse.resample( self.granularity_secs ).mean() metrics.end("resample") metrics.start("ffill") self.massive_table_filled = self.massive_table_sparse.copy() for col_name in self.massive_table_sparse: fill_method = self.fields[col_name].fill_method if fill_method == aiengine_pb2.FILL_FORWARD: self.massive_table_filled[col_name] = self.massive_table_sparse[ col_name ].ffill() elif fill_method == aiengine_pb2.FILL_ZERO: self.massive_table_filled[col_name] = self.massive_table_sparse[ col_name ].fillna(0) metrics.end("ffill") metrics.start("reindex") self.massive_table_filled.index = ( self.massive_table_filled.index.drop_duplicates(keep="first") ) metrics.end("reindex") def merge_row(self, new_row): index = new_row.index[0] for column_name in list(new_row.keys()): value = new_row[column_name].array[0] self.massive_table_sparse.loc[index][column_name] = value metrics.start("ffill") self.massive_table_filled = self.massive_table_sparse.ffill() metrics.end("ffill") def merge_data(self, new_data): def combiner(existing, newer): existing_values = ( existing.values if hasattr(existing, "values") else existing ) newer_values = newer.values if hasattr(newer, "values") else newer # use newer values if they aren't nan condition =
pd.isnull(newer_values)
pandas.isnull
# # extract_hourly_intervention.py # # Authors: # <NAME> # <NAME> # # This file extracts the hourly intervation for patients import pandas as pd import os import numpy as np import os from scipy.stats import skew import directories import csv import argparse parser = argparse.ArgumentParser(description='Parser to pass number of top features') parser.add_argument('--data-set', default=0, type=int, help='Data set package (1-3)') args = parser.parse_args() if args.data_set==1: augment_interventions = False augment_triples = False augment_demographics = True data_source_dir = directories.episode_data data_target_dir = "c/" data_ts_dir = directories.processed_data_demographics elif args.data_set==2: augment_interventions = True augment_triples = False augment_demographics = True data_source_dir = directories.episode_data data_target_dir = "d/" data_ts_dir = directories.processed_data_interventions elif args.data_set==3: augment_interventions = False augment_triples = True augment_demographics = True data_source_dir = directories.episode_data data_target_dir = "e/" data_ts_dir = directories.processed_data_triples else: exit() def read_itemid_to_variable_map(fn, variable_column='LEVEL2'): var_map = pd.DataFrame.from_csv(fn, index_col=None).fillna('').astype(str) #var_map[variable_column] = var_map[variable_column].apply(lambda s: s.lower()) var_map.COUNT = var_map.COUNT.astype(int) var_map = var_map.ix[(var_map[variable_column] != '') & (var_map.COUNT>0)] var_map = var_map.ix[(var_map.STATUS == 'ready')] var_map.ITEMID = var_map.ITEMID.astype(int) var_map = var_map[[variable_column, 'ITEMID', 'MIMIC LABEL']].set_index('ITEMID') return var_map.rename_axis({variable_column: 'VARIABLE', 'MIMIC LABEL': 'MIMIC_LABEL'}, axis=1) def map_itemids_to_variables(events, var_map): return events.merge(var_map, left_on='ITEMID', right_index=True) def get_events_for_stay(events, icustayid, intime=None, outtime=None): idx = (events.ICUSTAY_ID == icustayid) if intime is not None and outtime is not None: idx = idx | ((events.CHARTTIME >= intime) & (events.CHARTTIME <= outtime)) events = events.ix[idx] del events['ICUSTAY_ID'] return events def add_hours_elpased_to_events(events, dt, remove_charttime=True): events['HOURS'] = (pd.to_datetime(events.CHARTTIME) - dt).apply(lambda s: s / np.timedelta64(1, 's')) / 60./60 if remove_charttime: del events['CHARTTIME'] return events def isfloat(value): try: float(value) return True except ValueError: return False all_functions = [(' min',min), (' max',max), (' mean',np.mean), (' std',np.std), (' skew',skew), (' not_null_len',len)] functions_map = { "all": all_functions, "len": [len], "all_but_len": all_functions[:-1] } periods_map = { "all": (0, 0, 1, 0), "first4days": (0, 0, 0, 4*24), "first8days": (0, 0, 0, 8*24), "last12hours": (1, -12, 1, 0), "first25percent": (2, 25), "first50percent": (2, 50) } patient_ids = os.listdir(data_source_dir) len(patient_ids) # Read procedure and medication connections medsConnections = pd.DataFrame.from_csv(directories.processed_csv+"MedsConnections.csv",index_col=None).fillna('').astype(str) proceduresConnection = pd.DataFrame.from_csv(directories.processed_csv+"ProceduresConnection.csv",index_col=None).fillna('').astype(str) medicationTriples = {} for x in range(0,medsConnections.shape[0]): medicationTriples.setdefault(medsConnections["Prescription"][x],[]).append(medsConnections["Lab"][x]) procedureTriples = {} for x in range(0,proceduresConnection.shape[0]): procedureTriples.setdefault(proceduresConnection["Procedure"][x],[]).append(proceduresConnection["Lab"][x]) # Imputes time series data for asthama patients , (backward, forward) #print(medicationTriples) print(procedureTriples) count_patient = 0 procedures = pd.DataFrame.from_csv(directories.mimic_iii_data+"PROCEDUREEVENTS_MV.csv",index_col=None).fillna('').astype(str) procedures.STARTTIME = pd.to_datetime(procedures.STARTTIME) procedures.ENDTIME = pd.to_datetime(procedures.ENDTIME) d_item = pd.DataFrame.from_csv(directories.mimic_iii_data+"D_ITEMS.csv",index_col=None).fillna('').astype(str) d_item = d_item[["ITEMID","LABEL"]] #procedures = procedures.merge(d_item, left_on='ITEMID', right_index=True) procedure_map = {} for x in range(0,d_item.shape[0]): procedure_map[d_item["ITEMID"][x]] = d_item["LABEL"][x] prescriptions = pd.DataFrame.from_csv(directories.mimic_iii_data+"PRESCRIPTIONS.csv",index_col=None).fillna('').astype(str) prescriptions.STARTDATE =
pd.to_datetime(prescriptions.STARTDATE)
pandas.to_datetime
import pandas as pd import numpy as np attr =
pd.read_csv('GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt', sep='\t')
pandas.read_csv
import copy import unittest import numpy as np import pandas as pd from sklearn.exceptions import NotFittedError from pymatgen.core import Structure, Lattice from matminer.featurizers.structure.bonding import ( MinimumRelativeDistances, BondFractions, BagofBonds, StructuralHeterogeneity, GlobalInstabilityIndex, ) from matminer.featurizers.structure.matrix import SineCoulombMatrix, CoulombMatrix from matminer.featurizers.structure.tests.base import StructureFeaturesTest class BondingStructureTest(StructureFeaturesTest): def test_bondfractions(self): # Test individual structures with featurize bf_md = BondFractions.from_preset("MinimumDistanceNN") bf_md.no_oxi = True bf_md.fit([self.diamond_no_oxi]) self.assertArrayEqual(bf_md.featurize(self.diamond), [1.0]) self.assertArrayEqual(bf_md.featurize(self.diamond_no_oxi), [1.0]) bf_voronoi = BondFractions.from_preset("VoronoiNN") bf_voronoi.bbv = float("nan") bf_voronoi.fit([self.nacl]) bond_fracs = bf_voronoi.featurize(self.nacl) bond_names = bf_voronoi.feature_labels() ref = { "Na+ - Na+ bond frac.": 0.25, "Cl- - Na+ bond frac.": 0.5, "Cl- - Cl- bond frac.": 0.25, } self.assertDictEqual(dict(zip(bond_names, bond_fracs)), ref) # Test to make sure dataframe behavior is as intended s_list = [self.diamond_no_oxi, self.ni3al] df =
pd.DataFrame.from_dict({"s": s_list})
pandas.DataFrame.from_dict
from oauth2client import file, client, tools from apiclient import discovery from httplib2 import Http from typing import Optional, Union, List import os from pandas.core.frame import DataFrame from pandas import Timestamp, Timedelta from functools import lru_cache CLIENT_SECRET_PATH = '~/.gsheets2pandas/client_secret.json' CLIENT_CREDENTIALS_PATH = '~/.gsheets2pandas/client_credentials.json' SCOPE = 'https://www.googleapis.com/auth/spreadsheets.readonly' FIELDS = 'sheets/data/rowData/values(effectiveValue,effectiveFormat)' PANDAS_START_TIME = Timestamp(1899, 12, 30) class GSheetReader: """ Returns an authenticated Google Sheets reader based on configured client_secret.json and client_credentials.json files :param client_secret_path: path to google API client secret. If omitted, then looks in: 1. CLIENT_SECRET_PATH environment variable 2. ~/.pandas_read_gsheet/client_secret.json :param client_credentials_path: path to google API client credentials. If the file doesn't exist, it will be created through client secret flow. This will spawn a browser to complete Google Auth. This might fail in Jupyter/JupyterLab - try running the auth_setup.py file. If omitted, then looks in: 1. CLIENT_CREDENTIALS_PATH environment variable 2. ~/.pandas_read_gsheet/client_credentials.json """ def __init__( self, client_secret_path: Optional[str] = None, client_credentials_path: Optional[str] = None, ): self.client_secret_path = ( client_secret_path if client_secret_path is not None else os.environ.get('CLIENT_SECRET_PATH', CLIENT_SECRET_PATH) ) self.client_credentials_path = ( client_credentials_path if client_credentials_path is not None else os.environ.get('CLIENT_CREDENTIALS_PATH', CLIENT_CREDENTIALS_PATH) ) def __repr__(self): return f'{self.__class__.__name__}({self.client_secret_path}, {self.client_credentials_path})' @property @lru_cache(maxsize=1) def credentials(self) -> client.OAuth2Credentials: store = file.Storage(os.path.expanduser(self.client_credentials_path)) credentials = store.get() if credentials is None or credentials.invalid: credentials = self._refresh_credentials(store) return credentials def _refresh_credentials(self, store: file.Storage) -> client.OAuth2Credentials: flow = client.flow_from_clientsecrets( os.path.expanduser(self.client_secret_path), scope=SCOPE ) return tools.run_flow(flow, store, http=Http()) @property @lru_cache(maxsize=1) def service(self) -> discovery.Resource: return discovery.build('sheets', 'v4', http=self.credentials.authorize(Http())) @staticmethod def _timestamp_from_float(f: Union[int, float]) -> Timestamp: return PANDAS_START_TIME + Timedelta(days=f) def _extract_cell_value( self, cell: dict ) -> Union[int, float, bool, str, Timestamp]: try: cell_type, cell_value = list(cell['effectiveValue'].items())[0] except KeyError: cell_value = None else: if cell_type == 'numberValue': try: dt_type = cell['effectiveFormat']['numberFormat']['type'] if dt_type == 'DATE_TIME' or dt_type == 'DATE': cell_value = self._timestamp_from_float(cell_value) except KeyError: pass return cell_value def _sheet_data_to_dataframe(self, data: list, header=True) -> DataFrame: data_list = [ [self._extract_cell_value(cell) for cell in row['values']] for row in data ] return ( DataFrame(data_list[1:], columns=data_list[0]) if header else
DataFrame(data_list)
pandas.core.frame.DataFrame
from typing import Any, List, Tuple, Union, Mapping, Optional, Sequence from types import MappingProxyType from pathlib import Path from anndata import AnnData from cellrank import logging as logg from cellrank._key import Key from cellrank.tl._enum import _DEFAULT_BACKEND, Backend_t from cellrank.ul._docs import d from cellrank.pl._utils import ( _fit_bulk, _get_backend, _callback_type, _create_models, _trends_helper, _time_range_type, _create_callbacks, _input_model_type, _return_model_type, ) from cellrank.tl._utils import save_fig, _unique_order_preserving from cellrank.ul._utils import _genesymbols, _get_n_cores, _check_collection import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib import cm @d.dedent @_genesymbols def gene_trends( adata: AnnData, model: _input_model_type, genes: Union[str, Sequence[str]], lineages: Optional[Union[str, Sequence[str]]] = None, backward: bool = False, data_key: str = "X", time_key: str = "latent_time", time_range: Optional[Union[_time_range_type, List[_time_range_type]]] = None, transpose: bool = False, callback: _callback_type = None, conf_int: Union[bool, float] = True, same_plot: bool = False, hide_cells: bool = False, perc: Optional[Union[Tuple[float, float], Sequence[Tuple[float, float]]]] = None, lineage_cmap: Optional[matplotlib.colors.ListedColormap] = None, abs_prob_cmap: matplotlib.colors.ListedColormap = cm.viridis, cell_color: Optional[str] = None, cell_alpha: float = 0.6, lineage_alpha: float = 0.2, size: float = 15, lw: float = 2, cbar: bool = True, margins: float = 0.015, sharex: Optional[Union[str, bool]] = None, sharey: Optional[Union[str, bool]] = None, gene_as_title: Optional[bool] = None, legend_loc: Optional[str] = "best", obs_legend_loc: Optional[str] = "best", ncols: int = 2, suptitle: Optional[str] = None, return_models: bool = False, n_jobs: Optional[int] = 1, backend: Backend_t = _DEFAULT_BACKEND, show_progress_bar: bool = True, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, plot_kwargs: Mapping[str, Any] = MappingProxyType({}), **kwargs: Any, ) -> Optional[_return_model_type]: """ Plot gene expression trends along lineages. Each lineage is defined via it's lineage weights which we compute using :func:`cellrank.tl.lineages`. This function accepts any model based off :class:`cellrank.ul.models.BaseModel` to fit gene expression, where we take the lineage weights into account in the loss function. Parameters ---------- %(adata)s %(model)s %(genes)s lineages Names of the lineages to plot. If `None`, plot all lineages. %(backward)s data_key Key in :attr:`anndata.AnnData.layers` or `'X'` for :attr:`anndata.AnnData.X` where the data is stored. time_key Key in :attr:`anndata.AnnData.obs` where the pseudotime is stored. %(time_range)s This can also be specified on per-lineage basis. %(gene_symbols)s transpose If ``same_plot = True``, group the trends by ``lineages`` instead of ``genes``. This forces ``hide_cells = True``. If ``same_plot = False``, show ``lineages`` in rows and ``genes`` in columns. %(model_callback)s conf_int Whether to compute and show confidence interval. If the ``model`` is :class:`cellrank.ul.models.GAMR`, it can also specify the confidence level, the default is `0.95`. same_plot Whether to plot all lineages for each gene in the same plot. hide_cells If `True`, hide all cells. perc Percentile for colors. Valid values are in interval `[0, 100]`. This can improve visualization. Can be specified individually for each lineage. lineage_cmap Categorical colormap to use when coloring in the lineages. If `None` and ``same_plot``, use the corresponding colors in :attr:`anndata.AnnData.uns`, otherwise use `'black'`. abs_prob_cmap Continuous colormap to use when visualizing the absorption probabilities for each lineage. Only used when ``same_plot = False``. cell_color Key in :attr:`anndata.AnnData.obs` or :attr:`anndata.AnnData.var_names` used for coloring the cells. cell_alpha Alpha channel for cells. lineage_alpha Alpha channel for lineage confidence intervals. size Size of the points. lw Line width of the smoothed values. cbar Whether to show colorbar. Always shown when percentiles for lineages differ. Only used when ``same_plot = False``. margins Margins around the plot. sharex Whether to share x-axis. Valid options are `'row'`, `'col'` or `'none'`. sharey Whether to share y-axis. Valid options are `'row'`, `'col'` or `'none'`. gene_as_title Whether to show gene names as titles instead on y-axis. legend_loc Location of the legend displaying lineages. Only used when `same_plot = True`. obs_legend_loc Location of the legend when ``cell_color`` corresponds to a categorical variable. ncols Number of columns of the plot when plotting multiple genes. Only used when ``same_plot = True``. suptitle Suptitle of the figure. %(return_models)s %(parallel)s %(plotting)s plot_kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.plot`. kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`. Returns ------- %(plots_or_returns_models)s """ if isinstance(genes, str): genes = [genes] genes = _unique_order_preserving(genes) _check_collection( adata, genes, "obs" if data_key == "obs" else "var_names", use_raw=kwargs.get("use_raw", False), ) lineage_key = Key.obsm.abs_probs(backward) if lineage_key not in adata.obsm: raise KeyError(f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.") if lineages is None: lineages = adata.obsm[lineage_key].names elif isinstance(lineages, str): lineages = [lineages] elif all(ln is None for ln in lineages): # no lineage, all the weights are 1 lineages = [None] cbar = False logg.debug("All lineages are `None`, setting the weights to `1`") lineages = _unique_order_preserving(lineages) if isinstance(time_range, (tuple, float, int, type(None))): time_range = [time_range] * len(lineages) elif len(time_range) != len(lineages): raise ValueError( f"Expected time ranges to be of length `{len(lineages)}`, found `{len(time_range)}`." ) kwargs["time_key"] = time_key kwargs["data_key"] = data_key kwargs["backward"] = backward kwargs["conf_int"] = conf_int # prepare doesnt take or need this models = _create_models(model, genes, lineages) all_models, models, genes, lineages = _fit_bulk( models, _create_callbacks(adata, callback, genes, lineages, **kwargs), genes, lineages, time_range, return_models=True, filter_all_failed=False, parallel_kwargs={ "show_progress_bar": show_progress_bar, "n_jobs": _get_n_cores(n_jobs, len(genes)), "backend": _get_backend(models, backend), }, **kwargs, ) lineages = sorted(lineages) tmp = adata.obsm[lineage_key][lineages].colors if lineage_cmap is None and not transpose: lineage_cmap = tmp plot_kwargs = dict(plot_kwargs) plot_kwargs["obs_legend_loc"] = obs_legend_loc if transpose: all_models =
pd.DataFrame(all_models)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn import * from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from matplotlib import pyplot import time import os showPlot=True #prepare data data_file_name = "../FinalCost.csv" data_csv = pd.read_csv(data_file_name, delimiter = ';',header=None, usecols=[3,4,5,6,7,8,9,10,11,12,16,17]) #Lire ligne par ligne data = data_csv[1:] #Renommer les colonne data.columns = ['ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer', 'MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer', 'PoidTot', 'SumRetrait'] # print (data.head(10)) # pd.options.display.float_format = '{:,.0f}'.format #supprimer les lignes dont la valeur est null ( au moins une valeur null) data = data.dropna () #Output Y avec son type y=data['SumRetrait'].astype(float) cols=['ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer', 'MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer', 'PoidTot'] x=data[cols].astype(float) print(data.head()) x_train ,x_test ,y_train ,y_test = train_test_split( x,y, test_size=0.2 , random_state=1116) print(type(y_test)) #print(y_test) print(x.shape) #Design the Regression Model regressor =LinearRegression() ##training regressor.fit(x_train,y_train) #Make prediction y_pred =regressor.predict(x_test) # print (y_pred) # print("---- test----") #print(y_test) YArray = y_test.as_matrix() testData = pd.DataFrame(YArray) preddData = pd.DataFrame(y_pred) meanError = np.abs((YArray - y_pred)/YArray)*100 meanError2 = np.abs((YArray - y_pred)) print("Mean: ", meanError.mean()," - ", meanError2.mean()) dataF =
pd.concat([testData,preddData], axis=1)
pandas.concat
"""Higher-level functions of automated time series modeling.""" import numpy as np import pandas as pd import random import copy import json import sys import time from autots.tools.shaping import ( long_to_wide, df_cleanup, subset_series, simple_train_test_split, NumericTransformer, clean_weights, ) from autots.evaluator.auto_model import ( TemplateEvalObject, NewGeneticTemplate, RandomTemplate, TemplateWizard, unpack_ensemble_models, generate_score, generate_score_per_series, model_forecast, validation_aggregation, back_forecast, remove_leading_zeros, ) from autots.models.ensemble import ( EnsembleTemplateGenerator, HorizontalTemplateGenerator, generate_mosaic_template, ) from autots.models.model_list import model_lists from autots.tools import cpu_count from autots.tools.window_functions import retrieve_closest_indices class AutoTS(object): """Automate time series modeling using a genetic algorithm. Args: forecast_length (int): number of periods over which to evaluate forecast. Can be overriden later in .predict(). frequency (str): 'infer' or a specific pandas datetime offset. Can be used to force rollup of data (ie daily input, but frequency 'M' will rollup to monthly). prediction_interval (float): 0-1, uncertainty range for upper and lower forecasts. Adjust range, but rarely matches actual containment. max_generations (int): number of genetic algorithms generations to run. More runs = longer runtime, generally better accuracy. It's called `max` because someday there will be an auto early stopping option, but for now this is just the exact number of generations to run. no_negatives (bool): if True, all negative predictions are rounded up to 0. constraint (float): when not None, use this value * data st dev above max or below min for constraining forecast values. Applied to point forecast only, not upper/lower forecasts. ensemble (str): None or list or comma-separated string containing: 'auto', 'simple', 'distance', 'horizontal', 'horizontal-min', 'horizontal-max', "mosaic", "subsample" initial_template (str): 'Random' - randomly generates starting template, 'General' uses template included in package, 'General+Random' - both of previous. Also can be overriden with self.import_template() random_seed (int): random seed allows (slightly) more consistent results. holiday_country (str): passed through to Holidays package for some models. subset (int): maximum number of series to evaluate at once. Useful to speed evaluation when many series are input. takes a new subset of columns on each validation, unless mosaic ensembling, in which case columns are the same in each validation aggfunc (str): if data is to be rolled up to a higher frequency (daily -> monthly) or duplicate timestamps are included. Default 'first' removes duplicates, for rollup try 'mean' or np.sum. Beware numeric aggregations like 'mean' will not work with non-numeric inputs. na_tolerance (float): 0 to 1. Series are dropped if they have more than this percent NaN. 0.95 here would allow series containing up to 95% NaN values. metric_weighting (dict): weights to assign to metrics, effecting how the ranking score is generated. drop_most_recent (int): option to drop n most recent data points. Useful, say, for monthly sales data where the current (unfinished) month is included. occurs after any aggregration is applied, so will be whatever is specified by frequency, will drop n frequencies drop_data_older_than_periods (int): take only the n most recent timestamps model_list (list): str alias or list of names of model objects to use transformer_list (list): list of transformers to use, or dict of transformer:probability. Note this does not apply to initial templates. can accept string aliases: "all", "fast", "superfast" transformer_max_depth (int): maximum number of sequential transformers to generate for new Random Transformers. Fewer will be faster. models_mode (str): option to adjust parameter options for newly generated models. Currently includes: 'default', 'deep' (searches more params, likely slower), and 'regressor' (forces 'User' regressor mode in regressor capable models) num_validations (int): number of cross validations to perform. 0 for just train/test on best split. Possible confusion: num_validations is the number of validations to perform *after* the first eval segment, so totally eval/validations will be this + 1. models_to_validate (int): top n models to pass through to cross validation. Or float in 0 to 1 as % of tried. 0.99 is forced to 100% validation. 1 evaluates just 1 model. If horizontal or mosaic ensemble, then additional min per_series models above the number here are added to validation. max_per_model_class (int): of the models_to_validate what is the maximum to pass from any one model class/family. validation_method (str): 'even', 'backwards', or 'seasonal n' where n is an integer of seasonal 'backwards' is better for recency and for shorter training sets 'even' splits the data into equally-sized slices best for more consistent data, a poetic but less effective strategy than others here 'seasonal n' for example 'seasonal 364' would test all data on each previous year of the forecast_length that would immediately follow the training data. 'similarity' automatically finds the data sections most similar to the most recent data that will be used for prediction 'custom' - if used, .fit() needs validation_indexes passed - a list of pd.DatetimeIndex's, tail of each is used as test min_allowed_train_percent (float): percent of forecast length to allow as min training, else raises error. 0.5 with a forecast length of 10 would mean 5 training points are mandated, for a total of 15 points. Useful in (unrecommended) cases where forecast_length > training length. remove_leading_zeroes (bool): replace leading zeroes with NaN. Useful in data where initial zeroes mean data collection hasn't started yet. prefill_na (str): value to input to fill all NaNs with. Leaving as None and allowing model interpolation is recommended. None, 0, 'mean', or 'median'. 0 may be useful in for examples sales cases where all NaN can be assumed equal to zero. introduce_na (bool): whether to force last values in one training validation to be NaN. Helps make more robust models. defaults to None, which introduces NaN in last rows of validations if any NaN in tail of training data. Will not introduce NaN to all series if subset is used. if True, will also randomly change 20% of all rows to NaN in the validations model_interrupt (bool): if False, KeyboardInterrupts quit entire program. if True, KeyboardInterrupts attempt to only quit current model. if True, recommend use in conjunction with `verbose` > 0 and `result_file` in the event of accidental complete termination. if "end_generation", as True and also ends entire generation of run. Note skipped models will not be tried again. verbose (int): setting to 0 or lower should reduce most output. Higher numbers give more output. n_jobs (int): Number of cores available to pass to parallel processing. A joblib context manager can be used instead (pass None in this case). Also 'auto'. Attributes: best_model (pd.DataFrame): DataFrame containing template for the best ranked model best_model_name (str): model name best_model_params (dict): model params best_model_transformation_params (dict): transformation parameters best_model_ensemble (int): Ensemble type int id regression_check (bool): If True, the best_model uses an input 'User' future_regressor df_wide_numeric (pd.DataFrame): dataframe containing shaped final data initial_results.model_results (object): contains a collection of result metrics score_per_series (pd.DataFrame): generated score of metrics given per input series, if horizontal ensembles Methods: fit, predict export_template, import_template, import_results results, failure_rate horizontal_to_df, mosaic_to_df plot_horizontal, plot_horizontal_transformers, plot_generation_loss, plot_backforecast """ def __init__( self, forecast_length: int = 14, frequency: str = 'infer', prediction_interval: float = 0.9, max_generations: int = 10, no_negatives: bool = False, constraint: float = None, ensemble: str = 'auto', initial_template: str = 'General+Random', random_seed: int = 2020, holiday_country: str = 'US', subset: int = None, aggfunc: str = 'first', na_tolerance: float = 1, metric_weighting: dict = { 'smape_weighting': 5, 'mae_weighting': 2, 'rmse_weighting': 2, 'made_weighting': 0, 'containment_weighting': 0, 'runtime_weighting': 0.05, 'spl_weighting': 2, 'contour_weighting': 1, }, drop_most_recent: int = 0, drop_data_older_than_periods: int = 100000, model_list: str = 'default', transformer_list: dict = "fast", transformer_max_depth: int = 6, models_mode: str = "random", num_validations: int = 2, models_to_validate: float = 0.15, max_per_model_class: int = None, validation_method: str = 'backwards', min_allowed_train_percent: float = 0.5, remove_leading_zeroes: bool = False, prefill_na: str = None, introduce_na: bool = None, model_interrupt: bool = False, verbose: int = 1, n_jobs: int = None, ): assert forecast_length > 0, "forecast_length must be greater than 0" assert transformer_max_depth > 0, "transformer_max_depth must be greater than 0" self.forecast_length = int(abs(forecast_length)) self.frequency = frequency self.aggfunc = aggfunc self.prediction_interval = prediction_interval self.no_negatives = no_negatives self.constraint = constraint self.random_seed = random_seed self.holiday_country = holiday_country if isinstance(ensemble, list): ensemble = str(",".join(ensemble)).lower() self.ensemble = str(ensemble).lower() self.subset = subset self.na_tolerance = na_tolerance self.metric_weighting = metric_weighting self.drop_most_recent = drop_most_recent self.drop_data_older_than_periods = drop_data_older_than_periods self.model_list = model_list self.transformer_list = transformer_list self.transformer_max_depth = transformer_max_depth self.num_validations = abs(int(num_validations)) self.models_to_validate = models_to_validate self.max_per_model_class = max_per_model_class self.validation_method = str(validation_method).lower() self.min_allowed_train_percent = min_allowed_train_percent self.max_generations = max_generations self.remove_leading_zeroes = remove_leading_zeroes self.prefill_na = prefill_na self.introduce_na = introduce_na self.model_interrupt = model_interrupt self.verbose = int(verbose) self.n_jobs = n_jobs self.models_mode = models_mode # just a list of horizontal types in general self.h_ens_list = ['horizontal', 'probabilistic', 'hdist', "mosaic"] if self.ensemble == 'all': self.ensemble = 'simple,distance,horizontal-max,mosaic' elif self.ensemble == 'auto': if model_list in ['fast', 'default', 'all', 'multivariate']: self.ensemble = 'simple,distance,horizontal-max' else: self.ensemble = 'simple' if self.forecast_length == 1: if metric_weighting['contour_weighting'] > 0: print("Contour metric does not work with forecast_length == 1") # check metric weights are valid metric_weighting_values = self.metric_weighting.values() if min(metric_weighting_values) < 0: raise ValueError( f"Metric weightings must be numbers >= 0. Current weightings: {self.metric_weighting}" ) elif sum(metric_weighting_values) == 0: raise ValueError( "Sum of metric_weightings is 0, one or more values must be > 0" ) if 'seasonal' in self.validation_method: val_list = [x for x in str(self.validation_method) if x.isdigit()] self.seasonal_val_periods = int(''.join(val_list)) if self.n_jobs == 'auto': self.n_jobs = cpu_count(modifier=0.75) if verbose > 0: print(f"Using {self.n_jobs} cpus for n_jobs.") elif str(self.n_jobs).isdigit(): self.n_jobs = int(self.n_jobs) if self.n_jobs < 0: core_count = cpu_count() + 1 - self.n_jobs self.n_jobs = core_count if core_count > 1 else 1 if self.n_jobs == 0: self.n_jobs = 1 # convert shortcuts of model lists to actual lists of models if model_list in list(model_lists.keys()): self.model_list = model_lists[model_list] # prepare for a common Typo elif 'Prophet' in model_list: self.model_list = ["FBProphet" if x == "Prophet" else x for x in model_list] # generate template to begin with initial_template = str(initial_template).lower() if initial_template == 'random': self.initial_template = RandomTemplate( len(self.model_list) * 12, model_list=self.model_list, transformer_list=self.transformer_list, transformer_max_depth=self.transformer_max_depth, models_mode=self.models_mode, ) elif initial_template == 'general': from autots.templates.general import general_template self.initial_template = general_template elif initial_template == 'general+random': from autots.templates.general import general_template random_template = RandomTemplate( len(self.model_list) * 5, model_list=self.model_list, transformer_list=self.transformer_list, transformer_max_depth=self.transformer_max_depth, models_mode=self.models_mode, ) self.initial_template = pd.concat( [general_template, random_template], axis=0 ).drop_duplicates() elif isinstance(initial_template, pd.DataFrame): self.initial_template = initial_template else: print("Input initial_template unrecognized. Using Random.") self.initial_template = RandomTemplate( 50, model_list=self.model_list, transformer_list=self.transformer_list, transformer_max_depth=self.transformer_max_depth, models_mode=self.models_mode, ) # remove models not in given model list self.initial_template = self.initial_template[ self.initial_template['Model'].isin(self.model_list) ] if self.initial_template.shape[0] == 0: raise ValueError( "No models in template! Adjust initial_template or model_list" ) # remove transformers not in transformer_list and max_depth # yes it is awkward, but I cannot think of a better way at this time if self.transformer_max_depth < 6 or self.transformer_list not in [ "all", "fast", ]: from autots.tools.transform import transformer_list_to_dict transformer_lst, prb = transformer_list_to_dict(self.transformer_list) for index, row in self.initial_template.iterrows(): full_params = json.loads(row['TransformationParameters']) transformations = full_params['transformations'] transformation_params = full_params['transformation_params'] # remove those not in transformer_list bad_keys = [ i for i, x in json.loads(row['TransformationParameters'])[ 'transformations' ].items() if x not in transformer_lst ] [transformations.pop(key) for key in bad_keys] [transformation_params.pop(key) for key in bad_keys] # shorten any remaining if beyond length transformations = dict( list(transformations.items())[: self.transformer_max_depth] ) transformation_params = dict( list(transformation_params.items())[: self.transformer_max_depth] ) full_params['transformations'] = transformations full_params['transformation_params'] = transformation_params self.initial_template.loc[ index, 'TransformationParameters' ] = json.dumps(full_params) self.best_model = pd.DataFrame() self.regressor_used = False # do not add 'ID' to the below unless you want to refactor things. self.template_cols = [ 'Model', 'ModelParameters', 'TransformationParameters', 'Ensemble', ] self.template_cols_id = ( self.template_cols if "ID" in self.template_cols else ['ID'] + self.template_cols ) self.initial_results = TemplateEvalObject() self.best_model_name = "" self.best_model_params = "" self.best_model_transformation_params = "" self.traceback = True if verbose > 1 else False self.future_regressor_train = None self.validation_train_indexes = [] self.validation_test_indexes = [] if verbose > 2: print('"Hello. Would you like to destroy some evil today?" - Sanderson') def __repr__(self): """Print.""" if self.best_model.empty: return "Uninitiated AutoTS object" else: try: res = ", ".join(self.initial_results.model_results[self.initial_results.model_results['ID'] == self.best_model['ID'].iloc[0]]['smape'].astype(str).tolist()) return f"Initiated AutoTS object with best model: \n{self.best_model_name}\n{self.best_model_transformation_params}\n{self.best_model_params}\nSMAPE: {res}" except Exception: return "Initiated AutoTS object" def fit( self, df, date_col: str = None, value_col: str = None, id_col: str = None, future_regressor=None, weights: dict = {}, result_file: str = None, grouping_ids=None, validation_indexes: list = None, ): """Train algorithm given data supplied. Args: df (pandas.DataFrame): Datetime Indexed dataframe of series, or dataframe of three columns as below. date_col (str): name of datetime column value_col (str): name of column containing the data of series. id_col (str): name of column identifying different series. future_regressor (numpy.Array): single external regressor matching train.index weights (dict): {'colname1': 2, 'colname2': 5} - increase importance of a series in metric evaluation. Any left blank assumed to have weight of 1. pass the alias 'mean' as a str ie `weights='mean'` to automatically use the mean value of a series as its weight available aliases: mean, median, min, max result_file (str): results saved on each new generation. Does not include validation rounds. ".csv" save model results table. ".pickle" saves full object, including ensemble information. grouping_ids (dict): currently a one-level dict containing series_id:group_id mapping. used in 0.2.x but not 0.3.x+ versions. retained for potential future use """ self.weights = weights self.date_col = date_col self.value_col = value_col self.id_col = id_col self.grouping_ids = grouping_ids # import mkl # so this actually works it seems, on all sub process models # mkl.set_num_threads_local(8) # convert class variables to local variables (makes testing easier) forecast_length = self.forecast_length self.validation_indexes = validation_indexes if self.validation_method == "custom": assert ( validation_indexes is not None ), "validation_indexes needs to be filled with 'custom' validation" assert len(validation_indexes) >= ( self.num_validations + 1 ), "validation_indexes needs to be >= num_validations + 1 with 'custom' validation" # flag if weights are given if bool(weights): weighted = True else: weighted = False self.weighted = weighted frequency = self.frequency prediction_interval = self.prediction_interval no_negatives = self.no_negatives random_seed = self.random_seed holiday_country = self.holiday_country metric_weighting = self.metric_weighting num_validations = self.num_validations verbose = self.verbose template_cols = self.template_cols # shut off warnings if running silently if verbose <= 0: import warnings warnings.filterwarnings("ignore") # clean up result_file input, if given. if result_file is not None: formats = ['.csv', '.pickle'] if not any(x in result_file for x in formats): print("result_file must be a valid str with .csv or .pickle") result_file = None # set random seeds for environment random_seed = abs(int(random_seed)) random.seed(random_seed) np.random.seed(random_seed) # convert data to wide format if date_col is None and value_col is None: df_wide = pd.DataFrame(df) assert ( type(df_wide.index) is pd.DatetimeIndex ), "df index is not pd.DatetimeIndex" else: df_wide = long_to_wide( df, date_col=self.date_col, value_col=self.value_col, id_col=self.id_col, aggfunc=self.aggfunc, ) df_wide = df_cleanup( df_wide, frequency=self.frequency, prefill_na=self.prefill_na, na_tolerance=self.na_tolerance, drop_data_older_than_periods=self.drop_data_older_than_periods, aggfunc=self.aggfunc, drop_most_recent=self.drop_most_recent, verbose=self.verbose, ) # handle categorical data if present self.categorical_transformer = NumericTransformer(verbose=self.verbose) df_wide_numeric = self.categorical_transformer.fit_transform(df_wide) # check that column names are unique: if not df_wide_numeric.columns.is_unique: # maybe should make this an actual error in the future print( "Warning: column/series names are not unique. Unique column names are highly recommended for wide data!" ) time.sleep(3) # give the message a chance to be seen # remove other ensembling types if univariate if df_wide_numeric.shape[1] == 1: if "simple" in self.ensemble: ens_piece1 = "simple" else: ens_piece1 = "" if "distance" in self.ensemble: ens_piece2 = "distance" else: ens_piece2 = "" if "mosaic" in self.ensemble: ens_piece3 = "mosaic" else: ens_piece3 = "" self.ensemble = ens_piece1 + "," + ens_piece2 + "," + ens_piece3 ensemble = self.ensemble # because horizontal cannot handle non-string columns/series_ids if any(x in ensemble for x in self.h_ens_list): df_wide_numeric.columns = [str(xc) for xc in df_wide_numeric.columns] # use "mean" to assign weight as mean if weighted: if weights == 'mean': weights = df_wide_numeric.mean(axis=0).to_dict() elif weights == 'median': weights = df_wide_numeric.median(axis=0).to_dict() elif weights == 'min': weights = df_wide_numeric.min(axis=0).to_dict() elif weights == 'max': weights = df_wide_numeric.max(axis=0).to_dict() # clean up series weighting input weights = clean_weights(weights, df_wide_numeric.columns, self.verbose) self.weights = weights # replace any zeroes that occur prior to all non-zero values if self.remove_leading_zeroes: df_wide_numeric = remove_leading_zeros(df_wide_numeric) # check if NaN in last row self._nan_tail = df_wide_numeric.tail(2).isna().sum(axis=1).sum() > 0 self.df_wide_numeric = df_wide_numeric self.startTimeStamps = df_wide_numeric.notna().idxmax() # generate similarity matching indices (so it can fail now, not after all the generations) if self.validation_method == "similarity": from autots.tools.transform import GeneralTransformer params = { "fillna": "median", # mean or median one of few consistent things "transformations": {"0": "MaxAbsScaler"}, "transformation_params": { "0": {}, }, } trans = GeneralTransformer(**params) stride_size = round(self.forecast_length / 2) stride_size = stride_size if stride_size > 0 else 1 created_idx = retrieve_closest_indices( trans.fit_transform(df_wide_numeric), num_indices=num_validations + 1, forecast_length=self.forecast_length, stride_size=stride_size, distance_metric="nan_euclidean", include_differenced=True, window_size=30, include_last=True, verbose=self.verbose, ) self.validation_indexes = [ df_wide_numeric.index[df_wide_numeric.index <= indx[-1]] for indx in created_idx ] # record if subset or not if self.subset is not None: self.subset = abs(int(self.subset)) if self.subset >= self.df_wide_numeric.shape[1]: self.subset_flag = False else: self.subset_flag = True else: self.subset_flag = False # # take a subset of the data if working with a large number of series if self.subset_flag: df_subset = subset_series( df_wide_numeric, list((weights.get(i)) for i in df_wide_numeric.columns), n=self.subset, random_state=random_seed, ) if self.verbose > 1: print(f'First subset is of: {df_subset.columns}') else: df_subset = df_wide_numeric.copy() # go to first index if self.validation_method in ['custom', "similarity"]: first_idx = self.validation_indexes[0] if max(first_idx) > max(df_subset.index): raise ValueError( "provided validation index exceeds historical data period" ) df_subset = df_subset.reindex(first_idx) # subset the weighting information as well if not weighted: current_weights = {x: 1 for x in df_subset.columns} else: current_weights = {x: weights[x] for x in df_subset.columns} # split train and test portions, and split regressor if present df_train, df_test = simple_train_test_split( df_subset, forecast_length=forecast_length, min_allowed_train_percent=self.min_allowed_train_percent, verbose=self.verbose, ) self.validation_train_indexes.append(df_train.index) self.validation_test_indexes.append(df_test.index) if future_regressor is not None: if not isinstance(future_regressor, pd.DataFrame): future_regressor = pd.DataFrame(future_regressor) if future_regressor.empty: raise ValueError("regressor empty") if not isinstance(future_regressor.index, pd.DatetimeIndex): future_regressor.index = df_subset.index # handle any non-numeric data, crudely self.regr_num_trans = NumericTransformer(verbose=self.verbose) future_regressor = self.regr_num_trans.fit_transform(future_regressor) self.future_regressor_train = future_regressor future_regressor_train = future_regressor.reindex(index=df_train.index) future_regressor_test = future_regressor.reindex(index=df_test.index) else: future_regressor_train = None future_regressor_test = None if future_regressor is not None: if future_regressor.shape[0] != df_wide_numeric.shape[0]: print( "future_regressor row count does not match length of training data" ) time.sleep(2) model_count = 0 # unpack ensemble models so sub models appear at highest level self.initial_template = unpack_ensemble_models( self.initial_template, self.template_cols, keep_ensemble=True, recursive=True, ) # remove horizontal ensembles from initial_template if 'Ensemble' in self.initial_template['Model'].tolist(): self.initial_template = self.initial_template[ self.initial_template['Ensemble'] <= 1 ] # run the initial template submitted_parameters = self.initial_template.copy() template_result = TemplateWizard( self.initial_template, df_train, df_test, weights=current_weights, model_count=model_count, ensemble=ensemble, forecast_length=forecast_length, frequency=frequency, prediction_interval=prediction_interval, no_negatives=no_negatives, constraint=self.constraint, future_regressor_train=future_regressor_train, future_regressor_forecast=future_regressor_test, holiday_country=holiday_country, startTimeStamps=self.startTimeStamps, template_cols=template_cols, random_seed=random_seed, model_interrupt=self.model_interrupt, grouping_ids=self.grouping_ids, verbose=verbose, n_jobs=self.n_jobs, max_generations=self.max_generations, traceback=self.traceback, ) model_count = template_result.model_count # capture the data from the lower level results self.initial_results = self.initial_results.concat(template_result) self.initial_results.model_results['Score'] = generate_score( self.initial_results.model_results, metric_weighting=metric_weighting, prediction_interval=prediction_interval, ) if result_file is not None: self.initial_results.save(result_file) # now run new generations, trying more models based on past successes. current_generation = 0 while current_generation < self.max_generations: current_generation += 1 if verbose > 0: print( "New Generation: {} of {}".format( current_generation, self.max_generations ) ) cutoff_multiple = 5 if current_generation < 10 else 3 top_n = len(self.model_list) * cutoff_multiple new_template = NewGeneticTemplate( self.initial_results.model_results, submitted_parameters=submitted_parameters, sort_column="Score", sort_ascending=True, max_results=top_n, max_per_model_class=5, top_n=top_n, template_cols=template_cols, transformer_list=self.transformer_list, transformer_max_depth=self.transformer_max_depth, models_mode=self.models_mode, ) submitted_parameters = pd.concat( [submitted_parameters, new_template], axis=0, ignore_index=True, sort=False, ).reset_index(drop=True) template_result = TemplateWizard( new_template, df_train, df_test, weights=current_weights, model_count=model_count, ensemble=ensemble, forecast_length=forecast_length, frequency=frequency, prediction_interval=prediction_interval, no_negatives=no_negatives, constraint=self.constraint, future_regressor_train=future_regressor_train, future_regressor_forecast=future_regressor_test, holiday_country=holiday_country, startTimeStamps=self.startTimeStamps, template_cols=template_cols, model_interrupt=self.model_interrupt, grouping_ids=self.grouping_ids, random_seed=random_seed, verbose=verbose, n_jobs=self.n_jobs, current_generation=current_generation, max_generations=self.max_generations, traceback=self.traceback, ) model_count = template_result.model_count # capture results from lower-level template run self.initial_results = self.initial_results.concat(template_result) self.initial_results.model_results['Score'] = generate_score( self.initial_results.model_results, metric_weighting=metric_weighting, prediction_interval=prediction_interval, ) if result_file is not None: self.initial_results.save(result_file) # try ensembling if ensemble not in [None, 'none']: try: self.score_per_series = generate_score_per_series( self.initial_results, self.metric_weighting, 1 ) ensemble_templates = EnsembleTemplateGenerator( self.initial_results, forecast_length=forecast_length, ensemble=ensemble, score_per_series=self.score_per_series, ) template_result = TemplateWizard( ensemble_templates, df_train, df_test, weights=current_weights, model_count=model_count, forecast_length=forecast_length, frequency=frequency, prediction_interval=prediction_interval, no_negatives=no_negatives, constraint=self.constraint, ensemble=ensemble, future_regressor_train=future_regressor_train, future_regressor_forecast=future_regressor_test, holiday_country=holiday_country, startTimeStamps=self.startTimeStamps, template_cols=template_cols, model_interrupt=self.model_interrupt, grouping_ids=self.grouping_ids, random_seed=random_seed, current_generation=(current_generation + 1), verbose=verbose, n_jobs=self.n_jobs, traceback=self.traceback, ) model_count = template_result.model_count # capture results from lower-level template run self.initial_results = self.initial_results.concat(template_result) self.initial_results.model_results['Score'] = generate_score( self.initial_results.model_results, metric_weighting=metric_weighting, prediction_interval=prediction_interval, ) if result_file is not None: self.initial_results.save(result_file) except Exception as e: print(f"Ensembling Error: {e}") # drop any duplicates in results self.initial_results.model_results = ( self.initial_results.model_results.drop_duplicates( subset=(['ID'] + self.template_cols) ) ) # validations if float if (self.models_to_validate < 1) and (self.models_to_validate > 0): val_frac = self.models_to_validate val_frac = 1 if val_frac >= 0.99 else val_frac temp_len = self.initial_results.model_results.shape[0] self.models_to_validate = val_frac * temp_len self.models_to_validate = int(np.ceil(self.models_to_validate)) if self.max_per_model_class is None: temp_len = len(self.model_list) self.max_per_model_class = (self.models_to_validate / temp_len) + 1 self.max_per_model_class = int(np.ceil(self.max_per_model_class)) # check how many validations are possible given the length of the data. if 'seasonal' in self.validation_method: temp = df_wide_numeric.shape[0] + self.forecast_length max_possible = temp / self.seasonal_val_periods else: max_possible = (df_wide_numeric.shape[0]) / forecast_length if (max_possible - np.floor(max_possible)) > self.min_allowed_train_percent: max_possible = int(max_possible) else: max_possible = int(max_possible) - 1 if max_possible < (num_validations + 1): num_validations = max_possible - 1 if num_validations < 0: num_validations = 0 print( "Too many training validations for length of data provided, decreasing num_validations to {}".format( num_validations ) ) self.num_validations = num_validations # construct validation template validation_template = self.initial_results.model_results[ self.initial_results.model_results['Exceptions'].isna() ] validation_template = validation_template[validation_template['Ensemble'] <= 1] validation_template = validation_template.drop_duplicates( subset=template_cols, keep='first' ) validation_template = validation_template.sort_values( by="Score", ascending=True, na_position='last' ) if str(self.max_per_model_class).isdigit(): validation_template = ( validation_template.sort_values( 'Score', ascending=True, na_position='last' ) .groupby('Model') .head(self.max_per_model_class) .reset_index(drop=True) ) validation_template = validation_template.sort_values( 'Score', ascending=True, na_position='last' ).head(self.models_to_validate) # add on best per_series models (which may not be in the top scoring) if any(x in ensemble for x in self.h_ens_list): model_results = self.initial_results.model_results mods = generate_score_per_series( self.initial_results, self.metric_weighting, 1 ).idxmin() per_series_val = model_results[ model_results['ID'].isin(mods.unique().tolist()) ] validation_template = pd.concat( [validation_template, per_series_val], axis=0 ) validation_template = validation_template.drop_duplicates( subset=['Model', 'ModelParameters', 'TransformationParameters'] ) validation_template = validation_template[self.template_cols] # run validations if num_validations > 0: model_count = 0 for y in range(num_validations): if verbose > 0: print("Validation Round: {}".format(str(y + 1))) # slice the validation data into current slice val_list = ['backwards', 'back', 'backward'] if self.validation_method in val_list: # gradually remove the end current_slice = df_wide_numeric.head( df_wide_numeric.shape[0] - (y + 1) * forecast_length ) elif self.validation_method == 'even': # /num_validations biases it towards the last segment validation_size = len(df_wide_numeric.index) - forecast_length validation_size = validation_size / (num_validations + 1) validation_size = int(np.floor(validation_size)) current_slice = df_wide_numeric.head( validation_size * (y + 1) + forecast_length ) elif 'seasonal' in self.validation_method: val_per = (y + 1) * self.seasonal_val_periods if self.seasonal_val_periods < forecast_length: pass else: val_per = val_per - forecast_length val_per = df_wide_numeric.shape[0] - val_per current_slice = df_wide_numeric.head(val_per) elif self.validation_method in ['custom', "similarity"]: current_slice = df_wide_numeric.reindex( self.validation_indexes[(y + 1)] ) else: raise ValueError( "Validation Method not recognized try 'even', 'backwards'" ) # subset series (if used) and take a new train/test split if self.subset_flag: # mosaic can't handle different cols in each validation if "mosaic" in self.ensemble: rand_st = random_seed else: rand_st = random_seed + y + 1 df_subset = subset_series( current_slice, list((weights.get(i)) for i in current_slice.columns), n=self.subset, random_state=rand_st, ) if self.verbose > 1: print(f'{y + 1} subset is of: {df_subset.columns}') else: df_subset = current_slice # subset weighting info if not weighted: current_weights = {x: 1 for x in df_subset.columns} else: current_weights = {x: weights[x] for x in df_subset.columns} val_df_train, val_df_test = simple_train_test_split( df_subset, forecast_length=forecast_length, min_allowed_train_percent=self.min_allowed_train_percent, verbose=self.verbose, ) self.validation_train_indexes.append(val_df_train.index) self.validation_test_indexes.append(val_df_test.index) if self.verbose >= 2: print(f'Validation index is {val_df_train.index}') # slice regressor into current validation slices if future_regressor is not None: val_future_regressor_train = future_regressor.reindex( index=val_df_train.index ) val_future_regressor_test = future_regressor.reindex( index=val_df_test.index ) else: val_future_regressor_train = None val_future_regressor_test = None # force NaN for robustness if self.introduce_na or (self.introduce_na is None and self._nan_tail): if self.introduce_na: idx = val_df_train.index # make 20% of rows NaN at random val_df_train = val_df_train.sample( frac=0.8, random_state=self.random_seed ).reindex(idx) nan_frac = val_df_train.shape[1] / num_validations val_df_train.iloc[ -2:, int(nan_frac * y) : int(nan_frac * (y + 1)) ] = np.nan # run validation template on current slice template_result = TemplateWizard( validation_template, df_train=val_df_train, df_test=val_df_test, weights=current_weights, forecast_length=forecast_length, frequency=frequency, prediction_interval=prediction_interval, no_negatives=no_negatives, constraint=self.constraint, ensemble=ensemble, future_regressor_train=val_future_regressor_train, future_regressor_forecast=val_future_regressor_test, holiday_country=holiday_country, startTimeStamps=self.startTimeStamps, template_cols=self.template_cols, model_interrupt=self.model_interrupt, grouping_ids=self.grouping_ids, random_seed=random_seed, verbose=verbose, n_jobs=self.n_jobs, validation_round=(y + 1), traceback=self.traceback, ) model_count = template_result.model_count # gather results of template run self.initial_results = self.initial_results.concat(template_result) self.initial_results.model_results['Score'] = generate_score( self.initial_results.model_results, metric_weighting=metric_weighting, prediction_interval=prediction_interval, ) self.validation_results = copy.copy(self.initial_results) # aggregate validation results self.validation_results = validation_aggregation(self.validation_results) error_msg_template = """No models available from validation. Try increasing models_to_validate, max_per_model_class or otherwise increase models available.""" # Construct horizontal style ensembles if any(x in ensemble for x in self.h_ens_list): ensemble_templates = pd.DataFrame() try: if 'horizontal' in ensemble or 'probabilistic' in ensemble: self.score_per_series = generate_score_per_series( self.initial_results, metric_weighting=metric_weighting, total_validations=(num_validations + 1), ) ens_templates = HorizontalTemplateGenerator( self.score_per_series, model_results=self.initial_results.model_results, forecast_length=forecast_length, ensemble=ensemble.replace('probabilistic', ' ').replace( 'hdist', ' ' ), subset_flag=self.subset_flag, ) ensemble_templates = pd.concat( [ensemble_templates, ens_templates], axis=0 ) except Exception as e: if self.verbose >= 0: print(f"Horizontal Ensemble Generation Error: {repr(e)}") time.sleep(5) try: if 'mosaic' in ensemble: ens_templates = generate_mosaic_template( initial_results=self.initial_results.model_results, full_mae_ids=self.initial_results.full_mae_ids, num_validations=num_validations, col_names=df_subset.columns, full_mae_errors=self.initial_results.full_mae_errors, ) ensemble_templates = pd.concat( [ensemble_templates, ens_templates], axis=0 ) except Exception as e: if self.verbose >= 0: print(f"Mosaic Ensemble Generation Error: {e}") try: # test on initial test split to make sure they work template_result = TemplateWizard( ensemble_templates, df_train, df_test, weights=current_weights, model_count=0, forecast_length=forecast_length, frequency=frequency, prediction_interval=prediction_interval, no_negatives=no_negatives, constraint=self.constraint, future_regressor_train=future_regressor_train, future_regressor_forecast=future_regressor_test, holiday_country=holiday_country, startTimeStamps=self.startTimeStamps, template_cols=template_cols, model_interrupt=self.model_interrupt, grouping_ids=self.grouping_ids, random_seed=random_seed, verbose=verbose, n_jobs=self.n_jobs, traceback=self.traceback, ) # capture results from lower-level template run template_result.model_results['TotalRuntime'].fillna( pd.Timedelta(seconds=60), inplace=True ) self.initial_results.model_results = pd.concat( [self.initial_results.model_results, template_result.model_results], axis=0, ignore_index=True, sort=False, ).reset_index(drop=True) self.initial_results.model_results['Score'] = generate_score( self.initial_results.model_results, metric_weighting=metric_weighting, prediction_interval=prediction_interval, ) if result_file is not None: self.initial_results.save(result_file) except Exception as e: if self.verbose >= 0: print(f"Ensembling Error: {e}") template_result = TemplateEvalObject() try: template_result.model_results['smape'] except KeyError: template_result.model_results['smape'] = 0 # rerun validation_results aggregation with new models added self.validation_results = copy.copy(self.initial_results) self.validation_results = validation_aggregation(self.validation_results) # use the best of these ensembles if any ran successfully try: horz_flag = template_result.model_results['Exceptions'].isna().any() except Exception: horz_flag = False if not template_result.model_results.empty and horz_flag: template_result.model_results['Score'] = generate_score( template_result.model_results, metric_weighting=metric_weighting, prediction_interval=prediction_interval, ) self.best_model = template_result.model_results.sort_values( by="Score", ascending=True, na_position='last' ).head(1)[self.template_cols_id] self.ensemble_check = 1 # else use the best of the previous else: if self.verbose >= 0: print("Horizontal ensemble failed. Using best non-horizontal.") time.sleep(3) eligible_models = self.validation_results.model_results[ self.validation_results.model_results['Runs'] >= (num_validations + 1) ] try: self.best_model = ( eligible_models.sort_values( by="Score", ascending=True, na_position='last' ) .drop_duplicates(subset=self.template_cols) .head(1)[self.template_cols_id] ) except IndexError: raise ValueError(error_msg_template) else: # choose best model eligible_models = self.validation_results.model_results[ self.validation_results.model_results['Runs'] >= (num_validations + 1) ] try: self.best_model = ( eligible_models.sort_values( by="Score", ascending=True, na_position='last' ) .drop_duplicates(subset=self.template_cols) .head(1)[template_cols] ) except IndexError: raise ValueError(error_msg_template) # give a more convenient dict option self.best_model_name = self.best_model['Model'].iloc[0] self.best_model_params = json.loads(self.best_model['ModelParameters'].iloc[0]) self.best_model_transformation_params = json.loads( self.best_model['TransformationParameters'].iloc[0] ) self.best_model_ensemble = self.best_model['Ensemble'].iloc[0] self.ensemble_check = int(self.best_model_ensemble > 0) # set flags to check if regressors or ensemble used in final model. param_dict = json.loads(self.best_model.iloc[0]['ModelParameters']) if self.ensemble_check == 1: self.used_regressor_check = self._regr_param_check(param_dict) elif self.ensemble_check == 0: self.used_regressor_check = False try: reg_param = param_dict['regression_type'] if reg_param == 'User': self.used_regressor_check = True except KeyError: pass else: print(f"Warning: ensemble_check not in [0,1]: {self.ensemble_check}") # clean up any remaining print statements sys.stdout.flush() return self def _regr_param_check(self, param_dict): """Help to search for if a regressor was used in model.""" out = False for key in param_dict['models']: cur_dict = json.loads(param_dict['models'][key]['ModelParameters']) try: reg_param = cur_dict['regression_type'] if reg_param == 'User': return True except KeyError: pass if param_dict['models'][key]['Model'] == 'Ensemble': out = self._regr_param_check(cur_dict) if out: return out return out def predict( self, forecast_length: int = "self", prediction_interval: float = 'self', future_regressor=None, hierarchy=None, just_point_forecast: bool = False, verbose: int = 'self', ): """Generate forecast data immediately following dates of index supplied to .fit(). Args: forecast_length (int): Number of periods of data to forecast ahead prediction_interval (float): interval of upper/lower forecasts. defaults to 'self' ie the interval specified in __init__() if prediction_interval is a list, then returns a dict of forecast objects. future_regressor (numpy.Array): additional regressor hierarchy: Not yet implemented just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Return: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ verbose = self.verbose if verbose == 'self' else verbose if forecast_length == 'self': forecast_length = self.forecast_length if prediction_interval == 'self': prediction_interval = self.prediction_interval # checkup regressor if future_regressor is not None: if not isinstance(future_regressor, pd.DataFrame): future_regressor = pd.DataFrame(future_regressor) if self.future_regressor_train is None: raise ValueError( "regressor passed to .predict but no regressor was passed to .fit" ) # handle any non-numeric data, crudely future_regressor = self.regr_num_trans.transform(future_regressor) # make sure training regressor fits training data index self.future_regressor_train = self.future_regressor_train.reindex( index=self.df_wide_numeric.index ) # allow multiple prediction intervals if isinstance(prediction_interval, list): forecast_objects = {} for interval in prediction_interval: df_forecast = model_forecast( model_name=self.best_model_name, model_param_dict=self.best_model_params, model_transform_dict=self.best_model_transformation_params, df_train=self.df_wide_numeric, forecast_length=forecast_length, frequency=self.frequency, prediction_interval=interval, no_negatives=self.no_negatives, constraint=self.constraint, future_regressor_train=self.future_regressor_train, future_regressor_forecast=future_regressor, holiday_country=self.holiday_country, startTimeStamps=self.startTimeStamps, grouping_ids=self.grouping_ids, random_seed=self.random_seed, verbose=verbose, n_jobs=self.n_jobs, template_cols=self.template_cols, ) # convert categorical back to numeric trans = self.categorical_transformer df_forecast.forecast = trans.inverse_transform(df_forecast.forecast) df_forecast.lower_forecast = trans.inverse_transform( df_forecast.lower_forecast ) df_forecast.upper_forecast = trans.inverse_transform( df_forecast.upper_forecast ) forecast_objects[interval] = df_forecast return forecast_objects else: df_forecast = model_forecast( model_name=self.best_model_name, model_param_dict=self.best_model_params, model_transform_dict=self.best_model_transformation_params, df_train=self.df_wide_numeric, forecast_length=forecast_length, frequency=self.frequency, prediction_interval=prediction_interval, no_negatives=self.no_negatives, constraint=self.constraint, future_regressor_train=self.future_regressor_train, future_regressor_forecast=future_regressor, holiday_country=self.holiday_country, startTimeStamps=self.startTimeStamps, grouping_ids=self.grouping_ids, random_seed=self.random_seed, verbose=verbose, n_jobs=self.n_jobs, template_cols=self.template_cols, ) # convert categorical back to numeric trans = self.categorical_transformer df_forecast.forecast = trans.inverse_transform(df_forecast.forecast) df_forecast.lower_forecast = trans.inverse_transform( df_forecast.lower_forecast ) df_forecast.upper_forecast = trans.inverse_transform( df_forecast.upper_forecast ) sys.stdout.flush() if just_point_forecast: return df_forecast.forecast else: return df_forecast def results(self, result_set: str = 'initial'): """Convenience function to return tested models table. Args: result_set (str): 'validation' or 'initial' """ if result_set == 'validation': return self.validation_results.model_results else: return self.initial_results.model_results def failure_rate(self, result_set: str = 'initial'): """Return fraction of models passing with exceptions. Args: result_set (str, optional): 'validation' or 'initial'. Defaults to 'initial'. Returns: float. """ initial_results = self.results(result_set=result_set) n = initial_results.shape[0] x = (n - initial_results['Exceptions'].isna().sum()) / n return x def export_template( self, filename=None, models: str = 'best', n: int = 5, max_per_model_class: int = None, include_results: bool = False, ): """Export top results as a reusable template. Args: filename (str): 'csv' or 'json' (in filename). `None` to return a dataframe and not write a file. models (str): 'best' or 'all' n (int): if models = 'best', how many n-best to export max_per_model_class (int): if models = 'best', the max number of each model class to include in template include_results (bool): whether to include performance metrics """ if models == 'all': export_template = self.initial_results.model_results[self.template_cols] export_template = export_template.drop_duplicates() elif models == 'best': # skip to the answer if just n==1 if n == 1 and not include_results: export_template = self.best_model else: export_template = self.validation_results.model_results export_template = export_template[ export_template['Runs'] >= (self.num_validations + 1) ] if any(x in self.ensemble for x in self.h_ens_list): temp = self.initial_results.model_results temp = temp[temp['Ensemble'] >= 2] temp = temp[temp['Exceptions'].isna()] export_template = export_template.merge( temp, how='outer', on=export_template.columns.intersection(temp.columns).to_list(), ) export_template['Score'] = generate_score( export_template, metric_weighting=self.metric_weighting, prediction_interval=self.prediction_interval, ) if str(max_per_model_class).isdigit(): export_template = ( export_template.sort_values('Score', ascending=True) .groupby('Model') .head(max_per_model_class) .reset_index() ) export_template = export_template.nsmallest(n, columns=['Score']) if not include_results: export_template = export_template[self.template_cols] export_template = pd.concat( [self.best_model, export_template] ).drop_duplicates() else: raise ValueError("`models` must be 'all' or 'best'") try: if filename is None: return export_template elif '.csv' in filename: return export_template.to_csv(filename, index=False) elif '.json' in filename: return export_template.to_json(filename, orient='columns') else: raise ValueError("file must be .csv or .json") except PermissionError: raise PermissionError( "Permission Error: directory or existing file is locked for editing." ) def import_template( self, filename: str, method: str = "add_on", enforce_model_list: bool = True ): """Import a previously exported template of model parameters. Must be done before the AutoTS object is .fit(). Args: filename (str): file location (or a pd.DataFrame already loaded) method (str): 'add_on' or 'only' - "add_on" keeps `initial_template` generated in init. "only" uses only this template. enforce_model_list (bool): if True, remove model types not in model_list """ if isinstance(filename, pd.DataFrame): import_template = filename.copy() elif '.csv' in filename: import_template = pd.read_csv(filename) elif '.json' in filename: import_template = pd.read_json(filename, orient='columns') else: raise ValueError("file must be .csv or .json") try: import_template = import_template[self.template_cols] except Exception: print( "Column names {} were not recognized as matching template columns: {}".format( str(import_template.columns), str(self.template_cols) ) ) import_template = unpack_ensemble_models( import_template, self.template_cols, keep_ensemble=True, recursive=True ) if enforce_model_list: # remove models not in given model list mod_list = self.model_list + ['Ensemble'] import_template = import_template[import_template['Model'].isin(mod_list)] if import_template.shape[0] == 0: raise ValueError( "Len 0. Model_list does not match models in template! Try enforce_model_list=False." ) if method.lower() in ['add on', 'addon', 'add_on']: self.initial_template = self.initial_template.merge( import_template, how='outer', on=self.initial_template.columns.intersection( import_template.columns ).to_list(), ) self.initial_template = self.initial_template.drop_duplicates( subset=self.template_cols ) elif method.lower() in ['only', 'user only', 'user_only', 'import_only']: self.initial_template = import_template else: return ValueError("method must be 'add_on' or 'only'") return self def import_results(self, filename): """Add results from another run on the same data. Input can be filename with .csv or .pickle. or can be a DataFrame of model results or a full TemplateEvalObject """ csv_flag = False if isinstance(filename, str): if ".csv" in filename: csv_flag = True if isinstance(filename, pd.DataFrame) or csv_flag: if ".csv" not in filename: past_results = filename.copy() else: past_results = pd.read_csv(filename) # remove those that succeeded (ie had no Exception) past_results = past_results[pd.isnull(past_results['Exceptions'])] # remove validation results past_results = past_results[(past_results['ValidationRound']) == 0] past_results['TotalRuntime'] = pd.to_timedelta(past_results['TotalRuntime']) # combine with any existing results self.initial_results.model_results = pd.concat( [past_results, self.initial_results.model_results], axis=0, ignore_index=True, sort=False, ).reset_index(drop=True) self.initial_results.model_results.drop_duplicates( subset=self.template_cols, keep='first', inplace=True ) else: if isinstance(filename, TemplateEvalObject): new_obj = filename elif '.pickle' in filename: import pickle new_obj = pickle.load(open(filename, "rb")) else: raise ValueError("import type not recognized.") self.initial_results = self.initial_results.concat(new_obj) return self def back_forecast( self, column=None, n_splits: int = 3, tail: int = None, verbose: int = 0 ): """Create forecasts for the historical training data, ie. backcast or back forecast. This actually forecasts on historical data, these are not fit model values as are often returned by other packages. As such, this will be slower, but more representative of real world model performance. There may be jumps in data between chunks. Args are same as for model_forecast except... n_splits(int): how many pieces to split data into. Pass 2 for fastest, or "auto" for best accuracy column (str): if to run on only one column, pass column name. Faster than full. tail (int): df.tail() of the dataset, back_forecast is only run on n most recent observations. Returns a standard prediction object (access .forecast, .lower_forecast, .upper_forecast) """ if self.best_model.empty: raise ValueError("No best_model. AutoTS .fit() needs to be run.") if column is not None: input_df = pd.DataFrame(self.df_wide_numeric[column]) else: input_df = self.df_wide_numeric if tail is not None: input_df = input_df.tail(tail) result = back_forecast( df=input_df, model_name=self.best_model_name, model_param_dict=self.best_model_params, model_transform_dict=self.best_model_transformation_params, future_regressor_train=self.future_regressor_train, n_splits=n_splits, forecast_length=self.forecast_length, frequency=self.frequency, prediction_interval=self.prediction_interval, no_negatives=self.no_negatives, constraint=self.constraint, holiday_country=self.holiday_country, random_seed=self.random_seed, n_jobs=self.n_jobs, verbose=verbose, ) return result def horizontal_to_df(self): """helper function for plotting.""" if self.best_model.empty: raise ValueError("No best_model. AutoTS .fit() needs to be run.") if self.best_model['Ensemble'].iloc[0] != 2: raise ValueError("Only works on horizontal ensemble type models.") ModelParameters = self.best_model_params series = ModelParameters['series'] series = pd.DataFrame.from_dict(series, orient="index").reset_index(drop=False) if series.shape[1] > 2: # for mosaic style ensembles, choose the mode model id series.set_index(series.columns[0], inplace=True) series = series.mode(axis=1)[0].to_frame().reset_index(drop=False) series.columns = ['Series', 'ID'] series = series.merge( self.results()[['ID', "Model"]].drop_duplicates(), on="ID" ) series = series.merge( self.df_wide_numeric.std().to_frame(), right_index=True, left_on="Series" ) series = series.merge( self.df_wide_numeric.mean().to_frame(), right_index=True, left_on="Series" ) series.columns = ["Series", "ID", 'Model', "Volatility", "Mean"] series['Transformers'] = series['ID'].copy() series['FillNA'] = series['ID'].copy() lookup = {} na_lookup = {} for k, v in ModelParameters['models'].items(): try: trans_params = json.loads(v.get('TransformationParameters', '{}')) lookup[k] = ",".join(trans_params.get('transformations', {}).values()) na_lookup[k] = trans_params.get('fillna', '') except Exception: lookup[k] = "None" na_lookup[k] = "None" series['Transformers'] = ( series['Transformers'].replace(lookup).replace("", "None") ) series['FillNA'] = series['FillNA'].replace(na_lookup).replace("", "None") return series def mosaic_to_df(self): """Helper function to create a readable df of models in mosaic.""" if self.best_model.empty: raise ValueError("No best_model. AutoTS .fit() needs to be run.") if self.best_model['Ensemble'].iloc[0] != 2: raise ValueError("Only works on horizontal ensemble type models.") ModelParameters = self.best_model_params if str(ModelParameters['model_name']).lower() != 'mosaic': raise ValueError("Only works on mosaic ensembles.") series = pd.DataFrame.from_dict(ModelParameters['series']) lookup = {k: v['Model'] for k, v in ModelParameters['models'].items()} return series.replace(lookup) def plot_horizontal(self, max_series: int = 20, **kwargs): """Simple plot to visualize assigned series: models. Note that for 'mosiac' ensembles, it only plots the type of the most common model_id for that series, or the first if all are mode. Args: max_series (int): max number of points to plot **kwargs passed to pandas.plot() """ series = self.horizontal_to_df() # remove some data to prevent overcrowding the graph, if necessary max_series = series.shape[0] if series.shape[0] < max_series else max_series series = series.sample(max_series, replace=False) # sklearn.preprocessing.normalizer also might work series[['log(Volatility)', 'log(Mean)']] = np.log( series[['Volatility', 'Mean']] ) # plot series.set_index(['Model', 'log(Mean)']).unstack('Model')[ 'log(Volatility)' ].plot(style='o', **kwargs) def plot_horizontal_transformers( self, method="transformers", color_list=None, **kwargs ): """Simple plot to visualize transformers used. Note this doesn't capture transformers nested in simple ensembles. Args: method (str): 'fillna' or 'transformers' - which to plot color_list = list of colors to *sample* for bar colors. Can be names or hex. **kwargs passed to pandas.plot() """ series = self.horizontal_to_df() if str(method).lower() == "fillna": transformers = series['FillNA'].value_counts() else: transformers = pd.Series( ",".join(series['Transformers']).split(",") ).value_counts() if color_list is None: color_list = colors_list colors = random.sample(color_list, transformers.shape[0]) # plot transformers.plot(kind='bar', color=colors, **kwargs) def plot_generation_loss(self, **kwargs): """Plot improvement in accuracy over generations. Note: this is only "one size fits all" accuracy and doesn't account for the benefits seen for ensembling. Args: **kwargs passed to pd.DataFrame.plot() """ for_gens = self.initial_results.model_results[ (self.initial_results.model_results['ValidationRound'] == 0) & (self.initial_results.model_results['Ensemble'] < 1) ] for_gens.groupby("Generation")['Score'].min().cummin().plot( ylabel="Lowest Score", **kwargs ) def plot_backforecast( self, series=None, n_splits: int = 3, start_date=None, **kwargs ): """Plot the historical data and fit forecast on historic. Args: series (str or list): column names of time series n_splits (int or str): "auto", number > 2, higher more accurate but slower **kwargs passed to pd.DataFrame.plot() """ if series is None: series = random.choice(self.df_wide_numeric.columns) b_df = self.back_forecast(column=series, n_splits=n_splits, verbose=0).forecast b_df = b_df.rename(columns=lambda x: str(x) + "_forecast") plot_df = pd.concat( [ pd.DataFrame(self.df_wide_numeric[series]), b_df, ], axis=1, ) if start_date is not None: plot_df = plot_df[plot_df.index >= start_date] plot_df = remove_leading_zeros(plot_df) plot_df.plot(**kwargs) colors_list = [ '#FF00FF', '#7FFFD4', '#00FFFF', '#F5DEB3', '#FF6347', '#8B008B', '#696969', '#FFC0CB', '#C71585', '#008080', '#663399', '#32CD32', '#66CDAA', '#A9A9A9', '#2F4F4F', '#FFDEAD', '#800000', '#FDF5E6', '#F5F5F5', '#F0FFF0', '#87CEEB', '#A52A2A', '#90EE90', '#7FFF00', '#E9967A', '#1E90FF', '#FFF0F5', '#ADD8E6', '#008B8B', '#FFF5EE', '#00FA9A', '#9370DB', '#4682B4', '#006400', '#AFEEEE', '#CD853F', '#9400D3', '#EE82EE', '#00008B', '#4B0082', '#0403A7', "#000000", ] class AutoTSIntervals(object): """Autots looped to test multiple prediction intervals. Experimental. Runs max_generations on first prediction interval, then validates on remainder. Most args are passed through to AutoTS(). Args: interval_models_to_validate (int): number of models to validate on each prediction interval. import_results (str): results from run on same data to load, `filename.pickle`. Currently result_file and import only save/load initial run, no validations. """ def fit( self, prediction_intervals, forecast_length, df_long, max_generations, num_validations, validation_method, models_to_validate, interval_models_to_validate, date_col, value_col, id_col=None, import_template=None, import_method='only', import_results=None, result_file=None, model_list='all', metric_weighting: dict = { 'smape_weighting': 1, 'mae_weighting': 0, 'rmse_weighting': 1, 'containment_weighting': 0, 'runtime_weighting': 0, 'spl_weighting': 10, 'contour_weighting': 0, }, weights: dict = {}, grouping_ids=None, future_regressor=None, model_interrupt: bool = False, constraint=2, no_negatives=False, remove_leading_zeroes=False, random_seed=2020, ): """Train and find best.""" overall_results = TemplateEvalObject() per_series_spl = pd.DataFrame() runs = 0 for interval in prediction_intervals: if runs != 0: max_generations = 0 models_to_validate = 0.99 print(f"Current interval is {interval}") current_model = AutoTS( forecast_length=forecast_length, prediction_interval=interval, ensemble="probabilistic-max", max_generations=max_generations, model_list=model_list, constraint=constraint, no_negatives=no_negatives, remove_leading_zeroes=remove_leading_zeroes, metric_weighting=metric_weighting, subset=None, random_seed=random_seed, num_validations=num_validations, validation_method=validation_method, model_interrupt=model_interrupt, models_to_validate=models_to_validate, ) if import_template is not None: current_model = current_model.import_template( import_template, method=import_method ) if import_results is not None: current_model = current_model.import_results(import_results) current_model = current_model.fit( df_long, future_regressor=future_regressor, weights=weights, grouping_ids=grouping_ids, result_file=result_file, date_col=date_col, value_col=value_col, id_col=id_col, ) current_model.initial_results.model_results['interval'] = interval temp = current_model.initial_results overall_results = overall_results.concat(temp) temp = current_model.initial_results.per_series_spl per_series_spl = pd.concat([per_series_spl, temp], axis=0) if runs == 0: result_file = None import_results = None import_template = current_model.export_template( None, models='best', n=interval_models_to_validate ) runs += 1 self.validation_results = validation_aggregation(overall_results) self.results = overall_results.model_results # remove models not validated temp = per_series_spl.mean(axis=1).groupby(level=0).count() temp = temp[temp >= ((runs) * (num_validations + 1))] per_series_spl = per_series_spl[per_series_spl.index.isin(temp.index)] per_series_spl = per_series_spl.groupby(level=0).mean() # from autots.models.ensemble import HorizontalTemplateGenerator ens_templates = HorizontalTemplateGenerator( per_series_spl, model_results=overall_results.model_results, forecast_length=forecast_length, ensemble='probabilistic-max', subset_flag=False, ) self.per_series_spl = per_series_spl self.ens_templates = ens_templates self.prediction_intervals = prediction_intervals self.future_regressor_train = future_regressor self.forecast_length = forecast_length self.df_wide_numeric = current_model.df_wide_numeric self.frequency = current_model.frequency self.no_negatives = current_model.no_negatives self.constraint = current_model.constraint self.holiday_country = current_model.holiday_country self.startTimeStamps = current_model.startTimeStamps self.random_seed = current_model.random_seed self.verbose = current_model.verbose self.template_cols = current_model.template_cols self.categorical_transformer = current_model.categorical_transformer return self def predict(self, future_regressor=None, verbose: int = 'self') -> dict: """Generate forecasts after training complete.""" if future_regressor is not None: future_regressor = pd.DataFrame(future_regressor) self.future_regressor_train = self.future_regressor_train.reindex( index=self.df_wide_numeric.index ) forecast_objects = {} verbose = self.verbose if verbose == 'self' else verbose urow = self.ens_templates.iloc[0] for interval in self.prediction_intervals: df_forecast = model_forecast( model_name=urow['Model'], model_param_dict=urow['ModelParameters'], model_transform_dict=urow['TransformationParameters'], df_train=self.df_wide_numeric, forecast_length=self.forecast_length, frequency=self.frequency, prediction_interval=interval, no_negatives=self.no_negatives, constraint=self.constraint, future_regressor_train=self.future_regressor_train, future_regressor_forecast=future_regressor, holiday_country=self.holiday_country, startTimeStamps=self.startTimeStamps, grouping_ids=self.grouping_ids, random_seed=self.random_seed, verbose=verbose, template_cols=self.template_cols, ) trans = self.categorical_transformer df_forecast.forecast = trans.inverse_transform(df_forecast.forecast) df_forecast.lower_forecast = trans.inverse_transform( df_forecast.lower_forecast ) df_forecast.upper_forecast = trans.inverse_transform( df_forecast.upper_forecast ) forecast_objects[interval] = df_forecast return forecast_objects def fake_regressor( df, forecast_length: int = 14, date_col: str = None, value_col: str = None, id_col: str = None, frequency: str = 'infer', aggfunc: str = 'first', drop_most_recent: int = 0, na_tolerance: float = 0.95, drop_data_older_than_periods: int = 100000, dimensions: int = 1, verbose: int = 0, ): """Create a fake regressor of random numbers for testing purposes.""" if date_col is None and value_col is None: df_wide = pd.DataFrame(df) assert ( type(df_wide.index) is pd.DatetimeIndex ), "df index is not pd.DatetimeIndex" else: df_wide = long_to_wide( df, date_col=date_col, value_col=value_col, id_col=id_col, aggfunc=aggfunc, ) df_wide = df_cleanup( df_wide, frequency=frequency, na_tolerance=na_tolerance, drop_data_older_than_periods=drop_data_older_than_periods, aggfunc=aggfunc, drop_most_recent=drop_most_recent, verbose=verbose, ) if frequency == 'infer': frequency = pd.infer_freq(df_wide.index, warn=True) forecast_index = pd.date_range( freq=frequency, start=df_wide.index[-1], periods=forecast_length + 1 ) forecast_index = forecast_index[1:] if dimensions <= 1: future_regressor_train = pd.Series( np.random.randint(0, 100, size=len(df_wide.index)), index=df_wide.index ) future_regressor_forecast = pd.Series( np.random.randint(0, 100, size=(forecast_length)), index=forecast_index ) else: future_regressor_train = pd.DataFrame( np.random.randint(0, 100, size=(len(df_wide.index), dimensions)), index=df_wide.index, ) future_regressor_forecast = pd.DataFrame( np.random.randint(0, 100, size=(forecast_length, dimensions)), index=forecast_index, ) return future_regressor_train, future_regressor_forecast def error_correlations(all_result, result: str = 'corr'): """ Onehot encode AutoTS result df and return df or correlation with errors. Args: all_results (pandas.DataFrame): AutoTS model_results df result (str): whether to return 'df', 'corr', 'poly corr' with errors """ import json from sklearn.preprocessing import OneHotEncoder all_results = all_result.copy() all_results = all_results.drop_duplicates() all_results['ExceptionFlag'] = (~all_results['Exceptions'].isna()).astype(int) all_results = all_results[all_results['ExceptionFlag'] > 0] all_results = all_results.reset_index(drop=True) trans_df = all_results['TransformationParameters'].apply(json.loads) try: trans_df = pd.json_normalize(trans_df) # .fillna(value='NaN') except Exception: trans_df = pd.io.json.json_normalize(trans_df) trans_cols1 = trans_df.columns trans_df = trans_df.astype(str).replace('nan', 'NaNZ') trans_transformer = OneHotEncoder(sparse=False).fit(trans_df) trans_df = pd.DataFrame(trans_transformer.transform(trans_df)) trans_cols = np.array( [x1 + x2 for x1, x2 in zip(trans_cols1, trans_transformer.categories_)] ) trans_cols = [item for sublist in trans_cols for item in sublist] trans_df.columns = trans_cols model_df = all_results['ModelParameters'].apply(json.loads) try: model_df =
pd.json_normalize(model_df)
pandas.json_normalize
import os import sys import time import sqlite3 import warnings import pythoncom import numpy as np import pandas as pd from PyQt5 import QtWidgets from PyQt5.QAxContainer import QAxWidget sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utility.static import * from utility.setting import * warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) class UpdaterTickKiwoom: def __init__(self, windowQ, queryQ, tickQ): self.windowQ = windowQ self.queryQ = queryQ self.tickQ = tickQ self.dict_df = {} self.time_info = now() self.str_tday = strf_time('%Y%m%d') self.Start() def Start(self): while True: tick = self.tickQ.get() if len(tick) != 2: self.UpdateTickData(tick[0], tick[1], tick[2], tick[3], tick[4], tick[5], tick[6], tick[7], tick[8], tick[9], tick[10], tick[11], tick[12], tick[13], tick[14], tick[15], tick[16], tick[17], tick[18], tick[19], tick[20]) elif tick[0] == '틱데이터저장': self.PutTickData(tick[1]) def UpdateTickData(self, code, c, o, h, low, per, dm, ch, vp, vitime, vid5, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg, d, receiv_time): try: hlm = int(round((h + low) / 2)) hlmp = round((c / hlm - 1) * 100, 2) except ZeroDivisionError: return d = self.str_tday + d if code not in self.dict_df.keys(): self.dict_df[code] = pd.DataFrame( [[c, o, h, per, hlmp, dm, dm, ch, vp, vitime, vid5, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg]], columns=['현재가', '시가', '고가', '등락율', '고저평균대비등락율', '거래대금', '누적거래대금', '체결강도', '전일거래량대비', 'VI발동시간', '상승VID5가격', '매도호가2', '매도호가1', '매수호가1', '매수호가2', '매도잔량2', '매도잔량1', '매수잔량1', '매수잔량2'], index=[d]) else: sm = int(dm - self.dict_df[code]['누적거래대금'][-1]) self.dict_df[code].at[d] = \ c, o, h, per, hlmp, sm, dm, ch, vp, vitime, vid5, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg if now() > self.time_info: self.UpdateInfo(receiv_time) self.time_info = timedelta_sec(60) def UpdateInfo(self, receiv_time): gap = (now() - receiv_time).total_seconds() self.windowQ.put([ui_num['S단순텍스트'], f'수신시간과 갱신시간의 차이는 [{gap}]초입니다.']) def PutTickData(self, codes): for code in list(self.dict_df.keys()): if code in codes: columns = ['현재가', '시가', '고가', '거래대금', '누적거래대금', '상승VID5가격', '매도호가2', '매도호가1', '매수호가1', '매수호가2', '매도잔량2', '매도잔량1', '매수잔량1', '매수잔량2'] self.dict_df[code][columns] = self.dict_df[code][columns].astype(int) else: del self.dict_df[code] self.queryQ.put([3, self.dict_df]) sys.exit() class CollectorTickKiwoom: app = QtWidgets.QApplication(sys.argv) def __init__(self, windowQ, collectorQ, soundQ, queryQ, teleQ, tick1Q, tick2Q, tick3Q, tick4Q, tick5Q, tick6Q, tick7Q, tick8Q): self.windowQ = windowQ self.collectorQ = collectorQ self.soundQ = soundQ self.queryQ = queryQ self.teleQ = teleQ self.tick1Q = tick1Q self.tick2Q = tick2Q self.tick3Q = tick3Q self.tick4Q = tick4Q self.tick5Q = tick5Q self.tick6Q = tick6Q self.tick7Q = tick7Q self.tick8Q = tick8Q self.dict_code = { '틱0': [], '틱1': [], '틱2': [], '틱3': [], '틱4': [], '틱5': [], '틱6': [], '틱7': [], '틱8': [] } self.dict_bool = { '알림소리': False, 'TR수신': False, 'TR다음': False, 'CD수신': False, 'CR수신': False } self.dict_intg = {'장운영상태': 1} self.df_mt = pd.DataFrame(columns=['거래대금상위100']) self.df_tr = None self.dict_item = None self.dict_vipr = {} self.dict_tick = {} self.dict_cond = {} self.name_code = {} self.list_code = [] self.list_trcd = [] self.list_kosd = None self.time_mtop = now() self.str_trname = None self.str_tday = strf_time('%Y%m%d') self.str_jcct = self.str_tday + '090000' remaintime = (strp_time('%Y%m%d%H%M%S', self.str_tday + '090100') - now()).total_seconds() exittime = timedelta_sec(remaintime) if remaintime > 0 else timedelta_sec(600) self.dict_time = {'휴무종료': exittime} self.ocx = QAxWidget('KHOPENAPI.KHOpenAPICtrl.1') self.ocx.OnEventConnect.connect(self.OnEventConnect) self.ocx.OnReceiveTrData.connect(self.OnReceiveTrData) self.ocx.OnReceiveRealData.connect(self.OnReceiveRealData) self.ocx.OnReceiveTrCondition.connect(self.OnReceiveTrCondition) self.ocx.OnReceiveConditionVer.connect(self.OnReceiveConditionVer) self.ocx.OnReceiveRealCondition.connect(self.OnReceiveRealCondition) self.Start() def Start(self): self.CommConnect() self.EventLoop() def CommConnect(self): self.ocx.dynamicCall('CommConnect()') while not self.dict_bool['로그인']: pythoncom.PumpWaitingMessages() self.dict_bool['CD수신'] = False self.ocx.dynamicCall('GetConditionLoad()') while not self.dict_bool['CD수신']: pythoncom.PumpWaitingMessages() self.list_kosd = self.GetCodeListByMarket('10') list_code = self.GetCodeListByMarket('0') + self.list_kosd df = pd.DataFrame(columns=['종목명']) for code in list_code: name = self.GetMasterCodeName(code) df.at[code] = name self.name_code[name] = code self.queryQ.put([3, df, 'codename', 'replace']) data = self.ocx.dynamicCall('GetConditionNameList()') conditions = data.split(';')[:-1] for condition in conditions: cond_index, cond_name = condition.split('^') self.dict_cond[int(cond_index)] = cond_name con = sqlite3.connect(db_setting) df = pd.read_sql('SELECT * FROM stock', con) df = df.set_index('index') self.dict_bool['알림소리'] = df['알림소리'][0] con.close() self.windowQ.put([ui_num['S단순텍스트'], '시스템 명령 실행 알림 - OpenAPI 로그인 완료']) def EventLoop(self): self.OperationRealreg() self.ViRealreg() int_time = int(strf_time('%H%M%S')) while True: if not self.collectorQ.empty(): work = self.collectorQ.get() if type(work) == list: self.UpdateRealreg(work) elif type(work) == str: self.RunWork(work) if self.dict_intg['장운영상태'] == 1 and now() > self.dict_time['휴무종료']: break if self.dict_intg['장운영상태'] == 3: if int_time < stock_init_time <= int(strf_time('%H%M%S')): self.ConditionSearchStart() if int_time < stock_exit_time + 100 <= int(strf_time('%H%M%S')): self.ConditionSearchStop() self.RemoveRealreg() self.SaveDatabase() break if now() > self.time_mtop: if len(self.df_mt) > 0: self.UpdateMoneyTop() self.time_mtop = timedelta_sec(+1) time_loop = timedelta_sec(0.25) while now() < time_loop: pythoncom.PumpWaitingMessages() time.sleep(0.0001) int_time = int(strf_time('%H%M%S')) self.windowQ.put([ui_num['S단순텍스트'], '시스템 명령 실행 알림 - 콜렉터를 종료합니다.']) if self.dict_bool['알림소리']: self.soundQ.put('주식 콜렉터를 종료합니다.') self.teleQ.put('주식 콜렉터를 종료하였습니다.') sys.exit() def UpdateRealreg(self, rreg): sn = rreg[0] if len(rreg) == 2: self.ocx.dynamicCall('SetRealRemove(QString, QString)', rreg) self.windowQ.put([ui_num['S단순텍스트'], f'실시간 알림 중단 완료 - 모든 실시간 데이터 수신 중단']) elif len(rreg) == 4: ret = self.ocx.dynamicCall('SetRealReg(QString, QString, QString, QString)', rreg) result = '완료' if ret == 0 else '실패' if sn == sn_oper: self.windowQ.put([ui_num['S단순텍스트'], f'실시간 알림 등록 {result} - 장운영시간 [{sn}]']) else: self.windowQ.put([ui_num['S단순텍스트'], f"실시간 알림 등록 {result} - [{sn}] 종목갯수 {len(rreg[1].split(';'))}"]) def RunWork(self, work): if work == '틱데이터 저장 완료': self.dict_bool['틱데이터저장'] = True def OperationRealreg(self): self.collectorQ.put([sn_oper, ' ', '215;20;214', 0]) self.dict_code['틱0'] = self.SendCondition(sn_oper, self.dict_cond[1], 1, 0) self.dict_code['틱1'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 0] self.dict_code['틱2'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 1] self.dict_code['틱3'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 2] self.dict_code['틱4'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 3] self.dict_code['틱5'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 4] self.dict_code['틱6'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 5] self.dict_code['틱7'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 6] self.dict_code['틱8'] = [code for i, code in enumerate(self.dict_code['틱0']) if i % 8 == 7] k = 0 for i in range(0, len(self.dict_code['틱0']), 100): self.collectorQ.put([sn_jchj + k, ';'.join(self.dict_code['틱0'][i:i + 100]), '10;12;14;30;228;41;61;71;81', 1]) k += 1 def ViRealreg(self): self.Block_Request('opt10054', 시장구분='000', 장전구분='1', 종목코드='', 발동구분='1', 제외종목='111111011', 거래량구분='0', 거래대금구분='0', 발동방향='0', output='발동종목', next=0) self.windowQ.put([ui_num['S단순텍스트'], '시스템 명령 실행 알림 - VI발동해제 등록 완료']) self.windowQ.put([ui_num['S단순텍스트'], '시스템 명령 실행 알림 - 시스템 시작 완료']) if self.dict_bool['알림소리']: self.soundQ.put('주식 콜렉터를 시작하였습니다.') def ConditionSearchStart(self): self.list_code = self.SendCondition(sn_cond, self.dict_cond[0], 0, 1) self.df_mt.at[self.str_tday + '090000'] = ';'.join(self.list_code) def ConditionSearchStop(self): self.ocx.dynamicCall("SendConditionStop(QString, QString, int)", sn_cond, self.dict_cond[0], 0) def RemoveRealreg(self): self.collectorQ.put(['ALL', 'ALL']) self.windowQ.put([ui_num['S단순텍스트'], '시스템 명령 실행 알림 - 실시간 데이터 중단 완료']) def SaveDatabase(self): self.queryQ.put([3, self.df_mt, 'moneytop', 'append']) con = sqlite3.connect(db_tradelist) df = pd.read_sql(f"SELECT * FROM tradelist WHERE 체결시간 LIKE '{self.str_tday}%'", con) con.close() df = df.set_index('index') codes = [] for index in df.index: code = self.name_code[df['종목명'][index]] if code not in codes: codes.append(code) self.tick1Q.put(['틱데이터저장', codes]) self.tick2Q.put(['틱데이터저장', codes]) self.tick3Q.put(['틱데이터저장', codes]) self.tick4Q.put(['틱데이터저장', codes]) self.tick5Q.put(['틱데이터저장', codes]) self.tick6Q.put(['틱데이터저장', codes]) self.tick7Q.put(['틱데이터저장', codes]) self.tick8Q.put(['틱데이터저장', codes]) self.dict_bool['DB저장'] = True def OnEventConnect(self, err_code): if err_code == 0: self.dict_bool['로그인'] = True def OnReceiveConditionVer(self, ret, msg): if msg == '': return if ret == 1: self.dict_bool['CD수신'] = True def OnReceiveTrCondition(self, screen, code_list, cond_name, cond_index, nnext): if screen == "" and cond_name == "" and cond_index == "" and nnext == "": return codes = code_list.split(';')[:-1] self.list_trcd = codes self.dict_bool['CR수신'] = True def OnReceiveRealCondition(self, code, IorD, cname, cindex): if cname == "": return if IorD == "I" and cindex == "0" and code not in self.list_code: self.list_code.append(code) elif IorD == "D" and cindex == "0" and code in self.list_code: self.list_code.remove(code) def OnReceiveRealData(self, code, realtype, realdata): if realdata == '': return if realtype == '장시작시간': if self.dict_intg['장운영상태'] == 8: return try: self.dict_intg['장운영상태'] = int(self.GetCommRealData(code, 215)) current = self.GetCommRealData(code, 20) remain = self.GetCommRealData(code, 214) except Exception as e: self.windowQ.put([ui_num['S단순텍스트'], f'OnReceiveRealData 장시작시간 {e}']) else: self.windowQ.put([ui_num['S단순텍스트'], f"장운영 시간 수신 알림 - {self.dict_intg['장운영상태']} " f'{current[:2]}:{current[2:4]}:{current[4:]} ' f'남은시간 {remain[:2]}:{remain[2:4]}:{remain[4:]}']) elif realtype == 'VI발동/해제': try: code = self.GetCommRealData(code, 9001).strip('A').strip('Q') gubun = self.GetCommRealData(code, 9068) name = self.GetMasterCodeName(code) except Exception as e: self.windowQ.put([ui_num['S단순텍스트'], f'OnReceiveRealData VI발동/해제 {e}']) else: if gubun == '1' and code in self.dict_code['틱0'] and \ (code not in self.dict_vipr.keys() or (self.dict_vipr[code][0] and now() > self.dict_vipr[code][1])): self.UpdateViPriceDown5(code, name) elif realtype == '주식체결': try: d = self.GetCommRealData(code, 20) except Exception as e: self.windowQ.put([ui_num['S단순텍스트'], f'OnReceiveRealData 주식체결 {e}']) else: if d != self.str_jcct[8:]: self.str_jcct = self.str_tday + d try: c = abs(int(self.GetCommRealData(code, 10))) o = abs(int(self.GetCommRealData(code, 16))) except Exception as e: self.windowQ.put([ui_num['S단순텍스트'], f'OnReceiveRealData 주식체결 {e}']) else: if code not in self.dict_vipr.keys(): self.InsertViPriceDown5(code, o) if code in self.dict_vipr.keys() and not self.dict_vipr[code][0] and now() > self.dict_vipr[code][1]: self.UpdateViPriceDown5(code, c) if code in self.dict_tick.keys() and d == self.dict_tick[code][0]: return try: h = abs(int(self.GetCommRealData(code, 17))) low = abs(int(self.GetCommRealData(code, 18))) per = float(self.GetCommRealData(code, 12)) dm = int(self.GetCommRealData(code, 14)) ch = float(self.GetCommRealData(code, 228)) vp = abs(float(self.GetCommRealData(code, 30))) except Exception as e: self.windowQ.put([ui_num['S단순텍스트'], f'OnReceiveRealData 주식체결 {e}']) else: self.UpdateTickData(code, c, o, h, low, per, dm, ch, vp, d) elif realtype == '주식호가잔량': try: s1jr = int(self.GetCommRealData(code, 61)) s2jr = int(self.GetCommRealData(code, 62)) b1jr = int(self.GetCommRealData(code, 71)) b2jr = int(self.GetCommRealData(code, 72)) s1hg = abs(int(self.GetCommRealData(code, 41))) s2hg = abs(int(self.GetCommRealData(code, 42))) b1hg = abs(int(self.GetCommRealData(code, 51))) b2hg = abs(int(self.GetCommRealData(code, 52))) except Exception as e: self.windowQ.put([ui_num['S단순텍스트'], f'OnReceiveRealData 주식호가잔량 {e}']) else: self.UpdateHoga(code, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg) def InsertViPriceDown5(self, code, o): vid5 = self.GetVIPriceDown5(code, o) self.dict_vipr[code] = [True, timedelta_sec(-180), vid5] def GetVIPriceDown5(self, code, std_price): vi = std_price * 1.1 x = self.GetHogaunit(code, vi) if vi % x != 0: vi = vi + (x - vi % x) return int(vi - x * 5) def GetHogaunit(self, code, price): if price < 1000: x = 1 elif 1000 <= price < 5000: x = 5 elif 5000 <= price < 10000: x = 10 elif 10000 <= price < 50000: x = 50 elif code in self.list_kosd: x = 100 elif 50000 <= price < 100000: x = 100 elif 100000 <= price < 500000: x = 500 else: x = 1000 return x def UpdateViPriceDown5(self, code, key): if type(key) == str: if code in self.dict_vipr.keys(): self.dict_vipr[code][0] = False self.dict_vipr[code][1] = timedelta_sec(5) else: self.dict_vipr[code] = [False, timedelta_sec(5), 0] elif type(key) == int: vid5 = self.GetVIPriceDown5(code, key) self.dict_vipr[code] = [True, timedelta_sec(5), vid5] def UpdateTickData(self, code, c, o, h, low, per, dm, ch, vp, d): vitime = strf_time('%Y%m%d%H%M%S', self.dict_vipr[code][1]) vi = self.dict_vipr[code][2] try: s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg = self.dict_tick[code][1:] self.dict_tick[code][0] = d except KeyError: s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg = 0, 0, 0, 0, 0, 0, 0, 0 self.dict_tick[code] = [d, 0, 0, 0, 0, 0, 0, 0, 0] data = [code, c, o, h, low, per, dm, ch, vp, vitime, vi, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg, d, now()] if code in self.dict_code['틱1']: self.tick1Q.put(data) elif code in self.dict_code['틱2']: self.tick2Q.put(data) elif code in self.dict_code['틱3']: self.tick3Q.put(data) elif code in self.dict_code['틱4']: self.tick4Q.put(data) elif code in self.dict_code['틱5']: self.tick5Q.put(data) elif code in self.dict_code['틱6']: self.tick6Q.put(data) elif code in self.dict_code['틱7']: self.tick7Q.put(data) elif code in self.dict_code['틱8']: self.tick8Q.put(data) def UpdateHoga(self, code, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg): try: d = self.dict_tick[code][0] except KeyError: d = '090000' self.dict_tick[code] = [d, s1jr, s2jr, b1jr, b2jr, s1hg, s2hg, b1hg, b2hg] def UpdateMoneyTop(self): timetype = '%Y%m%d%H%M%S' list_text = ';'.join(self.list_code) curr_datetime = strp_time(timetype, self.str_jcct) last_datetime = strp_time(timetype, self.df_mt.index[-1]) gap_seconds = (curr_datetime - last_datetime).total_seconds() pre_time2 = strf_time(timetype, timedelta_sec(-2, curr_datetime)) pre_time1 = strf_time(timetype, timedelta_sec(-1, curr_datetime)) if 1 <= gap_seconds < 2: self.df_mt.at[pre_time1] = list_text elif 2 <= gap_seconds < 3: self.df_mt.at[pre_time2] = list_text self.df_mt.at[pre_time1] = list_text self.df_mt.at[self.str_jcct] = list_text def OnReceiveTrData(self, screen, rqname, trcode, record, nnext): if screen == '' and record == '': return items = None self.dict_bool['TR다음'] = True if nnext == '2' else False for output in self.dict_item['output']: record = list(output.keys())[0] items = list(output.values())[0] if record == self.str_trname: break rows = self.ocx.dynamicCall('GetRepeatCnt(QString, QString)', trcode, rqname) if rows == 0: rows = 1 df2 = [] for row in range(rows): row_data = [] for item in items: data = self.ocx.dynamicCall('GetCommData(QString, QString, int, QString)', trcode, rqname, row, item) row_data.append(data.strip()) df2.append(row_data) df =
pd.DataFrame(data=df2, columns=items)
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51": pandas.StringDtype(), "bitErrBucketArray52": pandas.StringDtype(), "bitErrBucketArray53": pandas.StringDtype(), "bitErrBucketArray54": pandas.StringDtype(), "bitErrBucketArray55": pandas.StringDtype(), "bitErrBucketArray56": pandas.StringDtype(), "bitErrBucketArray57": pandas.StringDtype(), "bitErrBucketArray58": pandas.StringDtype(), "bitErrBucketArray59": pandas.StringDtype(), "bitErrBucketArray60": pandas.StringDtype(), "bitErrBucketArray61": pandas.StringDtype(), "bitErrBucketArray62": pandas.StringDtype(), "bitErrBucketArray63": pandas.StringDtype(), "bitErrBucketArray64": pandas.StringDtype(), "bitErrBucketArray65": pandas.StringDtype(), "bitErrBucketArray66": pandas.StringDtype(), "bitErrBucketArray67": pandas.StringDtype(), "bitErrBucketArray68": pandas.StringDtype(), "bitErrBucketArray69": pandas.StringDtype(), "bitErrBucketArray70": pandas.StringDtype(), "bitErrBucketArray71": pandas.StringDtype(), "bitErrBucketArray72": pandas.StringDtype(), "bitErrBucketArray73": pandas.StringDtype(), "bitErrBucketArray74": pandas.StringDtype(), "bitErrBucketArray75": pandas.StringDtype(), "bitErrBucketArray76": pandas.StringDtype(), "bitErrBucketArray77": pandas.StringDtype(), "bitErrBucketArray78": pandas.StringDtype(), "bitErrBucketArray79": pandas.StringDtype(), "bitErrBucketArray80": pandas.StringDtype(), "mrr_successDistribution1": pandas.StringDtype(), "mrr_successDistribution2": pandas.StringDtype(), "mrr_successDistribution3": pandas.StringDtype(), "mrr_successDistribution4": pandas.StringDtype(), "mrr_successDistribution5": pandas.StringDtype(), "mrr_successDistribution6": pandas.StringDtype(), "mrr_successDistribution7": pandas.StringDtype(), "mrr_successDistribution8": pandas.StringDtype(), "mrr_successDistribution9": pandas.StringDtype(), "mrr_successDistribution10": pandas.StringDtype(), "mrr_successDistribution11": pandas.StringDtype(), "mrr_successDistribution12": pandas.StringDtype(), "mrr_successDistribution13": pandas.StringDtype(), "mrr_successDistribution14": pandas.StringDtype(), "mrr_successDistribution15": pandas.StringDtype(), "mrr_successDistribution16": pandas.StringDtype(), "mrr_successDistribution17": pandas.StringDtype(), "mrr_successDistribution18": pandas.StringDtype(), "mrr_successDistribution19": pandas.StringDtype(), "mrr_successDistribution20": pandas.StringDtype(), "mrr_successDistribution21": pandas.StringDtype(), "mrr_successDistribution22": pandas.StringDtype(), "mrr_successDistribution23": pandas.StringDtype(), "mrr_successDistribution24": pandas.StringDtype(), "mrr_successDistribution25": pandas.StringDtype(), "mrr_successDistribution26": pandas.StringDtype(), "mrr_successDistribution27": pandas.StringDtype(), "mrr_successDistribution28": pandas.StringDtype(), "mrr_successDistribution29": pandas.StringDtype(), "mrr_successDistribution30": pandas.StringDtype(), "mrr_successDistribution31": pandas.StringDtype(), "mrr_successDistribution32": pandas.StringDtype(), "mrr_successDistribution33": pandas.StringDtype(), "mrr_successDistribution34": pandas.StringDtype(), "mrr_successDistribution35": pandas.StringDtype(), "mrr_successDistribution36": pandas.StringDtype(), "mrr_successDistribution37": pandas.StringDtype(), "mrr_successDistribution38": pandas.StringDtype(), "mrr_successDistribution39": pandas.StringDtype(), "mrr_successDistribution40": pandas.StringDtype(), "mrr_successDistribution41": pandas.StringDtype(), "mrr_successDistribution42": pandas.StringDtype(), "mrr_successDistribution43": pandas.StringDtype(), "mrr_successDistribution44": pandas.StringDtype(), "mrr_successDistribution45": pandas.StringDtype(), "mrr_successDistribution46": pandas.StringDtype(), "mrr_successDistribution47": pandas.StringDtype(), "mrr_successDistribution48": pandas.StringDtype(), "mrr_successDistribution49": pandas.StringDtype(), "mrr_successDistribution50": pandas.StringDtype(), "mrr_successDistribution51": pandas.StringDtype(), "mrr_successDistribution52": pandas.StringDtype(), "mrr_successDistribution53": pandas.StringDtype(), "mrr_successDistribution54": pandas.StringDtype(), "mrr_successDistribution55": pandas.StringDtype(), "mrr_successDistribution56": pandas.StringDtype(), "mrr_successDistribution57": pandas.StringDtype(), "mrr_successDistribution58": pandas.StringDtype(), "mrr_successDistribution59": pandas.StringDtype(), "mrr_successDistribution60": pandas.StringDtype(), "mrr_successDistribution61": pandas.StringDtype(), "mrr_successDistribution62": pandas.StringDtype(), "mrr_successDistribution63": pandas.StringDtype(), "mrr_successDistribution64": pandas.StringDtype(), "blDowngradeCount": pandas.StringDtype(), "snapReads": pandas.StringDtype(), "pliCapTestTime": pandas.StringDtype(), "currentTimeToFreeSpaceRecovery": pandas.StringDtype(), "worstTimeToFreeSpaceRecovery": pandas.StringDtype(), "rspnandReads": pandas.StringDtype(), "cachednandReads": pandas.StringDtype(), "spnandReads": pandas.StringDtype(), "dpnandReads": pandas.StringDtype(), "qpnandReads": pandas.StringDtype(), "verifynandReads": pandas.StringDtype(), "softnandReads": pandas.StringDtype(), "spnandWrites": pandas.StringDtype(), "dpnandWrites": pandas.StringDtype(), "qpnandWrites": pandas.StringDtype(), "opnandWrites": pandas.StringDtype(), "xpnandWrites": pandas.StringDtype(), "unalignedHostWriteCmd": pandas.StringDtype(), "randomReadCmd": pandas.StringDtype(), "randomWriteCmd": pandas.StringDtype(), "secVenCmdCount": pandas.StringDtype(), "secVenCmdCountFails": pandas.StringDtype(), "mrrFailOnSlcOtfPages": pandas.StringDtype(), "mrrFailOnSlcOtfPageMarkedAsMBPD": pandas.StringDtype(), "lcorParitySeedErrors": pandas.StringDtype(), "fwDownloadFails": pandas.StringDtype(), "fwAuthenticationFails": pandas.StringDtype(), "fwSecurityRev": pandas.StringDtype(), "isCapacitorHealthly": pandas.StringDtype(), "fwWRCounter": pandas.StringDtype(), "sysAreaEraseFailCount": pandas.StringDtype(), "iusDefragRelocated4DataRetention": pandas.StringDtype(), "I2CTemp": pandas.StringDtype(), "lbaMismatchOnNandReads": pandas.StringDtype(), "currentWriteStreamsCount": pandas.StringDtype(), "nandWritesPerStream1": pandas.StringDtype(), "nandWritesPerStream2": pandas.StringDtype(), "nandWritesPerStream3": pandas.StringDtype(), "nandWritesPerStream4": pandas.StringDtype(), "nandWritesPerStream5": pandas.StringDtype(), "nandWritesPerStream6": pandas.StringDtype(), "nandWritesPerStream7": pandas.StringDtype(), "nandWritesPerStream8": pandas.StringDtype(), "nandWritesPerStream9": pandas.StringDtype(), "nandWritesPerStream10": pandas.StringDtype(), "nandWritesPerStream11": pandas.StringDtype(), "nandWritesPerStream12": pandas.StringDtype(), "nandWritesPerStream13": pandas.StringDtype(), "nandWritesPerStream14": pandas.StringDtype(), "nandWritesPerStream15": pandas.StringDtype(), "nandWritesPerStream16": pandas.StringDtype(), "nandWritesPerStream17": pandas.StringDtype(), "nandWritesPerStream18": pandas.StringDtype(), "nandWritesPerStream19": pandas.StringDtype(), "nandWritesPerStream20": pandas.StringDtype(), "nandWritesPerStream21": pandas.StringDtype(), "nandWritesPerStream22": pandas.StringDtype(), "nandWritesPerStream23": pandas.StringDtype(), "nandWritesPerStream24": pandas.StringDtype(), "nandWritesPerStream25": pandas.StringDtype(), "nandWritesPerStream26": pandas.StringDtype(), "nandWritesPerStream27": pandas.StringDtype(), "nandWritesPerStream28": pandas.StringDtype(), "nandWritesPerStream29": pandas.StringDtype(), "nandWritesPerStream30": pandas.StringDtype(), "nandWritesPerStream31": pandas.StringDtype(), "nandWritesPerStream32": pandas.StringDtype(), "hostSoftReadSuccess": pandas.StringDtype(), "xorInvokedCount": pandas.StringDtype(), "comresets": pandas.StringDtype(), "syncEscapes": pandas.StringDtype(), "rErrHost": pandas.StringDtype(), "rErrDevice": pandas.StringDtype(), "iCrcs": pandas.StringDtype(), "linkSpeedDrops": pandas.StringDtype(), "mrrXtrapageEvents": pandas.StringDtype(), "mrrToppageEvents": pandas.StringDtype(), "hostXorSuccessCount": pandas.StringDtype(), "hostXorFailCount": pandas.StringDtype(), "nandWritesWithPreReadPerStream1": pandas.StringDtype(), "nandWritesWithPreReadPerStream2": pandas.StringDtype(), "nandWritesWithPreReadPerStream3": pandas.StringDtype(), "nandWritesWithPreReadPerStream4": pandas.StringDtype(), "nandWritesWithPreReadPerStream5": pandas.StringDtype(), "nandWritesWithPreReadPerStream6": pandas.StringDtype(), "nandWritesWithPreReadPerStream7": pandas.StringDtype(), "nandWritesWithPreReadPerStream8": pandas.StringDtype(), "nandWritesWithPreReadPerStream9": pandas.StringDtype(), "nandWritesWithPreReadPerStream10": pandas.StringDtype(), "nandWritesWithPreReadPerStream11": pandas.StringDtype(), "nandWritesWithPreReadPerStream12": pandas.StringDtype(), "nandWritesWithPreReadPerStream13": pandas.StringDtype(), "nandWritesWithPreReadPerStream14": pandas.StringDtype(), "nandWritesWithPreReadPerStream15": pandas.StringDtype(), "nandWritesWithPreReadPerStream16": pandas.StringDtype(), "nandWritesWithPreReadPerStream17": pandas.StringDtype(), "nandWritesWithPreReadPerStream18": pandas.StringDtype(), "nandWritesWithPreReadPerStream19": pandas.StringDtype(), "nandWritesWithPreReadPerStream20": pandas.StringDtype(), "nandWritesWithPreReadPerStream21": pandas.StringDtype(), "nandWritesWithPreReadPerStream22": pandas.StringDtype(), "nandWritesWithPreReadPerStream23": pandas.StringDtype(), "nandWritesWithPreReadPerStream24": pandas.StringDtype(), "nandWritesWithPreReadPerStream25": pandas.StringDtype(), "nandWritesWithPreReadPerStream26": pandas.StringDtype(), "nandWritesWithPreReadPerStream27": pandas.StringDtype(), "nandWritesWithPreReadPerStream28": pandas.StringDtype(), "nandWritesWithPreReadPerStream29": pandas.StringDtype(), "nandWritesWithPreReadPerStream30": pandas.StringDtype(), "nandWritesWithPreReadPerStream31": pandas.StringDtype(), "nandWritesWithPreReadPerStream32": pandas.StringDtype(), "dramCorrectables8to1": pandas.StringDtype(), "driveRecoveryCount": pandas.StringDtype(), "mprLiteReads": pandas.StringDtype(), "eccErrOnMprLiteReads": pandas.StringDtype(), "readForwardingXpPreReadCount": pandas.StringDtype(), "readForwardingUpPreReadCount": pandas.StringDtype(), "readForwardingLpPreReadCount": pandas.StringDtype(), "pweDefectCompensationCredit": pandas.StringDtype(), "planarXorRebuildFailure": pandas.StringDtype(), "itgXorRebuildFailure": pandas.StringDtype(), "planarXorRebuildSuccess": pandas.StringDtype(), "itgXorRebuildSuccess": pandas.StringDtype(), "xorLoggingSkippedSIcBand": pandas.StringDtype(), "xorLoggingSkippedDieOffline": pandas.StringDtype(), "xorLoggingSkippedDieAbsent": pandas.StringDtype(), "xorLoggingSkippedBandErased": pandas.StringDtype(), "xorLoggingSkippedNoEntry": pandas.StringDtype(), "xorAuditSuccess": pandas.StringDtype(), "maxSuspendCount": pandas.StringDtype(), "suspendLimitPerPrgm": pandas.StringDtype(), "psrCountStats": pandas.StringDtype(), "readNandBuffCount": pandas.StringDtype(), "readNandBufferRspErrorCount": pandas.StringDtype(), "ddpNandWrites": pandas.StringDtype(), "totalDeallocatedSectorsInCore": pandas.StringDtype(), "prefetchHostReads": pandas.StringDtype(), "hostReadtoDSMDCount": pandas.StringDtype(), "hostWritetoDSMDCount": pandas.StringDtype(), "snapReads4k": pandas.StringDtype(), "snapReads8k": pandas.StringDtype(), "snapReads16k": pandas.StringDtype(), "xorLoggingTriggered": pandas.StringDtype(), "xorLoggingAborted": pandas.StringDtype(), "xorLoggingSkippedHistory": pandas.StringDtype(), "deckDisturbRelocationUD": pandas.StringDtype(), "deckDisturbRelocationMD": pandas.StringDtype(), "deckDisturbRelocationLD": pandas.StringDtype(), "bbdProactiveReadRetry": pandas.StringDtype(), "statsRestoreRequired": pandas.StringDtype(), "statsAESCount": pandas.StringDtype(), "statsHESCount": pandas.StringDtype(), "psrCountStats1": pandas.StringDtype(), "psrCountStats2": pandas.StringDtype(), "psrCountStats3": pandas.StringDtype(), "psrCountStats4": pandas.StringDtype(), "psrCountStats5": pandas.StringDtype(), "psrCountStats6": pandas.StringDtype(), "psrCountStats7": pandas.StringDtype(), "psrCountStats8": pandas.StringDtype(), "psrCountStats9": pandas.StringDtype(), "psrCountStats10": pandas.StringDtype(), "psrCountStats11": pandas.StringDtype(), "psrCountStats12": pandas.StringDtype(), "psrCountStats13": pandas.StringDtype(), "psrCountStats14": pandas.StringDtype(), "psrCountStats15": pandas.StringDtype(), "psrCountStats16": pandas.StringDtype(), "psrCountStats17": pandas.StringDtype(), "psrCountStats18": pandas.StringDtype(), "psrCountStats19": pandas.StringDtype(), "psrCountStats20": pandas.StringDtype(), "psrCountStats21": pandas.StringDtype(), "psrCountStats22": pandas.StringDtype(), "psrCountStats23": pandas.StringDtype(), "psrCountStats24": pandas.StringDtype(), "psrCountStats25": pandas.StringDtype(), "psrCountStats26": pandas.StringDtype(), "psrCountStats27": pandas.StringDtype(), "psrCountStats28": pandas.StringDtype(), "psrCountStats29": pandas.StringDtype(), "psrCountStats30": pandas.StringDtype(), "psrCountStats31": pandas.StringDtype(), "psrCountStats32": pandas.StringDtype(), "psrCountStats33": pandas.StringDtype(), "psrCountStats34": pandas.StringDtype(), "psrCountStats35": pandas.StringDtype(), "psrCountStats36": pandas.StringDtype(), "psrCountStats37": pandas.StringDtype(), "psrCountStats38": pandas.StringDtype(), "psrCountStats39": pandas.StringDtype(), "psrCountStats40": pandas.StringDtype(), "psrCountStats41": pandas.StringDtype(), "psrCountStats42": pandas.StringDtype(), "psrCountStats43": pandas.StringDtype(), "psrCountStats44": pandas.StringDtype(), "psrCountStats45": pandas.StringDtype(), "psrCountStats46": pandas.StringDtype(), "psrCountStatsHigh1": pandas.StringDtype(), "psrCountStatsHigh2": pandas.StringDtype(), "psrCountStatsHigh3": pandas.StringDtype(), "psrCountStatsHigh4": pandas.StringDtype(), "psrCountStatsHigh5": pandas.StringDtype(), "psrCountStatsHigh6": pandas.StringDtype(), "psrCountStatsHigh7": pandas.StringDtype(), "psrCountStatsHigh8": pandas.StringDtype(), "psrCountStatsHigh9": pandas.StringDtype(), "psrCountStatsHigh10": pandas.StringDtype(), "psrCountStatsHigh11": pandas.StringDtype(), "psrCountStatsHigh12": pandas.StringDtype(), "psrCountStatsHigh13": pandas.StringDtype(), "psrCountStatsHigh14":
pandas.StringDtype()
pandas.StringDtype
#!/usr/bin/env python # encoding: utf-8 ''' editing.filter_known_snps removes known SNPs (BED3) from a candidate list of editing sites (VCF). @author: brian @copyright: 2017 yeolab. All rights reserved. @license: license @contact: <EMAIL> @deffield updated: 4-21-2017 ''' import sys import os import pandas as pd from argparse import ArgumentParser from argparse import RawDescriptionHelpFormatter __all__ = [] __version__ = 0.1 __date__ = '2016-07-13' __updated__ = '2017-04-21' DEBUG = 0 TESTRUN = 0 PROFILE = 0 class CLIError(Exception): """ Generic exception to raise and log different fatal errors. """ def __init__(self, msg): super(CLIError).__init__(type(self)) self.msg = "E: %s" % msg def __str__(self): return self.msg def __unicode__(self): return self.msg def filter_known_snp(infile, known, outfile): """ Step 7: Remove known SNPs We don't want to erroneously call editing sites that are known SNPs. Filter these out with a BED3 file with known SNP locations. Really just compares the 0-based position of the BED3 file with the 1-based position of the vcf file, and filters accordingly. :param infile: basestring file location of the input VCF file :param known: basestring file location of the BED3 file containing known SNPs :param outfile: basestring file location of the intended output VCF file :return: """ # print("Filtering known SNPs: {}".format(infile)) o = open(outfile, 'w') with open(infile, 'r') as f: for line in f: if line.startswith('#'): o.write(line) o.close() names1 = [ 'CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', '.' ] eff_df = pd.read_table(infile, comment='#', names=names1, dtype={'QUAL': str}) names2 = ['CHROM', 'START', 'POS'] # POS is the 1-based position of the SNP. if known.endswith('.gz'): snp_df = pd.read_table(known, compression='gzip', names=names2) else: snp_df = pd.read_table(known, names=names2) snp_df['KNOWN'] = 1 joined =
pd.merge(eff_df, snp_df, how='left', on=['CHROM', 'POS'])
pandas.merge
#!/usr/bin/env python # coding: utf-8 # TODO: # # # R1 # - get the Nyquist plot axis dimensions issue when $k=1$ fixed # - figure out the failing of .pz with active elements # # # R2 # - make the frequency analysis stuff happen # # In[1]: from skidl.pyspice import * #can you say cheeky import PySpice as pspice #becouse it's written by a kiwi you know import lcapy as kiwi import numpy as np import pandas as pd import matplotlib.pyplot as plt import sympy as sym from scipy.signal import zpk2tf as scipy_zpk2tf from IPython.display import YouTubeVideo, display import traceback import warnings # In[2]: #import dc code from parral folder import sys sys.path.insert(1, '../DC_1/') from DC_1_Codes import get_skidl_spice_ref, easy_tf from AC_2_Codes import * sym.init_printing() #notebook specific loading control statements get_ipython().run_line_magic('matplotlib', 'inline') #tool to log notebook internals #https://github.com/jrjohansson/version_information get_ipython().run_line_magic('load_ext', 'version_information') get_ipython().run_line_magic('version_information', 'skidl, PySpice,lcapy, sympy, numpy, matplotlib, pandas, scipy') # # What is PZ anylsis # # Pole-Zero analysis (.pz)does exactly what it says it does. It analysis the circuit between two ports and will return all the poles and or zero between the ports and that's it. That means with the resulting poles and zeros we can reconstruct the transfer function between the ports up to the gain term that is $$H(s)_{true}\propto \dfrac{\prod_n (s-a_n)}{\prod_m (s-b_m)}$$ where $a_n$ are the zeros and $b_n$ are the poles. Again this can't be stressed enough .pz does not recover the "gain" term $K$ that would turn the proportionality into an equality. # # So what use is it? While that depends on what stage of the design cycle you're in and what is being analyzed. So for RLC elements, it's just going to tell us the poles and zeros where we know that the poles and zero do not move. But for active devices such as BJTs, FETs, etc we could cycle the .pz analysis and see how the .pz locations move with the bias. And while .pz is limited from a verification standpoint seeing as it will just confirm the pole-zero locations that should have been set in the design stage it can be of use when performing reverse engineering on an unknown circuit. Further during the design stage or when analyzing an unknown circuit the lack of $K$ is not a total handicap. Since even without $K$ we can perform root-locus analysis or we can sweep $K$ while comparing the resulting transfer function response to an .ac simulation to then determine $K$ when reverse engineering an unknown design. # # So then let's go ahead and start looking at .pz and what we can do with that data. # # # PZ analysis of an RC lowpass filter # # For this first use case, we will use the RC lowpass filter that we developed in the last section bassed on the work of ALL ABOUT ELECTRONICS # In[3]: #instatate the rc_lowpass filter to lowpassF=rc_lowpass(C_value=.1@u_uF, R_value=1@u_kOhm) lowpassF.lcapy_self() # Lets then get the voltage transfer function for this filter topology # In[4]: H_rcl_gen=lowpassF.get_tf(with_values=False); H_rcl_gen # The voltage transfer function for this topology shows that it has a single pole and the following gain term $K$ # In[5]: H_rcl_gen.K # Real quickly how lcapy is getting the full voltage-transfer function is based on # # 1. Generating the symbolic Modified nodal analysis in the Laplace domain # # 2. extracting the so-called Two-Port admittance parameters $Y$ from the Modified nodal analysis matrix # # 3. finding the port 1 to port 2 voltage transfer function via $$H_v(s)=\dfrac{Y_{21}}{Y_{22}}$$ Which is just one way of doing it. Where more on two-port network theory and SPICE acquisition will be shown in the remaining sections of this chapter. # # Lets now get the transfer function for this instinacs of the rc lowpass topology and isolate its $K$ term # # In[6]: H_rcl=lowpassF.get_tf(with_values=True, ZPK=True); H_rcl # In[7]: #K should always be real or where in trouble K_rcl=np.real(H_rcl.K.cval); K_rcl # As with any SPICE simulation we have to instantiate our DUT in a circuit. However unlike DC's .tf we do not actually have to have any supplies but since we are also going be comparing the .ac simulation to what .pz we need a full circuit with a source to perform the .ac simulation # In[8]: reset() #create the nets net_in=Net('In'); net_out=Net('Out'); #create a 1V AC test source and attache to nets vs=SINEV(ac_magnitude=1@u_V, dc_offset=5@u_V); vs['p', 'n']+=net_in, gnd #attaceh term_0 to net_in and term_2 to net_out per scikit-rf convention all #other terminals are grounded lowpassF.SKiDl(net_in, gnd, net_out, gnd) circ=generate_netlist() print(circ) # In[9]: filter_responce=qfilter_explorer(circ, 'RC Low Pass Filter Responce'); # In[10]: #this is the full filter tf response in comparison to the .ac sim filter_responce.symbolic_tf(lowpassF) # ## .tf does not get $K$ # # Lets be clear about this .tf will not yield $K$ in the generic case. It might get lucky but recalling that in DC simulations capcitors are treated as non existing elements there is no way that .tf will recover the $K$ for this topology where $K=\dfrac{1}{RC}$ # # In[11]: tf=easy_tf(circ) # In[12]: tf.dc_voltage_gain(vs, node(net_out), node(gnd)) tf.vg_results # # PZ ease # # The following class like the rest in this book makes using the SPICE analysis easier and enhance it with the power of Python. But real quick let's look at the ngspice call for .pz (typically found in chapter 15 section 3) # # ``` # .pz node1 node2 node3 node4 <transfer_type('vol'/'cur')> <analysis_type('pz'/'zer'/'pol')> # ``` # # This differs from .tf in DC analysis where we had to specify a source for the input, where instead the input port terminals are specified by `node1` & `node2` which are the positive and negative terminals respectively. And similarly, the output port terminals are specified by `node3` & `node4`. Since .pz only requires the specification of the terminals to define the two-port network we can take advantage of this to look just at sat the feedback (aka $\beta$) network in circuits containing feedback structures. # # Following the node arguments are the transfer type argument where if `vol` is used we are acquiring the poles and or zeros of voltage transfer function # # $$H_v(s)=\dfrac{V_o}{V_i}$$ # # else, if `cur` is used we are acquiring the Transimpedance (aka Transfer Impedance) # $$H_F(s)=\dfrac{V_o}{I_i}$$ # , were again when using .pz we are only acquiring the poles and or zeros that make up the respective transfer function not the transfer function as a whole. # # Finlay the last argument `analysis_type` controls what we are acquiring from the .pz analysis. While typically we leave it as `pz` to get both the poles and zeros there are times it might not be possible to get both or the poles and zero have to be acquired separately. Where in that case we can use `pol` to get just the poles and `zer` to get just the zeros # # Below the class, `pz_ease` is designed to perform the .pz analysis with additional methods to analyze the results. And in both it's instantiation and in serval of its methods, the value of $K$ can be feed into it if known. # # In[13]: #%%writefile -a AC_2_Codes.py #chapteer 2 section 4 pz_ease class #class to perform .pz simulations with a bit more grace #with some additional built-in analysis tools class pz_ease(ac_representation_tool, eecomplex_plot_templets): def __init__(self, circ_netlist_obj, K=1.0): """ Class to perform Pole Zero (.pz) SPICE simulation with grace Args: circ_netlist_obj (pyspice.Spice.Netlist.Circuit): the Netlist circuit produced from SKiDl's `generate_netlist()` K (float/int; 1): the gain; must be manually put in or found from .tf analysis Returns: """ self.circ_netlist_obj=circ_netlist_obj assert (type(K)==float) or (type(K)==int), 'K must be a float or int' self.K=K #dic of allowed pz control statements self.allowed_control_statments={'voltage':'vol', 'current':'cur', 'pole-zero':'pz', 'zeros':'zer', 'poles':'pol'} def pz_def_ports(self, port_0_pos_term, port_0_neg_term, port_1_pos_term, port_1_neg_term, display_table=False): """ Method to set the Port terminals for the two-port section of the circuit under test where all inputs must be nodes in the circuit under test Terminals: port_0_pos_term, port_0_neg_term, port_1_pos_term, port_1_neg_term Port & Terminals are defined via: ``` Left_Port - Two-Port Section under Test - Right_Port +-------------+ Postive Port0 port_0_pos_term-| DUT Section |-port_1_pos_term Postive Port1 Negtive Port0 port_0_neg_term-| |-port_1_neg_term Negtive Port1 +-------------+ ``` Args: display_table (bool; False): when true will display the generated `self.control_df` below this method call in a jupyter notebook like environment Returns: Settings are recoded in `self.control_df` rows: `'port_0_terms+-'` & `'port_1_terms+-'` """ assert port_0_pos_term in self.circ_netlist_obj.node_names, f'`{port_0_pos_term}` is not a node in the circuit under test' self.port_0_pos_term=port_0_pos_term assert port_0_neg_term in self.circ_netlist_obj.node_names, f'`{port_0_neg_term}` is not a node in the circuit under test' self.port_0_neg_term=port_0_neg_term assert port_1_pos_term in self.circ_netlist_obj.node_names, f'`{port_1_pos_term}` is not a node in the circuit under test' self.port_1_pos_term=port_1_pos_term assert port_1_neg_term in self.circ_netlist_obj.node_names, f'`{port_1_neg_term}` is not a node in the circuit under test' self.port_1_neg_term=port_1_neg_term #record the results in table self._build_control_table(display_table) def pz_mode_set(self, tf_type='voltage', pz_acu='pole-zero', display_table=False): """ Method to set the pole-zero analysis controls Args: tf_type (str; 'voltage'): the tf for wich the poles and zeros fit to if `voltage` the tf is of the form V_o/V_i else if `current` in the form of V_o/I_i pz_acu (str; 'pole-zero'): if `pole-zero` will attempt to get all the poles and zeros for the specfied transfer function; else if `zeros` or `poles` will get just the respective zeros or poles display_table (bool; False): when true will display the generated `self.control_df` below this method call in a jupyter notebook like environment Returns: Settings are recoded in `self.control_df` rows: `'tf_type'` & `'acqui_mode'` """ assert tf_type in self.allowed_control_statments.keys(), f'`{tf_type}` is not `voltage` or `current`' self.tf_type=tf_type assert pz_acu in self.allowed_control_statments.keys(), f'`{pz_acu}` is not `pole-zero` or `poles` or `zeros`' self.pz_acu=pz_acu #record the results in table self._build_control_table(display_table) def _build_control_table(self, display_table=True): """ Internal method to build a pz control table to display pz simulation settings Args: display_table (bool; True): when true will display the generated `self.control_df` below this method call in a jupyter notebook like environment Returns: creates dataframe table `self.control_df` that records pz simulation controls if `display_table` is true will force showing under jupyter notebook cell """ self.control_df=pd.DataFrame(columns=['value'], index=['tf_type', 'acqui_mode', 'port_0_terms+-', 'port_1_terms+-' ]) if hasattr(self, 'tf_type'): self.control_df.at['tf_type']=self.tf_type if hasattr(self, 'pz_acu'): self.control_df.at['acqui_mode']=self.pz_acu if hasattr(self, 'port_0_pos_term') and hasattr(self, 'port_0_neg_term') : self.control_df.at['port_0_terms+-', 'value']=[self.port_0_pos_term, self.port_0_neg_term] if hasattr(self, 'port_1_pos_term') and hasattr(self, 'port_1_neg_term') : self.control_df.at['port_1_terms+-', 'value']=[self.port_1_pos_term, self.port_1_neg_term] self.control_df.index.name='pz_sim_control' if display_table: display(self.control_df) def do_pz_sim(self, display_table=False): """ Method to perform the pole-zero simulation based on values stored in self.control_df If the simulation does not converge will give a warning with a basic debug action but will set `self.pz_values` to empty dict. TODO: - add simulation kwargs - flush out exception handling """ attriputs_to_check=['port_0_pos_term', 'port_0_neg_term', 'port_1_pos_term', 'port_1_neg_term', 'tf_type', 'pz_acu'] for i in attriputs_to_check: if hasattr(self, i): pz_is_go=True else: pz_is_go=False warnings.warn(f'{i} has not been set; pole-zero simulation will not procdede till set') if pz_is_go: self.sim=self.circ_netlist_obj.simulator() #I cant catch the warning when it hangs so going to have to do this self.pz_values={} try: self.pz_values=self.sim.polezero( node1=self.port_0_pos_term, node2=self.port_0_neg_term, node3=self.port_1_pos_term, node4=self.port_1_neg_term, tf_type=self.allowed_control_statments[self.tf_type], pz_type=self.allowed_control_statments[self.pz_acu] ) self._record_pz_results(display_table) except pspice.Spice.NgSpice.Shared.NgSpiceCommandError: self.pz_values={} warnings.warn("""PZ analysis did not converge with the current setting: start by changing the tf type (self.tf_type) and pz acusisiton type (self.pz_acu) """) def _record_pz_results(self, display_table=True): """ Internal method to record the PZ results to a dataframe Args: display_table (bool; True): when true will display the generated `self.control_df` below this method call in a jupyter notebook like environment Returns: creates dataframe table `self.pz_results_DF` that records pz simulation results if `display_table` is true will force showing under jupyter notebook cell """ self.pz_results_DF=
pd.DataFrame(columns=['Type', 'Values'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 3 10:06:21 2018 @author: rucsa """ import pandas as pd import datetime import numpy as np import tables import check_data_and_prices_helpers as help def add_returns(): #fundamentals_2016 = pd.read_hdf("../sources/fundamentals_2016_msci_regions.hdf5", "dataset1/x") fundamentals_2017 =
pd.read_hdf("../sources/fundamentals_2017_msci_regions.hdf5", "dataset1/x")
pandas.read_hdf
import pytest from siuba.tests.helpers import data_frame import pandas as pd from siuba.experimental.pd_groups.translate import method_agg_op, method_el_op, method_el_op2 from siuba.experimental.pd_groups.groupby import broadcast_agg #TODO: # - what if they have mandatory, non-data args? # - support accessor methods like _.x.str.upper() # - support .expanding and .rolling data_dt = data_frame( g = ['a', 'a', 'b', 'b'], x = pd.to_datetime(["2019-01-01 01:01:01", "2020-04-08 02:02:02", "2021-07-15 03:03:03", "2022-10-22 04:04:04"]) ) data_str = data_frame( g = ['a', 'a', 'b', 'b'], x = ['abc', 'cde', 'fg', 'h'] ) data_default = data_frame( g = ['a', 'a', 'b', 'b'], x = [10, 11, 12, 13], y = [1,2,3,4] ) data = { 'dt': data_dt, 'str': data_str, None: data_default } # Test translator ============================================================= from pandas.testing import assert_frame_equal, assert_series_equal from siuba.experimental.pd_groups.groupby import GroupByAgg, SeriesGroupBy f_min = method_agg_op('min', is_property = False, accessor = None) f_add = method_el_op2('add', is_property = False, accessor = None) f_abs = method_el_op('abs', is_property = False, accessor = None) f_df_size = lambda x: GroupByAgg.from_result(x.size(), x) # GroupByAgg is liskov substitutable, so check that our functions operate # like similarly substitutable subtypes. This means that... # * input type is the same or more general, and # * output type is the same or more specific @pytest.mark.parametrize('f_op, f_dst, cls_result', [ # aggregation 1-arity # f(SeriesGroupBy) -> GroupByAgg <= f(GroupByAgg) -> GroupByAgg (lambda g: f_min(g.x), lambda g: g.x.min(), GroupByAgg), (lambda g: f_min(f_min(g.x)), lambda g: g.x.min(), GroupByAgg), # elementwise 1-arity # f(GroupByAgg) -> GroupByAgg <= f(SeriesGroupBy) -> SeriesGroupBy (lambda g: f_abs(f_min(g.x)), lambda g: g.x.min().abs(), GroupByAgg), (lambda g: f_abs(g.x), lambda g: g.obj.x.abs(), SeriesGroupBy), # elementwise 2-arity # f(GroupByAgg, GroupByAgg) -> GroupByAgg <= f(GroupByAgg, SeriesGroupBy) -> SeriesGroupBy (lambda g: f_add(f_min(g.x), f_min(g.y)), lambda g: g.x.min() + g.y.min(), GroupByAgg), (lambda g: f_add(g.x, f_min(g.y)), lambda g: g.obj.x + g.y.transform('min'), SeriesGroupBy), (lambda g: f_add(g.x, g.y), lambda g: g.obj.x + g.obj.y, SeriesGroupBy), ]) def test_grouped_translator_methods(f_op, f_dst, cls_result): g = data_default.groupby('g') res = f_op(g) # needs to be exact, since GroupByAgg is subclass of SeriesGroupBy assert type(res) is cls_result dst = f_dst(g) assert_series_equal(res.obj, dst, check_names = False) @pytest.mark.parametrize('f_op, f_dst', [ (lambda g: f_add(f_min(g.x), f_min(g.y)), lambda g: g.x.transform('min') + g.y.transform('min')), (lambda g: f_min(g.x), lambda g: g.x.transform('min')), (lambda g: f_min(f_min(g.x)), lambda g: g.x.transform('min')), (lambda g: f_abs(f_min(g.x)), lambda g: g.x.transform('min').abs()), # Note that there's no way to transform a DF method, so use an arbitrary column (lambda g: f_df_size(g), lambda g: g.x.transform('size')), ]) def test_agg_groupby_broadcasted_equal_to_transform(f_op, f_dst): g = data_default.groupby('g') res = f_op(g) # needs to be exact, since GroupByAgg is subclass of SeriesGroupBy assert type(res) is GroupByAgg dst = f_dst(g) broadcasted = broadcast_agg(res) assert_series_equal(broadcasted, dst, check_names = False) # Test generic functions ====================================================== def test_fast_mutate_basic(): # sanity check of https://github.com/machow/siuba/issues/355 from siuba.siu import _ res_df = data_default.groupby("g") >> fast_mutate(num = _.x / _.y * 100) res = res_df.num dst = data_default.x / data_default.y * 100
assert_series_equal(res.obj, dst, check_names=False)
pandas.testing.assert_series_equal
import pandas as pd import numpy as np from functions.load_wtdata import load_wtdata from pathlib import Path import gc import tempfile import os #Configs db_config = {'table_cast_park_dic':'1_cast_park_table_dic','host':"127.0.0.1",'user':"itestit",'password':"<PASSWORD>",'db':"SCHistorical_DB"} exclude_columns = ['alarm_block_code','alarm_all','alarm_all_block_code','alarm','ot','ot_block_code','ot_all','ot_all_block_code'] datetime_name = 'date_time' result_folder = 'results' if not os.path.exists(result_folder): os.makedirs(result_folder) batch_size = 500 Marging=15 #15 dias antes los datos son malos. # 2014-2015 # 'unix_timestamp_ini':1388534400, # 'unix_timestamp_end':1420070399, # 2015-2016 # 'unix_timestamp_ini':1420070499, # 'unix_timestamp_end':1451606399, # 2014-2016 #'unix_timestamp_ini':1388534400, #'unix_timestamp_end':1451606399, # 2016-> #'unix_timestamp_ini_test':1451606400, #'unix_timestamp_end_test':1498236799, #wt_query = {'timesteps':100,'epochs':50,'class_weight':{0: 1.,1: 10.},'ld_id':194,'ld_code':"B211",'wp_id':20,'wp_code':"izco",'seconds_to_aggregate':600,'array_id_walm':"607,608,613,627,631,659",'array_ot':"10067,10068",'freq_dat_med_min':10,'fault':'Gbox','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1388534400,'unix_timestamp_end':1420070399,'unix_timestamp_ini_test':1420070499,'unix_timestamp_end_test':1500000000} #wt_query = {'timesteps':100,'epochs':50,'class_weight':{0: 1.,1: 500.},'ld_id':212,'ld_code':"B312",'wp_id':20,'wp_code':"izco",'seconds_to_aggregate':600,'array_id_walm':"614,615,616,636,639,641",'array_ot':"10004",'freq_dat_med_min':10,'fault':'Gen','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1388534400,'unix_timestamp_end':1420070399,'unix_timestamp_ini_test':1420070499,'unix_timestamp_end_test':1500000000} #wt_query = {'timesteps':100,'epochs':50,'class_weight':{0: 1.,1: 100.},'ld_id':211,'ld_code':"B311",'wp_id':20,'wp_code':"izco",'seconds_to_aggregate':600,'array_id_walm':"614,615,616,636,639,641",'array_ot':"10004",'freq_dat_med_min':10,'fault':'Gen','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1388534400,'unix_timestamp_end':1451606399,'unix_timestamp_ini_test':1420070499,'unix_timestamp_end_test':1500000000} #wt_query = {'timesteps':100,'epochs':50,'class_weight':{0: 1.,1: 500.},'ld_id':189,'ld_code':"B206",'wp_id':20,'wp_code':"izco",'seconds_to_aggregate':600,'array_id_walm':"614,615,616,636,639,641",'array_ot':"10004",'freq_dat_med_min':10,'fault':'Gen','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1388534400,'unix_timestamp_end':1420070399,'unix_timestamp_ini_test':1420070499,'unix_timestamp_end_test':1500000000} #wt_query = {'timesteps':100,'epochs':50,'class_weight':{0: 1.,1: 500.},'ld_id':179,'ld_code':"B113",'wp_id':20,'wp_code':"izco",'seconds_to_aggregate':600,'array_id_walm':"614,615,616,636,639,641",'array_ot':"10004",'freq_dat_med_min':10,'fault':'Gen','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1388534400,'unix_timestamp_end':1420070399,'unix_timestamp_ini_test':1420070499,'unix_timestamp_end_test':1500000000} wt_query = {'timesteps':100,'epochs':50,'class_weight':{0: 1.,1: 500.},'ld_id':201,'ld_code':"B301",'wp_id':20,'wp_code':"izco",'seconds_to_aggregate':600,'array_id_walm':"614,615,616,636,639,641",'array_ot':"10004",'freq_dat_med_min':10,'fault':'Gen','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1388534400,'unix_timestamp_end':1420070399,'unix_timestamp_ini_test':1420070499,'unix_timestamp_end_test':1500000000} #Fuhrlander #wt_query = {'timesteps':50,'epochs':10,'class_weight':{0: 1.,1: 500.},'ld_id':80,'ld_code':"FL701",'wp_id':13,'wp_code':"sant",'seconds_to_aggregate':300,'array_id_walm':"1271,1329,964,1306,2302,2304,2306,1369,1370",'array_ot':"",'freq_dat_med_min':5,'fault':'Gbox','type':"phealtdeep",'filter':"",'power_condition':"",'include_variables':"",'exclude_variables':"regex:model|fake_data|^SPCosPhi|^FrecRed|^Estado",'target_name':"alarm",'unix_timestamp_ini':1325376000,'unix_timestamp_end':1356998399,'unix_timestamp_ini_test':1388534400,'unix_timestamp_end_test':1420070399} timesteps=wt_query['timesteps'] filename=str(result_folder+'/'+wt_query['ld_code'])+'_wtdata_train_'+wt_query['fault']+'_'+wt_query['target_name']+'_'+str(wt_query['unix_timestamp_ini'])+'_'+str(wt_query['unix_timestamp_end'])+'.csv.gz' if not Path(filename).is_file(): print(filename+" not found...Downloading train data...") wtdata_train=load_wtdata(wt_query=wt_query,db_config=db_config) wtdata_train.to_csv(filename, sep=',',index =False,compression='gzip') else: print("Loading disk train data...") wtdata_train = pd.read_csv(filename, sep=',', compression='gzip',low_memory=False) #Format date_time wtdata_train[datetime_name]=pd.to_datetime(wtdata_train[datetime_name],format='%Y-%m-%d %H:%M:%S') if wt_query['target_name']=='alarm' and 'ot_all' in wtdata_train.columns: #wtdata_train.loc[wtdata_train['ot_all'] == 1, 'alarm'] = 0 wtdata_train = wtdata_train[wtdata_train['ot_all'] != 1] if wt_query['target_name']=='alarm' and 'ot' in wtdata_train.columns: wtdata_train=wtdata_train[wtdata_train['ot'] != 1] #Modify alarm to do pre_alarm #from datetime import datetime, timedelta #Anticipation = 14 #Marging=14 #dates_prealarm=[] #active_alarms=wtdata_train[wtdata_train[wt_query['target_name']]==1][datetime_name].values #for alarm in active_alarms: # for m in range(0,Marging): # dates_prealarm.append(alarm - np.timedelta64(Anticipation+m, 'D')) #wtdata_train.loc[wtdata_train[datetime_name].isin(active_alarms),wt_query['target_name']]=0 #wtdata_train.loc[wtdata_train[datetime_name].isin(dates_prealarm),wt_query['target_name']]=1 from datetime import datetime, timedelta dates_prealarm=[] active_alarms=wtdata_train[wtdata_train[wt_query['target_name']]==1][datetime_name].values for alarm in active_alarms: for m in range(0,Marging): dates_prealarm.append(alarm - np.timedelta64(m, 'D')) wtdata_train.loc[wtdata_train[datetime_name].isin(active_alarms),wt_query['target_name']]=0 wtdata_train.loc[wtdata_train[datetime_name].isin(dates_prealarm),wt_query['target_name']]=1 del dates_prealarm, active_alarms a=set(wtdata_train.columns) a.difference to_drop = set(wtdata_train.columns).intersection(exclude_columns).difference([wt_query['target_name']]) if any(to_drop): wtdata_train = wtdata_train.drop(to_drop, axis=1) #Identify columns all NA idx_NA_columns_train = pd.isnull(wtdata_train).sum()>0.9*wtdata_train.shape[0] if any(idx_NA_columns_train): wtdata_train=wtdata_train.drop(idx_NA_columns_train[idx_NA_columns_train==True].index,axis=1) wtdata_train = wtdata_train.dropna(axis=0,how='any',subset=set(wtdata_train.columns).difference(['date_time'])) y_train = wtdata_train.loc[:, wt_query['target_name']] y_train = y_train.as_matrix() X_train = wtdata_train.drop([wt_query['target_name']], axis=1) del wtdata_train gc.collect() ## Splitting the dataset into the Training set and Test set #def non_shuffling_train_test_split(X, y, test_size=0.2): # import numpy as np # i = int((1 - test_size) * X.shape[0]) + 1 # X_train, X_test = np.split(X, [i]) # y_train, y_test = np.split(y, [i]) # return X_train, X_test, y_train, y_test # #X_train, X_test, y_train, y_test = non_shuffling_train_test_split(X, y, test_size = 0.1) #Copy and Drop date_time X_train_df=X_train[datetime_name] to_drop = set(X_train.columns).intersection([datetime_name,wt_query['target_name']]) X_train=X_train.drop(to_drop, axis=1) num_features = X_train.shape[1] num_rows = X_train.shape[0] # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train.as_matrix()) # Reshaping #X_train = np.reshape(X_train, (X_train.shape[0], 1,X_train.shape[1])) # Creating a data structure with timesteps and t+1 output #Save in disk to get free memory temp_train = tempfile.NamedTemporaryFile(prefix='temp_train') X_temp_timestepped=np.memmap(temp_train, dtype='float64', mode='w+', shape=((X_train.shape[0]-timesteps),timesteps,X_train.shape[1])) #X_temp_timestepped=np.empty(shape=((num_rows-timesteps)*timesteps,num_features)) #X_temp_timestepped=np.memmap('temp_matrix.tmp', dtype='float64', mode='w+', shape=((num_rows-timesteps)*timesteps,num_features)) for i in range(timesteps,X_train.shape[0]): X_temp_timestepped[i-timesteps,:]=np.reshape(X_train[i-timesteps:i, :],(timesteps,X_train.shape[1])) X_train=X_temp_timestepped del X_temp_timestepped y_train=y_train[timesteps:] gc.collect() #Disable GPU os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "-1" #Seed np.random.seed(123) from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM filename_model=str(result_folder+'/'+wt_query['ld_code'])+'_wtdata_train_'+wt_query['fault']+'_'+wt_query['target_name']+'_'+str(wt_query['unix_timestamp_ini'])+'_'+str(wt_query['unix_timestamp_end'])+'_model' if not Path(filename_model+'.json').is_file(): def build_classifier2(input_dim): classifier = Sequential() classifier.add(LSTM(units = 10, return_sequences=True,input_shape = (timesteps,input_dim[1]))) classifier.add(LSTM(units = 10, return_sequences=True)) classifier.add(LSTM(units = 10)) classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) return classifier classifier2 = build_classifier2([X_train.shape[0],X_train.shape[2]]) # Fitting the ANN to the Training set classifier2.fit(np.array(X_train), np.array(y_train), batch_size = batch_size, epochs = wt_query['epochs'],class_weight = wt_query['class_weight']) #Save model # serialize model to JSON model_json = classifier2.to_json() filename_model=str(result_folder+'/'+wt_query['ld_code'])+'_wtdata_train_'+wt_query['fault']+'_'+wt_query['target_name']+'_'+str(wt_query['unix_timestamp_ini'])+'_'+str(wt_query['unix_timestamp_end'])+'_model' with open(filename_model+'.json', "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 classifier2.save_weights(filename_model+'.h5') print("Saved model to disk") else: json_file = open(filename_model + '.json', 'r') classifier2 = json_file.read() json_file.close() from keras.models import model_from_json classifier2 = model_from_json(classifier2) # load weights into new model classifier2.load_weights(filename_model+'.h5') print("Loaded model from disk") # # load json and create model # json_file = open(filename_model+'.json', 'r') # classifier2 = json_file.read() # json_file.close() # from keras.models import model_from_json # classifier2 = model_from_json(classifier2) # # load weights into new model # classifier2.load_weights(filename_model+'.h5') # print("Loaded model from disk") ## Load test data bk_ini=wt_query['unix_timestamp_ini'] bk_end=wt_query['unix_timestamp_end'] wt_query['unix_timestamp_ini']=wt_query['unix_timestamp_ini_test'] wt_query['unix_timestamp_end']=wt_query['unix_timestamp_end_test'] filename=str(result_folder+'/'+wt_query['ld_code'])+'_wtdata_test_'+wt_query['fault']+'_'+wt_query['target_name']+'_'+str(wt_query['unix_timestamp_ini'])+'_'+str(wt_query['unix_timestamp_end'])+'.csv.gz' if not Path(filename).is_file(): print(filename + " not found...Downloading test data...") wtdata_test=load_wtdata(wt_query=wt_query,db_config=db_config) wtdata_test.to_csv(filename, sep=',',index =False,compression='gzip') else: print("Loading disk test data...") wtdata_test = pd.read_csv(filename, sep=',', compression='gzip',low_memory=False) wt_query['unix_timestamp_ini']=bk_ini wt_query['unix_timestamp_end']=bk_end wtdata_test[datetime_name]=pd.to_datetime(wtdata_test[datetime_name],format='%Y-%m-%d %H:%M:%S') if wt_query['target_name']=='alarm' and 'ot_all' in wtdata_test.columns: wtdata_test.loc[wtdata_test['ot_all'] == 1, 'alarm'] = 0 if wt_query['target_name']=='alarm' and 'ot' in wtdata_test.columns: wtdata_test.loc[wtdata_test['ot'] == 1, 'alarm'] = 0 to_drop = set(wtdata_test.columns).intersection(exclude_columns).difference([wt_query['target_name']]) if any(to_drop): wtdata_test = wtdata_test.drop(to_drop, axis=1) dates_prealarm=[] active_alarms=wtdata_test[wtdata_test[wt_query['target_name']]==1][datetime_name].values for alarm in active_alarms: for m in range(0,Marging): dates_prealarm.append(alarm - np.timedelta64(m, 'D')) wtdata_test.loc[wtdata_test[datetime_name].isin(active_alarms),wt_query['target_name']]=0 wtdata_test.loc[wtdata_test[datetime_name].isin(dates_prealarm),wt_query['target_name']]=1 if any(idx_NA_columns_train): wtdata_test=wtdata_test.drop(idx_NA_columns_train[idx_NA_columns_train==True].index,axis=1) wtdata_test = wtdata_test.dropna(axis=0,how='any',subset=set(wtdata_test.columns).difference(['date_time'])) y_test = wtdata_test.loc[:, wt_query['target_name']] y_test = y_test.as_matrix() X_test = wtdata_test.drop([wt_query['target_name']], axis=1) del wtdata_test X_test_df=X_test[datetime_name] to_drop = set(X_test.columns).intersection([datetime_name,wt_query['target_name']]) X_test=X_test.drop(to_drop, axis=1) X_test = sc.transform(X_test.as_matrix()) temp_test = tempfile.NamedTemporaryFile(prefix='temp_train') X_temp_timestepped=np.memmap(temp_test, dtype='float64', mode='w+', shape=((X_test.shape[0]-timesteps),timesteps,X_test.shape[1])) #X_temp_timestepped=np.empty(shape=((num_rows-timesteps)*timesteps,num_features)) #X_temp_timestepped=np.memmap('temp_matrix.tmp', dtype='float64', mode='w+', shape=((num_rows-timesteps)*timesteps,num_features)) for i in range(timesteps,X_test.shape[0]): X_temp_timestepped[i-timesteps,:]=np.reshape(X_test[i-timesteps:i, :],(timesteps,X_test.shape[1])) X_test=X_temp_timestepped del X_temp_timestepped y_test=y_test[timesteps:] gc.collect() ## End prepare test data # Predicting the Test set results y_pred = classifier2.predict(X_test) y_pred_df =
pd.DataFrame(y_pred)
pandas.DataFrame
# # Prepare the hvorg_movies # import os import datetime import pickle import json import numpy as np import pandas as pd from sunpy.time import parse_time # The sources ids get_sources_ids = 'getDataSources.json' # Save the data save_directory = os.path.expanduser('~/Data/hvanalysis/derived') # Read in the data directory = os.path.expanduser('~/Data/hvanalysis/source') hvorg_movies = 'movies.csv' hvorg_movies = 'movies_20171128.csv' path = os.path.expanduser(os.path.join(directory, hvorg_movies)) df =
pd.read_csv(path)
pandas.read_csv
import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal # from http://imachordata.com/2016/02/05/you-complete-me/ @pytest.fixture def df1(): return pd.DataFrame( { "Year": [1999, 2000, 2004, 1999, 2004], "Taxon": [ "Saccharina", "Saccharina", "Saccharina", "Agarum", "Agarum", ], "Abundance": [4, 5, 2, 1, 8], } ) def test_empty_column(df1): """Return dataframe if `columns` is empty.""" assert_frame_equal(df1.complete(), df1) def test_MultiIndex_column(df1): """Raise ValueError if column is a MultiIndex.""" df = df1 df.columns = [["A", "B", "C"], list(df.columns)] with pytest.raises(ValueError): df1.complete(["Year", "Taxon"]) def test_column_duplicated(df1): """Raise ValueError if column is duplicated in `columns`""" with pytest.raises(ValueError): df1.complete( columns=[ "Year", "Taxon", {"Year": lambda x: range(x.Year.min().x.Year.max() + 1)}, ] ) def test_type_columns(df1): """Raise error if columns is not a list object.""" with pytest.raises(TypeError): df1.complete(columns="Year") def test_fill_value_is_a_dict(df1): """Raise error if fill_value is not a dictionary""" with pytest.raises(TypeError): df1.complete(columns=["Year", "Taxon"], fill_value=0) def test_wrong_column_fill_value(df1): """Raise ValueError if column in `fill_value` does not exist.""" with pytest.raises(ValueError): df1.complete(columns=["Taxon", "Year"], fill_value={"year": 0}) def test_wrong_data_type_dict(df1): """ Raise ValueError if value in dictionary is not a 1-dimensional object. """ with pytest.raises(ValueError): df1.complete(columns=[{"Year": pd.DataFrame([2005, 2006, 2007])}]) frame = pd.DataFrame( { "Year": [1999, 2000, 2004, 1999, 2004], "Taxon": [ "Saccharina", "Saccharina", "Saccharina", "Agarum", "Agarum", ], "Abundance": [4, 5, 2, 1, 8], } ) wrong_columns = ( (frame, ["b", "Year"]), (frame, [{"Yayay": range(7)}]), (frame, ["Year", ["Abundant", "Taxon"]]), (frame, ["Year", ("Abundant", "Taxon")]), ) empty_sub_columns = [ (frame, ["Year", []]), (frame, ["Year", {}]), (frame, ["Year", ()]), ] @pytest.mark.parametrize("frame,wrong_columns", wrong_columns) def test_wrong_columns(frame, wrong_columns): """Test that ValueError is raised if wrong column is supplied.""" with pytest.raises(ValueError): frame.complete(columns=wrong_columns) @pytest.mark.parametrize("frame,empty_sub_cols", empty_sub_columns) def test_empty_subcols(frame, empty_sub_cols): """Raise ValueError for an empty group in columns""" with pytest.raises(ValueError): frame.complete(columns=empty_sub_cols) def test_fill_value(df1): """Test fill_value argument.""" output1 = pd.DataFrame( { "Year": [1999, 1999, 2000, 2000, 2004, 2004], "Taxon": [ "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", ], "Abundance": [1, 4.0, 0, 5, 8, 2], } ) result = df1.complete( columns=["Year", "Taxon"], fill_value={"Abundance": 0} ) assert_frame_equal(result, output1) @pytest.fixture def df1_output(): return pd.DataFrame( { "Year": [ 1999, 1999, 2000, 2000, 2001, 2001, 2002, 2002, 2003, 2003, 2004, 2004, ], "Taxon": [ "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", ], "Abundance": [1.0, 4, 0, 5, 0, 0, 0, 0, 0, 0, 8, 2], } ) def test_fill_value_all_years(df1, df1_output): """ Test the complete function accurately replicates for all the years from 1999 to 2004. """ result = df1.complete( columns=[ {"Year": lambda x: range(x.Year.min(), x.Year.max() + 1)}, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, df1_output) def test_dict_series(df1, df1_output): """ Test the complete function if a dictionary containing a Series is present in `columns`. """ result = df1.complete( columns=[ { "Year": lambda x: pd.Series( range(x.Year.min(), x.Year.max() + 1) ) }, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, df1_output) def test_dict_series_duplicates(df1, df1_output): """ Test the complete function if a dictionary containing a Series (with duplicates) is present in `columns`. """ result = df1.complete( columns=[ { "Year": pd.Series( [1999, 2000, 2000, 2001, 2002, 2002, 2002, 2003, 2004] ) }, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, df1_output) def test_dict_values_outside_range(df1): """ Test the output if a dictionary is present, and none of the values in the dataframe, for the corresponding label, is not present in the dictionary's values. """ result = df1.complete( columns=[("Taxon", "Abundance"), {"Year": np.arange(2005, 2007)}] ) expected = pd.DataFrame( [ {"Taxon": "Agarum", "Abundance": 1, "Year": 1999}, {"Taxon": "Agarum", "Abundance": 1, "Year": 2005}, {"Taxon": "Agarum", "Abundance": 1, "Year": 2006}, {"Taxon": "Agarum", "Abundance": 8, "Year": 2004}, {"Taxon": "Agarum", "Abundance": 8, "Year": 2005}, {"Taxon": "Agarum", "Abundance": 8, "Year": 2006}, {"Taxon": "Saccharina", "Abundance": 2, "Year": 2004}, {"Taxon": "Saccharina", "Abundance": 2, "Year": 2005}, {"Taxon": "Saccharina", "Abundance": 2, "Year": 2006}, {"Taxon": "Saccharina", "Abundance": 4, "Year": 1999}, {"Taxon": "Saccharina", "Abundance": 4, "Year": 2005}, {"Taxon": "Saccharina", "Abundance": 4, "Year": 2006}, {"Taxon": "Saccharina", "Abundance": 5, "Year": 2000}, {"Taxon": "Saccharina", "Abundance": 5, "Year": 2005}, {"Taxon": "Saccharina", "Abundance": 5, "Year": 2006}, ] ) assert_frame_equal(result, expected) # adapted from https://tidyr.tidyverse.org/reference/complete.html complete_parameters = [ ( pd.DataFrame( { "group": [1, 2, 1], "item_id": [1, 2, 2], "item_name": ["a", "b", "b"], "value1": [1, 2, 3], "value2": [4, 5, 6], } ), ["group", "item_id", "item_name"], pd.DataFrame( { "group": [1, 1, 1, 1, 2, 2, 2, 2], "item_id": [1, 1, 2, 2, 1, 1, 2, 2], "item_name": ["a", "b", "a", "b", "a", "b", "a", "b"], "value1": [ 1.0, np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 2.0, ], "value2": [ 4.0, np.nan, np.nan, 6.0, np.nan, np.nan, np.nan, 5.0, ], } ), ), ( pd.DataFrame( { "group": [1, 2, 1], "item_id": [1, 2, 2], "item_name": ["a", "b", "b"], "value1": [1, 2, 3], "value2": [4, 5, 6], } ), ["group", ("item_id", "item_name")], pd.DataFrame( { "group": [1, 1, 2, 2], "item_id": [1, 2, 1, 2], "item_name": ["a", "b", "a", "b"], "value1": [1.0, 3.0, np.nan, 2.0], "value2": [4.0, 6.0, np.nan, 5.0], } ), ), ] @pytest.mark.parametrize("df,columns,output", complete_parameters) def test_complete(df, columns, output): "Test the complete function, with and without groupings." assert_frame_equal(df.complete(columns), output) @pytest.fixture def duplicates(): return pd.DataFrame( { "row": [ "21.08.2020", "21.08.2020", "21.08.2020", "21.08.2020", "22.08.2020", "22.08.2020", "22.08.2020", "22.08.2020", ], "column": ["A", "A", "B", "C", "A", "B", "B", "C"], "value": [43.0, 36, 36, 28, 16, 40, 34, 0], } ) # https://stackoverflow.com/questions/63541729/ # pandas-how-to-include-all-columns-for-all-rows-although-value-is-missing-in-a-d # /63543164#63543164 def test_duplicates(duplicates): """Test that the complete function works for duplicate values.""" df = pd.DataFrame( { "row": { 0: "21.08.2020", 1: "21.08.2020", 2: "21.08.2020", 3: "21.08.2020", 4: "22.08.2020", 5: "22.08.2020", 6: "22.08.2020", }, "column": {0: "A", 1: "A", 2: "B", 3: "C", 4: "A", 5: "B", 6: "B"}, "value": {0: 43, 1: 36, 2: 36, 3: 28, 4: 16, 5: 40, 6: 34}, } ) result = df.complete(columns=["row", "column"], fill_value={"value": 0}) assert_frame_equal(result, duplicates) def test_unsorted_duplicates(duplicates): """Test output for unsorted duplicates.""" df = pd.DataFrame( { "row": { 0: "22.08.2020", 1: "22.08.2020", 2: "21.08.2020", 3: "21.08.2020", 4: "21.08.2020", 5: "21.08.2020", 6: "22.08.2020", }, "column": { 0: "B", 1: "B", 2: "A", 3: "A", 4: "B", 5: "C", 6: "A", }, "value": {0: 40, 1: 34, 2: 43, 3: 36, 4: 36, 5: 28, 6: 16}, } ) result = df.complete(columns=["row", "column"], fill_value={"value": 0}) assert_frame_equal(result, duplicates) # https://stackoverflow.com/questions/32874239/ # how-do-i-use-tidyr-to-fill-in-completed-rows-within-each-value-of-a-grouping-var def test_grouping_first_columns(): """ Test complete function when the first entry in columns is a grouping. """ df2 = pd.DataFrame( { "id": [1, 2, 3], "choice": [5, 6, 7], "c": [9.0, np.nan, 11.0], "d": [ pd.NaT, pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-29 00:00:00"), ], } ) output2 = pd.DataFrame( { "id": [1, 1, 1, 2, 2, 2, 3, 3, 3], "c": [9.0, 9.0, 9.0, np.nan, np.nan, np.nan, 11.0, 11.0, 11.0], "d": [ pd.NaT, pd.NaT, pd.NaT, pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-29 00:00:00"), pd.Timestamp("2015-09-29 00:00:00"), pd.Timestamp("2015-09-29 00:00:00"), ], "choice": [5, 6, 7, 5, 6, 7, 5, 6, 7], } ) result = df2.complete(columns=[("id", "c", "d"), "choice"])
assert_frame_equal(result, output2)
pandas.testing.assert_frame_equal
# -*- coding:utf-8 _*- """ @author:<NAME> @time: 2019/12/02 """ from urllib.parse import unquote import pandas as pd from redis import ConnectionPool, Redis from scrapy.utils.project import get_project_settings from dingxiangyuan import settings from sqlalchemy import create_engine from DBUtils.PooledDB import PooledDB class DBPoolHelper(object): def __init__(self, dbname, user=None, password=None, db_type='postgressql', host='localhost', port=5432): """ # sqlite3 # 连接数据库文件名,sqlite不支持加密,不使用用户名和密码 import sqlite3 config = {"datanase": "path/to/your/dbname.db"} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) # mysql import pymysql pool = PooledDB(pymysql,5,host='localhost', user='root',passwd='<PASSWORD>',db='myDB',port=3306) #5为连接池里的最少连接数 # postgressql import psycopg2 POOL = PooledDB(creator=psycopg2, host="127.0.0.1", port="5342", user, password, database) # sqlserver import pymssql pool = PooledDB(creator=pymssql, host=host, port=port, user=user, password=password, database=database, charset="utf8") :param type: """ if db_type == 'postgressql': import psycopg2 pool = PooledDB(creator=psycopg2, host=host, port=port, user=user, password=password, database=dbname) elif db_type == 'mysql': import pymysql pool = PooledDB(pymysql, 5, host='localhost', user='root', passwd='<PASSWORD>', db='myDB',port=3306) # 5为连接池里的最少连接数 elif db_type == 'sqlite': import sqlite3 config = {"datanase": dbname} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) else: raise Exception('请输入正确的数据库类型, db_type="postgresql" or db_type="mysql" or db_type="sqlite"' ) self.conn = pool.connection() self.cursor = self.conn.cursor() def connect_close(self): """关闭连接""" self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): self.cursor.execute(sql, params) # 执行这个语句 self.conn.commit() def fetchone(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchone() return data def fetchall(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchall() return data def pandas_db_helper(): """ 'postgresql://postgres:[email protected]:5432/xiaomuchong' "mysql+pymysql://root:[email protected]:3306/srld?charset=utf8mb4" "sqlite: ///sqlite3.db" """ engine = create_engine(settings.DATABASE_ENGINE) conn = engine.connect() return conn def redis_init(): settings = get_project_settings() if settings["REDIS_PARAMS"]: pool = ConnectionPool(host=settings["REDIS_HOST"], port=settings["REDIS_PORT"], password=settings["REDIS_PARAMS"]['password']) else: pool = ConnectionPool(host=settings["REDIS_HOST"], port=settings["REDIS_PORT"]) conn = Redis(connection_pool=pool) return conn redis_conn = redis_init() db_conn = pandas_db_helper() def cal_page_url(row): topic_url, reply_num = row[0], row[1] page_num = reply_num // 35 + 1 redis_conn.sadd('topic_page_urls', topic_url) for page in range(2, page_num + 1): redis_conn.sadd('topic_page_urls', f'{topic_url}?ppg={page}') print(topic_url) def insert_redis_topic_page_urls(): data = pd.read_sql(sql="topics", con=db_conn, columns=["topic_url", "reply_num"]) data.apply(cal_page_url, axis=1) def get_topic_left_start_urls(): topic_urls = pd.read_sql(sql="select distinct topic_url from posts_replies", con=db_conn) topic_urls_floor_one = pd.read_sql(sql="select topic_url from posts_replies where floor=1", con=db_conn) has_topic_urls = set(topic_urls['topic_url']) - set(topic_urls_floor_one['topic_url']) topic_page_urls = redis_conn.smembers('topic_page_urls') start_urls = {url.decode() for url in topic_page_urls if url.decode().split('?')[0] in has_topic_urls} print(len(has_topic_urls), len(start_urls)) def get_user_start_urls(): """ 获取用户表起始url """ user_urls = pd.read_sql(sql="select distinct author_url from posts_replies", con=db_conn) moderator_urls = pd.read_sql(sql="select distinct moderator_url_list from board", con=db_conn) moderator_urls_list = [url for moderator_list in moderator_urls['moderator_url_list'].str.split('; ') for url in moderator_list] for url in user_urls['author_url']: redis_conn.sadd('dingxiangke_start_urls', url) for url in moderator_urls_list: redis_conn.sadd('dingxiangke_start_urls', url) print('添加完成') def insert_into_topic_rate(): """ 插入积分表 """ postgres = DBPoolHelper(db_type='postgressql', dbname='dingxiangyuan', user='postgres', password='<PASSWORD>', host='localhost', port='5432') data1 = pd.read_sql(sql="select topic_url from posts_replies where floor=1", con=db_conn) data2 = pd.read_sql(sql="select topic_url from topic_rate_get", con=db_conn) topic_urls = set(data1['topic_url']) - set(data2['topic_url']) for topic_url in topic_urls: res = pd.read_sql(sql='select topic_type, board_name from posts_replies where floor=1 and topic_url=%s', con=db_conn, params=(topic_url,)) topic_type, board_name = res['topic_type'].values[0], res['board_name'].values[0] try: postgres.execute(sql="INSERT INTO topic_rate_get(topic_url, topic_type, board_name, rate_get) VALUES(%s, %s, %s, 0)", params=(topic_url, topic_type, board_name)) print('插入成功') except Exception as e: print('插入失败', e) postgres.connect_close() def delete_empty_topic_url(): """ 删除主题帖不存在的回复 """ postgres = DBPoolHelper(db_type='postgressql', dbname='dingxiangyuan', user='postgres', password='<PASSWORD>', host='localhost', port='5432') data1 = pd.read_sql('select topic_url from posts_replies where floor=1', con=db_conn) data2 = pd.read_sql('select distinct topic_url from posts_replies', con=db_conn) topic_urls = set(data2['topic_url']) - set(data1['topic_url']) # topic_urls = {'http://www.dxy.cn/bbs/topic/16938569', 'http://www.dxy.cn/bbs/topic/30229085', 'http://www.dxy.cn/bbs/topic/16568390', 'http://www.dxy.cn/bbs/topic/36096787', 'http://www.dxy.cn/bbs/topic/15125086', 'http://www.dxy.cn/bbs/topic/17948811', 'http://www.dxy.cn/bbs/topic/25201985', 'http://cardiovascular.dxy.cn/bbs/topic/36725028', 'http://www.dxy.cn/bbs/topic/7716905', 'http://www.dxy.cn/bbs/topic/14908986', 'http://www.dxy.cn/bbs/topic/40363469', 'http://www.dxy.cn/bbs/topic/25248231', 'http://www.dxy.cn/bbs/topic/11875242', 'http://cardiovascular.dxy.cn/bbs/topic/29575155', 'http://chest.dxy.cn/bbs/topic/11838188', 'http://www.dxy.cn/bbs/topic/18213734', 'http://www.dxy.cn/bbs/topic/1546642', 'http://www.dxy.cn/bbs/topic/28689847', 'http://www.dxy.cn/bbs/topic/24223943', 'http://www.dxy.cn/bbs/topic/11647123'} # print(len(topic_urls)) for url in topic_urls: try: postgres.execute('delete from posts_replies where topic_url=%s', params=(url,)) print('删除成功') except Exception as e: print('删除失败', e) postgres.connect_close() def update_user_url(): """ 更新用户url """ postgres = DBPoolHelper(db_type='postgressql', dbname='dingxiangyuan', user='postgres', password='<PASSWORD>', host='localhost', port='5432') def url_unquote(url): global Num unquote_url = unquote(url) print(url, unquote_url) try: postgres.execute(sql='update dingxiangke set user_url_unquote=%s where user_url=%s', params=(unquote_url, url)) Num += 1 print('更新成功', Num) except Exception as e: print('更新失败', e) data = pd.read_sql(sql='select distinct user_url from dingxiangke', con=db_conn) data['user_url'].apply(url_unquote) def delete_user_invalid_posts(): postgres = DBPoolHelper(db_type='postgressql', dbname='dingxiangyuan', user='postgres', password='<PASSWORD>', host='localhost', port='5432') data1 = pd.read_sql(sql='select distinct author_url from posts_replies', con=db_conn) data2 = pd.read_sql(sql='select distinct user_url_unquote from dingxiangke', con=db_conn) author_urls = set(data1['author_url']) - set(data2['user_url_unquote']) # user_urls = set(data2['user_url_unquote']) - set(data1['author_url']) # print(len(author_urls), len(user_urls)) for user_url in author_urls: try: postgres.execute(sql='delete from posts_replies where author_url=%s', params=(user_url,)) print('删除成功', user_url) except Exception as e: print('删除失败', e) postgres.connect_close() def calc_board_size(): """ 计算社区规模 """ data1 = pd.read_sql(sql='''select board_name board, to_char(post_time, 'YYYY') as year, count(distinct topic_url) as topics_nums from posts_replies where floor=1 GROUP BY board_name, year''', con=db_conn) data2 = pd.read_sql(sql='''select board_name board, to_char(post_time, 'YYYY') as year, count(distinct author_url) users_num from posts_replies GROUP BY board_name, year;''', con=db_conn) data = pd.merge(data2, data1, on=['board', 'year']) def board_size(row): return round(row.users_num / row.topics_nums, 4) data['board_size'] = data.apply(board_size) data.to_excel('res/env_board_size.xlsx', engine='xlsxwriter', index=False) def calc_board_members_level_quality(): """ 计算社区板块成员质量 """ data_list = [] board_names = ['心血管', '呼吸胸外', '肿瘤医学', '神经内外', '危重急救', '内分泌', '消化内科', '肾脏泌尿', '感染'] for board in board_names: data = pd.read_sql(sql='''select board_name, to_char(posts_replies.post_time, 'YYYY') as year, user_level, count(distinct dingxiangke.user_url) user_count,sum(dingxiangke.posts) 用户总发帖数 from dingxiangke inner join posts_replies on posts_replies.author_url=dingxiangke.user_url_unquote where posts_replies.board_name=%s GROUP BY board_name, year, user_level''', con=db_conn, params=(board, )) for year in data.year.unique(): user_nums = data.loc[data.year == year, 'user_count'].sum() high_user_nums = data.loc[(data.year == year) & (~data.user_level.isin(['常驻站友', '入门站友', '铁杆站友'])), 'user_count'].sum() high_user_prop = round(high_user_nums / user_nums, 4) data_list.append({'board': board, 'year': year, 'high_user_prop': high_user_prop}) df = pd.DataFrame(data=data_list) df.to_excel('res/borad_user_quality.xlsx', index=False, engine='xlsxwriter') # df.to_csv('res/borad_user_quality.csv', index=False, encoding='utf_8_sig') def calc_board_members_identify_quality(): """ 计算社区板块成员质量 """ data_list = [] board_names = ['心血管', '呼吸胸外', '肿瘤医学', '神经内外', '危重急救', '内分泌', '消化内科', '肾脏泌尿', '感染'] for board in board_names: data =
pd.read_sql(sql='''select board_name, to_char(posts_replies.post_time, 'YYYY') as year, author_identify, count(distinct dingxiangke.user_url) user_count from dingxiangke inner join posts_replies on posts_replies.author_url=dingxiangke.user_url_unquote where posts_replies.board_name='心血管' GROUP BY board_name, year, author_identify''', con=db_conn, params=(board, ))
pandas.read_sql
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class CoercionBase(object): klasses = ['index', 'series'] dtypes = ['object', 'int64', 'float64', 'complex128', 'bool', 'datetime64', 'datetime64tz', 'timedelta64', 'period'] @property def method(self): raise NotImplementedError(self) def _assert(self, left, right, dtype): # explicitly check dtype to avoid any unexpected result if isinstance(left, pd.Series): tm.assert_series_equal(left, right) elif isinstance(left, pd.Index): tm.assert_index_equal(left, right) else: raise NotImplementedError self.assertEqual(left.dtype, dtype) self.assertEqual(right.dtype, dtype) def test_has_comprehensive_tests(self): for klass in self.klasses: for dtype in self.dtypes: method_name = 'test_{0}_{1}_{2}'.format(self.method, klass, dtype) if not hasattr(self, method_name): msg = 'test method is not defined: {0}, {1}' raise AssertionError(msg.format(type(self), method_name)) class TestSetitemCoercion(CoercionBase, tm.TestCase): method = 'setitem' def _assert_setitem_series_conversion(self, original_series, loc_value, expected_series, expected_dtype): """ test series value's coercion triggered by assignment """ temp = original_series.copy() temp[1] = loc_value tm.assert_series_equal(temp, expected_series) # check dtype explicitly for sure self.assertEqual(temp.dtype, expected_dtype) # .loc works different rule, temporary disable # temp = original_series.copy() # temp.loc[1] = loc_value # tm.assert_series_equal(temp, expected_series) def test_setitem_series_object(self): obj = pd.Series(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Series(['a', 1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Series(['a', 1.1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = pd.Series(['a', 1 + 1j, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = pd.Series(['a', True, 'c', 'd']) self._assert_setitem_series_conversion(obj, True, exp, np.object) def test_setitem_series_int64(self): obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1, exp, np.int64) # int + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.int64) # int + complex -> complex exp = pd.Series([1, 1 + 1j, 3, 4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # int + bool -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, True, exp, np.int64) def test_setitem_series_float64(self): obj = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Series([1.1, 1.1, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.float64) # float + complex -> complex exp = pd.Series([1.1, 1 + 1j, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # float + bool -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, True, exp, np.float64) def test_setitem_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) def test_setitem_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1, exp, np.bool) # TODO_GH12747 The result must be int # assigning int greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 3, exp, np.bool) # bool + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1., 1.1, 1., 0.])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.bool) # bool + complex -> complex (buggy, results in bool) # TODO_GH12747 The result must be complex # tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 1, 0])) # self.assertEqual(temp.dtype, np.complex128) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.bool) # bool + bool -> bool exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, True, exp, np.bool) def test_setitem_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2011-01-02', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz -> datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_setitem_series_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp(1, tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns, US/Eastern]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_timedelta64(self): pass def test_setitem_series_period(self): pass def _assert_setitem_index_conversion(self, original_series, loc_key, expected_index, expected_dtype): """ test index's coercion triggered by assign key """ temp = original_series.copy() temp[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) temp = original_series.copy() temp.loc[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) def test_setitem_index_object(self): obj = pd.Series([1, 2, 3, 4], index=list('abcd')) self.assertEqual(obj.index.dtype, np.object) # object + object -> object exp_index = pd.Index(list('abcdx')) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) # object + int -> IndexError, regarded as location temp = obj.copy() with tm.assertRaises(IndexError): temp[5] = 5 # object + float -> object exp_index = pd.Index(['a', 'b', 'c', 'd', 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.object) def test_setitem_index_int64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.index.dtype, np.int64) # int + int -> int exp_index = pd.Index([0, 1, 2, 3, 5]) self._assert_setitem_index_conversion(obj, 5, exp_index, np.int64) # int + float -> float exp_index = pd.Index([0, 1, 2, 3, 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.float64) # int + object -> object exp_index = pd.Index([0, 1, 2, 3, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_float64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(obj.index.dtype, np.float64) # float + int -> int temp = obj.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 5.1]) self._assert_setitem_index_conversion(obj, 5.1, exp_index, np.float64) # float + object -> object exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_complex128(self): pass def test_setitem_index_bool(self): pass def test_setitem_index_datetime64(self): pass def test_setitem_index_datetime64tz(self): pass def test_setitem_index_timedelta64(self): pass def test_setitem_index_period(self): pass class TestInsertIndexCoercion(CoercionBase, tm.TestCase): klasses = ['index'] method = 'insert' def _assert_insert_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by insert """ target = original.copy() res = target.insert(1, value) tm.assert_index_equal(res, expected) self.assertEqual(res.dtype, expected_dtype) def test_insert_index_object(self): obj = pd.Index(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Index(['a', 1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Index(['a', 1.1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1.1, exp, np.object) # object + bool -> object res = obj.insert(1, False) tm.assert_index_equal(res, pd.Index(['a', False, 'b', 'c', 'd'])) self.assertEqual(res.dtype, np.object) # object + object -> object exp = pd.Index(['a', 'x', 'b', 'c', 'd']) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_int64(self): obj = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Index([1, 1, 2, 3, 4]) self._assert_insert_conversion(obj, 1, exp, np.int64) # int + float -> float exp = pd.Index([1, 1.1, 2, 3, 4]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # int + bool -> int exp = pd.Index([1, 0, 2, 3, 4]) self._assert_insert_conversion(obj, False, exp, np.int64) # int + object -> object exp = pd.Index([1, 'x', 2, 3, 4]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_float64(self): obj = pd.Float64Index([1., 2., 3., 4.]) self.assertEqual(obj.dtype, np.float64) # float + int -> int exp = pd.Index([1., 1., 2., 3., 4.]) self._assert_insert_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Index([1., 1.1, 2., 3., 4.]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # float + bool -> float exp = pd.Index([1., 0., 2., 3., 4.]) self._assert_insert_conversion(obj, False, exp, np.float64) # float + object -> object exp = pd.Index([1., 'x', 2., 3., 4.]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_complex128(self): pass def test_insert_index_bool(self): pass def test_insert_index_datetime64(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_datetime64tz(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') val = pd.Timestamp('2012-01-01', tz='US/Eastern') self._assert_insert_conversion(obj, val, exp, 'datetime64[ns, US/Eastern]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='Asia/Tokyo')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_timedelta64(self): obj = pd.TimedeltaIndex(['1 day', '2 day', '3 day', '4 day']) self.assertEqual(obj.dtype, 'timedelta64[ns]') # timedelta64 + timedelta64 => timedelta64 exp = pd.TimedeltaIndex(['1 day', '10 day', '2 day', '3 day', '4 day']) self._assert_insert_conversion(obj, pd.Timedelta('10 day'), exp, 'timedelta64[ns]') # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_period(self): obj = pd.PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M') self.assertEqual(obj.dtype, 'period[M]') # period + period => period exp = pd.PeriodIndex(['2011-01', '2012-01', '2011-02', '2011-03', '2011-04'], freq='M') self._assert_insert_conversion(obj, pd.Period('2012-01', freq='M'), exp, 'period[M]') # period + datetime64 => object exp = pd.Index([pd.Period('2011-01', freq='M'), pd.Timestamp('2012-01-01'), pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, np.object) # period + int => object exp = pd.Index([pd.Period('2011-01', freq='M'), 1, pd.Period('2011-02', freq='M'),
pd.Period('2011-03', freq='M')
pandas.Period
from utils import load_yaml import pandas as pd import click from datetime import datetime, timedelta import numpy as np import os cli = click.Group() @cli.command() @click.option('--lan', default='en') @click.option('--config', default="configs/configuration.yaml") def dump(lan, config, country_code): # load the tweets of the requested language config = load_yaml(config)[lan] data = pd.read_csv(config['path']+"tweets_id_0.csv") tweets = data[data.is_retweet == False] # fetch only tweets from yesterday tweets.set_index(pd.to_datetime(tweets.created_at, format='%a %b %d %H:%M:%S +0000 %Y'), inplace=True) yesterday = datetime.now() - timedelta(1) # filter past ones (the cron should run at 00:00:01) tweets = tweets[tweets.index >= yesterday] tweets.to_csv(config['path']+"."+str(yesterday)[:10]+"."+country_code+".csv", index=False) @cli.command() @click.option('--lan', default='en') @click.option('--config', default="configs/configuration.yaml") @click.option('--days', default=7) @click.option('--country_code', default="US") def aggregate_n_dump(lan, config, days, country_code): # load the tweets of the requested language config = load_yaml(config)[lan] paths = [filepath for filepath in os.listdir(config['path']) if filepath.endswith(".csv")] dataframes = [pd.read_csv(config['path']+filepath, lineterminator='\n') for filepath in paths] data = pd.concat(dataframes) tweets = data[data.is_retweet == False] tweets['day'] = pd.to_datetime(tweets.created_at, format='%a %b %d %H:%M:%S +0000 %Y').dt.strftime('%Y-%m-%d') # fetch only tweets from yesterday tweets.set_index(pd.to_datetime(tweets.created_at, format='%a %b %d %H:%M:%S +0000 %Y'), inplace=True) past = datetime.now() - timedelta(days) # filter past ones (the cron should run at 00:00:01) tweets = tweets[tweets.index >= past] tweets = tweets[tweets.country_code == country_code] tweets = tweets[tweets.full_name.notna()] tweets["state"] = tweets.full_name.apply(find_us_state) places =
pd.DataFrame()
pandas.DataFrame
# ------------------------------------------ # Copyright (c) Rygor. 2021. # ------------------------------------------ """ Configuration file management """ import os import pathlib import sys import datetime import errno import click from appdirs import user_data_dir import pandas as pd from typing import Optional class Config: """Configuration file management""" def __init__(self, path="", ini_name="") -> None: self.path = path if path != "" else user_data_dir("nbrb_by", appauthor=False) self.ini_name = ini_name if ini_name != "" else "nbrb_config.ini" self.config_path = os.path.join(self.set_path(path=self.path), self.ini_name) if not os.path.isfile(self.config_path): click.echo("Загружаю справочник валют") ret = self.create() if ret is None: click.echo("List of currencies is reloaded") else: click.echo(ret) def read(self, currency: str, datum: str) -> str: """Return currency information object after reading configuration file""" date_to_compare = datetime.datetime.strptime(datum, "%Y-%m-%d").date() currency = str(currency).upper() data = pd.read_json(self.config_path, orient="records", convert_dates=False) data["Cur_DateStart"] =
pd.to_datetime(data["Cur_DateStart"])
pandas.to_datetime
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error import seaborn as sns from scipy import stats import math def clean_data(df): """ INPUT df_listings - pandas dataframe OUTPUT X - A matrix holding all of the variables you want to consider when predicting the response y - the corresponding response vector This function cleans df_listings using the following steps to produce X and y: 1. Drop rows with 0 price and outlier prices (prices above 2950) 2. Create y as the price column, transformed by log 3. Create X from selected columns 4. Deal with missing values 5. Create dummy variables for selected categorical variables, drop the original columns """ # Drop rows with 0 price df = df[df.price > 0] df = df[df.price < 2950] # Create y y = df['price'].apply(math.log) # Select columns for X potential_vars = ['host_listings_count', 'calculated_host_listings_count_private_rooms', 'neighbourhood_cleansed', 'room_type', 'property_type', 'beds', 'availability_365', 'number_of_reviews', 'neighborhood_overview', 'space', 'notes', 'transit', 'access', 'interaction', 'house_rules', 'host_about', 'host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification',] bool_vars = ['host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification'] free_text_vars = ['neighborhood_overview', 'space', 'notes', 'transit', 'access', 'interaction', 'house_rules', 'host_about'] df = df[potential_vars] # Deal with missing values df['number_of_reviews'].fillna(0, inplace=True) df[bool_vars].fillna('f', inplace=True) df[free_text_vars].fillna('', inplace=True) def translate_bool(col): for index, value in col.iteritems(): col[index] = 1 if value == 't' else 0 return col def create_bool(col): for index, value in col.iteritems(): col[index] = 0 if value == '' else 1 return col fill_mean = lambda col: col.fillna(col.mean()) num_vars = df.select_dtypes(include=['int', 'float']).columns df[num_vars] = df[num_vars].apply(fill_mean, axis=0) df[bool_vars] = df[bool_vars].apply(translate_bool, axis=0) df[bool_vars].dtype = int df[free_text_vars] = df[free_text_vars].apply(create_bool, axis=0) df[free_text_vars].dtype = int # Dummy the categorical variables cat_vars = ['neighbourhood_cleansed', 'room_type', 'property_type'] for var in cat_vars: # for each cat add dummy var, drop original column df = pd.concat([df.drop(var, axis=1), pd.get_dummies(df[var], prefix=var, prefix_sep='_', drop_first=True)], axis=1) X = df return X, y def find_optimal_lm_mod(X, y, cutoffs, test_size = .30, random_state=42, plot=True): ''' INPUT X - pandas dataframe, X matrix y - pandas dataframe, response variable cutoffs - list of ints, cutoff for number of non-zero values in dummy categorical vars test_size - float between 0 and 1, default 0.3, determines the proportion of data as test data random_state - int, default 42, controls random state for train_test_split plot - boolean, default 0.3, True to plot result OUTPUT r2_scores_test - list of floats of r2 scores on the test data r2_scores_train - list of floats of r2 scores on the train data lm_model - model object from sklearn X_train, X_test, y_train, y_test - output from sklearn train test split used for optimal model ''' r2_scores_test, r2_scores_train, num_feats, results = [], [], [], dict() for cutoff in cutoffs: #reduce X matrix reduce_X = X.iloc[:, np.where((X.sum() > cutoff) == True)[0]] num_feats.append(reduce_X.shape[1]) #split the data into train and test X_train, X_test, y_train, y_test = train_test_split(reduce_X, y, test_size = test_size, random_state=random_state) #fit the model and obtain pred response lm_model = LinearRegression(normalize=True) lm_model.fit(X_train, y_train) y_test_preds = lm_model.predict(X_test) y_train_preds = lm_model.predict(X_train) #append the r2 value from the test set r2_scores_test.append(r2_score(y_test, y_test_preds)) r2_scores_train.append(r2_score(y_train, y_train_preds)) results[str(cutoff)] = r2_score(y_test, y_test_preds) if plot: plt.plot(num_feats, r2_scores_test, label="Test", alpha=.5) plt.plot(num_feats, r2_scores_train, label="Train", alpha=.5) plt.xlabel('Number of Features') plt.ylabel('Rsquared') plt.title('Rsquared by Number of Features') plt.legend(loc=1) plt.show() best_cutoff = max(results, key=results.get) #reduce X matrix reduce_X = X.iloc[:, np.where((X.sum() > int(best_cutoff)) == True)[0]] num_feats.append(reduce_X.shape[1]) #split the data into train and test X_train, X_test, y_train, y_test = train_test_split(reduce_X, y, test_size = test_size, random_state=random_state) #fit the model lm_model = LinearRegression(normalize=True) lm_model.fit(X_train, y_train) return r2_scores_test, r2_scores_train, lm_model, X_train, X_test, y_train, y_test def main(): plot = False # set to true if you would like to see plots print_log = True # set to true if you would like to see stats outputted to console print_result = True # Data Exploration desired_width=320 pd.set_option('display.width', desired_width) pd.set_option('display.max_columns', 50) # Get a sense of the numerical data in the available datasets. df_listings = pd.read_csv('data/listings_boston.csv', dtype={"price": str, "weekly_price": str, "monthly_price": str, "security_deposit": str, "cleaning_fee": str, "extra_people": str, "host_response_rate": str}) # clean up price data to make it numeric df_listings.loc[:, "price"] = df_listings["price"].str.replace(',', '').str.replace('$', '').astype('float') df_listings.loc[:, "weekly_price"] = df_listings["weekly_price"].str.replace(',', '').str.replace('$', '').astype('float') df_listings.loc[:, "monthly_price"] = df_listings["monthly_price"].str.replace(',', '').str.replace('$', '').astype('float') df_listings.loc[:, "security_deposit"] = df_listings["security_deposit"].str.replace(',', '').str.replace('$', '').astype('float') df_listings.loc[:, "cleaning_fee"] = df_listings["cleaning_fee"].str.replace(',', '').str.replace('$', '').astype('float') df_listings.loc[:, "extra_people"] = df_listings["extra_people"].str.replace(',', '').str.replace('$', '').astype('float') df_listings["host_response_rate"].fillna("0", inplace=True) df_listings.loc[:, "host_response_rate"] = df_listings["host_response_rate"].str.replace('%', '').astype('int') if print_log: print(df_listings.describe()) df_neighborhoods = pd.read_csv('data/neighbourhoods_boston.csv') if print_log: print(df_neighborhoods.describe()) df_reviews =
pd.read_csv('data/reviews_boston.csv')
pandas.read_csv
""" Get data for past matches """ import requests import pandas as pd import json import os from mappings import regions_map, game_mode_map, match_cols, player_cols # get the starting gameID for the API calls try: final_gameID_df = pd.read_csv(os.path.join('output', 'matchData.csv'), usecols=['match_id']) if len(final_gameID_df) == 1: final_gameID = 5992892504 else: final_gameID = final_gameID_df.min()[0] - 1 except pd.errors.EmptyDataError: final_gameID = 5992892504 # instantiate dataframe that will hold API call processed data total_match_df = pd.DataFrame() try: for match_id in range(final_gameID, final_gameID - 300, -1): match = requests.get('https://api.opendota.com/api/matches/{}'.format(match_id)) match = json.loads(match.text) if len(match) == 1: continue match_df = pd.json_normalize(match) match_missing_cols = set(match_cols).difference(match_df.columns) match_existing_cols = set(match_cols).intersection(match_df.columns) match_df = match_df[match_existing_cols] match_missing_df = pd.DataFrame(columns=match_missing_cols) match_df =
pd.concat([match_df, match_missing_df], 1)
pandas.concat
import os from nose.tools import * import unittest import pandas as pd import numpy as np import py_entitymatching as em from py_entitymatching.utils.generic_helper import get_install_path import py_entitymatching.catalog.catalog_manager as cm import py_entitymatching.utils.catalog_helper as ch from py_entitymatching.io.parsers import read_csv_metadata #import sys #sys.path.insert(0, '../debugblocker') #import debugblocker as db import py_entitymatching.debugblocker.debugblocker as db from operator import itemgetter from array import array datasets_path = os.sep.join([get_install_path(), 'tests', 'test_datasets']) catalog_datasets_path = os.sep.join([get_install_path(), 'tests', 'test_datasets', 'catalog']) debugblocker_datasets_path = os.sep.join([get_install_path(), 'tests', 'test_datasets', 'debugblocker']) path_a = os.sep.join([datasets_path, 'A.csv']) path_b = os.sep.join([datasets_path, 'B.csv']) path_c = os.sep.join([datasets_path, 'C.csv']) class DebugblockerTestCases(unittest.TestCase): def test_validate_types_1(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_ID', fk_rtable='rtable_ID', key = '_id') A_key = em.get_key(A) B_key = em.get_key(B) attr_corres = None db._validate_types(A, B, C, 100, attr_corres, False) def test_validate_types_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_' + A_key, fk_rtable='rtable_' + B_key, key = '_id') attr_corres = [('ID', 'ID'), ('name', 'name'), ('birth_year', 'birth_year'), ('hourly_wage', 'hourly_wage'), ('address', 'address'), ('zipcode', 'zipcode')] db._validate_types(A, B, C, 100, attr_corres, False) def test_check_input_field_correspondence_list_1(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) field_corres_list = None db._check_input_field_correspondence_list(A, B, field_corres_list) def test_check_input_field_correspondence_list_2(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) field_corres_list = [] db._check_input_field_correspondence_list(A, B, field_corres_list) @raises(AssertionError) def test_check_input_field_correspondence_list_3(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) field_corres_list = [('adsf', 'fdsa'), 'asdf'] db._check_input_field_correspondence_list(A, B, field_corres_list) @raises(AssertionError) def test_check_input_field_correspondence_list_4(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) field_corres_list = [('asdf', 'fdsa')] db._check_input_field_correspondence_list(A, B, field_corres_list) @raises(AssertionError) def test_check_input_field_correspondence_list_5(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) field_corres_list = [('address', 'fdsa')] db._check_input_field_correspondence_list(A, B, field_corres_list) def test_check_input_field_correspondence_list_7(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) field_corres_list = [('zipcode', 'zipcode'), ('birth_year', 'birth_year')] db._check_input_field_correspondence_list(A, B, field_corres_list) def test_get_field_correspondence_list_1(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) expected_list = [('ID', 'ID'), ('name', 'name'), ('birth_year', 'birth_year'), ('hourly_wage', 'hourly_wage'), ('address', 'address'), ('zipcode', 'zipcode')] attr_corres = None corres_list = db._get_field_correspondence_list( A, B, A_key, B_key, attr_corres) self.assertEqual(corres_list, expected_list) attr_corres = [] corres_list = db._get_field_correspondence_list( A, B, A_key, B_key, attr_corres) self.assertEqual(corres_list, expected_list) def test_get_field_correspondence_list_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) expected_list = [('ID', 'ID'), ('name', 'name'), ('address', 'address'), ('zipcode', 'zipcode')] attr_corres = [('ID', 'ID'), ('name', 'name'), ('address', 'address'), ('zipcode', 'zipcode')] corres_list = db._get_field_correspondence_list( A, B, A_key, B_key, attr_corres) self.assertEqual(corres_list, expected_list) def test_get_field_correspondence_list_3(self): data = [[1, 'asdf', 'a0001']] A = pd.DataFrame(data) A.columns = ['Id', 'Title', 'ISBN'] A_key = 'Id' B = pd.DataFrame(data) B.columns = ['Id', 'title', 'ISBN'] B_key = 'Id' attr_corres = [] corres_list = db._get_field_correspondence_list( A, B, A_key, B_key, attr_corres) expected_list = [('Id', 'Id'), ('ISBN', 'ISBN')] self.assertEqual(corres_list, expected_list) @raises(AssertionError) def test_get_field_correspondence_list_4(self): data = [[1, 'asdf', 'a0001']] A = pd.DataFrame(data) A.columns = ['ID', 'Title', 'isbn'] A_key = 'ID' B = pd.DataFrame(data) B.columns = ['Id', 'title', 'ISBN'] B_key = 'Id' attr_corres = [] db._get_field_correspondence_list( A, B, A_key, B_key, attr_corres) def test_get_field_correspondence_list_5(self): A = pd.DataFrame([[0, 'A', 0.11, 'ASDF']]) A.columns = ['ID', 'name', 'price', 'desc'] em.set_key(A, 'ID') A_key = em.get_key(A) B = pd.DataFrame([['B', 'B001', 'ASDF', 0.111]]) B.columns = ['item_name', 'item_id', 'item_desc', 'item_price'] em.set_key(B, 'item_id') B_key = em.get_key(B) attr_corres = [('name', 'item_name'), ('price', 'item_price')] actual_attr_corres = db._get_field_correspondence_list( A, B, A_key, B_key, attr_corres) expected_attr_corres = [('name', 'item_name'), ('price', 'item_price'), ('ID', 'item_id')] self.assertEqual(expected_attr_corres, actual_attr_corres) def test_build_col_name_index_dict_1(self): A = pd.DataFrame([[]]) A.columns = [] col_index = db._build_col_name_index_dict(A) def test_build_col_name_index_dict_2(self): A = pd.DataFrame([[0, 'A', 0.11, 'ASDF']]) A.columns = ['ID', 'name', 'price', 'desc'] em.set_key(A, 'ID') col_index = db._build_col_name_index_dict(A) self.assertEqual(col_index['ID'], 0) self.assertEqual(col_index['name'], 1) self.assertEqual(col_index['price'], 2) self.assertEqual(col_index['desc'], 3) @raises(AssertionError) def test_filter_corres_list_1(self): A = pd.DataFrame([[0, 20, 0.11, 4576]]) A.columns = ['ID', 'age', 'price', 'zip code'] em.set_key(A, 'ID') B = pd.DataFrame([[0, 240, 0.311, 4474]]) B.columns = ['ID', 'age', 'price', 'zip code'] em.set_key(A, 'ID') A_key = 'ID' B_key = 'ID' ltable_col_dict = db._build_col_name_index_dict(A) rtable_col_dict = db._build_col_name_index_dict(B) attr_corres = [('ID', 'ID'), ('age', 'age'), ('price', 'price'), ('zip code', 'zip code')] db._filter_corres_list(A, B, A_key, B_key, ltable_col_dict, rtable_col_dict, attr_corres) def test_filter_corres_list_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) ltable_col_dict = db._build_col_name_index_dict(A) rtable_col_dict = db._build_col_name_index_dict(B) attr_corres = [('ID', 'ID'), ('name', 'name'), ('birth_year', 'birth_year'), ('hourly_wage', 'hourly_wage'), ('address', 'address'), ('zipcode', 'zipcode')] expected_filtered_attr = [('ID', 'ID'), ('name', 'name'), ('address', 'address')] db._filter_corres_list(A, B, A_key, B_key, ltable_col_dict, rtable_col_dict, attr_corres) self.assertEqual(expected_filtered_attr, attr_corres) def test_get_filtered_table(self): A = pd.DataFrame([['a1', 'A', 0.11, 53704]]) A.columns = ['ID', 'name', 'price', 'zip code'] em.set_key(A, 'ID') B = pd.DataFrame([['b1', 'A', 0.11, 54321]]) B.columns = ['ID', 'name', 'price', 'zip code'] em.set_key(B, 'ID') A_key = 'ID' B_key = 'ID' ltable_col_dict = db._build_col_name_index_dict(A) rtable_col_dict = db._build_col_name_index_dict(B) attr_corres = [('ID', 'ID'), ('name', 'name'), ('price', 'price'), ('zip code', 'zip code')] db._filter_corres_list(A, B, A_key, B_key, ltable_col_dict, rtable_col_dict, attr_corres) filtered_A, filtered_B = db._get_filtered_table(A, B, attr_corres) expected_filtered_A = pd.DataFrame([['a1', 'A']]) expected_filtered_A.columns = ['ID', 'name'] em.set_key(expected_filtered_A, 'ID') expected_filtered_B = pd.DataFrame([['b1', 'A']]) expected_filtered_B.columns = ['ID', 'name'] em.set_key(expected_filtered_B, 'ID') self.assertEqual(expected_filtered_A.equals(filtered_A), True) self.assertEqual(expected_filtered_B.equals(filtered_B), True) @raises(AssertionError) def test_get_feature_weight_1(self): A = [] dataframe = pd.DataFrame(A) db._get_feature_weight(dataframe) def test_get_feature_weight_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) cols_A = list(A.columns) cols_B = list(B.columns) corres_list = [(cols_A[0], cols_B[0]), (cols_A[1], cols_B[1]), (cols_A[4], cols_B[4]), (cols_A[5], cols_B[5])] A_filtered, B_filtered = db._get_filtered_table( A, B, corres_list) A_wlist = db._get_feature_weight(A_filtered) expected_A_wlist = [2.0, 2.0, 2.0, 1.4] self.assertEqual(A_wlist, expected_A_wlist) B_wlist = db._get_feature_weight(B_filtered) expected_B_wlist = [2.0, 2.0, 2.0, 1.3333333333333333] self.assertEqual(B_wlist, expected_B_wlist) def test_get_feature_weight_3(self): table = [[''], [np.nan]] dataframe = pd.DataFrame(table) weight_list = db._get_feature_weight(dataframe) self.assertEqual(weight_list, [0.0]) def test_select_features_1(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) actual_selected_features = db._select_features(A, B, A_key, B_key) expected_selected_features = [1, 3, 4, 2, 5] self.assertEqual(actual_selected_features, expected_selected_features) def test_select_features_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) cols_A = list(A.columns) cols_B = list(B.columns) corres_list = [(cols_A[0], cols_B[0]), (cols_A[1], cols_B[1]), (cols_A[4], cols_B[4])] A_filtered, B_filtered = db._get_filtered_table(A, B, corres_list) actual_selected_features = db._select_features( A_filtered, B_filtered, A_key, B_key) expected_selected_features = [1, 2] self.assertEqual(actual_selected_features, expected_selected_features) def test_select_features_3(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) cols_A = list(A.columns) cols_B = list(B.columns) corres_list = [(cols_A[0], cols_B[0])] A_filtered, B_filtered = db._get_filtered_table(A, B, corres_list) actual_selected_features = db._select_features( A_filtered, B_filtered, A_key, B_key) expected_selected_features = [] self.assertEqual(actual_selected_features, expected_selected_features) @raises(AssertionError) def test_select_features_4(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) cols_A = list(A.columns) cols_B = list(B.columns) A_field_set = [0, 1, 2] B_field_set = [0, 1, 2, 3] A_field_set = list(itemgetter(*A_field_set)(cols_A)) B_field_set = list(itemgetter(*B_field_set)(cols_B)) A_filtered = A[A_field_set] B_filtered = B[B_field_set] db._select_features( A_filtered, B_filtered, A_key, B_key) @raises(AssertionError) def test_select_features_5(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) cols_A = list(A.columns) cols_B = list(B.columns) A_field_set = [0, 1, 2, 3] B_field_set = [0, 1, 2] A_field_set = list(itemgetter(*A_field_set)(cols_A)) B_field_set = list(itemgetter(*B_field_set)(cols_B)) A_filtered = A[A_field_set] B_filtered = B[B_field_set] db._select_features( A_filtered, B_filtered, A_key, B_key) def test_build_id_to_index_map_1(self): A = read_csv_metadata(path_a, key='ID') key = em.get_key(A) actual_rec_id_to_idx = db._build_id_to_index_map(A, key) expected_rec_id_to_idx = {'a1': 0, 'a3': 2, 'a2': 1, 'a5': 4, 'a4': 3} self.assertEqual(actual_rec_id_to_idx, expected_rec_id_to_idx) @raises(AssertionError) def test_build_id_to_index_map_2(self): table = [['a1', 'hello'], ['a1', 'world']] key = 'ID' dataframe = pd.DataFrame(table) dataframe.columns = ['ID', 'title'] em.set_key(dataframe, key) db._build_id_to_index_map(dataframe, key) def test_replace_nan_to_empty_1(self): field = np.nan self.assertEqual(db._replace_nan_to_empty(field), '') def test_replace_nan_to_empty_2(self): field = '' self.assertEqual(db._replace_nan_to_empty(field), '') field = 'string' self.assertEqual(db._replace_nan_to_empty(field), 'string') def test_replace_nan_to_empty_3(self): field = 1 self.assertEqual(db._replace_nan_to_empty(field), '1') field = 3.57 self.assertEqual(db._replace_nan_to_empty(field), '4') field = 1234.5678e5 self.assertEqual(db._replace_nan_to_empty(field), '123456780') def test_get_tokenized_column_1(self): column = [] actual_ret_column = db._get_tokenized_column(column) expected_ret_column = [] self.assertEqual(actual_ret_column, expected_ret_column) def test_get_tokenized_column_2(self): column = ['hello world', np.nan, 'how are you', '', 'this is a blocking debugger'] actual_ret_column = db._get_tokenized_column(column) expected_ret_column = [['hello', 'world'], [''], ['how', 'are', 'you'], [''], ['this', 'is', 'a', 'blocking', 'debugger']] self.assertEqual(actual_ret_column, expected_ret_column) def test_get_tokenized_table_1(self): A = read_csv_metadata(path_a, key='ID') A_key = em.get_key(A) feature_list = range(len(A.columns)) actual_record_list = db._get_tokenized_table(A, A_key, feature_list) expected_record_list = [[('a1', 0), ('kevin', 1), ('smith', 1), ('1989', 2), ('30', 3), ('607', 4), ('from', 4), ('st,', 4), ('san', 4), ('francisco', 4), ('94107',5)], [('a2', 0), ('michael', 1), ('franklin', 1), ('1988', 2), ('28', 3), ('1652', 4), ('stockton', 4), ('st,', 4), ('san', 4), ('francisco', 4), ('94122', 5)], [('a3', 0), ('william', 1), ('bridge', 1), ('1986', 2), ('32', 3), ('3131', 4), ('webster', 4), ('st,', 4), ('san', 4), ('francisco', 4), ('94107', 5)], [('a4', 0), ('binto', 1), ('george', 1), ('1987', 2), ('32', 3), ('423', 4), ('powell', 4), ('st,', 4), ('san', 4), ('francisco', 4), ('94122', 5)], [('a5', 0), ('alphonse', 1), ('kemper', 1), ('1984', 2), ('35', 3), ('1702', 4), ('post', 4), ('street,', 4), ('san', 4), ('francisco', 4), ('94122', 5)]] self.assertEqual(actual_record_list, expected_record_list) def test_get_tokenized_table_2(self): B = read_csv_metadata(path_b, key='ID') B_key = em.get_key(B) feature_list = [0, 1, 3] actual_record_list = db._get_tokenized_table(B, B_key, feature_list) expected_record_list = [[('b1', 0), ('mark', 1), ('levene', 1), ('30', 2)], [('b2', 0), ('bill', 1), ('bridge', 1), ('32', 2)], [('b3', 0), ('mike', 1), ('franklin', 1), ('28', 2)], [('b4', 0), ('joseph', 1), ('kuan', 1), ('26', 2)], [('b5', 0), ('alfons', 1), ('kemper', 1), ('35', 2)], [('b6', 0), ('michael',1), ('brodie', 1), ('32', 2)]] self.assertEqual(actual_record_list, expected_record_list) def test_get_tokenized_table_3(self): table = [[1, 'abc abc asdf', '123-3456-7890', np.nan, '', '135 east abc st'], [2, 'aaa bbb', '000-111-2222', '', '', '246 west abc st'], [3, 'cc dd', '123-123-1231', 'cc', 'unknown', ' 246 west def st']] dataframe = pd.DataFrame(table) dataframe.columns = ['ID', 'name', 'phone', 'department', 'school', 'address'] key = 'ID' em.set_key(dataframe, key) feature_list = [1, 3, 4, 5] actual_record_list = db._get_tokenized_table(dataframe, key, feature_list) expected_record_list = [[('abc', 0), ('abc_1', 0), ('asdf', 0), ('135', 3), ('east', 3), ('abc_2', 3), ('st', 3)], [('aaa', 0), ('bbb', 0), ('246', 3), ('west', 3), ('abc', 3), ('st', 3)], [('cc', 0), ('dd', 0), ('cc_1', 1), ('unknown', 2), ('246', 3), ('west', 3), ('def', 3), ('st', 3)]] self.assertEqual(actual_record_list, expected_record_list) def test_build_global_token_order_impl_1(self): record_list = [] actual_dict = {} expected_dict = {} db._build_global_token_order_impl(record_list, actual_dict) self.assertEqual(actual_dict, expected_dict) record_list = [[], [], []] actual_dict = {} expected_dict = {} db._build_global_token_order_impl(record_list, actual_dict) self.assertEqual(actual_dict, expected_dict) def test_build_global_token_order_impl_2(self): record_list = [['c', 'b', 'a'], [], ['b', 'c'], ['c', 'c']] actual_dict = {} expected_dict = {'a': 1, 'c': 4, 'b': 2} db._build_global_token_order_impl(record_list, actual_dict) self.assertEqual(actual_dict, expected_dict) def test_build_global_token_order_1(self): l_record_list = [] r_record_list = [] expected_order_dict = {} expected_token_index_dict = {} order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) self.assertEqual(order_dict, expected_order_dict) self.assertEqual(token_index_dict, expected_token_index_dict) def test_build_global_token_order_2(self): l_record_list = [[], [], []] r_record_list = [[]] expected_order_dict = {} expected_token_index_dict = {} order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) self.assertEqual(order_dict, expected_order_dict) self.assertEqual(token_index_dict, expected_token_index_dict) def test_build_global_token_order_3(self): l_record_list = [['c', 'b', 'a'], [], ['b', 'c'], ['c', 'c']] r_record_list = [['e'], ['b', 'a']] expected_token_index_dict = {0: 'e', 1: 'a', 2: 'b', 3: 'c'} order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) self.assertEqual(order_dict['e'], 0) self.assertEqual(order_dict['a'], 1) self.assertEqual(order_dict['b'], 2) self.assertEqual(order_dict['c'], 3) self.assertEqual(token_index_dict, expected_token_index_dict) def test_replace_token_with_numeric_index_1(self): l_record_list = [] r_record_list = [] order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) expected_l_record_list = [] expected_r_record_list = [] db._replace_token_with_numeric_index(l_record_list, order_dict) db._replace_token_with_numeric_index(r_record_list, order_dict) self.assertEqual(l_record_list, expected_l_record_list) self.assertEqual(r_record_list, expected_r_record_list) def test_replace_token_with_numeric_index_2(self): l_record_list = [[], []] r_record_list = [[]] order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) expected_l_record_list = [[], []] expected_r_record_list = [[]] db._replace_token_with_numeric_index(l_record_list, order_dict) db._replace_token_with_numeric_index(r_record_list, order_dict) self.assertEqual(l_record_list, expected_l_record_list) self.assertEqual(r_record_list, expected_r_record_list) def test_replace_token_with_numeric_index_3(self): l_record_list = [[('c', 0), ('b', 0), ('a', 1)], [('b', 0), ('c', 1)]] r_record_list = [[('e', 0), ('b', 0)], [('b', 0), ('a', 1)]] order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) expected_l_record_list = [[(2, 0), (3, 0), (1, 1)], [(3, 0), (2, 1)]] expected_r_record_list = [[(0, 0), (3, 0)], [(3, 0), (1, 1)]] db._replace_token_with_numeric_index(l_record_list, order_dict) db._replace_token_with_numeric_index(r_record_list, order_dict) self.assertEqual(l_record_list, expected_l_record_list) self.assertEqual(r_record_list, expected_r_record_list) def test_sort_record_tokens_by_global_order_1(self): record_list = [] expected_record_list = [] db._sort_record_tokens_by_global_order(record_list) self.assertEqual(record_list, expected_record_list) def test_sort_record_tokens_by_global_order_2(self): record_list = [[], []] expected_record_list = [[], []] db._sort_record_tokens_by_global_order(record_list) self.assertEqual(record_list, expected_record_list) def test_sort_record_tokens_by_global_order_3(self): record_list = [[(3, 1), (4, 2), (100, 0), (1, 2)], [(2, 1), (0, 1), (10, 3)]] expected_record_list = [[(1, 2), (3, 1), (4, 2), (100, 0)], [(0, 1), (2,1), (10, 3)]] db._sort_record_tokens_by_global_order(record_list) self.assertEqual(record_list, expected_record_list) def test_sort_record_tokens_by_global_order_4(self): l_record_list = [[('c', 0), ('b', 0), ('a', 1)], [('b', 0), ('c', 1)]] r_record_list = [[('e', 0), ('b', 0)], [('b', 0), ('a', 1)]] order_dict, token_index_dict = db._build_global_token_order(l_record_list, r_record_list) expected_l_record_list = [[(1, 1), (2, 0), (3, 0)], [(2, 1), (3, 0)]] expected_r_record_list = [[(0, 0), (3, 0)], [(1, 1), (3, 0)]] db._replace_token_with_numeric_index(l_record_list, order_dict) db._replace_token_with_numeric_index(r_record_list, order_dict) db._sort_record_tokens_by_global_order(l_record_list) db._sort_record_tokens_by_global_order(r_record_list) self.assertEqual(l_record_list, expected_l_record_list) self.assertEqual(r_record_list, expected_r_record_list) def test_split_record_token_and_index_1(self): record_list = [] record_token_list, record_index_list =\ db._split_record_token_and_index(record_list) expected_record_token_list = [] expected_record_index_list = [] self.assertEqual(record_token_list, expected_record_token_list) self.assertEqual(record_index_list, expected_record_index_list) def test_split_record_token_and_index_2(self): record_list = [[], []] record_token_list, record_index_list =\ db._split_record_token_and_index(record_list) expected_record_token_list = [array('I'), array('I')] expected_record_index_list = [array('I'), array('I')] self.assertEqual(record_token_list, expected_record_token_list) self.assertEqual(record_index_list, expected_record_index_list) def test_split_record_token_and_index_3(self): record_list = [[(1, 2), (3, 1), (4, 2), (100, 0)], [(0, 1), (2, 1), (10, 3)]] record_token_list, record_index_list =\ db._split_record_token_and_index(record_list) expected_record_token_list = [array('I', [1, 3, 4, 100]), array('I', [0, 2, 10])] expected_record_index_list = [array('I', [2, 1, 2, 0]), array('I', [1, 1, 3])] self.assertEqual(record_token_list, expected_record_token_list) self.assertEqual(record_index_list, expected_record_index_list) def test_index_candidate_set_1(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') l_key = cm.get_key(A) r_key = cm.get_key(B) C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_' + l_key, fk_rtable='rtable_' + r_key, key = '_id') lrecord_id_to_index_map = db._build_id_to_index_map(A, l_key) rrecord_id_to_index_map = db._build_id_to_index_map(B, r_key) expected_cand_set = {0: set([0, 1, 5]), 1: set([2, 3, 4]), 2: set([0, 1, 5]), 3: set([2, 3, 4]), 4: set([2, 3, 4])} actual_cand_set = db._index_candidate_set(C, lrecord_id_to_index_map, rrecord_id_to_index_map, False) self.assertEqual(expected_cand_set, actual_cand_set) @raises(AssertionError) def test_index_candidate_set_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') l_key = cm.get_key(A) r_key = cm.get_key(B) C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_' + l_key, fk_rtable='rtable_' + r_key, key = '_id') C.loc[0, 'ltable_ID'] = 'aaaa' lrecord_id_to_index_map = db._build_id_to_index_map(A, l_key) rrecord_id_to_index_map = db._build_id_to_index_map(B, r_key) db._index_candidate_set(C, lrecord_id_to_index_map, rrecord_id_to_index_map, False) @raises(AssertionError) def test_index_candidate_set_3(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') l_key = cm.get_key(A) r_key = cm.get_key(B) C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_' + l_key, fk_rtable='rtable_' + r_key, key = '_id') C.loc[0, 'rtable_ID'] = 'bbbb' lrecord_id_to_index_map = db._build_id_to_index_map(A, l_key) rrecord_id_to_index_map = db._build_id_to_index_map(B, r_key) db._index_candidate_set(C, lrecord_id_to_index_map, rrecord_id_to_index_map, False) def test_index_candidate_set_4(self): A_list = [[1, 'asdf', 'fdas'], [2, 'fdsa', 'asdf']] B_list = [['B002', 'qqqq', 'wwww'], ['B003', 'rrrr', 'fdsa']] A = pd.DataFrame(A_list) A.columns = ['ID', 'f1', 'f2'] em.set_key(A, 'ID') B = pd.DataFrame(B_list) B.columns = ['ID', 'f1', 'f2'] em.set_key(B, 'ID') C_list = [[0, 1, 'B003'], [1, 2, 'B002']] C = pd.DataFrame(C_list) C.columns = ['_id', 'ltable_ID', 'rtable_ID'] cm.set_candset_properties(C, '_id', 'ltable_ID', 'rtable_ID', A, B) lrecord_id_to_index_map = db._build_id_to_index_map(A, 'ID') rrecord_id_to_index_map = db._build_id_to_index_map(B, 'ID') expected_cand_set = {0: set([1]), 1: set([0])} actual_cand_set = db._index_candidate_set(C, lrecord_id_to_index_map, rrecord_id_to_index_map, False) self.assertEqual(expected_cand_set, actual_cand_set) @raises(AssertionError) def test_index_candidate_set_5(self): A_list = [[1, 'asdf', 'fdas'], [2, 'fdsa', 'asdf']] B_list = [['B002', 'qqqq', 'wwww'], ['B003', 'rrrr', 'fdsa']] A = pd.DataFrame(A_list) A.columns = ['ID', 'f1', 'f2'] em.set_key(A, 'ID') B = pd.DataFrame(B_list) B.columns = ['ID', 'f1', 'f2'] em.set_key(B, 'ID') C_list = [[0, 1, 'B001'], [1, 2, 'B002']] C = pd.DataFrame(C_list) C.columns = ['_id', 'ltable_ID', 'rtable_ID'] cm.set_candset_properties(C, '_id', 'ltable_ID', 'rtable_ID', A, B) lrecord_id_to_index_map = db._build_id_to_index_map(A, 'ID') rrecord_id_to_index_map = db._build_id_to_index_map(B, 'ID') db._index_candidate_set(C, lrecord_id_to_index_map, rrecord_id_to_index_map, False) def test_index_candidate_set_6(self): A_list = [[1, 'asdf', 'fdas'], [2, 'fdsa', 'asdf']] B_list = [['B002', 'qqqq', 'wwww'], ['B003', 'rrrr', 'fdsa']] A = pd.DataFrame(A_list) A.columns = ['ID', 'f1', 'f2'] em.set_key(A, 'ID') B = pd.DataFrame(B_list) B.columns = ['ID', 'f1', 'f2'] em.set_key(B, 'ID') C = pd.DataFrame() lrecord_id_to_index_map = db._build_id_to_index_map(A, 'ID') rrecord_id_to_index_map = db._build_id_to_index_map(B, 'ID') new_C = db._index_candidate_set(C, lrecord_id_to_index_map, rrecord_id_to_index_map, False) self.assertEqual(new_C, {}) def test_calc_table_field_length_1(self): record_index_list = [] field_length_list = db._calc_table_field_length(record_index_list, 4) expected_field_length_list = [] self.assertEqual(field_length_list, expected_field_length_list) def test_calc_table_field_length_2(self): record_index_list = [array('I', [2, 1, 2, 0]), array('I', [1, 1, 3])] field_length_list = db._calc_table_field_length(record_index_list, 4) expected_field_length_list = [array('I', [1, 1, 2, 0]), array('I', [0, 2, 0, 1])] self.assertEqual(field_length_list, expected_field_length_list) @raises(AssertionError) def test_calc_table_field_length_3(self): record_index_list = [array('I', [2, 1, 2, 0]), array('I', [1, 1, 3])] field_length_list = db._calc_table_field_length(record_index_list, 3) expected_field_length_list = [array('I', [1, 1, 2, 0]), array('I', [0, 2, 0, 1])] self.assertEqual(field_length_list, expected_field_length_list) def test_calc_table_field_token_sum_1(self): field_length_list = [] field_token_sum = db._calc_table_field_token_sum(field_length_list, 4) expected_field_token_sum = [0, 0, 0, 0] self.assertEqual(field_token_sum, expected_field_token_sum) def test_calc_table_field_token_sum_2(self): field_length_list = [array('I', [1, 1, 2, 0]), array('I', [0, 2, 0, 1])] field_token_sum = db._calc_table_field_token_sum(field_length_list, 4) expected_field_token_sum = [1, 3, 2, 1] self.assertEqual(field_token_sum, expected_field_token_sum) def test_assemble_topk_table_1(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) topk_heap = [] ret_dataframe = db._assemble_topk_table(topk_heap, A, B, A_key, B_key) self.assertEqual(len(ret_dataframe), 0) self.assertEqual(list(ret_dataframe.columns), []) def test_assemble_topk_table_2(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') A_key = em.get_key(A) B_key = em.get_key(B) topk_heap = [(0.2727272727272727, 1, 0), (0.23076923076923078, 0, 4), (0.16666666666666666, 0, 3)] ret_dataframe = db._assemble_topk_table(topk_heap, A, B, A_key, B_key) expected_columns = ['_id', 'ltable_ID', 'rtable_ID', 'ltable_name', 'ltable_birth_year', 'ltable_hourly_wage', 'ltable_address', 'ltable_zipcode', 'rtable_name', 'rtable_birth_year', 'rtable_hourly_wage', 'rtable_address', 'rtable_zipcode'] self.assertEqual(len(ret_dataframe), 3) self.assertEqual(list(ret_dataframe.columns), expected_columns) expected_recs = [[0, 'a2', 'b1', '<NAME>', 1988, 27.5, '1652 Stockton St, San Francisco', 94122, '<NAME>', 1987, 29.5, '108 Clement St, San Francisco', 94107], [1, 'a1', 'b5', '<NAME>', 1989, 30.0, '607 From St, San Francisco', 94107, '<NAME>', 1984, 35.0, '170 Post St, Apt 4, San Francisco', 94122], [2, 'a1', 'b4', '<NAME>', 1989, 30.0, '607 From St, San Francisco', 94107, '<NAME>', 1982, 26.0, '108 South Park, San Francisco', 94122]] self.assertEqual(list(ret_dataframe.loc[0]), expected_recs[0]) self.assertEqual(list(ret_dataframe.loc[1]), expected_recs[1]) self.assertEqual(list(ret_dataframe.loc[2]), expected_recs[2]) def test_debugblocker_config_cython_1(self): ltable_field_token_sum = {1} rtable_field_token_sum = {1} py_num_fields = 1 config_list = db.debugblocker_config_cython(ltable_field_token_sum, rtable_field_token_sum, py_num_fields, 2, 2) expected_config_list = [[0]] self.assertEqual(config_list, expected_config_list) def test_debugblocker_config_cython_2(self): ltable_field_token_sum = {4, 3, 2, 1} rtable_field_token_sum = {4, 3, 2, 1} py_num_fields = 4 config_list = db.debugblocker_config_cython(ltable_field_token_sum, rtable_field_token_sum, py_num_fields, 2, 2) expected_config_list = [[0, 1, 2, 3], [0, 1, 2], [0, 1], [0], [1, 2, 3], [0, 2, 3], [0, 1, 3], [1, 2], [0, 2], [1]] self.assertEqual(config_list, expected_config_list) def test_debugblocker_topk_cython_1(self): py_config = [] lrecord_token_list = [[]] rrecord_token_list = [[]] lrecord_index_list = [[]] rrecord_index_list = [[]] py_cand_set = [] py_output_size = 100 rec_list = db.debugblocker_topk_cython(py_config, lrecord_token_list, rrecord_token_list, lrecord_index_list, rrecord_index_list, py_cand_set, py_output_size) expected_rec_list = [] self.assertEqual(rec_list, expected_rec_list) def test_debugblocker_topk_cython_2(self): py_config = [] lrecord_token_list = [[]] rrecord_token_list = [[]] lrecord_index_list = [[]] rrecord_index_list = [[]] py_cand_set = None py_output_size = 100 rec_list = db.debugblocker_topk_cython(py_config, lrecord_token_list, rrecord_token_list, lrecord_index_list, rrecord_index_list, py_cand_set, py_output_size) expected_rec_list = [] self.assertEqual(rec_list, expected_rec_list) def test_debugblocker_topk_cython_3(self): py_config = [0, 1] lrecord_token_list = [[1, 2]] rrecord_token_list = [[0, 1]] lrecord_index_list = [[1, 2]] rrecord_index_list = [[0, 1]] py_cand_set = None py_output_size = 100 rec_list = db.debugblocker_topk_cython(py_config, lrecord_token_list, rrecord_token_list, lrecord_index_list, rrecord_index_list, py_cand_set, py_output_size) expected_rec_list = [[0, 0, 1]] self.assertEqual(rec_list, expected_rec_list) def test_debugblocker_topk_cython_4(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_ID', fk_rtable='rtable_ID', key = '_id') py_config = [0, 1] lrecord_token_list = [array('I', [5, 12, 15, 22, 37, 38, 39]), array('I', [26, 30, 32, 34, 37, 38, 39]), array('I', [24, 27, 28, 36, 37, 38, 39]), array('I', [4, 10, 13, 21, 37, 38, 39]), array('I', [2, 7, 31, 33, 35, 38, 39])] rrecord_token_list = [array('I', [17, 18, 25, 29, 37, 38, 39]), array('I', [9, 27, 28, 36, 37, 38, 39]), array('I', [19, 26, 30, 34, 37, 38, 39]), array('I', [14, 16, 20, 23, 25, 38, 39]), array('I', [1, 3, 6, 8, 31, 33, 37, 38, 39]), array('I', [0, 11, 29, 32, 35, 38, 39])] lrecord_index_list = [array('I', [1, 1, 0, 0, 1, 1, 1]), array('I', [1, 0, 0, 1, 1, 1, 1]), array('I', [0, 1, 0, 1, 1, 1, 1]), array('I', [1, 0, 0, 1, 1, 1, 1]), array('I', [1, 0, 0, 1, 1, 1, 1])] rrecord_index_list = [array('I', [0, 0, 1, 1, 1, 1, 1]), array('I', [0, 1, 0, 1, 1, 1, 1]), array('I', [0, 1, 0, 1, 1, 1, 1]), array('I', [0, 0, 1, 1, 1, 1, 1]), array('I', [1, 1, 0, 1, 0, 1, 1, 1, 1]), array('I', [1, 0, 1, 0, 1, 1, 1])] py_cand_set = {0: set([0, 1, 5]), 1: set([2, 3, 4]), 2: set([0, 1, 5]), 3: set([2, 3, 4]), 4: set([2, 3, 4])} py_output_size = 100 rec_list = db.debugblocker_topk_cython(py_config, lrecord_token_list, rrecord_token_list, lrecord_index_list, rrecord_index_list, py_cand_set, py_output_size) expected_rec_list = [[0, 2, 13], [0, 3, 3], [0, 4, 6], [1, 0, 12], [1, 1, 11], [1, 5, 10], [2, 2, 9], [2, 3, 2], [2, 4, 7], [3, 0, 14], [3, 1, 15], [3, 5, 5], [4, 0, 1], [4, 1, 4], [4, 5, 8]] self.assertEqual(len(rec_list), len(expected_rec_list)) def test_debugblocker_merge_topk_cython_1(self): rec_lists = [] rec_list = db.debugblocker_merge_topk_cython(rec_lists); expected_rec_list = [] self.assertEqual(rec_list, expected_rec_list) def test_debugblocker_merge_topk_cython_2(self): rec_lists = [[[1, 2, 1]], [[1, 2, 2]], [[1, 2, 3]]] rec_list = db.debugblocker_merge_topk_cython(rec_lists); expected_rec_list = [(2, 1, 2)] self.assertEqual(rec_list, expected_rec_list) def test_debugblocker_merge_topk_cython_3(self): rec_lists = [[[1, 2, 1], [2, 3, 2]], [[1, 2, 2], [2, 3, 3]], [[1, 2, 3], [2, 3, 4]]] rec_list = db.debugblocker_merge_topk_cython(rec_lists); expected_rec_list = [(2, 1, 2), (3, 2, 3)] self.assertEqual(rec_list, expected_rec_list) def test_debugblocker_merge_topk_cython_4(self): rec_lists = [[(1, 2, 1)], [(1, 2, 2)], [(1, 2, 3)]] rec_list = db.debugblocker_merge_topk_cython(rec_lists); expected_rec_list = [(2, 1, 2)] self.assertEqual(rec_list, expected_rec_list) @raises(AssertionError) def test_debugblocker_1(self): A = [] B = [] C = [] db.debug_blocker(C, A, B) @raises(AssertionError) def test_debugblocker_2(self): A = read_csv_metadata(path_a) B = [] C = [] db.debug_blocker(C, A, B) @raises(AssertionError) def test_debugblocker_3(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = None db.debug_blocker(C, A, B) @raises(AssertionError) def test_debugblocker_4(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = read_csv_metadata(path_c, ltable=A, rtable=B) output_size = '200' db.debug_blocker(C, A, B, output_size) @raises(AssertionError) def test_debugblocker_5(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = read_csv_metadata(path_c, ltable=A, rtable=B) attr_corres = set() db.debug_blocker(C, A, B, 200, attr_corres) def test_debugblocker_6(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_ID', fk_rtable='rtable_ID', key='_id') attr_corres = [] db.debug_blocker(C, A, B, 200, attr_corres) @raises(AssertionError) def test_debugblocker_7(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_ID', fk_rtable='rtable_ID', key='_id') attr_corres = [('ID', 'ID'), ['ID', 'ID']] db.debug_blocker(C, A, B, 200, attr_corres) @raises(AssertionError) def test_debugblocker_8(self): A = read_csv_metadata(path_a, key='ID') B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable_ID', fk_rtable='rtable_ID', key='_id') attr_corres = [('ID', 'ID')] verbose = 'true' db.debug_blocker(C, A, B, 200, attr_corres, verbose) @raises(AssertionError) def test_debugblocker_9(self): A = pd.DataFrame([]) B = read_csv_metadata(path_b) C = pd.DataFrame([]) db.debug_blocker(C, A, B) @raises(AssertionError) def test_debugblocker_10(self): A = read_csv_metadata(path_a) B = pd.DataFrame([]) C = pd.DataFrame([]) db.debug_blocker(C, A, B) @raises(AssertionError) def test_debugblocker_11(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C =
pd.DataFrame([])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Sep 9 08:04:31 2020 @author: <NAME> Functions to run the station characterization notebook on exploredata. """ import pandas as pd import matplotlib import matplotlib.pyplot as plt import math import numpy as np from netCDF4 import Dataset import textwrap import datetime as dt import os import six import requests from icoscp.station import station as station_data #for the widgets from IPython.core.display import display, HTML from ipywidgets import Dropdown, SelectMultiple, HBox, VBox, Button, Output, IntText, RadioButtons,IntProgress, GridspecLayout from IPython.display import clear_output, display # import required libraries #%pylab inline import netCDF4 as cdf #import pickle import cartopy.crs as ccrs import cartopy.feature as cfeature import warnings warnings.filterwarnings('ignore') #added - not show the figure that I am saving (different size than the one displayed #for land cover bar graph) matplotlib.pyplot.ioff() #stations that have footprints as well as year and months with footprints. Also altitude. #path to footprints pathFP='/data/stiltweb/stations/' #Earth's radius in km (for calculating distances between the station and cells) R = 6373.8 #saved distances to the 192 000 cells for all the labeled atmospheric stations #if the selected station is not found in this document, the distances are calculated approved_stations_distances = pd.read_csv('approved_stations_distances.csv') #saved degree angles from the stations to all 192 000 cells for all the labeled atmospheric stations approved_stations_degrees = pd.read_csv('approved_stations_degrees.csv') #functions from Ute #function to read and aggregate footprints for given time range def read_aggreg_footprints(station, date_range, timeselect='all'): # loop over all dates and read netcdf files # path to footprint files in new stiltweb directory structure pathFP='/data/stiltweb/stations/' # print ('date range: ',date_range) fp=[] nfp=0 first = True for date in date_range: filename=(pathFP+station+'/'+str(date.year)+'/'+str(date.month).zfill(2)+'/' +str(date.year)+'x'+str(date.month).zfill(2)+'x'+str(date.day).zfill(2)+'x'+str(date.hour).zfill(2)+'/foot') #print (filename) if os.path.isfile(filename): f_fp = cdf.Dataset(filename) if (first): fp=f_fp.variables['foot'][:,:,:] lon=f_fp.variables['lon'][:] lat=f_fp.variables['lat'][:] first = False else: fp=fp+f_fp.variables['foot'][:,:,:] f_fp.close() nfp+=1 #else: #print ('file does not exist: ',filename) if nfp > 0: fp=fp/nfp else: print ('no footprints found') #print (np.shape(fp)) #print (np.max(fp)) title = 'not used' #title = (start_date.strftime('%Y-%m-%d')+' - '+end_date.strftime('%Y-%m-%d')+'\n'+ # 'time selection: '+timeselect) return nfp, fp, lon, lat, title def get_station_class(): # Query the ICOS SPARQL endpoint for a station list # query stationId, class, lng name and country # output is an object "data" containing the results in JSON url = 'https://meta.icos-cp.eu/sparql' query = """ prefix st: <http://meta.icos-cp.eu/ontologies/stationentry/> select distinct ?stationId ?stationClass ?country ?longName from <http://meta.icos-cp.eu/resources/stationentry/> where{ ?s a st:AS . ?s st:hasShortName ?stationId . ?s st:hasStationClass ?stationClass . ?s st:hasCountry ?country . ?s st:hasLongName ?longName . filter (?stationClass = "1" || ?stationClass = "2") } ORDER BY ?stationClass ?stationId """ r = requests.get(url, params = {'format': 'json', 'query': query}) data = r.json() # convert the the result into a table # output is an array, where each row contains # information about the station cols = data['head']['vars'] datatable = [] for row in data['results']['bindings']: item = [] for c in cols: item.append(row.get(c, {}).get('value')) datatable.append(item) # print the table df_datatable = pd.DataFrame(datatable, columns=cols) #df_datatable.head(5) return df_datatable def available_STILT_dictionary(): # store availability of STILT footprints in a dictionary # get all ICOS station IDs by listing subdirectories in stiltweb # extract availability from directory structure #new: pathStations='/data/stiltweb/stations/' #pathStations='/opt/stiltdata/fsicos2/stiltweb/stations/' allStations = os.listdir(pathStations) # empty dictionary available = {} # fill dictionary with station name, years and months for each year for ist in sorted(list(set(allStations))): if os.path.exists(pathStations+'/'+ist): #print ('directory '+pathStations+'/'+ist+' exits') available[ist] = {} years = os.listdir(pathStations+'/'+ist) available[ist]['years'] = years for yy in sorted(available[ist]['years']): available[ist][yy] = {} months = os.listdir(pathStations+'/'+ist+'/'+yy) available[ist][yy]['months'] = months available[ist][yy]['nmonths'] = len(available[ist][yy]['months']) #else: # print ('directory '+pathStations+'/'+ist+' does not exit') # Get list of ICOS class 1 and class 2 stations from Carbon Portal df_datatable = get_station_class() # add information if ICOS class 1 or class 2 site for ist in sorted(available): available[ist]['stationClass'] = np.nan for istICOS in df_datatable['stationId']: ic = int(df_datatable[df_datatable['stationId']==istICOS].index.values) if istICOS in ist: available[ist]['stationClass'] = df_datatable['stationClass'][ic] # print availability #for ist in sorted(available): # print ('station:', ist) # for k in available[ist]: # print (k,':', available[ist][k]) return available def create_STILT_dictionary(): # store all STILT station information in a dictionary # get all ICOS station IDs by listing subdirectories in stiltweb # extract location from filename of link #UPDATE pathStations='/data/stiltweb/stations/' #pathStations='/opt/stiltdata/fsicos2/stiltweb/stations/' allStations = os.listdir(pathStations) # empty dictionary stations = {} # fill dictionary with ICOS station id, latitude, longitude and altitude for ist in sorted(list(set(allStations))): stations[ist] = {} # get filename of link (original stiltweb directory structure) # and extract location information if os.path.exists(pathStations+ist): loc_ident = os.readlink(pathStations+ist) clon = loc_ident[-13:-6] lon = np.float(clon[:-1]) if clon[-1:] == 'W': lon = -lon clat = loc_ident[-20:-14] lat = np.float(clat[:-1]) if clat[-1:] == 'S': lat = -lat alt = np.int(loc_ident[-5:]) stations[ist]['lat']=lat stations[ist]['lon']=lon stations[ist]['alt']=alt stations[ist]['locIdent']=os.path.split(loc_ident)[-1] # add information on station name (and new STILT station id) from stations.csv file used in stiltweb url="https://stilt.icos-cp.eu/viewer/stationinfo" df = pd.read_csv(url) for ist in sorted(list(set(stations))): stationName = df.loc[df['STILT id'] == ist]['STILT name'] if len(stationName.value_counts()) > 0: stations[ist]['name'] = stationName.item() else: stations[ist]['name'] = '' # Get list of ICOS class 1 and class 2 stations from Carbon Portal df_datatable = get_station_class() # add information if ICOS class 1 or class 2 site for ist in sorted(list(set(stations))): stations[ist]['stationClass'] = np.nan for istICOS in df_datatable['stationId']: ic = int(df_datatable[df_datatable['stationId']==istICOS].index.values) if istICOS in ist: stations[ist]['stationClass'] = df_datatable['stationClass'][ic] # print dictionary #for ist in sorted(stations): # print ('station:', ist) # for k in stations[ist]: # print (k,':', stations[ist][k]) # write dictionary to pickle file for further use #pickle.dump( stations, open( "stationsDict.pickle", "wb" ) ) return stations #previously up top stations = create_STILT_dictionary() #updated --> take the timeselect list and returns the "correct" dataframe #otherwise - not correct hours! # function to read STILT concentration time series (new format of STILT results) def read_stilt_timeseries_upd(station,date_range,timeselect_list): url = 'https://stilt.icos-cp.eu/viewer/stiltresult' headers = {'Content-Type': 'application/json', 'Accept-Charset': 'UTF-8'} # check if STILT results exist pathFP='/data/stiltweb/stations/' new_range=[] for date in date_range: #--> new : pathStations='/data/stiltweb/stations/' #pathStations='/opt/stiltdata/fsicos2/stiltweb/stations/' if os.path.exists(pathFP+station+'/'+str(date.year)+'/'+str(date.month).zfill(2)+'/' +str(date.year)+'x'+str(date.month).zfill(2)+'x'+str(date.day).zfill(2)+'x'+str(date.hour).zfill(2)+'/'): new_range.append(date) #if os.path.exists('/opt/stiltdata/fsicos2/stiltweb/slots/'+stations[station]['locIdent']+'/'+str(zDate.year)+'/'+str(zDate.month).zfill(2)+'/' # +str(zDate.year)+'x'+str(zDate.month).zfill(2)+'x'+str(zDate.day).zfill(2)+'x'+str(zDate.hour).zfill(2)+'/'): # #filename=(pathFP+station+'/'+str(date.year)+'/'+str(date.month).zfill(2)+'/' # +str(date.year)+'x'+str(date.month).zfill(2)+'x'+str(date.day).zfill(2)+'x'+str(date.hour).zfill(2)+'/foot') if len(new_range) > 0: date_range = new_range fromDate = date_range[0].strftime('%Y-%m-%d') toDate = date_range[-1].strftime('%Y-%m-%d') columns = ('["isodate","co2.stilt","co2.fuel","co2.bio","co2.bio.gee","co2.bio.resp","co2.fuel.coal","co2.fuel.oil",'+ '"co2.fuel.gas","co2.fuel.bio","co2.energy","co2.transport", "co2.industry",'+ '"co2.others", "co2.cement", "co2.background",'+ '"co.stilt","co.fuel","co.bio","co.fuel.coal","co.fuel.oil",'+ '"co.fuel.gas","co.fuel.bio","co.energy","co.transport", "co.industry",'+ '"co.others", "co.cement", "co.background",'+ '"rn", "rn.era","rn.noah","wind.dir","wind.u","wind.v","latstart","lonstart"]') data = '{"columns": '+columns+', "fromDate": "'+fromDate+'", "toDate": "'+toDate+'", "stationId": "'+station+'"}' #print (data) response = requests.post(url, headers=headers, data=data) if response.status_code != 500: #print (response.json()) output=np.asarray(response.json()) df = pd.DataFrame(output[:,:], columns=eval(columns)) df = df.replace('null',np.NaN) df = df.astype(float) df['date'] = pd.to_datetime(df['isodate'], unit='s') df.set_index(['date'],inplace=True) df['name'] = station df['model'] = 'STILT' df['wind.speed']=np.sqrt((df['wind.u']**2)+(df['wind.v']**2)) #print (df.columns) else: df=pd.DataFrame({'A' : []}) df=df[(df['co2.fuel'].index.hour.isin(timeselect_list))] return df #given the input - create a pandas date range def date_range_station_char(start_date, end_date, timeselect_list): date_range = pd.date_range(start_date, end_date, freq='3H') #depending on how many input (max 8 for 0 3 6 9 12 15 18 21), filter to include hours. for time_value in timeselect_list: if len(timeselect_list)==1: date_range = date_range[(timeselect_list[0] == date_range.hour)] #df_nine = df.loc[(timeselect_list[count_timeselect] == df.index.hour)] if len(timeselect_list)==2: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] if len(timeselect_list)==3: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] \ | date_range[(timeselect_list[2] == date_range.hour)] if len(timeselect_list)==4: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] \ | date_range[(timeselect_list[2] == date_range.hour)] | date_range[(timeselect_list[3] == date_range.hour)] if len(timeselect_list)==5: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] \ | date_range[(timeselect_list[2] == date_range.hour)] | date_range[(timeselect_list[3] == date_range.hour)]\ | date_range[(timeselect_list[4] == date_range.hour)] if len(timeselect_list)==6: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] \ | date_range[(timeselect_list[2] == date_range.hour)] | date_range[(timeselect_list[3] == date_range.hour)]\ | date_range[(timeselect_list[4] == date_range.hour)] | date_range[(timeselect_list[5] == date_range.hour)] if len(timeselect_list)==7: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] \ | date_range[(timeselect_list[2] == date_range.hour)] | date_range[(timeselect_list[3] == date_range.hour)]\ | date_range[(timeselect_list[4] == date_range.hour)] | date_range[(timeselect_list[5] == date_range.hour)]\ | date_range[(timeselect_list[6] == date_range.hour)] if len(timeselect_list)==8: date_range = date_range[(timeselect_list[0] == date_range.hour)] | date_range[(timeselect_list[1] == date_range.hour)] \ | date_range[(timeselect_list[2] == date_range.hour)] | date_range[(timeselect_list[3] == date_range.hour)]\ | date_range[(timeselect_list[4] == date_range.hour)] | date_range[(timeselect_list[5] == date_range.hour)]\ | date_range[(timeselect_list[6] == date_range.hour)] | date_range[(timeselect_list[7] == date_range.hour)] #consider return timeselect return date_range def import_landcover(): all_corine_classes= Dataset('all_corine_except_ocean.nc') #the "onceans_finalized" dataset is seperate: CORINE class 523 (oceans) did not extend beyond exclusive zone #complemented with Natural Earth data. #CORINE does not cover the whole area, "nodata" area is never ocean, rather landbased data. oceans_finalized= Dataset('oceans_finalized.nc') #access all the different land cover classes in the .nc files: fp_111 = all_corine_classes.variables['area_111'][:,:] fp_112 = all_corine_classes.variables['area_112'][:,:] fp_121 = all_corine_classes.variables['area_121'][:,:] fp_122 = all_corine_classes.variables['area_122'][:,:] fp_123 = all_corine_classes.variables['area_123'][:,:] fp_124 = all_corine_classes.variables['area_124'][:,:] fp_131 = all_corine_classes.variables['area_131'][:,:] fp_132 = all_corine_classes.variables['area_132'][:,:] fp_133 = all_corine_classes.variables['area_133'][:,:] fp_141 = all_corine_classes.variables['area_141'][:,:] fp_142 = all_corine_classes.variables['area_142'][:,:] fp_211 = all_corine_classes.variables['area_211'][:,:] fp_212 = all_corine_classes.variables['area_212'][:,:] fp_213 = all_corine_classes.variables['area_213'][:,:] fp_221 = all_corine_classes.variables['area_221'][:,:] fp_222 = all_corine_classes.variables['area_222'][:,:] fp_223 = all_corine_classes.variables['area_223'][:,:] fp_231 = all_corine_classes.variables['area_231'][:,:] fp_241 = all_corine_classes.variables['area_241'][:,:] fp_242 = all_corine_classes.variables['area_242'][:,:] fp_243 = all_corine_classes.variables['area_243'][:,:] fp_244 = all_corine_classes.variables['area_244'][:,:] fp_311 = all_corine_classes.variables['area_311'][:,:] fp_312 = all_corine_classes.variables['area_312'][:,:] fp_313 = all_corine_classes.variables['area_313'][:,:] fp_321 = all_corine_classes.variables['area_321'][:,:] fp_322 = all_corine_classes.variables['area_322'][:,:] fp_323 = all_corine_classes.variables['area_323'][:,:] fp_324 = all_corine_classes.variables['area_324'][:,:] fp_331 = all_corine_classes.variables['area_331'][:,:] fp_332 = all_corine_classes.variables['area_332'][:,:] fp_333 = all_corine_classes.variables['area_333'][:,:] fp_334 = all_corine_classes.variables['area_334'][:,:] fp_335 = all_corine_classes.variables['area_335'][:,:] fp_411 = all_corine_classes.variables['area_411'][:,:] fp_412 = all_corine_classes.variables['area_412'][:,:] fp_421 = all_corine_classes.variables['area_421'][:,:] fp_422 = all_corine_classes.variables['area_422'][:,:] fp_423 = all_corine_classes.variables['area_423'][:,:] fp_511 = all_corine_classes.variables['area_511'][:,:] fp_512 = all_corine_classes.variables['area_512'][:,:] fp_521 = all_corine_classes.variables['area_521'][:,:] fp_522 = all_corine_classes.variables['area_522'][:,:] #CORINE combined with natural earth data for oceans: fp_523 = oceans_finalized.variables['ocean_ar2'][:,:] #have a variable that represents the whole area of the cell, #used to get a percentage breakdown of each corine class. fp_total_area = all_corine_classes.variables['area_stilt'][:,:] #19 aggregated classes (these are used in the current bar graphs but can be updated by each user) urban = fp_111+fp_112+fp_141+fp_142 industrial = fp_131 + fp_133 + fp_121 road_and_rail = fp_122 ports_and_apirports= fp_123+fp_124 dump_sites = fp_132 staple_cropland_not_rice = fp_211 + fp_212 + fp_241 + fp_242 + fp_243 rice_fields = fp_213 cropland_fruit_berry_grapes_olives = fp_221 + fp_222 + fp_223 pastures = fp_231 broad_leaved_forest = fp_311 coniferous_forest = fp_312 mixed_forest = fp_313 + fp_244 natural_grasslands = fp_321 + fp_322 transitional_woodland_shrub= fp_323 + fp_324 bare_natural_areas = fp_331 + fp_332 + fp_333 + fp_334 glaciers_prepetual_snow = fp_335 wet_area= fp_411 + fp_412 + fp_421 + fp_422 inland_water_bodies = fp_423 + fp_511 + fp_512 + fp_521 + fp_522 oceans = fp_523 #added: the "missing area" is out of the CORINE domain. Alltogether add upp to "fp_total_area" out_of_domain=fp_total_area-oceans-inland_water_bodies-wet_area-glaciers_prepetual_snow-bare_natural_areas-transitional_woodland_shrub-natural_grasslands-mixed_forest-coniferous_forest-broad_leaved_forest-pastures-cropland_fruit_berry_grapes_olives-rice_fields-staple_cropland_not_rice-dump_sites-ports_and_apirports-road_and_rail-industrial-urban #further aggregated classes for the land cover wind polar graph and land cover bar graph urban_aggreg= urban + industrial + road_and_rail + dump_sites + ports_and_apirports cropland_aggreg= staple_cropland_not_rice + rice_fields + cropland_fruit_berry_grapes_olives forests= broad_leaved_forest + coniferous_forest + mixed_forest pastures_grasslands= pastures + natural_grasslands oceans=oceans other=transitional_woodland_shrub+bare_natural_areas+glaciers_prepetual_snow +wet_area + inland_water_bodies return out_of_domain, urban_aggreg, cropland_aggreg, forests, pastures_grasslands, oceans, other def import_population_data(): pop_data= Dataset('point_with_pop_data.nc') fp_pop=pop_data.variables['Sum_TOT_P'][:,:] return fp_pop def import_point_source_data(): #point source: point_source_data= Dataset('final_netcdf_point_source_emission.nc') #emissions in kg/year in the variable "Sum_Tota_1" fp_point_source=point_source_data.variables['Sum_Tota_1'][:,:] #different from population data: can translate the emissions within each stilt cell to the effect it will have to the final CO2 concentrations at the stations. #just need to get it in the right unit (micromole/m2s) and multiply by the individual or aggregated footprints #divide by the molar weight in kg. 12 (C)+16(O)+16(O) =44 0.044 in kg. get number of moles of C this way. Want it in micromole though: 1 mole= 1000000 micromole fp_point_source_moles_C=fp_point_source/0.044 #how many micro-mole is that? multiply by 1000000 fp_point_source_micromoles_C=fp_point_source_moles_C*1000000 #a NetCDF file with the grid size calues in m2 f_gridarea = cdf.Dataset('gridareaSTILT.nc') #area stored in "cell_area" gridarea = f_gridarea.variables['cell_area'][:] fp_point_source_m2= fp_point_source_micromoles_C/gridarea #how many micro moles let out per second (have yearly data) fp_point_source_m2_s= fp_point_source_m2/31536000 return fp_point_source_m2_s #function to generate maps with cells binned by defined intervals and direction def nondirection_labels(bins, units): labels = [] #for the label - want bin before and after (range) for left, right in zip(bins[:-1], bins[1:]): #if the last object - everything above (>value unit) if np.isinf(right): labels.append('>{} {}'.format(left, units)) else: #how the labels normally look (value - value unit) labels.append('{} - {} {}'.format(left, right, units)) return list(labels) def calculate_initial_compass_bearing(pointA, pointB): """ Calculates the bearing between two points. The formulae used is the following: θ = atan2(sin(Δlong).cos(lat2), cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlong)) :Parameters: - `pointA: The tuple representing the latitude/longitude for the first point. Latitude and longitude must be in decimal degrees - `pointB: The tuple representing the latitude/longitude for the second point. Latitude and longitude must be in decimal degrees :Returns: The bearing in degrees :Returns Type: float """ if (type(pointA) != tuple) or (type(pointB) != tuple): raise TypeError("Only tuples are supported as arguments") lat1 = math.radians(pointA[0]) lat2 = math.radians(pointB[0]) diffLong = math.radians(pointB[1] - pointA[1]) x = math.sin(diffLong) * math.cos(lat2) y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1) * math.cos(lat2) * math.cos(diffLong)) initial_bearing = math.atan2(x, y) # Now we have the initial bearing but math.atan2 return values # from -180° to + 180° which is not what we want for a compass bearing # The solution is to normalize the initial bearing as shown below initial_bearing = math.degrees(initial_bearing) compass_bearing = (initial_bearing + 360) % 360 return compass_bearing def define_bins_maprose(km_intervals, bin_size): #the number of bins number_bins=round((5000/km_intervals),0) #start at 0 km of the station. Then append to this list interval_bins=[0] #ex 100, 200, 300 if km_intervals=100 for number in range(1, int(number_bins)): interval_bins.append(km_intervals*number) #the last number is infinity - however far the domain stretches marks the end of the last bin. interval_bins.append(np.inf) #labels: not used in map - but used in the grouping interval_labels = nondirection_labels(interval_bins, units='km') #direction: using the input (degree_bin) to set the bins so that the first bin has "north (0 degrees) in the middle" #"from_degree" becomes a negative value (half of the degree value "to the left" of 0) from_degree=-(bin_size/2) #"to_degree" is a vale to indicate the last bins ending. Must check values all the way to 360 which means the last bin #will go past 360 and later be joined with the "0" bin (replace function in next cell) to_degree= 360 + (bin_size/2) + 1 #the bin_size is the "step". generate an array with all the direction bins dir_bins = np.arange(from_degree, to_degree, bin_size) #the direction bin is the first bin + the next bin divided by two: dir_labels = (dir_bins[:-1] + dir_bins[1:]) / 2 #return these values to use in the function map_representation_polar_graph return interval_bins, interval_labels, dir_bins, dir_labels # function to convert station longitude and latitude (slat, slon) to indices of STILT model grid (ix,jy) def lonlat_2_ixjy(slon,slat,mlon,mlat): #slon, slat: longitude and latitude of station #mlon, mlat: 1-dim. longitude and latitude of model grid ix = (np.abs(mlon-slon)).argmin() jy = (np.abs(mlat-slat)).argmin() return ix,jy # function to plot maps (show station location if station is provided and zoom in second plot if zoom is provided) def plot_maps(field, lon, lat, title='', label='', unit='', linlog='linear', station='', zoom='', vmin=0.0001, vmax=None, colors='GnBu',pngfile=''): mcolor='m' # Set scale for features from Natural Earth NEscale = '50m' # Create a feature for Countries at 1:50m from Natural Earth countries = cfeature.NaturalEarthFeature( category='cultural', name='admin_0_countries', scale=NEscale, facecolor='none') fig = plt.figure(figsize=(18,10)) # set up a map ax = plt.subplot(1, 2, 1, projection=ccrs.PlateCarree()) img_extent = (lon.min(), lon.max(), lat.min(), lat.max()) ax.set_extent([lon.min(), lon.max(), lat.min(), lat.max()],crs=ccrs.PlateCarree()) ax.add_feature(countries, edgecolor='black', linewidth=0.3) cmap = plt.get_cmap(colors) cmap.set_under(color='white') if linlog == 'linear': im = ax.imshow(field[:,:],interpolation=None,origin='lower', extent=img_extent,cmap=cmap,vmin=vmin,vmax=vmax) cbar=plt.colorbar(im,orientation='horizontal',pad=0.03,fraction=0.055,extend='both') cbar.set_label(label+' '+unit) else: im = ax.imshow(np.log10(field)[:,:],interpolation='none',origin='lower', extent=img_extent,cmap=cmap,vmin=vmin,vmax=vmax) cbar=plt.colorbar(im,orientation='horizontal',pad=0.03,fraction=0.055,extend='both') cbar.set_label(label+' log$_{10}$ '+unit) plt.title(title) ax.text(0.01, -0.25, 'min: %.2f' % np.min(field[:,:]), horizontalalignment='left',transform=ax.transAxes) ax.text(0.99, -0.25, 'max: %.2f' % np.max(field[:,:]), horizontalalignment='right',transform=ax.transAxes) #show station location if station is provided if station != '': station_lon=[] station_lat=[] station_lon.append(stations[station]['lon']) station_lat.append(stations[station]['lat']) ax.plot(station_lon,station_lat,'+',color=mcolor,ms=10,markeredgewidth=1,transform=ccrs.PlateCarree()) zoom=str(zoom) if zoom != '': #grid cell index of station ix,jy = lonlat_2_ixjy(stations[zoom]['lon'],stations[zoom]['lat'],lon,lat) # define zoom area i1 = np.max([ix-35,0]) i2 = np.min([ix+35,400]) j1 = np.max([jy-42,0]) j2 = np.min([jy+42,480]) lon_z=lon[i1:i2] lat_z=lat[j1:j2] field_z=field[j1:j2,i1:i2] # set up a map ax = plt.subplot(1, 2, 2, projection=ccrs.PlateCarree()) img_extent = (lon_z.min(), lon_z.max(), lat_z.min(), lat_z.max()) ax.set_extent([lon_z.min(), lon_z.max(), lat_z.min(), lat_z.max()],crs=ccrs.PlateCarree()) ax.add_feature(countries, edgecolor='black', linewidth=0.3) if linlog == 'linear': im = ax.imshow(field_z,interpolation='none',origin='lower', extent=img_extent,cmap=cmap,vmin=vmin,vmax=vmax) cbar=plt.colorbar(im,orientation='horizontal',pad=0.03,fraction=0.055,extend='both') cbar.set_label(label+' '+unit) else: im = ax.imshow(np.log10(field_z),interpolation='none',origin='lower', extent=img_extent,cmap=cmap,vmin=vmin,vmax=vmax) cbar=plt.colorbar(im,orientation='horizontal',pad=0.03,fraction=0.055,extend='both') cbar.set_label(label+' log$_{10}$ '+unit) #show station location if station is provided if station != '': station_lon=[] station_lat=[] station_lon.append(stations[station]['lon']) station_lat.append(stations[station]['lat']) ax.plot(station_lon,station_lat,'+',color=mcolor,ms=10,markeredgewidth=1,transform=ccrs.PlateCarree()) plt.title(title) ax.text(0.01, -0.25, 'min: %.2f' % np.min(field[j1:j2,i1:i2]), horizontalalignment='left',transform=ax.transAxes) ax.text(0.99, -0.25, 'max: %.2f' % np.max(field[j1:j2,i1:i2]), horizontalalignment='right',transform=ax.transAxes) plt.show() if len(pngfile)>0: plotdir='figures' if not os.path.exists(plotdir): os.mkdir(plotdir) fig.savefig(plotdir+'/'+pngfile+'.pdf',dpi=100,bbox_inches='tight') plt.close() def map_representation_polar_graph(station, date_range, timeselect, bin_size, unit, rose_type='sensitivity', colorbar='gist_heat_r', km_intervals=200, zoom='', title='', save_figs=''): #bins in terms of interval and direction interval_bins, interval_labels, dir_bins, dir_labels=define_bins_maprose(km_intervals=km_intervals, bin_size=bin_size) st_lon= stations[station]['lon'] st_lat= stations[station]['lat'] #get the aggregated footprint nfp, fp, fp_lon, fp_lat, title_not_used = read_aggreg_footprints(station, date_range, timeselect=timeselect) #if not saved distances to all 192000 cells, calculate it. if station not in approved_stations_distances.columns: x = [math.radians(st_lon-lon)*math.cos(math.radians(st_lat+lat)/2) for lat in fp_lat for lon in fp_lon] y = [math.radians(st_lat-lat) for lat in fp_lat for lon in fp_lon] distance=[math.sqrt((x[index]*x[index])+(y[index]*y[index])) * R for index in range(len(x))] #if in the existing list, access it. else: distance=approved_stations_distances[station] #same function used to all three types of map if rose_type=='sensitivity': #only want to look at the aggregated footprint - not multiplied by anciallary datalayer grid_to_display=fp elif rose_type=='point source contribution': #import the point source data for multiplication with the aggregated footprint fp_point_source_m2_s = import_point_source_data() grid_to_display=fp*fp_point_source_m2_s elif rose_type=='population sensitivity': #import the population data for multiplication with the aggregated footprint fp_pop= import_population_data() grid_to_display=fp*fp_pop #list with 192000 sens values. same place in list for distance to sttion and degree sens_value=[grid_to_display[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] #degrees - calculate at what degree each cell is in case not in saved list if station not in approved_stations_degrees.columns: degrees_0_360=[calculate_initial_compass_bearing((st_lat, st_lon), (lat, lon)) for lat in fp_lat for lon in fp_lon] else: degrees_0_360=approved_stations_degrees[station] #putting it into a dataframe - to perform groupby etc df_sensitivity_map = pd.DataFrame() df_sensitivity_map['distance'] = distance df_sensitivity_map['sensitivity'] = sens_value df_sensitivity_map['degrees'] = degrees_0_360 #for % later - sensitivity within certain bin (distance and direction) total_sensitivity= sum(df_sensitivity_map['sensitivity']) #binning - by the distace intervals and degree intervals. Summarize these. rosedata=df_sensitivity_map.assign(WindSpd_bins=lambda df: pd.cut(df['distance'], bins=interval_bins, labels=interval_labels, right=True)) rosedata=rosedata.assign(WindDir_bins=lambda df: pd.cut(df['degrees'], bins=dir_bins, labels=dir_labels, right=False)) #the 360 degree are the same as 0: rosedata=rosedata.replace({'WindDir_bins': {360: 0}}) #the combination of the distance and direction columns is used to create a unique column value for all cells #with certain direction/distance combination. #make it to string to be able to combine. rosedata['key']=rosedata['WindDir_bins'].astype(str) +rosedata['WindSpd_bins'].astype(str) #group by the unique combination of direction and distance rosedata_grouped_key=rosedata.groupby(by=['key'], as_index=False)['sensitivity'].sum().reset_index() #merge between the 192000 cells and the "groupedby" values: each cell in a specific direction and distnace will #get the sum of the cells in that same specific bin. Same color on the map corresponing to % or absolute sensitivity. #reset_index() creates a column with the original index of the dataframes that are joined. Needed to sort the dataframe #in the next spted because default is to sort by the key used. rosedata_merge=rosedata.reset_index().merge(rosedata_grouped_key, left_on='key', right_on='key', sort=False) #sort by the original index of the 192000 cells: rosedata_merge=rosedata_merge.sort_values(by=['index_x']) #x is the "fist" (rosedata.merge) dataframe that was merged (the 192000 individual cells) #y is the dataframe that is merged to the first. Both columns name "sensitivity". #sensitivity_y is the merged data - the summarized sensitivity value for the whole bin (direction and distance bin) rosedata_merge_list=rosedata_merge['sensitivity_y'].tolist() #now starts the process of "packing it back up" so that it can be displayed as a map (same format as the netCDF files with 480 #lists of lists - the first list is all tha values that has "the first" latitude value and all 400 different longitude values) #calculate the % sensitivity - can be changed to absolute sensitivity if unit=='percent': rosedata_merge_list=[(sensitivity_value/total_sensitivity)*100 for sensitivity_value in rosedata_merge_list] #the "netcdf simulation" (see text above) rosedata_merge_list_of_lists=[] index=0 while index<192000: index_to=index+400 #for each list: need to grab the 400 values that are the combination of the same latitude value #but different longitude values rosedata_merge_list_of_lists.append(rosedata_merge_list[index:index_to]) #start at the next 400 in the list in the next turn of the loop: index=index+400 #numpy array works to display in map rosedata_merge_list_of_lists_array=np.array(rosedata_merge_list_of_lists) #added date_index_number = (len(date_range) - 1) if title=='yes': for_title=('Station: ' + str(station) + '\n' + unit + ' ' + rose_type + ' given direction and distance: ' + '\n' + str(bin_size) + \ ' degree bins and ' + str(km_intervals) +' km increments' '\n' + str(date_range[0].year) + '-' + str(date_range[0].month) + '-' + str(date_range[0].day)\ + ' to ' + str(date_range[date_index_number].year) + '-' + str(date_range[date_index_number].month) + '-' + str(date_range[date_index_number].day)+\ ' Hour(s): ' + timeselect+ '\n') else: for_title='' #font matplotlib.rcParams.update({'font.size': 12}) if unit=='percent': unit='%' else: unit='absolute' if save_figs=='yes': if rose_type=='sensitivity': figure_number='_figure_1' if rose_type=='point source contribution': figure_number='_figure_2' if rose_type=='population sensitivity': figure_number='_figure_3' string_fig=station+figure_number else: string_fig='' #use the plot_maps function #need two different? if unit=='percent': plot_maps(rosedata_merge_list_of_lists_array, fp_lon, fp_lat, title=for_title, label=rose_type, unit=unit, linlog='linear', station=station, zoom=zoom, colors=colorbar, pngfile=string_fig) else: plot_maps(rosedata_merge_list_of_lists_array, fp_lon, fp_lat, title=for_title, label=rose_type, unit=unit, linlog='linear', station=station, zoom=zoom, colors=colorbar, pngfile=string_fig) #land cover bar graph: def land_cover_bar_graph(station, date_range, timeselect, title='', save_figs=''): #get all the land cover data out_of_domain, urban_aggreg, cropland_aggreg, forests, pastures_grasslands, oceans, other= import_landcover() approved_stations_degrees = pd.read_csv('approved_stations_degrees.csv') st_lon= stations[station]['lon'] st_lat= stations[station]['lat'] #selected date_range, aggregated footprint for selected station nfp, fp, fp_lon, fp_lat, title_not_used = read_aggreg_footprints(station, date_range, timeselect=timeselect) #land cover classes (imported in the land cover section): cropland_multiplied=fp*cropland_aggreg urban_multiplied=fp*urban_aggreg forests_multiplied=fp*forests pastures_grasslands_multiplied=fp*pastures_grasslands oceans_multiplied=fp*oceans other_multiplied=fp*other out_of_domain_multiplied=fp*out_of_domain cropland_values=[cropland_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] urban_values=[urban_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] forests_values=[forests_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] pastures_grasslands_values=[pastures_grasslands_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] oceans_values=[oceans_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] others_values=[other_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] #added: out_of_domain out_of_domain_values=[out_of_domain_multiplied[0][lat_value][lon_value] for lat_value in range(len(fp_lat)) for lon_value in range(len(fp_lon))] approved_stations_degrees = pd.read_csv('approved_stations_degrees.csv') #degrees (no distance bins for land cover): if station not in approved_stations_degrees.columns: degrees_0_360=[calculate_initial_compass_bearing((st_lat, st_lon), (lat, lon)) for lat in fp_lat for lon in fp_lon] else: degrees_0_360=approved_stations_degrees[station] #putting it into a dataframe: initially 192000 values (one per cell) for each of the aggregated land cover classes #into same dataframe - have the same coulmn heading. "landcover_type" will be used in "groupby" together with the "slice" (in degrees) df_cropland = pd.DataFrame() df_cropland['landcover_vals'] = cropland_values df_cropland['degrees'] = degrees_0_360 df_cropland['landcover_type'] = 'Cropland' df_urban= pd.DataFrame() df_urban['landcover_vals'] = urban_values df_urban['degrees'] = degrees_0_360 df_urban['landcover_type'] = 'Urban' df_forests = pd.DataFrame() df_forests['landcover_vals'] = forests_values df_forests['degrees'] = degrees_0_360 df_forests['landcover_type'] = 'Forests' df_pastures_grassland = pd.DataFrame() df_pastures_grassland['landcover_vals'] = pastures_grasslands_values df_pastures_grassland['degrees'] = degrees_0_360 df_pastures_grassland['landcover_type'] = 'Pastures and grassland' df_oceans = pd.DataFrame() df_oceans['landcover_vals'] = oceans_values df_oceans['degrees'] = degrees_0_360 df_oceans['landcover_type'] = 'Oceans' df_others = pd.DataFrame() df_others['landcover_vals'] = others_values df_others['degrees'] = degrees_0_360 df_others['landcover_type'] = 'Other' #out of domain df_out_of_domain = pd.DataFrame() df_out_of_domain['landcover_vals'] = out_of_domain_values df_out_of_domain['degrees'] = degrees_0_360 df_out_of_domain['landcover_type'] = 'No data' matplotlib.rcParams.update({'font.size': 20}) #into one dataframe #possibly add: df_out_of_domain df_all = df_cropland.append([df_urban, df_forests, df_pastures_grassland, df_oceans, df_others, df_out_of_domain]) #for % later - sensitivity to landcover within certain bin (landcover and direction) #how works now when have "no data" also? total_all= sum(df_all['landcover_vals']) ##added - for the matplotlib breakdown dir_bins = np.arange(22.5, 383.5, 45) #dir_bins = np.asarray(['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW', 'N']) dir_bins= np.asarray([0, 22.5,67.5,112.5,157.5,202.5,247.5,292.5,337.5,383.5]) #dir_labels= np.asarray([0, 22.5,67.5,112.5,157.5,202.5,247.5,292.5,337.5]) dir_labels= np.asarray([0, 22.5,67.5,112.5,157.5,202.5,247.5,292.5,337.5]) #dir_labels = (dir_bins[:-1] + dir_bins[1:]) / 2 #get columns - for each degree rosedata=df_all.assign(WindDir_bins=lambda df:
pd.cut(df['degrees'], bins=dir_bins, labels=dir_labels, right=False)
pandas.cut
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p = Panel({'Item1': df}) expected = Panel({'Item1': df}) expected['Item2'] = np.nan items = ['Item1', 'Item2'] major_axis = np.arange(4) minor_axis = np.arange(3) results = [] results.append(p.reindex(items=items, major_axis=major_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, copy=False)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=False)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=False)) for i, r in enumerate(results): assert_panel_equal(expected, r) def test_reindex_like(self): # reindex_like smaller = self.panel.reindex(items=self.panel.items[:-1], major=self.panel.major_axis[:-1], minor=self.panel.minor_axis[:-1]) smaller_like = self.panel.reindex_like(smaller) assert_panel_equal(smaller, smaller_like) def test_take(self): # axis == 0 result = self.panel.take([2, 0, 1], axis=0) expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB']) assert_panel_equal(result, expected) # axis >= 1 result = self.panel.take([3, 0, 1, 2], axis=2) expected = self.panel.reindex(minor=['D', 'A', 'B', 'C']) assert_panel_equal(result, expected) # neg indicies ok expected = self.panel.reindex(minor=['D', 'D', 'B', 'C']) result = self.panel.take([3, -1, 1, 2], axis=2) assert_panel_equal(result, expected) self.assertRaises(Exception, self.panel.take, [4, 0, 1, 2], axis=2) def test_sort_index(self): import random ritems = list(self.panel.items) rmajor = list(self.panel.major_axis) rminor = list(self.panel.minor_axis) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0) assert_panel_equal(sorted_panel, self.panel) # descending random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0, ascending=False) assert_panel_equal(sorted_panel, self.panel.reindex(items=self.panel.items[::-1])) random_order = self.panel.reindex(major=rmajor) sorted_panel = random_order.sort_index(axis=1) assert_panel_equal(sorted_panel, self.panel) random_order = self.panel.reindex(minor=rminor) sorted_panel = random_order.sort_index(axis=2) assert_panel_equal(sorted_panel, self.panel) def test_fillna(self): filled = self.panel.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) filled = self.panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fillna(method='backfill')) panel = self.panel.copy() panel['str'] = 'foo' filled = panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], panel['ItemA'].fillna(method='backfill')) empty = self.panel.reindex(items=[]) filled = empty.fillna(0) assert_panel_equal(filled, empty) self.assertRaises(ValueError, self.panel.fillna) self.assertRaises(ValueError, self.panel.fillna, 5, method='ffill') self.assertRaises(TypeError, self.panel.fillna, [1, 2]) self.assertRaises(TypeError, self.panel.fillna, (1, 2)) # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan self.assertRaises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_ffill_bfill(self): assert_panel_equal(self.panel.ffill(), self.panel.fillna(method='ffill')) assert_panel_equal(self.panel.bfill(), self.panel.fillna(method='bfill')) def test_truncate_fillna_bug(self): # #1823 result = self.panel.truncate(before=None, after=None, axis='items') # it works! result.fillna(value=0.0) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assertIs(result.items, self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assertIs(result.items, self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel.minor_axis) panel = self.panel.copy() result = panel.swapaxes('major', 'minor') panel.values[0, 0, 1] = np.nan expected = panel.swapaxes('major', 'minor') assert_panel_equal(result, expected) # this should also work result = self.panel.swapaxes(0, 1) self.assertIs(result.items, self.panel.major_axis) # this works, but return a copy result = self.panel.swapaxes('items', 'items') assert_panel_equal(self.panel, result) self.assertNotEqual(id(self.panel), id(result)) def test_transpose(self): result = self.panel.transpose('minor', 'major', 'items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # test kwargs result = self.panel.transpose(items='minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # text mixture of args result = self.panel.transpose('minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # duplicate axes with tm.assertRaisesRegexp(TypeError, 'not enough/duplicate arguments'): self.panel.transpose('minor', maj='major', minor='items') with tm.assertRaisesRegexp(ValueError, 'repeated axis in transpose'): self.panel.transpose('minor', 'major', major='minor', minor='items') result = self.panel.transpose(2, 1, 0) assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'items', 'major') expected = self.panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose(2, 0, 1) assert_panel_equal(result, expected) self.assertRaises(ValueError, self.panel.transpose, 0, 0, 1) def test_transpose_copy(self): panel = self.panel.copy() result = panel.transpose(2, 0, 1, copy=True) expected = panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) panel.values[0, 1, 1] = np.nan self.assertTrue(notnull(result.values[1, 0, 1])) @ignore_sparse_panel_future_warning def test_to_frame(self): # filtered filtered = self.panel.to_frame() expected = self.panel.to_frame().dropna(how='any') assert_frame_equal(filtered, expected) # unfiltered unfiltered = self.panel.to_frame(filter_observations=False) assert_panel_equal(unfiltered.to_panel(), self.panel) # names self.assertEqual(unfiltered.index.names, ('major', 'minor')) # unsorted, round trip df = self.panel.to_frame(filter_observations=False) unsorted = df.take(np.random.permutation(len(df))) pan = unsorted.to_panel() assert_panel_equal(pan, self.panel) # preserve original index names df = DataFrame(np.random.randn(6, 2), index=[['a', 'a', 'b', 'b', 'c', 'c'], [0, 1, 0, 1, 0, 1]], columns=['one', 'two']) df.index.names = ['foo', 'bar'] df.columns.name = 'baz' rdf = df.to_panel().to_frame() self.assertEqual(rdf.index.names, df.index.names) self.assertEqual(rdf.columns.names, df.columns.names) def test_to_frame_mixed(self): panel = self.panel.fillna(0) panel['str'] = 'foo' panel['bool'] = panel['ItemA'] > 0 lp = panel.to_frame() wp = lp.to_panel() self.assertEqual(wp['bool'].values.dtype, np.bool_) # Previously, this was mutating the underlying index and changing its # name assert_frame_equal(wp['bool'], panel['bool'], check_names=False) # GH 8704 # with categorical df = panel.to_frame() df['category'] = df['str'].astype('category') # to_panel # TODO: this converts back to object p = df.to_panel() expected = panel.copy() expected['category'] = 'foo' assert_panel_equal(p, expected) def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) expected_idx = MultiIndex.from_tuples( [ (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (2, 'two', 'A'), (2, 'two', 'B'), (2, 'two', 'C') ], names=[None, None, 'minor']) expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1], 'i2': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1]}, index=expected_idx) result = wp.to_frame() assert_frame_equal(result, expected) wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773 result = wp.to_frame() assert_frame_equal(result, expected[1:]) idx = MultiIndex.from_tuples([(1, 'two'), (1, 'one'), (2, 'one'), ( np.nan, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (np.nan, 'two', 'A'), (np.nan, 'two', 'B'), (np.nan, 'two', 'C')], names=[None, None, 'minor']) expected.index = ex_idx result = wp.to_frame() assert_frame_equal(result, expected) def test_to_frame_multi_major_minor(self): cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two'), (3, 'three'), (4, 'four')]) df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14], ['a', 'b', 'w', 'x'], ['c', 'd', 'y', 'z'], [-1, -2, -3, -4], [-5, -6, -7, -8]], columns=cols, index=idx) wp = Panel({'i1': df, 'i2': df}) exp_idx = MultiIndex.from_tuples( [(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'), (1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'), (1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'), (1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'), (2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'), (2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'), (2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'), (2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'), (3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'), (3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'), (4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'), (4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')], names=[None, None, None, None]) exp_val = [[1, 1], [2, 2], [11, 11], [12, 12], [3, 3], [4, 4], [13, 13], [14, 14], ['a', 'a'], ['b', 'b'], ['w', 'w'], ['x', 'x'], ['c', 'c'], ['d', 'd'], ['y', 'y'], ['z', 'z'], [-1, -1], [-2, -2], [-3, -3], [-4, -4], [-5, -5], [-6, -6], [-7, -7], [-8, -8]] result = wp.to_frame() expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx) assert_frame_equal(result, expected) def test_to_frame_multi_drop_level(self): idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')]) df = DataFrame({'A': [np.nan, 1, 2]}, index=idx) wp = Panel({'i1': df, 'i2': df}) result = wp.to_frame() exp_idx = MultiIndex.from_tuples([(2, 'one', 'A'), (2, 'two', 'A')], names=[None, None, 'minor']) expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx) assert_frame_equal(result, expected) def test_to_panel_na_handling(self): df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)), index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]]) panel = df.to_panel() self.assertTrue(isnull(panel[0].ix[1, [0, 1]]).all()) def test_to_panel_duplicates(self): # #2441 df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]}) idf = df.set_index(['a', 'b']) assertRaisesRegexp(ValueError, 'non-uniquely indexed', idf.to_panel) def test_panel_dups(self): # GH 4960 # duplicates in an index # items data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, items=list("ABCDE")) panel = Panel(data, items=list("AACDE")) expected = no_dup_panel['A'] result = panel.iloc[0] assert_frame_equal(result, expected) expected = no_dup_panel['E'] result = panel.loc['E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[['A', 'B']] expected.items = ['A', 'A'] result = panel.loc['A'] assert_panel_equal(result, expected) # major data = np.random.randn(5, 5, 5) no_dup_panel = Panel(data, major_axis=list("ABCDE")) panel = Panel(data, major_axis=list("AACDE")) expected = no_dup_panel.loc[:, 'A'] result = panel.iloc[:, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, 'E'] result = panel.loc[:, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, ['A', 'B']] expected.major_axis = ['A', 'A'] result = panel.loc[:, 'A'] assert_panel_equal(result, expected) # minor data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, minor_axis=list("ABCDE")) panel = Panel(data, minor_axis=list("AACDE")) expected = no_dup_panel.loc[:, :, 'A'] result = panel.iloc[:, :, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, 'E'] result = panel.loc[:, :, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, ['A', 'B']] expected.minor_axis = ['A', 'A'] result = panel.loc[:, :, 'A'] assert_panel_equal(result, expected) def test_filter(self): pass def test_compound(self): compounded = self.panel.compound() assert_series_equal(compounded['ItemA'], (1 + self.panel['ItemA']).product(0) - 1, check_names=False) def test_shift(self): # major idx = self.panel.major_axis[0] idx_lag = self.panel.major_axis[1] shifted = self.panel.shift(1) assert_frame_equal(self.panel.major_xs(idx), shifted.major_xs(idx_lag)) # minor idx = self.panel.minor_axis[0] idx_lag = self.panel.minor_axis[1] shifted = self.panel.shift(1, axis='minor') assert_frame_equal(self.panel.minor_xs(idx), shifted.minor_xs(idx_lag)) # items idx = self.panel.items[0] idx_lag = self.panel.items[1] shifted = self.panel.shift(1, axis='items') assert_frame_equal(self.panel[idx], shifted[idx_lag]) # negative numbers, #2164 result = self.panel.shift(-1) expected = Panel(dict((i, f.shift(-1)[:-1]) for i, f in self.panel.iteritems())) assert_panel_equal(result, expected) # mixed dtypes #6959 data = [('item ' + ch, makeMixedDataFrame()) for ch in list('abcde')] data = dict(data) mixed_panel = Panel.from_dict(data, orient='minor') shifted = mixed_panel.shift(1) assert_series_equal(mixed_panel.dtypes, shifted.dtypes) def test_tshift(self): # PeriodIndex ps = tm.makePeriodPanel() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_panel_equal(shifted, shifted2) shifted3 = ps.tshift(freq=bday) assert_panel_equal(shifted, shifted3) assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex panel = _panel shifted = panel.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(panel, unshifted) shifted2 = panel.tshift(freq=panel.major_axis.freq) assert_panel_equal(shifted, shifted2) inferred_ts = Panel(panel.values, items=panel.items, major_axis=Index(np.asarray(panel.major_axis)), minor_axis=panel.minor_axis) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(shifted, panel.tshift(1)) assert_panel_equal(unshifted, inferred_ts) no_freq = panel.ix[:, [0, 5, 7], :] self.assertRaises(ValueError, no_freq.tshift) def test_pct_change(self): df1 = DataFrame({'c1': [1, 2, 5], 'c2': [3, 4, 6]}) df2 = df1 + 1 df3 = DataFrame({'c1': [3, 4, 7], 'c2': [5, 6, 8]}) wp = Panel({'i1': df1, 'i2': df2, 'i3': df3}) # major, 1 result = wp.pct_change() # axis='major' expected = Panel({'i1': df1.pct_change(), 'i2': df2.pct_change(), 'i3': df3.pct_change()}) assert_panel_equal(result, expected) result = wp.pct_change(axis=1) assert_panel_equal(result, expected) # major, 2 result = wp.pct_change(periods=2) expected = Panel({'i1': df1.pct_change(2), 'i2': df2.pct_change(2), 'i3': df3.pct_change(2)}) assert_panel_equal(result, expected) # minor, 1 result = wp.pct_change(axis='minor') expected = Panel({'i1': df1.pct_change(axis=1), 'i2': df2.pct_change(axis=1), 'i3': df3.pct_change(axis=1)}) assert_panel_equal(result, expected) result = wp.pct_change(axis=2) assert_panel_equal(result, expected) # minor, 2 result = wp.pct_change(periods=2, axis='minor') expected = Panel({'i1': df1.pct_change(periods=2, axis=1), 'i2': df2.pct_change(periods=2, axis=1), 'i3': df3.pct_change(periods=2, axis=1)}) assert_panel_equal(result, expected) # items, 1 result = wp.pct_change(axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [1, 0.5, .2], 'c2': [1. / 3, 0.25, 1. / 6]}), 'i3': DataFrame({'c1': [.5, 1. / 3, 1. / 6], 'c2': [.25, .2, 1. / 7]})}) assert_panel_equal(result, expected) result = wp.pct_change(axis=0) assert_panel_equal(result, expected) # items, 2 result = wp.pct_change(periods=2, axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i3': DataFrame({'c1': [2, 1, .4], 'c2': [2. / 3, .5, 1. / 3]})}) assert_panel_equal(result, expected) def test_round(self): values = [[[-3.2, 2.2], [0, -4.8213], [3.123, 123.12], [-1566.213, 88.88], [-12, 94.5]], [[-5.82, 3.5], [6.21, -73.272], [-9.087, 23.12], [272.212, -99.99], [23, -76.5]]] evalues = [[[float(np.around(i)) for i in j] for j in k] for k in values] p = Panel(values, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) expected = Panel(evalues, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) result = p.round() self.assert_panel_equal(expected, result) def test_multiindex_get(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)], names=['first', 'second']) wp = Panel(np.random.random((4, 5, 5)), items=ind, major_axis=np.arange(5), minor_axis=np.arange(5)) f1 = wp['a'] f2 = wp.ix['a'] assert_panel_equal(f1, f2) self.assertTrue((f1.items == [1, 2]).all()) self.assertTrue((f2.items == [1, 2]).all()) ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) def test_multiindex_blocks(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) wp = Panel(self.panel._data) wp.items = ind f1 = wp['a'] self.assertTrue((f1.items == [1, 2]).all()) f1 = wp[('b', 1)] self.assertTrue((f1.columns == ['A', 'B', 'C', 'D']).all()) def test_repr_empty(self): empty = Panel() repr(empty) def test_rename(self): mapper = {'ItemA': 'foo', 'ItemB': 'bar', 'ItemC': 'baz'} renamed = self.panel.rename_axis(mapper, axis=0) exp = Index(['foo', 'bar', 'baz']) self.assertTrue(renamed.items.equals(exp)) renamed = self.panel.rename_axis(str.lower, axis=2) exp = Index(['a', 'b', 'c', 'd']) self.assertTrue(renamed.minor_axis.equals(exp)) # don't copy renamed_nocopy = self.panel.rename_axis(mapper, axis=0, copy=False) renamed_nocopy['foo'] = 3. self.assertTrue((self.panel['ItemA'].values == 3).all()) def test_get_attr(self): assert_frame_equal(self.panel['ItemA'], self.panel.ItemA) # specific cases from #3440 self.panel['a'] = self.panel['ItemA'] assert_frame_equal(self.panel['a'], self.panel.a) self.panel['i'] = self.panel['ItemA'] assert_frame_equal(self.panel['i'], self.panel.i) def test_from_frame_level1_unsorted(self): tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1), ('MSFT', 1)] midx = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.rand(5, 4), index=midx) p = df.to_panel() assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index()) def test_to_excel(self): try: import xlwt # noqa import xlrd # noqa import openpyxl # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for ext in ['xls', 'xlsx']: path = '__tmp__.' + ext with ensure_clean(path) as path: self.panel.to_excel(path) try: reader = ExcelFile(path) except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_to_excel_xlsxwriter(self): try: import xlrd # noqa import xlsxwriter # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("Requires xlrd and xlsxwriter. Skipping test.") path = '__tmp__.xlsx' with ensure_clean(path) as path: self.panel.to_excel(path, engine='xlsxwriter') try: reader = ExcelFile(path) except ImportError as e: raise nose.SkipTest("cannot write excel file: %s" % e) for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_dropna(self): p = Panel(np.random.randn(4, 5, 6), major_axis=list('abcde')) p.ix[:, ['b', 'd'], 0] = np.nan result = p.dropna(axis=1) exp = p.ix[:, ['a', 'c', 'e'], :] assert_panel_equal(result, exp) inp = p.copy() inp.dropna(axis=1, inplace=True) assert_panel_equal(inp, exp) result = p.dropna(axis=1, how='all') assert_panel_equal(result, p) p.ix[:, ['b', 'd'], :] = np.nan result = p.dropna(axis=1, how='all') exp = p.ix[:, ['a', 'c', 'e'], :] assert_panel_equal(result, exp) p = Panel(np.random.randn(4, 5, 6), items=list('abcd')) p.ix[['b'], :, 0] = np.nan result = p.dropna() exp = p.ix[['a', 'c', 'd']] assert_panel_equal(result, exp) result = p.dropna(how='all') assert_panel_equal(result, p) p.ix['b'] = np.nan result = p.dropna(how='all') exp = p.ix[['a', 'c', 'd']] assert_panel_equal(result, exp) def test_drop(self): df = DataFrame({"A": [1, 2], "B": [3, 4]}) panel = Panel({"One": df, "Two": df}) def check_drop(drop_val, axis_number, aliases, expected): try: actual = panel.drop(drop_val, axis=axis_number) assert_panel_equal(actual, expected) for alias in aliases: actual = panel.drop(drop_val, axis=alias) assert_panel_equal(actual, expected) except AssertionError: com.pprint_thing("Failed with axis_number %d and aliases: %s" % (axis_number, aliases)) raise # Items expected = Panel({"One": df}) check_drop('Two', 0, ['items'], expected) self.assertRaises(ValueError, panel.drop, 'Three') # errors = 'ignore' dropped = panel.drop('Three', errors='ignore')
assert_panel_equal(dropped, panel)
pandas.util.testing.assert_panel_equal
#coding:utf-8 import json import pandas as pd import numpy as np from sklearn.naive_bayes import GaussianNB from sklearn import svm def road_json(path = 'json/analyzeTarget.json'): ''' pathからJSON形式のデータを読み取って返します。 ''' f = open(path, 'r') jsonData = json.load(f) f.close() return jsonData def clsify_data(learn_path = 'res/learn.csv' , input_path = 'res/input.csv'): ''' CSVファイルをロードして学習データを元にナイーブベイズで分類します。 ''' # 学習データ読み込み df_learn =
pd.read_csv(learn_path, encoding="SHIFT-JIS")
pandas.read_csv
import pandas as pd import sys job_df = pd.read_csv(sys.argv[1]) my_index =
pd.MultiIndex(levels = [[],[]], codes=[[],[]], names=[u'labels', u'path_idx'])
pandas.MultiIndex