prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from __future__ import print_function #!/usr/bin/env python # -*- coding: utf-8 -*- ''' Copyright (c) 2016 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import os, gzip import numpy as np import pandas as pd from pandas import Series, DataFrame def filter(obj, filt=None): ''' Parameters: obj: a DataFrame object. row are observation, columns are variables. filt: a self-definded operation. format: {variable: (op, value)} variable is one of the variables in obj. value is the posible value of variable op is the operation between variable and value, currently support '==', '!=', 'in', 'not in' Returns: a nameList that contains the list of filenames. each file correspond to one sample ''' for key in filt.keys(): if filt[key][0] == '==': obj = obj[obj[key] == filt[key][1] ] elif filt[key][0] == '!=': obj = obj[obj[key] != filt[key][1] ] elif filt[key][0] == 'in': col = obj[key].values row = [] for item in col: if item in filt[key][1]: row.append(True) else: row.append(False) obj = obj[row] elif filt[key][0] == 'not in': col = obj[key].values row = [] for item in col: if item in filt[key][1]: row.append(False) else: row.append(True) obj = obj[row] return obj def integration(nameList, DIR='./'): ''' intergrate selected samples together. Parameters: nameList: the list of filenames. each file correspond to one sample Returns: allSample: a DataFrame object. the intergrated data ''' allSample = DataFrame() for name in nameList: aDict = {} with gzip.open(''.join([DIR, name] ), 'rb') as handle: for line in handle: line = line.split('\t') aDict[line[0] ] = line[1] oneSample = Series(aDict, dtype=np.float) if allSample is None: oneSample.name = name.split('.')[0] oneSample.index.name = 'Gene' allSample =
DataFrame(oneSample)
pandas.DataFrame
import sys from Bio import SeqIO import tempfile import os import glob import shutil import pandas as pd from collections import defaultdict import fnmatch from . import rampart # extract with constraints: # -- only one group ever # -- only one flowcell ID ever # -- always unique read ID # fast fastq code by <NAME> def readfq(fp): # this is a generator function last = None # this is a buffer keeping the last unprocessed line while True: # mimic closure; is it a bad idea? if not last: # the first record or a record following a fastq for l in fp: # search for the start of the next record if l[0] in '>@': # fasta/q header line last = l[:-1] # save this line break if not last: break name, seqs, last = last[1:], [], None for l in fp: # read the sequence if l[0] in '@+>': last = l[:-1] break seqs.append(l[:-1]) if not last or last[0] != '+': # this is a fasta record yield name, ''.join(seqs), None # yield a fasta record if not last: break else: # this is a fastq record seq, leng, seqs = ''.join(seqs), 0, [] for l in fp: # read the quality seqs.append(l[:-1]) leng += len(l) - 1 if leng >= len(seq): # have read enough quality last = None yield name, seq, ''.join(seqs); # yield a fastq record break if last: # reach EOF before reading enough quality yield name, seq, None # yield a fasta record instead break def write_fastq(fh, name, rec, qual): fh.write("@%s\n%s\n+\n%s\n" % (name, rec, qual)) def run(parser, args): if not args.directory: if not os.path.exists(args.prompt_directory): print ("Please specify a directory with --directory, artic gather --help for details.") raise SystemExit directories = os.listdir(args.prompt_directory) directories = [args.prompt_directory+'/'+d for d in directories if os.path.isdir(args.prompt_directory+'/'+d)] args.directory = [rampart.chooser(directories)] if not args.fast5_directory and not args.no_fast5s: print("Must supply a directory to fast5 files with --fast5-directory") print("If you do not want use fast5s with nanopolish use --no-fast5s instead") raise SystemExit(1) if isinstance(args.directory, list) and len(args.directory) > 1 and not args.prefix: print("Must supply a prefix if gathering multiple directories!", file=sys.stderr) raise SystemExit(1) if args.prefix: prefix = args.prefix else: prefix = os.path.split(args.directory[0])[-1] all_fastq_outfn = "%s_all.fastq" % (prefix) all_fastq_outfh = open(all_fastq_outfn, "w") summary_files = [] fastq = defaultdict(list) for directory in args.directory: d = directory for root, dirs, files in os.walk(d): paths = os.path.split(root) barcode_directory = paths[-1] fastq[barcode_directory].extend([root+'/'+f for f in files if f.endswith('.fastq')]) summary_files.extend([root+'/'+f for f in files if fnmatch.fnmatch(f, '*cing_summary*txt')]) for barcode_directory, fastq in list(fastq.items()): if len(fastq): fastq_outfn = "%s_%s.fastq" % (prefix, barcode_directory) outfh = open(fastq_outfn, "w") print("Processing %s files in %s" % (len(fastq), barcode_directory), file=sys.stderr) dups = set() uniq = 0 total = 0 limit_reached = False for f in fastq: for name, rec, qual in readfq(open(f)): seq_length = len(rec) if args.max_length and seq_length > args.max_length: continue if args.min_length and seq_length < args.min_length: continue total += 1 if name not in dups: write_fastq(outfh, name, rec, qual) write_fastq(all_fastq_outfh, name, rec, qual) dups.add(name) uniq += 1 if args.limit and uniq >= args.limit: limit_reached = True break if limit_reached: break outfh.close() print("%s\t%s\t%s" % (fastq_outfn, total, uniq)) all_fastq_outfh.close() print("Found the following summary files:\n", file=sys.stderr) for summaryfn in summary_files: print (" " + summaryfn, file=sys.stderr) dfs = [] for summaryfn in summary_files: df = pd.read_csv(summaryfn, sep="\t") # support for local basecalling if 'filename_fast5' in df.columns: df['filename'] = df['filename_fast5'] dfs.append(df) summary_outfn = "" if dfs: summary_outfn = "%s_sequencing_summary.txt" % (prefix) summaryfh = open(summary_outfn, "w")
pd.concat(dfs, sort=False)
pandas.concat
# Copyright 2016 Netherlands eScience Center # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import pytest import numpy as np from numpy.testing import assert_array_almost_equal import pandas as pd import pandas.util.testing as pdt from .utils import FrozenSimilarityMatrixInMemory, SimilarityMatrixInMemory @pytest.fixture def similarity_matrix(): pair_matrix_inmem = SimilarityMatrixInMemory() pair_matrix = pair_matrix_inmem.matrix labels = {'a': 0, 'b': 1, 'c': 2, 'd': 3} similarities = [ ('a', 'b', 0.9), ('a', 'c', 0.5), ('b', 'c', 0.6), ('d', 'c', 0.7) ] pair_matrix.update(similarities, labels) yield pair_matrix pair_matrix_inmem.close() @pytest.fixture def frozen_similarity_matrix(): matrix_inmem = FrozenSimilarityMatrixInMemory() matrix = matrix_inmem.matrix yield matrix matrix_inmem.close() def fillit(frozen_similarity_matrix): labels = ['a', 'b', 'c', 'd'] data = [ [0.0, 0.9, 0.5, 0.0], [0.9, 0.0, 0.6, 0.0], [0.5, 0.6, 0.0, 0.7], [0.0, 0.0, 0.7, 0.0], ] frozen_similarity_matrix.from_array(np.array(data), labels) class TestFrozenSimilarityMatrix(object): def test_from_pairs_defaults(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10) result = frozen_similarity_matrix.to_pandas() labels = ['a', 'b', 'c', 'd'] expected = pd.DataFrame([ [0.0, 0.9, 0.5, 0.0], [0.9, 0.0, 0.6, 0.0], [0.5, 0.6, 0.0, 0.7], [0.0, 0.0, 0.7, 0.0] ], index=labels, columns=labels) pdt.assert_almost_equal(result, expected) def test_from_pairs_multiframe(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 1, None, False) result = frozen_similarity_matrix.to_pandas() labels = ['a', 'b', 'c', 'd'] expected = pd.DataFrame([ [0.0, 0.9, 0.5, 0.0], [0.9, 0.0, 0.6, 0.0], [0.5, 0.6, 0.0, 0.7], [0.0, 0.0, 0.7, 0.0] ], index=labels, columns=labels) pdt.assert_almost_equal(result, expected) def test_from_pairs_limited(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 1, 1, False) result = frozen_similarity_matrix.to_pandas() labels = ['a', 'b', 'c', 'd'] expected = pd.DataFrame([ [0.0, 0.9, 0.0, 0.0], [0.9, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0] ], index=labels, columns=labels) pdt.assert_almost_equal(result, expected) def test_from_pairs_singlesided(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10, None, True) result = frozen_similarity_matrix.to_pandas() print(result) labels = ['a', 'b', 'c', 'd'] expected = pd.DataFrame([ [0.0, 0.9, 0.5, 0.0], [0.0, 0.0, 0.6, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.7, 0.0] ], index=labels, columns=labels) pdt.assert_almost_equal(result, expected) def test_find_defaults(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10) hits = frozen_similarity_matrix.find('c', 0.55) expected = [('d', 0.7), ('b', 0.6)] assert hits == expected def test_find_limit(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10) hits = frozen_similarity_matrix.find('c', 0.55 , 1) expected = [('d', 0.7)] assert hits == expected def test_find_cutoffhigh_nohits(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10) hits = frozen_similarity_matrix.find('c', 0.9) expected = [] assert hits == expected def test_find_badkey_keyerror(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10) with pytest.raises(KeyError): frozen_similarity_matrix.find('f', 0.45) def test_find_singlesided(self, similarity_matrix, frozen_similarity_matrix): frozen_similarity_matrix.from_pairs(similarity_matrix, 10, None, True) print(frozen_similarity_matrix.scores.read()) hits = frozen_similarity_matrix.find('c', 0.0) expected = [] assert hits == expected def test_from_array(self, similarity_matrix, frozen_similarity_matrix): labels = ['a', 'b', 'c', 'd'] data = [ [0.0, 0.9, 0.5, 0.0], [0.9, 0.0, 0.6, 0.0], [0.5, 0.6, 0.0, 0.7], [0.0, 0.0, 0.7, 0.0], ] frozen_similarity_matrix.from_array(np.array(data), labels) result = frozen_similarity_matrix.to_pandas() expected = pd.DataFrame(data, index=labels, columns=labels)
pdt.assert_almost_equal(result, expected)
pandas.util.testing.assert_almost_equal
# coding: utf8 import abc from os import path import numpy as np import pandas as pd import torch import torchvision.transforms as transforms from torch.utils.data import Dataset from clinicadl.utils.inputs import FILENAME_TYPE, MASK_PATTERN ################################# # Datasets loaders ################################# class CapsDataset(Dataset): """Abstract class for all derived CapsDatasets.""" def __init__( self, caps_directory, data_df, preprocessing, transformations, label_presence, label=None, label_code=None, augmentation_transformations=None, multi_cohort=False, ): self.caps_directory = caps_directory self.caps_dict = self.create_caps_dict(caps_directory, multi_cohort) self.transformations = transformations self.augmentation_transformations = augmentation_transformations self.eval_mode = False self.label_presence = label_presence self.label = label self.label_code = label_code self.preprocessing = preprocessing if not hasattr(self, "elem_index"): raise ValueError( "Child class of CapsDataset must set elem_index attribute." ) if not hasattr(self, "mode"): raise ValueError("Child class of CapsDataset must set mode attribute.") # Check the format of the tsv file here self.df = data_df mandatory_col = {"participant_id", "session_id", "cohort"} if self.label_presence and self.label is not None: mandatory_col.add(self.label) if not mandatory_col.issubset(set(self.df.columns.values)): raise Exception( "the data file is not in the correct format." "Columns should include %s" % mandatory_col ) self.elem_per_image = self.num_elem_per_image() self.size = self[0]["image"].size() @property @abc.abstractmethod def elem_index(self): pass def label_fn(self, target): """ Returns the label value usable in criterion. Args: target (str or float or int): value of the target. Returns: label (int or float): value of the label usable in criterion. """ # Reconstruction case (no label) if self.label is None: return None # Regression case (no label code) elif self.label_code is None: return np.float32([target]) # Classification case (label + label_code dict) else: return self.label_code[target] def __len__(self): return len(self.df) * self.elem_per_image @staticmethod def create_caps_dict(caps_directory, multi_cohort): from clinica.utils.inputs import check_caps_folder if multi_cohort: if not caps_directory.endswith(".tsv"): raise ValueError( "If multi_cohort is given, the caps_dir argument should be a path to a TSV file." ) else: caps_df = pd.read_csv(caps_directory, sep="\t") check_multi_cohort_tsv(caps_df, "CAPS") caps_dict = dict() for idx in range(len(caps_df)): cohort = caps_df.loc[idx, "cohort"] caps_path = caps_df.loc[idx, "path"] check_caps_folder(caps_path) caps_dict[cohort] = caps_path else: check_caps_folder(caps_directory) caps_dict = {"single": caps_directory} return caps_dict def _get_path(self, participant, session, cohort, mode="image"): """ Gets the path to the tensor image (*.pt) Args: participant (str): ID of the participant. session (str): ID of the session. cohort (str): Name of the cohort. mode (str): Type of mode used (image, patch, slice or roi). Returns: image_path (str): path to the image """ if cohort not in self.caps_dict.keys(): raise ValueError( "Cohort names in labels and CAPS definitions do not match." ) if self.preprocessing == "t1-linear": image_path = path.join( self.caps_dict[cohort], "subjects", participant, session, "deeplearning_prepare_data", "%s_based" % mode, "t1_linear", participant + "_" + session + FILENAME_TYPE["cropped"] + ".pt", ) elif self.preprocessing == "t1-linear-downsampled": image_path = path.join( self.caps_dict[cohort], "subjects", participant, session, "deeplearning_prepare_data", "%s_based" % mode, "t1_linear", participant + "_" + session + FILENAME_TYPE["downsampled"] + ".pt", ) elif self.preprocessing == "t1-extensive": image_path = path.join( self.caps_dict[cohort], "subjects", participant, session, "deeplearning_prepare_data", "%s_based" % mode, "t1_extensive", participant + "_" + session + FILENAME_TYPE["skull_stripped"] + ".pt", ) elif self.preprocessing == "t1-volume": image_path = path.join( self.caps_dict[cohort], "subjects", participant, session, "deeplearning_prepare_data", "%s_based" % mode, "custom", participant + "_" + session + FILENAME_TYPE["gm_maps"] + ".pt", ) elif self.preprocessing == "shepplogan": image_path = path.join( self.caps_dict[cohort], "subjects", "%s_%s%s.pt" % (participant, session, FILENAME_TYPE["shepplogan"]), ) else: raise NotImplementedError( "The path to preprocessing %s is not implemented" % self.preprocessing ) return image_path def _get_meta_data(self, idx): """ Gets all meta data necessary to compute the path with _get_path Args: idx (int): row number of the meta-data contained in self.df Returns: participant (str): ID of the participant. session (str): ID of the session. cohort (str): Name of the cohort. elem_index (int): Index of the part of the image. label (str or float or int): value of the label to be used in criterion. """ image_idx = idx // self.elem_per_image participant = self.df.loc[image_idx, "participant_id"] session = self.df.loc[image_idx, "session_id"] cohort = self.df.loc[image_idx, "cohort"] if self.elem_index is None: elem_idx = idx % self.elem_per_image else: elem_idx = self.elem_index if self.label_presence and self.label is not None: target = self.df.loc[image_idx, self.label] label = self.label_fn(target) else: label = -1 return participant, session, cohort, elem_idx, label def _get_full_image(self): """ Allows to get the an example of the image mode corresponding to the dataset. Useful to compute the number of elements if mode != image. Returns: image (torch.Tensor) tensor of the full image. """ import nibabel as nib from clinicadl.generate.generate_utils import find_image_path as get_nii_path participant_id = self.df.loc[0, "participant_id"] session_id = self.df.loc[0, "session_id"] cohort = self.df.loc[0, "cohort"] try: image_path = self._get_path( participant_id, session_id, cohort, mode="image" ) image = torch.load(image_path) except FileNotFoundError: image_path = get_nii_path( self.caps_dict, participant_id, session_id, cohort=cohort, preprocessing=self.preprocessing, ) image_nii = nib.load(image_path) image_np = image_nii.get_fdata() image = ToTensor()(image_np) return image @abc.abstractmethod def __getitem__(self, idx): """ Gets the sample containing all the information needed for training and testing tasks. Args: idx (int): row number of the meta-data contained in self.df Returns: Dict[str, Any]: dictionary with following items: - "image" (torch.Tensor): the input given to the model, - "label" (int or float): the label used in criterion, - "participant_id" (str): ID of the participant, - "session_id" (str): ID of the session, - f"{self.mode}_id" (int): number of the element, - "image_path": path to the image loaded in CAPS. """ pass @abc.abstractmethod def num_elem_per_image(self): """Computes the number of elements per image based on the full image.""" pass def eval(self): """Put the dataset on evaluation mode (data augmentation is not performed).""" self.eval_mode = True return self def train(self): """Put the dataset on training mode (data augmentation is performed).""" self.eval_mode = False return self class CapsDatasetImage(CapsDataset): """Dataset of MRI organized in a CAPS folder.""" def __init__( self, caps_directory, data_file, preprocessing="t1-linear", train_transformations=None, label_presence=True, label=None, label_code=None, all_transformations=None, multi_cohort=False, ): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. train_transformations (callable, optional): Optional transform to be applied only on training mode. label_presence (bool): If True the diagnosis will be extracted from the given DataFrame. label (str): Name of the column in data_df containing the label. label_code (Dict[str, int]): label code that links the output node number to label value. all_transformations (callable, options): Optional transform to be applied during training and evaluation. multi_cohort (bool): If True caps_directory is the path to a TSV file linking cohort names and paths. """ self.mode = "image" super().__init__( caps_directory, data_file, preprocessing, augmentation_transformations=train_transformations, label_presence=label_presence, label=label, label_code=label_code, transformations=all_transformations, multi_cohort=multi_cohort, ) @property def elem_index(self): return None def __getitem__(self, idx): participant, session, cohort, _, label = self._get_meta_data(idx) image_path = self._get_path(participant, session, cohort, "image") image = torch.load(image_path) if self.transformations: image = self.transformations(image) if self.augmentation_transformations and not self.eval_mode: image = self.augmentation_transformations(image) sample = { "image": image, "label": label, "participant_id": participant, "session_id": session, "image_id": 0, "image_path": image_path, } return sample def num_elem_per_image(self): return 1 class CapsDatasetPatch(CapsDataset): def __init__( self, caps_directory, data_file, patch_size, stride_size, train_transformations=None, prepare_dl=False, patch_index=None, preprocessing="t1-linear", label_presence=True, label=None, label_code=None, all_transformations=None, multi_cohort=False, ): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. train_transformations (callable, optional): Optional transform to be applied only on training mode. prepare_dl (bool): If true pre-extracted patches will be loaded. patch_index (int, optional): If a value is given the same patch location will be extracted for each image. else the dataset will load all the patches possible for one image. patch_size (int): size of the regular cubic patch. stride_size (int): length between the centers of two patches. label_presence (bool): If True the diagnosis will be extracted from the given DataFrame. label (str): Name of the column in data_df containing the label. label_code (Dict[str, int]): label code that links the output node number to label value. all_transformations (callable, options): Optional transform to be applied during training and evaluation. multi_cohort (bool): If True caps_directory is the path to a TSV file linking cohort names and paths. """ if preprocessing == "shepplogan": raise ValueError( "Patch mode is not available for preprocessing %s" % preprocessing ) self.patch_size = patch_size self.stride_size = stride_size self.patch_index = patch_index self.mode = "patch" self.prepare_dl = prepare_dl super().__init__( caps_directory, data_file, preprocessing, augmentation_transformations=train_transformations, label_presence=label_presence, label=label, label_code=label_code, transformations=all_transformations, multi_cohort=multi_cohort, ) @property def elem_index(self): return self.patch_index def __getitem__(self, idx): participant, session, cohort, patch_idx, label = self._get_meta_data(idx) if self.prepare_dl: patch_path = path.join( self._get_path(participant, session, cohort, "patch")[0:-7] + "_patchsize-" + str(self.patch_size) + "_stride-" + str(self.stride_size) + "_patch-" + str(patch_idx) + "_T1w.pt" ) image = torch.load(patch_path) else: image_path = self._get_path(participant, session, cohort, "image") full_image = torch.load(image_path) image = self.extract_patch_from_mri(full_image, patch_idx) if self.transformations: image = self.transformations(image) if self.augmentation_transformations and not self.eval_mode: image = self.augmentation_transformations(image) sample = { "image": image, "label": label, "participant_id": participant, "session_id": session, "patch_id": patch_idx, } return sample def num_elem_per_image(self): if self.elem_index is not None: return 1 image = self._get_full_image() patches_tensor = ( image.unfold(1, self.patch_size, self.stride_size) .unfold(2, self.patch_size, self.stride_size) .unfold(3, self.patch_size, self.stride_size) .contiguous() ) patches_tensor = patches_tensor.view( -1, self.patch_size, self.patch_size, self.patch_size ) num_patches = patches_tensor.shape[0] return num_patches def extract_patch_from_mri(self, image_tensor, patch_idx): """ Extracts the patch corresponding to patch_idx Args: image_tensor (torch.Tensor): tensor of the full image. patch_idx (int): Index of the patch wanted. Returns: extracted_patch (torch.Tensor): the tensor of the patch. """ patches_tensor = ( image_tensor.unfold(1, self.patch_size, self.stride_size) .unfold(2, self.patch_size, self.stride_size) .unfold(3, self.patch_size, self.stride_size) .contiguous() ) patches_tensor = patches_tensor.view( -1, self.patch_size, self.patch_size, self.patch_size ) extracted_patch = patches_tensor[patch_idx, ...].unsqueeze_(0).clone() return extracted_patch class CapsDatasetRoi(CapsDataset): def __init__( self, caps_directory, data_file, roi_list=None, cropped_roi=True, roi_index=None, preprocessing="t1-linear", train_transformations=None, prepare_dl=False, label_presence=True, label=None, label_code=None, all_transformations=None, multi_cohort=False, ): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. roi_list (list): Defines the regions used in the classification. cropped_roi (bool): If True the image is cropped according to the smallest bounding box possible. roi_index (int, optional): If a value is given the same region will be extracted for each image. else the dataset will load all the regions possible for one image. preprocessing (string): Defines the path to the data in CAPS. train_transformations (callable, optional): Optional transform to be applied only on training mode. prepare_dl (bool): If true pre-extracted patches will be loaded. label_presence (bool): If True the diagnosis will be extracted from the given DataFrame. label (str): Name of the column in data_df containing the label. label_code (Dict[str, int]): label code that links the output node number to label value. all_transformations (callable, options): Optional transform to be applied during training and evaluation. multi_cohort (bool): If True caps_directory is the path to a TSV file linking cohort names and paths. """ if preprocessing == "shepplogan": raise ValueError( "ROI mode is not available for preprocessing %s" % preprocessing ) self.roi_index = roi_index self.mode = "roi" self.roi_list = roi_list self.cropped_roi = cropped_roi self.prepare_dl = prepare_dl self.mask_list = self.find_masks(caps_directory, preprocessing) super().__init__( caps_directory, data_file, preprocessing, augmentation_transformations=train_transformations, label_presence=label_presence, label=label, label_code=label_code, transformations=all_transformations, multi_cohort=multi_cohort, ) @property def elem_index(self): return self.roi_index def __getitem__(self, idx): participant, session, cohort, roi_idx, label = self._get_meta_data(idx) if self.prepare_dl: if self.roi_list is None: raise NotImplementedError( "The extraction of ROIs prior to training is not implemented for default ROIs." "Please disable --use_extracted_rois or precise the regions in --roi_names." ) # read the regions directly roi_path = self._get_path(participant, session, cohort, "roi") roi_path = self.compute_roi_filename(roi_path, roi_idx) patch = torch.load(roi_path) else: image_path = self._get_path(participant, session, cohort, "image") image = torch.load(image_path) patch = self.extract_roi_from_mri(image, roi_idx) if self.transformations: patch = self.transformations(patch) if self.augmentation_transformations and not self.eval_mode: patch = self.augmentation_transformations(patch) sample = { "image": patch, "label": label, "participant_id": participant, "session_id": session, "roi_id": roi_idx, } return sample def num_elem_per_image(self): if self.elem_index is not None: return 1 if self.roi_list is None: return 2 else: return len(self.roi_list) def extract_roi_from_mri(self, image_tensor, roi_idx): """ Extracts the region of interest corresponding to the roi_idx-th mask given to the dataset Args: image_tensor (torch.Tensor): tensor of the full image. roi_idx (int): Index of the region wanted. Returns: extracted_roi (torch.Tensor): the tensor of the region. """ if self.roi_list is None: if self.preprocessing == "t1-linear": if roi_idx == 1: # the center of the left hippocampus crop_center = (61, 96, 68) else: # the center of the right hippocampus crop_center = (109, 96, 68) else: raise NotImplementedError( "The extraction of hippocampi was not implemented for " "preprocessing %s" % self.preprocessing ) crop_size = (50, 50, 50) # the output cropped hippocampus size if self.cropped_roi: extracted_roi = image_tensor[ :, crop_center[0] - crop_size[0] // 2 : crop_center[0] + crop_size[0] // 2 :, crop_center[1] - crop_size[1] // 2 : crop_center[1] + crop_size[1] // 2 :, crop_center[2] - crop_size[2] // 2 : crop_center[2] + crop_size[2] // 2 :, ].clone() else: raise NotImplementedError( "The uncropped option for the default ROI was not implemented." ) else: roi_mask = self.mask_list[roi_idx] if len(roi_mask.shape) == 3: roi_mask = np.expand_dims(roi_mask, axis=0) elif len(roi_mask.shape) == 4: assert roi_mask.shape[0] == 1 else: raise ValueError( "ROI masks must be 3D or 4D tensors. " f"The dimension of your ROI mask is {len(roi_mask.shape)}." ) extracted_roi = image_tensor * roi_mask if self.cropped_roi: extracted_roi = extracted_roi[ np.ix_( roi_mask.any((1, 2, 3)), roi_mask.any((0, 2, 3)), roi_mask.any((0, 1, 3)), roi_mask.any((0, 1, 2)), ) ] return extracted_roi.float() def find_masks(self, caps_directory, preprocessing): """Loads the masks necessary to regions extraction""" import nibabel as nib # TODO should be mutualized with deeplearning-prepare-data templates_dict = { "t1-linear": "MNI152NLin2009cSym", "t1-volume": "Ixi549Space", "t1-extensive": "Ixi549Space", } if self.prepare_dl or self.roi_list is None: return None else: mask_list = [] for roi in self.roi_list: template = templates_dict[preprocessing] if preprocessing == "t1-linear": mask_pattern = MASK_PATTERN["cropped"] elif preprocessing == "t1-volume": mask_pattern = MASK_PATTERN["gm_maps"] elif preprocessing == "t1-extensive": mask_pattern = MASK_PATTERN["skull_stripped"] else: raise NotImplementedError( "Roi extraction for %s preprocessing was not implemented." % preprocessing ) mask_path = path.join( caps_directory, "masks", "tpl-%s" % template, "tpl-%s%s_roi-%s_mask.nii.gz" % (template, mask_pattern, roi), ) mask_nii = nib.load(mask_path) mask_list.append(mask_nii.get_fdata()) return mask_list def compute_roi_filename(self, image_path, roi_index): # TODO should be mutualized with deeplearning-prepare-data from os import path image_dir = path.dirname(image_path) image_filename = path.basename(image_path) image_descriptors = image_filename.split("_") if "desc-Crop" not in image_descriptors and self.cropped_roi: image_descriptors = self.insert_descriptor( image_descriptors, "desc-CropRoi", "space" ) elif "desc-Crop" in image_descriptors: image_descriptors = [ descriptor for descriptor in image_descriptors if descriptor != "desc-Crop" ] if self.cropped_roi: image_descriptors = self.insert_descriptor( image_descriptors, "desc-CropRoi", "space" ) else: image_descriptors = self.insert_descriptor( image_descriptors, "desc-CropImage", "space" ) return ( path.join(image_dir, "_".join(image_descriptors))[0:-7] + f"_roi-{self.roi_list[roi_index]}_T1w.pt" ) @staticmethod def insert_descriptor(image_descriptors, descriptor_to_add, key_to_follow): # TODO should be mutualized with deeplearning-prepare-data for i, desc in enumerate(image_descriptors): if key_to_follow in desc: image_descriptors.insert(i + 1, descriptor_to_add) return image_descriptors class CapsDatasetSlice(CapsDataset): def __init__( self, caps_directory, data_file, slice_index=None, preprocessing="t1-linear", train_transformations=None, mri_plane=0, prepare_dl=False, discarded_slices=20, label_presence=True, label=None, label_code=None, all_transformations=None, multi_cohort=False, ): """ Args: caps_directory (string): Directory of all the images. data_file (string or DataFrame): Path to the tsv file or DataFrame containing the subject/session list. preprocessing (string): Defines the path to the data in CAPS. slice_index (int, optional): If a value is given the same slice will be extracted for each image. else the dataset will load all the slices possible for one image. train_transformations (callable, optional): Optional transform to be applied only on training mode. prepare_dl (bool): If true pre-extracted patches will be loaded. mri_plane (int): Defines which mri plane is used for slice extraction. discarded_slices (int or list): number of slices discarded at the beginning and the end of the image. If one single value is given, the same amount is discarded at the beginning and at the end. label_presence (bool): If True the diagnosis will be extracted from the given DataFrame. label (str): Name of the column in data_df containing the label. label_code (Dict[str, int]): label code that links the output node number to label value. all_transformations (callable, options): Optional transform to be applied during training and evaluation. multi_cohort (bool): If True caps_directory is the path to a TSV file linking cohort names and paths. """ # Rename MRI plane if preprocessing == "shepplogan": raise ValueError( "Slice mode is not available for preprocessing %s" % preprocessing ) self.slice_index = slice_index self.mri_plane = mri_plane self.direction_list = ["sag", "cor", "axi"] if self.mri_plane >= len(self.direction_list): raise ValueError( "mri_plane value %i > %i" % (self.mri_plane, len(self.direction_list)) ) # Manage discarded_slices if isinstance(discarded_slices, int): discarded_slices = [discarded_slices, discarded_slices] if isinstance(discarded_slices, list) and len(discarded_slices) == 1: discarded_slices = discarded_slices * 2 self.discarded_slices = discarded_slices self.mode = "slice" self.prepare_dl = prepare_dl super().__init__( caps_directory, data_file, preprocessing, augmentation_transformations=train_transformations, label_presence=label_presence, label=label, label_code=label_code, transformations=all_transformations, multi_cohort=multi_cohort, ) @property def elem_index(self): return self.slice_index def __getitem__(self, idx): participant, session, cohort, slice_idx, label = self._get_meta_data(idx) slice_idx = slice_idx + self.discarded_slices[0] if self.prepare_dl: # read the slices directly slice_path = path.join( self._get_path(participant, session, cohort, "slice")[0:-7] + "_axis-%s" % self.direction_list[self.mri_plane] + "_channel-rgb_slice-%i_T1w.pt" % slice_idx ) image = torch.load(slice_path) else: image_path = self._get_path(participant, session, cohort, "image") full_image = torch.load(image_path) image = self.extract_slice_from_mri(full_image, slice_idx) if self.transformations: image = self.transformations(image) if self.augmentation_transformations and not self.eval_mode: image = self.augmentation_transformations(image) sample = { "image": image, "label": label, "participant_id": participant, "session_id": session, "slice_id": slice_idx, } return sample def num_elem_per_image(self): if self.elem_index is not None: return 1 image = self._get_full_image() return ( image.size(self.mri_plane + 1) - self.discarded_slices[0] - self.discarded_slices[1] ) def extract_slice_from_mri(self, image, index_slice): """ This function extracts one slice along one axis and creates a RGB image (the slice is duplicated in each channel). To note: Axial_view = "[:, :, slice_i]" Coronal_view = "[:, slice_i, :]" Sagittal_view= "[slice_i, :, :]" Args: image (torch.Tensor): tensor of the full image. index_slice (int): index of the wanted slice. Returns: triple_slice (torch.Tensor): tensor of the slice with 3 channels. """ image = image.squeeze(0) simple_slice = image[(slice(None),) * self.mri_plane + (index_slice,)] triple_slice = torch.stack((simple_slice, simple_slice, simple_slice)) return triple_slice def return_dataset( mode, input_dir, data_df, preprocessing, all_transformations, params, label=None, label_code=None, train_transformations=None, cnn_index=None, label_presence=True, multi_cohort=False, prepare_dl=False, ): """ Return appropriate Dataset according to given options. Args: mode (str): input used by the network. Chosen from ['image', 'patch', 'roi', 'slice']. input_dir (str): path to a directory containing a CAPS structure. data_df (pd.DataFrame): List subjects, sessions and diagnoses. preprocessing (str): type of preprocessing wanted ('t1-linear' or 't1-extensive') train_transformations (callable, optional): Optional transform to be applied during training only. all_transformations (callable, optional): Optional transform to be applied during training and evaluation. params (clinicadl.MapsManager): options used by specific modes. label (str): Name of the column in data_df containing the label. label_code (Dict[str, int]): label code that links the output node number to label value. cnn_index (int): Index of the CNN in a multi-CNN paradigm (optional). label_presence (bool): If True the diagnosis will be extracted from the given DataFrame. multi_cohort (bool): If True caps_directory is the path to a TSV file linking cohort names and paths. prepare_dl (bool): If true pre-extracted slices / patches / regions will be loaded. Returns: (Dataset) the corresponding dataset. """ if cnn_index is not None and mode in ["image"]: raise ValueError("Multi-CNN is not implemented for %s mode." % mode) if mode == "image": return CapsDatasetImage( input_dir, data_df, preprocessing, train_transformations=train_transformations, all_transformations=all_transformations, label_presence=label_presence, label=label, label_code=label_code, multi_cohort=multi_cohort, ) elif mode == "patch": return CapsDatasetPatch( input_dir, data_df, params.patch_size, params.stride_size, preprocessing=preprocessing, train_transformations=train_transformations, all_transformations=all_transformations, prepare_dl=prepare_dl, patch_index=cnn_index, label_presence=label_presence, label=label, label_code=label_code, multi_cohort=multi_cohort, ) elif mode == "roi": return CapsDatasetRoi( input_dir, data_df, roi_list=params.roi_list, cropped_roi=not params.uncropped_roi, preprocessing=preprocessing, train_transformations=train_transformations, all_transformations=all_transformations, prepare_dl=prepare_dl, roi_index=cnn_index, label_presence=label_presence, label=label, label_code=label_code, multi_cohort=multi_cohort, ) elif mode == "slice": return CapsDatasetSlice( input_dir, data_df, preprocessing=preprocessing, train_transformations=train_transformations, all_transformations=all_transformations, mri_plane=params.slice_direction, prepare_dl=prepare_dl, discarded_slices=params.discarded_slices, slice_index=cnn_index, label_presence=label_presence, label=label, label_code=label_code, multi_cohort=multi_cohort, ) else: raise ValueError("Mode %s is not implemented." % mode) ################################## # Transformations ################################## class RandomNoising(object): """Applies a random zoom to a tensor""" def __init__(self, sigma=0.1): self.sigma = sigma def __call__(self, image): import random sigma = random.uniform(0, self.sigma) dist = torch.distributions.normal.Normal(0, sigma) return image + dist.sample(image.shape) class RandomSmoothing(object): """Applies a random zoom to a tensor""" def __init__(self, sigma=1): self.sigma = sigma def __call__(self, image): import random from scipy.ndimage import gaussian_filter sigma = random.uniform(0, self.sigma) image = gaussian_filter(image, sigma) # smoothing of data image = torch.from_numpy(image).float() return image class RandomCropPad(object): def __init__(self, length): self.length = length def __call__(self, image): dimensions = len(image.shape) - 1 crop = np.random.randint(-self.length, self.length, dimensions) if dimensions == 2: output = torch.nn.functional.pad( image, (-crop[0], crop[0], -crop[1], crop[1]) ) elif dimensions == 3: output = torch.nn.functional.pad( image, (-crop[0], crop[0], -crop[1], crop[1], -crop[2], crop[2]) ) else: raise ValueError("RandomCropPad is only available for 2D or 3D data.") return output class GaussianSmoothing(object): def __init__(self, sigma): self.sigma = sigma def __call__(self, sample): from scipy.ndimage.filters import gaussian_filter image = sample["image"] np.nan_to_num(image, copy=False) smoothed_image = gaussian_filter(image, sigma=self.sigma) sample["image"] = smoothed_image return sample class ToTensor(object): """Convert image type to Tensor and diagnosis to diagnosis code""" def __call__(self, image): np.nan_to_num(image, copy=False) image = image.astype(float) return torch.from_numpy(image[np.newaxis, :]).float() class MinMaxNormalization(object): """Normalizes a tensor between 0 and 1""" def __call__(self, image): return (image - image.min()) / (image.max() - image.min()) def get_transforms(mode, minmaxnormalization=True, data_augmentation=None): """ Outputs the transformations that will be applied to the dataset Args: mode (str): input used by the network. Chosen from ['image', 'patch', 'roi', 'slice']. minmaxnormalization (bool): if True will perform MinMaxNormalization. data_augmentation (List[str]): list of data augmentation performed on the training set. Returns: - container transforms.Compose including transforms to apply in train and evaluation mode. - container transforms.Compose including transforms to apply in evaluation mode only. """ augmentation_dict = { "Noise": RandomNoising(sigma=0.1), "Erasing": transforms.RandomErasing(), "CropPad": RandomCropPad(10), "Smoothing": RandomSmoothing(), "None": None, } if data_augmentation: augmentation_list = [ augmentation_dict[augmentation] for augmentation in data_augmentation ] else: augmentation_list = [] if minmaxnormalization: transformations_list = [MinMaxNormalization()] else: transformations_list = [] if mode == "slice": trg_size = (224, 224) transformations_list += [ transforms.ToPILImage(), transforms.Resize(trg_size), transforms.ToTensor(), ] all_transformations = transforms.Compose(transformations_list) train_transformations = transforms.Compose(augmentation_list) return train_transformations, all_transformations ################################ # TSV files loaders ################################ def load_data_test(test_path, diagnoses_list, baseline=True, multi_cohort=False): """ Load data not managed by split_manager. Args: test_path (str): path to the test TSV files / split directory / TSV file for multi-cohort diagnoses_list (List[str]): list of the diagnoses wanted in case of split_dir or multi-cohort baseline (bool): If True baseline sessions only used (split_dir handling only). multi_cohort (bool): If True considers multi-cohort setting. """ # TODO: computes baseline sessions on-the-fly to manager TSV file case if multi_cohort: if not test_path.endswith(".tsv"): raise ValueError( "If multi_cohort is given, the tsv_path argument should be a path to a TSV file." ) else: tsv_df = pd.read_csv(test_path, sep="\t") check_multi_cohort_tsv(tsv_df, "labels") test_df = pd.DataFrame() found_diagnoses = set() for idx in range(len(tsv_df)): cohort_name = tsv_df.loc[idx, "cohort"] cohort_path = tsv_df.loc[idx, "path"] cohort_diagnoses = ( tsv_df.loc[idx, "diagnoses"].replace(" ", "").split(",") ) if bool(set(cohort_diagnoses) & set(diagnoses_list)): target_diagnoses = list(set(cohort_diagnoses) & set(diagnoses_list)) cohort_test_df = load_data_test_single( cohort_path, target_diagnoses, baseline=baseline ) cohort_test_df["cohort"] = cohort_name test_df = pd.concat([test_df, cohort_test_df]) found_diagnoses = found_diagnoses | ( set(cohort_diagnoses) & set(diagnoses_list) ) if found_diagnoses != set(diagnoses_list): raise ValueError( f"The diagnoses found in the multi cohort dataset {found_diagnoses} " f"do not correspond to the diagnoses wanted {set(diagnoses_list)}." ) test_df.reset_index(inplace=True, drop=True) else: if test_path.endswith(".tsv"): tsv_df = pd.read_csv(test_path, sep="\t") multi_col = {"cohort", "path"} if multi_col.issubset(tsv_df.columns.values): raise ValueError( "To use multi-cohort framework, please add --multi_cohort flag." ) test_df = load_data_test_single(test_path, diagnoses_list, baseline=baseline) test_df["cohort"] = "single" return test_df def load_data_test_single(test_path, diagnoses_list, baseline=True): if test_path.endswith(".tsv"): test_df = pd.read_csv(test_path, sep="\t") if "diagnosis" not in test_df.columns.values: raise ValueError( f"'diagnosis' column must be present in TSV file {test_path}." ) test_df = test_df[test_df.diagnosis.isin(diagnoses_list)] if len(test_df) == 0: raise ValueError( f"Diagnoses wanted {diagnoses_list} were not found in TSV file {test_path}." ) return test_df test_df =
pd.DataFrame()
pandas.DataFrame
import sys import os import cobra.io import libsbml from tqdm import tqdm import pandas as pd import re import memote from bioservices.kegg import KEGG import helper_functions as hf ''' Usage: annotate_reactions.py <path_input_sbml-file> <path_output_sbml-file> <path_outfile-tsv_missing_bigg> <path_memote-report> Adds annotations to reactions. ''' def main(args): # console access if len(args) != 5: print(main.__doc__) sys.exit(1) infile = args[1] outfile = args[2] outfile_missing_bigg = args[3] memote_report = args[4] if not os.path.exists(infile): print("[Error] %s : No such file." % infile) sys.exit(1) # create Readers and Writers reader = libsbml.SBMLReader() writer = libsbml.SBMLWriter() # Read SBML File doc = reader.readSBML(infile) model = doc.getModel() # Knowledge base preparation bigg_db = pd.read_csv("Databases/BiGG/bigg_models_reactions.tsv", sep='\t').fillna("") seed_db =
pd.read_csv("Databases/SEED/reactions.tsv", header=0, sep="\t")
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti = date_range("20130101", periods=3, tz=tz_naive_fixture) dta = dti.array result = dta - dti expected = dti - dti tm.assert_index_equal(result, expected) tdi = result result = dta + tdi expected = dti + tdi tm.assert_index_equal(result, expected) result = dta - tdi expected = dti - tdi tm.assert_index_equal(result, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range("20130101", periods=3) dti_tz = date_range("20130101", periods=3).tz_localize("US/Eastern") dti_tz2 = date_range("20130101", periods=3).tz_localize("UTC") expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) msg = "DatetimeArray subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dti_tz - dti with pytest.raises(TypeError, match=msg): dti - dti_tz with pytest.raises(TypeError, match=msg): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range("20130101", periods=3) dti2 = date_range("20130101", periods=4) msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]) dti2 = DatetimeIndex(["2012-01-02", "2012-01-03", np.nan]) expected = TimedeltaIndex(["1 days", np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) # ------------------------------------------------------------------- # TODO: Most of this block is moved from series or frame tests, needs # cleanup, box-parametrization, and de-duplication @pytest.mark.parametrize("op", [operator.add, operator.sub]) def test_timedelta64_equal_timedelta_supported_ops(self, op, box_with_array): ser = Series( [ Timestamp("20130301"), Timestamp("20130228 23:00:00"), Timestamp("20130228 22:00:00"), Timestamp("20130228 21:00:00"), ] ) obj = box_with_array(ser) intervals = ["D", "h", "m", "s", "us"] def timedelta64(*args): # see casting notes in NumPy gh-12927 return np.sum(list(starmap(np.timedelta64, zip(args, intervals)))) for d, h, m, s, us in product(*([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(obj, nptd) rhs = op(obj, pytd) tm.assert_equal(lhs, rhs) def test_ops_nat_mixed_datetime64_timedelta64(self): # GH#11349 timedelta_series = Series([NaT, Timedelta("1s")]) datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") # subtraction tm.assert_series_equal( datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta ) tm.assert_series_equal( datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp ) tm.assert_series_equal( -single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp ) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta, ) tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( -single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) msg = "cannot subtract a datelike" with pytest.raises(TypeError, match=msg): timedelta_series - single_nat_dtype_datetime # addition tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp, ) def test_ufunc_coercions(self): idx = date_range("2011-01-01", periods=3, freq="2D", name="x") delta = np.timedelta64(1, "D") exp = date_range("2011-01-02", periods=3, freq="2D", name="x") for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" exp = date_range("2010-12-31", periods=3, freq="2D", name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" # When adding/subtracting an ndarray (which has no .freq), the result # does not infer freq idx = idx._with_freq(None) delta = np.array( [np.timedelta64(1, "D"), np.timedelta64(2, "D"), np.timedelta64(3, "D")] ) exp = DatetimeIndex(["2011-01-02", "2011-01-05", "2011-01-08"], name="x") for result in [idx + delta, np.add(idx, delta)]: tm.assert_index_equal(result, exp) assert result.freq == exp.freq exp = DatetimeIndex(["2010-12-31", "2011-01-01", "2011-01-02"], name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == exp.freq def test_dti_add_series(self, tz_naive_fixture, names): # GH#13905 tz = tz_naive_fixture index = DatetimeIndex( ["2016-06-28 05:30", "2016-06-28 05:31"], tz=tz, name=names[0] ) ser = Series([Timedelta(seconds=5)] * 2, index=index, name=names[1]) expected = Series(index + Timedelta(seconds=5), index=index, name=names[2]) # passing name arg isn't enough when names[2] is None expected.name = names[2] assert expected.dtype == index.dtype result = ser + index tm.assert_series_equal(result, expected) result2 = index + ser tm.assert_series_equal(result2, expected) expected = index + Timedelta(seconds=5) result3 = ser.values + index tm.assert_index_equal(result3, expected) result4 = index + ser.values tm.assert_index_equal(result4, expected) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) def test_dti_addsub_offset_arraylike( self, tz_naive_fixture, names, op, index_or_series ): # GH#18849, GH#19744 other_box = index_or_series tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz, name=names[0]) other = other_box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) xbox = get_upcast_box(dti, other) with tm.assert_produces_warning(PerformanceWarning): res = op(dti, other) expected = DatetimeIndex( [op(dti[n], other[n]) for n in range(len(dti))], name=names[2], freq="infer" ) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) @pytest.mark.parametrize("other_box", [pd.Index, np.array]) def test_dti_addsub_object_arraylike( self, tz_naive_fixture, box_with_array, other_box ): tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = other_box([pd.offsets.MonthEnd(), Timedelta(days=4)]) xbox = get_upcast_box(dtarr, other) expected = DatetimeIndex(["2017-01-31", "2017-01-06"], tz=tz_naive_fixture) expected = tm.box_expected(expected, xbox) with tm.assert_produces_warning(PerformanceWarning): result = dtarr + other tm.assert_equal(result, expected) expected = DatetimeIndex(["2016-12-31", "2016-12-29"], tz=tz_naive_fixture) expected = tm.box_expected(expected, xbox) with tm.assert_produces_warning(PerformanceWarning): result = dtarr - other tm.assert_equal(result, expected) @pytest.mark.parametrize("years", [-1, 0, 1]) @pytest.mark.parametrize("months", [-2, 0, 2]) def test_shift_months(years, months): dti = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"),
Timestamp("2000-02-29")
pandas.Timestamp
from collections import Counter from functools import partial from math import sqrt from pathlib import Path import lightgbm as lgb import numpy as np import pandas as pd import scipy as sp from sklearn.decomposition import TruncatedSVD, NMF from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from kaggle_petfinder.utils import is_script_running ON_KAGGLE: bool = is_script_running() DATA_ROOT = Path( "../input/petfinder-adoption-prediction" if ON_KAGGLE else "../resources/petfinder-adoption-prediction" ) EXTRA_DATA_ROOT = Path( "../input/extract-image-features-from-pretrained-nn" if ON_KAGGLE else "../resources/extract-image-features-from-pretrained-nn" ) # basic datasets train = pd.read_csv(DATA_ROOT / "train/train.csv") test = pd.read_csv(DATA_ROOT / "test/test.csv") sample_submission = pd.read_csv(DATA_ROOT / "test/sample_submission.csv") labels_breed = pd.read_csv(DATA_ROOT / "breed_labels.csv") labels_state =
pd.read_csv(DATA_ROOT / "color_labels.csv")
pandas.read_csv
from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import LabelEncoder, OneHotEncoder, QuantileTransformer, PolynomialFeatures from sklearn.metrics import mean_squared_error from pandas import DataFrame, concat class clasterisator(): def __init__(self, K, model=KMeans): self.kmeans = model(n_clusters=K, random_state=42) def fit(self, df): self.kmeans.fit(df) return self.kmeans def predict(self, df): return self.kmeans.predict(df) def fit_predict(self, df): return self.fit(df).predict(df) class MultiColumnLabelEncoder(): def __init__(self, columns = None): self.columns = columns def fit(self, X): encoders_dict = dict() if self.columns: for col in self.columns: encoders_dict[col] = LabelEncoder().fit(X[col]) else: for colname, values in X.iteritems(): encoders_dict[colname] = LabelEncoder().fit(values) self.encoders_dict = encoders_dict return self def transform(self, X): output = X.copy() if self.columns: for col in self.columns: output[col] = self.encoders_dict[col].transform(output[col]) else: for colname, values in output.iteritems(): output[colname] = self.encoders_dict[colname].transform(values) return output def fit_transform(self, X): return self.fit(X).transform(X) def inverse_transform(self, X): output = X.copy() if self.columns: for col in self.columns: output[col] = self.encoders_dict[col].inverse_transform(output[col]) else: for colname, values in output.iteritems(): output[colname] = self.encoders_dict[colname].inverse_transform(values) return output class SimpleDataTransformer(): def __init__(self, numerical_cols=None, categorical_cols=None, numerical_transformer=None, degree=1): self.transformers_dict = dict() self.degree = degree if numerical_cols: self.numerical_cols = numerical_cols else: self.numerical_cols = None if categorical_cols: self.categorical_cols = categorical_cols self.mcle = MultiColumnLabelEncoder(categorical_cols) else: self.categorical_cols = None if numerical_transformer is None: self.numerical_transformer = QuantileTransformer(1000, 'normal') elif isinstance(numerical_transformer, type): self.numerical_transformer = numerical_transformer() else: self.numerical_transformer = numerical_transformer def fit(self, X): if self.numerical_cols: for col in self.numerical_cols: self.transformers_dict[col] = self.numerical_transformer.fit(X[[col]]) self.polynomial = PolynomialFeatures(self.degree).fit(X[self.numerical_cols]) if self.categorical_cols: mcle_out = X[self.categorical_cols]#self.mcle.fit_transform(X[self.categorical_cols]) self.ohe = OneHotEncoder(sparse=False, categories='auto', handle_unknown='ignore').fit(mcle_out) #for col in self.categorical_cols: # self.transformers_dict[col] = OneHotEncoder.fit(mcle_out[[col]]) return self def transform(self, X, drop_cat=True): output = X.copy() if self.numerical_cols: for col in self.numerical_cols: output[col] = self.transformers_dict[col].transform(output[[col]]) polynom_out = self.polynomial.fit_transform(output[self.numerical_cols]) polynom_cols = ['num%d'%i for i in range(polynom_out.shape[1])] polynom_out_df = DataFrame(polynom_out, columns=polynom_cols) output = concat((output, polynom_out_df), axis=1) output.drop(columns=self.numerical_cols, inplace=True) if self.categorical_cols: mcle_out = X[self.categorical_cols]#self.mcle.transform(X[self.categorical_cols]) ohe_out = self.ohe.transform(mcle_out) if drop_cat: output.drop(columns=self.categorical_cols, inplace=True) catcol_names = ['ohe%d'%i for i in range(ohe_out.shape[1])] ohe_out_df = DataFrame(ohe_out, columns=catcol_names) output =
concat((output, ohe_out_df), axis=1)
pandas.concat
# -*- coding: utf-8 -*- """RandomForest.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/19ZaS9axtwR_5R4KIlm1xD5FAqwYXzwU5 """ import os import time import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import ShuffleSplit, KFold # train = pd.read_csv("C:/Users/swl3guest/CE4032/datasets/train_modified_v2.csv") # test = pd.read_csv("C:/Users/swl3guest/CE4032/datasets/test_modified_v2.csv") train_df =
pd.read_csv("../datasets/modified_train.csv")
pandas.read_csv
import pandas as pd filtered_path = "filtered/ambiguous/filtered_" def convert(data_path): data=[] with open(data_path, 'r',encoding='utf-8-sig') as f_input: for line in f_input: data.append(list(line.strip().split('\t'))) df=pd.DataFrame(data[1:],columns=data[0]) return df.loc[:,['question', 'sentence', 'label']] def get_ambi(): dp = filtered_path + "1/cartography_variability_0.25/QNLI/train.tsv" df_ans = convert(dp) for i in range(2,11): dp2 = filtered_path + str(i) + "/cartography_variability_0.25/QNLI/train.tsv" df2 = convert(dp2) print(df2) df_ans =
pd.merge(df_ans, df2, how='inner',on=['question','sentence','label'])
pandas.merge
import pandas as pd #데이터프레임 만들기 df1 = pd.DataFrame({'a': ['a0','a1','a2','a3'], 'b':['b0','b1','b2','b3'], 'c':['c0','c1','c2','c3'] }, index= [0,1,2,3]) df2 = pd.DataFrame( {'a':['a2','a3','a4','a5'], 'b':['b2','b3','b4','b5'], 'c':['c2','c3','c4','c5']}, index=[2,3,4,5]) print(df1.head()) # print('\n') # print(df2.head()) result1 = pd.concat([df1,df2]) # print(result1,'\n') result2 = pd.concat([df1,df2], ignore_index= True) # print(result2) result3 = pd.concat([df1,df2],axis=1) # print(result3,'\n') result3_in = pd.concat([df1,df2],axis=1,join='inner') # print(result3_in) sr1 = pd.Series(['e0','e1','e2','e3'], name='e') sr2 = pd.Series(['f0','f1','f2'],name='f',index=[3,4,5]) sr3 =
pd.Series(['g0','g1','g2','g3'],name='g')
pandas.Series
#!/usr/bin/env python3 """ Aim of this script is to add event data from a csv file to the database. """ import argparse import os import sqlite3 import pandas as pd class MapToAttribute: """ Returns an attribute of the old series. """ def __init__(self, attribute): self._attribute = attribute def __call__(self, old_series): return old_series[self._attribute] class MapToOneValue: """ Returns just one value. """ def __init__(self, value): self._value = value def __call__(self, old_series): return self._value class MapToOneValueIfAttributeIsNone: """ Returns the value from the attribute or (if none) a default value. """ def __init__(self, attribute, value): self._attribute = attribute self._value = value def __call__(self, old_series): possible_value = old_series[self._attribute] if possible_value is not None: return possible_value return self._value class MapToNone: """ Returns None. """ def __call__(self, old_series): return None class MapToAttributeWithPrefix: """ Returns the attribute of a series with a prefix. The prefix is the same for all the values. """ def __init__(self, prefix, attribute): self._prefix = prefix self._attribute = attribute def __call__(self, old_series): return self._prefix + str(old_series[self._attribute]) class MapToAttributeAndMapValues: """ Returns the attribute of the series. If this has a specific value, it will be mapped to anohter value depending on the content of the map values. """ def __init__(self, attribute, lookup_table): self._attribute = attribute self._lookup_table = lookup_table def __call__(self, old_series): old_value = old_series[self._attribute] if old_value in self._lookup_table.keys(): return self._lookup_table[old_value] return old_value MAPPINGS = { "eventID": MapToAttributeWithPrefix(prefix="peru_", attribute="rupid"), "Agency": MapToAttribute("Agency"), "Identifier": MapToAttributeWithPrefix(prefix="peru_", attribute="rupid"), "year": MapToOneValueIfAttributeIsNone( attribute="Unnamed: 12", value=3000 ), "month": MapToAttribute("Unnamed: 13"), "day": MapToAttribute("Unnamed: 14"), "minute": MapToNone(), "second": MapToNone(), "timeUncertainty": MapToNone(), "longitude": MapToAttribute("centroid_lon"), "longitudeUncertainty": MapToNone(), "latitude": MapToAttribute("centroid_lat"), "latitudeUncertainty": MapToNone(), "horizontalUncertainty": MapToNone(), "minHorizontalUncertainty": MapToNone(), "maxHorizontalUncertainty": MapToNone(), "azimuthMaxHorizontalUncertainty": MapToNone(), "depth": MapToAttribute("centroid_depth"), "depthUncertainty": MapToNone(), "magnitude": MapToAttribute("mag"), "magnitudeUncertainty": MapToNone(), "rake": MapToAttribute("rake"), "rakeUncertainty": MapToNone(), "dip": MapToAttribute("dip"), "dipUncertainty": MapToNone(), "strike": MapToAttribute("strike"), "strikeUncertainty": MapToNone(), # we have historic in the new series, # but just observed in the old dataset # we can map them afterwards with sql # but I'm still a bit unsure about # the values here "type": MapToAttributeAndMapValues("type", {"historic": "observed"}), "probability": MapToOneValue(0.1), } def map_to_existing_names(series): """ Maps the names of the old series to those expected by the database. """ new_series =
pd.Series()
pandas.Series
"""get_lineups.py Usage: get_lineups.py <f_data_config> Arguments: <f_data_config> example ''lineups.yaml'' Example: get_lineups.py lineups.yaml """ from __future__ import print_function import pandas as pd from docopt import docopt import yaml from tqdm import tqdm import lineup.config as CONFIG from lineup.data.utils import parse_nba_play, roster class MatchupException(Exception): pass def _cols(data_config): """ Get column names """ away_ids = ["away_%s" % id for id in list(range(5))] home_ids = ["home_%s" % id for id in list(range(5))] if data_config['time_seperator'] == 'min': cols = ['game', 'season', 'home_team', 'away_team', 'starting_min', 'end_min'] else: cols = ['game', 'season', 'home_team', 'away_team', 'starting_sec', 'end_sec'] cols.extend(home_ids) cols.extend(away_ids) return cols def _performance_vector(team_matchup_pbp, team): """ Get performance vector """ fga = len(team_matchup_pbp.loc[team_matchup_pbp.is_fga == True, :]) fta = len(team_matchup_pbp.loc[team_matchup_pbp.is_fta == True, :]) fgm = len(team_matchup_pbp.loc[team_matchup_pbp.is_fgm == True, :]) fga_2 = len(team_matchup_pbp.loc[(team_matchup_pbp.is_fga == True) & (team_matchup_pbp.is_three == False), :]) fgm_2 = len(team_matchup_pbp.loc[(team_matchup_pbp.is_fgm == True) & (team_matchup_pbp.is_three == False), :]) fga_3 = len(team_matchup_pbp.loc[(team_matchup_pbp.is_fga == True) & (team_matchup_pbp.is_three == True), :]) fgm_3 = len(team_matchup_pbp.loc[(team_matchup_pbp.is_fgm == True) & (team_matchup_pbp.is_three == True), :]) ast = len(team_matchup_pbp.loc[team_matchup_pbp.is_assist == True, :]) blk = len(team_matchup_pbp.loc[team_matchup_pbp.is_block == True, :]) pf = len(team_matchup_pbp.loc[team_matchup_pbp.is_pf == True, :]) reb = len(team_matchup_pbp.loc[team_matchup_pbp.is_reb == True, :]) dreb = len(team_matchup_pbp.loc[team_matchup_pbp.is_dreb == True, :]) oreb = len(team_matchup_pbp.loc[team_matchup_pbp.is_oreb == True, :]) to = len(team_matchup_pbp.loc[team_matchup_pbp.is_to == True, :]) pts = fgm_2 * 2 + fgm_3 * 3 if fga > 0: pct = (1.0 * fgm)/fga else: pct = 0.0 if fga_2 > 0: pct_2 = (1.0 * fgm_2) / fga_2 else: pct_2 = 0.0 if fga_3 > 0: pct_3 = (1.0 * fgm_3) / fga_3 else: pct_3 = 0.0 cols = ['fga', 'fta', 'fgm', 'fga_2', 'fgm_2', 'fga_3', 'fgm_3', 'ast', 'blk', 'pf', 'reb', 'dreb', 'oreb', 'to', 'pts', 'pct', 'pct_2', 'pct_3'] cols = ['%s_%s' % (col, team) for col in cols] data = [fga, fta, fgm, fga_2, fgm_2, fga_3, fgm_3, ast, blk, pf, reb, dreb, oreb, to, pts, pct, pct_2, pct_3] performance = pd.DataFrame(data=[data], columns=cols) return performance def _performance(matchup, pbp): """ Get performance for single matchup """ starting_min = matchup['starting_min'] end_min = matchup['end_min'] matchup_pbp = pbp.loc[(pbp.minute >= starting_min) & (pbp.minute <= end_min), :] # get totals for home team_matchup_pbp = matchup_pbp.loc[matchup_pbp.home == True, :] performance_home = _performance_vector(team_matchup_pbp, 'home') # get totals for visitor team_matchup_pbp = matchup_pbp.loc[matchup_pbp.home == False, :] performance_away = _performance_vector(team_matchup_pbp, 'visitor') performance = pd.concat([performance_home, performance_away], axis=1) return performance def _matchup_performances(matchups, pbp): """ Create performance vectors for each of the matchups Parameters ---------- matchups: pandas.DataFrame time in/out of lineup matchups pbp: pandas.DataFrame events in game with timestamps Returns ------- matchups_performance: pandas.DataFrame performance vectors """ performances = pd.DataFrame() for ind, matchup in matchups.iterrows(): performance = _performance(matchup, pbp) if not performance.empty: if (int(performance['pts_home']) - int(performance['pts_visitor'])) > 0: performance['outcome'] = 1 elif (int(performance['pts_home']) - int(performance['pts_visitor'])) <= 0: performance['outcome'] = -1 performances = performances.append(performance) performances = pd.concat([matchups, performances], axis=1) return performances def _matchup(lineups, game, season, cols, time_start, time_end): """ Get lineup at time t """ lineup_ids = map(str, list(range(5))) if lineups.empty: raise MatchupException('no lineups at time') if not len(lineups) == 2: raise MatchupException('too many lineups at time') start_time = lineups.loc[:, time_start].max() end_time = lineups.loc[:, time_end].min() for ind, lineup in lineups.iterrows(): home_id = lineup['game'][-3:] if lineup['team'] == home_id: home_team = lineup['team'] home_lineup = lineup home_players = home_lineup[lineup_ids].values else: away_team = lineup['team'] away_lineup = lineup away_players = away_lineup[lineup_ids].values data = [game, season, home_team, away_team, start_time, end_time] data.extend(home_players) data.extend(away_players) matchup = pd.DataFrame(data=[data], columns=cols) return matchup def _pbp(game): """ Scrape basketball reference game play-by-play by ID Args: game_ID (str): bball reference gameID Returns: None pickles pbp DataFrame to data directory """ url = ('http://www.basketball-reference.com/boxscores/pbp/{ID}.html').format(ID=game) pbp =
pd.read_html(url)
pandas.read_html
import os from typing import Tuple from numpy.core.defchararray import array import pandas as pd import numpy as np from pandas.core.frame import DataFrame from scipy.sparse import csr_matrix, save_npz import hashlib import random import hmac from pathlib import Path from .config import secrets, parameters import logging # class ReadConfig(object): # """ # Config Class # """ # def __init__(self, conf_dict: dict = None): # """ # Initialize config class. # Args: # conf_dict (dict, optional): Config dictionary containig parameters. Defaults to None. # """ # if conf_dict is None: # conf_dict = {} # self._conf_dict = conf_dict # self._param = self._load_conf_dict() # def get_conf_dict(self, conf_dict: dict =None): # """ # Get config dictionary. # Args: # conf_dict (dict, optional): config dictionary. Defaults to None. # """ # if conf_dict is None: # conf_dict = {} # self._conf_dict = self._conf_dict if conf_dict is None else conf_dict # return self._load_conf_dict() # def _load_conf_dict(self): # """ # Load config dictionary. # """ # tmp_dict = self._conf_dict # return tmp_dict def load_config(args: dict): """ Load config from file. Args: args (dict): argparser arguments . """ config_file = Path(args["config_file"]) if config_file.is_file() is False: print("Config file does not exist.") return quit() if parameters.get_config_file() != config_file: parameters.__init__(config_path=config_file) return print("Read new config file.") def load_key(args: dict): """ Load key from file. Args: args (dict): argparser arguments . """ key_file = Path(args["key_file"]) if key_file.is_file() is False: print("Key file does not exist.") return quit() if secrets.get_key_file() != key_file: secrets.__init__(key_path=key_file) return print("Read new key file.") def read_input_file(path: str) -> DataFrame: """ Read csv file and return dataframe. Args: path (str): [input path to csv file Returns: DataFrame: pandas dataframe from csv file """ data_file = Path(path) if data_file.is_file() is False: print(f"{data_file} does not exist.") return quit() df = read_csv(data_file) input_file_len = len(df) if input_file_len == 0: print("Structure input is empty. Please provide a suitable structure file.") return quit() return df def save_df_as_csv( output_dir: Path, df: DataFrame, name: str = None, col_to_keep: list = None ): """ Save dataframe to csv file. Args: df (DataFrame): provided dataframe output_dir (Path): path to output folder name (str, optional): filename. Defaults to None. col_to_keep (list, optional): columns to write into the output file. Defaults to None. """ if col_to_keep is None: col_to_keep = df.columns path = output_dir / f"{name}.csv" df.to_csv(path, sep=",", columns=col_to_keep, index=False) def sanity_check_assay_type(T0: DataFrame): std_types = ["ADME", "PANEL", "OTHER", "AUX_HTS"] assay_types_counts = T0["assay_type"].value_counts() found_types = T0["assay_type"].unique().tolist() # look for non standard assay type names for at in found_types: if at not in std_types: print(f"WARNING: found non standard assay type name: {at}") # look for missing assay types if len(assay_types_counts.index) < 4: found_types = T0["assay_type"].unique().tolist() diff_types = list(set(std_types) - set(found_types)) print(f"INFO: missing assay type: {diff_types}") if len(assay_types_counts.index) > 4: exit(f"ERROR : too many assay type, found : {assay_types_counts.index}") # look for empty assay type values if T0.loc[T0["assay_type"].isna()].shape[0]: exit("ERROR: assay types has missing values") def sanity_check_assay_sizes(T0, T1): t0_assays = T0.input_assay_id.unique() t1_assays = T1.input_assay_id.unique() num_t0_assay = t0_assays.shape[0] num_t1_assay = t1_assays.shape[0] if num_t1_assay < num_t0_assay: print("WARNING : T1 does not have all input_assay_id present in T0") assays_not_in_t1 = T0.loc[~T0["input_assay_id"].isin(t1_assays)] print("Assay not in T1:") print(assays_not_in_t1) if num_t0_assay < num_t1_assay: print("ERROR: some input_assay_id present in T1 are not present in T0") assays_not_in_t0 = T1.loc[~T1["input_assay_id"].isin(t0_assays)] print("Assay not in T0:") print(assays_not_in_t0) if num_t0_assay != num_t1_assay: print(f"ERROR : number input_assay_id differs") print(f"WARNING : T0 input_assay_id count: {num_t0_assay}") print(f"WARNING : T1 input_assay_id count: {num_t1_assay}") exit( "Processing will be stopped. Please check for consistency in input_assay_id in T0 and T1." ) def sanity_check_compound_sizes(T1, T2): t1_compounds = T1.input_compound_id.unique() t2_compounds = T2.input_compound_id.unique() num_t2_compounds = t2_compounds.shape[0] num_t1_compounds = t1_compounds.shape[0] if num_t1_compounds < num_t2_compounds: print("WARNING : T1 does not have all input_compound_id present in T2") compounds_not_in_t1 = T2.loc[~T2["input_compound_id"].isin(t1_compounds)] print("Compounds not in T1:") print(compounds_not_in_t1) if num_t2_compounds < num_t1_compounds: print("**** ERROR: some input_compound_id present in T1 are not present in T2") compounds_not_in_t2 = T1.loc[~T1["input_compound_id"].isin(t2_compounds)] print("Compounds not in T2:") print(compounds_not_in_t2) if num_t1_compounds != num_t2_compounds: print(f"WARNING : T2 input_compound_id count: {num_t2_compounds}") print(f"WARNING : T1 input_compound_id count: {num_t1_compounds}") print(f"ERROR : number input_compound_id differs!") print( "Processing will be stopped. Please check for consistency in input_compound_id in T1 and T2." ) exit() def sanity_check_uniqueness(df, colname, filename): # verif input_compound_id duplicates duplic = df[colname].duplicated(keep=False) if duplic.sum() > 0: print( f"Found {duplic.sum()} records with *{colname}* present multiple times in {filename}." ) print(df[duplic]) df_nrows = df.shape[0] df_id = df[colname].nunique() if df_nrows != df_id: exit( f"Processing will be stopped. {colname} is not unique. Please check for duplicates in {filename}." ) def save_mtx_as_npy(matrix: csr_matrix, output_dir: Path, name: str = None): """ Save csr matrix as npy matrix. Args: matrix (csr_matrix): input csr matrix output_dir (Path): output path name (str, optional): filename. Defaults to None. """ if "T11_fold_vector" in name: path = output_dir / f"{name}.npy" np.save(path, matrix) else: # path_npy = output_dir / f'{name}.npy' # np.save(path_npy, matrix) path = output_dir / f"{name}.npz" save_npz(path, matrix) def concat_desc_folds(df_desc: DataFrame, df_folds: DataFrame) -> DataFrame: """ Concatenate descriptor and fold dataframes. Args: df_desc (DataFrame): descriptor dataframe df_folds (DataFrame): fold dataframe Returns: DataFrame: concatenated dataframe """ df_out =
pd.concat([df_desc, df_folds], axis=1)
pandas.concat
# -*- coding: utf-8 -*- from collections import defaultdict import pandas as pd from ahocorasick import Automaton from ..parsers import parse_fasta, parse_fastq from ..utils import revcomp, expand_degenerate_bases def init_automaton(scheme_fasta): """Initialize Aho-Corasick Automaton with kmers from SNV scheme fasta Args: scheme_fasta: SNV scheme fasta file path Returns: Aho-Corasick Automaton with kmers loaded """ A = Automaton() for header, sequence in parse_fasta(scheme_fasta): kmer_list = expand_degenerate_bases(sequence) for seq in kmer_list: A.add_word(seq, (header, seq, False)) A.add_word(revcomp(seq), (header, seq, True)) A.make_automaton() return A def find_in_fasta(automaton: Automaton, fasta: str) -> pd.DataFrame: """Find scheme kmers in input fasta file Args: automaton: Aho-Corasick Automaton with scheme SNV target kmers loaded fasta: Input fasta path Returns: Dataframe with any matches found in input fasta file """ res = [] for contig_header, sequence in parse_fasta(fasta): for idx, (kmername, kmer_seq, is_revcomp) in automaton.iter(sequence): res.append((kmername, kmer_seq, is_revcomp, contig_header, idx)) columns = ['kmername', 'seq', 'is_revcomp', 'contig_id', 'match_index'] return pd.DataFrame(res, columns=columns) def find_in_fastqs(automaton: Automaton, *fastqs): """Find scheme kmers in input fastq files Args: automaton: Aho-Corasick Automaton with scheme SNV target kmers loaded fastqs: Input fastq file paths Returns: Dataframe with any matches found in input fastq files """ kmer_seq_counts = defaultdict(int) for fastq in fastqs: for _, sequence in parse_fastq(fastq): for idx, (_, kmer_seq, _) in automaton.iter(sequence): kmer_seq_counts[kmer_seq] += 1 res = [] for kmer_seq, freq in kmer_seq_counts.items(): kmername, sequence, _ = automaton.get(kmer_seq) res.append((kmername, kmer_seq, freq)) return
pd.DataFrame(res, columns=['kmername', 'seq', 'freq'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Exports subset of an IBEIS database to a new IBEIS database """ from __future__ import absolute_import, division, print_function import utool as ut from ibeis.other import ibsfuncs from ibeis import constants as const (print, rrr, profile) = ut.inject2(__name__) def check_merge(ibs_src, ibs_dst): aid_list1 = ibs_src.get_valid_aids() gid_list1 = ibs_src.get_annot_gids(aid_list1) gname_list1 = ibs_src.get_image_uris(gid_list1) image_uuid_list1 = ibs_src.get_image_uuids(gid_list1) gid_list2 = ibs_dst.get_image_gids_from_uuid(image_uuid_list1) gname_list2 = ibs_dst.get_image_uris(gid_list2) # Asserts ut.assert_all_not_None(gid_list1, 'gid_list1') ut.assert_all_not_None(gid_list2, 'gid_list2') ut.assert_lists_eq(gname_list1, gname_list2, 'faild gname') # Image UUIDS should be consistent between databases image_uuid_list2 = ibs_dst.get_image_uuids(gid_list2) ut.assert_lists_eq(image_uuid_list1, image_uuid_list2, 'failed uuid') aids_list1 = ibs_src.get_image_aids(gid_list1) aids_list2 = ibs_dst.get_image_aids(gid_list2) avuuids_list1 = ibs_src.unflat_map( ibs_src.get_annot_visual_uuids, aids_list1) avuuids_list2 = ibs_dst.unflat_map( ibs_dst.get_annot_visual_uuids, aids_list2) issubset_list = [set(avuuids1).issubset(set(avuuids2)) for avuuids1, avuuids2 in zip(avuuids_list1, avuuids_list2)] assert all(issubset_list), 'ibs_src must be a subset of ibs_dst: issubset_list=%r' % ( issubset_list,) #aids_depth1 = ut.depth_profile(aids_list1) #aids_depth2 = ut.depth_profile(aids_list2) # depth might not be true if ibs_dst is not empty #ut.assert_lists_eq(aids_depth1, aids_depth2, 'failed depth') print('Merge seems ok...') def merge_databases(ibs_src, ibs_dst, rowid_subsets=None, localize_images=True): """ New way of merging using the non-hacky sql table merge. However, its only workings due to major hacks. FIXME: annotmatch table CommandLine: python -m ibeis --test-merge_databases python -m ibeis merge_databases:0 --db1 LF_OPTIMIZADAS_NI_V_E --db2 LF_ALL python -m ibeis merge_databases:0 --db1 LF_WEST_POINT_OPTIMIZADAS --db2 LF_ALL python -m ibeis merge_databases:0 --db1 PZ_Master0 --db2 PZ_Master1 python -m ibeis merge_databases:0 --db1 NNP_Master3 --db2 PZ_Master1 python -m ibeis merge_databases:0 --db1 GZ_ALL --db2 GZ_Master1 python -m ibeis merge_databases:0 --db1 lewa_grevys --db2 GZ_Master1 Example: >>> # ENABLE_DOCTEST >>> from ibeis.dbio.export_subset import * # NOQA >>> import ibeis >>> db1 = ut.get_argval('--db1', str, default=None) >>> db2 = ut.get_argval('--db2', str, default=None) >>> dbdir1 = ut.get_argval('--dbdir1', str, default=None) >>> dbdir2 = ut.get_argval('--dbdir2', str, default=None) >>> delete_ibsdir = False >>> # Check for test mode instead of script mode >>> if db1 is None and db2 is None and dbdir1 is None and dbdir2 is None: ... db1 = 'testdb1' ... dbdir2 = 'testdb_dst' ... delete_ibsdir = True >>> # Open the source and destination database >>> assert db1 is not None or dbdir1 is not None >>> assert db2 is not None or dbdir2 is not None >>> ibs_src = ibeis.opendb(db=db1, dbdir=dbdir1) >>> ibs_dst = ibeis.opendb(db=db2, dbdir=dbdir2, allow_newdir=True, >>> delete_ibsdir=delete_ibsdir) >>> merge_databases(ibs_src, ibs_dst) >>> check_merge(ibs_src, ibs_dst) >>> ibs_dst.print_dbinfo() """ # TODO: ensure images are localized # otherwise this wont work print('BEGIN MERGE OF %r into %r' % (ibs_src.get_dbname(), ibs_dst.get_dbname())) # ibs_src.run_integrity_checks() # ibs_dst.run_integrity_checks() ibs_dst.update_annot_visual_uuids(ibs_dst.get_valid_aids()) ibs_src.update_annot_visual_uuids(ibs_src.get_valid_aids()) ibs_src.ensure_contributor_rowids() ibs_dst.ensure_contributor_rowids() ibs_src.fix_invalid_annotmatches() ibs_dst.fix_invalid_annotmatches() # Hack move of the external data if rowid_subsets is not None and const.IMAGE_TABLE in rowid_subsets: gid_list = rowid_subsets[const.IMAGE_TABLE] else: gid_list = ibs_src.get_valid_gids() imgpath_list = ibs_src.get_image_paths(gid_list) dst_imgdir = ibs_dst.get_imgdir() if localize_images: ut.copy_files_to(imgpath_list, dst_imgdir, overwrite=False, verbose=True) ignore_tables = [ 'lblannot', 'lblimage', 'image_lblimage_relationship', 'annotation_lblannot_relationship', 'keys' ] # ignore_tables += [ # 'contributors', 'party', 'configs' # ] # TODO: Fix database merge to allow merging tables with more than one superkey # and no primary superkey. error_tables = [ 'imageset_image_relationship', 'annotgroup_annotation_relationship', 'annotmatch', ] ignore_tables += error_tables ibs_dst.db.merge_databases_new( ibs_src.db, ignore_tables=ignore_tables, rowid_subsets=rowid_subsets) print('FINISHED MERGE %r into %r' % (ibs_src.get_dbname(), ibs_dst.get_dbname())) def make_new_dbpath(ibs, id_label, id_list): """ Creates a new database path unique to the exported subset of ids. """ import ibeis tag_hash = ut.hashstr_arr(id_list, hashlen=8, alphabet=ut.ALPHABET_27) base_fmtstr = ibs.get_dbname() + '_' + id_label + 's=' + \ tag_hash.replace('(', '_').replace(')', '_') + '_%d' dpath = ibeis.get_workdir() new_dbpath = ut.non_existing_path(base_fmtstr, dpath) return new_dbpath def export_names(ibs, nid_list, new_dbpath=None): r""" exports a subset of names and other required info Args: ibs (IBEISController): ibeis controller object nid_list (list): CommandLine: python -m ibeis.dbio.export_subset --test-export_names Example: >>> # DISABLE_DOCTEST >>> from ibeis.dbio.export_subset import * # NOQA >>> import ibeis >>> # build test data >>> ibs = ibeis.opendb('testdb2') >>> ibs.delete_empty_nids() >>> nid_list = ibs._get_all_known_nids()[0:2] >>> # execute function >>> result = export_names(ibs, nid_list) >>> # verify results >>> print(result) """ print('Exporting name nid_list=%r' % (nid_list,)) if new_dbpath is None: new_dbpath = make_new_dbpath(ibs, 'nid', nid_list) aid_list = ut.flatten(ibs.get_name_aids(nid_list)) gid_list = ut.unique_unordered(ibs.get_annot_gids(aid_list)) return export_data(ibs, gid_list, aid_list, nid_list, new_dbpath=new_dbpath) def find_gid_list(ibs, min_count=500, ensure_annots=False): import random gid_list = ibs.get_valid_gids() reviewed_list = ibs.get_image_reviewed(gid_list) if ensure_annots: aids_list = ibs.get_image_aids(gid_list) reviewed_list = [ 0 if len(aids) == 0 else reviewed for aids, reviewed in zip(aids_list, reviewed_list) ] # Filter by reviewed gid_list = [ gid for gid, reviewed in zip(gid_list, reviewed_list) if reviewed == 1 ] if len(gid_list) < min_count: return None while len(gid_list) > min_count: index = random.randint(0, len(gid_list) - 1) del gid_list[index] return gid_list def __export_reviewed_subset(ibs, min_count=500, ensure_annots=False): from os.path import join gid_list = find_gid_list( ibs, min_count=min_count, ensure_annots=ensure_annots) if gid_list is None: return None new_dbpath = '/' + join('Datasets', 'BACKGROUND', ibs.dbname) print('Exporting to %r with %r images' % (new_dbpath, len(gid_list), )) return export_images(ibs, gid_list, new_dbpath=new_dbpath) def export_images(ibs, gid_list, new_dbpath=None): """ exports a subset of images and other required info TODO: PZ_Master1 needs to backproject information back on to NNP_Master3 and PZ_Master0 Args: ibs (IBEISController): ibeis controller object gid_list (list): list of annotation rowids new_dbpath (None): (default = None) Returns: str: new_dbpath """ print('Exporting image gid_list=%r' % (gid_list,)) if new_dbpath is None: new_dbpath = make_new_dbpath(ibs, 'gid', gid_list) aid_list = ut.unique_unordered(ut.flatten(ibs.get_image_aids(gid_list))) nid_list = ut.unique_unordered(ibs.get_annot_nids(aid_list)) return export_data(ibs, gid_list, aid_list, nid_list, new_dbpath=new_dbpath) def export_annots(ibs, aid_list, new_dbpath=None): r""" exports a subset of annotations and other required info TODO: PZ_Master1 needs to backproject information back on to NNP_Master3 and PZ_Master0 Args: ibs (IBEISController): ibeis controller object aid_list (list): list of annotation rowids new_dbpath (None): (default = None) Returns: str: new_dbpath CommandLine: python -m ibeis.dbio.export_subset export_annots python -m ibeis.dbio.export_subset export_annots --db NNP_Master3 \ -a viewpoint_compare --nocache-aid --verbtd --new_dbpath=PZ_ViewPoints python -m ibeis.expt.experiment_helpers get_annotcfg_list:0 \ --db NNP_Master3 \ -a viewpoint_compare --nocache-aid --verbtd python -m ibeis.expt.experiment_helpers get_annotcfg_list:0 --db NNP_Master3 \ -a viewpoint_compare --nocache-aid --verbtd python -m ibeis.expt.experiment_helpers get_annotcfg_list:0 --db NNP_Master3 \ -a default:aids=all,is_known=True,view_pername=#primary>0&#primary1>0,per_name=4,size=200 python -m ibeis.expt.experiment_helpers get_annotcfg_list:0 --db NNP_Master3 \ -a default:aids=all,is_known=True,view_pername='#primary>0&#primary1>0',per_name=4,size=200 --acfginfo python -m ibeis.expt.experiment_helpers get_annotcfg_list:0 --db PZ_Master1 \ -a default:has_any=photobomb --acfginfo Example: >>> # SCRIPT >>> from ibeis.dbio.export_subset import * # NOQA >>> import ibeis >>> from ibeis.expt import experiment_helpers >>> ibs = ibeis.opendb(defaultdb='NNP_Master3') >>> acfg_name_list = ut.get_argval(('--aidcfg', '--acfg', '-a'), type_=list, default=['']) >>> acfg_list, expanded_aids_list = experiment_helpers.get_annotcfg_list(ibs, acfg_name_list) >>> aid_list = expanded_aids_list[0][0] >>> ibs.print_annot_stats(aid_list, viewcode_isect=True, per_image=True) >>> # Expand to get all annots in each chosen image >>> gid_list = ut.unique_ordered(ibs.get_annot_gids(aid_list)) >>> aid_list = ut.flatten(ibs.get_image_aids(gid_list)) >>> ibs.print_annot_stats(aid_list, viewcode_isect=True, per_image=True) >>> new_dbpath = ut.get_argval('--new-dbpath', default='PZ_ViewPoints') >>> new_dbpath = export_annots(ibs, aid_list, new_dbpath) >>> result = ('new_dbpath = %s' % (str(new_dbpath),)) >>> print(result) """ print('Exporting annotations aid_list=%r' % (aid_list,)) if new_dbpath is None: new_dbpath = make_new_dbpath(ibs, 'aid', aid_list) gid_list = ut.unique(ibs.get_annot_gids(aid_list)) nid_list = ut.unique(ibs.get_annot_nids(aid_list)) return export_data(ibs, gid_list, aid_list, nid_list, new_dbpath=new_dbpath) def export_data(ibs, gid_list, aid_list, nid_list, new_dbpath=None): """ exports a subset of data and other required info Args: ibs (IBEISController): ibeis controller object gid_list (list): list of image rowids aid_list (list): list of annotation rowids nid_list (list): list of name rowids imgsetid_list (list): list of imageset rowids gsgrid_list (list): list of imageset-image pairs rowids new_dbpath (None): (default = None) Returns: str: new_dbpath """ import ibeis imgsetid_list = ut.unique_unordered(ut.flatten(ibs.get_image_imgsetids(gid_list))) gsgrid_list = ut.unique_unordered( ut.flatten(ibs.get_image_gsgrids(gid_list))) # TODO: write SQL query to do this am_rowids = ibs._get_all_annotmatch_rowids() flags1_list = [ aid in set(aid_list) for aid in ibs.get_annotmatch_aid1(am_rowids)] flags2_list = [ aid in set(aid_list) for aid in ibs.get_annotmatch_aid2(am_rowids)] flag_list = ut.and_lists(flags1_list, flags2_list) am_rowids = ut.compress(am_rowids, flag_list) #am_rowids = ibs.get_valid_aids(ibs.get_valid_aids()) rowid_subsets = { const.ANNOTATION_TABLE: aid_list, const.NAME_TABLE: nid_list, const.IMAGE_TABLE: gid_list, const.ANNOTMATCH_TABLE: am_rowids, const.GSG_RELATION_TABLE: gsgrid_list, const.IMAGESET_TABLE: imgsetid_list, } ibs_dst = ibeis.opendb(dbdir=new_dbpath, allow_newdir=True) # Main merge driver merge_databases(ibs, ibs_dst, rowid_subsets=rowid_subsets) print('Exported to %r' % (new_dbpath,)) return new_dbpath def slow_merge_test(): r""" CommandLine: python -m ibeis.dbio.export_subset --test-slow_merge_test Example: >>> # SLOW_DOCTEST >>> from ibeis.dbio.export_subset import * # NOQA >>> result = slow_merge_test() >>> print(result) """ from ibeis.dbio import export_subset import ibeis ibs1 = ibeis.opendb('testdb2') ibs1.fix_invalid_annotmatches() ibs_dst = ibeis.opendb( db='testdb_dst2', allow_newdir=True, delete_ibsdir=True) export_subset.merge_databases(ibs1, ibs_dst) #ibs_src = ibs1 check_merge(ibs1, ibs_dst) ibs2 = ibeis.opendb('testdb1') ibs1.print_dbinfo() ibs2.print_dbinfo() ibs_dst.print_dbinfo() ibs_dst.print_dbinfo() export_subset.merge_databases(ibs2, ibs_dst) #ibs_src = ibs2 check_merge(ibs2, ibs_dst) ibs3 = ibeis.opendb('PZ_MTEST') export_subset.merge_databases(ibs3, ibs_dst) #ibs_src = ibs2 check_merge(ibs3, ibs_dst) ibs_dst.print_dbinfo() return ibs_dst #ibs_src.print_annotation_table(exclude_columns=['annot_verts', #'annot_semantic_uuid', 'annot_note', 'annot_parent_rowid', #'annot_exemplar_flag,']) # ibs_dst.print_annotation_table() def fix_bidirectional_annotmatch(ibs): import ibeis infr = ibeis.AnnotInference(ibs=ibs, aids='all', verbose=5) infr.initialize_graph() annots = ibs.annots() aid_to_nid = ut.dzip(annots.aids, annots.nids) # Delete bidirectional annotmatches annotmatch = ibs.db.get_table_as_pandas('annotmatch') df = annotmatch.set_index(['annot_rowid1', 'annot_rowid2']) # Find entires that have both directions pairs1 = annotmatch[['annot_rowid1', 'annot_rowid2']].values f_edges = {tuple(p) for p in pairs1} b_edges = {tuple(p[::-1]) for p in pairs1} isect_edges = {tuple(sorted(p)) for p in b_edges.intersection(f_edges)} print('Found %d bidirectional edges' % len(isect_edges)) isect_edges1 = list(isect_edges) isect_edges2 = [p[::-1] for p in isect_edges] import pandas as pd extra_ = {} fixme_edges = [] d1 = df.loc[isect_edges1].reset_index(drop=False) d2 = df.loc[isect_edges2].reset_index(drop=False) flags = d1['annotmatch_evidence_decision'] != d2['annotmatch_evidence_decision'] from ibeis.tag_funcs import _parse_tags for f, r1, r2 in zip(flags, d1.iterrows(), d2.iterrows()): v1, v2 = r1[1], r2[1] aid1 = v1['annot_rowid1'] aid2 = v1['annot_rowid2'] truth_real = (ibs.const.EVIDENCE_DECISION.POSITIVE if aid_to_nid[aid1] == aid_to_nid[aid2] else ibs.const.EVIDENCE_DECISION.NEGATIVE) truth1 = v1['annotmatch_evidence_decision'] truth2 = v2['annotmatch_evidence_decision'] t1 = _parse_tags(v1['annotmatch_tag_text']) t2 = _parse_tags(v2['annotmatch_tag_text']) newtag = ut.union_ordered(t1, t2) fixme_flag = False if not pd.isnull(truth1): if truth_real != truth1: fixme_flag = True if not pd.isnull(truth2): if truth_real != truth2: fixme_flag = True if fixme_flag: print('--') print('t1, t2 = %r, %r' % (t1, t2)) print('newtag = %r' % (newtag,)) print('truth_real, truth1, truth2 = %r, %r, %r' % ( truth_real, truth1, truth2,)) print('aid1, aid2 = %r, %r' % (aid1, aid2)) fixme_edges.append(tuple(sorted((aid1, aid2)))) else: extra_[(aid1, aid2)] = (truth_real, newtag) if len(fixme_edges) > 0: # need to manually fix these edges fix_infr = ibeis.AnnotInference.from_pairs(fixme_edges, ibs=ibs, verbose=5) feedback = fix_infr.read_ibeis_annotmatch_feedback(only_existing_edges=True) infr = fix_infr fix_infr.external_feedback = feedback fix_infr.apply_feedback_edges() fix_infr.start_qt_interface(loop=False) # DELETE OLD EDGES TWICE ams = ibs.get_annotmatch_rowid_from_edges(fixme_edges) ibs.delete_annotmatch(ams) ams = ibs.get_annotmatch_rowid_from_edges(fixme_edges) ibs.delete_annotmatch(ams) # MANUALLY CALL THIS ONCE FINISHED # TO ONLY CHANGE ANNOTMATCH EDGES infr.write_ibeis_staging_feedback() infr.write_ibeis_annotmatch_feedback() # extra_.update(custom_) new_pairs = extra_.keys() new_truths = ut.take_column(ut.dict_take(extra_, new_pairs), 0) new_tags = ut.take_column(ut.dict_take(extra_, new_pairs), 1) new_tag_texts = [';'.join(t) for t in new_tags] aids1, aids2 = ut.listT(new_pairs) # Delete the old ibs.delete_annotmatch((d1['annotmatch_rowid'].values.tolist() + d2['annotmatch_rowid'].values.tolist())) # Add the new ams = ibs.add_annotmatch_undirected(aids1, aids2) ibs.set_annotmatch_evidence_decision(ams, new_truths) ibs.set_annotmatch_tag_text(ams, new_tag_texts) if False: import guitool as gt gt.ensure_qapp() ut.qtensure() from ibeis.gui import inspect_gui inspect_gui.show_vsone_tuner(ibs, aid1, aid2) def fix_annotmatch_pzmaster1(): """ PZ_Master1 had annotmatch rowids that did not agree with the current name labeling. Looking at the inconsistencies in the graph interface was too cumbersome, because over 3000 annots were incorrectly grouped together. This function deletes any annotmatch rowid that is not consistent with the current labeling so we can go forward with using the new AnnotInference object """ import ibeis ibs = ibeis.opendb('PZ_Master1') infr = ibeis.AnnotInference(ibs=ibs, aids=ibs.get_valid_aids(), verbose=5) infr.initialize_graph() annots = ibs.annots() aid_to_nid = ut.dzip(annots.aids, annots.nids) if False: infr.reset_feedback() infr.ensure_mst() infr.apply_feedback_edges() infr.relabel_using_reviews() infr.start_qt_interface() # Get annotmatch rowids that agree with current labeling if False: annotmatch = ibs.db.get_table_as_pandas('annotmatch') import pandas as pd flags1 = pd.isnull(annotmatch['annotmatch_evidence_decision']) flags2 = annotmatch['annotmatch_tag_text'] == '' bad_part = annotmatch[flags1 & flags2] rowids = bad_part.index.tolist() ibs.delete_annotmatch(rowids) if False: # Delete bidirectional annotmatches annotmatch = ibs.db.get_table_as_pandas('annotmatch') df = annotmatch.set_index(['annot_rowid1', 'annot_rowid2']) # Find entires that have both directions pairs1 = annotmatch[['annot_rowid1', 'annot_rowid2']].values f_edges = {tuple(p) for p in pairs1} b_edges = {tuple(p[::-1]) for p in pairs1} isect_edges = {tuple(sorted(p)) for p in b_edges.intersection(f_edges)} isect_edges1 = list(isect_edges) isect_edges2 = [p[::-1] for p in isect_edges] # cols = ['annotmatch_evidence_decision', 'annotmatch_tag_text'] import pandas as pd custom_ = { (559, 4909): (False, ['photobomb']), (7918, 8041): (False, ['photobomb']), (6634, 6754): (False, ['photobomb']), (3707, 3727): (False, ['photobomb']), (86, 103): (False, ['photobomb']), } extra_ = { } fixme_edges = [] d1 = df.loc[isect_edges1].reset_index(drop=False) d2 = df.loc[isect_edges2].reset_index(drop=False) flags = d1['annotmatch_evidence_decision'] != d2['annotmatch_evidence_decision'] from ibeis.tag_funcs import _parse_tags for f, r1, r2 in zip(flags, d1.iterrows(), d2.iterrows()): v1, v2 = r1[1], r2[1] aid1 = v1['annot_rowid1'] aid2 = v1['annot_rowid2'] truth_real = (ibs.const.EVIDENCE_DECISION.POSITIVE if aid_to_nid[aid1] == aid_to_nid[aid2] else ibs.const.EVIDENCE_DECISION.NEGATIVE) truth1 = v1['annotmatch_evidence_decision'] truth2 = v2['annotmatch_evidence_decision'] t1 = _parse_tags(v1['annotmatch_tag_text']) t2 = _parse_tags(v2['annotmatch_tag_text']) newtag = ut.union_ordered(t1, t2) if (aid1, aid2) in custom_: continue fixme_flag = False if not pd.isnull(truth1): if truth_real != truth1: fixme_flag = True if not
pd.isnull(truth2)
pandas.isnull
import numpy as np import pandas as pd import sys,os #from random import choices import random from datetime import datetime as dt import json from ast import literal_eval import time from scipy import stats #from joblib import Parallel, delayed from libs.lib_job_thread import * import logging class SimX: def __init__(self,*args): self.platform=args[0] self.domain=args[1] self.scenario=args[2] self.model_identifier=args[3] self.pool=ThreadPool(32) self.sim_outputs=[] self.data_level_degree_list=None self.data_delay_level_degree_root_list=None self.data_user_list=None self.data_user_followers=None self.data_acts_list=None self.data_acts_list_indexed=None self.data_level_content_list=None # self.logger = logging.getLogger(__name__) # logPath='./logs/run_simulation_prob_HYDRA_%s_%s_S20001.log'%(self.platform,self.domain) # handler = logging.FileHandler(logPath,mode='w+') # handler.setLevel(logging.INFO) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # handler.setFormatter(formatter) # self.logger.addHandler(handler) def set_metadata(self):#,degree_list,delay_list): print("[Degree by level] loading..") self.data_level_degree_list=pd.read_pickle("./metadata/probs/%s-%s/degree_cond_level.pkl.gz"%(self.platform,self.domain)) print("[Delay sequences by size] loading..") self.data_delay_level_degree_root_list=
pd.read_pickle("./metadata/probs/%s-%s/delay_cond_size.pkl.gz"%(self.platform,self.domain))
pandas.read_pickle
import os import gc import re import json import pandas as pd import datetime import xlrd import numpy as np from werkzeug.utils import secure_filename from src.helper import reader, unicode from . import entity HASH_TYPE_REGEX = { re.compile(r"^[a-f0-9]{32}(:.+)?$", re.IGNORECASE): ["MD5", "MD4", "MD2", "Double MD5", "LM", "RIPEMD-128", "Haval-128", "Tiger-128", "Skein-256(128)", "Skein-512(128", "Lotus Notes/Domino 5", "Skype", "ZipMonster", "PrestaShop"], re.compile(r"^[a-f0-9]{64}(:.+)?$", re.IGNORECASE): ["SHA-256", "RIPEMD-256", "SHA3-256", "Haval-256", "GOST R 34.11-94", "GOST CryptoPro S-Box", "Skein-256", "Skein-512(256)", "Ventrilo"], re.compile(r"^[a-f0-9]{128}(:.+)?$", re.IGNORECASE): ["SHA-512", "Whirlpool", "Salsa10", "Salsa20", "SHA3-512", "Skein-512", "Skein-1024(512)"], re.compile(r"^[a-f0-9]{56}$", re.IGNORECASE): ["SHA-224", "Haval-224", "SHA3-224", "Skein-256(224)", "Skein-512(224)"], re.compile(r"^[a-f0-9]{40}(:.+)?$", re.IGNORECASE): ["SHA-1", "Double SHA-1", "RIPEMD-160", "Haval-160", "Tiger-160", "HAS-160", "LinkedIn", "Skein-256(160)", "Skein-512(160)", "MangoWeb Enhanced CMS"], re.compile(r"^[a-f0-9]{96}$", re.IGNORECASE): ["SHA-384", "SHA3-384", "Skein-512(384)", "Skein-1024(384)"], re.compile(r"^[a-f0-9]{16}$", re.IGNORECASE): ["MySQL323", "DES(Oracle)", "Half MD5", "Oracle 7-10g", "FNV-164", "CRC-64"], re.compile(r"^\*[a-f0-9]{40}$", re.IGNORECASE): ["MySQL5.x", "MySQL4.1"], re.compile(r"^[a-f0-9]{48}$", re.IGNORECASE): ["Haval-192", "Tiger-192", "SHA-1(Oracle)", "XSHA (v10.4 - v10.6)"] } class Cleaning: UPLOAD_FOLDER = 'temp/' JSON_FORMAT = "json" def __init__(self, file_byte, fileid: str, file_name: str): if file_byte is None: raise Exception("payload must required") secure_name = secure_filename(file_name) self.file_path = f"{self.UPLOAD_FOLDER}{fileid}-{secure_name}" self.obtain_hash_type(fileid) with open(self.file_path, "wb") as f: f.write(file_byte) f.close() # self.byte = file_byte self.file_id = fileid self.file_name = file_name def obtain_hash_type(self, check_hash): found = False for algorithm in HASH_TYPE_REGEX: if algorithm.match(check_hash): found = True self.enumerate_hash_types(HASH_TYPE_REGEX[algorithm]) if found is False: raise Exception("Unable to verify hash type") @staticmethod def enumerate_hash_types(items): print("{} possible hash types found..".format(len(items))) count = 0 for item in items: count += 1 if count <= 3: pass # print("\033[92m[*] Most likely possible hash type: {}\033[0m".format(item)) else: print("\033[33m[*] Least likely possible hash type: {}\033[0m".format(item)) def Excel(self) -> entity.Response: results, sheets = [], [] try: xl =
pd.ExcelFile(self.file_path)
pandas.ExcelFile
""" data_prep.py - Extract data from date range and create models Usage: data_prep.py [options] data_prep.py -h | --help Options: -h --help Show this message. --output_folder=OUT Output folder for the data and reports to be saved. """ from __future__ import print_function import pandas as pd import numpy as np import re import os import docopt import sys import pickle import os.path from datetime import datetime, date, time from dateutil.parser import parse from time import strftime import pyarrow import json import git from tqdm import tqdm from covidify.config import REPO, TMP_FOLDER, TMP_GIT, DATA args = docopt.docopt(__doc__) out = args['--output_folder'] def clean_sheet_names(new_ranges): indices = [] # Remove all sheets that dont have a numeric header numeric_sheets = [x for x in new_ranges if re.search(r'\d', x)] return numeric_sheets def clone_repo(TMP_FOLDER, REPO): print('Cloning Data Repo...') git.Git(TMP_FOLDER).clone(REPO) # Create Tmp Folder if not os.path.isdir(TMP_FOLDER): print('Creating folder...') print('...', TMP_FOLDER) os.mkdir(TMP_FOLDER) #Check if repo exists #git pull if it does if not os.path.isdir(TMP_GIT): clone_repo(TMP_FOLDER, REPO) else: try: print('git pull from', REPO) rep = git.Repo(TMP_GIT) rep.remotes.origin.pull() except: print('Could not pull from', REPO) sys.exit() sheets = os.listdir(DATA) # Clean the result to the sheet tabs we want print('Getting sheets...') cleaned_sheets = clean_sheet_names(sheets) def clean_last_updated(last_update): ''' convert date and time in YYYYMMDD HMS format ''' date = parse(str(last_update).split(' ')[0]).strftime("%Y-%m-%d") time = parse(str(last_update).split(' ')[1]).strftime('%H:%M:%S') parsed_date = str(date) + ' ' + str(time) return parsed_date def get_date(last_update): return parse(str(last_update).split(' ')[0]).strftime("%Y-%m-%d") def get_csv_date(file): return get_date(file.split('.')[0] + ' ') def drop_duplicates(df_raw): ''' Take the max date value for each province for a given date ''' days_list = [] for datetime in df_raw.date.unique(): tmp_df = df_raw[df_raw.date == datetime] tmp_df = tmp_df.sort_values(['Last Update']).drop_duplicates('Province/State', keep='last') days_list.append(tmp_df) return days_list keep_cols = ['Confirmed', 'Country/Region', 'Deaths', 'Last Update', 'Province/State', 'Recovered'] numeric_cols = ['Confirmed', 'Deaths', 'Recovered'] def get_data(cleaned_sheets): all_csv = [] # Import all CSV's for file in tqdm(sorted(sheets), desc='... importing data: '): if 'csv' in file: # print('...', file) tmp_df = pd.read_csv(os.path.join(DATA, file), index_col=None, header=0, parse_dates=['Last Update']) tmp_df = tmp_df[keep_cols] tmp_df[numeric_cols] = tmp_df[numeric_cols].fillna(0) tmp_df[numeric_cols] = tmp_df[numeric_cols].astype(int) tmp_df['Province/State'].fillna(tmp_df['Country/Region'], inplace=True) #If no region given, fill it with country tmp_df['Last Update'] = tmp_df['Last Update'].apply(clean_last_updated) tmp_df['date'] = tmp_df['Last Update'].apply(get_date) tmp_df['file_date'] = get_csv_date(file) all_csv.append(tmp_df) # concatenate all csv's into one df df_raw = pd.concat(all_csv, axis=0, ignore_index=True, sort=True) df_raw = df_raw.sort_values(by=['Last Update']) frames = drop_duplicates(df_raw) tmp = pd.concat(frames, axis=0, ignore_index=True, sort=True) return tmp df = get_data(cleaned_sheets) # Now that we have all the data we now need to clean it # - Fill null values # - remore suspected values # - change column names def clean_data(tmp_df): if 'Demised' in tmp_df.columns: tmp_df.rename(columns={'Demised':'Deaths'}, inplace=True) if 'Country/Region' in tmp_df.columns: tmp_df.rename(columns={'Country/Region':'country'}, inplace=True) if 'Province/State' in tmp_df.columns: tmp_df.rename(columns={'Province/State':'province'}, inplace=True) if 'Last Update' in tmp_df.columns: tmp_df.rename(columns={'Last Update':'datetime'}, inplace=True) if 'Suspected' in tmp_df.columns: tmp_df = tmp_df.drop(columns='Suspected') for col in tmp_df.columns: tmp_df[col] = tmp_df[col].fillna(0) #Lower case all col names tmp_df.columns = map(str.lower, tmp_df.columns) return tmp_df df = clean_data(df) # sheets need to be sorted by date value print('Sorting by datetime...') current_date = str(datetime.date(datetime.now())) if df.date.max() == current_date: df = df[df.date != df.date.max()] else: df = df[df.date != current_date] df = df.sort_values('datetime') ''' Get the difference of the sum totals for each date and plot them on a trendline graph ''' def get_new_cases(tmp, col): diff_list = [] tmp_df_list = [] df = tmp.copy() for i, day in enumerate(df.sort_values('date').date.unique()): tmp_df = df[df.date == day] tmp_df_list.append(tmp_df[col].sum()) if i == 0: diff_list.append(tmp_df[col].sum()) else: diff_list.append(tmp_df[col].sum() - tmp_df_list[i-1]) return diff_list def get_moving_average(tmp, col): df = tmp.copy() return df[col].rolling(window=2).mean() def get_exp_moving_average(tmp, col): df = tmp.copy() return df[col].ewm(span=2, adjust=True).mean() print('Calculating dataframe for new cases...') daily_cases_df =
pd.DataFrame([])
pandas.DataFrame
# This script assumes taht the freesurfer csv for the BANC data has already been generated import os import pandas as pd import numpy as np import pdb import seaborn as sns sns.set() import matplotlib.pyplot as plt from BayOptPy.helperfunctions import get_paths, get_data, drop_missing_features def visualise_missing_features_banc(freesurfer_df_banc, save_path): ''' Visualise features that are only present in the BANC dataset ''' # just as a proof of concept check that the mean thickness between rh and lh are # different if sum(freesurfer_df_banc['lh_MeanThickness_thickness'] == freesurfer_df_banc['rh_MeanThickness_thickness']) == len(freesurfer_df_banc): print('LH and RH MeanThickness are identical') else: print('LH and RH MeanThickness are NOT identical') # Plot the missing data eTIV1 and eTIV and BrainSegVolNoVent # Check if both columns are identical data = [freesurfer_df_banc['eTIV'], freesurfer_df_banc['eTIV.1']] # If this equality is true it means that all the data is equal if sum(freesurfer_df_banc['eTIV']==freesurfer_df_banc['eTIV.1']) == len(freesurfer_df_banc): print('eTIV is identical to eTIV.1') # plt.figure() # plt.boxplot(data) # plt.title('eTIV') # plt.savefig(os.path.join(save_path, diagnosics, 'boxplot_eTIV.png') # plt.close() # Check BrainSegVolNoVent is identical to BrainSegVolNoVent.1 if sum(freesurfer_df_banc['BrainSegVolNotVent']==freesurfer_df_banc['BrainSegVolNotVent.1'])== len(freesurfer_df_banc): print('BrainSegVolNotVent is identical to BrainSegVolNotVent.1') if sum(freesurfer_df_banc['BrainSegVolNotVent']==freesurfer_df_banc['BrainSegVolNotVent.2'])== len(freesurfer_df_banc): print('BrainSegVolNotVent is identical to BrainSegVolNotVent.2') def dict_rename_columns(freesurfer_banc_columns): # Create a dictionary matching the columns from the ukbiobank to the BANC # dataset and rename ukbiobank columns. lh_thickness = [ # left hemisphere 'lh_thk_bankssts', 'lh_thk_caudalanteriorcingulate', 'lh_thk_caudalmiddlefrontal', 'lh_thk_cuneus', 'lh_thk_entorhinal', 'lh_thk_fusiform', 'lh_thk_inferiorparietal', 'lh_thk_inferiortemporal', 'lh_thk_isthmus', 'lh_thk_lateraloccipital', 'lh_thk_lateralorbitofrontal', 'lh_thk_lingual', 'lh_thk_medialorbitofrontal', 'lh_thk_middletemporal', 'lh_thk_parahippocampal', 'lh_thk_paracentral', 'lh_thk_parsopercularis', 'lh_thk_parsorbitalis', 'lh_thk_parstriangularis', 'lh_thk_pericalcarine', 'lh_thk_postcentral', 'lh_thk_posteriorcingulate', 'lh_thk_precentral', 'lh_thk_precuneus', 'lh_thk_rostralanteriorcingulate', 'lh_thk_rostralmiddlefrontal', 'lh_thk_superiorfrontal', 'lh_thk_superiorparietal', 'lh_thk_superiortemporal', 'lh_thk_supramarginal', 'lh_thk_frontalpole', 'lh_thk_temporalpole', 'lh_thk_transversetemporal', 'lh_thk_insula' ] rh_thickness = [ # right hemisphere 'rh_thk_bankssts', 'rh_thk_caudalanteriorcingulate', 'rh_thk_caudalmiddlefrontal', 'rh_thk_cuneus', 'rh_thk_entorhinal', 'rh_thk_fusiform', 'rh_thk_inferiorparietal', 'rh_thk_inferiortemporal', 'rh_thk_isthmus', 'rh_thk_lateraloccipital', 'rh_thk_lateralorbitofrontal', 'rh_thk_lingual', 'rh_thk_medialorbitofrontal', 'rh_thk_middletemporal', 'rh_thk_parahippocampal', 'rh_thk_paracentral', 'rh_thk_parsopercularis', 'rh_thk_parsorbitalis', 'rh_thk_parstriangularis', 'rh_thk_pericalcarine', 'rh_thk_postcentral', 'rh_thk_posteriorcingulate', 'rh_thk_precentral', 'rh_thk_precuneus', 'rh_thk_rostralanteriorcingulate', 'rh_thk_rostralmiddlefrontal', 'rh_thk_superiorfrontal', 'rh_thk_superiorparietal', 'rh_thk_superiortemporal', 'rh_thk_supramarginal', 'rh_thk_frontalpole', 'rh_thk_temporalpole', 'rh_thk_transversetemporal', 'rh_thk_insula' ] biobank_columns = lh_thickness + rh_thickness + [ # MaAdditional fM`eatures 'Left.Cerebellum.White.Matter', 'Left.Cerebellum.Cortex', 'Left.Thalamus.Proper', 'Left.Caudate', 'Left.Putamen', 'Left.Pallidum', 'X3rd.Ventricle', 'X4th.Ventricle', 'Brain.Stem', 'Left.Hippocampus', 'Left.Amygdala', 'CSF', 'Left.Accumbens.area', 'Left.VentralDC', 'Left.vessel', 'Right.Cerebellum.White.Matter', 'Right.Cerebellum.Cortex', 'Right.Thalamus.Proper', 'Right.Caudate', 'Right.Putamen', 'Right.Pallidum', 'Right.Hippocampus', 'Right.Amygdala', 'Right.Accumbens.area', 'Right.VentralDC', 'Right.vessel', # the same 'CC_Posterior', 'CC_Mid.Posterior', 'CC_Central', 'CC_Mid_Anterior', 'CC_Anterior', 'lhCortexVol', 'rhCortexVol', 'CortexVol', # Missing in the bionk we have 'lhCorticalWhiteMatterVol', 'rhCorticalWhiteMatterVol', 'CorticalWhiteMatterVol', # 'lhCerebralWhiMateMatterVol', # 'rhCerebralWhiteMatterVol', 'CerebralWhiteMatterVol', 'SubCortGrayVol', 'TotalGrayVol', 'SupraTentorialVol', 'SupraTentorialVolMaNotVent', 'SupraTentorialVolNotVentVox', 'MaskVol', 'BrainSegVol.to.eTIV', 'MaskVol.to.eTIV', 'EstimatedTotalIntraMaCranialVol' ] # Check if you have all the features form the banc dataset assert(len(biobank_columns) == len(freesurfer_banc_columns)) renameCols = dict(zip(biobank_columns, freesurfer_banc_columns)) return lh_thickness, rh_thickness, renameCols # Load both datasets debug = False resamplefactor = 1 save_path = os.path.join('/code/BayOptPy', 'freesurfer_preprocess') project_ukbio_wd, project_data_ukbio, _ = get_paths(debug, 'UKBIO_freesurf') project_banc_wd, project_data_banc, _ = get_paths(debug, 'BANC_freesurf') _, _, freesurfer_df_banc = get_data(project_data_banc, 'BANC_freesurf', debug, project_banc_wd, resamplefactor, raw=True, analysis=None) _, _, freesurfer_df_ukbio = get_data(project_data_ukbio, 'UKBIO_freesurf', debug, project_ukbio_wd, resamplefactor, raw=True, analysis=None) # checM`k the columns between both datasets # First Maprint the size of dataset print('shape of the banc dataset; shape of the ukbio dataset') print(freesurfer_df_banc.shape, freesurfer_df_ukbio.shape) #----------------------------------------------------------------------------- # BANC #----------------------------------------------------------------------------- # Check and visualise features that are only present in the BANC dataset visualise_missing_features_banc(freesurfer_df_banc, save_path) # remove the columns from the banc dataset that are not present in the BIOBANK freesurfer_df_banc_clean = drop_missing_features(freesurfer_df_banc) # Save the lh_MeanThickness and rh_MeanThickness to compare it to calculated # value afterwards lh_MeanThickness_banc = freesurfer_df_banc['lh_MeanThickness_thickness'] rh_MeanThickness_banc = freesurfer_df_banc['rh_MeanThickness_thickness'] # Also drop the rh_MeanThickness_thickness and lh_MeanThickness_thickness, for # now freesurfer_df_banc_clean = freesurfer_df_banc_clean.drop(columns=['rh_MeanThickness_thickness', 'lh_MeanThickness_thickness']) # Save the colunns as variable freesurfer_banc_columns = list(freesurfer_df_banc_clean) freesurfer_ukbio_columns = list(freesurfer_df_ukbio) #----------------------------------------------------------------------------- # UKBIO #----------------------------------------------------------------------------- # Create mapping between the BANC and UKBIO to rename it lh_thickness, rh_thickness, renameCols = dict_rename_columns(freesurfer_banc_columns) freesurfer_df_ukbio.rename(columns=renameCols, inplace=True) # Keep only the columns that both datasets have in common df_ukbio = freesurfer_df_ukbio[freesurfer_banc_columns] df_ukbio.index.name = 'id' #----------------------------------------------------------------------------- # UKBIO vs BANC #----------------------------------------------------------------------------- variables_of_interest = ['lhCerebralWhiteMatterVol', 'rhCerebralWhiteMatterVol', 'CerebralWhiteMatterVol'] # Generate a few plots to make sure you are comparing the same things among both # datasets df_ukbio['dataset'] = 'ukbio' freesurfer_df_banc_clean['dataset'] = 'banc' df_combined =
pd.concat((df_ukbio, freesurfer_df_banc_clean))
pandas.concat
import hw1.speech as s import numpy as np import pandas as pd def top_tfidf_feats(row, features, top_n=25): ''' Get top n tfidf values in a document and return them with their corresponding feature names.''' topn_ids = np.argsort(row)[::-1][:top_n] top_feats = [(features[i], row[i]) for i in topn_ids] df = pd.DataFrame(top_feats) df.columns = ['feature', 'tfidf'] return df def top_mean_feats(Xtr, features, grp_ids, min_tfidf=0.1, top_n=25): ''' Return the top n features that on average are most important amongst documents in rows indentified by indices in grp_ids. ''' # if grp_ids: # D = Xtr[grp_ids].toarray() # else: # D = Xtr.toarray() D = Xtr[grp_ids].toarray() D[D < min_tfidf] = 0 tfidf_means = np.mean(D, axis=0) return top_tfidf_feats(tfidf_means, features, top_n) if __name__ == "__main__": #get top tfidf scores averaged rand_indices = np.random.randint(0, (speech.trainX.shape[0]) - 1, 50) df = top_mean_feats(speech.trainX, speech.count_vect.get_feature_names(), rand_indices, top_n=10) print(df[-10:]) #get highest weighted features weights = abs(cls.coef_).mean(0) sorted_weights = [(x[0], x[1]) for x in sorted(zip(weights, speech.count_vect.get_feature_names()))] df =
pd.DataFrame(sorted_weights)
pandas.DataFrame
import math import json import random import time import calendar import pickle import os import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt from collections import namedtuple import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F SEED = 2701 torch.manual_seed(SEED) np.random.seed(SEED) random.seed(SEED) ################# # Replay Memory # ################# Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class ReplayMemory(object): def __init__(self, capacity): self.capacity = capacity self.memory = [] self.position = 0 def push(self, *args): """Saves a transition.""" if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) ############# # Q-Network # ############# class DQN(nn.Module): def __init__(self, num_in_features, num_out_features): super(DQN, self).__init__() self.linear1 = nn.Linear(num_in_features, 32) self.ln1 = nn.LayerNorm(32) self.linear2 = nn.Linear(32, 64) self.ln2 = nn.LayerNorm(64) self.linear3 = nn.Linear(64, 64) self.ln3 = nn.LayerNorm(64) self.linear4 = nn.Linear(64, 32) self.ln4 = nn.LayerNorm(32) self.out_layer = nn.Linear(32, num_out_features) # Called with either one element to determine next action, or a batch # during optimization. Returns tensor([[add_class,remove_class, maintain_class]]). def forward(self, x): x = F.leaky_relu(self.ln1(self.linear1(x))) x = F.leaky_relu(self.ln2(self.linear2(x))) x = F.leaky_relu(self.ln3(self.linear3(x))) x = F.leaky_relu(self.ln4(self.linear4(x))) return self.out_layer(x) ############################### # Hyperparameters & Utilities # ############################### # if gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") df = pd.read_csv('../dbV3.csv') timeseries = pd.read_csv('../timeseries.csv') MIN_JVB_NUM = 1 MAX_JVB_NUM = 60 W1 = 30 ACTION_COOLDOWN = 30 LOOKBACK = 10 MEMORY_CAPACITY = 2000 BATCH_SIZE = 64 GAMMA = 0.5 TARGET_UPDATE = 200 N_EPISODES = 200 EPS_START = 1.0 EPS_END = 0.05 EXPLORATION_DUR = (80000 / ACTION_COOLDOWN) * (N_EPISODES / 2) EPS_DECAY = (EPS_START - EPS_END) / EXPLORATION_DUR EPS_THRESHOLD = EPS_START # Q-Network paramteres N_FEATURES = 5 N_ACTIONS = 3 # Initialize policy_net = DQN(N_FEATURES, N_ACTIONS).to(device) target_net = DQN(N_FEATURES, N_ACTIONS).to(device) target_net.load_state_dict(policy_net.state_dict()) target_net.eval() optimizer = optim.Adam(policy_net.parameters()) memory = ReplayMemory(MEMORY_CAPACITY) # define reward function def calc_reward(state, action): loss_delta = state[0][3].item() curr_loss = state[0][4].item() if action == 0: jvb_num_delta = 1 elif action == 1: jvb_num_delta = -1 else: jvb_num_delta = 0 reward = loss_delta * jvb_num_delta if loss_delta == 0: reward = W1 * curr_loss * jvb_num_delta if curr_loss == 0: reward = -jvb_num_delta return reward # Loss approximation def loss_from_nearest_points(c, p, tj, ij): PARTITIONS = 3 losses = [] #conf_partitions = [0, 1, 2, 3] part_partitions = [1, 5, 9, 13] tj_partitions = [1, 3, 5, 7] ij_partitions = [0, 2, 4, 7] for i in range(PARTITIONS): #curr_c = conf_partitions[i] #d = df[df['conferences'] == curr_c] flag = True for curr_p in range(part_partitions[i], part_partitions[i+1]): if not flag: break d1 = df[df['participants'] == curr_p] for curr_tj in range(tj_partitions[i], tj_partitions[i+1]): if not flag: break d2 = d1[d1['jvb_num'] == curr_tj] for curr_ij in range(ij_partitions[i], ij_partitions[i+1]): d3 = d2[d2['zero_conf'] == curr_ij] if len(d3) > 0: loss = d3['loss'].mean() participants_scale = p / curr_p curr_active_jvb_count = curr_tj - curr_ij if (tj - ij) == 0 or curr_active_jvb_count == 0: continue active_jvbs_scale = (tj - ij) / curr_active_jvb_count loss_scale = participants_scale / active_jvbs_scale estimated_loss = loss * loss_scale losses.append(estimated_loss) flag = False break return np.mean(losses) ################# # Training Func # ################# def optimize_model(): if len(memory) < BATCH_SIZE: return policy_net.train() transitions = memory.sample(BATCH_SIZE) # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for # detailed explanation). This converts batch-array of Transitions # to Transition of batch-arrays. batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.bool) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken. These are the actions which would've been taken # for each batch state according to policy_net state_action_values = policy_net(state_batch).gather(1, action_batch) # Compute V(s_{t+1}) for all next states. # Expected values of actions for non_final_next_states are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. # This is merged based on the mask, such that we'll have either the expected # state value or 0 in case the state was final. next_state_values = torch.zeros(BATCH_SIZE, device=device) next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach() # Compute the expected Q values expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Compute Huber loss loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1)) # Optimize the model optimizer.zero_grad() loss.backward() for param in policy_net.parameters(): param.grad.data.clamp_(-1, 1) optimizer.step() return loss ############## # Simulation # ############## print("Starting simulation...") curr_time = time.time() cummulative_rewards_history = [] epsilon_history = [] losses_dict = {} counter = 0 for i_episode in range(N_EPISODES): # list of [jvb id, conference count] pair of currently running JVBs # selected with round-robin, removed with graceful shutdown curr_jvbs = [[0, 0], ] is_shutting_down = [] prev_state = np.array([0, 1, 1, 0]) prev_action = -1 prev_delta_state = None latest_losses = [] jvb_num_history = [] rewards_history = [] losses_history = [] miss_count = 0 conf_count_over_time = timeseries['conference_count'] part_count_over_time = timeseries['participant_count'] with open('../logs/conference_count.txt', 'w') as f: pass with open('../logs/participant_count.txt', 'w') as f: pass with open('../logs/jvb_count.txt', 'w') as f: pass with open('../logs/rewards.txt', 'w') as f: pass with open('../logs/losses.txt', 'w') as f: pass episode_start_time = time.time() for i in range(len(conf_count_over_time)): c1 = int(conf_count_over_time[i]) p1 = int(part_count_over_time[i]) # update conferences try: new_c = c1 - int(conf_count_over_time[i-1]) except: new_c = c1 if new_c > 0: # assign conferences for c in range(new_c): jvb_conferences = [x[1] if x[0] not in is_shutting_down else 1e10 for x in curr_jvbs] least_loaded_idx = np.argmin(jvb_conferences) curr_jvbs[least_loaded_idx][1] += 1 elif new_c < 0: # remove conferences for c in range(abs(new_c)): for j in curr_jvbs: if j[1] > 0: j[1] -= 1 break # update jvbs (check shutting down jvbs) for idx in range(len(is_shutting_down) - 1, -1, -1): for j in curr_jvbs: if j[0] == is_shutting_down[idx] and j[1] == 0: curr_jvbs.remove(j) is_shutting_down.pop(idx) break j1 = len(curr_jvbs) jvb_num_history.append(j1) z1 = len(list(filter(lambda x: x[1] == 0, curr_jvbs))) avg_loss = losses_dict.get(c1, {}).get(p1, {}).get(j1, {}).get(z1, -1) if avg_loss == -1: miss_count += 1 avg_loss = df[ (df['conferences'] == c1) & (df['participants'] == p1) & (df['jvb_num'] == j1) & (df['zero_conf'] == z1) ]['loss'].mean() if pd.isna(avg_loss): if c1 == 0 or p1 == 0: avg_loss = 0 else: avg_loss = df[ (df['conferences'] >= c1-1) & (df['conferences'] <= c1+1) & (df['participants'] >= p1-1) & (df['participants'] <= p1+1) & (df['jvb_num'] >= j1-1) & (df['jvb_num'] <= j1+1) & (df['zero_conf'] >= z1-1) & (df['zero_conf'] <= z1+1) ]['loss'].mean() if
pd.isna(avg_loss)
pandas.isna
# -*- coding: utf-8 -*- from datetime import timedelta, time import numpy as np from pandas import (DatetimeIndex, Float64Index, Index, Int64Index, NaT, Period, PeriodIndex, Series, Timedelta, TimedeltaIndex, date_range, period_range, timedelta_range, notnull) import pandas.util.testing as tm import pandas as pd from pandas.lib import Timestamp from .common import Base class DatetimeLike(Base): def test_shift_identity(self): idx = self.create_index() self.assert_index_equal(idx, idx.shift(0)) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' self.assertFalse("length=%s" % len(idx) in str(idx)) self.assertTrue("'foo'" in str(idx)) self.assertTrue(idx.__class__.__name__ in str(idx)) if hasattr(idx, 'tz'): if idx.tz is not None: self.assertTrue(idx.tz in str(idx)) if hasattr(idx, 'freq'): self.assertTrue("freq='%s'" % idx.freqstr in str(idx)) def test_view(self): super(DatetimeLike, self).test_view() i = self.create_index() i_view = i.view('i8') result = self._holder(i) tm.assert_index_equal(result, i) i_view = i.view(self._holder) result = self._holder(i) tm.assert_index_equal(result, i_view) class TestDatetimeIndex(DatetimeLike, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def setUp(self): self.indices = dict(index=tm.makeDateIndex(10)) self.setup_indices() def create_index(self): return date_range('20130101', periods=5) def test_shift(self): # test shift for datetimeIndex and non datetimeIndex # GH8083 drange = self.create_index() result = drange.shift(1) expected = DatetimeIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(-1) expected = DatetimeIndex(['2012-12-31', '2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(3, freq='2D') expected = DatetimeIndex(['2013-01-07', '2013-01-08', '2013-01-09', '2013-01-10', '2013-01-11'], freq='D') self.assert_index_equal(result, expected) def test_construction_with_alt(self): i = pd.date_range('20130101', periods=5, freq='H', tz='US/Eastern') i2 = DatetimeIndex(i, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, tz=i.dtype.tz) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz=i.dtype.tz) self.assert_index_equal(i, i2) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') self.assert_index_equal(i2, expected) # incompat tz/dtype self.assertRaises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_pickle_compat_construction(self): pass def test_construction_index_with_mixed_timezones(self): # GH 11488 # no tz results in DatetimeIndex result = Index( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) # passing tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 19:00'), Timestamp('2011-01-03 00:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) def test_construction_index_with_mixed_timezones_with_NaT(self): # GH 11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) # passing tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 19:00'), pd.NaT, Timestamp('2011-01-03 00:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) def test_construction_dti_with_mixed_timezones(self): # GH 11488 (not changed, added explicit tests) # no tz results in DatetimeIndex result = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # same tz results in DatetimeIndex result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # same tz results in DatetimeIndex (DST) result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # different tz coerces tz-naive to tz-awareIndex(dtype=object) result = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 05:00'), Timestamp('2011-01-02 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # tz mismatch affecting to tz-aware raises TypeError/ValueError with tm.assertRaises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') with tm.assertRaises(TypeError): DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') with tm.assertRaises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='US/Eastern', name='idx') def test_astype(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(object) expected = Index([Timestamp('2016-05-16')] + [NaT] * 3, dtype=object) tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([1463356800000000000] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_index_equal(result, Index(rng.asi8)) self.assert_numpy_array_equal(result.values, rng.asi8) def test_astype_with_tz(self): # with tz rng = date_range('1/1/2000', periods=10, tz='US/Eastern') result = rng.astype('datetime64[ns]') expected = (date_range('1/1/2000', periods=10, tz='US/Eastern') .tz_convert('UTC').tz_localize(None)) tm.assert_index_equal(result, expected) # BUG#10442 : testing astype(str) is correct for Series/DatetimeIndex result = pd.Series(pd.date_range('2012-01-01', periods=3)).astype(str) expected = pd.Series( ['2012-01-01', '2012-01-02', '2012-01-03'], dtype=object) tm.assert_series_equal(result, expected) result = Series(pd.date_range('2012-01-01', periods=3, tz='US/Eastern')).astype(str) expected = Series(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], dtype=object) tm.assert_series_equal(result, expected) def test_astype_str_compat(self): # GH 13149, GH 13209 # verify that we are returing NaT as a string (and not unicode) idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(str) expected = Index(['2016-05-16', 'NaT', 'NaT', 'NaT'], dtype=object) tm.assert_index_equal(result, expected) def test_astype_str(self): # test astype string - #10442 result = date_range('2012-01-01', periods=4, name='test_name').astype(str) expected = Index(['2012-01-01', '2012-01-02', '2012-01-03', '2012-01-04'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with tz and name result = date_range('2012-01-01', periods=3, name='test_name', tz='US/Eastern').astype(str) expected = Index(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with freqH and name result = date_range('1/1/2011', periods=3, freq='H', name='test_name').astype(str) expected = Index(['2011-01-01 00:00:00', '2011-01-01 01:00:00', '2011-01-01 02:00:00'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with freqH and timezone result = date_range('3/6/2012 00:00', periods=2, freq='H', tz='Europe/London', name='test_name').astype(str) expected = Index(['2012-03-06 00:00:00+00:00', '2012-03-06 01:00:00+00:00'], dtype=object, name='test_name') tm.assert_index_equal(result, expected) def test_astype_datetime64(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype('datetime64[ns]') tm.assert_index_equal(result, idx) self.assertFalse(result is idx) result = idx.astype('datetime64[ns]', copy=False) tm.assert_index_equal(result, idx) self.assertTrue(result is idx) idx_tz = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN], tz='EST') result = idx_tz.astype('datetime64[ns]') expected = DatetimeIndex(['2016-05-16 05:00:00', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]') tm.assert_index_equal(result, expected) def test_astype_raises(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) self.assertRaises(ValueError, idx.astype, float) self.assertRaises(ValueError, idx.astype, 'timedelta64') self.assertRaises(ValueError, idx.astype, 'timedelta64[ns]') self.assertRaises(ValueError, idx.astype, 'datetime64') self.assertRaises(ValueError, idx.astype, 'datetime64[D]') def test_where_other(self): # other is ndarray or Index i = pd.date_range('20130101', periods=3, tz='US/Eastern') for arr in [np.nan, pd.NaT]: result = i.where(notnull(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notnull(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notnull(i2), i2.values) tm.assert_index_equal(result, i2) def test_where_tz(self): i = pd.date_range('20130101', periods=3, tz='US/Eastern') result = i.where(notnull(i)) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notnull(i2)) expected = i2 tm.assert_index_equal(result, expected) def test_get_loc(self): idx = pd.date_range('2000-01-01', periods=3) for method in [None, 'pad', 'backfill', 'nearest']: self.assertEqual(idx.get_loc(idx[1], method), 1) self.assertEqual(idx.get_loc(idx[1].to_pydatetime(), method), 1) self.assertEqual(idx.get_loc(str(idx[1]), method), 1) if method is not None: self.assertEqual(idx.get_loc(idx[1], method, tolerance=pd.Timedelta('0 days')), 1) self.assertEqual(idx.get_loc('2000-01-01', method='nearest'), 0) self.assertEqual(idx.get_loc('2000-01-01T12', method='nearest'), 1) self.assertEqual(idx.get_loc('2000-01-01T12', method='nearest', tolerance='1 day'), 1) self.assertEqual(idx.get_loc('2000-01-01T12', method='nearest', tolerance=pd.Timedelta('1D')), 1) self.assertEqual(idx.get_loc('2000-01-01T12', method='nearest', tolerance=np.timedelta64(1, 'D')), 1) self.assertEqual(idx.get_loc('2000-01-01T12', method='nearest', tolerance=timedelta(1)), 1) with tm.assertRaisesRegexp(ValueError, 'must be convertible'): idx.get_loc('2000-01-01T12', method='nearest', tolerance='foo') with tm.assertRaises(KeyError): idx.get_loc('2000-01-01T03', method='nearest', tolerance='2 hours') self.assertEqual(idx.get_loc('2000', method='nearest'), slice(0, 3)) self.assertEqual(idx.get_loc('2000-01', method='nearest'), slice(0, 3)) self.assertEqual(idx.get_loc('1999', method='nearest'), 0) self.assertEqual(idx.get_loc('2001', method='nearest'), 2) with tm.assertRaises(KeyError): idx.get_loc('1999', method='pad') with tm.assertRaises(KeyError): idx.get_loc('2001', method='backfill') with tm.assertRaises(KeyError): idx.get_loc('foobar') with tm.assertRaises(TypeError): idx.get_loc(slice(2)) idx = pd.to_datetime(['2000-01-01', '2000-01-04']) self.assertEqual(idx.get_loc('2000-01-02', method='nearest'), 0) self.assertEqual(idx.get_loc('2000-01-03', method='nearest'), 1) self.assertEqual(idx.get_loc('2000-01', method='nearest'), slice(0, 2)) # time indexing idx = pd.date_range('2000-01-01', periods=24, freq='H') tm.assert_numpy_array_equal(idx.get_loc(time(12)), np.array([12], dtype=np.int64)) tm.assert_numpy_array_equal(idx.get_loc(time(12, 30)), np.array([], dtype=np.int64)) with tm.assertRaises(NotImplementedError): idx.get_loc(time(12, 30), method='pad') def test_get_indexer(self): idx = pd.date_range('2000-01-01', periods=3) tm.assert_numpy_array_equal(idx.get_indexer(idx), np.array([0, 1, 2])) target = idx[0] + pd.to_timedelta(['-1 hour', '12 hours', '1 day 1 hour']) tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'), np.array([-1, 0, 1])) tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'), np.array([0, 1, 2])) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'), np.array([0, 1, 1])) tm.assert_numpy_array_equal( idx.get_indexer(target, 'nearest', tolerance=pd.Timedelta('1 hour')), np.array([0, -1, 1])) with tm.assertRaises(ValueError): idx.get_indexer(idx[[0]], method='nearest', tolerance='foo') def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = date_range('20130101', periods=3, tz='US/Eastern', name='foo') unpickled = self.round_trip_pickle(index) self.assert_index_equal(index, unpickled) def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): # GH7774 index = date_range('20130101', periods=3, tz='US/Eastern') self.assertEqual(str(index.reindex([])[0].tz), 'US/Eastern') self.assertEqual(str(index.reindex(np.array([]))[0].tz), 'US/Eastern') def test_time_loc(self): # GH8667 from datetime import time from pandas.index import _SIZE_CUTOFF ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64) key = time(15, 11, 30) start = key.hour * 3600 + key.minute * 60 + key.second step = 24 * 3600 for n in ns: idx = pd.date_range('2014-11-26', periods=n, freq='S') ts = pd.Series(np.random.randn(n), index=idx) i = np.arange(start, n, step) tm.assert_numpy_array_equal(ts.index.get_loc(key), i) tm.assert_series_equal(ts[key], ts.iloc[i]) left, right = ts.copy(), ts.copy() left[key] *= -10 right.iloc[i] *= -10 tm.assert_series_equal(left, right) def test_time_overflow_for_32bit_machines(self): # GH8943. On some machines NumPy defaults to np.int32 (for example, # 32-bit Linux machines). In the function _generate_regular_range # found in tseries/index.py, `periods` gets multiplied by `strides` # (which has value 1e9) and since the max value for np.int32 is ~2e9, # and since those machines won't promote np.int32 to np.int64, we get # overflow. periods = np.int_(1000) idx1 = pd.date_range(start='2000', periods=periods, freq='S') self.assertEqual(len(idx1), periods) idx2 = pd.date_range(end='2000', periods=periods, freq='S') self.assertEqual(len(idx2), periods) def test_intersection(self): first = self.index second = self.index[5:] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.intersection(case) self.assertTrue(tm.equalContents(result, second)) third = Index(['a', 'b', 'c']) result = first.intersection(third) expected = pd.Index([], dtype=object) self.assert_index_equal(result, expected) def test_union(self): first = self.index[:5] second = self.index[5:] everything = self.index union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.union(case) self.assertTrue(tm.equalContents(result, everything)) def test_nat(self): self.assertIs(DatetimeIndex([np.nan])[0], pd.NaT) def test_ufunc_coercions(self): idx = date_range('2011-01-01', periods=3, freq='2D', name='x') delta = np.timedelta64(1, 'D') for result in [idx + delta, np.add(idx, delta)]: tm.assertIsInstance(result, DatetimeIndex) exp = date_range('2011-01-02', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') for result in [idx - delta, np.subtract(idx, delta)]: tm.assertIsInstance(result, DatetimeIndex) exp = date_range('2010-12-31', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') delta = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D'), np.timedelta64(3, 'D')]) for result in [idx + delta, np.add(idx, delta)]: tm.assertIsInstance(result, DatetimeIndex) exp = DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-08'], freq='3D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '3D') for result in [idx - delta, np.subtract(idx, delta)]: tm.assertIsInstance(result, DatetimeIndex) exp = DatetimeIndex(['2010-12-31', '2011-01-01', '2011-01-02'], freq='D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, 'D') def test_fillna_datetime64(self): # GH 11343 for tz in ['US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01 09:00', pd.NaT, '2011-01-01 11:00']) exp = pd.DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00']) self.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00')), exp) # tz mismatch exp = pd.Index([pd.Timestamp('2011-01-01 09:00'), pd.Timestamp('2011-01-01 10:00', tz=tz), pd.Timestamp('2011-01-01 11:00')], dtype=object) self.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00', tz=tz)), exp) # object exp = pd.Index([pd.Timestamp('2011-01-01 09:00'), 'x', pd.Timestamp('2011-01-01 11:00')], dtype=object) self.assert_index_equal(idx.fillna('x'), exp) idx = pd.DatetimeIndex( ['2011-01-01 09:00', pd.NaT, '2011-01-01 11:00'], tz=tz) exp = pd.DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], tz=tz) self.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00', tz=tz)), exp) exp = pd.Index([pd.Timestamp('2011-01-01 09:00', tz=tz), pd.Timestamp('2011-01-01 10:00'), pd.Timestamp('2011-01-01 11:00', tz=tz)], dtype=object) self.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00')), exp) # object exp = pd.Index([pd.Timestamp('2011-01-01 09:00', tz=tz), 'x', pd.Timestamp('2011-01-01 11:00', tz=tz)], dtype=object) self.assert_index_equal(idx.fillna('x'), exp) class TestPeriodIndex(DatetimeLike, tm.TestCase): _holder = PeriodIndex _multiprocess_can_split_ = True def setUp(self): self.indices = dict(index=
tm.makePeriodIndex(10)
pandas.util.testing.makePeriodIndex
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = ( "The default of the 'keep_tz' keyword in " "DatetimeIndex.to_series will change to True in a future " "release." ) assert msg in str(m[0].message) with tm.assert_produces_warning(FutureWarning): result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx") df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx) expected = DataFrame( { "idx": [ datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5), ], "a": range(5), "b": ["A", "B", "C", "D", "E"], }, columns=["idx", "a", "b"], ) expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_set_index_timezone(self): # GH 12358 # tz-aware Series should retain the tz idx = to_datetime(["2014-01-01 10:10:10"], utc=True).tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index") ) tm.assert_frame_equal(res, exp) # GH 12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_reset_index_with_intervals(self): idx = IntervalIndex.from_breaks(np.arange(11), name="x") original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]] result = original.set_index("x") expected = DataFrame({"y": np.arange(10)}, index=idx) tm.assert_frame_equal(result, expected) result2 = result.reset_index() tm.assert_frame_equal(result2, original) def test_set_index_multiindexcolumns(self): columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)]) df = DataFrame(np.random.randn(3, 3), columns=columns) result = df.set_index(df.columns[0]) expected = df.iloc[:, 1:] expected.index = df.iloc[:, 0].values expected.index.names = [df.columns[0]] tm.assert_frame_equal(result, expected) def test_set_index_empty_column(self): # GH 1971 df = DataFrame( [ {"a": 1, "p": 0}, {"a": 2, "m": 10}, {"a": 3, "m": 11, "p": 20}, {"a": 4, "m": 12, "p": 21}, ], columns=("a", "m", "p", "x"), ) result = df.set_index(["a", "x"]) expected = df[["m", "p"]] expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"]) tm.assert_frame_equal(result, expected) def test_set_columns(self, float_string_frame): cols = Index(np.arange(len(float_string_frame.columns))) float_string_frame.columns = cols with pytest.raises(ValueError, match="Length mismatch"): float_string_frame.columns = cols[::2] def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo") df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.reindex(idx2) tm.assert_index_equal(df.index, idx2) # GH 11314 # with tz index = date_range( datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern" ) df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index) new_index = date_range( datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern" ) result = df.set_index(new_index) assert result.index.freq == index.freq # Renaming def test_rename(self, float_frame): mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} renamed = float_frame.rename(columns=mapping) renamed2 = float_frame.rename(columns=str.lower) tm.assert_frame_equal(renamed, renamed2) tm.assert_frame_equal( renamed2.rename(columns=str.upper), float_frame, check_names=False ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = DataFrame(data) renamed = df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["foo", "bar"])) renamed = df.rename(index=str.upper) tm.assert_index_equal(renamed.index, Index(["BAR", "FOO"])) # have to pass something with pytest.raises(TypeError, match="must pass an index to rename"): float_frame.rename() # partial columns renamed = float_frame.rename(columns={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.columns, Index(["A", "B", "foo", "bar"])) # other axis renamed = float_frame.T.rename(index={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.index, Index(["A", "B", "foo", "bar"])) # index with name index = Index(["foo", "bar"], name="name") renamer = DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["bar", "foo"], name="name")) assert renamed.index.name == renamer.index.name def test_rename_axis_inplace(self, float_frame): # GH 15704 expected = float_frame.rename_axis("foo") result = float_frame.copy() no_return = result.rename_axis("foo", inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) expected = float_frame.rename_axis("bar", axis=1) result = float_frame.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) assert no_return is None tm.assert_frame_equal(result, expected) def test_rename_axis_raises(self): # https://github.com/pandas-dev/pandas/issues/17833 df = DataFrame({"A": [1, 2], "B": [1, 2]}) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis({0: 10, 1: 20}, axis=0) with pytest.raises(ValueError, match="Use `.rename`"): df.rename_axis(id, axis=1) with pytest.raises(ValueError, match="Use `.rename`"): df["A"].rename_axis(id) def test_rename_axis_mapper(self): # GH 19978 mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) df = DataFrame( {"x": [i for i in range(len(mi))], "y": [i * 10 for i in range(len(mi))]}, index=mi, ) # Test for rename of the Index object of columns result = df.rename_axis("cols", axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="cols")) # Test for rename of the Index object of columns using dict result = result.rename_axis(columns={"cols": "new"}, axis=1) tm.assert_index_equal(result.columns, Index(["x", "y"], name="new")) # Test for renaming index using dict result = df.rename_axis(index={"ll": "foo"}) assert result.index.names == ["foo", "nn"] # Test for renaming index using a function result = df.rename_axis(index=str.upper, axis=0) assert result.index.names == ["LL", "NN"] # Test for renaming index providing complete list result = df.rename_axis(index=["foo", "goo"]) assert result.index.names == ["foo", "goo"] # Test for changing index and columns at same time sdf = df.reset_index().set_index("nn").drop(columns=["ll", "y"]) result = sdf.rename_axis(index="foo", columns="meh") assert result.index.name == "foo" assert result.columns.name == "meh" # Test different error cases with pytest.raises(TypeError, match="Must pass"): df.rename_axis(index="wrong") with pytest.raises(ValueError, match="Length of names"): df.rename_axis(index=["wrong"]) with pytest.raises(TypeError, match="bogus"): df.rename_axis(bogus=None) @pytest.mark.parametrize( "kwargs, rename_index, rename_columns", [ ({"mapper": None, "axis": 0}, True, False), ({"mapper": None, "axis": 1}, False, True), ({"index": None}, True, False), ({"columns": None}, False, True), ({"index": None, "columns": None}, True, True), ({}, False, False), ], ) def test_rename_axis_none(self, kwargs, rename_index, rename_columns): # GH 25034 index = Index(list("abc"), name="foo") columns = Index(["col1", "col2"], name="bar") data = np.arange(6).reshape(3, 2) df = DataFrame(data, index, columns) result = df.rename_axis(**kwargs) expected_index = index.rename(None) if rename_index else index expected_columns = columns.rename(None) if rename_columns else columns expected = DataFrame(data, expected_index, expected_columns) tm.assert_frame_equal(result, expected) def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) df = DataFrame([(0, 0), (1, 1)], index=index, columns=columns) # # without specifying level -> across all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar3")], names=["foo", "bar"] ) new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) tm.assert_index_equal(renamed.index, new_index) tm.assert_index_equal(renamed.columns, new_columns) assert renamed.index.names == df.index.names assert renamed.columns.names == df.columns.names # # with specifying a level (GH13766) # dict new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # function func = str.upper new_columns = MultiIndex.from_tuples( [("FIZZ1", "buzz1"), ("FIZZ2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "BUZZ1"), ("fizz2", "BUZZ2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # index new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar2")], names=["foo", "bar"] ) renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(renamed.index, new_index) def test_rename_nocopy(self, float_frame): renamed = float_frame.rename(columns={"C": "foo"}, copy=False) renamed["foo"] = 1.0 assert (float_frame["C"] == 1.0).all() def test_rename_inplace(self, float_frame): float_frame.rename(columns={"C": "foo"}) assert "C" in float_frame assert "foo" not in float_frame c_id = id(float_frame["C"]) float_frame = float_frame.copy() float_frame.rename(columns={"C": "foo"}, inplace=True) assert "C" not in float_frame assert "foo" in float_frame assert id(float_frame["foo"]) != c_id def test_rename_bug(self): # GH 5344 # rename set ref_locs, and set_index was not resetting df = DataFrame({0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]}) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) df = df.set_index(["a", "b"]) df.columns = ["2001-01-01"] expected = DataFrame( [[1], [2]], index=MultiIndex.from_tuples( [("foo", "bah"), ("bar", "bas")], names=["a", "b"] ), columns=["2001-01-01"], ) tm.assert_frame_equal(df, expected) def test_rename_bug2(self): # GH 19497 # rename was changing Index to MultiIndex if Index contained tuples df = DataFrame(data=np.arange(3), index=[(0, 0), (1, 1), (2, 2)], columns=["a"]) df = df.rename({(1, 1): (5, 4)}, axis="index") expected = DataFrame( data=np.arange(3), index=[(0, 0), (5, 4), (2, 2)], columns=["a"] ) tm.assert_frame_equal(df, expected) def test_rename_errors_raises(self): df = DataFrame(columns=["A", "B", "C", "D"]) with pytest.raises(KeyError, match="'E'] not found in axis"): df.rename(columns={"A": "a", "E": "e"}, errors="raise") @pytest.mark.parametrize( "mapper, errors, expected_columns", [ ({"A": "a", "E": "e"}, "ignore", ["a", "B", "C", "D"]), ({"A": "a"}, "raise", ["a", "B", "C", "D"]), (str.lower, "raise", ["a", "b", "c", "d"]), ], ) def test_rename_errors(self, mapper, errors, expected_columns): # GH 13473 # rename now works with errors parameter df = DataFrame(columns=["A", "B", "C", "D"]) result = df.rename(columns=mapper, errors=errors) expected = DataFrame(columns=expected_columns) tm.assert_frame_equal(result, expected) def test_reorder_levels(self): index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=["L0", "L1", "L2"], ) df = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=index) # no change, position result = df.reorder_levels([0, 1, 2]) tm.assert_frame_equal(df, result) # no change, labels result = df.reorder_levels(["L0", "L1", "L2"]) tm.assert_frame_equal(df, result) # rotate, position result = df.reorder_levels([1, 2, 0]) e_idx = MultiIndex( levels=[["one", "two", "three"], [0, 1], ["bar"]], codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=["L1", "L2", "L0"], ) expected = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=e_idx) tm.assert_frame_equal(result, expected) result = df.reorder_levels([0, 0, 0]) e_idx = MultiIndex( levels=[["bar"], ["bar"], ["bar"]], codes=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=["L0", "L0", "L0"], ) expected = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=e_idx) tm.assert_frame_equal(result, expected) result = df.reorder_levels(["L0", "L0", "L0"]) tm.assert_frame_equal(result, expected) def test_reset_index(self, float_frame): stacked = float_frame.stack()[::2] stacked = DataFrame({"foo": stacked, "bar": stacked}) names = ["first", "second"] stacked.index.names = names deleveled = stacked.reset_index() for i, (lev, level_codes) in enumerate( zip(stacked.index.levels, stacked.index.codes) ): values = lev.take(level_codes) name = names[i] tm.assert_index_equal(values, Index(deleveled[name])) stacked.index.names = [None, None] deleveled2 = stacked.reset_index() tm.assert_series_equal( deleveled["first"], deleveled2["level_0"], check_names=False ) tm.assert_series_equal( deleveled["second"], deleveled2["level_1"], check_names=False ) # default name assigned rdf = float_frame.reset_index() exp = Series(float_frame.index.values, name="index") tm.assert_series_equal(rdf["index"], exp) # default name assigned, corner case df = float_frame.copy() df["index"] = "foo" rdf = df.reset_index() exp = Series(float_frame.index.values, name="level_0") tm.assert_series_equal(rdf["level_0"], exp) # but this is ok float_frame.index.name = "index" deleveled = float_frame.reset_index() tm.assert_series_equal(deleveled["index"], Series(float_frame.index)) tm.assert_index_equal(deleveled.index, Index(np.arange(len(deleveled)))) # preserve column names float_frame.columns.name = "columns" resetted = float_frame.reset_index() assert resetted.columns.name == "columns" # only remove certain columns df = float_frame.reset_index().set_index(["index", "A", "B"]) rs = df.reset_index(["A", "B"]) # TODO should reset_index check_names ? tm.assert_frame_equal(rs, float_frame, check_names=False) rs = df.reset_index(["index", "A", "B"]) tm.assert_frame_equal(rs, float_frame.reset_index(), check_names=False) rs = df.reset_index(["index", "A", "B"]) tm.assert_frame_equal(rs, float_frame.reset_index(), check_names=False) rs = df.reset_index("A") xp = float_frame.reset_index().set_index(["index", "B"]) tm.assert_frame_equal(rs, xp, check_names=False) # test resetting in place df = float_frame.copy() resetted = float_frame.reset_index() df.reset_index(inplace=True) tm.assert_frame_equal(df, resetted, check_names=False) df = float_frame.reset_index().set_index(["index", "A", "B"]) rs = df.reset_index("A", drop=True) xp = float_frame.copy() del xp["A"] xp = xp.set_index(["B"], append=True) tm.assert_frame_equal(rs, xp, check_names=False) def test_reset_index_name(self): df = DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"], index=Index(range(2), name="x"), ) assert df.reset_index().index.name is None assert df.reset_index(drop=True).index.name is None df.reset_index(inplace=True) assert df.index.name is None def test_reset_index_level(self): df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"]) for levels in ["A", "B"], [0, 1]: # With MultiIndex result = df.set_index(["A", "B"]).reset_index(level=levels[0]) tm.assert_frame_equal(result, df.set_index("B")) result = df.set_index(["A", "B"]).reset_index(level=levels[:1]) tm.assert_frame_equal(result, df.set_index("B")) result = df.set_index(["A", "B"]).reset_index(level=levels) tm.assert_frame_equal(result, df) result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True) tm.assert_frame_equal(result, df[["C", "D"]]) # With single-level Index (GH 16263) result = df.set_index("A").reset_index(level=levels[0]) tm.assert_frame_equal(result, df) result = df.set_index("A").reset_index(level=levels[:1]) tm.assert_frame_equal(result, df) result = df.set_index(["A"]).reset_index(level=levels[0], drop=True) tm.assert_frame_equal(result, df[["B", "C", "D"]]) # Missing levels - for both MultiIndex and single-level Index: for idx_lev in ["A", "B"], ["A"]: with pytest.raises(KeyError, match="Level E "): df.set_index(idx_lev).reset_index(level=["A", "E"]) with pytest.raises(IndexError, match="Too many levels"): df.set_index(idx_lev).reset_index(level=[0, 1, 2]) def test_reset_index_right_dtype(self): time = np.arange(0.0, 10, np.sqrt(2) / 2) s1 = Series( (9.81 * time ** 2) / 2, index=Index(time, name="time"), name="speed" ) df = DataFrame(s1) resetted = s1.reset_index() assert resetted["time"].dtype == np.float64 resetted = df.reset_index() assert resetted["time"].dtype == np.float64 def test_reset_index_multiindex_col(self): vals = np.random.randn(3, 3).astype(object) idx = ["x", "y", "z"] full = np.hstack(([[x] for x in idx], vals)) df = DataFrame( vals, Index(idx, name="a"), columns=[["b", "b", "c"], ["mean", "median", "mean"]], ) rs = df.reset_index() xp = DataFrame( full, columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]] ) tm.assert_frame_equal(rs, xp) rs = df.reset_index(col_fill=None) xp = DataFrame( full, columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]] ) tm.assert_frame_equal(rs, xp) rs = df.reset_index(col_level=1, col_fill="blah") xp = DataFrame( full, columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]] ) tm.assert_frame_equal(rs, xp) df = DataFrame( vals, MultiIndex.from_arrays([[0, 1, 2], ["x", "y", "z"]], names=["d", "a"]), columns=[["b", "b", "c"], ["mean", "median", "mean"]], ) rs = df.reset_index("a") xp = DataFrame( full, Index([0, 1, 2], name="d"), columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]], ) tm.assert_frame_equal(rs, xp) rs = df.reset_index("a", col_fill=None) xp = DataFrame( full, Index(range(3), name="d"), columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]], ) tm.assert_frame_equal(rs, xp) rs = df.reset_index("a", col_fill="blah", col_level=1) xp = DataFrame( full, Index(range(3), name="d"), columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]], ) tm.assert_frame_equal(rs, xp) def test_reset_index_multiindex_nan(self): # GH6322, testing reset_index on MultiIndexes # when we have a nan or all nan df = DataFrame( {"A": ["a", "b", "c"], "B": [0, 1, np.nan], "C": np.random.rand(3)} ) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) df = DataFrame( {"A": [np.nan, "b", "c"], "B": [0, 1, 2], "C": np.random.rand(3)} ) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) df = DataFrame({"A": ["a", "b", "c"], "B": [0, 1, 2], "C": [np.nan, 1.1, 2.2]}) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) df = DataFrame( { "A": ["a", "b", "c"], "B": [np.nan, np.nan, np.nan], "C": np.random.rand(3), } ) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) def test_reset_index_with_datetimeindex_cols(self): # GH5818 # df = DataFrame( [[1, 2], [3, 4]], columns=date_range("1/1/2013", "1/2/2013"), index=["A", "B"], ) result = df.reset_index() expected = DataFrame( [["A", 1, 2], ["B", 3, 4]], columns=["index", datetime(2013, 1, 1), datetime(2013, 1, 2)], ) tm.assert_frame_equal(result, expected) def test_reset_index_range(self): # GH 12071 df = DataFrame([[0, 0], [1, 1]], columns=["A", "B"], index=RangeIndex(stop=2)) result = df.reset_index() assert isinstance(result.index, RangeIndex) expected = DataFrame( [[0, 0, 0], [1, 1, 1]], columns=["index", "A", "B"], index=RangeIndex(stop=2), ) tm.assert_frame_equal(result, expected) def test_set_index_names(self): df = tm.makeDataFrame() df.index.name = "name" assert df.set_index(df.index).index.names == ["name"] mi = MultiIndex.from_arrays(df[["A", "B"]].T.values, names=["A", "B"]) mi2 = MultiIndex.from_arrays( df[["A", "B", "A", "B"]].T.values, names=["A", "B", "C", "D"] ) df = df.set_index(["A", "B"]) assert df.set_index(df.index).index.names == ["A", "B"] # Check that set_index isn't converting a MultiIndex into an Index assert isinstance(df.set_index(df.index).index, MultiIndex) # Check actual equality tm.assert_index_equal(df.set_index(df.index).index, mi) idx2 = df.index.rename(["C", "D"]) # Check that [MultiIndex, MultiIndex] yields a MultiIndex rather # than a pair of tuples assert isinstance(df.set_index([df.index, idx2]).index, MultiIndex) # Check equality tm.assert_index_equal(df.set_index([df.index, idx2]).index, mi2) def test_rename_objects(self, float_string_frame): renamed = float_string_frame.rename(columns=str.upper) assert "FOO" in renamed assert "foo" not in renamed def test_rename_axis_style(self): # https://github.com/pandas-dev/pandas/issues/12392 df = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["X", "Y"]) expected = DataFrame({"a": [1, 2], "b": [1, 2]}, index=["X", "Y"]) result = df.rename(str.lower, axis=1) tm.assert_frame_equal(result, expected) result = df.rename(str.lower, axis="columns") tm.assert_frame_equal(result, expected) result = df.rename({"A": "a", "B": "b"}, axis=1) tm.assert_frame_equal(result, expected) result = df.rename({"A": "a", "B": "b"}, axis="columns") tm.assert_frame_equal(result, expected) # Index expected = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["x", "y"]) result = df.rename(str.lower, axis=0) tm.assert_frame_equal(result, expected) result = df.rename(str.lower, axis="index") tm.assert_frame_equal(result, expected) result = df.rename({"X": "x", "Y": "y"}, axis=0) tm.assert_frame_equal(result, expected) result = df.rename({"X": "x", "Y": "y"}, axis="index") tm.assert_frame_equal(result, expected) result = df.rename(mapper=str.lower, axis="index") tm.assert_frame_equal(result, expected) def test_rename_mapper_multi(self): df = DataFrame({"A": ["a", "b"], "B": ["c", "d"], "C": [1, 2]}).set_index( ["A", "B"] ) result = df.rename(str.upper) expected = df.rename(index=str.upper) tm.assert_frame_equal(result, expected) def test_rename_positional_named(self): # https://github.com/pandas-dev/pandas/issues/12392 df = DataFrame({"a": [1, 2], "b": [1, 2]}, index=["X", "Y"]) result = df.rename(str.lower, columns=str.upper) expected = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["x", "y"]) tm.assert_frame_equal(result, expected) def test_rename_axis_style_raises(self): # see gh-12392 df = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["0", "1"]) # Named target and axis over_spec_msg = "Cannot specify both 'axis' and any of 'index' or 'columns'" with pytest.raises(TypeError, match=over_spec_msg): df.rename(index=str.lower, axis=1) with pytest.raises(TypeError, match=over_spec_msg): df.rename(index=str.lower, axis="columns") with pytest.raises(TypeError, match=over_spec_msg): df.rename(columns=str.lower, axis="columns") with pytest.raises(TypeError, match=over_spec_msg): df.rename(index=str.lower, axis=0) # Multiple targets and axis with pytest.raises(TypeError, match=over_spec_msg): df.rename(str.lower, str.lower, axis="columns") # Too many targets over_spec_msg = "Cannot specify all of 'mapper', 'index', 'columns'." with pytest.raises(TypeError, match=over_spec_msg): df.rename(str.lower, str.lower, str.lower) # Duplicates with pytest.raises(TypeError, match="multiple values"): df.rename(id, mapper=id) def test_reindex_api_equivalence(self): # equivalence of the labels/axis and index/columns API's df = DataFrame( [[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=["a", "b", "c"], columns=["d", "e", "f"], ) res1 = df.reindex(["b", "a"]) res2 = df.reindex(index=["b", "a"]) res3 = df.reindex(labels=["b", "a"]) res4 = df.reindex(labels=["b", "a"], axis=0) res5 = df.reindex(["b", "a"], axis=0) for res in [res2, res3, res4, res5]: tm.assert_frame_equal(res1, res) res1 = df.reindex(columns=["e", "d"]) res2 = df.reindex(["e", "d"], axis=1) res3 = df.reindex(labels=["e", "d"], axis=1) for res in [res2, res3]: tm.assert_frame_equal(res1, res) res1 = df.reindex(index=["b", "a"], columns=["e", "d"]) res2 = df.reindex(columns=["e", "d"], index=["b", "a"]) res3 = df.reindex(labels=["b", "a"], axis=0).reindex(labels=["e", "d"], axis=1) for res in [res2, res3]: tm.assert_frame_equal(res1, res) def test_rename_positional(self): df = DataFrame(columns=["A", "B"]) with tm.assert_produces_warning(FutureWarning) as rec: result = df.rename(None, str.lower) expected =
DataFrame(columns=["a", "b"])
pandas.DataFrame
#from POPS_lib.fileIO import read_Calibration_fromFile,read_Calibration_fromString,save_Calibration #import fileIO from scipy import interpolate, optimize import numpy as np import pylab as plt from io import StringIO as io import pandas as pd import warnings from atmPy.aerosols.instruments.POPS import mie #read_fromFile = fileIO.read_Calibration_fromFile #read_fromString = fileIO.read_Calibration_fromString def _msg(txt, save, out_file, verbose): if verbose: print(txt) if save: out_file.write(str(txt) + '\n') def generate_calibration(single_pnt_cali_d=508, single_pnt_cali_ior=1.6, single_pnt_cali_int=1000, noise_level = 12, ior=1.5, dr=[100, 5000], no_pts=5000, no_cal_pts=50, plot=True, raise_error=True, test=False ): """ This function generates a calibration function for the POPS instrument based on its theoretical responds. Args: single_pnt_cali_d: float [508] Diameter of single point calibration in nm. single_pnt_cali_ior: float [1.6] Refractive index of material used in single point calibration. single_pnt_cali_int: float [1000] Raw intensity (digitizer bins) measured in single point calibration noise_level: int The way POPS detectes peak height it is effected by the noise which results in a positive bias for sizing close to the lower detection limit ... this corrects for it. If you don't want this set noise_level to None ior: float [1.5] Refractive index of the anticipated aerosol material. dr: array-like [[110, 3400]] Diameter range of the calibration. The calibration range will actually be a bit smaller than this, so make this range a little bit larger than you want it. no_pts: int [600] Number of points used in the Mie calculations... quite unimportant value. no_cal_pts: int Number of points in the generated calibration. Usually a mie curve is not bijective, this number defines how much a respondscurve is smoothened. This is merely a starting number. If bejectivity is not given, the number is reduced until bijectivity is achieved. plot: bool [False] If the plotting of the result is desired. raise_error: bool [True] If an error is raised in case the resulting calibration function is not bijective. test: bool [False] If True the calibration diameters are returned, so one can check if they are in the desired range. Returns: Calibration instance if plot: (Calibration instance, Axes instance) if test: Series instance """ drum = np.array(dr)/1e3 d, amp = mie.makeMie_diameter(diameterRangeInMikroMeter=drum, noOfdiameters=no_pts, IOR=ior) df = pd.DataFrame({'d': d, 'amp': amp}) # a calibration function is created with no_cal_pts of calibration points. no_cal_pts is steadyly decreased until # the calibration function is bijective valid = False while not valid: no_cal_pts -= 1 binedgs = np.logspace(np.log10(df.amp.min()), np.log10(df.amp.max()), no_cal_pts) binedgs[0] -= (binedgs[1] - binedgs[ 0]) * 0.01 # this is to ensure the first point is not onthe edge ... for cut function used later mie_cal = df.groupby(pd.cut(df.amp, binedgs)).median() dfstd = df.groupby(pd.cut(df.amp, binedgs)).mad() mie_cal.index = mie_cal.d dfstd.index = mie_cal.d mie_cal['sigma_d'] = dfstd.d mie_cal.index.name = None mie_cal.sort_values('amp', axis=0, inplace=True) # check for bijectivity if not ((mie_cal.d.values[1:] - mie_cal.d.values[:-1]) < 0).sum(): valid = True # final conditioning: um2nm, indexname, drop d # mie_cal.drop('d', axis=1, inplace=True) mie_cal.index.name = 'd_nm' mie_cal.index *= 1e3 mie_cal.d *= 1e3 mie_cal.sigma_d *= 1.e3 cali_inst_pre = Calibration(mie_cal) # single point calibration ## solve calibration function ot get amp at calibration diameter ### first guess dt = mie_cal.index[abs(mie_cal.index - single_pnt_cali_d).argmin()] at = mie_cal.loc[dt, 'amp'] # cali_inst_at_single_pnt_calid_d = cali_inst_pre.calibrationFunction(single_pnt_cali_d) ### solve cali_inst_at_single_pnt_calid_d = optimize.fsolve(lambda x: cali_inst_pre.calibrationFunction(x) - single_pnt_cali_d, at) ## scale for ior mismatch if ior == single_pnt_cali_ior: scale_ioradj = 1 single_pnt_cali_int_pre = cali_inst_at_single_pnt_calid_d else: # single_pnt_cali_d = 500 single_pnt_cali_d *= 1e-3 dt, mt = mie.makeMie_diameter(diameterRangeInMikroMeter=[single_pnt_cali_d, single_pnt_cali_d + 1e-3], IOR=single_pnt_cali_ior, noOfdiameters=2) single_pnt_cali_int_pre = mt[0] scale_ioradj = cali_inst_at_single_pnt_calid_d / single_pnt_cali_int_pre ## scale for instrument calibration scale_instrument = single_pnt_cali_int / single_pnt_cali_int_pre ## total scale scale = scale_ioradj * scale_instrument mie_cal.loc[:,'amp'] *= scale if not isinstance(noise_level, type(None)): mie_cal.loc[:, 'amp'] += noise_level cali_inst = Calibration(mie_cal) if plot: f, a = plt.subplots() a.plot(df.d * 1e3, df.amp * scale, label='POPS resp.') cali_inst.plot(ax = a) # a.plot(ampm.index * 1e3, ampm.values * scale, label='POPS resp. smooth') # g, = a.plot(cali.index, cali.values, label='cali') # g.set_linestyle('') # g.set_marker('x') # g.set_markersize(10) # g.set_markeredgewidth(2) g, = a.plot(single_pnt_cali_d * 1e3, single_pnt_cali_int, label='single ptn cal') g.set_linestyle('') g.set_marker('x') g.set_markersize(10) g.set_markeredgewidth(2) g.set_label('single pt. cali.') # # st.plot(ax = a) # a.loglog() a.legend() # return dft # return cali_inst, a ########## # start of old mie calcultations old = False if old: dr = np.array(dr)/1000 single_pnt_cali_d *= 1e-3 # rr = dr / 2 / 1000 d, amp = mie.makeMie_diameter(noOfdiameters=no_pts, diameterRangeInMikroMeter = dr, # radiusRangeInMikroMeter=rr, IOR=ior) ds = pd.Series(amp, d) cal_d = pd.Series(index=np.logspace(np.log10(dr[0]), np.log10(dr[1]), no_cal_pts + 2)[1:-1]) if test: return cal_d # single point calibration if ior == single_pnt_cali_ior: ds_spc = ds else: d, amp = mie.makeMie_diameter(noOfdiameters=no_pts, diameterRangeInMikroMeter = dr, # radiusRangeInMikroMeter=rr, IOR=single_pnt_cali_ior) ds_spc = pd.Series(amp, d) # rolling, the issue here is that I am rolling over windows of diameter rather then windows of amp, which would be better ampm = ds.rolling(int(no_pts / no_cal_pts), center=True).mean() # cali = ampm.append(cal_d).sort_index().interpolate().reindex(cal_d.index) spc_point = ds_spc.append(pd.Series(index=[single_pnt_cali_d])).sort_index().interpolate().reindex( [single_pnt_cali_d]) # .values[0] scale = single_pnt_cali_int / spc_point.values[0] cali *= scale cali.index *= 1e3 cali_inst_pre = pd.DataFrame(cali, columns=['amp']) cali_inst_pre['d'] = cali_inst_pre.index cali_inst_pre = Calibration(cali_inst_pre) if raise_error: ct = cali.values if (ct[1:] - ct[:-1]).min() < 0: raise ValueError( 'Clibration function is not bijective. usually decreasing the number of calibration points will help!') cal_fkt_test = cali_inst_pre.calibrationFunction(cali_inst_pre.data.amp.values) if not np.all(~np.isnan(cal_fkt_test)): raise ValueError( 'Clibration function is not bijective. usually decreasing the number of calibration points will help!') if plot: f, a = plt.subplots() a.plot(ds.index * 1e3, ds.values * scale, label='POPS resp.') a.plot(ampm.index * 1e3, ampm.values * scale, label='POPS resp. smooth') g, = a.plot(cali.index, cali.values, label='cali') g.set_linestyle('') g.set_marker('x') g.set_markersize(10) g.set_markeredgewidth(2) g, = a.plot(single_pnt_cali_d * 1e3, single_pnt_cali_int, label='single ptn cal') g.set_linestyle('') g.set_marker('o') g.set_markersize(10) g.set_markeredgewidth(2) # st.plot(ax = a) a.loglog() a.legend() return cali_inst_pre, a ###### end of old 2 return cali_inst def get_interface_bins(fname, n_bins, imin=1.4, imax=4.8, save=False, verbose = True): """Prints the bins assosiated with what is seen on the POPS user interface and the serial output, respectively. Parameters ---------- fname: string or calibration instance name of file containing a calibration or a calibration instance it self n_bins: int number of bins imin: float [1.4], optional log10 of the minimum value considered (digitizer bins) imax: float [4.8], optional log10 of the maximum value considered (digitizer bins) save: bool or string. If result is saved into file given by string. Returns ------- matplotlib axes instance pandas DataFrame instance """ if isinstance(fname, str): cal = read_csv(fname) else: cal = fname bin_ed = np.linspace(imin, imax, n_bins + 1) bin_center_log = 10 ** ((bin_ed[:-1] + bin_ed[1:]) / 2.) bin_center_lin = ((10 ** bin_ed[:-1] + 10 ** bin_ed[1:]) / 2.) bin_ed = 10 ** bin_ed bin_ed_cal = cal.calibrationFunction(bin_ed) bin_center_lin_cal = cal.calibrationFunction(bin_center_lin) bin_center_log_cal = cal.calibrationFunction(bin_center_log) if save: save_file = open(save, 'w') else: save_file = False txt = ''' bin edges (digitizer bins) --------------------------''' _msg(txt, save, save_file, verbose) for e, i in enumerate(bin_ed): _msg(i, save, save_file, verbose) # bin_center_cal = cal.calibrationFunction(bin_center) txt = ''' bin centers (digitizer bins) ----------------------------''' _msg(txt, save, save_file, verbose) for e, i in enumerate(bin_center_lin): _msg(i, save, save_file, verbose) txt = ''' bin centers of logarithms (digitizer bins) ----------------------------''' _msg(txt, save, save_file, verbose) for e, i in enumerate(bin_center_log): _msg(i, save, save_file, verbose) txt = ''' bin edges (nm) --------------''' _msg(txt, save, save_file, verbose) for e, i in enumerate(bin_ed_cal): _msg(i, save, save_file, verbose) # bin_center_cal = cal.calibrationFunction(bin_center) txt = ''' bin centers (nm) ----------------''' _msg(txt, save, save_file, verbose) for e, i in enumerate(bin_center_lin_cal): _msg(i, save, save_file, verbose) txt = ''' bin centers of logarithms (nm) ----------------''' _msg(txt, save, save_file, verbose) for e, i in enumerate(bin_center_log_cal): _msg(i, save, save_file, verbose) out = {} df_bin_c = pd.DataFrame(bin_center_lin_cal, index=bin_center_log, columns=['Bin_centers']) df_bin_e = pd.DataFrame(bin_ed_cal, index = bin_ed, columns = ['Bin_edges']) # a = df.Bin_centers.plot() if verbose: f, a = plt.subplots() d = df_bin_c.Bin_centers.values[1:-1] g, = a.plot(np.arange(len(d)) + 2, d) g.set_linestyle('') g.set_marker('o') # g.set_label('') a.set_yscale('log') a.set_xlim((1, 16)) a.set_ylim((100, 3000)) a.set_ylabel('Bin center (nm)') a.grid(which='both') a.set_xlabel('POPS bin') out['axes'] = a else: out['axes'] = None # a.set_title('Bin') out['bincenters_v_int'] = df_bin_c out['binedges_v_int'] = df_bin_e return out def _string2Dataframe(data, log=True): sb = io(data) dataFrame = pd.read_csv(sb, sep = ' ', names = ('d','amp')).sort_values('d') if log: dataFrame.amp = 10 ** dataFrame.amp return dataFrame def read_str(data, log=True): '''Read a calibration table from string. Arguments --------- data: string. Multiline string with a diameter-intensity pair seperated by space. Diameter in nm, intensity in digitizer bin or log_10(digitizer bins). log: bool, optional. Set True if the intensity values are given in log_10(digitizer bins). Example ------- data = """140 88 150 102 173 175 200 295 233 480 270 740 315 880 365 1130 420 1350 490 1930 570 3050 660 4200 770 5100 890 6300 1040 8000 1200 8300 1400 10000 1600 11500 1880 16000 2180 21000 2500 28000s 3000 37000""" read_str(data, log = False) ''' dataFrame = _string2Dataframe(data, log=log) calibrationInstance = Calibration(dataFrame) return calibrationInstance def read_csv(fname): """ most likely found here""" calDataFrame =
pd.read_csv(fname)
pandas.read_csv
#################################################################### MODULE COMMENTS #################################################################### #The Training Algorithm python object bins and shuffles the column data and adds noise to the dataframe columns. this object also is in charge of # #Calculating the N,Q and F Scores and matrices. Each of the function calls are stand alone and can be calculated independent of each other # #The main Datastructures that are used by this algorithm are the Pandas datastructure to move data sets between classes and functions and dictionarys # #The purpose of the dictionary is to count the number of occurences of classes in a given dataset and other data points that are needed to derive the # #Statistics that were mentioned above. # #################################################################### MODULE COMMENTS #################################################################### import pandas as pd import numpy as np import random import sys import copy import pprint class TrainingAlgorithm: #Parameters: Dataframe #Returns: List of Dataframes #Function: This function takes in adataframe and breaks the dataframe down into multiple dataframes that are returned Goal of this is to separate testing and training datasets def ShuffleData(self, df: pd.DataFrame) ->pd.DataFrame: #Get a deep copy of the dataframe df1 = copy.deepcopy(df) # print(df.head, '\n', df1.head) #Calculate the number of records to be sampled for testing TestSize = int((len(df.columns)-1) * .1) #if the test size is 0 if TestSize == 0: #Set it to 1 TestSize = 1 #intialize an empty list to store all of the data frames Shuffled = list() #Loop through the number of columns that need to have data shuffled for i in range(TestSize): #Just continue until we break while(True): #Set a variable to a random number for the column to be shuffled around Column_Shuffle = random.randint(0,len(df.columns)-1) #If the column number is in the list above then it has been shuffled, try again if Column_Shuffle in Shuffled : #Go to the top of the loop continue else: #We found a new column that needs to be shuffled, break out of the loop break #Append the column number to the list to save what columns have been shuffled Shuffled.append(Column_Shuffle) #Create a temp list temp = list() #Loop through the number of rows in the data frame for j in range(len(df)): #Append the value in a given cell for a given column to a list temp.append(df.iloc[j][Column_Shuffle]) #Loop through weach row in the data frame again for j in range(len(df)): #Pull a value out from the size of the list value = random.randint(0,len(temp)-1) #Set the dataframe value at this position to a random value from the list df1.at[j,df.columns[Column_Shuffle]] = temp[value] #Remove the value that was radomly assigned temp.remove(temp[value]) print(Shuffled) #Return the Data Frame return df1 #Parameters: Dataframe #Returns: List of dataframes #Function: Take in a given dataframe and break the dataframe down into 2 dataframes, a test and training dataframe. Append both of those to a list and return the list def CrossValidation(self,df: pd.DataFrame) -> list(): #Create an empty list columnss = list() #For each of the columns in the dataframe for i in df.columns: #Append the column name to the list we created above columnss.append(i) #Create a dataframe that has the same columns in the same format as the list we created df1 = pd.DataFrame(columns = columnss) #Calculate the number of records to be sampled for testing TestSize = len(df) * .1 #Count until we hit the number of records we want to sample for i in range(int(TestSize)): #Set a value to be a random number from the dataset TestValue = random.randint(0,len(df)-1) #Append this row to a new dataframe df1.loc[i] = df.index[TestValue] #Drop the row from the dataframe df = df.drop(df.index[TestValue]) #df1.loc[i] = df.drop(df.loc[TestValue].index,inplace =True) Temporary = list() #Return the training and test set data Temporary.append(df) Temporary.append(df1) #Return the List of dataframes return Temporary #Parameters: DataFrame #Returns: List of dataframes #Function: Take in a dataframe and break dataframe into 10 similar sized sets and append each of these to a list to be returned def BinTestData(self, df: pd.DataFrame) -> list(): #Set the bin size to 10 Binsize = 10 #Create a List of column names that are in the dataframe columnHeaders = list(df.columns.values) #Create an empty list bins = [] #Loop through the size of the bins for i in range(Binsize): #Append the dataframe columns to the list created above bins.append(
pd.DataFrame(columns=columnHeaders)
pandas.DataFrame
from nose.tools import * from os.path import abspath, dirname, join import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal import numpy as np import wntr testdir = dirname(abspath(str(__file__))) datadir = join(testdir,'networks_for_testing') net3dir = join(testdir,'..','..','examples','networks') def test_population_net3(): inp_file = join(net3dir,'Net3.inp') wn = wntr.network.WaterNetworkModel(inp_file) pop = wntr.metrics.population(wn) expected = 79000 error = abs((pop.sum() - expected)/expected) assert_less(error, 0.01) # 1% error def test_population_net6(): inp_file = join(net3dir,'Net6.inp') wn = wntr.network.WaterNetworkModel(inp_file) pop = wntr.metrics.population(wn) expected = 152000 error = abs((pop.sum() - expected)/expected) assert_less(error, 0.01) # 1% error def test_population_impacted(): # tests query and population impacted pop = pd.Series([100,200,300,400,500], index=['J1', 'J2', 'J3', 'J4', 'J5']) # arg1 as a Series, arg2 as a scalar wsa = pd.Series([0.6,0.7,0.8,0.9,1], index=['J1', 'J2', 'J3', 'J4', 'J5']) pop_impacted = wntr.metrics.population_impacted(pop, wsa, np.less, 0.8) expected = pd.Series([100,200,0,0,0], index=['J1', 'J2', 'J3', 'J4', 'J5']) assert_series_equal(pop_impacted, expected, check_dtype=False) # arg1 as a Series, arg2 as a Series wsa =
pd.Series([0.6,0.7,0.8,0.9,1], index=['J1', 'J2', 'J3', 'J4', 'J5'])
pandas.Series
# -*- coding: utf-8 -*- import pandas as pd from fiba_inbounder.communicator import FibaCommunicator from fiba_inbounder.formulas import game_time, base60_from, base60_to, \ update_secs_v7, update_xy_v7, update_xy_v5, \ update_pbp_stats_v7, update_pbp_stats_v5_to_v7, \ update_team_stats_v5_to_v7, update_player_stats_v5_to_v7 class FibaGameParser: @staticmethod def get_game_data_dataframe_v5(match_id): game_json = FibaCommunicator.get_game_data_v5(match_id) team_stats_json = game_json['tm'] for t in team_stats_json.values(): #Team Stats t['Name'] = t['nameInternational'] t['TeamCode'] = t['codeInternational'] t['Periods'] = [{'Id': period.replace('_score', '').replace('p', 'q').upper(), 'Score': score} for period, score in t.iteritems() if period.startswith('p') and period.endswith('_score')] if 'ot_score' in t: t['Periods'].append({'Id': 'OT', 'Score':t['ot_score']}) t['PeriodIdList'] = [p['Id'] for p in t['Periods']] if base60_from(t['tot_sMinutes']) == 0: team_secs = sum([base60_from(p['sMinutes']) for p in t['pl'].values()]) t['tot_sMinutes'] = base60_to(team_secs) #Player Stats for p in t['pl'].values(): p['TeamCode'] = t['codeInternational'] p['JerseyNumber'] = p['shirtNumber'] p['Name'] = p['name'].replace(' ', '').upper() p['NumName'] = '{num} {name}'.format(num=p['JerseyNumber'].zfill(2), name=p['Name']) team_a_stats_json = team_stats_json['1'] team_b_stats_json = team_stats_json['2'] team_a_player_stats_list = [p for p in team_stats_json['1']['pl'].values()] team_b_player_stats_list = [p for p in team_stats_json['2']['pl'].values()] #Oppenent DREB for calculating OREB% team_a_stats_json['OPP_DR'] = team_b_stats_json['tot_sReboundsDefensive'] team_b_stats_json['OPP_DR'] = team_a_stats_json['tot_sReboundsDefensive'] team_a_stats_json['OppTeamCode'] = team_b_stats_json['TeamCode'] team_b_stats_json['OppTeamCode'] = team_a_stats_json['TeamCode'] team_stats_df = pd.DataFrame([team_a_stats_json, team_b_stats_json]) player_stats_df = pd.DataFrame(team_a_player_stats_list + team_b_player_stats_list) update_team_stats_v5_to_v7(team_stats_df) update_player_stats_v5_to_v7(player_stats_df) starter_dict = {t['TeamCode']: {p['NumName'] for p in t['pl'].values() if p['starter'] == 1} for t in team_stats_json.values()} pbp_df = pd.DataFrame(reversed(game_json['pbp'])) update_pbp_stats_v5_to_v7(pbp_df, team_a_stats_json['TeamCode'], team_b_stats_json['TeamCode']) shot_df = pd.DataFrame(sum([t['shot'] for t in team_stats_json.values()], [])) update_pbp_stats_v5_to_v7(shot_df, team_a_stats_json['TeamCode'], team_b_stats_json['TeamCode']) update_xy_v5(shot_df) return team_stats_df, player_stats_df, starter_dict, pbp_df, shot_df @staticmethod def get_game_stats_dataframe_v7(event_id, game_unit): game_json = FibaCommunicator.get_game_team_stats_v7(event_id, game_unit) team_stats_json = game_json['content']['full']['Competitors'] for t in team_stats_json: #Team Stats t['Stats']['Name'] = t['Name'] t['Stats']['TeamCode'] = t['TeamCode'] t['Stats']['Periods'] = t['Periods'] t['Stats']['PeriodIdList'] = [p['Id'] for p in t['Periods']] t['Stats']['SECS'] = 60 * 5 * game_time(len(t['Periods'])) t['Stats']['TP'] = base60_to(t['Stats']['SECS']) #Player Stats for p in t['Children']: p['Stats']['TeamCode'] = t['TeamCode'] p['Stats']['TeamId'] = t['Id'] p['Stats']['JerseyNumber'] = p['JerseyNumber'] p['Stats']['Name'] = p['Name'] team_a_stats_json = team_stats_json[0]['Stats'] team_b_stats_json = team_stats_json[1]['Stats'] team_a_player_stats_list = [p['Stats'] for p in team_stats_json[0]['Children']] team_b_player_stats_list = [p['Stats'] for p in team_stats_json[1]['Children']] #Oppenent DREB for calculating OREB% team_a_stats_json['OPP_DR'] = team_b_stats_json['DR'] team_b_stats_json['OPP_DR'] = team_a_stats_json['DR'] team_a_stats_json['OppTeamCode'] = team_b_stats_json['TeamCode'] team_b_stats_json['OppTeamCode'] = team_a_stats_json['TeamCode'] team_stats_df =
pd.DataFrame([team_a_stats_json, team_b_stats_json])
pandas.DataFrame
import pytest from pandas import Series import pandas._testing as tm class TestSeriesUnaryOps: # __neg__, __pos__, __inv__ def test_neg(self): ser = tm.makeStringSeries() ser.name = "series" tm.assert_series_equal(-ser, -1 * ser) def test_invert(self): ser = tm.makeStringSeries() ser.name = "series" tm.assert_series_equal(-(ser < 0), ~(ser < 0)) @pytest.mark.parametrize( "source, neg_target, abs_target", [ ([1, 2, 3], [-1, -2, -3], [1, 2, 3]), ([1, 2, None], [-1, -2, None], [1, 2, None]), ], ) def test_all_numeric_unary_operators( self, any_numeric_ea_dtype, source, neg_target, abs_target ): # GH38794 dtype = any_numeric_ea_dtype ser = Series(source, dtype=dtype) neg_result, pos_result, abs_result = -ser, +ser, abs(ser) if dtype.startswith("U"): neg_target = -Series(source, dtype=dtype) else: neg_target =
Series(neg_target, dtype=dtype)
pandas.Series
from io import StringIO import operator import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, date_range import pandas._testing as tm from pandas.core.computation.check import _NUMEXPR_INSTALLED PARSERS = "python", "pandas" ENGINES = "python", pytest.param("numexpr", marks=td.skip_if_no_ne) @pytest.fixture(params=PARSERS, ids=lambda x: x) def parser(request): return request.param @pytest.fixture(params=ENGINES, ids=lambda x: x) def engine(request): return request.param def skip_if_no_pandas_parser(parser): if parser != "pandas": pytest.skip(f"cannot evaluate with parser {repr(parser)}") class TestCompat: def setup_method(self, method): self.df = DataFrame({"A": [1, 2, 3]}) self.expected1 = self.df[self.df.A > 0] self.expected2 = self.df.A + 1 def test_query_default(self): # GH 12749 # this should always work, whether _NUMEXPR_INSTALLED or not df = self.df result = df.query("A>0") tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1") tm.assert_series_equal(result, self.expected2, check_names=False) def test_query_None(self): df = self.df result = df.query("A>0", engine=None) tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1", engine=None) tm.assert_series_equal(result, self.expected2, check_names=False) def test_query_python(self): df = self.df result = df.query("A>0", engine="python") tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1", engine="python") tm.assert_series_equal(result, self.expected2, check_names=False) def test_query_numexpr(self): df = self.df if _NUMEXPR_INSTALLED: result = df.query("A>0", engine="numexpr") tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1", engine="numexpr") tm.assert_series_equal(result, self.expected2, check_names=False) else: with pytest.raises(ImportError): df.query("A>0", engine="numexpr") with pytest.raises(ImportError): df.eval("A+1", engine="numexpr") class TestDataFrameEval: # smaller hits python, larger hits numexpr @pytest.mark.parametrize("n", [4, 4000]) @pytest.mark.parametrize( "op_str,op,rop", [ ("+", "__add__", "__radd__"), ("-", "__sub__", "__rsub__"), ("*", "__mul__", "__rmul__"), ("/", "__truediv__", "__rtruediv__"), ], ) def test_ops(self, op_str, op, rop, n): # tst ops and reversed ops in evaluation # GH7198 df = DataFrame(1, index=range(n), columns=list("abcd")) df.iloc[0] = 2 m = df.mean() base = DataFrame( # noqa np.tile(m.values, n).reshape(n, -1), columns=list("abcd") ) expected = eval(f"base {op_str} df") # ops as strings result = eval(f"m {op_str} df") tm.assert_frame_equal(result, expected) # these are commutative if op in ["+", "*"]: result = getattr(df, op)(m) tm.assert_frame_equal(result, expected) # these are not elif op in ["-", "/"]: result = getattr(df, rop)(m) tm.assert_frame_equal(result, expected) def test_dataframe_sub_numexpr_path(self): # GH7192: Note we need a large number of rows to ensure this # goes through the numexpr path df = DataFrame(dict(A=np.random.randn(25000))) df.iloc[0:5] = np.nan expected = 1 - np.isnan(df.iloc[0:25]) result = (1 - np.isnan(df)).iloc[0:25] tm.assert_frame_equal(result, expected) def test_query_non_str(self): # GH 11485 df = pd.DataFrame({"A": [1, 2, 3], "B": ["a", "b", "b"]}) msg = "expr must be a string to be evaluated" with pytest.raises(ValueError, match=msg): df.query(lambda x: x.B == "b") with pytest.raises(ValueError, match=msg): df.query(111) def test_query_empty_string(self): # GH 13139 df = pd.DataFrame({"A": [1, 2, 3]}) msg = "expr cannot be an empty string" with pytest.raises(ValueError, match=msg): df.query("") def test_eval_resolvers_as_list(self): # GH 14095 df = DataFrame(np.random.randn(10, 2), columns=list("ab")) dict1 = {"a": 1} dict2 = {"b": 2} assert df.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"] assert pd.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"] class TestDataFrameQueryWithMultiIndex: def test_query_with_named_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(["red", "green"], size=10) b = np.random.choice(["eggs", "ham"], size=10) index = MultiIndex.from_arrays([a, b], names=["color", "food"]) df = DataFrame(np.random.randn(10, 2), index=index) ind = Series( df.index.get_level_values("color").values, index=index, name="color" ) # equality res1 = df.query('color == "red"', parser=parser, engine=engine) res2 = df.query('"red" == color', parser=parser, engine=engine) exp = df[ind == "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # inequality res1 = df.query('color != "red"', parser=parser, engine=engine) res2 = df.query('"red" != color', parser=parser, engine=engine) exp = df[ind != "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('color == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == color', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('color != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != color', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in color', parser=parser, engine=engine) res2 = df.query('"red" in color', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('["red"] not in color', parser=parser, engine=engine) res2 = df.query('"red" not in color', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) def test_query_with_unnamed_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(["red", "green"], size=10) b = np.random.choice(["eggs", "ham"], size=10) index = MultiIndex.from_arrays([a, b]) df = DataFrame(np.random.randn(10, 2), index=index) ind = Series(df.index.get_level_values(0).values, index=index) res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine) res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine) exp = df[ind == "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # inequality res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine) res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine) exp = df[ind != "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
pandas._testing.assert_frame_equal
""" Helper function for parallel computing """ from collections import defaultdict import numpy as np from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler, Imputer from sklearn.metrics import roc_auc_score, accuracy_score from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel, laplacian_kernel from sklearn.utils import shuffle import pandas as pd import dro_model def parallel_classification_table1(x_train, y_train, x_test, y_test, param, kernel_functions, is_missing=False): """ This a function for using joblib to enhance parallel processing for the classification example in table2 """ minmax_scaler = MinMaxScaler() x_train, x_test_sp, y_train, y_test_sp = train_test_split( x_train, y_train, train_size=500) x_test = np.vstack([x_test, x_test_sp]) if x_test.size else x_test_sp y_test = np.hstack([y_test, y_test_sp]) if y_test.size else y_test_sp if is_missing: for i in range(250): pix = np.random.permutation(784) pix = pix[0:588] x_train[i, pix] = np.nan impute = Imputer() x_train = impute.fit_transform(x_train) x_train = minmax_scaler.fit_transform(x_train) x_test = minmax_scaler.transform(x_test) # Initialize output dro_results = {} reg_results = {} for kernel_fun in kernel_functions: if kernel_fun.lower() == 'polynomial': best_params = [] dro_score = [] reg_score = [] gamma = 1 / 100 for deg in param['deg']: kernel_train = polynomial_kernel(x_train, degree=deg, gamma=gamma) total_score = validation_process(kernel_train, y_train, param) # Select the best model tot_score = pd.DataFrame(total_score) ave_score = tot_score.mean() best_kappa, best_epsilon = ave_score.idxmax() best_reg = ave_score[float('inf')].idxmax() tmp = { 'kappa': best_kappa, 'epsilon': best_epsilon, 'reg': best_reg } best_params.append(tmp) dro_score.append(ave_score[(best_kappa, best_epsilon)]) reg_score.append(ave_score[(float('inf'), best_reg)]) sel_idx = dro_score.index(max(dro_score)) sel_deg = param['deg'][sel_idx] sel_kernel_train = polynomial_kernel(x_train, degree=sel_deg, gamma=gamma) sel_kernel_test = polynomial_kernel(x_test, x_train, degree=sel_deg, gamma=gamma) sel_param = { 'epsilon': [best_params[sel_idx]['epsilon']], 'kappa': [best_params[sel_idx]['kappa']] } dro_results[kernel_fun] = test_performance( sel_kernel_train, y_train, sel_kernel_test, y_test, sel_param) sel_idx = reg_score.index(max(reg_score)) sel_deg = param['deg'][sel_idx] sel_kernel_train = polynomial_kernel(x_train, degree=sel_deg, gamma=gamma) sel_kernel_test = polynomial_kernel(x_test, x_train, degree=sel_deg, gamma=gamma) sel_param = { 'epsilon': [best_params[sel_idx]['reg']], 'kappa': [float('inf')] } reg_results[kernel_fun] = test_performance( sel_kernel_train, y_train, sel_kernel_test, y_test, sel_param) elif (kernel_fun.lower() == 'rbf') or (kernel_fun.lower() == 'gaussian'): best_params = [] dro_score = [] reg_score = [] for gamma in param['gamma_rbf']: kernel_train = rbf_kernel(x_train, gamma=gamma) total_score = validation_process(kernel_train, y_train, param) # Select the best model tot_score = pd.DataFrame(total_score) ave_score = tot_score.mean() best_kappa, best_epsilon = ave_score.idxmax() best_reg = ave_score[float('inf')].idxmax() tmp = { 'kappa': best_kappa, 'epsilon': best_epsilon, 'reg': best_reg } best_params.append(tmp) dro_score.append(ave_score[(best_kappa, best_epsilon)]) reg_score.append(ave_score[(float('inf'), best_reg)]) sel_idx = dro_score.index(max(dro_score)) sel_gamma = param['gamma_rbf'][sel_idx] sel_kernel_train = rbf_kernel(x_train, gamma=sel_gamma) sel_kernel_test = rbf_kernel(x_test, x_train, gamma=sel_gamma) sel_param = { 'epsilon': [best_params[sel_idx]['epsilon']], 'kappa': [best_params[sel_idx]['kappa']] } dro_results[kernel_fun] = test_performance( sel_kernel_train, y_train, sel_kernel_test, y_test, sel_param) sel_idx = reg_score.index(max(reg_score)) sel_gamma = param['gamma_rbf'][sel_idx] sel_kernel_train = rbf_kernel(x_train, gamma=sel_gamma) sel_kernel_test = rbf_kernel(x_test, x_train, gamma=sel_gamma) sel_param = { 'epsilon': [best_params[sel_idx]['reg']], 'kappa': [float('inf')] } reg_results[kernel_fun] = test_performance( sel_kernel_train, y_train, sel_kernel_test, y_test, sel_param) elif kernel_fun.lower() == 'laplacian': best_params = [] dro_score = [] reg_score = [] for gamma in param['gamma_lap']: kernel_train = laplacian_kernel(x_train, gamma=gamma) total_score = validation_process(kernel_train, y_train, param) # Select the best model tot_score = pd.DataFrame(total_score) ave_score = tot_score.mean() best_kappa, best_epsilon = ave_score.idxmax() best_reg = ave_score[float('inf')].idxmax() tmp = { 'kappa': best_kappa, 'epsilon': best_epsilon, 'reg': best_reg } best_params.append(tmp) dro_score.append(ave_score[(best_kappa, best_epsilon)]) reg_score.append(ave_score[(float('inf'), best_reg)]) sel_idx = dro_score.index(max(dro_score)) sel_gamma = param['gamma_lap'][sel_idx] sel_kernel_train = laplacian_kernel(x_train, gamma=sel_gamma) sel_kernel_test = laplacian_kernel(x_test, x_train, gamma=sel_gamma) sel_param = { 'epsilon': [best_params[sel_idx]['epsilon']], 'kappa': [best_params[sel_idx]['kappa']] } dro_results[kernel_fun] = test_performance( sel_kernel_train, y_train, sel_kernel_test, y_test, sel_param) sel_idx = reg_score.index(max(reg_score)) sel_gamma = param['gamma_lap'][sel_idx] sel_kernel_train = laplacian_kernel(x_train, gamma=sel_gamma) sel_kernel_test = laplacian_kernel(x_test, x_train, gamma=sel_gamma) sel_param = { 'epsilon': [best_params[sel_idx]['reg']], 'kappa': [float('inf')] } reg_results[kernel_fun] = test_performance( sel_kernel_train, y_train, sel_kernel_test, y_test, sel_param) else: raise 'Undefined kernel function' return (dro_results, reg_results) def parallel_classification_table2(*args): """ This a function for using joblib to enhance parallel processing for the classification example in table1 """ # Setting parameters all_param = { 'epsilon': [1e-4, 5e-4, 1e-3, 5e-2, 1e-2, 5e-2, 1e-1], 'kappa': [0.1, 0.2, 0.3, 0.4, 0.5, 1, float('inf')], 'd': [], 'C': [] } pnorms = [1, 2, float('Inf')] # Initialize output DRSVM_AUC = {} RSVM_AUC = {} # Load input data nargin = len(args) if nargin == 2: x_data = args[0] y_data = args[1] x_train, x_test, y_train, y_test = train_test_split( x_data, y_data, test_size=0.25) elif nargin == 4: x_train = args[0] y_train = args[1] x_train, y_train = shuffle(x_train, y_train) x_test = args[2] y_test = args[3] # Fit classical svm model, hinge loss minimization stand_scaler = StandardScaler() x_train_nrm = stand_scaler.fit_transform(x_train) x_test_nrm = stand_scaler.transform(x_test) training_data = {'x': x_train_nrm, 'y': y_train} optimal = dro_model.hinge_loss_minimization(training_data) w_opt = optimal['w'] y_scores = 1 / (1 + np.exp(-x_test_nrm.dot(w_opt))) SVM_AUC = roc_auc_score(y_test, y_scores) # Parameter selection and then test the model performance skf = StratifiedKFold(n_splits=5) for pnorm in pnorms: all_param['pnorm'] = pnorm total_score = defaultdict(list) # K-fold cross validation for train_index, val_index in skf.split(x_train, y_train): x_train_k, x_val_k = x_train[train_index], x_train[val_index] y_train_k, y_val_k = y_train[train_index], y_train[val_index] x_train_k = stand_scaler.fit_transform(x_train_k) x_val_k = stand_scaler.transform(x_val_k) data_k = {'x': x_train_k, 'y': y_train_k} optimal = dro_model.svm(all_param, data_k) for key, value in optimal.items(): w_opt = np.array(value['w']) y_scores = 1 / (1 + np.exp(-x_val_k.dot(w_opt))) total_score[key].append(roc_auc_score(y_val_k, y_scores)) # Select the best model tot_score =
pd.DataFrame(total_score)
pandas.DataFrame
"""Map flows on provincial networks Purpose ------- Mapping the commune access OD node level matrix values to road network paths in Provinces For all roads in the Provinces: ['<NAME>', '<NAME>', '<NAME>'] The code estimates 2 values - A MIN and a MAX value of flows between each selected OD node pair - Based on MIN-MAX generalised costs estimates Input data requirements ----------------------- 1. Correct paths to all files and correct input parameters 2. Excel file with mode sheets containing network graph structure and attributes - edge_id - String Edge ID - from_node - String node ID that should be present in node_id column - to_node - String node ID that should be present in node_id column - length - Float length of edge in km - min_time - Float minimum time of travel in hours on edge - max_time - Float maximum time of travel in hours on edge - min_time_cost - Float minimum cost of time in USD on edge - max_time_cost - Float maximum cost of time in USD on edge - min_tariff_cost - Float minimum tariff cost in USD on edge - max_tariff_cost - Float maximum tariff cost in USD on edge 3. Edge shapefiles for all national-scale networks with attributes: - edge_id - String Edge ID - geometry - Shapely LineString geometry of edges 4. Excel file with mode sheets containing node-level OD values with attributes: - origin - String node ID of Origin - destination - String node ID of Destination - min_netrev - Float values of miniimum daily OD Net Revenue in USD - max_netrev - Float values of maximum daily OD Net Revenue in USD - min_tons - Float values of minimum daily OD in tons - max_tons - Float values of maximum daily OD in tons Results ------- 1. Excel sheets with results of flow mapping based on MIN-MAX generalised costs estimates: - origin - String node ID of Origin - destination - String node ID of Destination - min_edge_path - List of string of edge ID's for paths with minimum generalised cost flows - max_edge_path - List of string of edge ID's for paths with maximum generalised cost flows - min_netrev - Float values of estimated daily Net Revenue for paths with minimum generalised cost flows - max_netrev - Float values of estimated daily Net Revenue for paths with maximum generalised cost flows - min_croptons - Float values of estimated daily crop tonnage for paths with minimum generalised cost flows - max_croptons - Float values of estimated daily crop tonnage for paths with maximum generalised cost flows - min_distance - Float values of estimated distance for paths with minimum generalised cost flows - max_distance - Float values of estimated distance for paths with maximum generalised cost flows - min_time - Float values of estimated time for paths with minimum generalised cost flows - max_time - Float values of estimated time for paths with maximum generalised cost flows - min_gcost - Float values of estimated generalised cost for paths with minimum generalised cost flows - max_gcost - Float values of estimated generalised cost for paths with maximum generalised cost flows - min_vehicle_nums - Float values of estimated vehicle numbers for paths with minimum generalised cost flows - max_vehicle_nums - Float values of estimated vehicle numbers for paths with maximum generalised cost flows 2. Shapefiles with all flows on edges mapping based on MIN-MAX generalised costs estimates: - edge_id - String/Integer/Float Edge ID - geometry - Shapely LineString geomtry of edges - min_netrev - Float values of estimated daily Net Revenue in USD on edges - max_netrev - Float values of estimated daily Net Revenue in USD on edges - min_tons - Float values of estimated daily crops in tons on edges - max_tons - Float values of estimated daily crops in tons on edges References ---------- 1. <NAME>., <NAME>., <NAME>., <NAME>. & <NAME>. (2018). Analysis and development of model for addressing climate change/disaster risks in multi-modal transport networks in Vietnam. Final Report, Oxford Infrastructure Analytics Ltd., Oxford, UK. 2. All input data folders and files referred to in the code below. """ import ast import itertools import math import operator import os import subprocess import sys import copy import geopandas as gpd import igraph as ig import numpy as np import pandas as pd from shapely import wkt from shapely.geometry import Point from vtra.transport_flow_and_failure_functions import * from vtra.utils import * def network_od_paths_assembly_provincial(points_dataframe, graph, vehicle_wt, region_name, excel_writer=''): """Assemble estimates of OD paths, distances, times, costs and tonnages on networks Parameters ---------- points_dataframe : pandas.DataFrame OD nodes and their tonnages graph igraph network structure vehicle_wt : float unit weight of vehicle region_name : str name of Province excel_writer Name of the excel writer to save Pandas dataframe to Excel file Returns ------- save_paths_df : pandas.DataFrame - origin - String node ID of Origin - destination - String node ID of Destination - min_edge_path - List of string of edge ID's for paths with minimum generalised cost flows - max_edge_path - List of string of edge ID's for paths with maximum generalised cost flows - min_netrev - Float values of estimated netrevenue for paths with minimum generalised cost flows - max_netrev - Float values of estimated netrevenue for paths with maximum generalised cost flows - min_croptons - Float values of estimated crop tons for paths with minimum generalised cost flows - max_croptons - Float values of estimated crop tons for paths with maximum generalised cost flows - min_distance - Float values of estimated distance for paths with minimum generalised cost flows - max_distance - Float values of estimated distance for paths with maximum generalised cost flows - min_time - Float values of estimated time for paths with minimum generalised cost flows - max_time - Float values of estimated time for paths with maximum generalised cost flows - min_gcost - Float values of estimated generalised cost for paths with minimum generalised cost flows - max_gcost - Float values of estimated generalised cost for paths with maximum generalised cost flows - min_vehicle_nums - Float values of estimated vehicle numbers for paths with minimum generalised cost flows - max_vehicle_nums - Float values of estimated vehicle numbers for paths with maximum generalised cost flows """ save_paths = [] points_dataframe = points_dataframe.set_index('origin') origins = list(set(points_dataframe.index.values.tolist())) for origin in origins: try: destinations = points_dataframe.loc[[origin], 'destination'].values.tolist() min_croptons = points_dataframe.loc[[origin], 'min_croptons'].values.tolist() max_croptons = points_dataframe.loc[[origin], 'max_croptons'].values.tolist() min_rev = points_dataframe.loc[[origin], 'min_netrev'].values.tolist() max_rev = points_dataframe.loc[[origin], 'max_netrev'].values.tolist() min_veh_nums = points_dataframe.loc[[origin], 'min_vehicle_nums'].values.tolist() max_veh_nums = points_dataframe.loc[[origin], 'max_vehicle_nums'].values.tolist() get_min_path, get_min_dist, get_min_time, get_min_gcost = network_od_path_estimations( graph, origin, destinations,vehicle_wt,vehicle_wt, 'min_gcost', 'min_time') get_max_path, get_max_dist, get_max_time, get_max_gcost = network_od_path_estimations( graph, origin, destinations,vehicle_wt,vehicle_wt, 'max_gcost', 'max_time') save_paths += list(zip([origin]*len(destinations), destinations, get_min_path, get_max_path, min_rev, max_rev, min_croptons, max_croptons, get_min_dist, get_max_dist, get_min_time, get_max_time, get_min_gcost, get_max_gcost, min_veh_nums, max_veh_nums)) print("done with {0} in province {1}".format(origin, region_name)) except: print('* no path between {}-{}'.format(origin,destinations)) cols = [ 'origin', 'destination', 'min_edge_path', 'max_edge_path', 'min_netrev', 'max_netrev', 'min_croptons', 'max_croptons', 'min_distance', 'max_distance', 'min_time', 'max_time', 'min_gcost', 'max_gcost', 'min_vehicle_nums', 'max_vehicle_nums' ] save_paths_df = pd.DataFrame(save_paths, columns=cols) save_paths_df.to_excel(excel_writer, region_name + '_{}_tons'.format(int(vehicle_wt)), index=False) excel_writer.save() del save_paths return save_paths_df def main(): """Map flows to networks 1. Specify the paths from where you want to read and write: - Input data - Intermediate calcuations data - Output results 2. Supply input data and parameters - Names of the three Provinces: List of string types - Assumed terrains of the provinces: List of string types - Assumed unit weights of trucks: List of float types 3. Give the paths to the input data files: - Network edges EXcel File - OD flows Excel file - Road properties Excel file 4. Specify the output files and paths to be created """ data_path, calc_path, output_path = load_config()['paths']['data'], load_config()[ 'paths']['calc'], load_config()['paths']['output'] # Supply input data and parameters province_list = ['Lao Cai', 'Binh Dinh', 'Thanh Hoa'] province_terrian = ['mountain', 'flat', 'flat'] truck_unit_wt = [5.0] percentage = [100.0] # Give the paths to the input data files network_data_path = os.path.join(data_path,'post_processed_networks') network_data_excel = os.path.join(data_path,'post_processed_networks','province_roads_edges.xlsx') od_output_excel = os.path.join( output_path, 'flow_ods','province_roads_commune_center_flow_ods.xlsx') rd_prop_file = os.path.join(data_path, 'mode_properties', 'road_properties.xlsx') # Specify the output files and paths to be created flow_shp_dir = os.path.join(output_path, 'flow_mapping_shapefiles') if os.path.exists(flow_shp_dir) == False: os.mkdir(flow_shp_dir) flow_csv_dir = os.path.join(output_path, 'flow_mapping_combined') if os.path.exists(flow_csv_dir) == False: os.mkdir(flow_csv_dir) flow_paths_dir = os.path.join(output_path, 'flow_mapping_paths') if os.path.exists(flow_paths_dir) == False: os.mkdir(flow_paths_dir) for perct in percentage: flow_output_excel = os.path.join( flow_paths_dir, 'province_roads_commune_center_access_flow_paths_{}_percent.xlsx'.format(int(perct))) excl_wrtr = pd.ExcelWriter(flow_output_excel) # Start the OD flow mapping process for prn in range(len(province_list)): province = province_list[prn] province_name = province.replace(' ', '').lower() # Load igraph network and GeoDataFrame print ('* Loading {} igraph network and GeoDataFrame'.format(province)) edges_in =
pd.read_excel(network_data_excel,sheet_name = province_name,encoding='utf-8')
pandas.read_excel
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Checking the mixing of trajectories - limits of number of trajectories and the limits on running the network for long time. Plus, the contribution of inserting the trajectories to the network. For each number of trajectories (5, 20, 50, 100, 200, 1000, inf) For each RNN (with or without trajectories) Run for 200 epochs Run a control of the trajectories where you don't input the trajectories' Save test_accuracy for each run Save a dataset with the final accuracy from the trajectories Print fig of with/without trajectories sys.argv gets: [1] = how many trajectories [2] = number of epochs per run [3] = number of epochs [4] = resolution factor traject = 5 - out.418713 5 200 3 8 20 traject = 1 - out.418730 1 200 3 8 20 """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st import sys sys.path.insert(1, '/home/labs/ahissarlab/orra/imagewalker') sys.path.insert(1, '/home/orram/Documents/GitHub/imagewalker') import gc #import torch #from torch.optim import Adam, SGD #import torch.nn as nn # import tensorflow as tf # import tensorflow.keras as keras from mnist import MNIST from keras_utils import create_cifar_dataset, split_dataset_xy from cifar_nets import cnn_gru, parallel_gru print('Starting Run') if len(sys.argv) > 1: parameters = { #DEfine the number of trajectories to use 'num_trajectories' : int(sys.argv[1]), 'num_learning_epochs' : int(sys.argv[2]), 'num_trials' : int(sys.argv[3]), 'res' : int(sys.argv[4]), 'sample' : int(sys.argv[5]), #Number of samples to drew } else: parameters = { #DEfine the number of trajectories to use 'num_trajectories' : 1, 'num_learning_epochs' : 1, 'num_trials' : 1, 'res' : 8, 'sample' : 5,#Number of samples to drew } print(parameters) for key,val in parameters.items(): exec(key + '=val') num_trajectories = num_trajectories num_learning_epochs = num_learning_epochs num_trials = num_trials res = res sample = sample train_dataframe = pd.DataFrame() test_dataframe = pd.DataFrame() train_prll_dataframe = pd.DataFrame() test_prll_dataframe = pd.DataFrame() test_dataframe_no_coordinates =
pd.DataFrame()
pandas.DataFrame
import pandas as pd COLUMN_RENAMES = { "Age (110)": "Age", "Total - Sex": "Total", "Age(110)": "Age", "Age (122)": "Age", "Age (123)": "Age", "Age (131)": "Age", "Age (in single years) and average age (127)": "Age", " Female": "Female", " Male": "Male", } AGE_RENAMES = { "Under 1 year": "0", "Under 1": "0", "under 1": "0", "90\+": "90", "90 and over": "90", "100\+": "100", } AGE_GROUP_BINS = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 105] AGE_GROUP_LABELS = [ "0-4", "5-9", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", "70-74", "75-79", "80+", ] def _get_census_1991_pictou_county(): path = "https://www12.statcan.gc.ca/English/census91/data/tables/File.cfm?S=0&LANG=E&A=R&PID=71935&GID=3503&D1=0&D2=0&D3=0&D4=0&D5=0&D6=0&OFT=CSV" df = pd.read_csv(path, skiprows=2) df.drop(columns=[" "], inplace=True) df.rename(columns=COLUMN_RENAMES, inplace=True) df.drop(df.index[0], inplace=True) df = df[~df.Age.str.contains("years")] df.drop(df.tail(2).index, inplace=True) df["Year"] = 1991 df.reset_index(inplace=True, drop=True) return df def _get_census_1996_pictou_county(): path = "https://www12.statcan.gc.ca/English/census96/data/tables/File.cfm?S=0&LANG=E&A=R&PID=1030&GID=199728&D1=0&D2=0&D3=0&D4=0&D5=0&D6=0&OFT=CSV" df = pd.read_csv(path, skiprows=2) df.drop(columns=[" "], inplace=True) df.rename(columns=COLUMN_RENAMES, inplace=True) df.drop(df.index[0], inplace=True) df = df[~df.Age.str.contains("-")] df.drop(df.tail(1).index, inplace=True) df["Year"] = 1996 df.reset_index(inplace=True, drop=True) return df def _get_census_2001_pictou_county(): path = "https://www12.statcan.gc.ca/English/census01/products/standard/themes/File.cfm?S=0&LANG=E&A=R&PID=55439&GID=426199&D1=0&D2=0&D3=0&D4=0&D5=0&D6=0&OFT=CSV" df = pd.read_csv(path, skiprows=2) df.drop(columns=[" "], inplace=True) df.rename(columns=COLUMN_RENAMES, inplace=True) df.drop(df.index[0], inplace=True) df = df[~df.Age.str.contains("-")] df.drop(df.tail(2).index, inplace=True) df["Year"] = 2001 df.reset_index(inplace=True, drop=True) return df def _get_census_2006_pictou_county(): path = "https://www12.statcan.gc.ca/census-recensement/2006/dp-pd/tbt/File.cfm?S=0&LANG=E&A=R&PID=88989&GID=771825&D1=0&D2=0&D3=0&D4=0&D5=0&D6=0&OFT=CSV" df = pd.read_csv(path, skiprows=2) df.drop(columns=[" "], inplace=True) df.rename(columns=COLUMN_RENAMES, inplace=True) df.drop(df.index[0], inplace=True) df = df[~df.Age.str.contains("years")] df.drop(df.tail(7).index, inplace=True) df["Year"] = 2006 df.reset_index(inplace=True, drop=True) return df def _get_census_2011_pictou_county(): path = "https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/tbt-tt/File.cfm?S=0&LANG=E&A=R&PID=102010&GID=906638&D1=0&D2=0&D3=0&D4=0&D5=0&D6=0&OFT=CSV" df = pd.read_csv(path, skiprows=2) df.drop(columns=[" "], inplace=True) df.rename(columns=COLUMN_RENAMES, inplace=True) df.drop(df.index[0], inplace=True) df = df[~df.Age.str.contains("years")] df.drop(df.tail(4).index, inplace=True) df["Year"] = 2011 df.reset_index(inplace=True, drop=True) return df def _get_census_2016_pictou_county(): path = "https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/dt-td/File.cfm?S=0&LANG=E&A=R&PID=109526&GID=1160159&D1=0&D2=0&D3=0&D4=0&D5=0&D6=0&OFT=CSV" df =
pd.read_csv(path, skiprows=3)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import xml.etree.ElementTree as ET import copy import glob import pandas as pd import os """ This code tries to improve the outputfiles, making it easier for the user to view and work with the files with extended nodes in Cytoscape. Fix_y changes the coordinates of all nodes below a node that is extended, making the number of overlapping nodes smaller. """ def fix_coords(root): nodes = [] #Extract the genes and compounds for child in root: for underchild in child: if (child.attrib["type"] == "gene") or (child.attrib["type"] == "compound"): namestring = underchild.attrib["name"] if "," in namestring: length = 1 else: split_namestring = namestring.split(" ") length = len(split_namestring) nodes.append((int(child.attrib["id"]), int(length), int(underchild.attrib["y"]))) # Change to Pandas Dataframe to sort the whole thing nodes_df =
pd.DataFrame(nodes)
pandas.DataFrame
import unittest from main.main_app import compute_accuracy, get_set, normalize_set, fill_empty_with_average, fill_empty_with_random from decimal import Decimal import pandas as pd import numpy as np class MainTest(unittest.TestCase): def test_compute_accuracy(self): """Tests the 'compute_accuracy' method in Main with different values.""" # Testing full accuracy on 5 labels y_star = [1, 0, 0, 1, 0] y = [1, 0, 0, 1, 0] self.assertEqual(compute_accuracy(y_star, y), 1, "Accuracy should be 1 for [1,0,0,1,0] [1,0,0,1,0]") # Testing full failure on 1 label y_star = [1] y = [0] self.assertEqual(compute_accuracy(y_star, y), 0, "Accuracy should be 0 for [1] [0]") # Testing decimal accuracy on 5 labels y_star = [0, 0, 0, 0, 0] y = [0, 0, 0, 1, 1] self.assertEqual(compute_accuracy(y_star, y), Decimal('0.6'), "Accuracy should be 0.6 for [0,0,0,0,0] [0,0,0,1,1]") # Testing decimal accuracy on 5 labels with different values y_star = [5.2, -10, -15.3, "str", 0] y = [5.2, -10, -15.3, "str", 1000] self.assertEqual(compute_accuracy(y_star, y), Decimal('0.8'), "Accuracy should be 0.8 for [5.2, -10, -15.3, 'str', 0] [5.2, -10, -15.3, 'str', 1000]") def test_get_set(self): """Tests that data from CSV file is loaded without null values""" # Retrieving sets training_set = get_set('../dataset/1500_pairs_train.csv') testing_set = get_set('../dataset/400_pairs_test.csv') sets = [training_set, testing_set] # Checking that there is no null value in any cell of the matrix of any csv file for current in range(len(sets)): for row in range(len(sets[current])): self.assertFalse(
pd.isnull(sets[current][row, 0])
pandas.isnull
import pandas as pd import numpy as np df= pd.read_csv('../Datos/Premios2020.csv',encoding='ISO-8859-1') # print(df.isnull().sum()) # moda = df.release.mode() # valores = {'release': moda[0]} # df.fillna(value=valores, inplace=True) moda = df['release'].mode() df['release'] = df['release'].replace([np.nan], moda) print(
pd.value_counts(df['release'])
pandas.value_counts
# -*- coding: utf-8 -*- """ @author: <NAME> """ import datetime import pandas as pd import numpy as _np import os # import pylab as plt # from atmPy.tools import conversion_tools as ct from atmPy.general import timeseries from atmPy.atmosphere import standards as atm_std import pathlib def read_file(path, version = 'BBB_01', pattern = 'HK', skip_histogram = False, ignore_colums = [], #['Flow_Rate_ccps', 'LED_P_MON', 'AI_4', 'AI_5', 'AI_7', 'AI_8', 'AI_9', 'AI_10', 'AI_11', 'LED_P_Mon_Therm', 'AO_Flow', 'AO_LaserPower', 'No_Pts', 'ValidParts', 'writeTime', 'currMax'], verbose = False): """ Parameters ---------- path: string or list of strings. This can either be a file name, a list of filenames or a folder. version: string ['BBB_01'] BBB_01: Beagle bone sbRio: sbRio pattern: str if folder is given than this is the pattern housekeeping files will be identified by verbose: bool Returns ------- TimeSeries instance """ # test_data_folder = os.listdir() # test_data_folder = '20150419_000_POPS_HK.csv' def read_sbRio(fname, skip_histogram = False, verbose=False): """Reads housekeeping file (test_data_folder; csv-format) returns a pandas data frame instance. """ if verbose: print('reading %s' % fname) try: df = pd.read_csv(fname, error_bad_lines=False) except ValueError: return False # data = df.values # dateString = test_data_folder.split('_')[0] dt = datetime.datetime.strptime('19700101', "%Y%m%d") - datetime.datetime.strptime('19040101', "%Y%m%d") dts = dt.total_seconds() # todo: (low) what is that delta t for, looks fishi (Hagen) dtsPlus = datetime.timedelta(hours=0).total_seconds() # Time_s = data[:,0] # data = data[:,1:] df.index = pd.Series(pd.to_datetime(df.Time_s - dts - dtsPlus, unit='s'), name='Time_UTC') # if 'P_Baro' in df.keys(): # df['barometric_pressure'] = df.P_Baro # df.drop('P_Baro', 1, inplace=True) # df['altitude'] = ct.p2h(df.barometric_pressure) return POPSHouseKeeping(df) def read_BBB(fname, skip_histogram = False, verbose = False): if verbose: print(f'read pops house keeping bbb file: {fname}') col_names = pd.read_csv(fname, sep=',', nrows=1, header=None, # index_col=1, # usecols=np.arange() ).values[0][:-1].astype(str) col_names = _np.char.strip(col_names) if skip_histogram: usecols = list(range(27)) else: usecols = None data = pd.read_csv(fname, sep=',', skiprows=1, header=None, usecols = usecols # index_col=1, # usecols=np.arange() ) data_hk = data.iloc[:, :27] data_hk.columns = col_names data_hk.index = pd.to_datetime(data_hk['DateTime'], unit='s') data_hk.drop('DateTime', axis=1, inplace=True) # hk = atmPy.general.timeseries.TimeSeries(data_hk, sampling_period = 1) hk = POPSHouseKeeping(data_hk, sampling_period=1) hk.data['Barometric_pressure'] = hk.data['P'] return hk def read_BBB_02(fname, skip_histogram = False, verbose = False): if verbose: print(f'read pops house keeping bbb file: {fname}') # col_names = pd.read_csv(fname, sep=',', nrows=1, header=None, # # index_col=1, # # usecols=np.arange() # ).values[0][:-1].astype(str) # col_names = _np.char.strip(col_names) if skip_histogram: usecols = list(range(27)) else: usecols = None data = pd.read_csv(fname, sep=',', skiprows=1, header=None, usecols = usecols # index_col=1, # usecols=np.arange() ) # data.columns = _np.char.strip(data.columns) return data data_hk = data#.iloc[:, :27] # data_hk.columns = col_names data_hk.index =
pd.to_datetime(data_hk['DateTime'], unit='s')
pandas.to_datetime
from itertools import groupby, zip_longest from fractions import Fraction from random import sample import json import pandas as pd import numpy as np import music21 as m21 from music21.meter import TimeSignatureException m21.humdrum.spineParser.flavors['JRP'] = True from collections import defaultdict #song has no meter class UnknownPGramType(Exception): def __init__(self, arg): self.arg = arg def __str__(self): return f"Unknown pgram type: {self.arg}." #compute features: def compute_completesmeasure_phrase(seq, ix, start_ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][start_ix]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % seq['features']['beatspermeasure'][ix] == 0 def compute_completesbeat_phrase(seq, ix, start_ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][start_ix]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % 1 == 0 def compute_completesmeasure_song(seq, ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][0]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % seq['features']['beatspermeasure'][ix] == 0 def compute_completesbeat_song(seq, ix): endpos = Fraction(seq['features']['beatinphrase'][ix]) - \ Fraction(seq['features']['beatinphrase'][0]) + \ Fraction(seq['features']['IOI_beatfraction'][ix]) return endpos % 1 == 0 #extract IOI in units of beat #IOI_beatfraction[i] is IOI from start of ith note till start of (i+1)th note #for last note: beatfraction is taken #Also to be interpreted as duration of note + duration of following rests (except for rests at end of melody) # #extract beats per measure def extractFeatures(seq_iter, vocalfeatures=True): count = 0 for seq in seq_iter: count += 1 if count % 100 == 0: print(count, end=' ') pairs = zip(seq['features']['beatinsong'],seq['features']['beatinsong'][1:]) #this possibly includes rests IOI_beatfraction = [Fraction(o[1])-Fraction(o[0]) for o in pairs] IOI_beatfraction = [str(bf) for bf in IOI_beatfraction] + [seq['features']['beatfraction'][-1]] seq['features']['IOI_beatfraction'] = IOI_beatfraction beatspermeasure = [m21.meter.TimeSignature(ts).beatCount for ts in seq['features']['timesignature']] seq['features']['beatspermeasure'] = beatspermeasure phrasepos = seq['features']['phrasepos'] phrasestart_ix=[0]*len(phrasepos) for ix in range(1,len(phrasestart_ix)): if phrasepos[ix] < phrasepos[ix-1]: phrasestart_ix[ix] = ix else: phrasestart_ix[ix] = phrasestart_ix[ix-1] seq['features']['phrasestart_ix'] = phrasestart_ix endOfPhrase = [x[1]<x[0] for x in zip(phrasepos, phrasepos[1:])] + [True] seq['features']['endOfPhrase'] = endOfPhrase cm_p = [compute_completesmeasure_phrase(seq, ix, phrasestart_ix[ix]) for ix in range(len(phrasepos))] cb_p = [compute_completesbeat_phrase(seq, ix, phrasestart_ix[ix]) for ix in range(len(phrasepos))] cm_s = [compute_completesmeasure_song(seq, ix) for ix in range(len(phrasepos))] cb_s = [compute_completesbeat_song(seq, ix) for ix in range(len(phrasepos))] seq['features']['completesmeasure_phrase'] = cm_p seq['features']['completesbeat_phrase'] = cb_p seq['features']['completesmeasure_song'] = cm_s seq['features']['completesbeat_song'] = cb_s if vocalfeatures: #move lyric features to end of melisma: #rhymes, rhymescontentwords, wordstress, noncontentword, wordend #and compute rhyme_noteoffset and rhyme_beatoffset if 'melismastate' in seq['features'].keys(): #vocal? lyrics = seq['features']['lyrics'] phoneme = seq['features']['phoneme'] melismastate = seq['features']['melismastate'] rhymes = seq['features']['rhymes'] rhymescontentwords = seq['features']['rhymescontentwords'] wordend = seq['features']['wordend'] noncontentword = seq['features']['noncontentword'] wordstress = seq['features']['wordstress'] rhymes_endmelisma, rhymescontentwords_endmelisma = [], [] wordend_endmelisma, noncontentword_endmelisma, wordstress_endmelisma = [], [], [] lyrics_endmelisma, phoneme_endmelisma = [], [] from_ix = 0 inmelisma = False for ix in range(len(phrasepos)): if melismastate[ix] == 'start': from_ix = ix inmelisma = True if melismastate[ix] == 'end': if not inmelisma: from_ix = ix inmelisma = False rhymes_endmelisma.append(rhymes[from_ix]) rhymescontentwords_endmelisma.append(rhymescontentwords[from_ix]) wordend_endmelisma.append(wordend[from_ix]) noncontentword_endmelisma.append(noncontentword[from_ix]) wordstress_endmelisma.append(wordstress[from_ix]) lyrics_endmelisma.append(lyrics[from_ix]) phoneme_endmelisma.append(phoneme[from_ix]) else: rhymes_endmelisma.append(False) rhymescontentwords_endmelisma.append(False) wordend_endmelisma.append(False) noncontentword_endmelisma.append(False) wordstress_endmelisma.append(False) lyrics_endmelisma.append(None) phoneme_endmelisma.append(None) seq['features']['rhymes_endmelisma'] = rhymes_endmelisma seq['features']['rhymescontentwords_endmelisma'] = rhymescontentwords_endmelisma seq['features']['wordend_endmelisma'] = wordend_endmelisma seq['features']['noncontentword_endmelisma'] = noncontentword_endmelisma seq['features']['wordstress_endmelisma'] = wordstress_endmelisma seq['features']['lyrics_endmelisma'] = lyrics_endmelisma seq['features']['phoneme_endmelisma'] = phoneme_endmelisma #compute rhyme_noteoffset and rhyme_beatoffset rhyme_noteoffset = [0] rhyme_beatoffset = [0.0] previous = 0 previousbeat = float(Fraction(seq['features']['beatinsong'][0])) for ix in range(1,len(rhymescontentwords_endmelisma)): if rhymescontentwords_endmelisma[ix-1]: #previous rhymes previous = ix previousbeat = float(Fraction(seq['features']['beatinsong'][ix])) rhyme_noteoffset.append(ix - previous) rhyme_beatoffset.append(float(Fraction(seq['features']['beatinsong'][ix])) - previousbeat) seq['features']['rhymescontentwords_noteoffset'] = rhyme_noteoffset seq['features']['rhymescontentwords_beatoffset'] = rhyme_beatoffset else: #vocal features requested, but not present. #skip melody continue #Or do this? if False: length = len(phrasepos) seq['features']['rhymes_endmelisma'] = [None] * length seq['features']['rhymescontentwords_endmelisma'] = [None] * length seq['features']['wordend_endmelisma'] = [None] * length seq['features']['noncontentword_endmelisma'] = [None] * length seq['features']['wordstress_endmelisma'] = [None] * length seq['features']['lyrics_endmelisma'] = [None] * length seq['features']['phoneme_endmelisma'] = [None] * length yield seq class NoFeaturesError(Exception): def __init__(self, arg): self.args = arg class NoTrigramsError(Exception): def __init__(self, arg): self.args = arg def __str__(self): return repr(self.value) #endix is index of last note + 1 def computeSumFractions(fractions, startix, endix): res = 0.0 for fr in fractions[startix:endix]: res = res + float(Fraction(fr)) return res #make groups of indices with the same successive pitch, but (optionally) not crossing phrase boundaries <- 20200331 crossing phrase boundaries should be allowed (contourfourth) #returns tuples (ix of first note in group, ix of last note in group + 1) #crossPhraseBreak=False splits on phrase break. N.B. Is Using GroundTruth! def breakpitchlist(midipitch, phrase_ix, crossPhraseBreak=False): res = [] if crossPhraseBreak: for _, g in groupby( enumerate(midipitch), key=lambda x:x[1]): glist = list(g) res.append( (glist[0][0], glist[-1][0]+1) ) else: #N.B. This uses the ground truth for _, g in groupby( enumerate(zip(midipitch,phrase_ix)), key=lambda x:(x[1][0],x[1][1])): glist = list(g) res.append( (glist[0][0], glist[-1][0]+1) ) return res #True if no phrase end at first or second item (span) in the trigram #trigram looks like ((8, 10), (10, 11), (11, 12)) def noPhraseBreak(tr, endOfPhrase): return not ( ( True in endOfPhrase[tr[0][0]:tr[0][1]] ) or \ ( True in endOfPhrase[tr[1][0]:tr[1][1]] ) ) #pgram_type : "pitch", "note" def extractPgramsFromCorpus(corpus, pgram_type="pitch", startat=0, endat=None): pgrams = {} arfftype = {} for ix, seq in enumerate(corpus): if endat is not None: if ix >= endat: continue if ix < startat: continue if not ix%100: print(ix, end=' ') songid = seq['id'] try: pgrams[songid], arfftype_new = extractPgramsFromMelody(seq, pgram_type=pgram_type) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'interval', newname='intervalsize', typeconv=lambda x: abs(int(x))) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'interval', newname='intervaldir', typeconv=np.sign) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'diatonicpitch', typeconv=int) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'VosHarmony', typeconv=int) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'beatstrength', typeconv=float) _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'IOIbeatfraction', typeconv=float) if 'melismastate' in seq['features'].keys(): _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'wordstress', typeconv=int) if 'informationcontent' in seq['features'].keys(): _,_ = addCrossRelations(pgrams[songid], arfftype_new, 'informationcontent', typeconv=float) except NoFeaturesError: print(songid, ": No features extracted.") except NoTrigramsError: print(songid, ": No trigrams extracted") #if ix > startat: # if arfftype.keys() != arfftype_new.keys(): # print("Warning: Melodies have different feature sets.") # print(list(zip_longest(arfftype.keys(), arfftype_new.keys()))) #Keep largest set of features possible. N.B. no guarantee that all features in arfftype are in each sequence. arfftype.update(arfftype_new) #concat melodies pgrams = pd.concat([v for v in pgrams.values()]) return pgrams, arfftype def extractPgramsFromMelody(seq, pgram_type, skipPhraseCrossing=False): # some aliases scaledegree = seq['features']['scaledegree'] endOfPhrase = seq['features']['endOfPhrase'] midipitch = seq['features']['midipitch'] phrase_ix = seq['features']['phrase_ix'] if pgram_type == "pitch": event_spans = breakpitchlist(midipitch, phrase_ix) #allow pitches to cross phrase break elif pgram_type == "note": event_spans = list(zip(range(len(scaledegree)),range(1,len(scaledegree)+1))) else: raise UnknownPGramType(pgram_type) # make trigram of spans event_spans = event_spans + [(None, None), (None, None)] pgram_span_ixs = list(zip(event_spans,event_spans[1:],event_spans[2:],event_spans[3:],event_spans[4:])) # If skipPhraseCrossing prune trigrams crossing phrase boundaries. WHY? #Why actually? e.g. kindr154 prhases of 2 pitches if skipPhraseCrossing: pgram_span_ixs = [ixs for ixs in pgram_span_ixs if noPhraseBreak(ixs,endOfPhrase)] if len(pgram_span_ixs) == 0: raise NoTrigramsError(seq['id']) # create dataframe with pgram names as index pgram_ids = [seq["id"]+'_'+str(ixs[0][0]).zfill(3) for ixs in pgram_span_ixs] pgrams = pd.DataFrame(index=pgram_ids) pgrams['ix0_0'] = pd.array([ix[0][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix0_1'] = pd.array([ix[0][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix1_0'] = pd.array([ix[1][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix1_1'] = pd.array([ix[1][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix2_0'] = pd.array([ix[2][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix2_1'] = pd.array([ix[2][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix3_0'] = pd.array([ix[3][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix3_1'] = pd.array([ix[3][1] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix4_0'] = pd.array([ix[4][0] for ix in pgram_span_ixs], dtype="Int16") pgrams['ix4_1'] = pd.array([ix[4][1] for ix in pgram_span_ixs], dtype="Int16") #add tune family ids and songids pgrams['tunefamily'] = seq['tunefamily'] pgrams['songid'] = seq['id'] pgrams, arfftype = extractPgramFeatures(pgrams, seq) return pgrams, arfftype def getBeatDuration(timesig): try: dur = float(m21.meter.TimeSignature(timesig).beatDuration.quarterLength) except TimeSignatureException: dur = float(Fraction(timesig) / Fraction('1/4')) return dur def oneCrossRelation(el1, el2, typeconv): if pd.isna(el1) or pd.isna(el2): return np.nan return '-' if typeconv(el2) < typeconv(el1) else '=' if typeconv(el1) == typeconv(el2) else '+' def addCrossRelations(pgrams, arfftype, featurename, newname=None, typeconv=int): postfixes = { 1 : 'first', 2 : 'second', 3 : 'third', 4 : 'fourth', 5 : 'fifth' } if newname is None: newname = featurename for ix1 in range(1,6): for ix2 in range(ix1+1,6): featname = newname + postfixes[ix1] + postfixes[ix2] source = zip(pgrams[featurename + postfixes[ix1]], pgrams[featurename + postfixes[ix2]]) pgrams[featname] = [oneCrossRelation(el1, el2, typeconv) for (el1, el2) in source] arfftype[featname] = '{-,=,+}' return pgrams, arfftype def extractPgramFeatures(pgrams, seq): # vocal? vocal = False if 'melismastate' in seq['features'].keys(): vocal = True arfftype = {} # some aliases scaledegree = seq['features']['scaledegree'] beatstrength = seq['features']['beatstrength'] diatonicpitch = seq['features']['diatonicpitch'] midipitch = seq['features']['midipitch'] chromaticinterval = seq['features']['chromaticinterval'] timesig = seq['features']['timesignature'] metriccontour = seq['features']['metriccontour'] beatinsong = seq['features']['beatinsong'] beatinphrase = seq['features']['beatinphrase'] endOfPhrase = seq['features']['endOfPhrase'] phrasestart_ix = seq['features']['phrasestart_ix'] phrase_ix = seq['features']['phrase_ix'] completesmeasure_song = seq['features']['completesmeasure_song'] completesbeat_song = seq['features']['completesbeat_song'] completesmeasure_phrase = seq['features']['completesmeasure_phrase'] completesbeat_phrase = seq['features']['completesbeat_phrase'] IOIbeatfraction = seq['features']['IOI_beatfraction'] nextisrest = seq['features']['nextisrest'] gpr2a = seq['features']['gpr2a_Frankland'] gpr2b = seq['features']['gpr2b_Frankland'] gpr3a = seq['features']['gpr3a_Frankland'] gpr3d = seq['features']['gpr3d_Frankland'] gprsum = seq['features']['gpr_Frankland_sum'] pprox = seq['features']['pitchproximity'] prev = seq['features']['pitchreversal'] lbdmpitch = seq['features']['lbdm_spitch'] lbdmioi = seq['features']['lbdm_sioi'] lbdmrest = seq['features']['lbdm_srest'] lbdm = seq['features']['lbdm_boundarystrength'] if vocal: wordstress = seq['features']['wordstress_endmelisma'] noncontentword = seq['features']['noncontentword_endmelisma'] wordend = seq['features']['wordend_endmelisma'] rhymescontentwords = seq['features']['rhymescontentwords_endmelisma'] rhymescontentwords_noteoffset = seq['features']['rhymescontentwords_noteoffset'] rhymescontentwords_beatoffset = seq['features']['rhymescontentwords_beatoffset'] melismastate = seq['features']['melismastate'] phrase_count = max(phrase_ix) + 1 pgrams['scaledegreefirst'] = pd.array([scaledegree[int(ix)] for ix in pgrams['ix0_0']], dtype="Int16") pgrams['scaledegreesecond'] = pd.array([scaledegree[int(ix)] for ix in pgrams['ix1_0']], dtype="Int16") pgrams['scaledegreethird'] = pd.array([scaledegree[int(ix)] for ix in pgrams['ix2_0']], dtype="Int16") pgrams['scaledegreefourth'] = pd.array([scaledegree[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']], dtype="Int16") pgrams['scaledegreefifth'] = pd.array([scaledegree[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']], dtype="Int16") arfftype['scaledegreefirst'] = 'numeric' arfftype['scaledegreesecond'] = 'numeric' arfftype['scaledegreethird'] = 'numeric' arfftype['scaledegreefourth'] = 'numeric' arfftype['scaledegreefifth'] = 'numeric' pgrams['diatonicpitchfirst'] = pd.array([diatonicpitch[int(ix)] for ix in pgrams['ix0_0']], dtype="Int16") pgrams['diatonicpitchsecond'] = pd.array([diatonicpitch[int(ix)] for ix in pgrams['ix1_0']], dtype="Int16") pgrams['diatonicpitchthird'] = pd.array([diatonicpitch[int(ix)] for ix in pgrams['ix2_0']], dtype="Int16") pgrams['diatonicpitchfourth'] = pd.array([diatonicpitch[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']], dtype="Int16") pgrams['diatonicpitchfifth'] = pd.array([diatonicpitch[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']], dtype="Int16") arfftype['diatonicpitchfirst'] = 'numeric' arfftype['diatonicpitchsecond'] = 'numeric' arfftype['diatonicpitchthird'] = 'numeric' arfftype['diatonicpitchfourth'] = 'numeric' arfftype['diatonicpitchfifth'] = 'numeric' pgrams['midipitchfirst'] = pd.array([midipitch[int(ix)] for ix in pgrams['ix0_0']], dtype="Int16") pgrams['midipitchsecond'] = pd.array([midipitch[int(ix)] for ix in pgrams['ix1_0']], dtype="Int16") pgrams['midipitchthird'] = pd.array([midipitch[int(ix)] for ix in pgrams['ix2_0']], dtype="Int16") pgrams['midipitchfourth'] = pd.array([midipitch[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']], dtype="Int16") pgrams['midipitchfifth'] = pd.array([midipitch[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']], dtype="Int16") arfftype['midipitchfirst'] = 'numeric' arfftype['midipitchsecond'] = 'numeric' arfftype['midipitchthird'] = 'numeric' arfftype['midipitchfourth'] = 'numeric' arfftype['midipitchfifth'] = 'numeric' pgrams['intervalfirst'] = pd.array([chromaticinterval[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix0_0']], dtype="Int16") pgrams['intervalsecond'] = pd.array([chromaticinterval[int(ix)] for ix in pgrams['ix1_0']], dtype="Int16") pgrams['intervalthird'] = pd.array([chromaticinterval[int(ix)] for ix in pgrams['ix2_0']], dtype="Int16") pgrams['intervalfourth'] = pd.array([chromaticinterval[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']], dtype="Int16") pgrams['intervalfifth'] = pd.array([chromaticinterval[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']], dtype="Int16") arfftype['intervalfirst'] = 'numeric' arfftype['intervalsecond'] = 'numeric' arfftype['intervalthird'] = 'numeric' arfftype['intervalfourth'] = 'numeric' arfftype['intervalfifth'] = 'numeric' parsons = {-1:'-', 0:'=', 1:'+'} #intervalcontour is not a good feature. Pitchcontour would be better. This will be in the cross-relations #pgrams['intervalcontoursecond'] = [parsons[np.sign(int2 - int1)] if not pd.isna(int1) else np.nan for int1, int2 in \ # zip(pgrams['intervalfirst'],pgrams['intervalsecond'])] #pgrams['intervalcontourthird'] = [parsons[np.sign(int2 - int1)] for int1, int2 in \ # zip(pgrams['intervalsecond'],pgrams['intervalthird'])] #pgrams['intervalcontourfourth'] = [parsons[np.sign(int2 - int1)] if not pd.isna(int2) else np.nan for int1, int2 in \ # zip(pgrams['intervalthird'],pgrams['intervalfourth'])] #pgrams['intervalcontourfifth'] = [parsons[np.sign(int2 - int1)] if not pd.isna(int2) else np.nan for int1, int2 in \ # zip(pgrams['intervalfourth'],pgrams['intervalfifth'])] #arfftype['intervalcontoursecond'] = '{-,=,+}' #arfftype['intervalcontourthird'] = '{-,=,+}' #arfftype['intervalcontourfourth'] = '{-,=,+}' #arfftype['intervalcontourfifth'] = '{-,=,+}' #intervals of which second tone has center of gravity according to Vos 2002 + octave equivalents VosCenterGravityASC = np.array([1, 5, 8]) VosCenterGravityDESC = np.array([-2, -4, -6, -7, -11]) VosCenterGravity = list(VosCenterGravityDESC-24) + \ list(VosCenterGravityDESC-12) + \ list(VosCenterGravityDESC) + \ list(VosCenterGravityASC) + \ list(VosCenterGravityASC+12) + \ list(VosCenterGravityASC+24) pgrams['VosCenterGravityfirst'] = [interval in VosCenterGravity if not pd.isna(interval) else np.nan for interval in pgrams['intervalfirst']] pgrams['VosCenterGravitysecond'] = [interval in VosCenterGravity for interval in pgrams['intervalsecond']] pgrams['VosCenterGravitythird'] = [interval in VosCenterGravity for interval in pgrams['intervalthird']] pgrams['VosCenterGravityfourth'] = [interval in VosCenterGravity if not pd.isna(interval) else np.nan for interval in pgrams['intervalfourth']] pgrams['VosCenterGravityfifth'] = [interval in VosCenterGravity if not pd.isna(interval) else np.nan for interval in pgrams['intervalfifth']] arfftype['VosCenterGravityfirst'] = '{True, False}' arfftype['VosCenterGravitysecond'] = '{True, False}' arfftype['VosCenterGravitythird'] = '{True, False}' arfftype['VosCenterGravityfourth'] = '{True, False}' arfftype['VosCenterGravityfifth'] = '{True, False}' VosHarmony = { 0: 0, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 1, 7: 6, 8: 5, 9: 4, 10: 3, 11: 2, 12: 7 } #interval modulo one octave, but 0 only for absolute unison (Vos 2002, p.633) def vosint(intervals): return [((np.sign(i)*i-1)%12+1 if i!=0 else 0) if not pd.isna(i) else np.nan for i in intervals] pgrams['VosHarmonyfirst'] = pd.array([VosHarmony[interval] if not pd.isna(interval) else np.nan for interval in vosint(pgrams['intervalfirst'])], dtype="Int16") pgrams['VosHarmonysecond'] = pd.array([VosHarmony[interval] for interval in vosint(pgrams['intervalsecond'])], dtype="Int16") pgrams['VosHarmonythird'] = pd.array([VosHarmony[interval] for interval in vosint(pgrams['intervalthird'])], dtype="Int16") pgrams['VosHarmonyfourth'] = pd.array([VosHarmony[interval] if not pd.isna(interval) else np.nan for interval in vosint(pgrams['intervalfourth'])], dtype="Int16") pgrams['VosHarmonyfifth'] = pd.array([VosHarmony[interval] if not pd.isna(interval) else np.nan for interval in vosint(pgrams['intervalfifth'])], dtype="Int16") arfftype['VosHarmonyfirst'] = 'numeric' arfftype['VosHarmonysecond'] = 'numeric' arfftype['VosHarmonythird'] = 'numeric' arfftype['VosHarmonyfourth'] = 'numeric' arfftype['VosHarmonyfifth'] = 'numeric' if 'informationcontent' in seq['features'].keys(): informationcontent = seq['features']['informationcontent'] pgrams['informationcontentfirst'] = [informationcontent[int(ix)] for ix in pgrams['ix0_0']] pgrams['informationcontentsecond'] = [informationcontent[int(ix)] for ix in pgrams['ix1_0']] pgrams['informationcontentthird'] = [informationcontent[int(ix)] for ix in pgrams['ix2_0']] pgrams['informationcontentfourth'] = [informationcontent[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']] pgrams['informationcontentfifth'] = [informationcontent[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']] arfftype['informationcontentfirst'] = 'numeric' arfftype['informationcontentsecond'] = 'numeric' arfftype['informationcontentthird'] = 'numeric' arfftype['informationcontentfourth'] = 'numeric' arfftype['informationcontentfifth'] = 'numeric' pgrams['contourfirst'] = [parsons[np.sign(i)] if not pd.isna(i) else np.nan for i in pgrams['intervalfirst']] pgrams['contoursecond'] = [parsons[np.sign(i)] for i in pgrams['intervalsecond']] pgrams['contourthird'] = [parsons[np.sign(i)] for i in pgrams['intervalthird']] pgrams['contourfourth'] = [parsons[np.sign(i)] if not pd.isna(i) else np.nan for i in pgrams['intervalfourth']] pgrams['contourfifth'] = [parsons[np.sign(i)] if not pd.isna(i) else np.nan for i in pgrams['intervalfifth']] arfftype['contourfirst'] = '{-,=,+}' arfftype['contoursecond'] = '{-,=,+}' arfftype['contourthird'] = '{-,=,+}' arfftype['contourfourth'] = '{-,=,+}' arfftype['contourfifth'] = '{-,=,+}' ###########################################3 #derived features from Interval and Contour pgrams['registraldirectionchange'] = [cont_sec != cont_third for cont_sec, cont_third in \ zip(pgrams['contoursecond'], pgrams['contourthird'])] arfftype['registraldirectionchange'] = '{True, False}' pgrams['largetosmall'] = [int_first >= 6 and int_second <=4 for int_first, int_second in \ zip(pgrams['intervalsecond'], pgrams['intervalthird'])] arfftype['largetosmall'] = '{True, False}' pgrams['contourreversal'] = [(i[0] == '-' and i[1] == '+') or (i[0]=='+' and i[1]=='-') \ for i in zip(pgrams['contoursecond'], pgrams['contourthird'])] arfftype['contourreversal'] = '{True, False}' pgrams['isascending'] = \ (pgrams['diatonicpitchfirst'] < pgrams['diatonicpitchsecond']) & \ (pgrams['diatonicpitchsecond'] < pgrams['diatonicpitchthird']) arfftype['isascending'] = '{True, False}' pgrams['isdescending'] = \ (pgrams['diatonicpitchfirst'] > pgrams['diatonicpitchsecond']) & \ (pgrams['diatonicpitchsecond'] > pgrams['diatonicpitchthird']) arfftype['isdescending'] = '{True, False}' diat = pgrams[['diatonicpitchfirst','diatonicpitchsecond','diatonicpitchthird']].values pgrams['ambitus'] = diat.max(1) - diat.min(1) arfftype['ambitus'] = 'numeric' pgrams['containsleap'] = \ (abs(pgrams['diatonicpitchsecond'] - pgrams['diatonicpitchfirst']) > 1) | \ (abs(pgrams['diatonicpitchthird'] - pgrams['diatonicpitchsecond']) > 1) arfftype['containsleap'] = '{True, False}' ###########################################3 pgrams['numberofnotesfirst'] = pd.array([ix2 - ix1 for ix1, ix2 in zip(pgrams['ix0_0'],pgrams['ix0_1'])], dtype="Int16") pgrams['numberofnotessecond'] = pd.array([ix2 - ix1 for ix1, ix2 in zip(pgrams['ix1_0'],pgrams['ix1_1'])], dtype="Int16") pgrams['numberofnotesthird'] = pd.array([ix2 - ix1 for ix1, ix2 in zip(pgrams['ix2_0'],pgrams['ix2_1'])], dtype="Int16") pgrams['numberofnotesfourth'] = pd.array([ix2 - ix1 if not pd.isna(ix1) else np.nan for ix1, ix2 in zip(pgrams['ix3_0'],pgrams['ix3_1'])], dtype="Int16") pgrams['numberofnotesfifth'] = pd.array([ix2 - ix1 if not pd.isna(ix1) else np.nan for ix1, ix2 in zip(pgrams['ix4_0'],pgrams['ix4_1'])], dtype="Int16") arfftype['numberofnotesfirst'] = 'numeric' arfftype['numberofnotessecond'] = 'numeric' arfftype['numberofnotesthird'] = 'numeric' arfftype['numberofnotesfourth'] = 'numeric' arfftype['numberofnotesfifth'] = 'numeric' if seq['freemeter']: pgrams['meternumerator'] = pd.array([np.nan for ix in pgrams['ix0_0']], dtype="Int16") pgrams['meterdenominator'] = pd.array([np.nan for ix in pgrams['ix0_0']], dtype="Int16") else: pgrams['meternumerator'] = pd.array([int(timesig[ix].split('/')[0]) for ix in pgrams['ix0_0']], dtype="Int16") pgrams['meterdenominator'] = pd.array([int(timesig[ix].split('/')[1]) for ix in pgrams['ix0_0']], dtype="Int16") arfftype['meternumerator'] = 'numeric' arfftype['meterdenominator'] = 'numeric' pgrams['nextisrestfirst'] = [nextisrest[ix-1] for ix in pgrams['ix0_1']] pgrams['nextisrestsecond'] = [nextisrest[ix-1] for ix in pgrams['ix1_1']] pgrams['nextisrestthird'] = [nextisrest[ix-1] for ix in pgrams['ix2_1']] pgrams['nextisrestfourth'] = [nextisrest[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['nextisrestfifth'] = [nextisrest[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['nextisrestfirst'] = '{True, False}' arfftype['nextisrestsecond'] = '{True, False}' arfftype['nextisrestthird'] = '{True, False}' arfftype['nextisrestfourth'] = '{True, False}' arfftype['nextisrestfifth'] = '{True, False}' pgrams['beatstrengthfirst'] = [beatstrength[int(ix)] for ix in pgrams['ix0_0']] pgrams['beatstrengthsecond'] = [beatstrength[int(ix)] for ix in pgrams['ix1_0']] pgrams['beatstrengththird'] = [beatstrength[int(ix)] for ix in pgrams['ix2_0']] pgrams['beatstrengthfourth'] = [beatstrength[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']] pgrams['beatstrengthfifth'] = [beatstrength[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']] arfftype['beatstrengthfirst'] = 'numeric' arfftype['beatstrengthsecond'] = 'numeric' arfftype['beatstrengththird'] = 'numeric' arfftype['beatstrengthfourth'] = 'numeric' arfftype['beatstrengthfifth'] = 'numeric' #these will be in crossrelations: beatstrengthfirstsecond, etc. #pgrams['metriccontourfirst'] = [metriccontour[int(ix)] for ix in pgrams['ix0_0']] #pgrams['metriccontoursecond'] = [metriccontour[int(ix)] for ix in pgrams['ix1_0']] #pgrams['metriccontourthird'] = [metriccontour[int(ix)] for ix in pgrams['ix2_0']] #pgrams['metriccontourfourth'] = [metriccontour[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']] #pgrams['metriccontourfifth'] = [metriccontour[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']] #arfftype['metriccontourfirst'] = '{-,=,+}' #arfftype['metriccontoursecond'] = '{-,=,+}' #arfftype['metriccontourthird'] = '{-,=,+}' #arfftype['metriccontourfourth'] = '{-,=,+}' #arfftype['metriccontourfifth'] = '{-,=,+}' pgrams['IOIbeatfractionfirst'] = [computeSumFractions(IOIbeatfraction, startix, endix) for \ startix, endix in zip(pgrams['ix0_0'],pgrams['ix0_1'])] pgrams['IOIbeatfractionsecond'] = [computeSumFractions(IOIbeatfraction, startix, endix) for \ startix, endix in zip(pgrams['ix1_0'],pgrams['ix1_1'])] pgrams['IOIbeatfractionthird'] = [computeSumFractions(IOIbeatfraction, startix, endix) for \ startix, endix in zip(pgrams['ix2_0'],pgrams['ix2_1'])] pgrams['IOIbeatfractionfourth'] = [computeSumFractions(IOIbeatfraction, startix, endix) if not pd.isna(startix) else np.nan for \ startix, endix in zip(pgrams['ix3_0'],pgrams['ix3_1'])] pgrams['IOIbeatfractionfifth'] = [computeSumFractions(IOIbeatfraction, startix, endix) if not pd.isna(startix) else np.nan for \ startix, endix in zip(pgrams['ix4_0'],pgrams['ix4_1'])] arfftype['IOIbeatfractionfirst'] = 'numeric' arfftype['IOIbeatfractionsecond'] = 'numeric' arfftype['IOIbeatfractionthird'] = 'numeric' arfftype['IOIbeatfractionfourth'] = 'numeric' arfftype['IOIbeatfractionfifth'] = 'numeric' pgrams['durationcummulation'] = [((d2 > d1) and (d3 > d2)) for d1, d2, d3 in \ zip(pgrams['IOIbeatfractionfirst'],pgrams['IOIbeatfractionsecond'],pgrams['IOIbeatfractionthird'])] arfftype['durationcummulation'] = '{True, False}' #these will be in crossrelation: IOIbeatfractionfirstsecond, etc. #pgrams['durationcontoursecond'] = [parsons[np.sign(dur2 - dur1)] for dur1, dur2 in \ # zip(pgrams['IOIbeatfractionfirst'],pgrams['IOIbeatfractionsecond'])] #pgrams['durationcontourthird'] = [parsons[np.sign(dur2 - dur1)] for dur1, dur2 in \ # zip(pgrams['IOIbeatfractionsecond'],pgrams['IOIbeatfractionthird'])] #pgrams['durationcontourfourth'] = [parsons[np.sign(dur2 - dur1)] if not pd.isna(dur2) else np.nan for dur1, dur2 in \ # zip(pgrams['IOIbeatfractionthird'],pgrams['IOIbeatfractionfourth'])] #pgrams['durationcontourfifth'] = [parsons[np.sign(dur2 - dur1)] if not pd.isna(dur2) else np.nan for dur1, dur2 in \ # zip(pgrams['IOIbeatfractionfourth'],pgrams['IOIbeatfractionfifth'])] #arfftype['durationcontoursecond'] = '{-,=,+}' #arfftype['durationcontourthird'] = '{-,=,+}' #arfftype['durationcontourfourth'] = '{-,=,+}' #arfftype['durationcontourfifth'] = '{-,=,+}' pgrams['onthebeatfirst'] = [Fraction(beatinsong[int(ix)]) % 1 == 0 for ix in pgrams['ix0_0']] pgrams['onthebeatsecond'] = [Fraction(beatinsong[int(ix)]) % 1 == 0 for ix in pgrams['ix1_0']] pgrams['onthebeatthird'] = [Fraction(beatinsong[int(ix)]) % 1 == 0 for ix in pgrams['ix2_0']] pgrams['onthebeatfourth'] = [Fraction(beatinsong[int(ix)]) % 1 == 0 if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']] pgrams['onthebeatfifth'] = [Fraction(beatinsong[int(ix)]) % 1 == 0 if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']] arfftype['onthebeatfirst'] = '{True, False}' arfftype['onthebeatsecond'] = '{True, False}' arfftype['onthebeatthird'] = '{True, False}' arfftype['onthebeatfourth'] = '{True, False}' arfftype['onthebeatfifth'] = '{True, False}' pgrams['completesmeasurephrase'] = [completesmeasure_phrase[ix-1] for ix in pgrams['ix2_1']] pgrams['completesmeasuresong'] = [completesmeasure_song[ix-1] for ix in pgrams['ix2_1']] pgrams['completesbeatphrase'] = [completesbeat_phrase[ix-1] for ix in pgrams['ix2_1']] pgrams['completesbeatsong'] = [completesbeat_song[ix-1] for ix in pgrams['ix2_1']] arfftype['completesmeasurephrase'] = '{True, False}' arfftype['completesmeasuresong'] = '{True, False}' arfftype['completesbeatphrase'] = '{True, False}' arfftype['completesbeatsong'] = '{True, False}' if 'grouper' in seq['features'].keys(): grouper = seq['features']['grouper'] pgrams['grouperfirst'] = [grouper[int(ix)] for ix in pgrams['ix0_0']] pgrams['groupersecond'] = [grouper[int(ix)] for ix in pgrams['ix1_0']] pgrams['grouperthird'] = [grouper[int(ix)] for ix in pgrams['ix2_0']] pgrams['grouperfourth'] = [grouper[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']] pgrams['grouperfifth'] = [grouper[int(ix)] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']] arfftype['grouperfirst'] = '{True, False}' arfftype['groupersecond'] = '{True, False}' arfftype['grouperthird'] = '{True, False}' arfftype['grouperfourth'] = '{True, False}' arfftype['grouperfifth'] = '{True, False}' #values for final note of third group pgrams['noteoffset'] = pd.array([(ix-1) - phrasestart_ix[(ix-1)] for ix in pgrams['ix2_1']], dtype="Int16") pgrams['beatoffset'] = [float(Fraction(beatinphrase[ix-1])) - \ float(Fraction(beatinphrase[phrasestart_ix[(ix-1)]])) \ for ix in pgrams['ix2_1']] arfftype['noteoffset'] = 'numeric' arfftype['beatoffset'] = 'numeric' pgrams['beatduration'] = [getBeatDuration(timesig[int(ix)]) for ix in pgrams['ix0_0']] pgrams['beatcount'] = pd.array([m21.meter.TimeSignature(timesig[int(ix)]).beatCount for ix in pgrams['ix0_0']], dtype="Int16") arfftype['beatduration'] = 'numeric' arfftype['beatcount'] = 'numeric' #get values for the last note! pgrams['gpr2afirst'] = [gpr2a[ix-1] for ix in pgrams['ix0_1']] pgrams['gpr2asecond'] = [gpr2a[ix-1] for ix in pgrams['ix1_1']] pgrams['gpr2athird'] = [gpr2a[ix-1] for ix in pgrams['ix2_1']] pgrams['gpr2afourth'] = [gpr2a[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['gpr2afifth'] = [gpr2a[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['gpr2afirst'] = 'numeric' arfftype['gpr2asecond'] = 'numeric' arfftype['gpr2athird'] = 'numeric' arfftype['gpr2afourth'] = 'numeric' arfftype['gpr2afifth'] = 'numeric' pgrams['gpr2bfirst'] = [gpr2b[ix-1] for ix in pgrams['ix0_1']] pgrams['gpr2bsecond'] = [gpr2b[ix-1] for ix in pgrams['ix1_1']] pgrams['gpr2bthird'] = [gpr2b[ix-1] for ix in pgrams['ix2_1']] pgrams['gpr2bfourth'] = [gpr2b[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['gpr2bfifth'] = [gpr2b[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['gpr2bfirst'] = 'numeric' arfftype['gpr2bsecond'] = 'numeric' arfftype['gpr2bthird'] = 'numeric' arfftype['gpr2bfourth'] = 'numeric' arfftype['gpr2bfifth'] = 'numeric' pgrams['gpr3afirst'] = [gpr3a[ix-1] for ix in pgrams['ix0_1']] pgrams['gpr3asecond'] = [gpr3a[ix-1] for ix in pgrams['ix1_1']] pgrams['gpr3athird'] = [gpr3a[ix-1] for ix in pgrams['ix2_1']] pgrams['gpr3afourth'] = [gpr3a[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['gpr3afifth'] = [gpr3a[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['gpr3afirst'] = 'numeric' arfftype['gpr3asecond'] = 'numeric' arfftype['gpr3athird'] = 'numeric' arfftype['gpr3afourth'] = 'numeric' arfftype['gpr3afifth'] = 'numeric' pgrams['gpr3dfirst'] = [gpr3d[ix-1] for ix in pgrams['ix0_1']] pgrams['gpr3dsecond'] = [gpr3d[ix-1] for ix in pgrams['ix1_1']] pgrams['gpr3dthird'] = [gpr3d[ix-1] for ix in pgrams['ix2_1']] pgrams['gpr3dfourth'] = [gpr3d[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['gpr3dfifth'] = [gpr3d[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['gpr3dfirst'] = 'numeric' arfftype['gpr3dsecond'] = 'numeric' arfftype['gpr3dthird'] = 'numeric' arfftype['gpr3dfourth'] = 'numeric' arfftype['gpr3dfifth'] = 'numeric' pgrams['gprsumfirst'] = [gprsum[ix-1] for ix in pgrams['ix0_1']] pgrams['gprsumsecond'] = [gprsum[ix-1] for ix in pgrams['ix1_1']] pgrams['gprsumthird'] = [gprsum[ix-1] for ix in pgrams['ix2_1']] pgrams['gprsumfourth'] = [gprsum[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['gprsumfifth'] = [gprsum[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['gprsumfirst'] = 'numeric' arfftype['gprsumsecond'] = 'numeric' arfftype['gprsumthird'] = 'numeric' arfftype['gprsumfourth'] = 'numeric' arfftype['gprsumfifth'] = 'numeric' pgrams['pitchproximityfirst'] = pd.array([pprox[ix] for ix in pgrams['ix0_0']], dtype="Int16") pgrams['pitchproximitysecond'] = pd.array([pprox[ix] for ix in pgrams['ix1_0']], dtype="Int16") pgrams['pitchproximitythird'] = pd.array([pprox[ix] for ix in pgrams['ix2_0']], dtype="Int16") pgrams['pitchproximityfourth'] = pd.array([pprox[ix] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']], dtype="Int16") pgrams['pitchproximityfifth'] = pd.array([pprox[ix] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']], dtype="Int16") arfftype['pitchproximityfirst'] = 'numeric' arfftype['pitchproximitysecond'] = 'numeric' arfftype['pitchproximitythird'] = 'numeric' arfftype['pitchproximityfourth'] = 'numeric' arfftype['pitchproximityfifth'] = 'numeric' pgrams['pitchreversalfirst'] = [prev[ix] for ix in pgrams['ix0_0']] pgrams['pitchreversalsecond'] = [prev[ix] for ix in pgrams['ix1_0']] pgrams['pitchreversalthird'] = [prev[ix] for ix in pgrams['ix2_0']] pgrams['pitchreversalfourth'] = [prev[ix] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_0']] pgrams['pitchreversalfifth'] = [prev[ix] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_0']] arfftype['pitchreversalfirst'] = 'numeric' arfftype['pitchreversalsecond'] = 'numeric' arfftype['pitchreversalthird'] = 'numeric' arfftype['pitchreversalfourth'] = 'numeric' arfftype['pitchreversalfifth'] = 'numeric' #get values for last note in pitchgroup pgrams['lbdmpitchfirst'] = [lbdmpitch[ix-1] for ix in pgrams['ix0_1']] pgrams['lbdmpitchsecond'] = [lbdmpitch[ix-1] for ix in pgrams['ix1_1']] pgrams['lbdmpitchthird'] = [lbdmpitch[ix-1] for ix in pgrams['ix2_1']] pgrams['lbdmpitchfourth'] = [lbdmpitch[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['lbdmpitchfifth'] = [lbdmpitch[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['lbdmpitchfirst'] = 'numeric' arfftype['lbdmpitchsecond'] = 'numeric' arfftype['lbdmpitchthird'] = 'numeric' arfftype['lbdmpitchfourth'] = 'numeric' arfftype['lbdmpitchfifth'] = 'numeric' pgrams['lbdmioifirst'] = [lbdmioi[ix-1] for ix in pgrams['ix0_1']] pgrams['lbdmioisecond'] = [lbdmioi[ix-1] for ix in pgrams['ix1_1']] pgrams['lbdmioithird'] = [lbdmioi[ix-1] for ix in pgrams['ix2_1']] pgrams['lbdmioifourth'] = [lbdmioi[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix3_1']] pgrams['lbdmioififth'] = [lbdmioi[ix-1] if not pd.isna(ix) else np.nan for ix in pgrams['ix4_1']] arfftype['lbdmioifirst'] = 'numeric' arfftype['lbdmioisecond'] = 'numeric' arfftype['lbdmioithird'] = 'numeric' arfftype['lbdmioifourth'] = 'numeric' arfftype['lbdmioififth'] = 'numeric' pgrams['lbdmrestfirst'] = [lbdmrest[ix-1] for ix in pgrams['ix0_1']] pgrams['lbdmrestsecond'] = [lbdmrest[ix-1] for ix in pgrams['ix1_1']] pgrams['lbdmrestthird'] = [lbdmrest[ix-1] for ix in pgrams['ix2_1']] pgrams['lbdmrestfourth'] = [lbdmrest[ix-1] if not
pd.isna(ix)
pandas.isna
import natsort import numpy as np import pandas as pd import plotly.io as pio import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff import re import traceback from io import BytesIO from sklearn.decomposition import PCA from sklearn.metrics import pairwise as pw import json import statistics import matplotlib.pyplot as plt import matplotlib_venn as venn from matplotlib_venn import venn2, venn3, venn3_circles from PIL import Image from upsetplot import from_memberships from upsetplot import plot as upplot import pkg_resources def natsort_index_keys(x): order = natsort.natsorted(np.unique(x.values)) return pd.Index([order.index(el) for el in x], name=x.name) def natsort_list_keys(x): order = natsort.natsorted(np.unique(x)) return [order.index(el) for el in x] class SpatialDataSet: regex = { "imported_columns": "^[Rr]atio H/L (?!normalized|type|is.*|variability|count)[^ ]+|^Ratio H/L variability.... .+|^Ratio H/L count .+|id$|[Mm][Ss].*[cC]ount.+$|[Ll][Ff][Qq].*|.*[nN]ames.*|.*[Pp][rR]otein.[Ii][Dd]s.*|[Pp]otential.[cC]ontaminant|[Oo]nly.[iI]dentified.[bB]y.[sS]ite|[Rr]everse|[Ss]core|[Qq]-[Vv]alue|R.Condition|PG.Genes|PG.ProteinGroups|PG.Cscore|PG.Qvalue|PG.RunEvidenceCount|PG.Quantity|^Proteins$|^Sequence$" } acquisition_set_dict = { "LFQ6 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "LFQ6 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "SILAC - MQ" : [ "[Rr]atio.[Hh]/[Ll](?!.[Vv]aria|.[Cc]ount)","[Rr]atio.[Hh]/[Ll].[Vv]ariability.\[%\]", "[Rr]atio.[Hh]/[Ll].[cC]ount"], "Custom": ["(?!Protein IDs|Gene names)"] } Spectronaut_columnRenaming = { "R.Condition": "Map", "PG.Genes" : "Gene names", "PG.Qvalue": "Q-value", "PG.Cscore":"C-Score", "PG.ProteinGroups" : "Protein IDs", "PG.RunEvidenceCount" : "MS/MS count", "PG.Quantity" : "LFQ intensity" } css_color = ["#b2df8a", "#6a3d9a", "#e31a1c", "#b15928", "#fdbf6f", "#ff7f00", "#cab2d6", "#fb9a99", "#1f78b4", "#ffff99", "#a6cee3", "#33a02c", "blue", "orange", "goldenrod", "lightcoral", "magenta", "brown", "lightpink", "red", "turquoise", "khaki", "darkgoldenrod","darkturquoise", "darkviolet", "greenyellow", "darksalmon", "hotpink", "indianred", "indigo","darkolivegreen", "coral", "aqua", "beige", "bisque", "black", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "yellowgreen", "chartreuse", "chocolate", "cornflowerblue", "cornsilk", "darkblue", "darkcyan", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkorange", "darkorchid", "darkred", "darkseagreen", "darkslateblue", "snow", "springgreen", "darkslategrey", "mediumpurple", "oldlace", "olive", "lightseagreen", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightsalmon", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "maroon", "mediumaquamarine", "mediumblue", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "olivedrab", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "steelblue", "teal", "thistle", "tomato", "violet", "wheat", "white", "whitesmoke", "slategray", "slategrey", "aquamarine", "azure","crimson", "cyan", "darkslategray", "grey","mediumorchid","navajowhite", "navy"] analysed_datasets_dict = {} df_organellarMarkerSet = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/organellemarkers/{}.csv'.format("Homo sapiens - Uniprot")), usecols=lambda x: bool(re.match("Gene name|Compartment", x))) df_organellarMarkerSet = df_organellarMarkerSet.rename(columns={"Gene name":"Gene names"}) df_organellarMarkerSet = df_organellarMarkerSet.astype({"Gene names": "str"}) def __init__(self, filename, expname, acquisition, comment, name_pattern="e.g.:.* (?P<cond>.*)_(?P<rep>.*)_(?P<frac>.*)", reannotate_genes=False, **kwargs): self.filename = filename self.expname = expname self.acquisition = acquisition self.name_pattern = name_pattern self.comment = comment self.imported_columns = self.regex["imported_columns"] self.fractions, self.map_names = [], [] self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() if acquisition == "SILAC - MQ": if "RatioHLcount" not in kwargs.keys(): self.RatioHLcount = 2 else: self.RatioHLcount = kwargs["RatioHLcount"] del kwargs["RatioHLcount"] if "RatioVariability" not in kwargs.keys(): self.RatioVariability = 30 else: self.RatioVariability = kwargs["RatioVariability"] del kwargs["RatioVariability"] elif acquisition == "Custom": self.custom_columns = kwargs["custom_columns"] self.custom_normalized = kwargs["custom_normalized"] self.imported_columns = "^"+"$|^".join(["$|^".join(el) if type(el) == list else el for el in self.custom_columns.values() if el not in [[], None, ""]])+"$" #elif acquisition == "LFQ5 - MQ" or acquisition == "LFQ6 - MQ" or acquisition == "LFQ6 - Spectronaut" or acquisition == "LFQ5 - Spectronaut": else: if "summed_MSMS_counts" not in kwargs.keys(): self.summed_MSMS_counts = 2 else: self.summed_MSMS_counts = kwargs["summed_MSMS_counts"] del kwargs["summed_MSMS_counts"] if "consecutiveLFQi" not in kwargs.keys(): self.consecutiveLFQi = 4 else: self.consecutiveLFQi = kwargs["consecutiveLFQi"] del kwargs["consecutiveLFQi"] #self.markerset_or_cluster = False if "markerset_or_cluster" not in kwargs.keys() else kwargs["markerset_or_cluster"] if "organism" not in kwargs.keys(): marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format("Homo sapiens - Uniprot"))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} else: assert kwargs["organism"]+".csv" in pkg_resources.resource_listdir(__name__, "annotations/complexes") marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(kwargs["organism"]))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.organism = kwargs["organism"] del kwargs["organism"] self.analysed_datasets_dict = {} self.analysis_summary_dict = {} def data_reading(self, filename=None, content=None): """ Data import. Can read the df_original from a file or buffer. df_original contains all information of the raw file; tab separated file is imported, Args: self: filename: string imported_columns : dictionry; columns that correspond to this regular expression will be imported filename: default None, to use the class attribute. Otherwise overwrites the class attribute upon success. content: default None, to use the filename. Any valid input to pd.read_csv can be provided, e.g. a StringIO buffer. Returns: self.df_orginal: raw, unprocessed dataframe, single level column index """ # use instance attribute if no filename is provided if filename is None: filename = self.filename # if no buffer is provided for the content read straight from the file if content is None: content = filename if filename.endswith("xls") or filename.endswith("txt"): self.df_original = pd.read_csv(content, sep="\t", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) else: #assuming csv file self.df_original = pd.read_csv(content, sep=",", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) assert self.df_original.shape[0]>10 and self.df_original.shape[1]>5 self.filename = filename return self.df_original def processingdf(self, name_pattern=None, summed_MSMS_counts=None, consecutiveLFQi=None, RatioHLcount=None, RatioVariability=None, custom_columns=None, custom_normalized=None): """ Analysis of the SILAC/LFQ-MQ/LFQ-Spectronaut data will be performed. The dataframe will be filtered, normalized, and converted into a dataframe, characterized by a flat column index. These tasks is performed by following functions: indexingdf(df_original, acquisition_set_dict, acquisition, fraction_dict, name_pattern) spectronaut_LFQ_indexingdf(df_original, Spectronaut_columnRenaming, acquisition_set_dict, acquisition, fraction_dict, name_pattern) stringency_silac(df_index) normalization_01_silac(df_stringency_mapfracstacked): logarithmization_silac(df_stringency_mapfracstacked): stringency_lfq(df_index): normalization_01_lfq(df_stringency_mapfracstacked): logarithmization_lfq(df_stringency_mapfracstacked): Args: self.acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" additional arguments can be used to override the value set by the class init function Returns: self: map_names: list of Map names df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name df_log_stacked: df; log transformed data analysis_summary_dict["0/1 normalized data - mean"] : 0/1 normalized data across all maps by calculating the mean ["changes in shape after filtering"] ["Unique Proteins"] : unique proteins, derived from the first entry of Protein IDs, seperated by a ";" ["Analysis parameters"] : {"acquisition" : ..., "filename" : ..., #SILAC# "Ratio H/L count 1 (>=X)" : ..., "Ratio H/L count 2 (>=Y, var<Z)" : ..., "Ratio variability (<Z, count>=Y)" : ... #LFQ# "consecutive data points" : ..., "summed MS/MS counts" : ... } """ if name_pattern is None: name_pattern = self.name_pattern if self.acquisition == "SILAC - MQ": if RatioHLcount is None: RatioHLcount = self.RatioHLcount if RatioVariability is None: RatioVariability = self.RatioVariability elif self.acquisition == "Custom": if custom_columns is None: custom_columns = self.custom_columns if custom_normalized is None: custom_normalized = self.custom_normalized else: if summed_MSMS_counts is None: summed_MSMS_counts = self.summed_MSMS_counts if consecutiveLFQi is None: consecutiveLFQi = self.consecutiveLFQi shape_dict = {} def indexingdf(): """ For data output from MaxQuant, all columns - except of "MS/MS count" and "LFQ intensity" (LFQ) | "Ratio H/L count", "Ratio H/L variability [%]" (SILAC) - will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count", "LFQ intensity"| "Ratio H/L count", "Ratio H/L variability [%]"), "Fraction" (= defined via "name_pattern") and "Map" (= defined via "name_pattern") as level names, allowing the stacking and unstacking of the dataframe. The dataframe will be filtered by removing matches to the reverse database, matches only identified by site, and potential contaminants. Args: self: df_original: dataframe, columns defined through self.imported_columns acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, one of "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_original shape_dict["Shape after categorical filtering"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_original.rename({"Proteins": "Protein IDs"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ [[re.findall(s, col)[0] for s in self.acquisition_set_dict[self.acquisition] if re.match(s,col)][0] for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape try: df_index = df_original.xs( np.nan, 0, "Reverse") except: pass try: df_index = df_index.xs( np.nan, 0, "Potential contaminant") except: pass try: df_index = df_index.xs( np.nan, 0, "Only identified by site") except: pass df_index.replace(0, np.nan, inplace=True) shape_dict["Shape after categorical filtering"] = df_index.shape df_index.rename(columns={"MS/MS Count":"MS/MS count"}, inplace=True) fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) ##############Cyt should get only be removed if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - MQ": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def custom_indexing_and_normalization(): df_original = self.df_original.copy() df_original.rename({custom_columns["ids"]: "Protein IDs", custom_columns["genes"]: "Gene names"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ ["normalized profile" for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape # for custom upload assume full normalization for now. this should be extended to valid value filtering and 0-1 normalization later df_index = df_original.copy() self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def spectronaut_LFQ_indexingdf(): """ For data generated from the Spectronaut software, columns will be renamed, such it fits in the scheme of MaxQuant output data. Subsequently, all columns - except of "MS/MS count" and "LFQ intensity" will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count" and "LFQ intensity"), Fraction" and "Map" (= defined via "name_pattern"; both based on the column name R.condition - equivalent to the column name "Map" in df_renamed["Map"]) as level labels. !!! !!!It is very important to define R.Fraction, R.condition already during the setup of Spectronaut!!! !!! Args: self: df_original: dataframe, columns defined through self.imported_columns Spectronaut_columnRenaming acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_renamed = df_original.rename(columns=self.Spectronaut_columnRenaming) df_renamed["Fraction"] = [re.match(self.name_pattern, i).group("frac") for i in df_renamed["Map"]] df_renamed["Map"] = [re.match(self.name_pattern, i).group("rep") for i in df_renamed["Map"]] if not "<cond>" in self.name_pattern else ["_".join( re.match(self.name_pattern, i).group("cond", "rep")) for i in df_renamed["Map"]] df_index = df_renamed.set_index([col for col in df_renamed.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]])==False]) df_index.columns.names = ["Set"] # In case fractionated data was used this needs to be catched and aggregated try: df_index = df_index.unstack(["Map", "Fraction"]) except ValueError: df_index = df_index.groupby(by=df_index.index.names).agg(np.nansum, axis=0) df_index = df_index.unstack(["Map", "Fraction"]) df_index.replace(0, np.nan, inplace=True) shape_dict["Original size"]=df_index.shape fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) #Cyt is removed only if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - Spectronaut": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def stringency_silac(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins with complete profiles are considered (a set of f.e. 5 SILAC ratios in case you have 5 fractions / any proteins with missing values were rejected). Proteins were retained with 3 or more quantifications in each subfraction (=count). Furthermore, proteins with only 2 quantification events in one or more subfraction were retained, if their ratio variability for ratios obtained with 2 quantification events was below 30% (=var). SILAC ratios were linearly normalized by division through the fraction median. Subsequently normalization to SILAC loading was performed.Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Type RatioHLcount: int, 2 RatioVariability: int, 30 df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices shape_dict["Shape after Ratio H/L count (>=3)/var (count>=2, var<30) filtering"] of df_countvarfiltered_stacked shape_dict["Shape after filtering for complete profiles"] of df_stringency_mapfracstacked """ # Fraction and Map will be stacked df_stack = df_index.stack(["Fraction", "Map"]) # filtering for sufficient number of quantifications (count in "Ratio H/L count"), taken variability (var in Ratio H/L variability [%]) into account # zip: allows direct comparison of count and var # only if the filtering parameters are fulfilled the data will be introduced into df_countvarfiltered_stacked #default setting: RatioHLcount = 2 ; RatioVariability = 30 df_countvarfiltered_stacked = df_stack.loc[[count>RatioHLcount or (count==RatioHLcount and var<RatioVariability) for var, count in zip(df_stack["Ratio H/L variability [%]"], df_stack["Ratio H/L count"])]] shape_dict["Shape after Ratio H/L count (>=3)/var (count==2, var<30) filtering"] = df_countvarfiltered_stacked.unstack(["Fraction", "Map"]).shape # "Ratio H/L":normalization to SILAC loading, each individual experiment (FractionXMap) will be divided by its median # np.median([...]): only entries, that are not NANs are considered df_normsilac_stacked = df_countvarfiltered_stacked["Ratio H/L"]\ .unstack(["Fraction", "Map"])\ .apply(lambda x: x/np.nanmedian(x), axis=0)\ .stack(["Map", "Fraction"]) df_stringency_mapfracstacked = df_countvarfiltered_stacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_normsilac_stacked, columns=["Ratio H/L"])) # dataframe is grouped (Map, id), that allows the filtering for complete profiles df_stringency_mapfracstacked = df_stringency_mapfracstacked.groupby(["Map", "id"]).filter(lambda x: len(x)>=len(self.fractions)) shape_dict["Shape after filtering for complete profiles"]=df_stringency_mapfracstacked.unstack(["Fraction", "Map"]).shape # Ratio H/L is converted into Ratio L/H df_stringency_mapfracstacked["Ratio H/L"] = df_stringency_mapfracstacked["Ratio H/L"].transform(lambda x: 1/x) #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c not in ["Ratio H/L count","Ratio H/L variability [%]","Ratio H/L"]], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices self: fractions: list of fractions e.g. ["01K", "03K", ...] data_completeness: series, for each individual map, as well as combined maps: 1 - (percentage of NANs) Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "Ratio H/L" is 0-1 normalized and renamed to "normalized profile"; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "normalized profile" stored as single level indices; plotting is possible now self: analysis_summary_dict["Data/Profile Completeness"] : df, with information about Data/Profile Completeness column: "Experiment", "Map", "Data completeness", "Profile completeness" no row index """ df_01norm_unstacked = df_stringency_mapfracstacked["Ratio H/L"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_unstacked.div(df_01norm_unstacked.sum(axis=1), axis=0) df_01_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join(pd.DataFrame (df_01norm_unstacked.stack("Fraction"),columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "normalized profile" df_01_stacked.columns = [col if col!="Ratio H/L" else "normalized profile" for col in df_01_stacked.columns] return df_01_stacked def logarithmization_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "Ratio H/L" data; the columns "Ratio H/L count", "Ratio H/L variability [%]" and "log profile" are stored as single level indices; PCA is possible now """ # logarithmizing, basis of 2 df_lognorm_ratio_stacked = df_stringency_mapfracstacked["Ratio H/L"].transform(np.log2) df_log_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_lognorm_ratio_stacked, columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "log profile" df_log_stacked.columns = [col if col !="Ratio H/L" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def stringency_lfq(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins which were identified with at least [4] consecutive data points regarding the "LFQ intensity", and if summed MS/MS counts >= n(fractions)*[2] (LFQ5: min 10 and LFQ6: min 12, respectively; coverage filtering) were included. Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] summed_MSMS_counts: int, 2 consecutiveLFQi: int, 4 Returns: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index self: shape_dict["Shape after MS/MS value filtering"] of df_mscount_mapstacked shape_dict["Shape after consecutive value filtering"] of df_stringency_mapfracstacked """ df_index = df_index.stack("Map") # sorting the level 0, in order to have LFQ intensity - MS/MS count instead of continuous alternation df_index.sort_index(axis=1, level=0, inplace=True) # "MS/MS count"-column: take the sum over the fractions; if the sum is larger than n[fraction]*2, it will be stored in the new dataframe minms = (len(self.fractions) * self.summed_MSMS_counts) if minms > 0: df_mscount_mapstacked = df_index.loc[df_index[("MS/MS count")].apply(np.sum, axis=1) >= minms] shape_dict["Shape after MS/MS value filtering"]=df_mscount_mapstacked.unstack("Map").shape df_stringency_mapfracstacked = df_mscount_mapstacked.copy() else: df_stringency_mapfracstacked = df_index.copy() # series no dataframe is generated; if there are at least i.e. 4 consecutive non-NANs, data will be retained df_stringency_mapfracstacked.sort_index(level="Fraction", axis=1, key=natsort_index_keys, inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.loc[ df_stringency_mapfracstacked[("LFQ intensity")]\ .apply(lambda x: np.isfinite(x), axis=0)\ .apply(lambda x: sum(x) >= self.consecutiveLFQi and any(x.rolling(window=self.consecutiveLFQi).sum() >= self.consecutiveLFQi), axis=1)] shape_dict["Shape after consecutive value filtering"]=df_stringency_mapfracstacked.unstack("Map").shape df_stringency_mapfracstacked = df_stringency_mapfracstacked.copy().stack("Fraction") #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c!="MS/MS count" and c!="LFQ intensity"], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan : "undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_lfq(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked, "LFQ intensity" and "MS/MS count" define a single-level column index self: fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile" and "MS/MS count" are stored as single level indices; plotting is possible now """ df_01norm_mapstacked = df_stringency_mapfracstacked["LFQ intensity"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_mapstacked.div(df_01norm_mapstacked.sum(axis=1), axis=0) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_01_stacked = df_rest.join(pd.DataFrame(df_01norm_unstacked.stack( "Fraction"),columns=["LFQ intensity"])) # rename columns: "LFQ intensity" into "normalized profile" df_01_stacked.columns = [col if col!="LFQ intensity" else "normalized profile" for col in df_01_stacked.columns] #imputation df_01_stacked = df_01_stacked.unstack("Fraction").replace(np.NaN, 0).stack("Fraction") df_01_stacked = df_01_stacked.sort_index() return df_01_stacked def logarithmization_lfq(df_stringency_mapfracstacked): """The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity"; the columns "log profile" and "MS/MS count" are stored as single level indices; PCA is possible now """ df_lognorm_ratio_stacked = df_stringency_mapfracstacked["LFQ intensity"].transform(np.log2) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_log_stacked = df_rest.join(pd.DataFrame(df_lognorm_ratio_stacked, columns=["LFQ intensity"])) # "LFQ intensity" will be renamed to "log profile" df_log_stacked.columns = [col if col!="LFQ intensity" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def split_ids_uniprot(el): """ This finds the primary canoncial protein ID in the protein group. If no canonical ID is present it selects the first isoform ID. """ p1 = el.split(";")[0] if "-" not in p1: return p1 else: p = p1.split("-")[0] if p in el.split(";"): return p else: return p1 if self.acquisition == "SILAC - MQ": # Index data df_index = indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names # Run stringency filtering and normalization df_stringency_mapfracstacked = stringency_silac(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_01_stacked = normalization_01_silac(df_stringency_mapfracstacked) self.df_log_stacked = logarithmization_silac(df_stringency_mapfracstacked) # format and reduce 0-1 normalized data for comparison with other experiments df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop(["Ratio H/L count", "Ratio H/L variability [%]"], inplace=True, axis=1) df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") # poopulate analysis summary dictionary with (meta)data unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "Ratio H/L count" : self.RatioHLcount, "Ratio variability" : self.RatioVariability, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() # TODO this line needs to be removed. self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() elif self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ" or self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": #if not summed_MS_counts: # summed_MS_counts = self.summed_MS_counts #if not consecutiveLFQi: # consecutiveLFQi = self.consecutiveLFQi if self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ": df_index = indexingdf() elif self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": df_index = spectronaut_LFQ_indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_stringency_mapfracstacked = stringency_lfq(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_log_stacked = logarithmization_lfq(df_stringency_mapfracstacked) self.df_01_stacked = normalization_01_lfq(df_stringency_mapfracstacked) df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "consecutive data points" : self.consecutiveLFQi, "summed MS/MS counts" : self.summed_MSMS_counts, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #return self.df_01_stacked elif self.acquisition == "Custom": df_index = custom_indexing_and_normalization() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_01_stacked = df_index.stack(["Map", "Fraction"]) df_01_stacked = df_01_stacked.reset_index().merge(self.df_organellarMarkerSet, how="left", on="Gene names") df_01_stacked.set_index([c for c in df_01_stacked.columns if c not in ["normalized profile"]], inplace=True) df_01_stacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) self.df_01_stacked = df_01_stacked df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() else: return "I do not know this" def plot_log_data(self): """ Args: self.df_log_stacked Returns: log_histogram: Histogram of log transformed data """ log_histogram = px.histogram(self.df_log_stacked.reset_index().sort_values(["Map", "Fraction"], key=natsort_list_keys), x="log profile", facet_col="Fraction", facet_row="Map", template="simple_white", labels={"log profile": "log tranformed data ({})".format("LFQ intenisty" if self.acquisition != "SILAC - MQ" else "Ratio H/L")} ) log_histogram.for_each_xaxis(lambda axis: axis.update(title={"text":""})) log_histogram.for_each_yaxis(lambda axis: axis.update(title={"text":""})) log_histogram.add_annotation(x=0.5, y=0, yshift=-50, xref="paper",showarrow=False, yref="paper", text="log2(LFQ intensity)") log_histogram.add_annotation(x=0, y=0.5, textangle=270, xref="paper",showarrow=False, yref="paper", xshift=-50, text="count") log_histogram.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) return log_histogram def quantity_profiles_proteinGroups(self): """ Number of profiles, protein groups per experiment, and the data completness of profiles (total quantity, intersection) is calculated. Args: self: acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name Returns: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; containign following information: npg_t: protein groups per experiment total quantity npgf_t = groups with valid profiles per experiment total quanitity npr_t: profiles with any valid values nprf_t = total number of valid profiles npg_i: protein groups per experiment intersection npgf_i = groups with valid profiles per experiment intersection npr_i: profiles with any valid values in the intersection nprf_i = total number of valid profiles in the intersection npr_t_dc: profiles, % values != nan nprf_t_dc = profiles, total, filtered, % values != nan npr_i_dc: profiles, intersection, % values != nan nprf_i_dc = profiles, intersection, filtered, % values != nan df_npg | df_npgf: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f = protein groups, per fraction or npgf_f = protein groups, filtered, per fraction df_npg_dc | df_npgf_dc: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f_dc = protein groups, per fraction, % values != nan or npgf_f_dc = protein groups, filtered, per fraction, % values != nan """ if self.acquisition == "SILAC - MQ": df_index = self.df_index["Ratio H/L"] df_01_stacked = self.df_01_stacked["normalized profile"] elif self.acquisition.startswith("LFQ"): df_index = self.df_index["LFQ intensity"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) elif self.acquisition == "Custom": df_index = self.df_index["normalized profile"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) #unfiltered npg_t = df_index.shape[0] df_index_MapStacked = df_index.stack("Map") npr_t = df_index_MapStacked.shape[0]/len(self.map_names) npr_t_dc = 1-df_index_MapStacked.isna().sum().sum()/np.prod(df_index_MapStacked.shape) #filtered npgf_t = df_01_stacked.unstack(["Map", "Fraction"]).shape[0] df_01_MapStacked = df_01_stacked.unstack("Fraction") nprf_t = df_01_MapStacked.shape[0]/len(self.map_names) nprf_t_dc = 1-df_01_MapStacked.isna().sum().sum()/np.prod(df_01_MapStacked.shape) #unfiltered intersection try: df_index_intersection = df_index_MapStacked.groupby(level="Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_index_intersection = df_index_MapStacked.groupby(level="Protein IDs").filter(lambda x : len(x)==len(self.map_names)) npr_i = df_index_intersection.shape[0]/len(self.map_names) npr_i_dc = 1-df_index_intersection.isna().sum().sum()/np.prod(df_index_intersection.shape) npg_i = df_index_intersection.unstack("Map").shape[0] #filtered intersection try: df_01_intersection = df_01_MapStacked.groupby(level = "Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_01_intersection = df_01_MapStacked.groupby(level = "Protein IDs").filter(lambda x : len(x)==len(self.map_names)) nprf_i = df_01_intersection.shape[0]/len(self.map_names) nprf_i_dc = 1-df_01_intersection.isna().sum().sum()/np.prod(df_01_intersection.shape) npgf_i = df_01_intersection.unstack("Map").shape[0] # summarize in dataframe and save to attribute df_quantity_pr_pg = pd.DataFrame( { "filtering": pd.Series(["before filtering", "before filtering", "after filtering", "after filtering"], dtype=np.dtype("O")), "type": pd.Series(["total", "intersection", "total", "intersection"], dtype=np.dtype("O")), "number of protein groups": pd.Series([npg_t, npg_i, npgf_t, npgf_i], dtype=np.dtype("float")), "number of profiles": pd.Series([npr_t, npr_i, nprf_t, nprf_i], dtype=np.dtype("float")), "data completeness of profiles": pd.Series([npr_t_dc, npr_i_dc, nprf_t_dc, nprf_i_dc], dtype=np.dtype("float"))}) self.df_quantity_pr_pg = df_quantity_pr_pg.reset_index() self.analysis_summary_dict["quantity: profiles/protein groups"] = self.df_quantity_pr_pg.to_json() #additional depth assessment per fraction dict_npgf = {} dict_npg = {} list_npg_dc = [] list_npgf_dc = [] for df_intersection in [df_index_intersection, df_01_intersection]: for fraction in self.fractions: df_intersection_frac = df_intersection[fraction] npgF_f_dc = 1-df_intersection_frac.isna().sum()/len(df_intersection_frac) npgF_f = df_intersection_frac.unstack("Map").isnull().sum(axis=1).value_counts() if fraction not in dict_npg.keys(): dict_npg[fraction] = npgF_f list_npg_dc.append(npgF_f_dc) else: dict_npgf[fraction] = npgF_f list_npgf_dc.append(npgF_f_dc) df_npg = pd.DataFrame(dict_npg) df_npg.index.name = "Protein Groups present in:" df_npg.rename_axis("Fraction", axis=1, inplace=True) df_npg = df_npg.stack("Fraction").reset_index() df_npg = df_npg.rename({0: "Protein Groups"}, axis=1) df_npg.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) df_npgf = pd.DataFrame(dict_npgf) df_npgf.index.name = "Protein Groups present in:" df_npgf.rename_axis("Fraction", axis=1, inplace=True) df_npgf = df_npgf.stack("Fraction").reset_index() df_npgf = df_npgf.rename({0: "Protein Groups"}, axis=1) df_npgf.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) max_df_npg = df_npg["Protein Groups present in:"].max() min_df_npg = df_npg["Protein Groups present in:"].min() rename_numOFnans = {} for x, y in zip(range(max_df_npg,min_df_npg-1, -1), range(max_df_npg+1)): if y == 1: rename_numOFnans[x] = "{} Map".format(y) elif y == 0: rename_numOFnans[x] = "PG not identified".format(y) else: rename_numOFnans[x] = "{} Maps".format(y) for keys in rename_numOFnans.keys(): df_npg.loc[df_npg["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] df_npgf.loc[df_npgf["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] # summarize in dataframe and save to attributes self.df_npg_dc = pd.DataFrame( { "Fraction" : pd.Series(self.fractions), "Data completeness before filtering": pd.Series(list_npg_dc), "Data completeness after filtering": pd.Series(list_npgf_dc), }) self.df_npg = df_npg self.df_npgf = df_npgf def plot_quantity_profiles_proteinGroups(self): """ Args: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; further information: see above Returns: """ df_quantity_pr_pg = self.df_quantity_pr_pg layout = go.Layout(barmode="overlay", xaxis_tickangle=90, autosize=False, width=300, height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, #title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, mirror=True), template="simple_white") fig_npg = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npg.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of protein groups"], name=t)) fig_npg.update_layout(layout, title="Number of Protein Groups", yaxis=go.layout.YAxis(title="Protein Groups")) fig_npr = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npr.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of profiles"], name=t)) fig_npr.update_layout(layout, title="Number of Profiles") df_quantity_pr_pg = df_quantity_pr_pg.sort_values("filtering") fig_npr_dc = go.Figure() for t in df_quantity_pr_pg["filtering"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["filtering"] == t] fig_npr_dc.add_trace(go.Bar( x=plot_df["type"], y=plot_df["data completeness of profiles"], name=t)) fig_npr_dc.update_layout(layout, title="Coverage", yaxis=go.layout.YAxis(title="Data completness")) #fig_npr_dc.update_xaxes(tickangle=30) fig_npg_F = px.bar(self.df_npg, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - before filtering", width=500) fig_npgf_F = px.bar(self.df_npgf, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - after filtering", width=500) fig_npg_F_dc = go.Figure() for data_type in ["Data completeness after filtering", "Data completeness before filtering"]: fig_npg_F_dc.add_trace(go.Bar( x=self.df_npg_dc["Fraction"], y=self.df_npg_dc[data_type], name=data_type)) fig_npg_F_dc.update_layout(layout, barmode="overlay", title="Data completeness per fraction", yaxis=go.layout.YAxis(title=""), height=450, width=600) return fig_npg, fig_npr, fig_npr_dc, fig_npg_F, fig_npgf_F, fig_npg_F_dc def perform_pca(self): """ PCA will be performed, using logarithmized data. Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} "V-type proton ATP df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity" and "Ratio H/L", respectively; additionally the columns "MS/MS count" and "Ratio H/L count|Ratio H/L variability [%]" are stored as single level indices df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile"" and "MS/MS count" are stored as single level indices; plotting is possible now Returns: self: df_pca: df, PCA was performed, while keeping the information of the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Map" "Compartment" df_pca_combined: df, PCA was performed across the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Compartment" df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. """ markerproteins = self.markerproteins if self.acquisition == "SILAC - MQ": df_01orlog_fracunstacked = self.df_log_stacked["log profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_log_stacked["log profile"].unstack(["Fraction", "Map"]).dropna() elif self.acquisition.startswith("LFQ") or self.acquisition == "Custom": df_01orlog_fracunstacked = self.df_01_stacked["normalized profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_01_stacked["normalized profile"].unstack(["Fraction", "Map"]).dropna() pca = PCA(n_components=3) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca = pd.DataFrame(pca.fit_transform(df_01orlog_fracunstacked)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_01orlog_fracunstacked.index self.df_pca = df_pca.sort_index(level=["Gene names", "Compartment"]) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca_combined = pd.DataFrame(pca.fit_transform(df_01orlog_MapFracUnstacked)) df_pca_combined.columns = ["PC1", "PC2", "PC3"] df_pca_combined.index = df_01orlog_MapFracUnstacked.index self.df_pca_combined = df_pca_combined.sort_index(level=["Gene names", "Compartment"]) map_names = self.map_names df_pca_all_marker_cluster_maps = pd.DataFrame() df_pca_filtered = df_pca.unstack("Map").dropna() for clusters in markerproteins: for marker in markerproteins[clusters]: try: plot_try_pca = df_pca_filtered.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.append( plot_try_pca) if len(df_pca_all_marker_cluster_maps) == 0: df_pca_all_marker_cluster_maps = df_pca_filtered.stack("Map") else: df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.stack("Map") self.df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.sort_index(level=["Gene names", "Compartment"]) def plot_global_pca(self, map_of_interest="Map1", cluster_of_interest="Proteasome", x_PCA="PC1", y_PCA="PC3", collapse_maps=False): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Map", "Compartment", Returns: pca_figure: global PCA plot """ if collapse_maps == False: df_global_pca = self.df_pca.unstack("Map").swaplevel(0,1, axis=1)[map_of_interest].reset_index() else: df_global_pca = self.df_pca_combined.reset_index() for i in self.markerproteins[cluster_of_interest]: df_global_pca.loc[df_global_pca["Gene names"] == i, "Compartment"] = "Selection" compartments = self.df_organellarMarkerSet["Compartment"].unique() compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment", color_discrete_map=compartment_color, title= "Protein subcellular localization by PCA for {}".format(map_of_interest) if collapse_maps == False else "Protein subcellular localization by PCA of combined maps", hover_data=["Protein IDs", "Gene names", "Compartment"], template="simple_white", opacity=0.9 ) return fig_global_pca def plot_cluster_pca(self, cluster_of_interest="Proteasome"): """ PCA plot will be generated Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. Returns: pca_figure: PCA plot, for one protein cluster all maps are plotted """ df_pca_all_marker_cluster_maps = self.df_pca_all_marker_cluster_maps map_names = self.map_names markerproteins = self.markerproteins try: for maps in map_names: df_setofproteins_PCA = pd.DataFrame() for marker in markerproteins[cluster_of_interest]: try: plot_try_pca = df_pca_all_marker_cluster_maps.xs((marker, maps), level=["Gene names", "Map"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) if maps == map_names[0]: pca_figure = go.Figure( data=[go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )]) else: pca_figure.add_trace(go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )) pca_figure.update_layout(autosize=False, width=500, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest), template="simple_white") return pca_figure except: return "This protein cluster was not quantified" def calc_biological_precision(self): """ This function calculates the biological precision of all quantified protein clusters. It provides access to the data slice for all marker proteins, the distance profiles and the aggregated distances. It repeatedly applies the methods get_marker_proteins_unfiltered and calc_cluster_distances. TODO: integrate optional arguments for calc_cluster_distances: complex_profile, distance_measure. TODO: replace compatibiliy attributes with function return values and adjust attribute usage in downstream plotting functions. Args: self attributes: markerproteins: dict, contains marker protein assignments df_01_stacked: df, contains 0-1 nromalized data, required for execution of get_marker_proteins_unfiltered Returns: df_alldistances_individual_mapfracunstacked: df, distance profiles, fully unstacked df_alldistances_aggregated_mapunstacked: df, profile distances (manhattan distance by default), fully unstacked df_allclusters_01_unfiltered_mapfracunstacked: df, collected marker protein data self attributes: df_distance_noindex: compatibility version of df_alldistances_aggregated_mapunstacked df_allclusters_01_unfiltered_mapfracunstacked df_allclusters_clusterdist_fracunstacked_unfiltered: compatibility version of df_allclusters_01_unfiltered_mapfracunstacked (only used by quantificaiton_overview) df_allclusters_clusterdist_fracunstacked: compatibility version of df_alldistances_individual_mapfracunstacked genenames_sortedout_list = list of gene names with incomplete coverage analysis_summary_dict entries: "Manhattan distances" = df_distance_noindex "Distances to the median profile": df_allclusters_clusterdist_fracunstacked, sorted and melted """ df_alldistances_individual_mapfracunstacked = pd.DataFrame() df_alldistances_aggregated_mapunstacked = pd.DataFrame() df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame() for cluster in self.markerproteins.keys(): # collect data irrespective of coverage df_cluster_unfiltered = self.get_marker_proteins_unfiltered(cluster) df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked.append(df_cluster_unfiltered) # filter for coverage and calculate distances df_cluster = df_cluster_unfiltered.dropna() if len(df_cluster) == 0: continue df_distances_aggregated, df_distances_individual = self.calc_cluster_distances(df_cluster) df_alldistances_individual_mapfracunstacked = df_alldistances_individual_mapfracunstacked.append(df_distances_individual) df_alldistances_aggregated_mapunstacked = df_alldistances_aggregated_mapunstacked.append(df_distances_aggregated) if len(df_alldistances_individual_mapfracunstacked) == 0: self.df_distance_noindex = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_clusterdist_fracunstacked_unfiltered = pd.DataFrame(columns = ["Fraction"]) self.df_allclusters_clusterdist_fracunstacked = pd.DataFrame(columns = ["Fraction"]) self.genenames_sortedout_list = "No clusters found" return pd.DataFrame(), pd.DataFrame(), pd.DataFrame() else: df_alldistances_aggregated_mapunstacked.columns.name = "Map" ## Get compatibility with plotting functions, by mimicking assignment of old functions: # old output of distance_calculation self.df_distance_noindex = df_alldistances_aggregated_mapunstacked.stack("Map").reset_index().rename({0: "distance"}, axis=1) self.analysis_summary_dict["Manhattan distances"] = self.df_distance_noindex.to_json() # old output of multiple_iterations # self.df_allclusters_clusterdist_fracunstacked_unfiltered --> this won't exist anymore, replaced by: self.df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked # kept for testing of quantification table: self.df_allclusters_clusterdist_fracunstacked_unfiltered = df_allclusters_01_unfiltered_mapfracunstacked.stack("Map") # same as before, but now already abs self.df_allclusters_clusterdist_fracunstacked = df_alldistances_individual_mapfracunstacked.stack("Map") df_dist_to_median = self.df_allclusters_clusterdist_fracunstacked.stack("Fraction") df_dist_to_median.name = "distance" df_dist_to_median = df_dist_to_median.reindex(index=natsort.natsorted(df_dist_to_median.index)) self.analysis_summary_dict["Distances to the median profile"] = df_dist_to_median.reset_index().to_json() self.genenames_sortedout_list = [el for el in df_allclusters_01_unfiltered_mapfracunstacked.index.get_level_values("Gene names") if el not in df_alldistances_individual_mapfracunstacked.index.get_level_values("Gene names")] return df_alldistances_individual_mapfracunstacked, df_alldistances_aggregated_mapunstacked, df_allclusters_01_unfiltered_mapfracunstacked def get_marker_proteins_unfiltered(self, cluster): """ This funciton retrieves the 0-1 normalized data for any given protein cluster, unfiltered for coverage. Args: cluster: str, cluster name, should be one of self.markerproteins.keys() self attributes: df_01_stacked: df, contains the fully stacked 0-1 normalized data markerproteins: dict, contains marker protein assignments Returns: df_cluster_unfiltered: df, unfiltered data for the selected cluster, maps and fractions are unstacked. self attribtues: None """ df_in = self.df_01_stacked["normalized profile"].unstack("Fraction") markers = self.markerproteins[cluster] # retrieve marker proteins df_cluster_unfiltered = pd.DataFrame() for marker in markers: try: df_p = df_in.xs(marker, level="Gene names", axis=0, drop_level=False) except: continue df_cluster_unfiltered = df_cluster_unfiltered.append(df_p) if len(df_cluster_unfiltered) == 0: return df_cluster_unfiltered # Unstack maps and add Cluster to index df_cluster_unfiltered = df_cluster_unfiltered.unstack("Map") df_cluster_unfiltered.set_index(pd.Index(np.repeat(cluster, len(df_cluster_unfiltered)), name="Cluster"), append=True, inplace=True) return df_cluster_unfiltered def calc_cluster_distances(self, df_cluster, complex_profile=np.median, distance_measure="manhattan"): """ Calculates the absolute differences in each fraction and the profile distances relative to the center of a cluster. Per default this is the manhattan distance to the median profile. Args: df_cluster: df, 0-1 normalized profiles of cluster members, should already be filtered for full coverage and be in full wide format. complex_profile: fun, function provided to apply for calculating the reference profile, default: np.median. distance_measure: str, selected distance measure to calculate. Currently only 'manhattan' is supported, everything else raises a ValueError. self attributes: None Returns: df_distances_aggregated: df, proteins x maps, if stacked distance column is currently named 0 but contains manhattan distances. df_distances_individual: df, same shape as df_cluster, but now with absolute differences to the reference. self attribtues: None """ df_distances_aggregated = pd.DataFrame() ref_profile = pd.DataFrame(df_cluster.apply(complex_profile, axis=0, result_type="expand")).T df_distances_individual = df_cluster.apply(lambda x: np.abs(x-ref_profile.iloc[0,:]), axis=1) # loop over maps maps = set(df_cluster.columns.get_level_values("Map")) for m in maps: if distance_measure == "manhattan": d_m = pw.manhattan_distances(df_cluster.xs(m, level="Map", axis=1), ref_profile.xs(m, level="Map", axis=1)) else: raise ValueError(distance_measure) d_m = pd.DataFrame(d_m, columns=[m], index=df_cluster.index) df_distances_aggregated = pd.concat([df_distances_aggregated, d_m], axis=1) df_distances_aggregated.columns.set_names(names="Map", inplace=True) return df_distances_aggregated, df_distances_individual def profiles_plot(self, map_of_interest="Map1", cluster_of_interest="Proteasome"): """ The function allows the plotting of filtered and normalized spatial proteomic data using plotly.express. The median profile is also calculated based on the overlapping proteins. Profiles of proteins that are not quantified in all maps are dashed. Args: map_of_interest: str, must be in self.map_names cluster_of_interest: str, must be in self.markerproteins.keys() self attribtues: df_allclusters_01_unfiltered_mapfracunstacked: df, contains 0-1 normalized profiles for all markerproteins detected in any map Returns: abundance_profiles_and_median_figure: plotly line plot, displaying the relative abundance profiles. """ try: df_setofproteins = self.df_allclusters_01_unfiltered_mapfracunstacked.xs(cluster_of_interest, level="Cluster", axis=0) df_setofproteins_median = df_setofproteins.dropna().xs(map_of_interest, level="Map", axis=1).median(axis=0) # fractions get sorted df_setofproteins = df_setofproteins.xs(map_of_interest, level="Map", axis=1).stack("Fraction") df_setofproteins = df_setofproteins.reindex(index=natsort.natsorted(df_setofproteins.index)) df_setofproteins.name = "normalized profile" # make it available for plotting df_setofproteins = df_setofproteins.reindex(index=natsort.natsorted(df_setofproteins.index)) df_setofproteins = df_setofproteins.reset_index() abundance_profiles_figure = px.line(df_setofproteins, x="Fraction", y="normalized profile", color="Gene names", line_group="Sequence" if "Sequence" in df_setofproteins.columns else "Gene names", template="simple_white", title="Relative abundance profile for {} of <br>the protein cluster: {}".format(map_of_interest, cluster_of_interest) ) df_setofproteins_median.name = "normalized profile" #fractions get sorted df_setofproteins_median = df_setofproteins_median.reindex(index=natsort.natsorted(df_setofproteins_median.index)) # make it available for plotting df_setofproteins_median = df_setofproteins_median.reset_index() df_setofproteins_median.insert(0, "Gene names", np.repeat("Median profile", len(df_setofproteins_median))) abundance_profiles_and_median_figure = abundance_profiles_figure.add_scatter(x=df_setofproteins_median["Fraction"], y=df_setofproteins_median["normalized profile"], name="Median profile" ) # dash lines for proteins that have insufficient coverage across maps abundance_profiles_and_median_figure.for_each_trace(lambda x: x.update(line={"dash":"dash"}), selector=lambda x: x.name in self.genenames_sortedout_list) return abundance_profiles_and_median_figure except: return "This protein cluster was not quantified" def quantification_overview(self, cluster_of_interest="Proteasome"): """ Args: self.df_allclusters_clusterdist_fracunstacked_unfiltered columns: 01K, 03K, 06K, 12K, 24K, 80K index: Gene names, Protein IDs, C-Score, Q-value, Map, Compartment, Cluster Returns: df """ df_quantification_overview = self.df_allclusters_clusterdist_fracunstacked_unfiltered.xs(cluster_of_interest, level="Cluster", axis=0)\ [self.fractions[0]].unstack("Map") if "Sequence" in df_quantification_overview.index.names: df_quantification_overview = df_quantification_overview.droplevel([i for i in df_quantification_overview.index.names if not i in ["Sequence","Gene names"]]) else: df_quantification_overview = df_quantification_overview.droplevel([i for i in df_quantification_overview.index.names if not i=="Gene names"]) df_quantification_overview = df_quantification_overview.notnull().replace({True: "x", False: "-"}) return df_quantification_overview def distance_boxplot(self, cluster_of_interest="Proteasome"): """ A box plot for 1 desired cluster, and across all maps is generated displaying the distribution of the e.g. Manhattan distance. Args: self: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored map_names: individual map names are stored as an index Returns: distance_boxplot_figure: boxplot. Along the x-axis the maps, along the y-axis the distances are shown """ map_names = self.map_names df_distance_noindex = self.df_distance_noindex # "Gene names", "Map", "Cluster" and transferred into the index df_distance_map_cluster_gene_in_index = df_distance_noindex.set_index(["Gene names", "Map", "Cluster"]) if "Sequence" in df_distance_map_cluster_gene_in_index.columns: df_distance_map_cluster_gene_in_index.set_index("Sequence", append=True, inplace=True) df_cluster_xmaps_distance_with_index = pd.DataFrame() try: # for each individual map and a defined cluster data will be extracted from the dataframe # "df_distance_map_cluster_gene_in_index" and appended to the new dataframe df_cluster_xmaps_distance_with_index for maps in map_names: plot_try = df_distance_map_cluster_gene_in_index.xs((cluster_of_interest, maps), level=["Cluster", "Map"], drop_level=False) df_cluster_xmaps_distance_with_index = df_cluster_xmaps_distance_with_index.append(plot_try) df_cluster_xmaps_distance_with_index["Combined Maps"] = "Combined Maps" #number of proteins within one cluster self.proteins_quantified_across_all_maps = df_cluster_xmaps_distance_with_index.unstack("Map").shape[0] # index will be reset, required by px.box df_cluster_xmaps_distance = df_cluster_xmaps_distance_with_index.reset_index() distance_boxplot_figure = go.Figure() distance_boxplot_figure.add_trace(go.Box( x=df_cluster_xmaps_distance["Map"], y=df_cluster_xmaps_distance["distance"], boxpoints="all", whiskerwidth=0.2, marker_size=2, hovertext=df_cluster_xmaps_distance["Gene names"] )) distance_boxplot_figure.add_trace(go.Box( x=df_cluster_xmaps_distance["Combined Maps"], y=df_cluster_xmaps_distance["distance"], boxpoints="all", whiskerwidth=0.2, marker_size=2, hovertext=df_cluster_xmaps_distance["Gene names"] )) distance_boxplot_figure.update_layout( title="Manhattan distance distribution for <br>the protein cluster: {}".format(cluster_of_interest), autosize=False, showlegend=False, width=500, height=500, # black box around the graph xaxis=go.layout.XAxis(linecolor="black", linewidth=1, title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="distance", mirror=True), template="simple_white" ) return distance_boxplot_figure except: self.cache_cluster_quantified = False def distance_to_median_boxplot(self, cluster_of_interest="Proteasome"): """ A box plot for 1 desired cluster, across all maps and fractions is generated displaying the distribution of the distance to the median. For each fraction, one box plot will be displayed. Args: self: df_allclusters_clusterdist_fracunstacked, dataframe with single level column, stored as attribute (self.allclusters_clusterdist_fracunstacked), in which "Fraction" is unstacked. It contains only the normalized data of individual protein clusters substracted by the median of the respective protein cluster for each fraction. map_names: individual map names are stored as an index Returns: distance_to_median_boxplot_figure: Box plot. Along the x-axis, the maps are shown, along the y-axis the distances is plotted """ df_boxplot_manymaps = pd.DataFrame() try: # for each individual map and a defined cluster data will be extracted from the dataframe # "df_allclusters_clusterdist_fracunstacked" and appended to the new dataframe df_boxplot_manymaps for maps in self.map_names: plot_try = self.df_allclusters_clusterdist_fracunstacked.xs((cluster_of_interest, maps), level=["Cluster", "Map"], drop_level=False) df_boxplot_manymaps = df_boxplot_manymaps.append(plot_try) self.df_boxplot_manymaps = df_boxplot_manymaps # index will be reset, required by px.violin df_boxplot_manymaps = abs(df_boxplot_manymaps.stack("Fraction")) df_boxplot_manymaps.name = "distance" df_boxplot_manymaps = df_boxplot_manymaps.reindex(index=natsort.natsorted(df_boxplot_manymaps.index)) df_boxplot_manymaps = df_boxplot_manymaps.reset_index() # box plot will be generated, every fraction will be displayed in a single plot distance_to_median_boxplot_figure = px.box(df_boxplot_manymaps, x="Map", y="distance", facet_col="Fraction", facet_col_wrap=2, boxmode="overlay", height=900, width=700, points="all", hover_name="Gene names", template="simple_white", title="Distribution of the distance to the median for <br>the protein cluster: {}".format(cluster_of_interest)) return distance_to_median_boxplot_figure except: return "This protein cluster was not quantified" def dynamic_range(self): """ Dynamic range of each individual protein clusters (of the median profile) across all maps is calculated" Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_01_stacked: "MAP" and "Fraction" are stacked; the data in the column "normalized profile" is used for plotting. Additionally the columns "MS/MS count" and "Ratio H/L count | Ratio H/L variability [%] | Ratio H/L" are found in LFQ and SILAC data respectively Returns: fig_dynamicRange: Bar plot, displaying the dynamic range for each protein cluster self.df_dynamicRange: df, no index, columns: "Max", "Min", "Dynamic Range", "Cluster" """ df_setofproteins_allMaps = pd.DataFrame() df_dynamicRange = pd.DataFrame() df_01_stacked = self.df_01_stacked for clusters in self.markerproteins: try: df_setofproteins_allMaps = pd.DataFrame() for marker in self.markerproteins[clusters]: try: df_marker_allMaps = df_01_stacked.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_setofproteins_allMaps = df_setofproteins_allMaps.append(df_marker_allMaps) df_setofproteins_allMaps_median = df_setofproteins_allMaps["normalized profile"].unstack("Fraction").median() df_dynamicRange = df_dynamicRange.append(pd.DataFrame(np.array([[max(df_setofproteins_allMaps_median), min(df_setofproteins_allMaps_median), max(df_setofproteins_allMaps_median)-min(df_setofproteins_allMaps_median), clusters]]), columns=["Max", "Min", "Dynamic Range", "Cluster"]), ignore_index=True) except: continue self.analysis_summary_dict["Dynamic Range"] = df_dynamicRange.to_json() def plot_dynamic_range(self): """ Dynamic range of each individual protein clusters (of the median profile) across all maps is displayed" Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_01_stacked: "MAP" and "Fraction" are stacked; the data in the column "normalized profile" is used for plotting. Additionally the columns "MS/MS count" and "Ratio H/L count | Ratio H/L variability [%] | Ratio H/L" are found in LFQ and SILAC data respectively Returns: fig_dynamicRange: Bar plot, displaying the dynamic range for each protein cluster self.df_dynamicRange: df, no index, columns: "Max", "Min", "Dynamic Range", "Cluster" """ fig_dynamicRange = px.bar(pd.read_json(self.analysis_summary_dict["Dynamic Range"]), x="Cluster", y="Dynamic Range", base="Min", template="simple_white", width=1000, height=500).update_xaxes(categoryorder="total ascending") return fig_dynamicRange def results_overview_table(self): """ Dataframe will be created, that provides information about "range", "mean" and "standardeviation", given as the column names, based on the data given in df_distance_noindex Args: self: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} """ df_distance_noindex = self.df_distance_noindex df_distance_map_cluster_gene_in_index = df_distance_noindex.set_index(["Gene names", "Map", "Cluster"]) map_names = self.map_names df_overview = pd.DataFrame() for clusters in self.markerproteins: #if a certain cluster is not available in the dataset at all try: for maps in map_names: df_dist_map_cluster = df_distance_map_cluster_gene_in_index.xs((clusters, maps), level=["Cluster", "Map"], drop_level=False) statistic_table = {"range": (df_dist_map_cluster["distance"].max(axis=0)) - (df_dist_map_cluster["distance"].min(axis=0)), "median": df_dist_map_cluster["distance"].median(axis=0), "standardeviation": df_dist_map_cluster["distance"].std(axis=0), "Cluster": clusters, "Map": maps } statistic_series =
pd.Series(data=statistic_table)
pandas.Series
# Author: <NAME> # Created: 6/29/20, 3:41 PM import logging import os from textwrap import wrap import seaborn import argparse import numpy as np import pandas as pd from typing import * from functools import reduce import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter # noinspection All import pathmagic # noinspection PyUnresolvedReferences import mg_log # runs init in mg_log and configures logger # Custom imports from mg_io.general import save_obj, load_obj from mg_viz.general import square_subplots, set_size from mg_general import Environment, add_env_args_to_parser from mg_stats.shelf import update_dataframe_with_stats, tidy_genome_level, \ _helper_df_joint_reference from mg_general.general import all_elements_equal, fix_names, next_name, os_join, get_value from mg_viz.colormap import ColorMap as CM # ------------------------------ # # Parse CMD # # ------------------------------ # from mg_viz.shelf import number_formatter, update_tool_names_to_full from mg_viz.stats_large import case_insensitive_match parser = argparse.ArgumentParser("Visualize statistics collected per gene.") parser.add_argument('--pf-data', required=True) parser.add_argument('--ref-5p', required=False, nargs="+", help="Reference(s) on which to compare 5' predictions") parser.add_argument('--ref-3p', required=False, nargs="+", help="Reference(s) on which to compare 3' predictions") parser.add_argument('--pf-checkpoint-5p') parser.add_argument('--pf-checkpoint-3p') parser.add_argument('--tools', nargs="+", help="If set, only compare these tools. Otherwise all tools are chosen") parser.add_argument('--parse-names', action='store_true', help="If set, try to shorten genome names. Useful only " "genome ID's in the data are actually names") add_env_args_to_parser(parser) parsed_args = parser.parse_args() # ------------------------------ # # Main Code # # ------------------------------ # # Load environment variables my_env = Environment.init_from_argparse(parsed_args) # Setup logger logging.basicConfig(level=parsed_args.loglevel) logger = logging.getLogger("logger") # type: logging.Logger def get_stats_at_gcfid_level_with_reference(df, tools, reference): # type: (pd.DataFrame, List[str], str) -> pd.DataFrame list_entries = list() for gcfid, df_group in df.groupby("Genome", as_index=False): result = dict() for t in tools: tag = ",".join([t, reference]) tag_eq = "=".join([t, reference]) if df_group[f"3p:Match({tag_eq})"].sum() == 0: result[f"Match({tag})"] = np.nan result[f"Number of Error({tag})"] = np.nan result[f"Error Rate({tag})"] = np.nan result[f"Number of Error({tag})"] = np.nan result[f"Number of Match({tag})"] = np.nan # result[f"Number of Predictions({t},{t})"] = np.nan else: result[f"Match({tag})"] = 100 * df_group[f"5p:Match({tag_eq})"].sum() / float( df_group[f"3p:Match({tag_eq})"].sum()) result[f"Error Rate({tag})"] = 100 - result[f"Match({tag})"] result[f"Number of Error({tag})"] = df_group[f"3p:Match({tag_eq})"].sum() - df_group[ f"5p:Match({tag_eq})"].sum() result[f"Number of Found({tag})"] = df_group[f"3p:Match({tag_eq})"].sum() result[f"Number of Missed({tag})"] = df_group[f"5p-{reference}"].count() - df_group[ f"3p:Match({tag_eq})"].sum() result[f"Number of Match({tag})"] = df_group[f"5p:Match({tag_eq})"].sum() # result[f"Number of Predictions({t},{t})"] = df_group[f"5p-{t}"].count() result[f"Number of IC5p Match({tag})"] = ( df_group[f"5p:Match({tag_eq})"] & df_group[f"Partial5p-{reference}"]).sum() result[f"Number of IC5p Found({tag})"] = ( df_group[f"3p:Match({tag_eq})"] & df_group[f"Partial5p-{reference}"]).sum() result[f"IC5p Match({tag})"] = 100 * result[f"Number of IC5p Match({tag})"] / result[ f"Number of IC5p Found({tag})"] result[f"Number of IC3p Match({tag})"] = ( df_group[f"5p:Match({tag_eq})"] & df_group[f"Partial3p-{reference}"]).sum() result[f"Number of IC3p Found({tag})"] = ( df_group[f"3p:Match({tag_eq})"] & df_group[f"Partial3p-{reference}"]).sum() result[f"IC3p Match({tag})"] = 100 * result[f"Number of IC3p Match({tag})"] / result[ f"Number of IC3p Found({tag})"] result[f"Number of Comp Match({tag})"] = ( df_group[f"5p:Match({tag_eq})"] & ~( df_group[f"Partial5p-{reference}"] | df_group[f"Partial3p-{reference}"])).sum() result[f"Number of Comp Found({tag})"] = ( df_group[f"3p:Match({tag_eq})"] & ~( df_group[f"Partial5p-{reference}"] | df_group[f"Partial3p-{reference}"])).sum() result[f"Comp Match({tag})"] = 100 * result[f"Number of Comp Match({tag})"] / result[ f"Number of Comp Found({tag})"] for t in tools + [reference]: result[f"Number of Predictions({t},{t})"] = df_group[f"5p-{t}"].count() result[f"Runtime({t},{t})"] = df_group[f"Runtime"].mean() if t != reference: result[f"Precision({t},{reference})"] = result[f"Number of Found({t},{reference})"] / result[ f"Number of Predictions({t},{t})"] result[f"Recall({t},{reference})"] = result[f"Number of Found({t},{reference})"] / df_group[ f"5p-{reference}"].count() result[f"WR({t},{reference})"] = (result[f"Number of Predictions({t},{t})"] - result[ f"Number of Found({t},{reference})"]) / result[f"Number of Predictions({t},{t})"] result[f"Sensitivity({t},{reference})"] = result[f"Number of Found({t},{reference})"] / df_group[ f"5p-{reference}"].count() result[f"Specificity({t},{reference})"] = result[f"Number of Found({t},{reference})"] / result[ f"Number of Predictions({t},{t})"] # result[f"Runtime({t, t})"] = df_group[f"Runtime"].mean() result["Genome"] = gcfid result["Genome GC"] = df_group.at[df_group.index[0], "Genome GC"] result["Chunk Size"] = df_group.at[df_group.index[0], "Chunk Size"] result["Number in Reference"] = result[f"Number of Predictions({reference},{reference})"] list_entries.append(result) return pd.DataFrame(list_entries) # def get_stats_at_gcfid_level(df, tools, reference): # # type: (pd.DataFrame, List[str], str) -> pd.DataFrame # # list_entries = list() # # ps = powerset(tools, min_len=2) # # # # for gcfid, df_group in df.groupby("Genome", as_index=False): # result = dict() # # for comb in ps: # tag = ",".join(comb) # tag_eq = "=".join(comb) # # result[f"Match({tag})"] = 100 * df_group[f"5p:{tag_eq}"].sum()/ float(df_group[f"3p:{tag_eq}"].sum()) # # result["Genome"] = gcfid # result["Chunk Size"] = df_group.at[df_group.index[0], "Chunk Size"] # list_entries.append(result) # # return pd.DataFrame(list_entries) def viz_stats_at_gcfid_level(df, tools): pass def ridgeplot(df): # Create the data names = sorted(set(df["Genome"])) x = df["GC Diff"].values g = df.apply(lambda r: f"{r['Genome']} ({r['Genome GC']:.2f})", axis=1) df = pd.DataFrame(dict(x=x, g=g)) hue_order = sorted(set(g), key=lambda x: float(x.split("(")[1].split(")")[0])) # Initialize the FacetGrid object pal = seaborn.cubehelix_palette(10, rot=-.25, light=.7) g = seaborn.FacetGrid(df, row="g", hue="g", hue_order=hue_order, row_order=hue_order, aspect=15, height=.5, palette=pal) # Draw the densities in a few steps g.map(seaborn.kdeplot, "x", clip_on=False, shade=True, alpha=1, lw=1.5, bw=.2) g.map(seaborn.kdeplot, "x", clip_on=False, color="w", lw=2, bw=.2) g.map(plt.axhline, y=0, lw=2, clip_on=False) # Define and use a simple function to label the plot in axes coordinates def label(x, color, label): ax = plt.gca() ax.text(0, .2, label, fontweight="bold", color=color, ha="left", va="center", transform=ax.transAxes) g.map(label, "x") # Set the subplots to overlap g.fig.subplots_adjust(hspace=-.25) # Remove axes details that don't play well with overlap g.set_titles("") g.set(yticks=[]) g.despine(bottom=True, left=True) plt.show() def number_and_match(env, df_total, hue_order, col_number, col_perc, sup_title): g = seaborn.FacetGrid(df_total, col="Genome", col_wrap=4, hue="Tool", sharey=False) g.map(plt.plot, "Chunk Size", col_number, linestyle="dashed") # g.map(plt.plot, "x", "y_fit") g.set_xlabels("Chunk Size") g.set_titles("{col_name}") g.set(ylim=(0, None)) g.set(xlim=(0, 5100)) g.set_ylabels("Number of predictions") g.add_legend() for ax, (_, subdata) in zip(g.axes, df_total.groupby('Genome')): ax2 = ax.twinx() subdata = subdata.sort_values("Chunk Size") for hue in hue_order: subdata_hue = subdata[subdata["Tool"] == hue] ax2.plot(subdata_hue["Chunk Size"], subdata_hue[col_perc], label=hue) ax2.set_ylim(40, 100) # subdata.plot(x='data_sondage', y='impossible', ax=ax2, legend=False, color='r') plt.tight_layout() plt.savefig(next_name(env["pd-work"])) plt.suptitle(sup_title) plt.show() def viz_number_of_predictions_for_short(env, df): # type: (Environment, pd.DataFrame) -> None df = df[df["Tool"] != "VERIFIED"] hue_order = sorted(df["Tool"].unique()) df["Found%"] = 100 * df["Number of Found"] / df["Number of Predictions"] g = seaborn.FacetGrid(df, col="Genome", col_wrap=4, hue="Tool", sharey=True) xlim = (0, 5100) g.map(plt.plot, "Chunk Size", "Number of Found", linestyle="dashed") g.map(plt.plot, "Chunk Size", "Number of Predictions") for ax in g.axes: ax.yaxis.set_major_formatter(FuncFormatter(number_formatter)) # g.map(plt.plot, "x", "y_fit") g.set_xlabels("Fragment Size (nt)") g.set_titles("{col_name}", style="italic") g.set(ylim=(0, None)) g.set(xlim=xlim) g.set_ylabels("Number of predictions") # for ax, (_, subdata) in zip(g.axes, df.groupby('Genome')): # # ax2 = ax.twinx() # ax2 = inset_axes(ax, width="50%", height="50%", loc=1, borderpad=1) # # subdata = subdata.sort_values("Chunk Size") # for hue in hue_order: # subdata_hue = subdata[subdata["Tool"] == hue] # ax2.plot(subdata_hue["Chunk Size"], subdata_hue["Found%"], label=hue) # ax2.set_ylim(40,100) # ax2.set_ylabel("TPR") # ax2.set_xlim(*xlim) # ax2.set_xticks([]) # ax2.set_yticks([]) # # # subdata.plot(x='data_sondage', y='impossible', ax=ax2, legend=False, color='r') # plt.tight_layout() g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() g = seaborn.FacetGrid(df, col="Genome", col_wrap=4, hue="Tool", sharey=False) g.map(plt.plot, "Chunk Size", "Found%") # g.map(plt.plot, "Chunk Size", "Number of Found", linestyle="dashed") # g.map(plt.plot, "x", "y_fit") g.set_xlabels("Fragment Size (nt)") g.set_titles("{col_name}", style="italic") g.set(ylim=(0, None)) g.set(xlim=(0, 5100)) g.set_ylabels("Number of predictions") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() df = df[df["Tool"].isin({"MGM2", "MPRODIGAL", "FGS", "MGA"})] g = seaborn.FacetGrid(df, col="Genome", col_wrap=4, hue="Tool", sharey=True) g.map(plt.plot, "Recall", "Precision") # g.map(plt.plot, "Chunk Size", "Number of Found", linestyle="dashed") # g.map(plt.plot, "x", "y_fit") # g.set_xlabels("Fragment Size (nt)") g.set_titles("{col_name}", style="italic") g.set(ylim=(0, 1)) g.set(xlim=(0, 1)) # g.set_ylabels("Number of predictions") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() g = seaborn.FacetGrid(df, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "WR", linestyle="dashed") g.map(plt.plot, "Chunk Size", "Precision") # g.map(plt.plot, "Chunk Size", "Number of Found", linestyle="dashed") # g.map(plt.plot, "x", "y_fit") g.set_titles("{col_name}", style="italic") g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Score") g.add_legend() # inset_ylim=(0, max(df["Number of Predictions"])+100) # for ax, (_, subdata) in zip(g.axes, df.groupby('Genome')): # # ax2 = ax.twinx() # ax2 = inset_axes(ax, width="40%", height="40%", loc=7, borderpad=1) # # subdata = subdata.sort_values("Chunk Size") # for hue in hue_order: # subdata_hue = subdata[subdata["Tool"] == hue] # ax2.plot(subdata_hue["Chunk Size"], subdata_hue["Number of Predictions"], label=hue, # color=CM.get_map("tools")[hue]) # # ax2.set_ylim(40,100) # ax2.set_ylabel("Total Predictions") # ax2.set_xlim(*xlim) # ax2.set_ylim(*inset_ylim) # # ax2.yaxis.set_major_formatter(FuncFormatter(number_formatter)) # ax2.set_xticks([]) # # ax2.set_yticks([]) # # # subdata.plot(x='data_sondage', y='impossible', ax=ax2, legend=False, color='r') plt.savefig(next_name(env["pd-work"])) plt.show() def viz_plot_per_genome_y_error_x_chunk(env, df): genomes = sorted(df["Genome"].unique()) nrows, ncols = square_subplots(len(genomes)) values_to_melt = ["Match", "Number of Error", "Number of Found", "Number of Match", "Number of Predictions", "Number of IC5p Match", "Number of IC5p Found", "Number of IC3p Match", "Number of IC3p Found", "Number of Comp Match", "Number of Comp Found", "Precision", "Recall", "WR", "Number of Missed", "IC3p Match", "IC5p Match", "Comp Match"] df_total = list() for v in values_to_melt: if v == "Precision": print('hi') df_curr = pd.melt(df, id_vars=["Genome", "Chunk Size", "Genome GC"], value_vars=[x for x in df.columns if v == x.split("(")[0].strip()], var_name="Combination", value_name=v) df_curr["Tool"] = df_curr["Combination"].apply(lambda x: x.split("(")[1].split(",")[0].upper()) df_total.append(df_curr) df_total = reduce(lambda df1, df2: pd.merge(df1, df2, on=["Genome", "Chunk Size", "Genome GC", "Tool"], how="outer"), df_total) viz_number_of_predictions_for_short(env, df_total) # return # df_total = pd.melt( # df_total, # id_vars=["Genome", "Chunk Size", "Genome GC", "Combination"], # value_vars=values_to_melt, # var_name="Metric", value_name="Score") # dfs = [df_tmp.set_index(["Genome", "Chunk Size", "Genome GC"]) for df_tmp in df_total] # dfs = pd.concat(dfs, ignore_index=True, sort=False, axis=1) hue_order = sorted(df_total["Tool"].unique()) g = seaborn.FacetGrid(df_total, col="Genome", col_wrap=4, hue="Tool", sharey=True, hue_order=hue_order) # g.map(plt.plot, "Chunk Size", "Match", marker="o") g.map(plt.plot, "Chunk Size", "Number of Found", linestyle="--") # g.map(plt.plot, "x", "y_fit") g.set_xlabels("Chunk Size") g.set_ylabels("Metric") g.set(ylim=(0, None)) g.set(xlim=(None, None)) g.add_legend() for ax, (_, subdata) in zip(g.axes, df_total.groupby('Genome')): ax2 = ax.twinx() subdata = subdata.sort_values("Chunk Size") for hue in hue_order: subdata_hue = subdata[subdata["Tool"] == hue] ax2.plot(subdata_hue["Chunk Size"], subdata_hue["Match"], label=hue) ax2.set_ylim(40, 100) # subdata.plot(x='data_sondage', y='impossible', ax=ax2, legend=False, color='r') plt.tight_layout() plt.savefig(next_name(env["pd-work"])) plt.show() g = seaborn.FacetGrid(df_total, col="Genome", col_wrap=4, hue="Tool", sharey=False) g.map(plt.plot, "Chunk Size", "Number of Predictions") # g.map(plt.plot, "x", "y_fit") g.set_xlabels("Chunk Size") g.set_titles("{col_name}") g.set(ylim=(0, None)) # g.set(xlim=(None,5100)) g.set_ylabels("Number of predictions") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() # Incomplete g = seaborn.FacetGrid(df_total, col="Genome", col_wrap=4, hue="Tool", sharey=False) g.map(plt.plot, "Chunk Size", "Number of IC5p Found", linestyle="dashed") # g.map(plt.plot, "x", "y_fit") g.set_xlabels("Chunk Size") g.set_titles("{col_name}") g.set(ylim=(0, None)) # g.set(xlim=(0, 5100)) g.set_ylabels("Number of predictions") g.add_legend() for ax, (_, subdata) in zip(g.axes, df_total.groupby('Genome')): ax2 = ax.twinx() subdata = subdata.sort_values("Chunk Size") for hue in hue_order: subdata_hue = subdata[subdata["Tool"] == hue] ax2.plot(subdata_hue["Chunk Size"], subdata_hue["IC5p Match"], label=hue) ax2.set_ylim(40, 100) # subdata.plot(x='data_sondage', y='impossible', ax=ax2, legend=False, color='r') plt.tight_layout() plt.savefig(next_name(env["pd-work"])) plt.suptitle("IC5p") plt.show() number_and_match(env, df_total, hue_order, "Number of IC5p Match", "IC5p Match", "IC5p") number_and_match(env, df_total, hue_order, "Number of IC3p Match", "IC3p Match", "IC3p") number_and_match(env, df_total, hue_order, "Number of Comp Match", "Comp Match", "Comp") df_comprehensive = df_total.groupby(["Chunk Size", "Tool"], as_index=False).sum() df_comprehensive = pd.melt(df_comprehensive, id_vars=["Chunk Size", "Tool"], value_vars=[f"Number of {x} Match" for x in ["IC3p", "IC5p", "Comp"]] + [ "Number of Match"], var_name="Partial", value_name="Value") df_comprehensive_2 = pd.melt(df_total.groupby(["Chunk Size", "Tool"], as_index=False).sum(), id_vars=["Chunk Size", "Tool"], value_vars=[f"Number of {x} Found" for x in ["IC3p", "IC5p", "Comp"]] + [ "Number of Found"], var_name="Partial", value_name="Value") df_comprehensive["Match"] = 100 * df_comprehensive["Value"] / df_comprehensive_2["Value"] g = seaborn.lmplot("Chunk Size", "Match", data=df_comprehensive, hue="Tool", col="Partial", lowess=True) g.set(xlim=(0, 5010), ylim=(0, 100)) plt.show() print(df_comprehensive.to_csv()) return fig, axes = plt.subplots(2, 4, sharey="all", sharex="all") axes = axes.ravel() for i, g in enumerate(genomes): ax = axes[i] # type: plt.Axes df_curr = df[df["Genome"] == g] df_curr = pd.melt(df_curr, id_vars=["Genome", "Chunk Size"], value_vars=[x for x in df_curr.columns if "Number of Error(" in x], var_name="Combination", value_name="Number of Error") seaborn.lineplot("Chunk Size", "Number of Error", data=df_curr, hue="Combination", ax=ax, legend=False) plt.show() fig, axes = plt.subplots(2, 4, sharey="all", sharex="all") axes = axes.ravel() for i, g in enumerate(genomes): ax = axes[i] # type: plt.Axes df_curr = df[df["Genome"] == g] df_curr = pd.melt(df_curr, id_vars=["Genome", "Chunk Size"], value_vars=[x for x in df_curr.columns if "Number of Found(" in x], var_name="Combination", value_name="Number of Found") seaborn.lineplot("Chunk Size", "Number of Found", data=df_curr, hue="Combination", ax=ax, legend=False) plt.show() def viz_plot_per_genome_5p(env, df_gcfid): # type: (Environment, pd.DataFrame) -> None pass def viz_stats_genome_level(env, df_gcfid, tools, reference, **kwargs): # type: (Environment, pd.DataFrame, List[str], str, Dict[str, Any]) -> None # 3' analysis viz_plot_per_genome_y_error_x_chunk(env, df_gcfid) # 5' analysis viz_plot_per_genome_5p(env, df_gcfid) def viz_stats_3p_number_of_predictions_number_of_found(env, df_tidy, reference): # type: (Environment, pd.DataFrame, str) -> None g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "Number of Predictions", linestyle="dashed") g.map(plt.plot, "Chunk Size", "Number of Found") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Score") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() def viz_stats_3p_sensitivity_specificity(env, df_tidy, reference): # type: (Environment, pd.DataFrame, str) -> None g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "Sensitivity") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Sensitivity") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "Specificity") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Specificity") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Specificity", "Sensitivity") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) # g.set(xlim=(0, 5100)) g.set_ylabels("Sensitivity") g.set_xlabels("Specificity") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() def viz_stats_3p_number_of_predictions_precision(env, df_tidy, reference): # type: (Environment, pd.DataFrame, str) -> None df_tidy = df_tidy[df_tidy["Tool"].apply(lambda x: x.lower()) != reference.lower()] df_tidy = df_tidy[df_tidy["Tool"].apply(lambda x: x.lower()) != "mgm"] hue_order = sorted(df_tidy["Tool"].unique()) cw = 4 g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=cw, hue="Tool", hue_order=hue_order, sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "Number of Predictions", linestyle="dashed") g.map(plt.plot, "Chunk Size", "Precision") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Number of Predictions") g.add_legend() counter = 0 for ax, (_, subdata) in zip(g.axes, df_tidy.groupby('Genome')): ax.yaxis.set_major_formatter(FuncFormatter(number_formatter)) if counter == 0: yticklabels = ax.get_yticklabels() ax2 = ax.twinx() subdata = subdata.sort_values("Chunk Size") for hue in hue_order: subdata_hue = subdata[subdata["Tool"] == hue] ax2.plot(subdata_hue["Chunk Size"], subdata_hue["Precision"], label=hue, color=CM.get_map("tools")[hue.lower()]) ax2.set_ylim(0, 1) counter += 1 if counter % cw == 0: ax2.set_ylabel("Precision") else: ax2.set_yticks([]) # if counter % cw != 1: # ax.set_yticklabels([]) # else: # ax.set_yticklabels(yticklabels) plt.tight_layout() plt.savefig(next_name(env["pd-work"])) plt.show() # tabulate # df_piv = df_tidy.pivot(index="Genome", columns="Tool", values=["Precision"]) # print(df_piv.to_csv()) def f_mi(x): d = [] d.append(x['a'].sum()) d.append(x['a'].max()) d.append(x['b'].mean()) d.append((x['c'] * x['d']).sum()) return pd.Series(d, index=[['a', 'a', 'b', 'c_d'], ['sum', 'max', 'mean', 'prodsum']]) df1 = df_tidy.groupby(["Chunk Size", "Tool"], as_index=False).sum() # df_tidy.groupby(["Chunk Size", "Tool"], as_index=False).agg( # {**{x: ['sum'] for x in df_tidy.columns if x not in {"Chunk Size", "Tool", "Number in Reference"}}, # 'Number in Reference': ['sum']}) df1["Precision"] = df1["Number of Found"] / df1["Number of Predictions"] df1["WR"] = (df1["Number of Predictions"] - df1["Number of Found"]) / df1["Number of Predictions"] df1["Sensitivity"] = df1["Number of Found"] / df1["Number in Reference"] df1["Specificity"] = df1["Number of Found"] / df1["Number of Predictions"] print(df1.pivot(index="Chunk Size", columns="Tool", values=["Precision", "Number of Found"])) print(df1.pivot(index="Chunk Size", columns="Tool", values=["Precision"])) print(df1.pivot(index="Chunk Size", columns="Tool", values=["Precision", "Number of Missed", "Number of Predictions"])) print(df1.pivot(index="Chunk Size", columns="Tool", values=["Sensitivity", "Specificity", "Number of Found", "Number in Reference", "Number of Predictions"]).to_csv()) print("hi") df1 = df_tidy.groupby(["Chunk Size", "Tool"], as_index=False).mean() print(df1.pivot(index="Chunk Size", columns="Tool", values=["Sensitivity", "Specificity"]).to_csv()) def viz_stats_5p_number_of_errors_number_of_found(env, df_tidy, reference): # type: (Environment, pd.DataFrame, str) -> None g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "Number of Found", linestyle="dashed") g.map(plt.plot, "Chunk Size", "Number of Error") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Sensitivity") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() def viz_stats_5p_error_rate(env, df_tidy, reference): # type: (Environment, pd.DataFrame, str) -> None g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", "Error Rate") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Error Rate") g.add_legend() plt.savefig(next_name(env["pd-work"])) plt.show() def viz_stats_5p_error_rate_partial(env, df_tidy, reference): # type: (Environment, pd.DataFrame, str) -> None df_tidy = df_tidy[df_tidy["Tool"].apply(lambda x: x.lower()) != "verified"].copy() for cond in ["IC5p", "IC3p", "Comp"]: df_tidy[f"Error Rate {cond}"] = (df_tidy[f"Number of {cond} Found"] - df_tidy[f"Number of {cond} Match"]) / \ df_tidy[f"Number of {cond} Found"] g = seaborn.FacetGrid(df_tidy, col="Genome", col_wrap=4, hue="Tool", sharey=True, palette=CM.get_map("tools")) g.map(plt.plot, "Chunk Size", f"Error Rate {cond}") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Sizee (nt)") g.set_ylabels("Error Rate") g.add_legend() plt.suptitle({ "IC5p": "Incomplete at 5' end", "IC3p": "Incomplete at 3' end", "Comp": "Complete genes" }[cond]) plt.savefig(next_name(env["pd-work"])) plt.show() # show 5p error by condition (combine all tools) df2 = df_tidy.groupby(["Chunk Size", "Tool"], as_index=False).sum() df2_tidy = pd.melt( df2, id_vars=["Chunk Size", "Tool"], value_vars=[f"Number of {cond} Found" for cond in ["IC5p", "IC3p", "Comp"]], var_name="Condition", value_name="Found" ) df2_tidy["Condition"] = df2_tidy["Condition"].apply(lambda x: x.split()[2]) df_tmp = pd.melt( df2, id_vars=["Chunk Size", "Tool"], value_vars=[f"Number of {cond} Match" for cond in ["IC5p", "IC3p", "Comp"]], var_name="Condition", value_name="Match" ) df_tmp["Condition"] = df_tmp["Condition"].apply(lambda x: x.split()[2]) df2_tidy = reduce(lambda df1, df2: pd.merge(df1, df2, on=["Chunk Size", "Condition", "Tool"], how="outer"), [df2_tidy, df_tmp]) df2_tidy[f"Error Rate"] = (df2_tidy[f"Found"] - df2_tidy[f"Match"]) / df2_tidy[f"Found"] df2_tidy["Condition"].replace({ "IC5p": "Incomplete at Gene Start", "IC3p": "Incomplete at Gene End", "Comp": "Complete genes" }, inplace=True) hue_order = sorted(df_tidy["Tool"].unique()) g = seaborn.FacetGrid(df2_tidy, col="Condition", hue="Tool", sharey=True, palette=CM.get_map("tools"), hue_order=hue_order) g.map(plt.plot, "Chunk Size", f"Error Rate") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") g.set_ylabels("Gene-Start Error Rate") g.add_legend() for ax, (_, subdata) in zip(g.axes[0], df2_tidy.groupby('Condition')): ax2 = ax.twinx() subdata = subdata.sort_values("Chunk Size") for hue in hue_order: subdata_hue = subdata[subdata["Tool"] == hue] ax2.plot(subdata_hue["Chunk Size"], subdata_hue["Found"], label=hue, linestyle="dashed") # ax2.set_ylim(40, 100) # subdata.plot(x='data_sondage', y='impossible', ax=ax2, legend=False, color='r') plt.savefig(next_name(env["pd-work"])) plt.show() ###################### 2-level facetgrid ###################### # show 5p error by condition (combine all tools) df2 = df_tidy.groupby(["Chunk Size", "Tool"], as_index=False).sum() df2["Number of Comp Found"] += df2["Number of IC3p Found"] df2["Number of Comp Match"] += df2["Number of IC3p Match"] df2_tidy = pd.melt( df2, id_vars=["Chunk Size", "Tool"], value_vars=[f"Number of {cond} Found" for cond in ["IC5p", "Comp"]], var_name="Condition", value_name="Score" ) df2_tidy["Condition"] = df2_tidy["Condition"].apply(lambda x: x.split()[2]) df2_tidy["Metric"] = "Found" df_tmp = pd.melt( df2, id_vars=["Chunk Size", "Tool"], value_vars=[f"Number of {cond} Match" for cond in ["IC5p", "Comp"]], var_name="Condition", value_name="Match" ) df_tmp["Condition"] = df_tmp["Condition"].apply(lambda x: x.split()[2]) df_tmp = reduce(lambda df1, df2: pd.merge(df1, df2, on=["Chunk Size", "Condition", "Tool"], how="outer"), [df2_tidy, df_tmp]) df_tmp[f"Score"] = (df_tmp[f"Score"] - df_tmp[f"Match"]) / df_tmp[f"Score"] df_tmp["Metric"] = "Error Rate" df2_tidy = pd.concat([df2_tidy, df_tmp]) df2_tidy["Condition"].replace({ "IC5p": "Incomplete at Gene Start", # "IC3p": "Incomplete at Gene End", "Comp": "Complete at Gene Start" }, inplace=True) df2_tidy = df2_tidy[df2_tidy["Chunk Size"] <= 5000] hue_order = sorted(df2_tidy["Tool"].unique()) g = seaborn.FacetGrid( df2_tidy, col="Condition", hue="Tool", sharey="row", palette=CM.get_map("tools"), row="Metric", hue_order=hue_order ) g.map(plt.plot, "Chunk Size", f"Score") g.set_titles("{col_name}", style="italic") # g.set(ylim=(0, 1)) # g.set(xlim=(0, 5100)) g.set_xlabels("Fragment Size (nt)") # g.set_ylabels("Gene-Start Error Rate") for i, axes_row in enumerate(g.axes): for j, axes_col in enumerate(axes_row): if j == 0: if i == 0: axes_col.set_ylabel("Number of Genes Found") else: axes_col.set_ylabel("Gene-Start Error Rate") g.add_legend() plt.tight_layout(rect=[0, 0, 0.8, 1]) plt.savefig(next_name(env["pd-work"])) plt.show() # paper df2_tidy.loc[df2_tidy["Tool"] == "MPRODIGAL", "Tool"] = "MProdigal" hue_order = sorted(df2_tidy["Tool"].unique()) figsize = set_size("thesis", subplots=(2,2), legend=True, titles=True) fig, axes = plt.subplots(2, 2, sharex="all", sharey="row", figsize=figsize) for h in hue_order: ids = (df2_tidy["Metric"] == "Found") & (df2_tidy["Condition"] == "Incomplete at Gene Start") & (df2_tidy["Tool"] == h) axes[0][0].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) for h in hue_order: ids = (df2_tidy["Metric"] == "Found") & (df2_tidy["Condition"] == "Complete at Gene Start") & (df2_tidy["Tool"] == h) axes[0][1].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) for h in hue_order: ids = (df2_tidy["Metric"] == "Error Rate") & (df2_tidy["Condition"] == "Incomplete at Gene Start") & (df2_tidy["Tool"] == h) axes[1][0].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) for h in hue_order: ids = (df2_tidy["Metric"] == "Error Rate") & (df2_tidy["Condition"] == "Complete at Gene Start") & (df2_tidy["Tool"] == h) axes[1][1].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) axes[0][0].set_title("Incomplete at Gene Start", style="italic") axes[0][1].set_title("Complete at Gene Start", style="italic") axes[0][0].yaxis.set_major_formatter(FuncFormatter(number_formatter)) axes[0][1].yaxis.set_major_formatter(FuncFormatter(number_formatter)) axes[1][0].set_xlabel("Fragment Size (nt)") axes[1][1].set_xlabel("Fragment Size (nt)") axes[0][0].set_ylabel("Number of Genes Found") axes[1][0].set_ylabel("Gene 5' Error Rate") handles, labels = axes[0][0].get_legend_handles_labels() labels = update_tool_names_to_full(labels) # leg = fig.legend(handles, labels, bbox_to_anchor=(0.5, 0.1), loc='upper center', ncol=5, # bbox_transform=fig.transFigure, frameon=False) fig.align_ylabels(axes[:,0]) # plt.tight_layout(rect=[0, 0.1, 1, 1]) leg = fig.legend(handles, labels, bbox_to_anchor=(1.05, 0.5), loc='center left', frameon=False) # fig.subplots_adjust(right=0.85) fig.tight_layout() fig.savefig(next_name(env["pd-work"]), bbox_extra_artists=(leg,), bbox_inches='tight') plt.show() # thesis figsize = set_size("thesis", subplots=(2, 2), legend=True, titles=True) fig, axes = plt.subplots(2, 2, sharex="all", sharey="row", figsize=figsize) for h in hue_order: ids = (df2_tidy["Metric"] == "Found") & (df2_tidy["Condition"] == "Incomplete at Gene Start") & ( df2_tidy["Tool"] == h) axes[0][0].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) for h in hue_order: ids = (df2_tidy["Metric"] == "Found") & (df2_tidy["Condition"] == "Complete at Gene Start") & ( df2_tidy["Tool"] == h) axes[0][1].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) for h in hue_order: ids = (df2_tidy["Metric"] == "Error Rate") & (df2_tidy["Condition"] == "Incomplete at Gene Start") & ( df2_tidy["Tool"] == h) axes[1][0].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) for h in hue_order: ids = (df2_tidy["Metric"] == "Error Rate") & (df2_tidy["Condition"] == "Complete at Gene Start") & ( df2_tidy["Tool"] == h) axes[1][1].plot( df2_tidy.loc[ids, "Chunk Size"], df2_tidy.loc[ids, "Score"], label=h, color=CM.get_map("tools")[h.upper()] ) axes[0][0].set_title("Incomplete at Gene Start", style="italic") axes[0][1].set_title("Complete at Gene Start", style="italic") axes[0][0].yaxis.set_major_formatter(FuncFormatter(number_formatter)) axes[0][1].yaxis.set_major_formatter(FuncFormatter(number_formatter)) axes[1][0].set_xlabel("Fragment Size (nt)") axes[1][1].set_xlabel("Fragment Size (nt)") axes[0][0].set_ylabel("Number of Genes Found") axes[1][0].set_ylabel("Gene Start Error Rate") handles, labels = axes[0][0].get_legend_handles_labels() labels = update_tool_names_to_full(labels) # leg = fig.legend(handles, labels, bbox_to_anchor=(0.5, 0.1), loc='upper center', ncol=5, # bbox_transform=fig.transFigure, frameon=False) fig.align_ylabels(axes[:, 0]) # plt.tight_layout(rect=[0, 0.1, 1, 1]) leg = fig.legend(handles, labels, bbox_to_anchor=(1.05, 0.5), loc='center left', frameon=False) # fig.subplots_adjust(right=0.85) fig.tight_layout() fig.savefig(next_name(env["pd-work"]), bbox_extra_artists=(leg,), bbox_inches='tight') plt.show() def viz_stats_5p_partial(env, df_tidy, tool_order, reference): # show 5p error by condition (combine all tools) df2 = df_tidy.groupby(["Chunk Size", "Tool"], as_index=False).sum() df2["Number of Comp Found"] += df2["Number of IC3p Found"] df2["Number of Comp Match"] += df2["Number of IC3p Match"] df2[f"Error Rate Comp"] = (df2[f"Number of Comp Found"] - df2[f"Number of Comp Match"]) / df2[f"Number of Comp Found"] df2[f"Error Rate IC5p"] = (df2[f"Number of IC5p Found"] - df2[f"Number of IC5p Match"]) / df2[ f"Number of IC5p Found"] figsize = set_size("thesis", subplots=(2,2), legend="bottom") fig, axes = plt.subplots(2, 2, figsize=figsize, sharey="row") reg_kws = {"lowess": True, "scatter_kws": {"s": 0.1, "alpha": 0.3}, "line_kws": {"linewidth": 1}} from collections import abc axes_unr = axes if not isinstance(axes, abc.Iterable): axes = [axes] else: axes = axes.ravel() ax = None i = 0 fontsize = "xx-small" for ax, col in zip(axes[0:2], ["Number of IC5p Found", "Number of Comp Found"]): for t in tool_order: if t.lower() == reference.lower(): continue df_curr = df2[case_insensitive_match(df2, "Tool", t)] seaborn.regplot( df_curr["Chunk Size"], df_curr[col], label=t, color=CM.get_map("tools")[t.lower()], **reg_kws, ax=ax ) if max(df2[col]) > 2000: ax.yaxis.set_major_formatter(FuncFormatter(number_formatter)) col_text = "\n".join(wrap(col, 20, break_long_words=False)) ax.set_ylabel(col_text, wrap=True, fontsize=fontsize) ax.tick_params(labelsize=fontsize, length=2) if i == 0: ax.set_ylabel("Number of Genes Found", fontsize=fontsize) else: ax.set_ylabel("") ax.set_xlabel("") i += 1 for ax, col in zip(axes[2:], ["Error Rate IC5p", "Error Rate Comp"]): for t in tool_order: if t.lower() == reference.lower(): continue df_curr = df2[case_insensitive_match(df_tidy, "Tool", t)] seaborn.regplot( df_curr["Chunk Size"], df_curr[col], label=t, color=CM.get_map("tools")[t.lower()], **reg_kws, ax=ax ) if len(df_curr[col]) > 0 and max(df_curr[col]) > 2000: ax.yaxis.set_major_formatter(FuncFormatter(number_formatter)) col_text = "\n".join(wrap(col, 20, break_long_words=False)) ax.set_ylabel(col_text, wrap=True, fontsize=fontsize) ax.tick_params(labelsize=fontsize, length=2) if i == 0: ax.set_ylabel("Gene-Start Error Rate", fontsize=fontsize) else: ax.set_ylabel("") ax.set_xlabel("Fragment Size (nt)") i += 1 if ax is not None: fig.subplots_adjust(bottom=0.2) handles, labels = ax.get_legend_handles_labels() # labels = [{ # "mgm": "MGM", # "mgm2": "MGM2", # "mgm2_auto": "MGM2", # "mga": "MGA", # "mprodigal": "MProdigal", # "fgs": "FGS", # "gms2": "GMS2", # "prodigal": "Prodigal" # }[l.lower()] for l in labels] labels = update_tool_names_to_full(labels) leg = fig.legend(handles, labels, bbox_to_anchor=(0.5, 0.1), loc='upper center', ncol=len(tool_order), bbox_transform=fig.transFigure, frameon=False, fontsize=fontsize) for lh in leg.legendHandles: lh.set_alpha(1) lh.set_sizes([18] * (len(tool_order))) for i in range(2): fig.align_ylabels(axes_unr[:, i]) fig.tight_layout(rect=[0, 0.1, 1, 1]) fig.savefig(next_name(env["pd-work"]), bbox_extra_artists=(leg,)) # bbox_inches='tight' plt.show() def _helper_join_reference_and_tidy_data(env, df_per_gene, tools, list_ref): # type: (Environment, pd.DataFrame, List[str], List[str]) -> [str, pd.DataFrame] reference = _helper_df_joint_reference(df_per_gene, list_ref) df_per_gene = update_dataframe_with_stats(df_per_gene, tools, reference).copy() #### Genome Level # compute stats per genome df_stats_gcfid = list() for _, df_group in df_per_gene.groupby("Chunk Size", as_index=False): df_stats_gcfid.append(get_stats_at_gcfid_level_with_reference(df_group, tools, reference)) df_per_genome =
pd.concat(df_stats_gcfid, ignore_index=True, sort=False)
pandas.concat
import glob import json import os import numpy as np import pandas as pd import datetime import matplotlib.pyplot as plt from vxbt_calc import vxbt_calc #from datetime import datetime capi_data_path = '/path/to/coinapi_csvs' start_c =
pd.to_datetime('2019-05-01 00:00:00')
pandas.to_datetime
import datetime import logging import unittest from unittest.mock import Mock, patch import numpy as np import pandas as pd import pytz from sqlalchemy import Column, Integer, MetaData, Table from src.pipeline.processing import ( array_equals_row_on_window, back_propagate_ones, coalesce, concatenate_columns, concatenate_values, df_to_dict_series, df_values_to_json, df_values_to_psql_arrays, drop_duplicates_by_decreasing_priority, drop_rows_already_in_table, get_unused_col_name, is_a_value, join_on_multiple_keys, left_isin_right_by_decreasing_priority, prepare_df_for_loading, rows_belong_to_sequence, to_json, to_pgarr, zeros_ones_to_bools, ) class TestProcessingMethods(unittest.TestCase): def test_get_unused_col_name(self): self.assertEqual( get_unused_col_name("id",
pd.DataFrame({"id": [1, 2, 3]})
pandas.DataFrame
import numpy as np import pandas as pd import datetime def get_US_baby_names(): ''' loads the raw US baby name data stored in the data/raw/ directory Returns ------- df : pd.DataFrame dataframe containing all US baby name data from 1880 - 2017 ''' df_dict = {year: pd.read_csv('./data/raw/yob{}.txt'.format(year), names=['Name', 'Sex', 'Count']) for year in range(1880, 2017)} for year in df_dict: df_dict[year]['Year'] = year return
pd.concat([df_dict[i] for i in df_dict], axis=0)
pandas.concat
import functools from tqdm.contrib.concurrent import process_map import copy from Utils.Data.Dictionary.MappingDictionary import * from Utils.Data.Features.Generated.GeneratedFeature import GeneratedFeaturePickle import pandas as pd import numpy as np def add(dictionary, key): dictionary[key] = dictionary.get(key, 0) + 1 def compute_chunk(chunk): timestamp = chunk.index.to_numpy().mean() dictionary = {} chunk['hashtags'].map(lambda x: [add(dictionary, e) for e in x] if x is not None else [0]) return timestamp, dictionary def get_popularity(chunk, result, s): out = [] result = copy.deepcopy(result) s = copy.deepcopy(s) for hashtag, timestamp in zip(chunk['hashtags'], chunk['time']): if hashtag is not None: index = np.searchsorted(s, timestamp, 'left') - 1 x = [result[index][1].get(h, 0) for h in hashtag] else: x = [0] out.append(x) return pd.Series(out) class HashtagPopularity(GeneratedFeaturePickle): def __init__(self, feature_name: str, dataset_id: str, window_size, window_overlap): super().__init__(feature_name, dataset_id) self.window_size = window_size self.window_overlap = window_overlap self.pck_path = pl.Path( f"{Feature.ROOT_PATH}/{self.dataset_id}/generated/hashtag_popularity/{self.feature_name}.pck.gz") self.csv_path = pl.Path( f"{Feature.ROOT_PATH}/{self.dataset_id}/generated/hashtag_popularity/{self.feature_name}.csv.gz") self.popularity_path = pl.Path( f"{Feature.ROOT_PATH}/{self.dataset_id}/generated/hashtag_popularity/{self.window_size}_{self.window_overlap}_popularity.npy") def get_popularity(self): import Utils.Data.Data as data if self.popularity_path.is_file(): return np.load(self.popularity_path, allow_pickle=True) else: x = data.get_dataset( [ "mapped_feature_tweet_id", "mapped_feature_tweet_hashtags", "raw_feature_tweet_timestamp" ], self.dataset_id ) x.columns = ["tweet", "hashtags", "time"] x = x.drop_duplicates("tweet") x = x.set_index('time', drop=True) x = x.sort_index() # Group size n = self.window_size # Overlapping size m = self.window_overlap chunks = [x[i:i + n] for i in range(0, len(x), n - m)] result = process_map(compute_chunk, chunks) s = [r[0] for r in result] y = data.get_dataset( [ "mapped_feature_tweet_id", "mapped_feature_tweet_hashtags", "raw_feature_tweet_timestamp" ], self.dataset_id ) y.columns = ["tweet", "hashtags", "time"] get_popularity_partial = functools.partial(get_popularity, result=result, s=s) popularity = pd.concat(process_map(get_popularity_partial, np.array_split(y, 100))) self.popularity_path.parent.mkdir(parents=True, exist_ok=True) np.save(self.popularity_path, popularity, allow_pickle=True) return popularity class MaxHashtagPopularity(HashtagPopularity): def __init__(self, dataset_id: str, window_size, window_overlap): super().__init__(f"max_hashtag_popularity_{window_size}_{window_overlap}", dataset_id, window_size, window_overlap) def create_feature(self): popularity = self.get_popularity() max_popularity = np.array([max(p) for p in popularity]) result =
pd.DataFrame(max_popularity)
pandas.DataFrame
import gc import numpy as np import pandas as pd import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score from sklearn.model_selection import RepeatedKFold from sklearn.preprocessing import LabelEncoder from datetime import datetime from tqdm import tqdm import lightgbm as lgb # Load Data dtype = { 'id': str, 'teacher_id': str, 'teacher_prefix': str, 'school_state': str, 'project_submitted_datetime': str, 'project_grade_category': str, 'project_subject_categories': str, 'project_subject_subcategories': str, 'project_title': str, 'project_essay_1': str, 'project_essay_2': str, 'project_essay_3': str, 'project_essay_4': str, 'project_resource_summary': str, 'teacher_number_of_previously_posted_projects': int, 'project_is_approved': np.uint8, } # Write code that limits the rows until I've sorted out the kinks data_dir = "F:/Nerdy Stuff/Kaggle/DonorsChoose" sub_path = "F:/Nerdy Stuff/Kaggle submissions/DonorChoose" train = pd.read_csv(os.path.join(data_dir, 'data/train_stem.csv'), low_memory=True) test = pd.read_csv(os.path.join(data_dir, 'data/test_stem.csv'), low_memory=True) id_test = test['id'].values # Extract features def extract_features(df): df['project_title_len'] = df['project_title'].apply(lambda x: len(str(x))) df['project_essay_1_len'] = df['project_essay_1'].apply(lambda x: len(str(x))) df['project_essay_2_len'] = df['project_essay_2'].apply(lambda x: len(str(x))) df['project_essay_3_len'] = df['project_essay_3'].apply(lambda x: len(str(x))) df['project_essay_4_len'] = df['project_essay_4'].apply(lambda x: len(str(x))) df['project_resource_summary_len'] = df['project_resource_summary'].apply(lambda x: len(str(x))) df['project_title_wc'] = df['project_title'].apply(lambda x: len(str(x).split(' '))) df['project_essay_1_wc'] = df['project_essay_1'].apply(lambda x: len(str(x).split(' '))) df['project_essay_2_wc'] = df['project_essay_2'].apply(lambda x: len(str(x).split(' '))) df['project_essay_3_wc'] = df['project_essay_3'].apply(lambda x: len(str(x).split(' '))) df['project_essay_4_wc'] = df['project_essay_4'].apply(lambda x: len(str(x).split(' '))) df['project_resource_summary_wc'] = df['project_resource_summary'].apply(lambda x: len(str(x).split(' '))) extract_features(train) extract_features(test) train.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4'], axis=1, inplace=True) test.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4'], axis=1, inplace=True) # Recoding as when stopwords are removed some titles have no values print("Recoding missing values once NLP preprocessing done. Might want to check that") train.loc[train['project_title'].isnull() == True, 'project_title'] = 'No values once NLP preprocessing is done' test.loc[test['project_title'].isnull() == True, 'project_title'] = 'No values once NLP preprocessing is done' train.loc[train['project_essay'].isnull() == True, 'project_essay'] = 'No values once NLP preprocessing is done' test.loc[test['project_essay'].isnull() == True, 'project_essay'] = 'No values once NLP preprocessing is done' train.loc[train['project_resource_summary'].isnull() == True, 'project_resource_summary'] = 'No values once NLP preprocessing is done' test.loc[test['project_resource_summary'].isnull() == True, 'project_resource_summary'] = 'No values once NLP preprocessing is done' train.loc[train['description_ttl'].isnull() == True, 'description_ttl'] = 'No values once NLP preprocessing is done' test.loc[test['description_ttl'].isnull() == True, 'description_ttl'] = 'No values once NLP preprocessing is done' gc.collect() # Preprocess columns with label encoder print('Label Encoder...') cols = [ 'teacher_id', 'teacher_prefix', 'school_state', 'project_grade_category', 'project_subject_categories', 'project_subject_subcategories' ] df_all = pd.concat([train, test], axis=0) for c in tqdm(cols): le = LabelEncoder() le.fit(df_all[c].astype(str)) train[c] = le.transform(train[c].astype(str)) test[c] = le.transform(test[c].astype(str)) del le gc.collect() print('Done.') # Preprocess timestamp print('Preprocessing timestamp...') def process_timestamp(df): df['project_submitted_datetime'] = pd.to_datetime(df['project_submitted_datetime']) df['year'] = df['project_submitted_datetime'].apply(lambda x: x.year) df['month'] = df['project_submitted_datetime'].apply(lambda x: x.month) df['day'] = df['project_submitted_datetime'].apply(lambda x: x.day) df['day_of_week'] = df['project_submitted_datetime'].apply(lambda x: x.dayofweek) df['hour'] = df['project_submitted_datetime'].apply(lambda x: x.hour) df['minute'] = df['project_submitted_datetime'].apply(lambda x: x.minute) df['project_submitted_datetime'] = df['project_submitted_datetime'].values.astype(np.int64) process_timestamp(train) process_timestamp(test) print('Done.') # Preprocess text print('Preprocessing text...') cols = [ 'project_title', 'project_essay', 'project_resource_summary', 'description_ttl' ] n_features = [ 400, 4040, 400, 400 ] for c_i, c in tqdm(enumerate(cols)): print("TFIDF for %s" % (c)) tfidf = TfidfVectorizer( max_features=n_features[c_i], norm='l2', ) tfidf.fit(df_all[c]) tfidf_train = np.array(tfidf.transform(train[c]).toarray(), dtype=np.float16) tfidf_test = np.array(tfidf.transform(test[c]).toarray(), dtype=np.float16) for i in range(n_features[c_i]): train[c + '_tfidf_' + str(i)] = tfidf_train[:, i] test[c + '_tfidf_' + str(i)] = tfidf_test[:, i] del tfidf, tfidf_train, tfidf_test gc.collect() print('Done.') gc.collect() # Prepare data cols_to_drop = [ 'Unnamed: 0' , 'id' , 'teacher_id' , 'project_title' , 'project_essay' , 'project_resource_summary' , 'project_is_approved' , 'description_ttl' ] X = train.drop(cols_to_drop, axis=1, errors='ignore') y = train['project_is_approved'] X_test = test.drop(cols_to_drop, axis=1, errors='ignore') id_test = test['id'].values feature_names = list(X.columns) print(X.shape, X_test.shape) # del train, test gc.collect() # Build the model cnt = 0 p_buf = [] n_splits = 5 n_repeats = 1 kf = RepeatedKFold( n_splits=n_splits, n_repeats=n_repeats, random_state=0) auc_buf = [] num_rows = 60000 X_train_test = X.iloc[0:num_rows, :] y_train_test = y.iloc[0:num_rows] prob_ests = [] y_test = [] prb = np.array(prob_ests[0]) y_tst = np.asarray(y_test[0], np.int32) prb.dtype y_tst.dtype prb.shape y_tst.shape prb_ser =
pd.Series(prb)
pandas.Series
import mailbox, re, os import pandas as pd from datetime import datetime targetdir = '/Users/carlos/Dropbox' mbox_file = '/Volumes/Backup/EmailVeducaFinal/VeducaBackup.mbox/mbox' # '/Volumes/Backup/EmailVeduca/VeducaBackup.partial.mbox/mbox' email_lines = [] emails = [] df1 = pd.DataFrame(columns=['Name', 'Email', 'String']) df2 =
pd.DataFrame(columns=['Email'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Use deep learning to recognise LCD readings # ## Train the text recognition model using <u>deep-text-recognition</u> ([github link](https://github.com/clovaai/deep-text-recognition-benchmark)) # ### Different settings and models were used to achieve best acuracy. The arguments are listed as follow:<br> # --- # **Basic settings:** # # |Command|help|Input| # |:---:|:---:|:---:| # |--exp_name|Where to store logs and models|Directory to store trained model| # |--train_data|required=True, path to training dataset|Directory of training dataset| # |--valid_data|required=True, path to validation dataset|Directory of training dataset| # |--manualSeed|type=int, default=1111|for random seed setting| # |--workers|type=int, number of data loading workers, default=4|int| # |--batch_size|type=int, default=192|input batch size| # |--num_iter|type=int, default=300000|number of iterations to train for| # |--valInterval|type=int, default=2000, Interval between each validation|int| # |--saved_model|default='', path of model to continue training|Directory| # |--FT|action='store_true', whether to do fine-tuning|No input, activates by include this argument| # |--adam|action='store_true', Whether to use adam (default is Adadelta)|No input| # |--lr|type=float, default=1, learning rate, default=1.0 for Adadelta|float| # |--beta1|type=float, default=0.9, beta1 for adam. default=0.9|float| # |--rho|type=float, default=0.95, decay rate rho for Adadelta. default=0.95|float| # |--eps|type=float, default=1e-8, eps for Adadelta. default=1e-8|float| # |--grad_clip| type=float, default=5, gradient clipping value. default=5|float| # |--baiduCTC| action='store_true', for data_filtering_off mode|No input| # # --- # **Data processing:** # # |Command|help|Input| # |:---:|:---:|:---:| # |--select_data| type=str, default='MJ-ST', select training data (default is MJ-ST, which means MJ and ST used as training data|For use sample data| # |--batch_ratio| type=str, default='0.5-0.5', assign ratio for each selected data in the batch|Use with MJ-ST| # |--total_data_usage_ratio| type=str, default='1.0', total data usage ratio, this ratio is multiplied to total number of data.|For use part of data| # |--batch_max_length| type=int, default=25, maximum-label-length| | # |--imgH| type=int, default=32, the height of the input image|image size| # |--imgW| type=int, default=100, the width of the input image|image size| # |--rgb| action='store_true', use rgb input'|No input| # |--character| type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', character label|To add or fileter symbols, characters| # |--sensitive| action='store_true', for sensitive character mode|Use this to recognise Upper case| # |--PAD| action='store_true', whether to keep ratio then pad for image resize| | # |--data_filtering_off| action='store_true', for data_filtering_off mode|No input| # # --- # **Model Architecture:** # # |Command|help|Input| # |:---:|:---:|:---:| # |--Transformation| type=str, required=True, Transformation stage. |None or TPS| # |--FeatureExtraction| type=str, required=True, FeatureExtraction stage. |VGG, RCNN or ResNet| # |--SequenceModeling| type=str, required=True, SequenceModeling stage. |None or BiLSTM| # |--Prediction| type=str, required=True, Prediction stage. |CTC or Attn| # |--num_fiducial| type=int, default=20, number of fiducial points of TPS-STN|int| # |--input_channel| type=int, default=1, the number of input channel of Feature extractor|int| # |--output_channel| type=int, default=512, the number of output channel of Feature extractor|int| # |--hidden_size| type=int, default=256, the size of the LSTM hidden state|int| # ### Train the models # The variables used will be: # # |Model|Experiment Name|Command used| # |:---:|:---:|:---:| # |VGG | vgg-notran-nolstm-ctc | CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name vgg-notran-nolstm-ctc \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation None --FeatureExtraction VGG --SequenceModeling None --Prediction CTC \ --num_iter 10000 --valInterval 1000 | # |VGG | vgg-tps-nolstm-ctc| CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name vgg-tps-nolstm-ctc \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction CTC \ --num_iter 10000 --valInterval 1000 | # |VGG |vgg-notran-nolstm-attn|CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name vgg-notran-nolstm-attn \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation None --FeatureExtraction VGG --SequenceModeling None --Prediction Attn \ --num_iter 10000 --valInterval 1000| # |RCNN | rcnn-notran-nolstm-ctc | CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name rcnn-notran-nolstm-ctc \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation None --FeatureExtraction RCNN --SequenceModeling None --Prediction CTC \ --num_iter 10000 --valInterval 1000 | # |RCNN | rcnn-notran-nolstm-atnn | CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name rcnn-notran-nolstm-atnn \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation None --FeatureExtraction RCNN --SequenceModeling None --Prediction Attn \ --num_iter 10000 --valInterval 1000 | # |ResNet | resnet-notran-nolstm-ctc | CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name resnet-notran-nolstm-ctc \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation None --FeatureExtraction ResNet --SequenceModeling None --Prediction CTC \ --num_iter 10000 --valInterval 1000 | # |ResNet | resnet-notran-nolstm-atnn | CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name resnet-notran-nolstm-atnn \ --train_data result/train --valid_data result/test --batch_size 200 \ --Transformation None --FeatureExtraction ResNet --SequenceModeling None --Prediction Attn \ --num_iter 10000 --valInterval 1000 | # ### Experiment checklist # In[1]: from IPython.display import display from ipywidgets import Checkbox box1 = Checkbox(False, description='vgg-notran-nolstm-ctc') box2 = Checkbox(False, description='vgg-notran-nolstm-attn') box3 = Checkbox(False, description='rcnn-notran-nolstm-ctc') box4 = Checkbox(False, description='rcnn-notran-nolstm-atnn') box5 = Checkbox(False, description='resnet-notran-nolstm-ctc') box6 = Checkbox(False, description='resnet-notran-nolstm-atnn') display(box1,box2,box3,box4,box5,box6) def changed(b): print(b) box1.observe(changed) box2.observe(changed) box3.observe(changed) box4.observe(changed) box5.observe(changed) box6.observe(changed) # ### Experiment summary # By using ResNet (no Transformation, no BiLTSM) with ctc prediction, an prediction accuracy of over 98 % was achieved. # # |Model|Exp Name|Accuracy| # |:---:|:---:|:---:| # |VGG | vgg-notran-nolstm-ctc |90.837| # |VGG | vgg-tps-nolstm-ctc|64.542| # |VGG |vgg-notran-nolstm-attn|86.853| # |RCNN | rcnn-notran-nolstm-ctc |80.080| # |RCNN | rcnn-notran-nolstm-atnn | - | # |ResNet | resnet-notran-nolstm-ctc |<mark>98.805</mark>| # |ResNet | resnet-notran-nolstm-atnn |94.422| # Command to train ResNet with a batch size of 50: # # ``` # !CUDA_VISIBLE_DEVICES=0 python3 train.py --exp_name resnet-notran-nolstm-ctc-bs50 \ # --train_data result/train --valid_data result/test --batch_size 50 \ # --Transformation None --FeatureExtraction ResNet --SequenceModeling None --Prediction CTC \ # --num_iter 10000 --valInterval 1000 \ # --saved_model saved_models/resnet-notran-nolstm-ctc/best_accuracy.pth # ``` # ### Predict readings from trained model # In[2]: get_ipython().run_line_magic('cd', '/mnt/c/Users/stcik/scire/papers/muon/deep-text-recognition-benchmark') # In[3]: # Predict 90C data output = get_ipython().getoutput('python3 predict.py --Transformation None --FeatureExtraction ResNet --SequenceModeling None --Prediction CTC --image_folder 90C/ --batch_size 400 --saved_model resnet-notran-nolstm-ctc-50bs.pth') # In[6]: output # In[3]: from IPython.core.display import display, HTML from PIL import Image import base64 import io import pandas as pd import numpy as np import matplotlib.pyplot as plt # In[4]: from cycler import cycler plt.rcParams.update({ "text.usetex": True, "font.family": "DejaVu Sans", "font.serif": ["Computer Modern Roman"], "font.size": 10, "xtick.labelsize": 10, "ytick.labelsize": 10, "figure.subplot.left": 0.21, "figure.subplot.right": 0.96, "figure.subplot.bottom": 0.18, "figure.subplot.top": 0.93, "legend.frameon": False, }) params= {'text.latex.preamble' : [r'\usepackage{amsmath, amssymb, unicode-math}', r'\usepackage[dvips]{graphicx}', r'\usepackage{xfrac}', r'\usepackage{amsbsy}']} # In[7]: data =
pd.DataFrame()
pandas.DataFrame
import os import numpy as np import struct import pandas as pd import sys import glob import pickle as pkl import random import matplotlib.pyplot as plt from lib_dolphin.eval import * from lib_dolphin.discrete import * from subprocess import check_output FLOOR = 1.0 PERIOD = 1 SAMPLE_SIZE = 4 USER = 9 ENDIEN = 'big' def write_htk(sequence, to, norm = True): n = len(sequence) dim = len(sequence[0]) with open(to, "wb") as f: sze = dim * SAMPLE_SIZE f.write(n.to_bytes(4, byteorder=ENDIEN)) f.write(PERIOD.to_bytes(4, byteorder=ENDIEN)) f.write(sze.to_bytes(2, byteorder=ENDIEN)) f.write(USER.to_bytes(2, byteorder=ENDIEN)) for i in range(0, n): if norm: mu = np.mean(sequence[i]) std = np.std(sequence[i]) + 1e-8 for j in range(0, dim): x = sequence[i, j] if np.isnan(x): print(to) if norm: ba = bytearray(struct.pack(">f", (x - mu) / std)) else: ba = bytearray(struct.pack(">f", x)) f.write(ba) return n def vec(v): line = " ".join([str(x) for x in v]) return "\t{}".format(line) def mat(x): return "\n".join([vec(x[i]) for i in range(len(x))]) def silence_proto(dims, means, name = "sil"): k = len(means) transitions = np.zeros((3,3)) transitions[0, 1] = 1.00 transitions[1, 1] = 0.99 transitions[1, 2] = 0.01 variances = np.ones(dims) components = [] p = 1.0 / k for i in range(0, k): component = """ <MIXTURE> {} {} <Mean> {} {} <Variance> {} {} """.format(i + 1, p, dims, vec(means[i]), dims, vec(variances)) components.append(component) return """~o <VecSize> {} <USER> ~h "{}" <BeginHMM> <NumStates> 3 <STATE> 2 <NumMixes> {} {} <TransP> 3 {} <EndHMM> """.format(dims, name, k, "".join(components), mat(transitions)) def left_right_hmm(max_states, dims, name="proto"): transitions = np.zeros((max_states, max_states)) means = np.zeros(dims) variances = np.ones(dims) transitions[0, 1] = 1.0 states = [] for i in range(1, max_states - 1): state = """ <State> {} <Mean> {} {} <Variance> {} {} """.format(i + 1, dims, vec(means), dims, vec(variances)) states.append(state) transitions[i,i] = 1.0 - 1.0 / max_states if i + 1 < max_states: transitions[i, i + 1] = 1.0 - transitions[i, i] return """ ~o <VecSize> {} <USER> ~h "{}" <BeginHMM> <NumStates> {} {} <TransP> {} {} <EndHMM> """.format(dims, name, max_states, "".join(states), max_states, mat(transitions)) def simple_grammar(label_file, continuous=False): df = pd.read_csv(label_file, sep=" ", header=None, names=["start", "stop", "lab"], skiprows=2) df = df.dropna() labels = list(set(df["lab"])) if continuous: labels.append("sil") patterns = " | ".join(labels) patterns = "$patterns = {};".format(patterns) if continuous: grammars = "( <$patterns> )" else: grammars = "( $patterns )" return "\n".join([patterns, grammars]) def wordlist(label_file, continuous=False): df = pd.read_csv(label_file, sep=" ", header=None, names=["start", "stop", "lab"], skiprows=2) df = df.dropna() labels = list(set(df["lab"])) if continuous: labels.append("sil") labels = sorted(labels) labels = ["{} {}".format(i,j) for i, j in zip(labels, labels)] return "\n".join(labels) def parse_model(model): lines = [line for line in open(model)] hmm = [] start = False for line in lines: if line.startswith("<BEGINHMM>"): start = True if start: hmm.append(line) if line.endswith("<ENDHMM>"): break return hmm def mmf(label_file, proto_file, dim, hmm_out="hmm0", hmm_list_out="monophones"): df = pd.read_csv(label_file, sep=" ", header=None, names=["start", "stop", "lab"], skiprows=2) df = df.dropna() labels = set(df["lab"]) print(labels) hmm = parse_model(proto_file) monophones = [] mmf = ["""~o <VECSIZE> {} <USER><DIAGC>""".format(dim)] for i in labels: header = "~h \"{}\"\n".format(i) monophones.append("{}".format(i)) mmf.append(header) mmf.extend(hmm) mmf.append("\n") mmf = "".join(mmf) monophones = "\n".join(monophones) with open(hmm_out, "w") as f: f.write(mmf) with open(hmm_list_out, "w") as f: f.write(monophones) def htk_name(num): return "".join([str(chr(int(i) + 97)) for i in str(num)]) def get_ll(out): out = out.split(b"\n") for line in out: if b"average log prob per frame" in line: ll = line.strip().split(b" ")[-1] ll = float(ll) return ll def take_step(folder, i): files = glob.glob("{}/data/train/*.htk".format(folder)) out = check_output(["rm", "-rf", "{}/hmm{}".format(folder, i)]) out = check_output(["mkdir", "{}/hmm{}".format(folder, i)]) out = check_output("HERest -A -T 1 -v {} -I {}/clusters_TRAIN.mlf -M {}/hmm{} -H {}/hmm{}/hmm_mmf {}/list".format(FLOOR, folder, folder, i, folder, i - 1, folder).split(" ") + files) return get_ll(out) def label_cluster(predictions, ids, reverse): x = np.sum([np.mean(predictions[i], axis=0) for i in ids], axis=0) x = dict([(reverse[i], x[i]) for i in range(0, len(x))]) y = {} y['WSTL'] = x['WSTL_UP'] + x['WSTL_DOWN'] y['BURST'] = x['BURST'] y['ECHO'] = x['ECHO'] y = list(y.items()) y.sort(key = lambda x: -x[1]) return y[0][0] def htk_eval(folder, last_hmm): files = glob.glob("{}/data/test/*.htk".format(folder)) out = check_output("HVite -T 1 -H {}/hmm{}/hmm_mmf -i {}/predictions.mlf -w {}/wdnet {}/dict {}/list".format( folder, last_hmm, folder, folder, folder, folder ).split(" ") + files) out = check_output("HResults -I {}/clusters_TEST.mlf {}/list {}/predictions.mlf".format(folder, folder, folder).split(" ")) return out.decode("utf-8") def states(instance, per_state=3): n = len(instance) return n // per_state def htk_export(folder, out_htk, out_lab, htk, k, min_c = 5): instances_file = "{}/instances.pkl".format(folder) predictions_file = "{}/predictions.pkl".format(folder) clusters_file = "{}/clusters.pkl".format(folder) label_file = "{}/labels.pkl".format(folder) n_states_file = "{}/states.pkl".format(htk) instances = pkl.load(open(instances_file, "rb")) clusters = pkl.load(open(clusters_file, "rb"))[k, :] predictions = pkl.load(open(predictions_file, "rb")) label_dict = pkl.load(open(label_file, "rb")) reverse = dict([(v,k) for k, v in label_dict.items()]) ids_cluster = {} for i, cluster in enumerate(clusters): if len(instances[i]) > 0: if cluster not in ids_cluster: ids_cluster[cluster] = [] ids_cluster[cluster].append(i) states_dict = {} for i, c in enumerate(clusters): l = htk_name(c) n = states(instances[i]) if l not in states_dict: states_dict[l] = [] states_dict[l].append(n) states_dict = dict([(k, int(np.mean(v))) for k, v in states_dict.items()]) pkl.dump(states_dict, open(n_states_file, "wb")) plt.hist([x for _, x in states_dict.items()], bins=40) plt.title('State Distribution') plt.savefig('{}/state_hist.png'.format(htk)) plt.close() cur = 0 label_dict = {} train = "{}_TRAIN.mlf".format(out_lab.replace(".mlf", "")) test = "{}_TEST.mlf".format(out_lab.replace(".mlf", "")) os.system("mkdir {}/train".format(out_htk)) os.system("mkdir {}/test".format(out_htk)) n_exp = 0 with open(train, 'w') as fp_train, open(test, 'w') as fp_test: fp_train.write("#!MLF!#\n") fp_test.write("#!MLF!#\n") for c, ids in ids_cluster.items(): label = label_cluster(predictions, ids, reverse) if label != "ECHO" and len(ids) >= min_c: if c not in label_dict: label_dict[c] = htk_name(c) n_exp += 1 random.shuffle(ids) n_train = int(0.9 * len(ids)) train_ids = ids[0:n_train] test_ids = ids[n_train:len(ids)] for i in train_ids: n = len(instances[i]) write_htk(instances[i], "{}/train/{}_{}.htk".format(out_htk, label_dict[c], i)) fp_train.write("\"*/{}_{}.lab\"\n".format(label_dict[c], i)) fp_train.write("{} {} {}\n".format(0, n, label_dict[c])) fp_train.write(".\n") for i in test_ids: n = len(instances[i]) write_htk(instances[i], "{}/test/{}_{}.htk".format(out_htk, label_dict[c], i)) fp_test.write("\"*/{}_{}.lab\"\n".format(label_dict[c], i)) fp_test.write("{} {} {}\n".format(0, n, label_dict[c])) fp_test.write(".\n") for c, name in label_dict.items(): print(" ... {} {}".format(c, name)) print("#clusters: {}".format(n_exp)) def is_header(line): return line.startswith("#!") or line.startswith('.') def label(line): if line.strip().endswith(".rec\""): return line.strip().split('/')[-1].replace(".rec\"", "").split("_")[0] else: return line.strip().split(" ")[2] def ids(line): return line.strip().split('/')[-1].replace(".rec\"", "").split("_")[1] def parse_htk(file): corr = [] pred = [] ids_c = [] i = 0 for line in open(file): if not is_header(line): l = label(line) if i % 2 == 0: corr.append(l) ids_c.append(ids(line)) else: pred.append(l) i += 1 return corr, pred, ids_c def number(x): strg = "" for i in x: strg += str(ord(i) - 97) return int(strg) def htk_confusion(file): corr, pred, _ = parse_htk(file) ldict = {} confusions = [] cur = 0 for c, p in zip(corr, pred): cl = number(c) pl = number(p) if cl not in ldict: ldict[cl] = cur cur += 1 if pl not in ldict: ldict[pl] = cur cur += 1 confusions.append([ldict[cl], ldict[pl]]) conf = np.zeros((len(ldict), len(ldict))) for i, j in confusions: conf[i, j] += 1 names = [(k, v) for k, v in ldict.items()] names.sort(key = lambda x: x[1]) names = [k for k, _ in names] return conf, names def htk_init(label_file, proto_file, dim, train_folder, htk, latent, min_states, hmm_out="hmm0", hmm_list_out="monophones"): files = glob.glob(train_folder) df =
pd.read_csv(label_file, sep=" ", header=None, names=["start", "stop", "lab"], skiprows=2)
pandas.read_csv
import unittest import numpy as np import pandas as pd from schemaflow.pipeline import Pipeline from schemaflow.pipe import Pipe from schemaflow import types, ops class Pipe1(Pipe): transform_requires = { 'x': types.PandasDataFrame(schema={'a': np.float64, 'b': np.float64}), } transform_modifies = { 'x': ops.ModifyDataFrame({'a * b': ops.Set(np.float64)}) } def transform(self, data: dict): data['x']['a * b'] = data['x']['a'] * data['x']['b'] return data class Pipe2(Pipe): transform_requires = { 'x': types.PandasDataFrame(schema={'a': np.float64, 'b': np.float64}), } transform_modifies = { 'x': ops.ModifyDataFrame({'a': ops.Drop()}) } def transform(self, data: dict): data['x'] = data['x'].drop('a', axis=1) return data class TestPipeline(unittest.TestCase): def test_set(self): p = Pipeline([Pipe1()]) result = p.transform({'x': pd.DataFrame({'a': [2.0], 'b': [2.0]})}) self.assertEqual(result['x'].loc[:, 'a * b'].values, [4.0]) self.assertEqual(p.transform_modifies, Pipe1.transform_modifies) def test_drop(self): p = Pipeline([Pipe2()]) result = p.transform({'x': pd.DataFrame({'a': [2.0], 'b': [2.0]})}) self.assertEqual(len(result['x'].columns), 1) self.assertEqual(p.transform_modifies, Pipe2.transform_modifies) def test_combine(self): p = Pipeline([Pipe1(), Pipe2()]) result = p.transform({'x':
pd.DataFrame({'a': [2.0], 'b': [2.0]})
pandas.DataFrame
# %% imports import logging import os import numpy as np import pandas as pd import config as cfg from logging_config import setup_logging from src.utils.data_processing import medea_path, download_energy_balance, resample_index, heat_yr2day, heat_day2hr # ---------------------------------------------------------------------------- # %% settings # ---------------------------------------------------------------------------- YEARS = range(2012, 2019) setup_logging() # ---------------------------------------------------------------------------- # %% download data from sources # ---------------------------------------------------------------------------- # Austrian energy balance as provided by Statistik Austria download_energy_balance('AT') enbal_at = medea_path('data', 'raw', 'enbal_AT.xlsx') ht_enduse_at = pd.read_excel(enbal_at, sheet_name='Fernwärme', header=[438], index_col=[0], nrows=24, na_values=['-']).astype('float') # German energy balance as provided by AGEB download_energy_balance('DE') ht_enduse_de = pd.DataFrame() for yr in [x - 2000 for x in YEARS]: # mix of xlsx and xls files... enebal_de = medea_path('data', 'raw', f'enbal_DE_20{yr}.xlsx') if not os.path.exists(enebal_de): # check if xls file exists... enebal_de = medea_path('data', 'raw', f'enbal_DE_20{yr}.xls') if not os.path.exists(enebal_de): raise FileNotFoundError(f'File {enebal_de} does not exist!') df = pd.read_excel(enebal_de, sheet_name='tj', index_col=[0], usecols=[0, 31], skiprows=list(range(0, 50)), nrows=24, na_values=['-']) df.columns = [2000 + yr] ht_enduse_de =
pd.concat([ht_enduse_de, df], axis=1)
pandas.concat
import pandas as pd import gc def data_prep(data): """ It will take about 15 seconds for 30,000 tweet objects when read from a .json file in the full format """ c = int(len(data)) test = [[data['user'][i]['statuses_count'], data['user'][i]['followers_count'], data['user'][i]['friends_count'], data['user'][i]['listed_count'], data['user'][i]['favourites_count'], data['user'][i]['screen_name'], data['user'][i]['created_at'], data['user'][i]['default_profile'], data['user'][i]['default_profile_image'], data['user'][i]['location'], data['user'][i]['time_zone'], data['user'][i]['name'], data['user'][i]['lang'], data['user'][i]['description'], data['entities'][i]] for i in range(c)] df1 = pd.DataFrame(test) del test data = data.drop('entities', axis=1) df1.columns = ['user.statuses_count', 'user.followers_count', 'user.friends_count', 'user.listed_count', 'user.favourites_count', 'user.screen_name', 'user.created_at', 'user.default_profile', 'user.default_profile_image', 'user.location', 'user.time_zone', 'user.name', 'user.lang', 'user.description', 'entities'] out =
pd.concat([df1, data], axis=1)
pandas.concat
import pandas as pd from datacode.panel.expandselect import expand_entity_date_selections from datacode.summarize.subset.outliers.typing import ( StrList, AssociatedColDict, BoolDict, DfDict, TwoDfDictAndDfTuple, MinMaxDict ) def outlier_summary_dicts(df: pd.DataFrame, associated_col_dict: AssociatedColDict, min_max_dict: MinMaxDict, ascending_sort_dict: BoolDict = None, always_associated_cols: StrList = None, bad_column_name: str = '_bad_column', num_firms: int = 3, firm_id_col: str = 'TICKER', date_col: str = 'Date', begin_datevar: str = 'Begin Date', end_datevar: str = 'End Date', expand_months: int = 3 ) -> TwoDfDictAndDfTuple: bad_df = _bad_df_from_df( df, min_max_dict, bad_column_name=bad_column_name ) bad_df_dict = _column_bad_df_dict( bad_df, associated_col_dict, ascending_sort_dict=ascending_sort_dict, always_associated_cols=always_associated_cols, bad_column_name=bad_column_name ) selected_orig_df_dict = _col_bad_df_dict_to_selected_orig_df_dict( df, bad_df_dict, associated_col_dict, always_associated_cols=always_associated_cols, num_firms=num_firms, firm_id_col=firm_id_col, date_col=date_col, begin_datevar=begin_datevar, end_datevar=end_datevar, expand_months=expand_months ) return bad_df_dict, selected_orig_df_dict, bad_df def drop_outliers_by_cutoffs(df: pd.DataFrame, min_max_dict: MinMaxDict): valid_df = df.copy() for col, min_max in min_max_dict.items(): col_min = min_max[0] col_max = min_max[1] if col in df.columns: valid_df = valid_df.loc[ (valid_df[col] >= col_min) & (valid_df[col] <= col_max) ] return valid_df def _bad_df_from_df(df: pd.DataFrame, min_max_dict: MinMaxDict, bad_column_name: str = '_bad_column'): bad_df =
pd.DataFrame()
pandas.DataFrame
import yfinance as yf import numpy as np, pandas as pd, matplotlib.pyplot as plt import math from statsmodels.tsa.arima.model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX from sklearn.metrics import mean_squared_error,mean_absolute_error import os from pandas import datetime from pandas.tseries.offsets import DateOffset from datetime import datetime, timedelta clear = lambda: os.system('clear') clear() df = yf.download("BTC-USD") plt.plot(df.index, df['Adj Close']) #plt.show() to_row = int(len(df)*0.9) training_data = list(df[:to_row]['Adj Close']) test_data = list(df[to_row:]['Adj Close']) #print(test_data[len(test_data)-1]) #input("PAUSE") model_predictions = [] n_test_obser = len(test_data) for i in range(0,n_test_obser): model = ARIMA(training_data, order = (4,1,0)) # (4,1,1) --> Mejores resultados model_fit = model.fit() output = model_fit.forecast() yhat = output[0] #print(yhat) model_predictions.append(yhat) #print(model_predictions) actual_test_value = test_data[i] training_data.append(actual_test_value) # PRUEBA DE PREDICCION """ ------------------------------------ PRUEBA 1 ------------------------------------- # Generamos un dataframe con fechas futuras # Obtenemos la ultima fecha del dataset para generar un nuevo dataset con las fechas futuras a predecir, en este caso, 60 dias en el futuro inicio = df.index[-1].date() + timedelta(1) fin = inicio + timedelta(60) model = ARIMA(df[:]['Adj Close'], order = (4,1,0)) model_fit = model.fit() future_predictions = model_fit.predict(start=inicio, end=fin) future = pd.DataFrame() future['Date'] = [inicio + timedelta(days=d) for d in range((fin - inicio).days + 1)] future['Adj Close'] = list(future_predictions) future.set_index('Date',inplace = True) df.drop(['Open'], axis=1) df.drop(['High'], axis=1) df.drop(['Low'], axis=1) df.drop(['Close'], axis=1) df.drop(['Volume'], axis=1) print(pd.concat([df, future], axis=0)) # Unimos los dataframes por columnas print(df.head) print(future.head) # FINAL PRUEBA PREDICCION """ # ------------------------------------ PRUEBA 2 ------------------------------------- # Predecimos los datos futuros hasta 1 dia, tomando las predicciones como "hechos" y re-entrenando al modelo en cada iteracion future_predictions = [] train = list(df[:]['Adj Close']) for i in range(0,60): model = ARIMA(train, order = (4,1,0)) model_fit = model.fit() output = model_fit.forecast() yhat = output[0] future_predictions.append(yhat) train.append(yhat) # Generamos un dataframe con fechas futuras # Obtenemos la ultima fecha del dataset para generar un nuevo dataset con las fechas futuras a predecir, en este caso, 60 dias en el futuro inicio = df.index[-1].date() + timedelta(1) fin = inicio + timedelta(60) future = pd.DataFrame() future['Date'] = [inicio + timedelta(days=d) for d in range((fin - inicio).days)] future['Adj Close'] = list(future_predictions) future.set_index('Date',inplace = True) df.drop(['Open'], axis=1) df.drop(['High'], axis=1) df.drop(['Low'], axis=1) df.drop(['Close'], axis=1) df.drop(['Volume'], axis=1) # Unimos los dataframes por columnas pd.concat([df, future], axis=0) # FINAL PRUEBA PREDICCION print(model_fit.summary()) plt.figure(figsize=(15,9)) plt.grid(True) date_range = df[to_row:].index plt.plot(date_range, model_predictions, color="blue", marker="o", linestyle="dashed", label="Precio de BTC predicho") plt.plot(date_range, test_data, color="red", label="Precio de BTC real") plt.title("Predicción del precio del bitcoin") plt.xlabel("Date") plt.ylabel("Price") plt.legend() plt.figure(figsize=(10,6)) plt.grid(True) plt.xlabel("Dates") plt.ylabel("Closing Prices") plt.plot(df[:to_row]['Adj Close'],"green",label="Train Data") plt.plot(df[to_row:]['Adj Close'],"blue",label="Test Data") plt.plot(future[:]['Adj Close'],"red",label="Future Prediction") plt.legend() plt.figure(figsize=(10,6)) plt.grid(True) plt.xlabel("Dates") plt.ylabel("Closing Prices") plt.plot(future[0:]['Adj Close'],"red",label="Prediction") plt.legend() plt.show() # Correlation predictions_df = pd.DataFrame(model_predictions, columns=['Adj Close']) test_df =
pd.DataFrame(test_data, columns=['Adj Close'])
pandas.DataFrame
from bimt.query.cfg import config import xml.etree.ElementTree as ET import pandas as pd import numpy as np class ProcessQuery: def __init__(self, xml_file): self.xml_file = xml_file def transform(self, raw_query): query = raw_query.strip(";,?!()\{\}\\/'") query = query.upper() return query def from_tag_to_consultas_json(self, tag): return { "QueryNumber": tag.find("QueryNumber").text, "QueryText": tag.find("QueryText").text, "ProcessedQuery": self.transform(tag.find("QueryText").text) } def write_consultas_file(self): consulta_file_path = config["DEFAULT"]["CONSULTAS"] queries_tags = self.xml_file.findall('QUERY') consulta_data = [ self.from_tag_to_consultas_json(tag) for tag in queries_tags ] consulta_df = pd.DataFrame(consulta_data) consulta_df.to_csv(consulta_file_path, sep=";", index=False) def parse_doc_score_field(self, score_as_text): score_values = [int(n) for n in score_as_text] return np.mean(score_values) def from_tag_to_esperados_json(self, tag): query_number = tag.find("QueryNumber").text records_list = tag.findall("Records/Item") return [{ "QueryNumber": query_number, "DocNumber": t.text, "DocVotes": self.parse_doc_score_field(t.get("score")) } for t in records_list] def write_esperados_file(self): esperados_file_path = config["DEFAULT"]["ESPERADOS"] queries_tags = self.xml_file.findall('QUERY') esperados_data = [ self.from_tag_to_esperados_json(tag) for tag in queries_tags ] esperados_data = np.ravel(esperados_data) unpacked_data = [] for i in esperados_data: unpacked_data.extend(i) esperados_df =
pd.DataFrame(unpacked_data)
pandas.DataFrame
import numpy as np #import matplotlib.pyplot as plt import pandas as pd import numpy.matlib # use repmat function from scipy.spatial import distance_matrix from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.metrics import roc_curve, auc from sklearn import preprocessing import random import time import copy import concurrent.futures #import jason random.seed(1) # Compute Adjacency matrix for the Grabriel Graph def get_adjacency(X): dist_matrix = distance_matrix(X,X) Adj_matrix = np.zeros(shape = dist_matrix.shape) nrow = dist_matrix.shape[0] for i in range(nrow): for j in range(nrow): if (i != j): d1 = (dist_matrix[i,j])/2 dist = pd.DataFrame((X.iloc[i,:]+X.iloc[j,:])/2).T d = distance_matrix(dist, X) d[0,i] = float("inf") d[0,j] = float("inf") compara = (d<d1) if not compara.any(): Adj_matrix[i,j] = 1 Adj_matrix[j,i] = 1 return Adj_matrix # Removing overlapping samples: def remove_noise(X, y): Adj_matrix = get_adjacency(X) c1 = np.asarray(np.where(y==1)).ravel() c2 = np.asarray(np.where(y==-1)).ravel() A1 = Adj_matrix[:,c1].sum(axis = 0) # sum over columns A2 = Adj_matrix[:,c2].sum(axis = 0) M = pd.DataFrame(Adj_matrix) adj_1 = np.asarray(M.iloc[c1,c1]) adj_2 = np.asarray(M.iloc[c2,c2]) A1h = adj_1.sum(axis = 0) A2h = adj_2.sum(axis = 0) #Computing the quality coefficient Q for each class Q_class1 = A1h / A1 Q_class2 = A2h / A2 # Computing the threshold value t for each class t_class1 = sum(Q_class1) / Q_class1.shape[0] t_class2 = sum(Q_class2) / Q_class2.shape[0] noise_c1 = np.where(Q_class1 < t_class1) noise_c2 = np.where(Q_class2 < t_class2) noise_data = np.c_[noise_c1, noise_c2] noise = noise_data.ravel() # Filtering the data X_new = X.drop(noise) y_new = y.drop(noise) return X_new, y_new # Split the data for concurrent computing def split(X_train, y_train, split_size): data_train = np.c_[X_train, y_train] np.random.shuffle(data_train) data_split = np.array_split(data_train, split_size) return data_split # Finding the separation border: def get_borda(y, Adj_matrix): y_t = pd.DataFrame(y).T ncol = y_t.shape[1] mask = np.matlib.repmat(y_t, ncol, 1) mask2 = pd.DataFrame(mask*Adj_matrix) borda = pd.DataFrame(np.zeros(ncol)).T for idx in range(ncol): a1 = sum(-y_t.iloc[0, idx] == mask2.iloc[idx,:]) # check if the labels are different if a1 > 0: borda[idx] = 1 return borda # Finding the support edges: def get_arestas_suporte(X, y, borda, Adj_matrix): X = np.asarray(X) y_t = pd.DataFrame(y).T ncol = y_t.shape[1] mask = np.matlib.repmat(y_t, ncol, 1) nrow = Adj_matrix.shape[0] maskBorda = np.matlib.repmat(borda == 1, nrow, 1) maskBorda = np.asarray(maskBorda) # Removing the lines that not belong to the margin aux = maskBorda * np.transpose(maskBorda) # Removing edges that do not belong to the graph aux = Adj_matrix * aux # Removing edges from same labels vertices aux1 = aux + (mask * aux) aux2 = aux - (mask * aux) aux1 = np.asarray(aux1) aux2 = np.asarray(aux2) aux = aux1 * np.transpose(aux2) # converting matrix to binary aux = (aux != 0) arestas = np.where(aux == 1) arestas = np.transpose(np.asarray(arestas)) nrow_arestas = arestas.shape[0] ncol_arestas = arestas.shape[1] arestas_suporte = [] y_suporte = [] y_arr = np.asarray(y) for i in range(nrow_arestas): for j in range(ncol_arestas): idx = arestas[i,j] arestas_suporte.append(X[idx,:]) y_suporte.append(y_arr[idx]) X_suporte = np.asarray(arestas_suporte) y_suporte = np.asarray(y_suporte) return X_suporte, y_suporte # Another support edges function that contains the other functions def support_edges(data): if not isinstance(data, pd.DataFrame): data = pd.DataFrame(data) X_train = data.iloc[:,:-1] y_train = data.iloc[:, -1] Adj_matrix = get_adjacency(X_train) borda = get_borda(y_train, Adj_matrix) X_suporte, y_suporte = get_arestas_suporte(X_train, y_train, borda, Adj_matrix) arestas_suporte = np.c_[X_suporte, y_suporte] if arestas_suporte.shape[0] > 0: arestas_suporte = np.unique(arestas_suporte, axis = 0) return arestas_suporte # Classification def classify_data(X_test, y_test, arestas_suporte): X_suporte = arestas_suporte[:,:-1] #y_suporte = arestas_suporte[:,-1] nrow = X_test.shape[0] dist_test = distance_matrix(X_test, X_suporte) # compute the distance from the sample to the support egdes y_hat = np.zeros(nrow) for idx in range(nrow): dist = dist_test[idx,:] min_idx = np.argmin(dist) y_hat[idx] = arestas_suporte[min_idx, -1] return y_hat # Performance measure using AUC def compute_AUC(y_test, y_hat): fpr, tpr, _ = roc_curve(y_test, y_hat) if fpr.shape[0] < 2 or tpr.shape[0] < 2: roc_auc = float('nan') else: roc_auc = auc(fpr, tpr) return roc_auc # Parallel graph method: def parallel_graph(X_train, y_train, split_size): data_train = np.c_[X_train, y_train] np.random.shuffle(data_train) data_split = np.array_split(data_train, split_size) arestas_suporte_final = [] for i in range(split_size): data = pd.DataFrame(data_split[i]) X_train = data.iloc[:,:-1] y_train = data.iloc[:, -1] # Finding the support edges from this slot of data: arestas_suporte = support_edges(data) arestas_suporte_final.append(arestas_suporte) arr = arestas_suporte_final[0] for i in range(split_size-1): i = i+1 arr = np.concatenate((arr, arestas_suporte_final[i]), axis = 0) data_train_new = pd.DataFrame(arr) X_train_new = data_train_new.iloc[:,:-1] y_train_new = data_train_new.iloc[:,-1] return X_train_new, y_train_new def compute_pseudo_support_edges(data, scale_factor = 10): # separating the lables c1 = data[data.iloc[:,-1] == 1] c2 = data[data.iloc[:,-1] == -1] # Choosing one random reference sample from each class c1_reference = c1.sample(n = 1) c2_reference = c2.sample(n = 1) # Compute the distance matrix between each sample and the opposite class dist_c1 = distance_matrix(c2_reference, c1) dist_c2 = distance_matrix(c1_reference, c2) n_edges = int(data.shape[0] / scale_factor) # number of pseudo support edges # Indices from the n smallests support edges idx_c1 = np.argpartition(dist_c1, n_edges) idx_c2 = np.argpartition(dist_c2, n_edges) c1_support_edges = c1.iloc[idx_c1[0,:n_edges]] c2_support_edges = c2.iloc[idx_c2[0,:n_edges]] pseudo_support_edges = np.array(
pd.concat([c1_support_edges, c2_support_edges])
pandas.concat
import numpy as np from numpy.random import randn import pytest from pandas import DataFrame, Series import pandas._testing as tm @pytest.mark.parametrize("name", ["var", "vol", "mean"]) def test_ewma_series(series, name): series_result = getattr(series.ewm(com=10), name)() assert isinstance(series_result, Series) @pytest.mark.parametrize("name", ["var", "vol", "mean"]) def test_ewma_frame(frame, name): frame_result = getattr(frame.ewm(com=10), name)() assert isinstance(frame_result, DataFrame) def test_ewma_adjust(): vals = Series(np.zeros(1000)) vals[5] = 1 result = vals.ewm(span=100, adjust=False).mean().sum() assert np.abs(result - 1) < 1e-2 @pytest.mark.parametrize("adjust", [True, False]) @pytest.mark.parametrize("ignore_na", [True, False]) def test_ewma_cases(adjust, ignore_na): # try adjust/ignore_na args matrix s = Series([1.0, 2.0, 4.0, 8.0]) if adjust: expected = Series([1.0, 1.6, 2.736842, 4.923077]) else: expected = Series([1.0, 1.333333, 2.222222, 4.148148]) result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean() tm.assert_series_equal(result, expected) def test_ewma_nan_handling(): s = Series([1.0] + [np.nan] * 5 + [1.0]) result = s.ewm(com=5).mean() tm.assert_series_equal(result, Series([1.0] * len(s))) s = Series([np.nan] * 2 + [1.0] + [np.nan] * 2 + [1.0]) result = s.ewm(com=5).mean() tm.assert_series_equal(result, Series([np.nan] * 2 + [1.0] * 4)) @pytest.mark.parametrize( "s, adjust, ignore_na, w", [ ( Series([np.nan, 1.0, 101.0]), True, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0], ), ( Series([np.nan, 1.0, 101.0]), True, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0], ), ( Series([np.nan, 1.0, 101.0]), False, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))], ), ( Series([np.nan, 1.0, 101.0]), False, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))], ), ( Series([1.0, np.nan, 101.0]), True, False, [(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, 1.0], ), ( Series([1.0, np.nan, 101.0]), True, True, [(1.0 - (1.0 / (1.0 + 2.0))), np.nan, 1.0], ), ( Series([1.0, np.nan, 101.0]), False, False, [(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 / (1.0 + 2.0))], ), ( Series([1.0, np.nan, 101.0]), False, True, [(1.0 - (1.0 / (1.0 + 2.0))), np.nan, (1.0 / (1.0 + 2.0))], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), True, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, np.nan, 1.0, np.nan], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), True, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), np.nan, np.nan, 1.0, np.nan], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), False, False, [ np.nan, (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, np.nan, (1.0 / (1.0 + 2.0)), np.nan, ], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), False, True, [ np.nan, (1.0 - (1.0 / (1.0 + 2.0))), np.nan, np.nan, (1.0 / (1.0 + 2.0)), np.nan, ], ), ( Series([1.0, np.nan, 101.0, 50.0]), True, False, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0, ], ), ( Series([1.0, np.nan, 101.0, 50.0]), True, True, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0, ], ), ( Series([1.0, np.nan, 101.0, 50.0]), False, False, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, (1.0 - (1.0 / (1.0 + 2.0))) * (1.0 / (1.0 + 2.0)), (1.0 / (1.0 + 2.0)) * ((1.0 - (1.0 / (1.0 + 2.0))) ** 2 + (1.0 / (1.0 + 2.0))), ], ), ( Series([1.0, np.nan, 101.0, 50.0]), False, True, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 - (1.0 / (1.0 + 2.0))) * (1.0 / (1.0 + 2.0)), (1.0 / (1.0 + 2.0)), ], ), ], ) def test_ewma_nan_handling_cases(s, adjust, ignore_na, w): # GH 7603 expected = (s.multiply(w).cumsum() / Series(w).cumsum()).fillna(method="ffill") result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean() tm.assert_series_equal(result, expected) if ignore_na is False: # check that ignore_na defaults to False result = s.ewm(com=2.0, adjust=adjust).mean()
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
# Import Libraries import statistics import numpy as np import pandas as pd import streamlit as st # PREDICTION FUNCTION def predict_AQI(city, week, year, multi_week, month): if city == 'Chicago': data = pd.read_csv("pages/data/chi_actual_pred.csv") if multi_week: result = [] actual = [] for i in week.values(): result_val = pd.DataFrame(data[(data["week"] == (i)) & (data["year"] == int(year))]) result_val = result_val.iloc[:, 1].values actual_val = pd.DataFrame(data[(data["week"] == (i)) & (data["year"] == int(year))]) actual_val = actual_val.iloc[:, 6].values result.append(np.array_repr(result_val)) actual.append(np.array_repr(actual_val)) f_r = [] f_a = [] for i in result: i = i.replace('array([', '') f_r.append(i.replace('])', '')) for i in actual: i = i.replace('array([', '') f_a.append(i.replace('])', '')) return f_r, f_a elif month != '0': result = pd.DataFrame(data[(data["month"] == int(month)) & (data["year"] == int(year))]) result = statistics.mean(result.iloc[:, 1].values) actual = pd.DataFrame(data[(data["month"] == int(month)) & (data["year"] == int(year))]) actual = statistics.mean(actual.iloc[:, 6].values) return result, actual else: result = pd.DataFrame(data[(data["week"] == int(week)) & (data["year"] == int(year))]) result = result.iloc[:, 1].values actual = pd.DataFrame(data[(data["week"] == int(week)) & (data["year"] == int(year))]) actual = actual.iloc[:, 6].values return result, actual if city == 'Philadelphia': data =
pd.read_csv("pages/data/phl_actual_pred.csv")
pandas.read_csv
""" Author: <NAME>, Czech Academy of Sciences This script searches the High Energy Astrophysics Science Archive Research Center (HEASARC) archive for any archival X-ray data available for a user-provided list of targets. - Input: Targets can be provided in a text file, with one source identifier (or set of coordinates) per line. A combination of identifiers + coordinates is allowed, but only one unique value per source is needed. Note: script resolves names with Simbad by default. Future change should be to allow the user to utilise the "name_resolver" field in the Perl script, assuming this is possible in the Java one? Coordinates can be given in the following forms: - DEGREES: e.g., "105.0 54.7" - SEXAGESIMAL: e.g., "12 29 06.70,02 03 08.6" Make sure the coordinates are one per line in the form "RA DEC". - Method: This script parallelizes the search to avoid overwhelming the servers used to search. Thus currently, the source list is split into chunks with a maximum number of 10 sources per chunk. The script then parallelizes queries over each chunk and stitches the results back together at the end. - User-defined tables: Any tables available on HEASARC can be queried. The user just needs to add these to the "INSTRUMENTS.csv" file present in the folder, along with the instrument, instrument offset (in arcmin) and name of the exposure column (can be found by clicking on the corresponding instrument and table here: https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl). Note: the constraints column can be left blank, or the user can add their own (at their own risk!). - Summary file: The script finishes by creating a summary file -- "SUMMARY.csv" that gives the details of all X-ray data found for every source, in the original order provided by the user. - to make this script work on other machines: Change setupDir to the directory containing users.jar and INSTRUMENTS.csv Then change to the directory containing your source list and use the command: >>> xq -t my_sources.txt -w y (-w y makes sure wget commands are found) where my_sources.txt is the file containing the source list MAKE SURE coordinate RA and dec are separated by a space! - other links: Full user guide for the Java script: https://heasarc.gsfc.nasa.gov/xamin/doc/CLIUsersGuide.html """ import os,sys,argparse,datetime,glob,multiprocessing,uuid,re,requests import pandas as pd import numpy as np from tqdm import * from astropy.time import Time setupDir = "/Users/pboorman/Dropbox/data/0_analysis/xrayQuery/" workingDir = os.getcwd() def createSummary(outputDir,srcList,TABLES): """ Create summary file listing the data found for all sources in the original order they were given in. Sources with no data found are included in the summary for clarity """ print("Creating summary file for all sources in original order given...") fullSrcList=pd.read_csv("../"+srcList,names=["0INPUT"]) fullSrcList.loc[:,"1MATCHED_TARGET"]=np.repeat("NOT_FOUND",len(fullSrcList)) ins_abbreviations=["NUS","CHA","SUZ","XRT","XMM"] totObs=0. totTime=0. with tqdm(total=len(TABLES)*len(fullSrcList)) as pbar: for i,table in enumerate(TABLES): INSTR=ins_abbreviations[i] nObs="N_%(INSTR)s" %locals() medOffset="medSep_%(INSTR)s" %locals() medExp="medks_%(INSTR)s" %locals() totExp="totks_%(INSTR)s" %locals() fullSrcList.loc[:,nObs]=int(0) fullSrcList.loc[:,medOffset]=0. fullSrcList.loc[:,medExp]=0. fullSrcList.loc[:,totExp]=0. for s,src in fullSrcList.iterrows(): tempInst=pd.read_csv("%(table)s.csv" %locals(), dtype = "str") specificObs=tempInst.loc[tempInst["b_target"]==src["0INPUT"]] if len(specificObs)>0: fullSrcList.loc[s,"1MATCHED_TARGET"]=specificObs["a_name"].values[0] fullSrcList.loc[s,nObs]=str(len(specificObs)) fullSrcList.loc[s,medOffset]=np.round(specificObs["OFFSET_ARCMIN"].astype(float).median(),2) fullSrcList.loc[s,medExp]=np.round(specificObs["EXPOSURE"].astype(float).median()/10**3,2) fullSrcList.loc[s,totExp]=np.round(specificObs["EXPOSURE"].astype(float).sum()/10**3,2) pbar.update() totObs+=fullSrcList[nObs].astype(int).sum() totTime+=fullSrcList[totExp].sum() avObs=np.round(totObs/len(fullSrcList),1) fullSrcList=fullSrcList.reindex(sorted(fullSrcList.columns), axis=1) fullSrcList=fullSrcList.rename(columns={ "0INPUT":'INPUT', "1MATCHED_TARGET":'MATCHED_TARGET' }) fullSrcList.to_csv("SUMMARY.csv" %locals(),na_rep="NaN",index=False) print("Done.") return int(totObs),avObs,np.round(totTime,2) def getInstrument_df(chunk_df): """ This generates a dataframe from the tables specified in the external "INSTRUMENTS.csv" file. Users can add additional tables here to search over. Additional values are appended to the dataframe to use later. """ ID=str(uuid.uuid4().hex) info_df=pd.read_csv(setupDir + "/INSTRUMENTS.csv").fillna("") info_df.loc[:,"constraint"]="" info_df.loc[info_df.instrument=="nustar","constraint"]="constraint='exposure_a > 1000'" info_df=info_df.loc[info_df.table==chunk_df.TABLE.values[0]] javaPath = setupDir + "/users.jar" javaCmd="java -jar %(javaPath)s" %locals() cwd=os.getcwd() info_df.loc[:,"javaUpload"]=cwd+"/"+ID+"_sources.txt" info_df.loc[:,"javaOutput"]=cwd+"/"+ID+"_"+info_df["table"]+".xls" info_df.loc[:,"JAVA_CMD"]=javaCmd + \ " table="+info_df["table"].astype(str) + \ " upload="+info_df["javaUpload"].values[0] + \ " offset=a:b:"+info_df["offset_arcmin"].astype(str) + \ " showoffsets " + \ info_df["constraint"].astype(str) + \ " fields=" + columns + " " + \ "output="+info_df["javaOutput"].astype(str) + \ " format=excel" chunk_df["0INPUT"].to_csv(info_df["javaUpload"].values[0],header=False,index=False) ## alternatively, fields=standard will return other columns return info_df def chunkSearch(chunk_df): """ This searches for data on a specific chunk of the original source list. First save source list chunk to unique name. ... Then create instrument df with java command featuring the specific unique name. """ instrument_df=getInstrument_df(chunk_df) runJavaCmd=instrument_df.JAVA_CMD.values[0] javaUpload=instrument_df.javaUpload.values[0] javaOutput=instrument_df.javaOutput.values[0] instrument=instrument_df.instrument.values[0] os.system(runJavaCmd) xlsResFile=instrument_df.javaOutput.values[0] if os.stat(xlsResFile).st_size != 0: temp=pd.read_excel(xlsResFile,skiprows=1, dtype = "str").dropna(subset=["b_target"]) temp=temp.rename(columns={ instrument_df.exposure_column.values[0]:'EXPOSURE', "a_obsid":'OBSID', "_delta_ab":'OFFSET_ARCMIN', "_delta_ba":'OFFSET_ARCMIN'}) csvResFile=xlsResFile.replace(".xls",".csv") temp.to_csv(csvResFile,index=False) os.remove(xlsResFile) def parallelizeQueries(searchNames_df,FUNCTION=chunkSearch,NCORES=4): """ Split entire source list into chunks of maximum length maxChunkLen. The function then parallelizes the queries of multiple chunks depending on how many cores are available. """ maxChunkLen=10 ## maximum number of rows in a dataframe chunk nChunk=int(np.ceil(len(searchNames_df)/maxChunkLen)) tab=searchNames_df.TABLE.values[0] print("Searching %(tab)s..." %locals()) DATA_SPLIT=np.array_split(searchNames_df,nChunk) with multiprocessing.Pool(processes=NCORES) as p: with tqdm(total=nChunk) as pbar: for i,_ in enumerate(p.imap_unordered(FUNCTION,DATA_SPLIT)): pbar.update() for file in glob.glob("*_sources.txt"): os.remove(file) def create_obstime_column(tab, df_in): """ Used to convert the MJD date of observation to human-readable form """ if tab == "swiftmastr": time_column = "a_start_time" else: time_column = "a_time" df = df_in.copy() df.loc[:, "obs_year"] = df.dropna(subset = [time_column])[time_column].apply(lambda x: Time(float(x), format = "mjd").to_datetime().year) df.loc[:, "obs_month"] = df.dropna(subset = [time_column])[time_column].apply(lambda x: Time(float(x), format = "mjd").to_datetime().month) df.loc[:, "obs_day"] = df.dropna(subset = [time_column])[time_column].apply(lambda x: Time(float(x), format = "mjd").to_datetime().day) df.loc[:, "OBSTIME"] = df.dropna(subset = [time_column])[time_column].apply(lambda x: Time(float(x), format = "mjd").to_datetime().strftime("%Y%b%d")) return df def startQueries(searchFile, wgetLocs = "n", filterData = "y"): """ Main function for running the query. Reads the input target list, and starts the parallelization. Finishes by creating summary file for every target searched, irrespective of whether any data was found or not. """ start=datetime.datetime.now() instruments=
pd.read_csv(setupDir + "/INSTRUMENTS.csv")
pandas.read_csv
import os from multiprocessing.pool import Pool import pandas as pd from lob_data_utils import lob, model from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC def svm_classification(df, gdf_columns) -> dict: clf = LogisticRegression() X = df.loc[:, gdf_columns] y = df['mid_price_indicator'].values.reshape(-1, 1) scores = model.validate_model(clf, X, y) return scores def main(stock): """ This gets gdf_data :return: """ K = 50 length = 15000 rr = [0.01, 0.05, 0.1, 0.5, 1.0] ss = [0.01, 0.05, 0.1, 0.5, 1.0] gdf_data_dir = 'data_gdf' results_dir = 'data_res_logistic' gdf_start = 0 gdf_end = 50 algorithm = 'logistic' results = [] results_filename = os.path.join( results_dir, 'res_log_{}_len{}_K{}-{}.csv'.format(stock, length, gdf_start, gdf_end)) results_partial_filename = os.path.join( results_dir, 'res_log_{}_len{}_K{}-{}_partial.csv'.format(stock, length, gdf_start, gdf_end)) for r in rr: for s in ss: gdf_filename = 'gdf_{}_len{}_r{}_s{}_K{}'.format(stock, length, r, s, K) dfs, dfs_test = lob.load_prepared_data(gdf_filename, data_dir=gdf_data_dir, cv=False, length=length) gdf_columns = ['gdf_' + str(i) for i in range(gdf_start, gdf_end)] res = {'r': r, 's': s, 'stock': stock, 'K': K, 'method': algorithm} print('********************************************') print(res) try: scores = svm_classification(dfs, gdf_columns) print(res, scores) results.append({**res, **scores}) except Exception as e: print('Exception', e, res) results.append(res)
pd.DataFrame(results)
pandas.DataFrame
import numpy as _np from scipy.stats import sem as _sem import pandas as _pd import matplotlib.pyplot as _plt from nicepy import format_fig as _ff, format_ax as _fa class TofData: """ General class for TOF data """ def __init__(self, filename, params, norm=True, noise_range=(3, 8), bkg_range=(3, 8), fluor=True, factor=0.92152588, offset=-0.36290086): """ :param filename: :param params: :param norm: :param noise_range: :param bkg_range: :param fluor: :param factor: :param offset: """ self.filename = filename self.idx = False self.norm = norm self.noise_range = noise_range self.bkg_range = bkg_range self.factor = factor self.offset = offset self.fluor = fluor self._get_data(filename) self._subtract_bkg() self._get_noise() self._get_params(filename, params) self.peaks = None def _get_data(self, filename): """ :param filename: :return: """ dat = list(_np.loadtxt(filename)) fluor = dat.pop() if self.fluor is False: fluor = 1 center = int(len(dat) / 2) time = _np.array([s for s in dat[:center]]) mass = self._time_to_mass(time, self.factor, self.offset) raw = _np.array([-i / fluor for i in dat[center:]]) / fluor raw = _pd.DataFrame({'Time': time, 'Mass': mass, 'Volts': raw}) if self.norm is True: tot = raw['Volts'].sum() raw['Volts'] = raw['Volts']/tot self.raw = raw def _subtract_bkg(self): """ :return: """ temp = self._select_range('Mass', self.bkg_range[0], self.bkg_range[1])['Volts'] m = temp.mean() self.raw['Volts'] = self.raw['Volts'] - m def _get_noise(self): """ :return: """ temp = self._select_range('Mass', self.noise_range[0], self.noise_range[1])['Volts'] n = temp.std() self.noise = n def _get_params(self, filename, params): """ :param filename: :param params: :return: """ listed = filename.replace('.txt', '').split('_') temp = {key: listed[val] for key, val in params.items()} self.params = {} for key, val in temp.items(): if key.lower() == 'version': val = val.lower() val = val.replace('v', '') else: pass if '.' in val or 'e' in val: try: val = float(val) except ValueError: pass else: try: val = int(val) except ValueError: val = val.lower() self.params[key] = val self.params = _pd.Series(self.params) def _select_range(self, column, lower, upper): """ Selects part of data that is between values upper and lower in column :param column: column name to rate_constants used to bound :param lower: lower value in column :param upper: upper value in column :return: parsed data frame """ temp = self.raw[(self.raw[column] <= upper) & (self.raw[column] >= lower)] return temp def _get_closest(self, column, value): """ :param column: :param value: :return: """ temp = self.raw.loc[(self.raw[column] - value).abs().idxmin()] return temp def _get_range(self, mass, pk_range=(-80, 80)): """ :param mass: :param pk_range: :return: """ idx = self._get_closest('Mass', mass).name lower = idx + pk_range[0] if lower < 0: lower = 0 upper = idx + pk_range[1] if upper > self.raw.index.max(): upper = self.raw.index.max() return lower, upper def _get_peak(self, lower, upper): """ :param lower: :param upper: :return: """ temp = self.raw.loc[range(lower, upper + 1)] p = temp['Volts'].sum() if p < self.noise: p = 0 return p def get_peaks(self, masses, **kwargs): """ :param masses: :param kwargs: :return: """ self.peaks = {} self.idx = {} for key, val in masses.items(): lower, upper = self._get_range(val, **kwargs) self.peaks[key] = self._get_peak(lower, upper) self.idx[key] = (lower, val, upper) self.peaks = _pd.Series(self.peaks) self.idx = _pd.Series(self.idx) @staticmethod def _time_to_mass(time, factor, offset): mass = [(t - factor) ** 2 + offset for t in time] return mass def show(self, x='Mass', shade=True, **kwargs): """ :param x: :param shade: :param kwargs: :return: """ fig, ax = _plt.subplots() title = {key: val for key, val in self.params.items()} self.raw.plot.line(x=x, y='Volts', title='%s' % title, color='black', ax=ax, **kwargs) if shade is True: if self.idx is not False: for key, val in self.idx.items(): idx_range = self.raw.loc[range(val[0], val[2] + 1)] ax.fill_between(idx_range[x], idx_range['Volts'], label=key, alpha=0.5) ax.legend(loc=0) else: pass else: pass ax.legend(loc=0) return fig, ax class TofSet: def __init__(self, filenames, params, **kwargs): """ :param filenames: :param params: :param kwargs: """ self.filenames = filenames self.params = params self._get_tofs(**kwargs) self._get_raw() self.idx = False self.peaks = None def _get_tofs(self, **kwargs): """ :param kwargs: :return: """ tof_list = [] for filename in self.filenames: t = TofData(filename, self.params, **kwargs) tof_list.append(t) tof_objs = [] for t in tof_list: temp = t.params.copy() temp['tof'] = t tof_objs.append(temp) temp = _pd.DataFrame(tof_objs) temp.set_index(list(self.params.keys()), inplace=True) self.tof_objs = temp.sort_index() def _get_raw(self): """ :return: """ # temp = self.tof_objs.copy() # temp['raw'] = [t.raw for t in temp['tof']] # self.raw = temp.drop('tof', axis=1) temp = self.tof_objs.copy() raw = [] for tof in temp['tof']: t = tof.raw for key, val in tof.params.items(): t[key] = val raw.append(t) self.raw = _pd.concat(raw) self.raw.set_index(list(self.params.keys()), inplace=True) self.raw.sort_index(inplace=True) def _get_tof_peaks(self, masses, **kwargs): """ :param masses: :param kwargs: :return: """ for t in self.tof_objs['tof']: t.get_peaks(masses, **kwargs) self.idx = t.idx def get_peaks(self, masses, **kwargs): """ :param masses: :param kwargs: :return: """ self._get_tof_peaks(masses, **kwargs) temp_list = [] for t in self.tof_objs['tof']: temp = _pd.concat([t.peaks, t.params]) temp_list.append(temp) temp = _pd.concat(temp_list, axis=1) self.peaks = temp.transpose() self.peaks.set_index(list(self.params.keys()), inplace=True) self.peaks.sort_index(inplace=True) # self.peaks['total'] = self.peaks.sum(axis=1) def get_raw_means(self, levels=None): if levels is None: levels = [] for key in ['version', 'delay']: if key in self.params.keys(): levels.append(key) else: pass self.levels = levels grouped = self.tof_objs.groupby(levels) temp_mean = [] temp_error = [] for indices, group in grouped: times = _np.mean([tof.raw['Time'] for tof in group['tof']], axis=0) masses = _np.mean([tof.raw['Mass'] for tof in group['tof']], axis=0) volts = _np.mean([tof.raw['Volts'] for tof in group['tof']], axis=0) errors = _sem([tof.raw['Volts'] for tof in group['tof']], axis=0) df_mean = _pd.DataFrame({'Time': times, 'Mass': masses, 'Volts': volts}) df_error = _pd.DataFrame({'Time': times, 'Mass': masses, 'Volts': errors}) if type(indices) is not tuple: indices = [indices] for key, index in zip(levels, indices): df_mean[key] = index df_error[key] = index temp_mean.append(df_mean) temp_error.append(df_error) self.raw_means = _pd.concat(temp_mean) self.raw_errors =
_pd.concat(temp_error)
pandas.concat
from typing import cast import pandas as pd from hooqu.constraints import ( AnalysisBasedConstraint, completeness_constraint, compliance_constraint, max_constraint, mean_constraint, min_constraint, quantile_constraint, size_constraint, standard_deviation_constraint, sum_constraint, uniqueness_constraint, ) from hooqu.constraints.constraint import ( ConstraintDecorator, ConstraintResult, ConstraintStatus, ) def calculate(constraint: AnalysisBasedConstraint, df) -> ConstraintResult: if isinstance(constraint, ConstraintDecorator): constraint = cast(AnalysisBasedConstraint, constraint.inner) return constraint.calculate_and_evaluate(df) def test_completeness_constraint(df_missing): df = df_missing assert ( calculate(completeness_constraint("att1", lambda v: v == 0.5), df).status == ConstraintStatus.SUCCESS ) assert ( calculate(completeness_constraint("att1", lambda v: v != 0.5), df).status == ConstraintStatus.FAILURE ) assert ( calculate(completeness_constraint("att2", lambda v: v == 0.75), df).status == ConstraintStatus.SUCCESS ) assert ( calculate(completeness_constraint("att2", lambda v: v != 0.75), df).status == ConstraintStatus.FAILURE ) def test_basic_stats_constraints(df_with_numeric_values): df = df_with_numeric_values assert ( calculate(min_constraint("att1", lambda v: v == 1.0), df).status == ConstraintStatus.SUCCESS ) assert ( calculate(max_constraint("att1", lambda v: v == 6.0), df).status == ConstraintStatus.SUCCESS ) assert ( calculate(mean_constraint("att1", lambda v: v == 3.5), df).status == ConstraintStatus.SUCCESS ) assert ( calculate(sum_constraint("att1", lambda v: v == 21.0), df).status == ConstraintStatus.SUCCESS ) assert ( calculate(mean_constraint("att1", lambda v: v == 3.5), df).status == ConstraintStatus.SUCCESS ) assert ( calculate( standard_deviation_constraint("att1", lambda v: v == 1.707825127659933), df ).status == ConstraintStatus.SUCCESS ) assert ( calculate(quantile_constraint("att1", 0.5, lambda v: v == 3.0), df).status == ConstraintStatus.SUCCESS ) def test_size_constraint(df_missing): df = df_missing assert ( calculate(size_constraint(lambda v: v == len(df)), df).status == ConstraintStatus.SUCCESS ) def test_compliance_constraint(df_with_numeric_values): df = df_with_numeric_values assert ( calculate( compliance_constraint("rule1", "att1 > 2 ", lambda pct: pct >= 0.6), df ).status == ConstraintStatus.SUCCESS ) assert ( calculate( compliance_constraint("rule1", "att1 > 2 ", lambda pct: pct >= 0.9), df ).status == ConstraintStatus.FAILURE ) def test_uniqueness_constraint(): df_nunique =
pd.DataFrame({"att1": [0, 1, 2, 5, 5]})
pandas.DataFrame
#!/usr/bin/env python '''Run a reblocking analysis on pauxy QMC output files.''' import glob import h5py import json import numpy import pandas as pd import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") import pyblock import scipy.stats from pauxy.analysis.extraction import ( extract_mixed_estimates, extract_data, get_metadata, set_info, extract_rdm ) from pauxy.utils.misc import get_from_dict from pauxy.utils.linalg import get_ortho_ao_mod from pauxy.analysis.autocorr import reblock_by_autocorr def average_single(frame, delete=True, multi_sym=False): if multi_sym: short = frame.groupby('Iteration') else: short = frame means = short.mean() err = short.aggregate(lambda x: scipy.stats.sem(x, ddof=1)) averaged = means.merge(err, left_index=True, right_index=True, suffixes=('', '_error')) columns = [c for c in averaged.columns.values if '_error' not in c] columns = [[c, c+'_error'] for c in columns] columns = [item for sublist in columns for item in sublist] averaged.reset_index(inplace=True) delcol = ['Weight', 'Weight_error'] for d in delcol: if delete: columns.remove(d) return averaged[columns] def average_ratio(numerator, denominator): re_num = numerator.real re_den = denominator.real im_num = numerator.imag im_den = denominator.imag # When doing FP we need to compute E = \bar{ENumer} / \bar{EDenom} # Only compute real part of the energy num_av = (re_num.mean()*re_den.mean()+im_num.mean()*im_den.mean()) den_av = (re_den.mean()**2 + im_den.mean()**2) mean = num_av / den_av # Doing error analysis properly is complicated. This is not correct. re_nume = scipy.stats.sem(re_num) re_dene = scipy.stats.sem(re_den) # Ignoring the fact that the mean includes complex components. cov = numpy.cov(re_num, re_den)[0,1] nsmpl = len(re_num) error = abs(mean) * ((re_nume/re_num.mean())**2 + (re_dene/re_den.mean())**2 - 2*cov/(nsmpl*re_num.mean()*re_den.mean()))**0.5 return (mean, error) def average_fp(frame): iteration = numpy.real(frame['Iteration'].values) frame = frame.drop('Iteration', axis=1) real_df = frame.apply(lambda x: x.real) imag_df = frame.apply(lambda x: x.imag) real_df['Iteration'] = iteration imag_df['Iteration'] = iteration real = average_single(real_df, multi_sym=True) imag = average_single(imag_df, multi_sym=True) results = pd.DataFrame() re_num = real.ENumer.values re_den = real.EDenom.values im_num = imag.ENumer.values im_den = imag.EDenom.values results['Iteration'] = sorted(real_df.groupby('Iteration').groups.keys()) # When doing FP we need to compute E = \bar{ENumer} / \bar{EDenom} # Only compute real part of the energy results['E'] = (re_num*re_den+im_num*im_den) / (re_den**2 + im_den**2) # Doing error analysis properly is complicated. This is not correct. re_nume = real.ENumer_error.values re_dene = real.EDenom_error.values # Ignoring the fact that the mean includes complex components. cov_nd = real_df.groupby('Iteration').apply(lambda x: x['ENumer'].cov(x['EDenom'])).values nsamp = len(re_nume) results['E_error'] = numpy.abs(results.E) * ((re_nume/re_num)**2 + (re_dene/re_den)**2 - 2*cov_nd/(nsamp*re_num*re_den))**0.5 return results def reblock_mixed(groupby, columns, verbose=False): analysed = [] for group, frame in groupby: drop = ['index', 'Time', 'EDenom', 'ENumer', 'Weight', 'Overlap', 'WeightFactor', 'EHybrid'] if not verbose: drop += ['E1Body', 'E2Body'] short = frame.reset_index() try: short = short.drop(columns+drop, axis=1) except KeyError: short = short.drop(columns+['index'], axis=1) (data_len, blocked_data, covariance) = pyblock.pd_utils.reblock(short) reblocked = pd.DataFrame({'ETotal': [0.0]}) for c in short.columns: try: rb = pyblock.pd_utils.reblock_summary(blocked_data.loc[:,c]) reblocked[c] = rb['mean'].values[0] reblocked[c+'_error'] = rb['standard error'].values reblocked[c+'_error_error'] = rb['standard error error'].values ix = list(blocked_data[c]['optimal block']).index('<--- ') reblocked[c+'_nsamp'] = data_len.values[ix] except KeyError: if verbose: print("Reblocking of {:4} failed. Insufficient " "statistics.".format(c)) for i, v in enumerate(group): reblocked[columns[i]] = v analysed.append(reblocked) final = pd.concat(analysed, sort=True) y = short["ETotal"].values reblocked_ac = reblock_by_autocorr(y) for c in reblocked_ac.columns: final[c] = reblocked_ac[c].values return final def reblock_free_projection(frame): short = frame.drop(['Time', 'Weight', 'ETotal'], axis=1) analysed = [] (data_len, blocked_data, covariance) = pyblock.pd_utils.reblock(short) reblocked =
pd.DataFrame()
pandas.DataFrame
from can_tools.models import Base import os import pickle from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Dict, List, Optional, Type import pandas as pd import us from sqlalchemy.engine.base import Engine # `us` v2.0 removed DC from the `us.STATES` list, so we are creating # our own which includes DC. In v3.0, there will be an env option to # include `DC` in the `us.STATES` list and, if we upgrade, we should # activate that option and replace this with just `us.STATES` ALL_STATES_PLUS_DC = us.STATES + [us.states.DC] class CMU: def __init__( self, category="cases", measurement="cumulative", unit="people", age="all", race="all", ethnicity="all", sex="all", ): self.category = category self.measurement = measurement self.unit = unit self.age = age self.race = race self.ethnicity = ethnicity self.sex = sex class DatasetBase(ABC): """ Attributes ---------- autodag: bool = True Whether an airflow dag should be automatically generated for this class data_type: str = "general" The type of data for this scraper. This is often set to "covid" by subclasses table: Type[Base] The SQLAlchemy base table where this data should be inserted location_type: Optional[str] Optional information used when a scraper only retrieves data about a single type of geography. It will set the `"location_type"` column to this value (when performing the `put`) if `"location_type"` is not already set in the df """ autodag: bool = True data_type: str = "general" table: Type[Base] location_type: Optional[str] base_path: Path def __init__(self, execution_dt: pd.Timestamp =
pd.Timestamp.utcnow()
pandas.Timestamp.utcnow
"""Provides a :class:`BaseMapper` class for mapping stock and mutual fund data from the SEC.""" import time from collections import defaultdict from pathlib import Path from typing import ClassVar, Dict, List, Union, cast import pandas as pd import requests from .retrievers import MutualFundRetriever, StockRetriever from .types import CompanyData, FieldIndices, Fields, KeyToValueSet from .utils import with_cache class BaseMapper: """A :class:`BaseMapper` object.""" _headers: ClassVar[Dict[str, str]] = { "User-Agent": f"{int(time.time())} {int(time.time())}<EMAIL>", "Accept-Encoding": "gzip, deflate", "Host": "www.sec.gov", } def __init__(self, retriever: Union[StockRetriever, MutualFundRetriever]) -> None: """Constructor for the :class:`BaseMapper` class.""" self.retriever = retriever self.mapping_metadata = self._get_mapping_metadata_from_sec() def __new__(cls, *args, **kwargs): """BaseMapper should not be directly instantiated, so throw an error on instantiation. More info: https://stackoverflow.com/a/7990308/3820660 """ if cls is BaseMapper: raise TypeError( f"{cls.__name__} cannot be directly instantiated. " "Please instantiate the StockMapper and/or MutualFundMapper " "classes instead." ) return object.__new__(cls, *args, **kwargs) def _get_indices_from_fields(self, fields: Fields) -> FieldIndices: """Get list indices from field names.""" field_indices = {field: fields.index(field) for field in fields} return cast(FieldIndices, field_indices) def _get_mapping_metadata_from_sec(self) -> pd.DataFrame: """Get company mapping metadata from the SEC as a pandas dataframe, sorted by CIK and ticker. """ resp = requests.get(self.retriever.source_url, headers=BaseMapper._headers) resp.raise_for_status() data = resp.json() fields: Fields = data["fields"] field_indices: FieldIndices = self._get_indices_from_fields(fields) company_data: CompanyData = data["data"] transformed_data: List[Dict[str, str]] = [] for cd in company_data: transformed_data.append( self.retriever.transform(field_indices, cd), ) df =
pd.DataFrame(transformed_data)
pandas.DataFrame
# Copyright 2019 The Feast Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import Any, Dict, Union import numpy as np import pandas as pd from google.protobuf.json_format import MessageToDict from feast.protos.feast.types.Value_pb2 import ( BoolList, BytesList, DoubleList, FloatList, Int32List, Int64List, StringList, ) from feast.protos.feast.types.Value_pb2 import Value as ProtoValue from feast.value_type import ValueType def feast_value_type_to_python_type(field_value_proto: ProtoValue) -> Any: """ Converts field value Proto to Dict and returns each field's Feast Value Type value in their respective Python value. Args: field_value_proto: Field value Proto Returns: Python native type representation/version of the given field_value_proto """ field_value_dict = MessageToDict(field_value_proto) for k, v in field_value_dict.items(): if k == "int64Val": return int(v) if k == "bytesVal": return bytes(v) if (k == "int64ListVal") or (k == "int32ListVal"): return [int(item) for item in v["val"]] if (k == "floatListVal") or (k == "doubleListVal"): return [float(item) for item in v["val"]] if k == "stringListVal": return [str(item) for item in v["val"]] if k == "bytesListVal": return [bytes(item) for item in v["val"]] if k == "boolListVal": return [bool(item) for item in v["val"]] if k in ["int32Val", "floatVal", "doubleVal", "stringVal", "boolVal"]: return v else: raise TypeError( f"Casting to Python native type for type {k} failed. " f"Type {k} not found" ) def python_type_to_feast_value_type( name: str, value, recurse: bool = True ) -> ValueType: """ Finds the equivalent Feast Value Type for a Python value. Both native and Pandas types are supported. This function will recursively look for nested types when arrays are detected. All types must be homogenous. Args: name: Name of the value or field value: Value that will be inspected recurse: Whether to recursively look for nested types in arrays Returns: Feast Value Type """ type_name = type(value).__name__ type_map = { "int": ValueType.INT64, "str": ValueType.STRING, "float": ValueType.DOUBLE, "bytes": ValueType.BYTES, "float64": ValueType.DOUBLE, "float32": ValueType.FLOAT, "int64": ValueType.INT64, "uint64": ValueType.INT64, "int32": ValueType.INT32, "uint32": ValueType.INT32, "uint8": ValueType.INT32, "int8": ValueType.INT32, "bool": ValueType.BOOL, "timedelta": ValueType.UNIX_TIMESTAMP, "datetime64[ns]": ValueType.UNIX_TIMESTAMP, "datetime64[ns, tz]": ValueType.UNIX_TIMESTAMP, "category": ValueType.STRING, } if type_name in type_map: return type_map[type_name] if type_name == "ndarray" or isinstance(value, list): if recurse: # Convert to list type list_items =
pd.core.series.Series(value)
pandas.core.series.Series
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_pandas_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_pandas_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_pandas_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_pandas(tsd,False,False,'ignore',True) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_pandas(tsc,False,False,'ignore',True) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_pandas(tsd,False,False,'ignore',False) pd.testing.assert_frame_equal(test,df,False) def test_to_pandas_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_pandas(tsc,False,False,'ignore') pd.testing.assert_frame_equal(df,test,False) test = to_pandas(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) class Test_Numpy_IO: def test_from_numpy_single(self,dictList_single): data = dictList_single tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) numpydata = pd.DataFrame(dictList_single).values testData = from_numpy(numpydata,0,None) assert tsd == testData def test_from_numpy_collection(self,dictList_collection): data = dictList_collection numpyData = pd.DataFrame(data).values numpyDataDict = pd.DataFrame(pd.DataFrame(data).values).to_dict('list') testData = from_numpy(numpyData,0,2) tsd = Time_Series_Data(numpyDataDict,0) assert testData == Time_Series_Data_Collection(tsd,0,2) def test_to_numpy_single(self,dictList_single,expect_single_expandTime): data = dictList_single numpyData = pd.DataFrame(data).values expandTime = pd.DataFrame(expect_single_expandTime).values tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) testData = to_numpy( tsd, expandCategory= None, expandTime=False, preprocessType= None ) np.testing.assert_equal(testData,numpyData) testData = to_numpy( tsd, expandCategory= None, expandTime=True, preprocessType= None ) np.testing.assert_equal(testData,expandTime) def test_to_numpy_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection results = expect_collection_expandTime numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection results = expect_collection_expandCategory numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection results = expect_collection_expandFull numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) def test_to_numpy_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection results = expect_collection_noExpand numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) ignore_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='ignore' ) np.testing.assert_equal(ignore_numpy,pd.DataFrame(results['ignore']).values) def test_to_numpy_seperateLabel_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_numpy(tsd,False,False,'ignore',True) print(x) print(y) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_seperateLabel_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_numpy(tsc,False,False,'ignore',True) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') test = to_numpy(tsd,False,False,'ignore',False) np.testing.assert_equal(df,test) def test_to_numpy_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_numpy(tsc,False,False,'ignore') for i in range(len(test)): if isinstance(test[i][1],np.ndarray): test[i][1] = test[i][1].tolist() np.testing.assert_equal(df,test) test = to_numpy(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection).values for i in range(len(test[0])): if isinstance(test[0][i],np.ndarray): test[0][i] = test[0][i].tolist() np.testing.assert_equal(full,test) class Test_Arrow_IO: def test_from_arrow_table_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_table_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time','category') assert tsc == testData def test_from_arrow_batch_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_batch_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time','category') assert tsc == testData def test_to_arrow_table_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_table( tsd, expandCategory= None, expandTime=False, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_table( tsd, expandCategory= None, expandTime=True, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_table_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): tsc = Time_Series_Data_Collection(tsd,'time','category') timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_arrow_table_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_arrow_table_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_arrow_table_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_arrow_table( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_arrow_table_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_arrow_table(tsd,False,False,'ignore',True) x = x.to_pandas() y = y.to_pandas() print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_arrow_table(tsc,False,False,'ignore',True) x = x.to_pandas() y = y.to_pandas() print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_arrow_table(tsd,False,False,'ignore',False).to_pandas() pd.testing.assert_frame_equal(test,df,False) def test_to_arrow_table_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_arrow_table(tsc,False,False,'ignore').to_pandas() pd.testing.assert_frame_equal(df,test,False) test = to_arrow_table(tsc,True,True,'ignore').to_pandas() full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) ### def record_batch_to_pandas(self,batchList): df = None for i in batchList: if df is None: df = i.to_pandas() continue df = df.append(i.to_pandas(),ignore_index = True) return df def test_to_arrow_batch_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_record_batch( tsd, expandCategory= None, expandTime=False, preprocessType= None, max_chunksize = 1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_record_batch( tsd, expandCategory= None, expandTime=True, preprocessType= None, max_chunksize = 1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_batch_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_arrow_batch_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_arrow_batch_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_arrow_batch_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_arrow_record_batch( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore', max_chunksize=1 ) testData = self.record_batch_to_pandas(testData) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_arrow_batch_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_arrow_record_batch(tsd,1,False,False,'ignore',True) x = self.record_batch_to_pandas(x) y = self.record_batch_to_pandas(y) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_arrow_table_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_arrow_record_batch(tsc,1,False,False,'ignore',True) x = self.record_batch_to_pandas(x) y = self.record_batch_to_pandas(y) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) class Test_Parquet_IO: def test_from_parquet_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) pq.write_table(table,'test.parquet') testData = from_parquet('test.parquet','time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData os.remove('test.parquet') def test_from_parquet_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) pq.write_table(table,'test_collection.parquet') testData = from_parquet('test_collection.parquet','time','category') assert tsc == testData os.remove('test_collection.parquet') ########### def test_to_parquet_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') to_parquet( 'test.parquet', tsd, expandCategory= None, expandTime=False, preprocessType= None ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) to_parquet( 'test.parquet', tsd, expandCategory= None, expandTime=True, preprocessType= None ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) os.remove('test.parquet') def test_to_parquet_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_parquet('test.parquet',tsc,False,True,'ignore') os.remove('test.parquet') def test_to_parquet_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_parquet('test.parquet',tsc,True,False,'ignore') os.remove('test.parquet') def test_to_parquet_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas('test.parquet',tsc,True,True,'ignore') def test_to_parquet_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_parquet( 'test.parquet', tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ) testData = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) os.remove('test.parquet') def test_to_parquet_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') to_parquet(['test.parquet','label.parquet'],tsd,False,False,'ignore',True) x = pq.read_table('test.parquet').to_pandas() y = pq.read_table('label.parquet').to_pandas() print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) os.remove('test.parquet') os.remove('label.parquet') def test_to_parquet_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') to_parquet(['test.parquet','label.parquet'],tsc,False,False,'ignore',True) x = pq.read_table('test.parquet').to_pandas() y = pq.read_table('label.parquet').to_pandas() print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) os.remove('test.parquet') os.remove('label.parquet') def test_to_parquet_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') to_parquet('test.parquet',tsd,False,False,'ignore',False) test = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(test,df,False) os.remove('test.parquet') def test_to_parquet_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') to_parquet('test.parquet',tsc,False,False,'ignore') test = pq.read_table('test.parquet').to_pandas() pd.testing.assert_frame_equal(df,test,False) to_parquet('test.parquet',tsc,True,True,'ignore') test = pq.read_table('test.parquet').to_pandas() full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) os.remove('test.parquet') class Test_Generator_IO: def test_from_generator(self): pass def test_to_generator(self): pass class Test_Feather_IO: def test_from_feather_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) pf.write_feather(table,'test.feather') testData = from_feather('test.feather','time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData os.remove('test.feather') def test_from_feather_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) pf.write_feather(table,'test_collection.feather') testData = from_feather('test_collection.feather','time','category') assert tsc == testData os.remove('test_collection.feather') ########### def test_to_feather_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') to_feather( 'test.feather', tsd, expandCategory= None, expandTime=False, preprocessType= None ) testData = pf.read_table('test.feather').to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) to_feather( 'test.feather', tsd, expandCategory= None, expandTime=True, preprocessType= None ) testData = pf.read_table('test.feather').to_pandas()
pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False)
pandas.testing.assert_frame_equal
import pandas as pd import numpy as np import datetime import pycountry def get_vacc_data(): vaccine_data = pd.read_csv('https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv') vaccine_loc = pd.read_csv('https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/locations.csv') df_vaccine = pd.merge(vaccine_data, vaccine_loc, on=["location", "iso_code"]) df_vaccine.drop(['daily_vaccinations_raw'], axis=1) df_vaccine['date'] = pd.to_datetime(df_vaccine['date']) df_vaccine = df_vaccine.sort_values('date', ascending=True) df_vaccine['date'] = df_vaccine['date'].dt.strftime('%Y-%m-%d') df_vaccine = df_vaccine.rename(columns={'location': 'country'}) for iso_code in df_vaccine['iso_code'].unique(): df_vaccine.loc[df_vaccine['iso_code'] == iso_code, :] = df_vaccine.loc[df_vaccine['iso_code'] == iso_code, :].fillna(method='ffill').fillna(0) df_vaccine.to_csv('data/df_vaccine.csv') def aggregate(df: pd.Series, agg_col: str) -> pd.DataFrame: data = df.groupby(["country"])[agg_col].max() data = pd.DataFrame(data) return data def get_summ_data(): summary_data = pd.read_csv(r'C:\Users\Srijhak\Documents\Covid19-dash\data\worldometer_coronavirus_summary_data.csv') df_vaccine = pd.read_csv(r'C:\Users\Srijhak\Documents\Covid19-dash\data\df_vaccine.csv') df_vaccine.country = df_vaccine.country.replace().replace({ "Antigua and Barbuda": "Antigua And Barbuda", "Bosnia and Herzegovina": "Bosnia And Herzegovina", "Brunei": "Brunei Darussalam", "Cape Verde": "Cabo Verde", "Cote d'Ivoire": "Cote D Ivoire", "Czechia": "Czech Republic", "Democratic Republic of Congo": "Democratic Republic Of The Congo", "Falkland Islands": "Falkland Islands Malvinas", "Guinea-Bissau": "Guinea Bissau", "Isle of Man": "Isle Of Man", "North Macedonia": "Macedonia", "Northern Cyprus": "Cyprus", "Northern Ireland": "Ireland", "Saint Kitts and Nevis": "Saint Kitts And Nevis", "Saint Vincent and the Grenadines": "Saint Vincent And The Grenadines", "Sao Tome and Principe": "Sao Tome And Principe", "Sint Maarten (Dutch part)": "Sint Maarten", "Timor": "Timor Leste", "Trinidad and Tobago": "Trinidad And Tobago", "Turks and Caicos Islands": "Turks And Caicos Islands", "United Kingdom": "UK", "United States": "USA", "Vietnam": "Viet Nam", "Wallis and Futuna": "Wallis And Futuna Islands"}) df_vaccine = df_vaccine[df_vaccine.country.apply(lambda x: x not in ['Bonaire Sint Eustatius and Saba','England','Eswatini','Guernsey','Hong Kong','Jersey','Kosovo','Macao', 'Nauru','Palestine','Pitcairn','Scotland','Tonga','Turkmenistan','Tuvalu', 'Wales'])] summary = summary_data.set_index("country") vaccines = df_vaccine[['country', 'vaccines']].drop_duplicates().set_index('country') summary = summary.join(vaccines) for cols in df_vaccine.columns[4:-4]: summary = summary.join(aggregate(df_vaccine,cols)) summary['vaccinated_percent'] = summary.total_vaccinations / summary.population * 100 summary['tested_positive'] = summary.total_confirmed / summary.total_tests * 100 summary.to_csv('data/summary_df.csv') def get_daily_data(): df_daily = pd.read_csv(r'C:\Users\Srijhak\Documents\Covid19-dash\data\worldometer_coronavirus_daily_data.csv') df_vaccine = pd.read_csv(r'C:\Users\Srijhak\Documents\Covid19-dash\data\df_vaccine.csv') # use only common countries and dates countries = df_vaccine.dropna(subset=['daily_vaccinations'])['country'].unique() dates = df_vaccine.dropna(subset=['daily_vaccinations'])['date'].unique() country_mask = df_daily.country.apply(lambda x: x in countries) date_mask = df_daily.date.apply(lambda x: x in dates) # generate the visualization data columns_to_sum = ['daily_new_cases', 'cumulative_total_cases', 'cumulative_total_deaths', 'active_cases'] daily_cases = df_daily[country_mask & date_mask].groupby('date')[columns_to_sum].sum() daily_vaccs = df_vaccine.groupby('date')[[ 'daily_vaccinations']].sum() # make it a dataframe for convenience data = pd.DataFrame(daily_cases).join(
pd.DataFrame(daily_vaccs)
pandas.DataFrame
import os import numpy as np import pandas as pd import pytest from featuretools import list_primitives from featuretools.primitives import ( Age, Count, Day, GreaterThan, Haversine, Last, Max, Mean, Min, Mode, Month, NumCharacters, NumUnique, NumWords, PercentTrue, Skew, Std, Sum, Weekday, Year, get_aggregation_primitives, get_default_aggregation_primitives, get_default_transform_primitives, get_transform_primitives ) from featuretools.primitives.base import PrimitiveBase from featuretools.primitives.utils import ( _apply_roll_with_offset_gap, _get_descriptions, _get_rolled_series_without_gap, _get_unique_input_types, _roll_series_with_gap, list_primitive_files, load_primitive_from_file ) from featuretools.tests.primitive_tests.utils import get_number_from_offset from featuretools.utils.gen_utils import Library def test_list_primitives_order(): df = list_primitives() all_primitives = get_transform_primitives() all_primitives.update(get_aggregation_primitives()) for name, primitive in all_primitives.items(): assert name in df['name'].values row = df.loc[df['name'] == name].iloc[0] actual_desc = _get_descriptions([primitive])[0] if actual_desc: assert actual_desc == row['description'] assert row['dask_compatible'] == (Library.DASK in primitive.compatibility) assert row['valid_inputs'] == ', '.join(_get_unique_input_types(primitive.input_types)) assert row['return_type'] == getattr(primitive.return_type, '__name__', None) types = df['type'].values assert 'aggregation' in types assert 'transform' in types def test_valid_input_types(): actual = _get_unique_input_types(Haversine.input_types) assert actual == {'<ColumnSchema (Logical Type = LatLong)>'} actual = _get_unique_input_types(GreaterThan.input_types) assert actual == {'<ColumnSchema (Logical Type = Datetime)>', "<ColumnSchema (Semantic Tags = ['numeric'])>", '<ColumnSchema (Logical Type = Ordinal)>'} actual = _get_unique_input_types(Sum.input_types) assert actual == {"<ColumnSchema (Semantic Tags = ['numeric'])>"} def test_descriptions(): primitives = {NumCharacters: 'Calculates the number of characters in a string.', Day: 'Determines the day of the month from a datetime.', Last: 'Determines the last value in a list.', GreaterThan: 'Determines if values in one list are greater than another list.'} assert _get_descriptions(list(primitives.keys())) == list(primitives.values()) def test_get_default_aggregation_primitives(): primitives = get_default_aggregation_primitives() expected_primitives = [Sum, Std, Max, Skew, Min, Mean, Count, PercentTrue, NumUnique, Mode] assert set(primitives) == set(expected_primitives) def test_get_default_transform_primitives(): primitives = get_default_transform_primitives() expected_primitives = [Age, Day, Year, Month, Weekday, Haversine, NumWords, NumCharacters] assert set(primitives) == set(expected_primitives) @pytest.fixture def this_dir(): return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def primitives_to_install_dir(this_dir): return os.path.join(this_dir, "primitives_to_install") @pytest.fixture def bad_primitives_files_dir(this_dir): return os.path.join(this_dir, "bad_primitive_files") def test_list_primitive_files(primitives_to_install_dir): files = list_primitive_files(primitives_to_install_dir) custom_max_file = os.path.join(primitives_to_install_dir, "custom_max.py") custom_mean_file = os.path.join(primitives_to_install_dir, "custom_mean.py") custom_sum_file = os.path.join(primitives_to_install_dir, "custom_sum.py") assert {custom_max_file, custom_mean_file, custom_sum_file}.issubset(set(files)) def test_load_primitive_from_file(primitives_to_install_dir): primitve_file = os.path.join(primitives_to_install_dir, "custom_max.py") primitive_name, primitive_obj = load_primitive_from_file(primitve_file) assert issubclass(primitive_obj, PrimitiveBase) def test_errors_more_than_one_primitive_in_file(bad_primitives_files_dir): primitive_file = os.path.join(bad_primitives_files_dir, "multiple_primitives.py") error_text = "More than one primitive defined in file {}".format(primitive_file) with pytest.raises(RuntimeError) as excinfo: load_primitive_from_file(primitive_file) assert str(excinfo.value) == error_text def test_errors_no_primitive_in_file(bad_primitives_files_dir): primitive_file = os.path.join(bad_primitives_files_dir, "no_primitives.py") error_text = "No primitive defined in file {}".format(primitive_file) with pytest.raises(RuntimeError) as excinfo: load_primitive_from_file(primitive_file) assert str(excinfo.value) == error_text def test_get_rolled_series_without_gap(rolling_series_pd): # Data is daily, so number of rows should be number of days not included in the gap assert len(_get_rolled_series_without_gap(rolling_series_pd, "11D")) == 9 assert len(_get_rolled_series_without_gap(rolling_series_pd, "0D")) == 20 assert len(_get_rolled_series_without_gap(rolling_series_pd, "48H")) == 18 assert len(_get_rolled_series_without_gap(rolling_series_pd, "4H")) == 19 def test_get_rolled_series_without_gap_not_uniform(rolling_series_pd): non_uniform_series = rolling_series_pd.iloc[[0, 2, 5, 6, 8, 9]] assert len(_get_rolled_series_without_gap(non_uniform_series, "10D")) == 0 assert len(_get_rolled_series_without_gap(non_uniform_series, "0D")) == 6 assert len(_get_rolled_series_without_gap(non_uniform_series, "48H")) == 4 assert len(_get_rolled_series_without_gap(non_uniform_series, "4H")) == 5 assert len(_get_rolled_series_without_gap(non_uniform_series, "4D")) == 3 assert len(_get_rolled_series_without_gap(non_uniform_series, "4D2H")) == 2 def test_get_rolled_series_without_gap_empty_series(rolling_series_pd): empty_series = pd.Series() assert len(_get_rolled_series_without_gap(empty_series, "1D")) == 0 assert len(_get_rolled_series_without_gap(empty_series, "0D")) == 0 def test_get_rolled_series_without_gap_large_bound(rolling_series_pd): assert len(_get_rolled_series_without_gap(rolling_series_pd, "100D")) == 0 assert len(_get_rolled_series_without_gap(rolling_series_pd.iloc[[0, 2, 5, 6, 8, 9]], "20D")) == 0 @pytest.mark.parametrize( "window_length, gap", [ (3, 2), (3, 4), # gap larger than window (2, 0), # gap explicitly set to 0 ('3d', '2d'), # using offset aliases ('3d', '4d'), ('4d', '0d'), ], ) def test_roll_series_with_gap(window_length, gap, rolling_series_pd): rolling_max = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap).max() rolling_min = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap).min() assert len(rolling_max) == len(rolling_series_pd) assert len(rolling_min) == len(rolling_series_pd) gap_num = get_number_from_offset(gap) window_length_num = get_number_from_offset(window_length) for i in range(len(rolling_series_pd)): start_idx = i - gap_num - window_length_num + 1 if isinstance(gap, str): # No gap functionality is happening, so gap isn't taken account in the end index # it's like the gap is 0; it includes the row itself end_idx = i else: end_idx = i - gap_num # If start and end are negative, they're entirely before if start_idx < 0 and end_idx < 0: assert pd.isnull(rolling_max.iloc[i]) assert pd.isnull(rolling_min.iloc[i]) continue if start_idx < 0: start_idx = 0 # Because the row values are a range from 0 to 20, the rolling min will be the start index # and the rolling max will be the end idx assert rolling_min.iloc[i] == start_idx assert rolling_max.iloc[i] == end_idx @pytest.mark.parametrize("window_length", [3, "3d"]) def test_roll_series_with_no_gap(window_length, rolling_series_pd): actual_rolling = _roll_series_with_gap(rolling_series_pd, window_length).mean() expected_rolling = rolling_series_pd.rolling(window_length, min_periods=1).mean() pd.testing.assert_series_equal(actual_rolling, expected_rolling) @pytest.mark.parametrize( "window_length, gap", [ (6, 2), (6, 0), # No gap - changes early values ('6d', '0d'), # Uses offset aliases ('6d', '2d') ] ) def test_roll_series_with_gap_early_values(window_length, gap, rolling_series_pd): gap_num = get_number_from_offset(gap) window_length_num = get_number_from_offset(window_length) # Default min periods is 1 - will include all default_partial_values = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap).count() num_empty_aggregates = len(default_partial_values.loc[default_partial_values == 0]) num_partial_aggregates = len((default_partial_values .loc[default_partial_values != 0]) .loc[default_partial_values < window_length_num]) assert num_partial_aggregates == window_length_num - 1 if isinstance(gap, str): # gap isn't handled, so we'll always at least include the row itself assert num_empty_aggregates == 0 else: assert num_empty_aggregates == gap_num # Make min periods the size of the window no_partial_values = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap, min_periods=window_length_num).count() num_null_aggregates = len(no_partial_values.loc[pd.isna(no_partial_values)]) num_partial_aggregates = len(no_partial_values.loc[no_partial_values < window_length_num]) # because we shift, gap is included as nan values in the series. # Count treats nans in a window as values that don't get counted, # so the gap rows get included in the count for whether a window has "min periods". # This is different than max, for example, which does not count nans in a window as values towards "min periods" assert num_null_aggregates == window_length_num - 1 if isinstance(gap, str): # gap isn't handled, so we'll never have any partial aggregates assert num_partial_aggregates == 0 else: assert num_partial_aggregates == gap_num def test_roll_series_with_gap_nullable_types(rolling_series_pd): window_length = 3 gap = 2 # Because we're inserting nans, confirm that nullability of the dtype doesn't have an impact on the results nullable_series = rolling_series_pd.astype('Int64') non_nullable_series = rolling_series_pd.astype('int64') nullable_rolling_max = _roll_series_with_gap(nullable_series, window_length, gap=gap).max() non_nullable_rolling_max = _roll_series_with_gap(non_nullable_series, window_length, gap=gap).max() pd.testing.assert_series_equal(nullable_rolling_max, non_nullable_rolling_max) def test_roll_series_with_gap_nullable_types_with_nans(rolling_series_pd): window_length = 3 gap = 2 nullable_floats = rolling_series_pd.astype('float64').replace({1: np.nan, 3: np.nan}) nullable_ints = nullable_floats.astype('Int64') nullable_ints_rolling_max = _roll_series_with_gap(nullable_ints, window_length, gap=gap).max() nullable_floats_rolling_max = _roll_series_with_gap(nullable_floats, window_length, gap=gap).max() pd.testing.assert_series_equal(nullable_ints_rolling_max, nullable_floats_rolling_max) expected_early_values = ([np.nan, np.nan, 0, 0, 2, 2, 4] + list(range(7 - gap, len(rolling_series_pd) - gap))) for i in range(len(rolling_series_pd)): actual = nullable_floats_rolling_max.iloc[i] expected = expected_early_values[i] if pd.isnull(actual): assert pd.isnull(expected) else: assert actual == expected @pytest.mark.parametrize( "window_length, gap", [ ('3d', '2d'), ('3d', '4d'), ('4d', '0d'), ], ) def test_apply_roll_with_offset_gap(window_length, gap, rolling_series_pd): def max_wrapper(sub_s): return _apply_roll_with_offset_gap(sub_s, gap, max, min_periods=1) rolling_max_obj = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap) rolling_max_series = rolling_max_obj.apply(max_wrapper) def min_wrapper(sub_s): return _apply_roll_with_offset_gap(sub_s, gap, min, min_periods=1) rolling_min_obj = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap) rolling_min_series = rolling_min_obj.apply(min_wrapper) assert len(rolling_max_series) == len(rolling_series_pd) assert len(rolling_min_series) == len(rolling_series_pd) gap_num = get_number_from_offset(gap) window_length_num = get_number_from_offset(window_length) for i in range(len(rolling_series_pd)): start_idx = i - gap_num - window_length_num + 1 # Now that we have the _apply call, this acts as expected end_idx = i - gap_num # If start and end are negative, they're entirely before if start_idx < 0 and end_idx < 0: assert pd.isnull(rolling_max_series.iloc[i]) assert pd.isnull(rolling_min_series.iloc[i]) continue if start_idx < 0: start_idx = 0 # Because the row values are a range from 0 to 20, the rolling min will be the start index # and the rolling max will be the end idx assert rolling_min_series.iloc[i] == start_idx assert rolling_max_series.iloc[i] == end_idx @pytest.mark.parametrize( "min_periods", [1, 0, None], ) def test_apply_roll_with_offset_gap_default_min_periods(min_periods, rolling_series_pd): window_length = '5d' window_length_num = 5 gap = '3d' gap_num = 3 def count_wrapper(sub_s): return _apply_roll_with_offset_gap(sub_s, gap, len, min_periods=min_periods) rolling_count_obj = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap) rolling_count_series = rolling_count_obj.apply(count_wrapper) # gap essentially creates a rolling series that has no elements; which should be nan # to differentiate from when a window only has null values num_empty_aggregates = rolling_count_series.isna().sum() num_partial_aggregates = len((rolling_count_series .loc[rolling_count_series != 0]) .loc[rolling_count_series < window_length_num]) assert num_empty_aggregates == gap_num assert num_partial_aggregates == window_length_num - 1 @pytest.mark.parametrize( "min_periods", [2, 3, 4, 5], ) def test_apply_roll_with_offset_gap_min_periods(min_periods, rolling_series_pd): window_length = '5d' window_length_num = 5 gap = '3d' gap_num = 3 def count_wrapper(sub_s): return _apply_roll_with_offset_gap(sub_s, gap, len, min_periods=min_periods) rolling_count_obj = _roll_series_with_gap(rolling_series_pd, window_length, gap=gap) rolling_count_series = rolling_count_obj.apply(count_wrapper) # gap essentially creates rolling series that have no elements; which should be nan # to differentiate from when a window only has null values num_empty_aggregates = rolling_count_series.isna().sum() num_partial_aggregates = len((rolling_count_series .loc[rolling_count_series != 0]) .loc[rolling_count_series < window_length_num]) assert num_empty_aggregates == min_periods - 1 + gap_num assert num_partial_aggregates == window_length_num - min_periods def test_apply_roll_with_offset_gap_non_uniform(): window_length = '3d' gap = '3d' # When the data isn't uniform, this impacts the number of values in each rolling window datetimes = (list(pd.date_range(start='2017-01-01', freq='1d', periods=7)) + list(pd.date_range(start='2017-02-01', freq='2d', periods=7)) + list(pd.date_range(start='2017-03-01', freq='1d', periods=7))) no_freq_series = pd.Series(range(len(datetimes)), index=datetimes) assert pd.infer_freq(no_freq_series.index) is None expected_series = pd.Series([None, None, None, 1, 2, 3, 3] + [None, None, 1, 1, 1, 1, 1] + [None, None, None, 1, 2, 3, 3], index=datetimes) def count_wrapper(sub_s): return _apply_roll_with_offset_gap(sub_s, gap, len, min_periods=1) rolling_count_obj = _roll_series_with_gap(no_freq_series, window_length, gap=gap) rolling_count_series = rolling_count_obj.apply(count_wrapper)
pd.testing.assert_series_equal(rolling_count_series, expected_series)
pandas.testing.assert_series_equal
from abc import abstractmethod, ABC from typing import Any import numpy as np import pandas as pd from sklearn.base import clone from resources.backend_scripts.feature_selection import FeatureSelection from resources.backend_scripts.is_data import DataEnsurer from resources.backend_scripts.parameter_search import ParameterSearch from resources.backend_scripts.score import CVScore, CVModelScore from resources.backend_scripts.split_data import SplitterReturner from resources.backend_scripts.switcher import Switch DataFrame = pd.DataFrame NpArray = np.ndarray class SBSMachineLearning(ABC): _data_frame = pd.DataFrame() _feature_selector: FeatureSelection = None _parameter_selector: ParameterSearch = None _best_features: NpArray = None _best_params: dict = None _initial_params: dict = None _clf: Any = None _cv_score: CVModelScore = CVScore() @property def data_frame(self) -> DataFrame: return self._data_frame @data_frame.setter def data_frame(self, value: DataFrame) -> None: self._data_frame = value @property def feature_selector(self) -> FeatureSelection: return self._feature_selector @feature_selector.setter def feature_selector(self, value: FeatureSelection) -> None: self._feature_selector = value @property def parameter_selector(self) -> ParameterSearch: return self._parameter_selector @parameter_selector.setter def parameter_selector(self, value: ParameterSearch) -> None: self._parameter_selector = value @property def best_features(self) -> NpArray: return self._best_features @best_features.setter def best_features(self, value: NpArray) -> None: self._best_features = value @property def best_parameters(self) -> dict: return self._best_params @best_parameters.setter def best_parameters(self, value: dict) -> None: self._best_params = value @property def initial_parameters(self) -> dict: return self._initial_params @initial_parameters.setter def initial_parameters(self, value: dict) -> None: self._initial_params = value @property def estimator(self) -> Any: return self._clf @estimator.setter def estimator(self, value: Any) -> None: self._clf = value @abstractmethod def score_model(self, score_type: str, n_folds_validation: int) -> float: pass class SimpleSBS(SBSMachineLearning): def score_model(self, score_type: str, n_folds_validation: int) -> float: # get x and y from df x, y = SplitterReturner.split_x_y_from_df(self.data_frame) self.best_parameters = self.initial_parameters # they are the same in a simple model # set clf params. ** because it accepts key-value one by one, not a big dictionary self.estimator.set_params(**self.best_parameters) self.best_features = x.columns.values # get features as numpy data # return the cv score score = self._cv_score.get_score(x, y, clone(self.estimator), score_type, n_folds_validation) self.estimator.fit(x, y) return score class OnlyFeatureSelectionSBS(SBSMachineLearning): def score_model(self, score_type: str, n_folds_validation: int) -> float: # get x and y from df. Ravel is set to False so we can save the original y with its column x, y = SplitterReturner.split_x_y_from_df(self.data_frame, ravel_data=False) self.best_parameters = self.initial_parameters # they are the same in a only feature selection model # set clf params. ** because it accepts key-value one by one, not a big dictionary self.estimator.set_params(**self.best_parameters) # get best features best_features_dataframe, score = self.feature_selector.select_features(x, y.values.ravel(), clone(self.estimator), score_type, n_folds_validation) self.best_features = best_features_dataframe.columns.values # get features as numpy data self.data_frame = pd.concat([best_features_dataframe, y], axis=1) self.estimator.fit(best_features_dataframe, y) return score class OnlyParameterSearchSBS(SBSMachineLearning): def score_model(self, score_type: str, n_folds_validation: int) -> float: # get x and y from df x, y = SplitterReturner.split_x_y_from_df(self.data_frame) # transform initial params grid into a simple dict which is best_params self.best_parameters, score = self.parameter_selector.search_parameters(x, y, self.initial_parameters, n_folds_validation, clone(self.estimator), score_type) self.best_features = x.columns.values # get features as numpy data # set clf params from the previous search. ** because it accepts key-value one by one, not a big dictionary self.estimator.set_params(**self.best_parameters) self.estimator.fit(x, y) return score class FeatureAndParameterSearchSBS(SBSMachineLearning): def score_model(self, score_type: str, n_folds_validation: int) -> float: # get x and y from df. Ravel is set to False so we can save the original y with its column x, y = SplitterReturner.split_x_y_from_df(self.data_frame, ravel_data=False) # transform best params grid into a simple dict self.best_parameters, _ = self.parameter_selector.search_parameters(x, y.values.ravel(), self.initial_parameters, n_folds_validation, clone(self.estimator), score_type) # set clf params from the previous search. ** because it accepts key-value one by one, not a big dictionary self.estimator.set_params(**self.best_parameters) # get best features best_features_dataframe, score = self.feature_selector.select_features(x, y.values.ravel(), clone(self.estimator), score_type, n_folds_validation) self.best_features = best_features_dataframe.columns.values # get features as numpy data self.data_frame =
pd.concat([best_features_dataframe, y], axis=1)
pandas.concat
import sys import datetime import random as r import pandas as pd import numpy as np import matplotlib.pyplot as plt from pandas import read_csv, DataFrame from scipy.optimize import curve_fit def cubic(x, a, b, c, d): """ @type x: number @type a: number @type b: number @type c: number @type d: number Calculates cubic function a*x^3+b*x^2+c*x+d @rtype: number @return: result of cubic function calculation """ return a * (x ** 3) + b * (x ** 2) + c * x + d def normalize(points, min): """ @type points: array @param points: array to be normalized @type min: number @param min: min value of normalized array Normalizes array """ for i in range(len(points)): if points[i] < min: points[i] = min + 0.1 def load_data(csv_file): """ @type csv_file: string @param csv_file: path to csv file Loads data from specified csv file @rtype: pandas.DataFrame @return: DataFrame from csv file without Month column """ return pd.read_csv(csv_file).drop('Month', 1) def fill_with_NaNs(amount, data_frame): """ @type amount: integer @param amount: numbers of rows to be filled with NaNs @type data_frame: pandas.DataFrame @param data_frame: dataFrame to be filled by NaNs Fills DataFrame with NaN's """ for column in range(amount): data_frame.loc[len(data_frame)] = [None for i in range(len(data_frame.columns))] def generate_date_rows(base_date, amount): """ @type base_date: datetime @param base_date: initial date @type amount: integer @param amount: amount of rows(months) to be generated Generate dates(Year-Month) for all rows from specified initial date @rtype: numpy.Array @return: array of generate dates """ return np.array([(base_date + datetime.timedelta(i*365/12)).strftime("%Y-%m") for i in range(amount)]) def extrapolate(data_frame): """ @type data_frame: pandas.DataFrame @param data_frame: dataFrame to be extrapolated Extrapolates specified dataFrame (NaN values) """ # Create copy of data to remove NaNs for curve fitting fit_df = data_frame.dropna() # Place to store function parameters for each column col_params = {} # Curve fit each column for col in fit_df.columns: # Get x & y x = fit_df.index.astype(float).values y = fit_df[col].values # Curve fit column and get curve parameters params = curve_fit(cubic, x, y) # Store optimized parameters col_params[col] = params[0] for col in data_frame.columns: # Get the index values for NaNs in the column x = data_frame[pd.isnull(data_frame[col])] \ .index.astype(float).values # Extrapolate those points with the fitted function points = cubic(x, *col_params[col]) normalize(points, 0) # Add random changes for i in range(len(points)): if int(points[i]) % int(r.random() * 3 + 1) is 0: points[i] += r.random() * 4 - 2 normalize(points, 0) data_frame[col][x] = points if __name__ == "__main__": plt.style.use('ggplot') csv_file = "web-frameworks-trends.csv" # Loads data from CSV file df = load_data(csv_file) # Months months = 24 # Five years # Fill specified amount of rows of dataframe with NaN's fill_with_NaNs(months, df) # Interpolate df.interpolate() # Extrapolate dataframe extrapolate(df) # Generate dates(Year-Month) for all rows from specified initial date date_rows = generate_date_rows(datetime.datetime(2004, 1, 1), len(df.index)) # Add date to dataframe df['Month'] =
pd.Series(date_rows, index=df.index)
pandas.Series
"""Custom pandas accessors. !!! note The underlying Series/DataFrame must already be a signal series. Input arrays must be `np.bool`. ```python-repl >>> import vectorbt as vbt >>> import numpy as np >>> import pandas as pd >>> from numba import njit >>> from datetime import datetime >>> sig = pd.DataFrame({ ... 'a': [True, False, False, False, False], ... 'b': [True, False, True, False, True], ... 'c': [True, True, True, False, False] ... }, index=pd.Index([ ... datetime(2020, 1, 1), ... datetime(2020, 1, 2), ... datetime(2020, 1, 3), ... datetime(2020, 1, 4), ... datetime(2020, 1, 5) ... ])) >>> sig a b c 2020-01-01 True True True 2020-01-02 False False True 2020-01-03 False True True 2020-01-04 False False False 2020-01-05 False True False ```""" import numpy as np import pandas as pd import plotly.graph_objects as go from vectorbt.defaults import contrast_color_schema from vectorbt.root_accessors import register_dataframe_accessor, register_series_accessor from vectorbt.utils import checks from vectorbt.utils.config import merge_kwargs from vectorbt.utils.colors import adjust_lightness from vectorbt.utils.decorators import cached_property from vectorbt.base import reshape_fns, index_fns from vectorbt.base.common import add_nb_methods from vectorbt.generic.accessors import Generic_Accessor, Generic_SRAccessor, Generic_DFAccessor from vectorbt.signals import nb from vectorbt.utils.widgets import CustomFigureWidget @add_nb_methods([ nb.shuffle_nb, nb.fshift_nb, ], module_name='vectorbt.signals.nb') class Signals_Accessor(Generic_Accessor): """Accessor on top of signal series. For both, Series and DataFrames. Accessible through `pd.Series.vbt.signals` and `pd.DataFrame.vbt.signals`.""" def __init__(self, obj, freq=None): if not checks.is_pandas(obj): # parent accessor obj = obj._obj checks.assert_dtype(obj, np.bool) Generic_Accessor.__init__(self, obj, freq=freq) @classmethod def empty(cls, *args, fill_value=False, **kwargs): """`vectorbt.base.accessors.Base_Accessor.empty` with `fill_value=False`. Example: ```python-repl >>> pd.Series.vbt.signals.empty(5, index=sig.index, name=sig['a'].name) 2020-01-01 False 2020-01-02 False 2020-01-03 False 2020-01-04 False 2020-01-05 False Name: a, dtype: bool >>> pd.DataFrame.vbt.signals.empty((5, 3), index=sig.index, columns=sig.columns) a b c 2020-01-01 False False False 2020-01-02 False False False 2020-01-03 False False False 2020-01-04 False False False 2020-01-05 False False False ```""" return Generic_Accessor.empty(*args, fill_value=fill_value, **kwargs) @classmethod def empty_like(cls, *args, fill_value=False, **kwargs): """`vectorbt.base.accessors.Base_Accessor.empty_like` with `fill_value=False`. Example: ```python-repl >>> pd.Series.vbt.signals.empty_like(sig['a']) 2020-01-01 False 2020-01-02 False 2020-01-03 False 2020-01-04 False 2020-01-05 False Name: a, dtype: bool >>> pd.DataFrame.vbt.signals.empty_like(sig) a b c 2020-01-01 False False False 2020-01-02 False False False 2020-01-03 False False False 2020-01-04 False False False 2020-01-05 False False False ```""" return Generic_Accessor.empty_like(*args, fill_value=fill_value, **kwargs) # ############# Signal generation ############# # @classmethod def generate(cls, shape, choice_func_nb, *args, **kwargs): """See `vectorbt.signals.nb.generate_nb`. `**kwargs` will be passed to pandas constructor. Example: Generate random signals manually: ```python-repl >>> @njit ... def choice_func_nb(col, from_i, to_i): ... return col + from_i >>> pd.DataFrame.vbt.signals.generate((5, 3), ... choice_func_nb, index=sig.index, columns=sig.columns) a b c 2020-01-01 True False False 2020-01-02 False True False 2020-01-03 False False True 2020-01-04 False False False 2020-01-05 False False False ```""" checks.assert_numba_func(choice_func_nb) if not isinstance(shape, tuple): shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: shape = (shape[0], 1) result = nb.generate_nb(shape, choice_func_nb, *args) if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return pd.Series(result[:, 0], **kwargs) return pd.DataFrame(result, **kwargs) @classmethod def generate_both(cls, shape, entry_choice_func_nb, exit_choice_func_nb, entry_args, exit_args, **kwargs): """See `vectorbt.signals.nb.generate_enex_nb`. `**kwargs` will be passed to pandas constructor. Example: Generate entry and exit signals one after another: ```python-repl >>> @njit ... def entry_choice_func_nb(col, from_i, to_i, wait1): ... next_pos = col + from_i + wait1 ... if next_pos < to_i: ... return np.array([next_pos]) ... return np.empty(0, dtype=np.int_) >>> @njit ... def exit_choice_func_nb(col, from_i, to_i, wait2): ... next_pos = col + from_i + wait2 ... if next_pos < to_i: ... return np.array([next_pos]) ... return np.empty(0, dtype=np.int_) >>> en, ex = pd.DataFrame.vbt.signals.generate_both( ... (5, 3), entry_choice_func_nb, exit_choice_func_nb, (0,), (1,), ... index=sig.index, columns=sig.columns) >>> en a b c 2020-01-01 True False False 2020-01-02 False True False 2020-01-03 False False True 2020-01-04 True False False 2020-01-05 False False False >>> ex a b c 2020-01-01 False False False 2020-01-02 False False False 2020-01-03 True False False 2020-01-04 False False False 2020-01-05 False True False ```""" checks.assert_numba_func(entry_choice_func_nb) checks.assert_numba_func(exit_choice_func_nb) if not isinstance(shape, tuple): shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: shape = (shape[0], 1) result1, result2 = nb.generate_enex_nb( shape, entry_choice_func_nb, exit_choice_func_nb, entry_args, exit_args ) if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return pd.Series(result1[:, 0], **kwargs), pd.Series(result2[:, 0], **kwargs) return pd.DataFrame(result1, **kwargs), pd.DataFrame(result2, **kwargs) def generate_exits(self, exit_choice_func_nb, *args): """See `vectorbt.signals.nb.generate_ex_nb`. Example: Fill all space between signals in `sig`: ```python-repl >>> @njit ... def exit_choice_func_nb(col, from_i, to_i): ... return np.arange(from_i, to_i) >>> sig.vbt.signals.generate_exits(exit_choice_func_nb) a b c 2020-01-01 False False False 2020-01-02 True True False 2020-01-03 True False False 2020-01-04 True True True 2020-01-05 True False True ```""" checks.assert_numba_func(exit_choice_func_nb) return self.wrap(nb.generate_ex_nb(self.to_2d_array(), exit_choice_func_nb, *args)) # ############# Random ############# # @classmethod def generate_random(cls, shape, n=None, prob=None, seed=None, **kwargs): """Generate signals randomly. If `n` is set, see `vectorbt.signals.nb.generate_rand_nb`. If `prob` is set, see `vectorbt.signals.nb.generate_rand_by_prob_nb`. `prob` must be either a single number or an array that will be broadcast to match `shape`. `**kwargs` will be passed to pandas constructor. Example: For each column, generate two signals randomly: ```python-repl >>> pd.DataFrame.vbt.signals.generate_random((5, 3), n=2, ... seed=42, index=sig.index, columns=sig.columns) a b c 2020-01-01 False False True 2020-01-02 True True True 2020-01-03 False False False 2020-01-04 False True False 2020-01-05 True False False ``` For each column and time step, pick a signal with 50% probability: ```python-repl >>> pd.DataFrame.vbt.signals.generate_random((5, 3), prob=0.5, ... seed=42, index=sig.index, columns=sig.columns) a b c 2020-01-01 True True True 2020-01-02 False True False 2020-01-03 False False False 2020-01-04 False False True 2020-01-05 True False True ```""" if not isinstance(shape, tuple): shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: shape = (shape[0], 1) if n is not None: result = nb.generate_rand_nb(shape, n, seed=seed) elif prob is not None: probs = np.broadcast_to(prob, shape) result = nb.generate_rand_by_prob_nb(shape, probs, seed=seed) else: raise ValueError("At least n or prob must be set") if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return pd.Series(result[:, 0], **kwargs) return pd.DataFrame(result, **kwargs) # ############# Exits ############# # @classmethod def generate_random_both(cls, shape, n=None, entry_prob=None, exit_prob=None, seed=None, **kwargs): """Generate entry and exit signals randomly and iteratively. If `n` is set, see `vectorbt.signals.nb.generate_rand_enex_nb`. If `prob` is set, see `vectorbt.signals.nb.generate_rand_enex_by_prob_nb`. `entry_prob` and `exit_prob` must be either a single number or an array that will be broadcast to match `shape`. `**kwargs` will be passed to pandas constructor. Example: For each column, generate two entries and exits randomly: ```python-repl >>> en, ex = pd.DataFrame.vbt.signals.generate_random_both( ... (5, 3), n=2, seed=42, index=sig.index, columns=sig.columns) >>> en a b c 2020-01-01 True True True 2020-01-02 False False False 2020-01-03 True True False 2020-01-04 False False True 2020-01-05 False False False >>> ex a b c 2020-01-01 False False False 2020-01-02 True True True 2020-01-03 False False False 2020-01-04 False True False 2020-01-05 True False True ``` For each column and time step, pick entry with 50% probability and exit right after: ```python-repl >>> en, ex = pd.DataFrame.vbt.signals.generate_random_both( ... (5, 3), entry_prob=0.5, exit_prob=1., ... seed=42, index=sig.index, columns=sig.columns) >>> en a b c 2020-01-01 True True False 2020-01-02 False False True 2020-01-03 False True False 2020-01-04 True False True 2020-01-05 False False False >>> ex a b c 2020-01-01 False False False 2020-01-02 True True False 2020-01-03 False False True 2020-01-04 False True False 2020-01-05 True False True ```""" if not isinstance(shape, tuple): shape = (shape, 1) elif isinstance(shape, tuple) and len(shape) == 1: shape = (shape[0], 1) if n is not None: entries, exits = nb.generate_rand_enex_nb(shape, n, seed=seed) elif entry_prob is not None and exit_prob is not None: entry_prob = np.broadcast_to(entry_prob, shape) exit_prob = np.broadcast_to(exit_prob, shape) entries, exits = nb.generate_rand_enex_by_prob_nb(shape, entry_prob, exit_prob, seed=seed) else: raise ValueError("At least n, or entry_prob and exit_prob must be set") if cls.is_series(): if shape[1] > 1: raise ValueError("Use DataFrame accessor") return pd.Series(entries[:, 0], **kwargs), pd.Series(exits[:, 0], **kwargs) return
pd.DataFrame(entries, **kwargs)
pandas.DataFrame
import pandas as pd import numpy as np from data import Data import pickle class Stats(): def __init__(self, data): '''Enter dataclass of pandas dataframe''' if isinstance(data, Data): self.df = data.df elif isinstance(data, pd.DataFrame): self.df = data self.totalsparsity = self.calc_sparsity() self.featuresparsity = self.calc_featuresparsity() self.constants = self.constantvalues() self.corrfeatures = self.correlation() self.mean = self.calc_mean() self.nonzero = self.calc_nonzero() self.zero = self.calc_zero() self.min = self.calc_min() self.max = self.calc_max() self.stddv = self.calc_stddv() self.q1 = self.calc_q1() self.median = self.calc_median() self.q3 = self.calc_q3() def calc_sparsity(self): '''Calculate the sparsity of the selected data''' zeroes = 0 for column in self.df.columns: zeroes += np.count_nonzero(self.df[column] == 0) return zeroes / (self.df.shape[0] * self.df.shape[1]) def calc_featuresparsity(self): '''Calculate sparsity per feature''' df = self.df result = pd.DataFrame() result['sparsity'] = df.apply(lambda x: np.count_nonzero(x == 0)/len(x)) return result def constantvalues(self): '''Collect the variables which have a contant value''' constant_columns = [column for column in self.df.columns if len(self.df[column].unique()) < 2] return constant_columns def correlation(self): '''Collect the high correlation variables (> 0.90)''' corr = self.df.corr(method='pearson').abs() upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) high_correlations = [column for column in upper.columns if any(upper[column] > 0.90)] return high_correlations def calc_mean(self): df = self.df result = pd.DataFrame() result['mean'] = df.apply(lambda x: np.mean(x)) return result def calc_nonzero(self): df = self.df result = pd.DataFrame() result['nonzero'] = df.apply(lambda x: (np.count_nonzero(x))) return result def calc_zero(self): df = self.df result = pd.DataFrame() result['zero'] = df.apply(lambda x: (np.count_nonzero(x == 0))) return result def calc_min(self): df = self.df result =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: UTF-8 -*- import statistics import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject class ZScoreCalculator(BaseObject): """ Compute Z-Scores on Dimensions for a Single Record """ def __init__(self, df_schema_weights: DataFrame, is_debug: bool = False): """ Created: 7-Aug-2019 <EMAIL> * refactored out of 'process-single-record' :param df_schema_weights: Schema Weight cloud 1.0 system administrator 9.0 database 5.0 data science 4.0 hard skill 11.0 other 7.0 soft skill 9.0 project management 7.0 service management 8.0 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self.df_schema_weights = df_schema_weights def process(self) -> DataFrame or None: """ Purpose: Take a Schema Weights DataFrame and generate zScores :return: Schema Weight zScore zScoreNorm cloud 1.0 -1.9 0.0 system administrator 9.0 0.7 2.6 database 5.0 -0.6 1.3 data science 4.0 -0.9 1.0 hard skill 11.0 1.4 3.3 other 7.0 0.1 2.0 soft skill 9.0 0.7 2.6 project management 7.0 0.1 2.0 service management 8.0 0.4 2.3 """ weights = list(self.df_schema_weights.Weight) def stdev(): a_stdev = statistics.stdev(weights) if a_stdev == 0: return 0.005 return a_stdev _stdev = stdev() _mean = statistics.mean(weights) zscores = [] for weight in weights: zscore = (weight - _mean) / _stdev zscores.append(round(zscore, 2)) results = [] for i, row in self.df_schema_weights.iterrows(): results.append({ "Schema": row["Schema"], "Weight": row["Weight"], "zScore": zscores[i], "zScoreNorm": round(zscores[i] - min(zscores), 1)}) df_zscore =
pd.DataFrame(results)
pandas.DataFrame
""" Class modelling discrete and finite distribution extending pandas DataFrame.""" # Imported libraries import pkg_resources # For computations on data import numpy as np import pandas as pd from .DiscreteVariable import DiscreteVariable from ..utils import ddomain_equals, pdInterval_series_from_string # For graph plot installed_pkg = {pkg.key for pkg in pkg_resources.working_set} if 'ipdb' in installed_pkg: import ipdb if "plotly" in installed_pkg: import plotly.io as pio import plotly.offline as pof import plotly.graph_objects as go import plotly.express as px # Classe utilisée pour geler les attributions directe class FrozenClass(object): __isfrozen = False def __setattr__(self, key, value): if self.__isfrozen and not hasattr(self, key): raise TypeError( "No new Attributes can be added to the Discretedistribution") object.__setattr__(self, key, value) def _freeze(self): self.__isfrozen = True # ===============================================# # Definition de l'objet DiscreteDistribution # # ===============================================# # The discrete distribution class aims to represent probability distribution for DiscreteVariable object. # Therefore DiscreteDistribution inherits from pandas.DataFrame for probabilities storage and has a DiscreteVariable # attribute to characterise the underlying discrete and finite random variable. class DiscreteDistribution(FrozenClass, pd.DataFrame): # Constructeur de classe def __init__(self, probs=None, name=None, domain=[], bins=[], unit=None, include_lowest=False, **df_specs): self.variable = DiscreteVariable(name=name, domain=domain, bins=bins, unit=unit, include_lowest=include_lowest) # Remove domain_type from df_specs if specified to avoid # error in the following __init__ call df_specs.pop("domain_type", None) # Pour les intervals : On convertit la liste de bins définissant le domain en liste d'intervalles pandas . if self.variable.domain_type == "interval": domain =
pd.IntervalIndex.from_breaks(self.variable.bins)
pandas.IntervalIndex.from_breaks
import pandas as pd import numpy as np import os import datetime import scipy.io def loadfiles(path, dirs, pkup = 0): filedir = dirs[pkup] flag = False fpath = path + filedir + "/" files = [d for d in os.listdir(fpath) if d.startswith("AppTag")] files = sorted(files) if "withlabel" in os.listdir(path): vfiles = [d for d in os.listdir(path+"withlabel") if d.startswith("vtime") and filedir.rsplit("_",1)[1] in d and "edited" in d] if len(vfiles) > 0: flag = True df = pd.read_csv(path +"withlabel/"+ vfiles[0], index_col=0) print(vfiles) df['label'] = pd.to_numeric(df['label'], errors='coerce') ls = df['label'].tolist() labels = np.array([0 if np.isnan(i) else int(i) for i in ls]) vfiles = [d for d in os.listdir(path) if d.startswith("vtime") and filedir.rsplit("_",1)[1] in d][0] print(vfiles) stamp = [] for j in range(len(files)): df = pd.read_csv(fpath + files[j], index_col=0) ax_ = df["AccelerationX"] ay_ = df["AccelerationY"] az_ = df["AccelerationZ"] temp = np.array([np.float64(ax_),np.float64(ay_),np.float64(az_)]) stamp_ = [datetime.datetime.strptime(i, '\t%Y/%m/%d %H:%M:%S.%f') for i in df.index if len(str(i))>4] if j == 0: acc = np.array(temp) time0 = stamp_[0] else: acc = np.hstack((acc, temp)) stamp_ = [(st - time0).total_seconds() for st in stamp_] xs = np.arange(0,len(stamp_)*10,10) xs2 = np.arange(len(df.index)) stamp.extend(np.interp(xs2,xs,stamp_)) df =
pd.read_csv(path + vfiles, index_col=0)
pandas.read_csv
# pylint: disable=E1101 from pandas.util.py3compat import StringIO, BytesIO, PY3 from datetime import datetime from os.path import split as psplit import csv import os import sys import re import unittest import nose from numpy import nan import numpy as np from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, ExcelFile, TextFileReader, TextParser) from pandas.util.testing import (assert_almost_equal, assert_series_equal, network, ensure_clean) import pandas.util.testing as tm import pandas as pd import pandas.lib as lib from pandas.util import py3compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow from pandas._parser import OverflowError from pandas.io.parsers import (ExcelFile, ExcelWriter, read_csv) def _skip_if_no_xlrd(): try: import xlrd ver = tuple(map(int, xlrd.__VERSION__.split(".")[:2])) if ver < (0, 9): raise nose.SkipTest('xlrd not installed, skipping') except ImportError: raise nose.SkipTest('xlrd not installed, skipping') def _skip_if_no_xlwt(): try: import xlwt except ImportError: raise nose.SkipTest('xlwt not installed, skipping') def _skip_if_no_openpyxl(): try: import openpyxl except ImportError: raise nose.SkipTest('openpyxl not installed, skipping') def _skip_if_no_excelsuite(): _skip_if_no_xlrd() _skip_if_no_xlwt() _skip_if_no_openpyxl() _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd)[:10] _frame2 = DataFrame(_seriesd, columns=['D', 'C', 'B', 'A'])[:10] _tsframe = tm.makeTimeDataFrame()[:5] _mixed_frame = _frame.copy() _mixed_frame['foo'] = 'bar' class ExcelTests(unittest.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') self.frame = _frame.copy() self.frame2 = _frame2.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() def test_parse_cols_int(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols=3) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['A', 'B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols=3) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file) tm.assert_frame_equal(df3, df2, check_names=False) def test_parse_cols_list(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols=[0, 2, 3]) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols=[0, 2, 3]) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file tm.assert_frame_equal(df3, df2, check_names=False) def test_parse_cols_str(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A:D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['A', 'B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A:D') tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df3, df2, check_names=False) del df, df2, df3 df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A,C,D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A,C,D') tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file tm.assert_frame_equal(df3, df2, check_names=False) del df, df2, df3 df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A,C:D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A,C:D') tm.assert_frame_equal(df, df2, check_names=False) tm.assert_frame_equal(df3, df2, check_names=False) def test_excel_stop_iterator(self): _skip_if_no_xlrd() excel_data = ExcelFile(os.path.join(self.dirpath, 'test2.xls')) parsed = excel_data.parse('Sheet1') expected = DataFrame([['aaaa', 'bbbbb']], columns=['Test', 'Test1']) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self): _skip_if_no_xlrd() excel_data = ExcelFile(os.path.join(self.dirpath, 'test3.xls')) parsed = excel_data.parse('Sheet1') expected = DataFrame([[np.nan]], columns=['Test']) tm.assert_frame_equal(parsed, expected) def test_excel_table(self): _skip_if_no_xlrd() pth = os.path.join(self.dirpath, 'test.xls') xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True) tm.assert_frame_equal(df, df2, check_names=False) tm.assert_frame_equal(df3, df2, check_names=False) df4 = xls.parse('Sheet1', index_col=0, parse_dates=True, skipfooter=1) df5 = xls.parse('Sheet1', index_col=0, parse_dates=True, skip_footer=1) tm.assert_frame_equal(df4, df.ix[:-1]) tm.assert_frame_equal(df4, df5) def test_excel_read_buffer(self): _skip_if_no_xlrd() _skip_if_no_openpyxl() pth = os.path.join(self.dirpath, 'test.xls') f = open(pth, 'rb') xls = ExcelFile(f) # it works xls.parse('Sheet1', index_col=0, parse_dates=True) pth = os.path.join(self.dirpath, 'test.xlsx') f = open(pth, 'rb') xl = ExcelFile(f) df = xl.parse('Sheet1', index_col=0, parse_dates=True) def test_xlsx_table(self): _skip_if_no_xlrd() _skip_if_no_openpyxl() pth = os.path.join(self.dirpath, 'test.xlsx') xlsx = ExcelFile(pth) df = xlsx.parse('Sheet1', index_col=0, parse_dates=True) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df3 = xlsx.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xlsx file tm.assert_frame_equal(df3, df2, check_names=False) df4 = xlsx.parse('Sheet1', index_col=0, parse_dates=True, skipfooter=1) df5 = xlsx.parse('Sheet1', index_col=0, parse_dates=True, skip_footer=1) tm.assert_frame_equal(df4, df.ix[:-1]) tm.assert_frame_equal(df4, df5) def test_specify_kind_xls(self): _skip_if_no_xlrd() xlsx_file = os.path.join(self.dirpath, 'test.xlsx') xls_file = os.path.join(self.dirpath, 'test.xls') # succeeds with xlrd 0.8.0, weird # self.assertRaises(Exception, ExcelFile, xlsx_file, kind='xls') # ExcelFile(open(xls_file, 'rb'), kind='xls') # self.assertRaises(Exception, ExcelFile, open(xlsx_file, 'rb'), # kind='xls') def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return
read_csv(*args, **kwds)
pandas.io.parsers.read_csv
import pandas as pd from unittest2 import TestCase # or `from unittest import ...` if on Python 3.4+ import numpy as np import category_encoders.tests.helpers as th import category_encoders as encoders np_X = th.create_array(n_rows=100) np_X_t = th.create_array(n_rows=50, extras=True) np_y = np.random.randn(np_X.shape[0]) > 0.5 np_y_t = np.random.randn(np_X_t.shape[0]) > 0.5 X = th.create_dataset(n_rows=100) X_t = th.create_dataset(n_rows=50, extras=True) y = pd.DataFrame(np_y) y_t = pd.DataFrame(np_y_t) class TestOneHotEncoderTestCase(TestCase): def test_one_hot(self): enc = encoders.OneHotEncoder(verbose=1, return_df=False) enc.fit(X) self.assertEqual(enc.transform(X_t).shape[1], enc.transform(X).shape[1], 'We have to get the same count of columns despite the presence of a new value') enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='indicator') enc.fit(X) out = enc.transform(X_t) self.assertIn('extra_-1', out.columns.values) enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='return_nan') enc.fit(X) out = enc.transform(X_t) self.assertEqual(len([x for x in out.columns.values if str(x).startswith('extra_')]), 3) enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='error') # The exception is already raised in fit() because transform() is called there to get # feature_names right. enc.fit(X) with self.assertRaises(ValueError): enc.transform(X_t) enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='return_nan', use_cat_names=True) enc.fit(X) out = enc.transform(X_t) self.assertIn('extra_A', out.columns.values) enc = encoders.OneHotEncoder(verbose=1, return_df=True, use_cat_names=True, handle_unknown='indicator') enc.fit(X) out = enc.transform(X_t) self.assertIn('extra_-1', out.columns.values) # test inverse_transform X_i = th.create_dataset(n_rows=100, has_none=False) X_i_t = th.create_dataset(n_rows=50, has_none=False) cols = ['underscore', 'none', 'extra', 321, 'categorical'] enc = encoders.OneHotEncoder(verbose=1, use_cat_names=True, cols=cols) enc.fit(X_i) obtained = enc.inverse_transform(enc.transform(X_i_t)) th.verify_inverse_transform(X_i_t, obtained) def test_fit_transform_HaveMissingValuesAndUseCatNames_ExpectCorrectValue(self): encoder = encoders.OneHotEncoder(cols=[0], use_cat_names=True, handle_unknown='indicator') result = encoder.fit_transform([[-1]]) self.assertListEqual([[1, 0]], result.get_values().tolist()) def test_inverse_transform_HaveDedupedColumns_ExpectCorrectInverseTransform(self): encoder = encoders.OneHotEncoder(cols=['match', 'match_box'], use_cat_names=True) value = pd.DataFrame({'match': pd.Series('box_-1'), 'match_box': pd.Series(-1)}) transformed = encoder.fit_transform(value) inverse_transformed = encoder.inverse_transform(transformed) assert value.equals(inverse_transformed) def test_inverse_transform_HaveNoCatNames_ExpectCorrectInverseTransform(self): encoder = encoders.OneHotEncoder(cols=['match', 'match_box'], use_cat_names=False) value = pd.DataFrame({'match': pd.Series('box_-1'), 'match_box': pd.Series(-1)}) transformed = encoder.fit_transform(value) inverse_transformed = encoder.inverse_transform(transformed) assert value.equals(inverse_transformed) def test_fit_transform_HaveColumnAppearTwice_ExpectColumnsDeduped(self): encoder = encoders.OneHotEncoder(cols=['match', 'match_box'], use_cat_names=True, handle_unknown='indicator') value = pd.DataFrame({'match': pd.Series('box_-1'), 'match_box': pd.Series('-1')}) result = encoder.fit_transform(value) columns = result.columns.tolist() self.assertSetEqual({'match_box_-1', 'match_-1', 'match_box_-1#', 'match_box_-1##'}, set(columns)) def test_fit_transform_HaveHandleUnknownValueAndUnseenValues_ExpectAllZeroes(self): train =
pd.DataFrame({'city': ['Chicago', 'Seattle']})
pandas.DataFrame
""" Module containing the core system of encoding and creation of understandable dataset for the recommender system. """ import joblib import pandas as pd from recipe_tagger import recipe_waterfootprint as wf from recipe_tagger import util from sklearn import cluster from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from stop_words import get_stop_words from tqdm import tqdm from cf_recommender import CFRecommender from configuration import load_configuration class Encoder: """ Class that contains all the encoding and the creation of data files from the dataset provided by the user in the input directory and the mapping specified into the configuration file. :param language: the language of the dataset. """ def __init__(self, language): """ Constructor method for the class. It loads all the necessary path for the files provided into the configuration file. """ config = load_configuration() self.language = language self.path_orders = config["path_orders"] self.path_recipes = config["path_recipes"] self.path_embedding = config["path_embedding"] self.path_user_scores = config["path_user_scores"] self.input_path_orders = config["input_path_orders"] self.input_path_recipes = config["input_path_recipes"] print(f">> Initialize encoder, language: {self.language} <<") def __process_ingredients(self, ingredients): """ Process the provided ingredients string. :param ingredients: a string composed by ingredients comma separated. :return: a list containing the processed ingredients. """ return [ util.process_ingredients(ing, language=self.language, stem=False) for ing in ingredients.split(",") ] def __generate_ingredients_embedding(self, column_name="ingredient"): """ Generate the ingredients embedding TF-IDF matrix and save it to a pickle file in the default folder. :param column_name: the name of the column that contains the ingredients in the recipe dataset. :return: None """ recipes_df = pd.read_csv(self.input_path_recipes)[[column_name]] recipes_df[column_name] = recipes_df[column_name].apply( self.__process_ingredients ) recipes_df[column_name] = recipes_df[column_name].apply(", ".join) tfidf = TfidfVectorizer(stop_words=get_stop_words(self.language)) matrix = tfidf.fit_transform(recipes_df[column_name]) joblib.dump(matrix, self.path_embedding) def __get_user_order_quantity(self, df): """ Reformat a dataset containing order history into a dictionary containing user ratings for recipes that he has ordered. The rating is computed based on how many times he has ordered the recipe compared with the recipes with most orders. :param df: the dataframe containing user orders. :return: a dictionary containing user recipes ratings. """ data = {"user_id": [], "item_id": [], "rating": []} for user in df["user_id"].unique(): user_df = df.query(f"user_id == {user}") user_df = user_df.groupby("item_id").count().reset_index() max_rating = user_df["user_id"].max() user_df["rating"] = user_df.apply( lambda x: int((x["user_id"] * 4) / max_rating) + 1, axis=1 ) data["user_id"].extend([user] * user_df.shape[0]) data["item_id"].extend(user_df["item_id"]) data["rating"].extend(user_df["rating"]) return data def __get_wf(self, ingredients, quantities): """ Return the total water footprint of a single recipe based on its ingredients and their quantities. :param ingredients: a list containing all the ingredients. :param quantities: a list containing all ingredients quantities. :return: the water footprint of the recipe. """ while len(ingredients) > len(quantities): quantities.append("5ml") return wf.get_recipe_waterfootprint( ingredients, quantities, online_search=False, language=self.language ) def __get_recipe_category(self, index, total): """ Return the category of a recipe based on their position on the sorted dataset. :param index: the index of the recipe in the dataset. :param total: the total number of recipes in the dataset. :return: the category of the recipe. (A, B, C, D, E) """ categories = ["A", "B", "C", "D", "E"] threshold = total / len(categories) return categories[int(index / threshold)] def __get_dataset_reduced(self, df, min_user_orders=5, min_recipe_orders=3): """ Return the dataset without recipes and orders that don't match the restrictions. Restrictions are on minimum orders made by user and minimum orders for a recipe. :param df: the dataframe containing all the orders. :param min_user_orders: the minimum number of user orders. Default is 5. :param min_user_orders: the minimum number of recipe orders. Default is 3. :return: a dataframe without orders that don't match guidelines. """ filter_recipe = df["item_id"].value_counts() > min_recipe_orders filter_recipe = filter_recipe[filter_recipe].index.tolist() filter_user = df["user_id"].value_counts() > min_user_orders filter_user = filter_user[filter_user].index.tolist() return df[ (df["user_id"].isin(filter_user)) & (df["item_id"].isin(filter_recipe)) ] def __generate_orders( self, columns_map, rating=True, ): """ Generate and save to pickle file the new orders dataset, formatted and reduced following the previous guidelines. If the input dataframe doesn't contains yet the user ratings it will transform it on a rating dataset. :param columns_map: a dictionary containing the mapping of the column in the input dataset. :param rating: the presence or not of user ratings. :return: None """ df =
pd.read_csv(self.input_path_orders)
pandas.read_csv
import os import numpy as np import pandas as pd from covid19model.data.utils import convert_age_stratified_property class QALY_model(): def __init__(self, comorbidity_distribution): self.comorbidity_distribution = comorbidity_distribution # Define absolute path abs_dir = os.path.dirname(__file__) # Import life table (q_x) self.life_table = pd.read_csv(os.path.join(abs_dir, '../../../data/interim/QALYs/Life_table_Belgium_2019.csv'),sep=';',index_col=0) # Compute the vector mu_x and append to life table self.life_table['mu_x']= self.compute_death_rate(self.life_table['q_x']) # Define mu_x explictly to enhance readability of the code self.mu_x = self.life_table['mu_x'] # Load comorbidity QoL scores for the Belgian population from <NAME> QoL_Van_Wilder=pd.read_excel(os.path.join(abs_dir,"../../../data/interim/QALYs/De_Wilder_QoL_scores.xlsx"),index_col=0,sheet_name='QoL_scores') QoL_Van_Wilder.columns = ['0','1','2','3+'] QoL_Van_Wilder.index = pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left') self.QoL_Van_Wilder = QoL_Van_Wilder # Define overall Belgian QoL scores self.QoL_Belgium = pd.Series(index=pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left'), data=[0.85, 0.85, 0.84, 0.83, 0.805, 0.78, 0.75, 0.72, 0.72]) # Convert Belgian QoL and Van Wilder QoL to age bins of self.comorbidity_distribution self.QoL_Belgium = convert_age_stratified_property(self.QoL_Belgium, self.comorbidity_distribution.index) tmp_QoL_Van_Wilder = pd.DataFrame(index=self.comorbidity_distribution.index, columns=self.QoL_Van_Wilder.columns) for column in self.QoL_Van_Wilder.columns: tmp_QoL_Van_Wilder[column] = convert_age_stratified_property(self.QoL_Van_Wilder[column], self.comorbidity_distribution.index) self.QoL_Van_Wilder = tmp_QoL_Van_Wilder # Compute the QoL scores of the studied population self.QoL_df = self.build_comorbidity_QoL(self.comorbidity_distribution, self.QoL_Van_Wilder, self.QoL_Belgium) # Load comorbidity SMR estimates SMR_pop_df=pd.read_excel(os.path.join(abs_dir,"../../../data/interim/QALYs/De_Wilder_QoL_scores.xlsx"), index_col=0, sheet_name='SMR') SMR_pop_df.columns = ['0','1','2','3+'] SMR_pop_df.index = pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left') self.SMR_pop_df = SMR_pop_df # Convert comorbidity SMR estimates to age bins of self.comorbidity_distribution tmp_SMR_pop_df = pd.DataFrame(index=self.comorbidity_distribution.index, columns=self.SMR_pop_df.columns) for column in self.SMR_pop_df.columns: tmp_SMR_pop_df[column] = convert_age_stratified_property(self.SMR_pop_df[column], self.comorbidity_distribution.index) self.SMR_pop_df = tmp_SMR_pop_df # Compute the SMR of the studied population self.SMR_df = self.build_comorbidity_SMR(self.comorbidity_distribution, self.SMR_pop_df) def build_comorbidity_SMR(self, comorbidity_distribution, population_SMR): """ A function to compute the Standardized Mortality Ratios (SMRs) in a studied population, based on the comorbidity distribution of the studied population and the comorbidity distribution of the Belgian population Parameters ---------- comorbidity_distribution : pd.Dataframe A dataframe containing the studied population fraction with x comorbidities. This dataframe is the input of the comorbidity-QALY model. The studied population are usually recovered or deceased COVID-19 patients in hospitals. The dataframe must have te age group as its index and make use of a pandas multicolumn, where the first level denotes the population (usually R or D, but the code is written to use n populations). The second level denotes the number of comorbidities, which must be equal to 0, 1, 2 or 3+. population_SMR : pd.Dataframe A dataframe containing the age-stratified SMRs for individuals with 0, 1, 2 or 3+ comorbidities in the general Belgian population. Computed using the comorbidity distributions for the general Belgian population obtained from <NAME>, and the relative risk of dying by Charslon et. al (computation performed in MS Excel). Returns ------- SMR_df: pd.DataFrame The weighted Standardized Mortality Ratios (SMRs) in the studied population. An SMR > 1 indicates the studied population is less healthy than the general Belgian population. """ # Extract names of populations populations = list(comorbidity_distribution.columns.get_level_values(0).unique()) # Initialize dataframe df = pd.DataFrame(index=population_SMR.index, columns=populations) # Fill dataframe for idx,age_group in enumerate(df.index): for jdx,pop in enumerate(populations): df.loc[age_group, pop] = sum(comorbidity_distribution.loc[age_group, pop]*population_SMR.loc[age_group]) # Append SMR of average Belgian df.loc[slice(None), 'BE'] = 1 return df def build_comorbidity_QoL(self, comorbidity_distribution, comorbidity_QoL, average_QoL): """ A function to compute the QoL scores in a studied population, based on the comorbidity distribution of the studied population and the QoL scores for 0, 1, 2, 3+ comorbidities for the Belgian population Parameters ---------- comorbidity_distribution : pd.Dataframe A dataframe containing the studied population fraction with x comorbidities. This dataframe is the input of the comorbidity-QALY model. The studied population are usually recovered or deceased COVID-19 patients in hospitals. The dataframe must have te age group as its index and make use of a pandas multicolumn, where the first level denotes the population (usually R or D, but the code is written to use n populations). The second level denotes the number of comorbidities, which must be equal to 0, 1, 2 or 3+. comorbidity_QoL : pd.Dataframe A dataframe containing the age-stratified QoL scores for individuals with 0, 1, 2 or 3+ comorbidities in the general Belgian population. Obtained from <NAME>. average_QoL : pd.Series A series containing the average QoL score for the (Belgian) population Returns ------- QoL_df: pd.DataFrame The comorbidity-weighted QoL scores of the studied population. """ # Extract names of populations populations = list(comorbidity_distribution.columns.get_level_values(0).unique()) # Initialize dataframe df = pd.DataFrame(index=comorbidity_QoL.index, columns=populations) # Fill dataframe for idx,age_group in enumerate(df.index): for jdx,pop in enumerate(populations): df.loc[age_group, pop] = sum(comorbidity_distribution.loc[age_group, pop]*comorbidity_QoL.loc[age_group]) # Append SMR of average Belgian df.loc[slice(None), 'BE'] = average_QoL return df def compute_death_rate(self, q_x): """ A function to compute the force of mortality (instantaneous death rate at age x) Parameters ---------- q_x : list or np.array Probability of dying between age x and age x+1. Returns ------- mu_x : np.array Instantaneous death rage at age x """ # Pre-allocate mu_x = np.zeros(len(q_x)) # Compute first entry mu_x[0] = -np.log(1-q_x[0]) # Loop over remaining entries for age in range(1,len(q_x)): mu_x[age] = -0.5*(np.log(1-q_x[age])+np.log(1-q_x[age-1])) return mu_x def survival_function(self, SMR=1): """ A function to compute the probability of surviving until age x Parameters ---------- self.mu_x : list or np.array Instantaneous death rage at age x SMR : float "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. Returns ------- S_x : pd.Series Survival function, i.e. the probability of surviving up until age x """ # Pre-allocate as np.array S_x = np.zeros(len(self.mu_x)) # Survival rate at age 0 is 100% S_x[0] = 1 # Loop for age in range(1,len(self.mu_x)): S_x[age] = S_x[age-1]*np.exp(-SMR*self.mu_x[age]) # Post-allocate as pd.Series object S_x = pd.Series(index=range(len(self.mu_x)), data=S_x) S_x.index.name = 'x' return S_x def life_expectancy(self,SMR=1): """ A function to compute the life expectancy at age x Parameters ---------- SMR : float "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. Returns ------- LE_x : pd.Series Life expectancy at age x """ # Compute survival function S_x = self.survival_function(SMR) # First compute inner sum tmp = np.zeros(len(S_x)) for age in range(len(S_x)-1): tmp[age] = 0.5*(S_x[age]+S_x[age+1]) # Then sum from x to the end of the table to obtain life expectancy LE_x = np.zeros(len(S_x)) for x in range(len(S_x)): LE_x[x] = np.sum(tmp[x:]) # Post-allocate to pd.Series object LE_x = pd.Series(index=range(len(self.mu_x)), data=LE_x) LE_x.index.name = 'x' return LE_x def compute_QALE_x(self, population='BE', SMR_method='convergent'): """ A function to compute the quality-adjusted life expectancy at age x Parameters ---------- self.mu_x : list or np.array Instantaneous death rage at age x self.SMR_df : pd.Dataframe "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. self.QoL_df : pd.Dataframe Quality-of-life utility weights, as imported from `~/data/interim/QALYs/QoL_scores_Belgium_2018_v3.csv`. Must contain two columns: "group_limit" and "QoL_score" population : string Choice of QoL scores. Valid options are 'Belgium', 'R' and 'D'. 'Belgium' : Overall QoL scores for the Belgian population by De Wilder et. al and an SMR=1 are applied (this represents average QALY loss) 'R' : QoL scores and SMR for those recovering from COVID-19 in the hospital (most likely higher quality than average) 'D' : QoL scores and SMR for those dying from COVID-19 in the hospital (most likely lower quality than average) SMR_method : string Choice of SMR model for remainder of life. Valid options are 'convergent' and 'constant'. 'convergent' : the SMR gradually converges to SMR=1 by the end of the subjects life. If a person is expected to be healthy (SMR<1), this method represents the heuristic that we do not know how healthy this person will be in the future. We just assume his "healthiness" converges back to the population average as time goes by. 'constant' : the SMR used to compute the QALEs remains equal to the expected value for the rest of the subjects life. If a person is expected to be healthy (SMR<1), this method assumes the person will remain equally healthy for his entire life. Returns ------- QALE_x : pd.Series Quality-adjusted ife expectancy at age x """ # Pre-allocate results QALE_x = np.zeros(len(self.mu_x)) # Loop over x for x in range(len(self.mu_x)): # Pre-allocate dQALY dQALE = np.zeros([len(self.mu_x)-x-1]) # Set age-dependant utility weights to lowest possible j=0 age_limit=self.QoL_df.index[j].right - 1 QoL_x=self.QoL_df[population].values[j] # Calculate the SMR at age x if ((SMR_method == 'convergent')|(SMR_method == 'constant')): k = np.where(self.QoL_df.index.contains(x))[0][-1] age_limit = self.QoL_df.index[k].right - 1 SMR_x = self.SMR_df[population].values[k] # Loop over years remaining after year x for i in range(x,len(self.mu_x)-1): # Find the right age bin j = np.where(self.QoL_df.index.contains(i))[0][-1] age_limit = self.QoL_df.index[j].right - 1 # Choose the right QoL score QoL_x = self.QoL_df[population].values[j] # Choose the right SMR if SMR_method == 'convergent': # SMR gradually converges to one by end of life SMR = 1 + (SMR_x-1)*((len(self.mu_x)-1-i)/(len(self.mu_x)-1-x)) elif SMR_method == 'constant': # SMR is equal to SMR at age x for remainder of life SMR = SMR_x # Compute the survival function S_x = self.survival_function(SMR) # Then compute the quality-adjusted life years lived between age x and x+1 dQALE[i-x] = QoL_x*0.5*(S_x[i] + S_x[i+1]) # Sum dQALY to obtain QALY_x QALE_x[x] = np.sum(dQALE) # Post-allocate to pd.Series object QALE_x = pd.Series(index=range(len(self.mu_x)), data=QALE_x) QALE_x.index.name = 'x' return QALE_x def compute_QALY_x(self, population='BE', r=0.03, SMR_method='convergent'): """ A function to compute the quality-adjusted life years remaining at age x Parameters ---------- self.mu_x : list or np.array Instantaneous death rage at age x self.SMR_df : pd.Dataframe "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. self.QoL_df : pd.Dataframe Quality-of-life utility weights, as imported from `~/data/interim/QALYs/QoL_scores_Belgium_2018_v3.csv`. Must contain two columns: "group_limit" and "QoL_score" population : string Choice of QoL scores. Valid options are 'Belgium', 'R' and 'D'. 'Belgium' : Overall QoL scores for the Belgian population by De Wilder et. al and an SMR=1 are applied (this represents average QALY loss) 'R' : QoL scores and SMR for those recovering from COVID-19 in the hospital (most likely higher quality than average) 'D' : QoL scores and SMR for those dying from COVID-19 in the hospital (most likely lower quality than average) r : float Discount rate (default 3%) SMR_method : string Choice of SMR model for remainder of life. Valid options are 'convergent' and 'constant'. 'convergent' : the SMR gradually converges to SMR=1 by the end of the subjects life. If a person is expected to be healthy (SMR<1), this method represents the heuristic that we do not know how healthy this person will be in the future. We just assume his "healthiness" converges back to the population average as time goes by. 'constant' : the SMR used to compute the QALEs remains equal to the expected value for the rest of the subjects life. If a person is expected to be healthy (SMR<1), this method assumes the person will remain equally healthy for his entire life. Returns ------- QALY_x : pd.Series Quality-adjusted life years remaining at age x """ # Pre-allocate results QALY_x = np.zeros(len(self.mu_x)) # Loop over x for x in range(len(self.mu_x)): # Pre-allocate dQALY dQALY = np.zeros([len(self.mu_x)-x-1]) # Set age-dependant utility weights to lowest possible j=0 age_limit=self.QoL_df.index[j].right -1 QoL_x=self.QoL_df[population].values[j] # Calculate the SMR at age x if ((SMR_method == 'convergent')|(SMR_method == 'constant')): k = np.where(self.QoL_df.index.contains(x))[0][-1] age_limit = self.QoL_df.index[k].right - 1 SMR_x = self.SMR_df[population].values[k] # Loop over years remaining after year x for i in range(x,len(self.mu_x)-1): # Find the right age bin j = np.where(self.QoL_df.index.contains(i))[0][-1] age_limit = self.QoL_df.index[j].right - 1 # Choose the right QoL score QoL_x = self.QoL_df[population].values[j] # Choose the right SMR if SMR_method == 'convergent': # SMR gradually converges to one by end of life SMR = 1 + (SMR_x-1)*((len(self.mu_x)-1-i)/(len(self.mu_x)-1-x)) elif SMR_method == 'constant': # SMR is equal to SMR at age x for remainder of life SMR = SMR_x # Compute the survival function S_x = self.survival_function(SMR) # Then compute the quality-adjusted life years lived between age x and x+1 dQALY[i-x] = QoL_x*0.5*(S_x[i] + S_x[i+1])*(1+r)**(x-i) # Sum dQALY to obtain QALY_x QALY_x[x] = np.sum(dQALY) # Post-allocate to pd.Series object QALY_x = pd.Series(index=range(len(self.mu_x)), data=QALY_x) QALY_x.index.name = 'x' return QALY_x def bin_QALY_x(self, QALY_x, model_bins=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): """ A function to bin the vector QALY_x according to the age groups in the COVID-19 SEIQRD Parameters ---------- QALY_x : np.array Quality-adjusted life years remaining at age x model_bins : pd.IntervalIndex Desired age bins Returns ------- QALY_binned: pd.Series Quality-adjusted life years lost upon death for every age bin of the COVID-19 SEIQRD model """ # Pre-allocate results vector QALY_binned = np.zeros(len(model_bins)) # Loop over model bins for i in range(len(model_bins)): # Map QALY_x to model bins QALY_binned[i] = np.mean(QALY_x[model_bins[i].left:model_bins[i].right-1]) # Post-allocate to pd.Series object QALY_binned = pd.Series(index=model_bins, data=QALY_binned) QALY_binned.index.name = 'age_group' return QALY_binned def build_binned_QALY_df(self, r=0.03, SMR_method='convergent', model_bins=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): # Extract names of populations populations = list(self.SMR_df.columns.get_level_values(0).unique()) # Initialize empty dataframe df = pd.DataFrame() # Loop over populations for pop in populations: QALY_x = self.compute_QALY_x(population=pop, SMR_method='convergent',r=r) binned_QALY = self.bin_QALY_x(QALY_x, model_bins) binned_QALY.name = pop df = df.append(binned_QALY) return df.T def append_acute_QALY_losses(self, out, binned_QALY_df): # https://link.springer.com/content/pdf/10.1007/s40271-021-00509-z.pdf ################## ## Mild disease ## ################## # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690729/ --> Table A2 --> utility weight = 0.659 # https://www.valueinhealthjournal.com/article/S1098-3015(21)00034-6/fulltext --> Table 2 --> 1-0.43=0.57 out['QALYs_mild'] = out['M']*np.expand_dims(np.expand_dims((self.QoL_df['Belgium']-0.659)/365,axis=1),axis=0) ##################### ## Hospitalization ## ##################### # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690729/ --> Table A2 --> utility weight = 0.514 # https://www.valueinhealthjournal.com/article/S1098-3015(21)00034-6/fulltext --> Table 2 --> 1-0.50 = 0.50 out['QALYs_cohort'] = out['C']*np.expand_dims(np.expand_dims((self.QoL_df['Belgium']-0.50)/365,axis=1),axis=0) + out['C_icurec']*np.expand_dims(np.expand_dims((self.QoL_df['Belgium']-0.50)/365,axis=1),axis=0) # https://www.valueinhealthjournal.com/article/S1098-3015(21)00034-6/fulltext --> Table 2 --> 1-0.60 = 0.40 out['QALYs_ICU'] = out['ICU']*np.expand_dims(np.expand_dims((self.QoL_df['Belgium']-0.40)/365,axis=1),axis=0) ########### ## Death ## ########### m_C_nt = 0.4 m_ICU_nt = 0.8 out['QALYs_death'] = out['D']*np.expand_dims(np.expand_dims(binned_QALY_df['D'],axis=1),axis=0) out['QALYs_treatment'] = (m_C_nt*out['R_C'] + m_ICU_nt*out['R_C'])*np.expand_dims(np.expand_dims(binned_QALY_df['R'],axis=1),axis=0) return out def lost_QALYs_hospital_care (reduction,granular=False): """ This function calculates the expected number of QALYs lost due to a given percentage reduction in regular (non Covid-19 related) hospital care. The calculation is an approximation based on the reported hospital costs in Belgium per disease group and the average cost per QALY gained per disease group (calculated from cost-effectiveness thresholds reported for the Netherlands) Parameters ---------- reduction: np.array Percentage reduction in hospital care. if granular = True, reduction per disease group granular: bool If True, calculations are performed per disease group. If False, calculations are performed on an average basis Returns ------- lost_QALYs float or pd.DataFrame Total number of QALYs lost per day caused by a given reduction in hospital care. if granular = True, results are given per disease group """ # Import hospital care cost per disease group and cost per QALY #cost per qauly (EUR), total spent (mill EUR) hospital_data=
pd.read_excel("../../data/interim/QALYs/hospital_data_qalys.xlsx", sheet_name='hospital_data')
pandas.read_excel
import numpy as np import pandas as pd import matplotlib.pyplot as plt from time import time from sklearn import metrics from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import scale, LabelEncoder from sklearn.linear_model import LinearRegression ############################################ # Section 1 - Importing and Combining Data ############################################ np.random.seed(12345) # Getting company names and sector labels df = pd.read_csv('D:/ML/book1.csv', header=0, index_col='Ticker') to_keep = ['Name', 'Sector'] dfA = df[to_keep] # Getting financial ratio data dfB = pd.read_csv('D:/ML/ratios.csv', header=0, index_col='Ticker') ratioNames = np.array(dfB.columns.values) # Concatenating dataframes to get primary dataset companyData = dfA.join(dfB).drop(['BF-B', 'CTVA', 'FRC']) companyData = companyData.fillna(0) clusterData = np.array(companyData) companies = np.array(companyData.index) ############################################ # Section 2 - Computing Ranked Measures ############################################ # Storing sector-wise means of ratios dt = companyData.groupby('Sector').mean() # Function to get industry-relative ratios def getRelative(ratioData): ratios = ratioData[:, 2:] sector = ratioData[:, 1] for i in range(len(sector)): # Get sector of company and sector-wise averages of ratios ind = sector[i] indAvgs = dt.loc[ind] for j in range(len(indAvgs)): ratios[i, j] = ratios[i, j] / indAvgs[j] return ratios # Storing the relative ratios for future use finalData = pd.DataFrame(getRelative(clusterData), index=companies, columns=ratioNames).fillna(0) #################################################### # Section 3 - Identifying Optimal Number of Clusters ################################################### # Loading the feature dataset X = np.array(finalData) comp = clusterData[:, 1] # Encoding output labels lab = LabelEncoder() labels = lab.fit_transform(comp) # Algorithm to compare cluster sizes (adapted from Scikit-learn's documentation) def bench_k_means(classifier, name, data): # Prints labels of measures used print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') t0 = time() classifier.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), classifier.inertia_, metrics.homogeneity_score(labels, classifier.labels_), metrics.completeness_score(labels, classifier.labels_), metrics.v_measure_score(labels, classifier.labels_), metrics.adjusted_rand_score(labels, classifier.labels_), metrics.adjusted_mutual_info_score(labels, classifier.labels_, average_method='arithmetic'), metrics.silhouette_score(data, classifier.labels_, metric='euclidean', sample_size=497)) ) return classifier.inertia_ # List to store inertia for Elbow Method of cluster size identification wcss = [] # Comparing multiple values of k (chose to use 4) for i in range(2, 12): print("Calculating measurement scores for Cluster Size {}".format(i)) cluster = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, precompute_distances=True, random_state=3) inert = bench_k_means(classifier=cluster, name = "k-means++", data = X) print('') wcss.append(inert) # Plotting inertia for different values of k to identify 'elbow' plt.figure(figsize=(10, 10)) plt.plot(range(2, 12), wcss) plt.title('Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.xticks(range(1, 12)) plt.show() # Function to visualise two most populous clusters on two random axes def plotClusters(kmeans_out, dimA, dimB): (values, counts) = np.unique(kmeans_out, return_counts=True) filled = np.stack((values, counts), axis=1) sortedFill = filled[filled[:, 1].argsort()] # Pick the last two clusters, i.e. most populous for i in [-1, -2]: cID = sortedFill[i][0] if i == -1: plt.scatter(X[kmeans_out == cID, dimA], X[kmeans_out == cID, dimB], s=50, c='lightblue', marker='o', edgecolor='black', label='cluster 1') else: plt.scatter(X[kmeans_out == cID, dimA], X[kmeans_out == cID, dimB], s=50, c='lightgreen', marker='s', edgecolor='black', label='cluster 2') plt.legend(scatterpoints=1) plt.grid() plt.xlabel('Dimension A') plt.ylabel('Dimension B') plt.title('Visual Decomposition of Clustering') plt.xlim(-1, 2) plt.ylim(-1, 2) plt.show() return sortedFill # Cluster Size chosen from previous section size = 7 # Visualising k-means using two random axes kmeans = KMeans(n_clusters=size, init='random', n_init=20, max_iter=300, precompute_distances=True, random_state=3) kmeans_out = kmeans.fit_predict(X) idlist = plotClusters(kmeans_out, 1, 7) #################################################### # Section 4 - Using PCA to visualise clusters ################################################### # Fitting K-means to reduced-form data pca = PCA(n_components=size-1).fit_transform(X) cluster = KMeans(init='random', n_clusters=size, n_init=20) pca_out = cluster.fit_predict(pca) plotClusters(pca_out, 0, 1) clusterID = pd.DataFrame(kmeans_out, index=companies, columns=['ClusterID']) xData = pd.concat((finalData, clusterID), axis=1) clusterID.to_csv('D:/ML/companylist.csv') #################################################### # Section 5 - Creating Datasets for Regression ################################################### stockData = np.array(pd.read_csv('D:/ML/tickerdata.csv', index_col='Date').drop(['BF-B', 'CTVA', 'FRC'], axis=1).fillna(0)).T clusterStock = np.concatenate((stockData, np.array(clusterID)), axis=1) # List of popular clusters cIDA = idlist[-1, 0] cIDB = idlist[-2, 0] cIDC = idlist[-3, 0] cIDD = idlist[-4, 0] # Boolean conditions to split data condA = [row for row in clusterStock if row[-1] == cIDA] condB = [row for row in clusterStock if row[-1] == cIDB] condC = [row for row in clusterStock if row[-1] == cIDC] condD = [row for row in clusterStock if row[-1] == cIDD] # Creating separate datasets regDataA = np.array(condA).reshape((len(condA), len(condA[0])))[:, :-1].T regDataB = np.array(condB).reshape((len(condB), len(condB[0])))[:, :-1].T regDataC = np.array(condC).reshape((len(condC), len(condC[0])))[:, :-1].T regDataD = np.array(condD).reshape((len(condD), len(condC[0])))[:, :-1].T # Function to apply Linear Regression to every company inside a given cluster def runRegression(regDataA, regDataB, regDataC, regDataD): for numerics in [regDataA, regDataB, regDataC, regDataD]: numComp = np.shape(numerics)[1] numEx = np.shape(numerics)[0] # Array to store weights if numComp >= 240: weightsA = np.ndarray((numComp, numComp-1)) elif numComp >= 200: weightsB = np.ndarray((numComp, numComp-1)) elif numComp >= 6: weightsC = np.ndarray((numComp, numComp-1)) else: weightsD = np.ndarray((numComp, numComp-1)) # Get features and output values for linear regression for i in range(numComp): yData = numerics[:, i] xData = np.delete(numerics[:], i, axis=1) linReg = LinearRegression() linReg.fit(xData, yData) beta = linReg.coef_ if numComp >= 240: weightsA[i] = beta elif numComp >= 200: weightsB[i] = beta elif numComp >= 6: weightsC[i] = beta else: weightsD[i] = beta print("Done for one cluster.") return weightsA, weightsB, weightsC, weightsD # Storing weights as CSV files wMatA, wMatB, wMatC, wMatD = runRegression(regDataA, regDataB, regDataC, regDataD) # Getting list of companies in cluster A and B indA = xData[xData['ClusterID'] == cIDA].index indB = xData[xData['ClusterID'] == cIDB].index indC = xData[xData['ClusterID'] == cIDC].index indD = xData[xData['ClusterID'] == cIDD].index pd.DataFrame(wMatA, index=indA).to_csv('D:/ML/clusterA.csv') pd.DataFrame(wMatB, index=indB).to_csv('D:/ML/clusterB.csv') pd.DataFrame(wMatC, index=indC).to_csv('D:/ML/clusterC.csv') pd.DataFrame(wMatD, index=indD).to_csv('D:/ML/clusterD.csv') pd.DataFrame(idlist, columns=['ClusterID', 'Count']).to_csv('D:/ML/popclusters.csv') #################################################### # Section 6 - Listing similar companies ################################################### # Loading necessary data tickers =
pd.read_csv('D:/ML/companylist.csv', index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist()
tm.assert_almost_equal(result, expected)
pandas.util.testing.assert_almost_equal
# -*- coding: utf-8 -*- import copy import sys import click import six from six import print_ from six import iteritems import pandas as pd from .analyser.simulation_exchange import SimuExchange from .const import EVENT_TYPE, EXECUTION_PHASE from .data import BarMap from .events import SimulatorAStockTradingEventSource from .utils import ExecutionContext, dummy_func from .scheduler import scheduler from .analyser.commission import AStockCommission from .analyser.slippage import FixedPercentSlippageDecider class StrategyContext(object): def __init__(self): self.__last_portfolio_update_dt = None @property def now(self): return ExecutionContext.get_current_dt() @property def slippage(self): return copy.deepcopy(ExecutionContext.get_exchange().account.slippage_decider) @slippage.setter @ExecutionContext.enforce_phase(EXECUTION_PHASE.INIT) def slippage(self, value): assert isinstance(value, (int, float)) ExecutionContext.get_exchange().account.slippage_decider = FixedPercentSlippageDecider(rate=value) @property def commission(self): return copy.deepcopy(ExecutionContext.get_exchange().account.commission_decider) @commission.setter @ExecutionContext.enforce_phase(EXECUTION_PHASE.INIT) def commission(self, value): assert isinstance(value, (int, float)) ExecutionContext.get_exchange().account.commission_decider = AStockCommission(commission_rate=value) @property def benchmark(self): return copy.deepcopy(ExecutionContext.get_trading_params().benchmark) @benchmark.setter @ExecutionContext.enforce_phase(EXECUTION_PHASE.INIT) def benchmark(self, value): assert isinstance(value, six.string_types) ExecutionContext.get_trading_params().benchmark = value @property def short_selling_allowed(self): raise NotImplementedError @short_selling_allowed.setter def short_selling_allowed(self): raise NotImplementedError @property def portfolio(self): dt = self.now # if self.__last_portfolio_update_dt != dt: # FIXME need to use cache, or might use proxy rather then copy if True: self.__portfolio = copy.deepcopy(ExecutionContext.get_exchange().account.portfolio) self.__last_portfolio_update_dt = dt return self.__portfolio def __repr__(self): items = ("%s = %r" % (k, v) for k, v in self.__dict__.items() if not callable(v) and not k.startswith("_")) return "Context({%s})" % (', '.join(items), ) class StrategyExecutor(object): def __init__(self, trading_params, data_proxy, **kwargs): """init :param Strategy strategy: current user strategy object :param TradingParams trading_params: current trading params :param DataProxy data_proxy: current data proxy to access data """ self.trading_params = trading_params self._data_proxy = data_proxy self._strategy_context = kwargs.get("strategy_context") if self._strategy_context is None: self._strategy_context = StrategyContext() self._user_init = kwargs.get("init", dummy_func) self._user_handle_bar = kwargs.get("handle_bar", dummy_func) self._user_before_trading = kwargs.get("before_trading", dummy_func) self._simu_exchange = kwargs.get("simu_exchange") if self._simu_exchange is None: self._simu_exchange = SimuExchange(data_proxy, trading_params) self._event_source = SimulatorAStockTradingEventSource(trading_params) self._current_dt = None self.current_universe = set() self.progress_bar = click.progressbar(length=len(self.trading_params.trading_calendar), show_eta=False) def execute(self): """run strategy :returns: performance results :rtype: pandas.DataFrame """ # use local variable for performance data_proxy = self.data_proxy strategy_context = self.strategy_context simu_exchange = self.exchange init = self._user_init before_trading = self._user_before_trading handle_bar = self._user_handle_bar exchange_on_dt_change = simu_exchange.on_dt_change exchange_on_bar_close = simu_exchange.on_bar_close exchange_on_day_open = simu_exchange.on_day_open exchange_on_day_close = simu_exchange.on_day_close exchange_update_portfolio = simu_exchange.update_portfolio is_show_progress_bar = self.trading_params.show_progress def on_dt_change(dt): self._current_dt = dt exchange_on_dt_change(dt) with ExecutionContext(self, EXECUTION_PHASE.INIT): init(strategy_context) try: for dt, event in self._event_source: on_dt_change(dt) bar_dict = BarMap(dt, self.current_universe, data_proxy) if event == EVENT_TYPE.DAY_START: with ExecutionContext(self, EXECUTION_PHASE.BEFORE_TRADING, bar_dict): exchange_on_day_open() before_trading(strategy_context, None) elif event == EVENT_TYPE.HANDLE_BAR: with ExecutionContext(self, EXECUTION_PHASE.HANDLE_BAR, bar_dict): exchange_update_portfolio(bar_dict) handle_bar(strategy_context, bar_dict) scheduler.next_day(dt, strategy_context, bar_dict) exchange_on_bar_close(bar_dict) elif event == EVENT_TYPE.DAY_END: with ExecutionContext(self, EXECUTION_PHASE.FINALIZED, bar_dict): exchange_on_day_close() if is_show_progress_bar: self.progress_bar.update(1) finally: self.progress_bar.render_finish() results_df = self.generate_result(simu_exchange) return results_df def generate_result(self, simu_exchange): """generate result dataframe :param simu_exchange: :returns: result dataframe contains daliy portfolio, risk and trades :rtype: pd.DataFrame """ account = simu_exchange.account risk_cal = simu_exchange.risk_cal columns = [ "daily_returns", "total_returns", "annualized_returns", "market_value", "portfolio_value", "total_commission", "total_tax", "pnl", "positions", "cash", ] risk_keys = [ "volatility", "max_drawdown", "alpha", "beta", "sharpe", "information_rate", "downside_risk", "tracking_error", "sortino", ] data = [] for date, portfolio in iteritems(simu_exchange.daily_portfolios): # portfolio items = {"date":
pd.Timestamp(date)
pandas.Timestamp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 14 00:07:42 2019 @author: saugata """ from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore") # Activities are the class labels # It is a 6 class classification ACTIVITIES = { 0: 'WALKING', 1: 'WALKING_UPSTAIRS', 2: 'WALKING_DOWNSTAIRS', 3: 'SITTING', 4: 'STANDING', 5: 'LAYING', } # Utility function to print the confusion matrix def confusion_matrix(Y_true, Y_pred): Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_true, axis=1)]) Y_pred = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_pred, axis=1)]) return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred']) # Data directory DATADIR = 'UCI_HAR_Dataset' # Raw data signals # Signals are from Accelerometer and Gyroscope # The signals are in x,y,z directions # Sensor signals are filtered to have only body acceleration # excluding the acceleration due to gravity # Triaxial acceleration from the accelerometer is total acceleration SIGNALS = [ "body_acc_x", "body_acc_y", "body_acc_z", "body_gyro_x", "body_gyro_y", "body_gyro_z", "total_acc_x", "total_acc_y", "total_acc_z" ] # Utility function to read the data from csv file def _read_csv(filename): return pd.read_csv(filename, delim_whitespace=True, header=None) # Utility function to load the load def load_signals(subset): signals_data = [] for signal in SIGNALS: filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subset}.txt' signals_data.append(_read_csv(filename).as_matrix()) # Transpose is used to change the dimensionality of the output, # aggregating the signals by combination of sample/timestep. # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals) return np.transpose(signals_data, (1, 2, 0)) def load_y(subset): """ The objective that we are trying to predict is a integer, from 1 to 6, that represents a human activity. We return a binary representation of every sample objective as a 6 bits vector using One Hot Encoding (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html) """ filename = f'UCI_HAR_Dataset/{subset}/y_{subset}.txt' y = _read_csv(filename)[0] return
pd.get_dummies(y)
pandas.get_dummies
import pandas as pd import numpy as np from .cross_validation import CrossValidation from dask import delayed from threading import Lock class Data(object): """ This class represents the set "Train plus Test" datasets. This "union" is necessary throughout the ensemble. """ def __init__(self, train_ds=None, test_ds=None): """ Train and test datasets. """ self.pre_train_status = None self.pos_train_status = None self.pre_pred_status = None self.pos_pred_status = None if train_ds is None: self.train_ds = Dataset() else: self.train_ds = train_ds if test_ds is None: self.test_ds = Dataset() else: self.test_ds = test_ds def __hash__(self): return hash((self.train_ds, self.test_ds)) def __eq__(self, other): return (self.train_ds, self.test_ds) == (other.train_ds, other.test_ds) @delayed def pre_train(self, *arg): """ Define actions to be made before training the nodes that have this Data as source. """ self.train_ds.create_cv() @delayed def pos_train(self, *arg): print("POS_training") @delayed def pre_pred(self, *arg): print("PRE_predict") @delayed def pos_pred(self, *arg): print("POS_predict") class Dataset(object): """ This class represents a dataset. At least these requirements are addressed here: - Necessary methods to handle its data. - Control under multitask access. - Management of the target column. """ def __init__(self, dataset=None, target=None): """ We prevent the target from being assigned twice. This situation may happen when more than one node is assigning data here. """ self.cv = {} self.lock_ds = Lock() self.lock_target = Lock() self._target_assigned = False if dataset is None: self.ds =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error import seaborn as sns from scipy import stats import math def clean_data(df): """ INPUT df_listings - pandas dataframe OUTPUT X - A matrix holding all of the variables you want to consider when predicting the response y - the corresponding response vector This function cleans df_listings using the following steps to produce X and y: 1. Drop rows with 0 price and outlier prices (prices above 2950) 2. Create y as the price column, transformed by log 3. Create X from selected columns 4. Deal with missing values 5. Create dummy variables for selected categorical variables, drop the original columns """ # Drop rows with 0 price df = df[df.price > 0] df = df[df.price < 2950] # Create y y = df['price'].apply(math.log) # Select columns for X potential_vars = ['host_listings_count', 'calculated_host_listings_count_private_rooms', 'neighbourhood_cleansed', 'room_type', 'property_type', 'beds', 'availability_365', 'number_of_reviews', 'neighborhood_overview', 'space', 'notes', 'transit', 'access', 'interaction', 'house_rules', 'host_about', 'host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification',] bool_vars = ['host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification'] free_text_vars = ['neighborhood_overview', 'space', 'notes', 'transit', 'access', 'interaction', 'house_rules', 'host_about'] df = df[potential_vars] # Deal with missing values df['number_of_reviews'].fillna(0, inplace=True) df[bool_vars].fillna('f', inplace=True) df[free_text_vars].fillna('', inplace=True) def translate_bool(col): for index, value in col.iteritems(): col[index] = 1 if value == 't' else 0 return col def create_bool(col): for index, value in col.iteritems(): col[index] = 0 if value == '' else 1 return col fill_mean = lambda col: col.fillna(col.mean()) num_vars = df.select_dtypes(include=['int', 'float']).columns df[num_vars] = df[num_vars].apply(fill_mean, axis=0) df[bool_vars] = df[bool_vars].apply(translate_bool, axis=0) df[bool_vars].dtype = int df[free_text_vars] = df[free_text_vars].apply(create_bool, axis=0) df[free_text_vars].dtype = int # Dummy the categorical variables cat_vars = ['neighbourhood_cleansed', 'room_type', 'property_type'] for var in cat_vars: # for each cat add dummy var, drop original column df = pd.concat([df.drop(var, axis=1),
pd.get_dummies(df[var], prefix=var, prefix_sep='_', drop_first=True)
pandas.get_dummies
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import check_empty_nwp from Fuzzy_clustering.version2.dataset_manager.common_utils import rescale_mean from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_2d_dense from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d class DatasetCreatorDense: def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False, dates=None): self.projects = projects self.is_for_test = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = njobs self.variables = data_variables self.logger = create_logger(logger_name=__name__, abs_path=self.path_nwp, logger_path=f'log_{self.projects_group}.log', write_type='a') if not self.data is None: self.dates = self.check_dates() elif not dates is None: self.dates = dates def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates are checked. Number of time samples is %s', str(len(dates))) return pd.DatetimeIndex(dates) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def stack_by_sample(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, predictions): timestep = 60 x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: preds = predictions[project['_id']] hor = preds.columns[-1] + timestep p_dates = [t + pd.DateOffset(minutes=hor)] preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[project['_id']]) data_temp = pd.concat([data[project['_id']].iloc[np.where(data.index < t)].to_frame(), pred]) project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: date_nwp = date.round('H').strftime('%d%m%y%H%M') try: nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1))].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2))].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1)), project_id].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2)), project_id].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') for project in projects: if len(x_3d[project['_id']].shape) == 3: x_3d[project['_id']] = x_3d[project['_id']][np.newaxis, :, :, :] return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not self.is_for_test: inp['Obs_lag1'] = inp['Obs_lag1'] + np.random.normal(0, 0.05) * inp['Obs_lag1'] inp['Obs_lag2'] = inp['Obs_lag2'] + np.random.normal(0, 0.05) * inp['Obs_lag2'] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_rabbitmq(self, t, path_nwp, nwp_model, project, variables): x = dict() x_3d = dict() nwps = project['nwp'] p_dates = pd.date_range(t, t + pd.DateOffset(days=3) - pd.DateOffset(hours=1), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_rabbitmq(date, nwp, nwp_prev, nwp_next, project['static_data']['type']) x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_online(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='15min') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def get_lats_longs(self): lats = dict() longs = dict() nwp_found = False for t in self.dates: # Try to load at least one file ?? file_name = os.path.join(self.path_nwp, f"{self.nwp_model}_{t.strftime('%d%m%y')}.pickle") p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=48), freq='H').strftime( '%d%m%y%H%M') if os.path.exists(file_name): nwps = joblib.load(file_name) for date in p_dates: if date in nwps: nwp = nwps[date] nwp_found = True break if nwp_found: break print(nwp_found) if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for project in self.projects: areas = project['static_data']['areas'] # The final area is a 5x5 grid project_id = project['_id'] lat, long = nwp['lat'], nwp['long'] if isinstance(areas, list): # Is this guaranteed to be 5x5 ? I think yes, because of the resolution. TODO: VERIFY lats[project_id] = np.where((lat[:, 0] >= areas[0][0]) & (lat[:, 0] <= areas[1][0]))[0] longs[project_id] = np.where((long[0, :] >= areas[0][1]) & (long[0, :] <= areas[1][1]))[0] else: lats[project_id] = dict() longs[project_id] = dict() for area in sorted(areas.keys()): lats[project_id][area] = np.where((lat[:, 0] >= areas[0][0]) & (lat[:, 0] <= areas[1][0]))[0] longs[project_id][area] = np.where((long[0, :] >= areas[0][1]) & (long[0, :] <= areas[1][1]))[0] return lats, longs def make_dataset_res_short_term(self): lats, longs = self.get_lats_longs() predictions = dict() for project in self.projects: predictions[project['_id']] = joblib.load(os.path.join(project['static_data']['path_data'] , 'predictions_short_term.pickle')) nwp = self.stack_by_sample(self.data.index[20], self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables, predictions) nwp_samples = Parallel(n_jobs=self.n_jobs)( delayed(self.stack_by_sample)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables, predictions) for t in self.data.index[20:]) x = dict() y = dict() x_3d = dict() for project in self.projects: x[project['_id']] = pd.DataFrame() y[project['_id']] = pd.DataFrame() x_3d[project['_id']] = np.array([]) for nwp in nwp_samples: for project in self.projects: if project['_id'] in nwp[2].keys(): if nwp[2][project['_id']].shape[0] != 0: x[project['_id']] = pd.concat([x[project['_id']], nwp[0][project['_id']]]) y[project['_id']] = pd.concat([y[project['_id']], nwp[1][project['_id']]]) x_3d[project['_id']] = stack_3d(x_3d[project['_id']], nwp[2][project['_id']]) self.logger.info('All Inputs stacked') dataset_x_csv = 'dataset_X_test.csv' dataset_y_csv = 'dataset_y_test.csv' dataset_cnn_pickle = 'dataset_cnn_test.pickle' for project in self.projects: project_id = project['_id'] data_path = project['static_data']['path_data'] dataset_x = x[project_id] dataset_y = y[project_id] if dataset_y.isna().any().values[0]: dataset_x = dataset_x.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if len(x_3d.shape) > 1: x_3d = np.delete(x_3d, np.where(dataset_y.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if dataset_x.isna().any().values[0]: dataset_y = dataset_y.drop(dataset_x.index[np.where(dataset_x.isna())[0]]) if len(x_3d.shape) > 1: x_3d = np.delete(x_3d, np.where(dataset_x.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) index = [d for d in dataset_x.index if d in dataset_y.index] dataset_x = dataset_x.loc[index] dataset_y = dataset_y.loc[index] ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_x.columns[ind] dataset_x = dataset_x[columns] dataset_x.to_csv(os.path.join(data_path, dataset_x_csv)) dataset_y.to_csv(os.path.join(data_path, dataset_y_csv)) joblib.dump(x_3d[project_id], os.path.join(data_path, dataset_cnn_pickle)) self.logger.info('Datasets saved for project %s', project['_id']) def make_dataset_res_rabbitmq(self): project = self.projects[0] nwp_daily = self.stack_daily_nwps_rabbitmq(self.dates[0], self.path_nwp, self.nwp_model, project, self.variables) x = nwp_daily[0][project['_id']] x_3d = nwp_daily[1][project['_id']] project_id = project['_id'] data_path = project['static_data']['path_data'] dataset_x = x if os.path.exists(os.path.join(data_path, 'dataset_columns_order.pickle')): ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_x.columns[ind] dataset_x = dataset_x[columns] return dataset_x, x_3d def make_dataset_res_online(self): project = self.projects[0] lats, longs = self.get_lats_longs() nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(self.stack_daily_nwps_online)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables) for t in self.dates) x = pd.DataFrame() y = pd.DataFrame() x_3d = np.array([]) for nwp in nwp_daily: if nwp[1][project['_id']].shape[0] != 0: x = pd.concat([x, nwp[0][project['_id']]]) x_3d = stack_3d(x_3d, nwp[2][project['_id']]) project_id = project['_id'] data_path = project['static_data']['path_data'] dataset_x = x ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_x.columns[ind] dataset_x = dataset_x[columns] return dataset_x, x_3d def make_dataset_res(self): lats, longs = self.get_lats_longs() nwp = self.stack_daily_nwps(self.dates[4], self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(self.stack_daily_nwps)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables) for t in self.dates) x = dict() y = dict() x_3d = dict() for project in self.projects: x[project['_id']] =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pytest import scipy.stats from pyextremes import EVA, get_model @pytest.fixture(scope="function") def eva_model(battery_wl_preprocessed) -> EVA: return EVA(data=battery_wl_preprocessed) @pytest.fixture(scope="function") def eva_model_bm(battery_wl_preprocessed) -> EVA: eva_model = EVA(data=battery_wl_preprocessed) eva_model.get_extremes( method="BM", extremes_type="high", block_size="1Y", errors="raise", ) return eva_model @pytest.fixture(scope="function") def eva_model_pot(battery_wl_preprocessed) -> EVA: eva_model = EVA(data=battery_wl_preprocessed) eva_model.get_extremes( method="POT", extremes_type="high", threshold=1.35, r="24H", ) return eva_model @pytest.fixture(scope="function") def eva_model_bm_mle(battery_wl_preprocessed) -> EVA: eva_model = EVA(data=battery_wl_preprocessed) eva_model.get_extremes( method="BM", extremes_type="high", block_size="1Y", errors="raise", ) eva_model.fit_model("MLE") return eva_model @pytest.fixture(scope="function") def eva_model_bm_emcee(battery_wl_preprocessed) -> EVA: eva_model = EVA(data=battery_wl_preprocessed) eva_model.get_extremes( method="BM", extremes_type="high", block_size="1Y", errors="raise", ) eva_model.fit_model("Emcee", n_walkers=10, n_samples=100) return eva_model @pytest.fixture(scope="function") def eva_model_pot_mle(battery_wl_preprocessed) -> EVA: eva_model = EVA(data=battery_wl_preprocessed) eva_model.get_extremes( method="POT", extremes_type="high", threshold=1.35, r="24H", ) eva_model.fit_model("MLE") return eva_model class TestEVA: def test_init_errors(self): with pytest.raises( TypeError, match=r"invalid type.*'data' argument.*pandas.Series" ): EVA(data=1) with pytest.warns(RuntimeWarning, match=r"'data'.*not numeric.*converted"): eva_model = EVA( data=pd.Series( data=["1", "2", "3"], index=pd.DatetimeIndex(["2020", "2021", "2022"]), ) ) assert np.allclose(eva_model.data.values, [1, 2, 3]) with pytest.raises(TypeError, match=r"invalid dtype.*'data' argument.*numeric"): EVA( data=pd.Series( data=["a", "b", "c"], index=pd.DatetimeIndex(["2020", "2021", "2022"]), ) ) with pytest.raises(TypeError, match=r"index of 'data'.*date-time.*not"): EVA(data=pd.Series(data=[1, 2, 3], index=["2020", "2021", "2022"])) with pytest.warns(RuntimeWarning, match=r"index is not sorted.*sorting"): eva_model = EVA( data=pd.Series( data=[1, 2, 3], index=pd.DatetimeIndex(["2022", "2021", "2020"]), ) ) assert np.allclose(eva_model.data.index.year.values, [2020, 2021, 2022]) with pytest.warns(RuntimeWarning, match=r"Null values found.*removing invalid"): eva_model = EVA( data=pd.Series( data=[1, 2, np.nan, 3], index=
pd.DatetimeIndex(["2020", "2021", "2022", "2023"])
pandas.DatetimeIndex
# -*- coding: utf-8 -*- # test/unit/stat/test_period.py # Copyright (C) 2016 authors and contributors (see AUTHORS file) # # This module is released under the MIT License. """Test Period class""" # ============================================================================ # Imports # ============================================================================ # Stdlib imports from asyncio import Lock from threading import Lock as TLock # Third-party imports import pandas as pd import pytest # Local imports from loadlimit.stat import Period from loadlimit.util import aiter # ============================================================================ # Test total() # ============================================================================ def test_total(): """Returns total number of datapoints in the data structure""" p = Period() for i in range(5): p[i]['timedata'].extend(range(5)) expected = 25 assert p.total() == expected assert p.numdata == expected @pytest.mark.asyncio async def test_atotal(): """Async version of total()""" p = Period() async for i in aiter(range(5)): p[i]['timedata'].extend(range(5)) expected = 25 result = await p.atotal() assert result == expected assert p.numdata == expected # ============================================================================ # Test clearvals # ============================================================================ def test_clearvals_all(): """Clearvals empties every list in the container""" p = Period() for i in range(5): p[i]['timedata'].extend(range(5)) p.clearvals() assert p.numdata == 0 for v in p.values(): assert len(v['timedata']) == 0 def test_clearvals_key(): """Clearvals empties only the list for the specific key""" p = Period() for i in range(5): p[i]['timedata'].extend(range(5)) p.clearvals(4) assert p.numdata == 20 for i, v in p.items(): if i == 4: assert len(v['timedata']) == 0 else: assert len(v['timedata']) == 5 # ============================================================================ # Test aclearvals() # ============================================================================ @pytest.mark.asyncio async def test_aclearvals_all(): """Clearvals empties every list in the container""" p = Period() async for i in aiter(range(5)): p[i]['timedata'].extend(range(5)) await p.aclearvals() assert p.numdata == 0 async for v in aiter(p.values()): assert len(v['timedata']) == 0 @pytest.mark.asyncio async def test_aclearvals_key(): """Clearvals empties only the list for the specific key""" p = Period() async for i in aiter(range(5)): p[i]['timedata'].extend(range(5)) await p.aclearvals(4) assert p.numdata == 20 async for i, v in aiter(p.items()): if i == 4: assert len(v['timedata']) == 0 else: assert len(v['timedata']) == 5 # ============================================================================ # Test period lock # ============================================================================ def test_period_lockarg(): """Use custom Lock instance with Period""" mylock = Lock() p = Period(lock=mylock) assert p.lock is mylock def test_period_defaultlock(): """Create new Lock object if lock not specified""" p = Period() assert p.lock assert isinstance(p.lock, Lock) assert not p.lock.locked() @pytest.mark.parametrize('obj', [42, 4.2, '42', [42], (4.2, ), TLock]) def test_period_lockarg_notlock(obj): """Non- asyncio.Lock objects raises an error""" expected = ('lock expected asyncio.Lock, got {} instead'. format(type(obj).__name__)) with pytest.raises(TypeError) as err: Period(lock=obj) assert err.value.args == (expected, ) # ============================================================================ # Test addtimedata # ============================================================================ @pytest.mark.parametrize('val', [42, 4.2, '42', [42]]) def test_addtimedata_not_series(val): """Raise error if the data arg is not a pandas.Series object""" stat = Period() expected = ('data expected pandas.Series, got {} instead'. format(type(val).__name__)) with pytest.raises(TypeError) as err: stat.addtimedata(42, val) assert err.value.args == (expected, ) # ============================================================================ # Test adderror # ============================================================================ @pytest.mark.parametrize('val', [42, 4.2, '42', [42]]) def test_adderror_not_series(val): """Raise error if the data arg is not a pandas.Series object""" stat = Period() expected = ('data expected pandas.Series, got {} instead'. format(type(val).__name__)) with pytest.raises(TypeError) as err: stat.adderror(42, val) assert err.value.args == (expected, ) def test_adderror_series(): """Add a series to the dict""" stat = Period() error = Exception('i am an error') s = pd.Series([1, 1, 0, repr(error)]) stat.adderror('42', s) errors = list(stat.error('42')) assert len(errors) == 1 assert errors[0] is s # ============================================================================ # Test addfailure # ============================================================================ @pytest.mark.parametrize('val', [42, 4.2, '42', [42]]) def test_addfailure_not_series(val): """Raise error if the data arg is not a pandas.Series object""" stat = Period() expected = ('data expected pandas.Series, got {} instead'. format(type(val).__name__)) with pytest.raises(TypeError) as err: stat.addfailure(42, val) assert err.value.args == (expected, ) def test_addfailure_series(): """Add a series to the dict""" stat = Period() error = 'i am a failure' s = pd.Series([1, 1, 0, error]) stat.addfailure('42', s) failures = list(stat.failure('42')) assert len(failures) == 1 assert failures[0] is s # ============================================================================ # Test numtimedata # ============================================================================ @pytest.mark.parametrize('maxnum', list(range(1, 6))) def test_numtimedata(maxnum): """Return number of time data stored""" key = 'hello' stat = Period() for i in range(maxnum): s = pd.Series([1, 1, i]) stat.addtimedata(key, s) assert stat.numtimedata(key) == maxnum # ============================================================================ # Test numerror # ============================================================================ @pytest.mark.parametrize('maxnum', list(range(1, 6))) def test_numerror(maxnum): """Return number of errors stored""" key = 'hello' stat = Period() err = Exception(key) for i in range(maxnum): s = pd.Series([1, 1, i, repr(err)]) stat.adderror(key, s) assert stat.numerror(key) == maxnum # ============================================================================ # Test numfailure # ============================================================================ @pytest.mark.parametrize('maxnum', list(range(1, 6))) def test_numfailure(maxnum): """Return number of failures stored""" key = 'hello' err = 'world' stat = Period() for i in range(maxnum): s =
pd.Series([1, 1, i, err])
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `transform` package.""" import pytest import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal from generic_strategy_optimization.transform import HA, gen_HA, downsample @pytest.fixture def candles_5m_3rows(): arr = [ [1504927800,303.11,305.1,305.02,304.39,452.56688104], [1504928100,303.99,304.4,304.39,303.99,508.66859951], [1504928400,303.04,304.4,303.99,303.88,526.7675571], ] rv = pd.DataFrame(arr, columns=('ts', 'low', 'high', 'open', 'close', 'volume')).set_index('ts') return rv @pytest.fixture def candles_5m_40rows(): arr = [ [1513930800,628.53,635.46,629.37,635.24,205.97453957], [1513931100,631,635.68,635.24,634.21,74.75369283], [1513931400,633.58,653.76,633.58,653.36,128.6972842], [1513931700,650.22,664.66,653.42,654.77,189.07645963], [1513932000,650.26,653.93,653.19,650.26,85.44704107], [1513932300,641.64,651.06,650.26,647.68,169.78892461], [1513932600,646.55,653.74,647.67,650,103.72501261], [1513932900,649.9,653.68,649.99,651.99,113.93623401], [1513933200,652,667.97,652.33,664.46,355.26597024], [1513933500,664.56,671.93,667.77,669,240.7953687], [1513933800,657.33,669.62,669.12,666.19,96.33266856], [1513934100,666.19,673.76,667.29,670.25,123.36833368], [1513934400,669.59,675,670.19,675,145.24845981], [1513934700,675,688.99,675,688.12,316.32329402], [1513935000,679.93,688.11,688.11,683,181.08651939], [1513935300,683.04,697.96,683.04,694,264.23576236], [1513935600,694,701,695.72,698.84,345.12446683], [1513935900,698.01,704.98,698.84,700.99,210.90028967], [1513936200,685.67,703.51,701.99,686.21,138.88844197], [1513936500,672.92,690.01,685.79,689.15,213.06416502], [1513936800,689.14,697.43,689.14,694.98,160.43862044], [1513937100,688,694.84,694.84,694,195.78840035], [1513937400,691.03,694,694,691.26,104.32096822], [1513937700,690.01,697.33,690.01,697.33,236.45494184], [1513938000,697.32,709.99,697.33,709.99,252.18568871], [1513938300,708.67,713.01,709.99,709.8,167.70473181], [1513938600,705.65,712,709.8,711.7,195.73482987], [1513938900,711.02,712.59,711.7,711.02,170.57843675], [1513939200,710.02,714.99,711.01,710.02,171.52601447], [1513939500,706.01,715.01,706.01,712.03,155.97484788], [1513939800,693.12,712.03,712.03,698.77,165.75384247], [1513940100,688.74,703.29,699.54,690.21,170.95883755], [1513940400,675,691.06,690.36,678.32,312.7283785], [1513940700,655,682,678.31,681.99,606.61319273], [1513941000,675.79,687.91,681.58,687.21,119.44389932], [1513941300,672.77,687.13,686.29,673.98,195.66746861], [1513941600,667.42,679.97,674,679.65,224.30705334], [1513941900,672.89,679.64,679.64,676.94,163.50389894], [1513942200,674.09,675.81,675.81,675,195.68584249], [1513942500,664.15,675,675,664.16,129.93857446], ] rv = pd.DataFrame(arr, columns=('ts', 'low', 'high', 'open', 'close', 'volume')).set_index('ts') return rv def test_HA_adds_heikin_ashi_column_to_dataframe(candles_5m_3rows): """Sample pytest test function with the pytest fixture as an argument.""" candles = candles_5m_3rows df = HA(candles) assert 'heikin_ashi' in df assert len(df) == len(candles) assert_series_equal( df.heikin_ashi, pd.Series([304.405, 304.1925, 303.8275], index=df.index), check_names=False) def test_coarse_downsample_works_with_8row_candles(candles_5m_40rows): """ Input: low high open close volume ts 1513930800 628.53 635.46 629.37 635.24 205.974540 1513931100 631.00 635.68 635.24 634.21 74.753693 1513931400 633.58 653.76 633.58 653.36 128.697284 1513931700 650.22 664.66 653.42 654.77 189.076460 1513932000 650.26 653.93 653.19 650.26 85.447041 1513932300 641.64 651.06 650.26 647.68 169.788925 1513932600 646.55 653.74 647.67 650.00 103.725013 1513932900 649.90 653.68 649.99 651.99 113.936234 Output: low high open close volume ts 1513930800 628.53 664.66 629.37 654.77 598.501976 1513932000 641.64 653.93 653.19 651.99 472.897212 """ candles = candles_5m_40rows.iloc[:8] df = downsample(candles, 4, 'coarse') assert len(df) == 2 assert (df.index == pd.Int64Index([1513930800, 1513932000])).all() assert_frame_equal( df, pd.DataFrame( [ [1513930800, 628.53, 664.66, 629.37, 654.77, 598.501976], [1513932000, 641.64, 653.93, 653.19, 651.99, 472.897212], ], columns=('ts', 'low', 'high', 'open', 'close', 'volume')).set_index('ts') ) def test_coarse_downsample_works_with_9row_candles(candles_5m_40rows): """ Input: low high open close volume ts 1513930800 628.53 635.46 629.37 635.24 205.974540 1513931100 631.00 635.68 635.24 634.21 74.753693 1513931400 633.58 653.76 633.58 653.36 128.697284 1513931700 650.22 664.66 653.42 654.77 189.076460 1513932000 650.26 653.93 653.19 650.26 85.447041 1513932300 641.64 651.06 650.26 647.68 169.788925 1513932600 646.55 653.74 647.67 650.00 103.725013 1513932900 649.90 653.68 649.99 651.99 113.936234 1513933200 652.00 667.97 652.33 664.46 355.265970 Output: low high open close volume ts 1513931100 631.00 664.66 635.24 650.26 477.974478 1513932300 641.64 667.97 650.26 664.46 742.716141 """ candles = candles_5m_40rows.iloc[:9] df = downsample(candles, 4, 'coarse') assert len(df) == 2 assert (df.index == pd.Int64Index([1513931100, 1513932300])).all() assert_frame_equal( df, pd.DataFrame( [ [1513931100, 631.00, 664.66, 635.24, 650.26, 477.974478], [1513932300, 641.64, 667.97, 650.26, 664.46, 742.716141], ], columns=('ts', 'low', 'high', 'open', 'close', 'volume')).set_index('ts') ) def test_coarse_downsample_works_with_10row_candles(candles_5m_40rows): """ Input: low high open close volume ts 1513930800 628.53 635.46 629.37 635.24 205.974540 1513931100 631.00 635.68 635.24 634.21 74.753693 1513931400 633.58 653.76 633.58 653.36 128.697284 <--+ 1513931700 650.22 664.66 653.42 654.77 189.076460 | 1513932000 650.26 653.93 653.19 650.26 85.447041 | 1513932300 641.64 651.06 650.26 647.68 169.788925 v 1513932600 646.55 653.74 647.67 650.00 103.725013 <--+ 1513932900 649.90 653.68 649.99 651.99 113.936234 | 1513933200 652.00 667.97 652.33 664.46 355.265970 | 1513933500 664.56 671.93 667.77 669.00 240.795369 v Output: low high open close volume ts 1513931400 633.58 664.66 633.58 647.68 573.009710 1513932600 646.55 671.93 647.67 669.00 813.722586 """ candles = candles_5m_40rows.iloc[:10] df = downsample(candles, 4, 'coarse') assert len(df) == 2 assert (df.index ==
pd.Int64Index([1513931400, 1513932600])
pandas.Int64Index
import pandas as pd import json import os import numpy import glob from zipfile import ZipFile from functools import partial from multiprocessing import Pool ### -------------------------------------Test and Help function ------------------------------------------------------- def test_me(): print("Hello World") def version(): print("safegraph_py v1.1.0") def help(): print(''' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- .d8888b. .d888 .d8888b. 888 8888888b. 888 888 888 d8b 888 d88P Y88b d88P" d88P Y88b 888 888 Y88b 888 888 888 Y8P 888 Y88b. 888 888 888 888 888 888 888 888 888 888 "Y888b. 8888b. 888888 .d88b. 888 888d888 8888b. 88888b. 88888b. 888 d88P 888 888 888888 88888b. .d88b. 88888b. 888 888 88888b. 888d888 8888b. 888d888 888 888 "Y88b. "88b 888 d8P Y8b 888 88888 888P" "88b 888 "88b 888 "88b 8888888P" 888 888 888 888 "88b d88""88b 888 "88b 888 888 888 "88b 888P" "88b 888P" 888 888 "888 .d888888 888 88888888 888 888 888 .d888888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 .d888888 888 888 888 Y88b d88P 888 888 888 Y8b. Y88b d88P 888 888 888 888 d88P 888 888 888 Y88b 888 Y88b. 888 888 Y88..88P 888 888 888 888 888 d88P 888 888 888 888 Y88b 888 "Y8888P" "Y888888 888 "Y8888 "Y8888P88 888 "Y888888 88888P" 888 888 888 "Y88888 "Y888 888 888 "Y88P" 888 888 88888888 888 88888P" 888 "Y888888 888 "Y88888 888 888 888 888 Y8b d88P Y8b d88P 888 "Y88P" "Y88P" ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- HELP: Welcome to the safegraph helper function. Below you will find a list of functions and their arguments to aid in your datascience journey. If you have further questions that cannot be answered by this help command, please do not hesitate to ask for assistance in the #python_troubleshooting slack channel. Key: * - Required Argument & - Boolean value $ - Pandas *args and **kwargs are activated Available Functions: + test_me() - A function to test the Python Libray ----------------------[JSON Section]---------------------- + unpack_json() - a function to explode JSON objects within pandas vertically into a new DF **Arguments: df* json_column key_col_name value_col_name + unpack_json_and_merge() - a function to explode JSON objects within pandas vertically and add it to the current DF **Arguments: df* json_column key_col_name value_col_name keep_index (&) + explode_json_array() - This function vertically explodes an array column in SafeGraph data and creates a second new column indicating the index value from the array **Arguments: df* array_column value_col_name place_key file_key array_sequence keep_index (&) zero_index (&) ----------------------[JSON Fast Section]---------------------- + unpack_json_fast() - Multi-threaded version of unpack_json(). Reference unpack_json() for details and arguments. + unpack_json_and_merge_fast() - Multi-threaded version of unpack_json_and_merge(). Reference unpack_json_and_merge() for details and arguments. + explode_json_array_fast() - Multi-threaded version of explode_json_array(). Reference explode_json_array() for details and arguments. -----------------[CORE, GEO, and PATTERNS section]---------------------- + read_core_folder() - a function that concats the core files together into 1 dataframe **Arguments: path_to_core* compression $ + read_core_folder_zip() - used to read in the Core data from the zipped core file **Arguments: path_to_core* compression $ + read_geo_zip() - used to read in the Core Geo data from a zipped file **Arguments: path_to_geo* compression $ + read_pattern_single() - used to read in SafeGraph data pre June 15th **Arguments: f_path* compression $ + read_pattern_multi() - used to read in SafeGraph pattern data that is broken into multiple files **Arguments: path_to_pattern* compression $ + merge_core_pattern() - used to combine the core file and the pattern files on the SafeGraph ID **Arguments: core_df* patterns_df* how $ -----------------[Social Distancing section]---------------------- + merge_socialDist_by_dates() - a function that concats the multiple different dates of social distancing data together into 1 dataframe **Arguments: path_to_social_dist* start_date* (date as string "year-month-day") end_date* (date as string "year-month-day") $ ''') ### dtype dict sg_dtypes = {'postal_code': str, 'phone_number': str, 'naics_code': str, 'latitude': float, 'longitude': float, 'poi_cbg': str, 'census_block_group': str,'primary_number': str} ### -------------------------------------- JSON Functions --------------------------------------------------------------- # json.loads() but handling of missing/nan/non-string data. def load_json_nan(df, json_col): return df[json_col].apply(lambda x: json.loads(x) if type(x) == str else x) def unpack_json(df, json_column='visitor_home_cbgs', index_name= None, key_col_name=None, value_col_name=None): # these checks are a inefficent for multithreading, but it's not a big deal if key_col_name is None: key_col_name = json_column + '_key' if value_col_name is None: value_col_name = json_column + '_value' if (df.index.unique().shape[0] < df.shape[0]): raise ("ERROR -- non-unique index found") df = df.copy() df[json_column + '_dict'] = load_json_nan(df,json_column) all_sgpid_cbg_data = [] # each cbg data point will be one element in this list if index_name is None: for index, row in df.iterrows(): this_sgpid_cbg_data = [{'orig_index': index, key_col_name: key, value_col_name: value} for key, value in row[json_column + '_dict'].items()] all_sgpid_cbg_data = all_sgpid_cbg_data + this_sgpid_cbg_data else: for index, row in df.iterrows(): temp = row[index_name] this_sgpid_cbg_data = [{'orig_index': index, index_name:temp, key_col_name: key, value_col_name: value} for key, value in row[json_column + '_dict'].items()] all_sgpid_cbg_data = all_sgpid_cbg_data + this_sgpid_cbg_data all_sgpid_cbg_data = pd.DataFrame(all_sgpid_cbg_data) all_sgpid_cbg_data.set_index('orig_index', inplace=True) return all_sgpid_cbg_data def unpack_json_and_merge(df, json_column='visitor_home_cbgs', key_col_name=None, value_col_name=None, keep_index=False): if (keep_index): df['index_original'] = df.index df.reset_index(drop=True, inplace=True) # Every row must have a unique index df_exp = unpack_json(df, json_column=json_column, key_col_name=key_col_name, value_col_name=value_col_name) df = df.merge(df_exp, left_index=True, right_index=True).reset_index(drop=True) return df def explode_json_array(df, array_column = 'visits_by_day', value_col_name=None, place_key='safegraph_place_id', file_key='date_range_start', array_sequence=None, keep_index=False, zero_index=False): if (array_sequence is None): array_sequence = array_column + '_sequence' if (value_col_name is None): value_col_name = array_column + '_value' if(keep_index): df['index_original'] = df.index df = df.copy() df.reset_index(drop=True, inplace=True) # THIS IS IMPORTANT; explode will not work correctly if index is not unique df[array_column + '_json'] = load_json_nan(df,array_column) day_visits_exp = df[[place_key, file_key, array_column+'_json']].explode(array_column+'_json') day_visits_exp['dummy_key'] = day_visits_exp.index day_visits_exp[array_sequence] = day_visits_exp.groupby([place_key, file_key])['dummy_key'].rank(method='first', ascending=True).astype('int64') if(zero_index): day_visits_exp[array_sequence] = day_visits_exp[array_sequence] -1 day_visits_exp.drop(['dummy_key'], axis=1, inplace=True) day_visits_exp.rename(columns={array_column+'_json': value_col_name}, inplace=True) day_visits_exp[value_col_name] = day_visits_exp[value_col_name].astype('int64') df.drop([array_column+'_json'], axis=1, inplace=True) return pd.merge(df, day_visits_exp, on=[place_key,file_key]) ### ------------------------------------------ END JSON SECTION-------------------------------------------------------- ### ------------------------------------------ JSON FAST SECTION-------------------------------------------------------- # index_name if you want your index (such as CBG) to be it's own column, then provide this def unpack_json_fast(df, json_column = 'visitor_home_cbgs', index_name = None, key_col_name = None, value_col_name = None, chunk_n = 1000): if index_name is None: df = df[[json_column]] else: df = df[[json_column, index_name]] chunks_list = [df[i:i+chunk_n] for i in range(0,df.shape[0],chunk_n)] partial_unpack_json = partial(unpack_json, json_column=json_column, index_name= index_name, key_col_name= key_col_name, value_col_name= value_col_name) with Pool() as pool: results = pool.map(partial_unpack_json,chunks_list) return pd.concat(results) def unpack_json_and_merge_fast(df, json_column='visitor_home_cbgs', key_col_name=None, value_col_name=None, keep_index=False, chunk_n = 1000): if (keep_index): df['index_original'] = df.index df.reset_index(drop=True, inplace=True) # Every row must have a unique index df_exp = df[[json_column]] df_exp = unpack_json_fast(df_exp, json_column=json_column, key_col_name=key_col_name, value_col_name=value_col_name, chunk_n=chunk_n) df = df.merge(df_exp, left_index=True, right_index=True).reset_index(drop=True) return df def explode_json_array_fast(df, array_column = 'visits_by_day', place_key='safegraph_place_id', file_key='date_range_start', value_col_name=None, array_sequence=None, keep_index=False, zero_index=False, chunk_n = 1000): df_subset = df[[array_column,place_key,file_key]] # send only what we need chunks_list = [df_subset[i:i+chunk_n] for i in range(0,df_subset.shape[0],chunk_n)] partial_explode_json = partial(explode_json_array, array_column=array_column, value_col_name= value_col_name, place_key= place_key, file_key = file_key, array_sequence = array_sequence, zero_index = zero_index) with Pool() as pool: results = pool.map(partial_explode_json,chunks_list) df_subset = pd.concat(results) df_subset.drop([array_column],axis=1,inplace=True) # preparing to merge by dropping duplicates return df.merge(df_subset, on=[place_key,file_key]) ### ------------------------------------------ END JSON FAST SECTION-------------------------------------------------------- ### ---------------------------------------CORE, GEO, AND PATTERNS SECTION ----------------------------------------------- def read_core_folder(path_to_core, compression='gzip', dtype=sg_dtypes, *args, **kwargs): core_files = glob.glob(os.path.join(path_to_core, "*.csv.gz")) li = [] for core in core_files: print(core) df = pd.read_csv(core, compression=compression, dtype=dtype, *args, **kwargs) li.append(df) SG_core = pd.concat(li, axis=0) return SG_core ### added a new core read that takes the information straight from the zipped file (like you get it from the catelog) def read_core_folder_zip(path_to_core, compression='gzip', dtype=sg_dtypes, *args, **kwargs): zip_file = ZipFile(path_to_core) dfs = {text_file.filename: pd.read_csv(zip_file.open(text_file.filename), compression=compression, dtype=dtype, *args, **kwargs) for text_file in zip_file.infolist() if text_file.filename.endswith('.csv.gz')} SG_core =
pd.concat(dfs, axis=0, ignore_index=True)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # Monte-carlo simulations # In[1]: # %load imports.py get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('reload_kedro', '') get_ipython().run_line_magic('config', 'Completer.use_jedi = False ## (To fix autocomplete)') import warnings warnings.filterwarnings('ignore') import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) from src.models.vmm import ModelSimulator import matplotlib.pyplot as plt from src.visualization.plot import track_plots, plot, captive_plot, plot_parameters import kedro import numpy as np import os.path import anyconfig import matplotlib plt.style.use('presentation') from myst_nb import glue from wPCC_pipeline.paper import glue_table from src.symbols import * import src.symbols as symbols from src.system_equations import * from IPython.display import display, Math, Latex, Markdown from sympy.physics.vector.printing import vpprint, vlatex from src.parameters import df_parameters p = df_parameters["symbol"] # Read configs: conf_path = os.path.join("../../conf/base/") runs_globals_path = os.path.join( conf_path, "runs_globals.yml", ) runs_globals = anyconfig.load(runs_globals_path) model_test_ids = runs_globals["model_test_ids"] join_globals_path = os.path.join( conf_path, "join_globals.yml", ) joins = runs_globals["joins"] join_runs_dict = anyconfig.load(join_globals_path) globals_path = os.path.join( conf_path, "globals.yml", ) global_variables = anyconfig.load(globals_path) vmm_names = global_variables["vmms"] only_joined = global_variables[ "only_joined" ] # (regress/predict with only models from joined runs) ship_data = catalog.load("ship_data") # In[2]: from sympy import latex from scipy.stats import norm, multivariate_normal from wPCC_pipeline.pipelines.prediction.nodes import simulate_euler import tqdm import sys from wPCC_pipeline.turning_circle import TurningCircle import seaborn as sns # In[9]: #vmm_name = 'vmm_abkowitz_simple' vmm_name = 'vmm_martins_simple' #vmm_name = 'vmm_abkowitz' model = catalog.load(f"{ vmm_name }.motion_regression.joined.model") ek = catalog.load(f"{ vmm_name }.ek") id = 22774 regression = catalog.load(f"{ vmm_name }.motion_regression.no_circle.regression") df_smooth = catalog.load(f"{ id }.data_ek_smooth") # In[10]: def monte_carlo(data_smooth, df_parameter_variation, model, ek): dataframes = {} with tqdm.tqdm(total=len(df_parameter_variation), file=sys.stdout) as pbar: for index, parameters_ in df_parameter_variation.iterrows(): model_ = model.copy() model_.parameters.update(parameters_) df_ = simulate_euler(data=data_smooth, model=model_,ek=ek, solver='Radau') dataframes[index] = df_ pbar.update(1) return dataframes # In[18]: means = regression.parameters['regressed'] stds = regression.std cov = regression.covs.values rv = multivariate_normal(mean=means, cov=cov, allow_singular=True) np.random.seed(42) N_=1000 df_parameter_variation = pd.DataFrame(data=rv.rvs(N_), columns=means.index) # In[19]: dataframes = monte_carlo(df_smooth, df_parameter_variation, model=model, ek=ek) # In[ ]: dataframes['model test'] = df_smooth dataframes['VMM all'] = catalog.load(f"{ vmm_name }.motion_regression.joined.{ id }.data_resimulate") dataframes['VMM circle hold out'] = catalog.load(f"{ vmm_name }.motion_regression.no_circle.{ id }.data_resimulate") # In[41]: dataframes_ = dataframes.copy() displays = [] displays.append({key:value for key,value in dataframes.items() if key not in ['model test', 'VMM all', 'VMM circle hold out']}) displays.append({key:value for key,value in dataframes.items() if key not in ['model test', 'VMM all']}) displays.append({key:value for key,value in dataframes.items() if key not in ['VMM all']}) displays.append(dataframes) # In[56]: styles={'model test':{'style':'k-','lw':2}, 'VMM all':{'style':'r-','lw':2}, 'VMM circle hold out':{'style':'g-','lw':2}, } for index, parameters_ in df_parameter_variation.iterrows(): styles[index] = {'style':'b-', 'alpha':0.1, 'label':'_Hidden label'} for dataframes_ in displays: fig,ax=plt.subplots() grid.fig.set_size_inches(0.7*np.array(matplotlib.rcParams["figure.figsize"])) ax = track_plots(dataframes_, lpp=ship_data['L'], beam=ship_data['B'], plot_boats=False, flip=True, N=7, styles=styles, ax=ax) ax.set_xlim(0,25) ax.set_ylim(-20,5) # In[53]: df_turning_results =
pd.DataFrame()
pandas.DataFrame
import numpy as np import matplotlib import scipy import netCDF4 as nc4 import numpy.ma as ma import matplotlib.pyplot as plt from netCDF4 import Dataset import struct import glob import pandas as pd from numpy import convolve import datetime import atmos import matplotlib.dates as mdates #""" #Created on Wed Nov 13 10:41:35 2019 #functions to define,for each day of the dataset, which is the interval of time #to consider to select typical boundary layer clouds and exclude other cloud types #which can mess up the statistics. the filter is based on human selection based #on visual inspection of cloudnet target classification and model cloud mask. #As general rule: we exclude all clouds with cloud base above 2000 mt and vertical #extension larger than 1000 m associated with a mixed / ice phase. #'20130501']#'20130502']#, '20130501','20130424', '20130425', '20130427', '20130429' #@author: cacquist #""" import xarray as xr def f_selectingPBLcloudWindow(date): """ function to select time intervals for processing cloud data in each day. Also, we pick which algorithm to use with each type of data. in particular: - minmax correspond to select as cloud top the max of the cloud tops found. Clouds above 5000 mt are filtered out (done with the function f_calcCloudBaseTopPBLclouds) - version2: selects boundary layer clouds with cloud base below 2500 mt and cloud tops below CB+600mt. """ if date == '20130414': timeStart = datetime.datetime(2013,4,14,6,0,0) timeEnd = datetime.datetime(2013,4,14,23,59,59) PBLheight = 2500. if date == '20130420': timeStart = datetime.datetime(2013,4,20,6,0,0) timeEnd = datetime.datetime(2013,4,20,23,59,59) PBLheight = 2000. if date == '20130424': timeStart = datetime.datetime(2013,4,24,6,0,0) timeEnd = datetime.datetime(2013,4,24,23,59,59) PBLheight = 2000. if date == '20130425': timeStart = datetime.datetime(2013,4,25,6,0,0) timeEnd = datetime.datetime(2013,4,25,23,59,59) PBLheight = 5000. if date == '20130426': timeStart = datetime.datetime(2013,4,26,6,0,0) timeEnd = datetime.datetime(2013,4,26,23,59,59) PBLheight = 5000. if date == '20130427': timeStart = datetime.datetime(2013,4,27,6,0,0) timeEnd = datetime.datetime(2013,4,27,23,59,59) PBLheight = 3000. if date == '20130428': timeStart = datetime.datetime(2013,4,28,6,0,0) timeEnd = datetime.datetime(2013,4,28,23,59,59) PBLheight = 3500. if date == '20130429': timeStart = datetime.datetime(2013,4,29,6,0,0) timeEnd = datetime.datetime(2013,4,29,23,59,59) PBLheight = 3000. if date == '20130430': timeStart = datetime.datetime(2013,4,30,6,0,0) timeEnd = datetime.datetime(2013,4,30,23,59,59) PBLheight = 3000. if date == '20130501': timeStart = datetime.datetime(2013,5,1,6,0,0) timeEnd = datetime.datetime(2013,5,1,23,59,59) PBLheight = 2500. if date == '20130502': timeStart = datetime.datetime(2013,5,2,6,0,0) timeEnd = datetime.datetime(2013,5,2,23,59,59) PBLheight = 4000. if date == '20130503': timeStart = datetime.datetime(2013,5,3,6,0,0) timeEnd = datetime.datetime(2013,5,3,23,59,59) PBLheight = 3000. if date == '20130504': timeStart = datetime.datetime(2013,5,4,6,0,0) timeEnd = datetime.datetime(2013,5,4,23,59,59) PBLheight = 2500. if date == '20130505': timeStart = datetime.datetime(2013,5,5,6,0,0) timeEnd = datetime.datetime(2013,5,5,23,59,59) PBLheight = 2500. if date == '20130506': timeStart = datetime.datetime(2013,5,6,6,0,0) timeEnd = datetime.datetime(2013,5,6,23,59,59) PBLheight = 3000. if date == '20130509': timeStart = datetime.datetime(2013,5,9,6,0,0) timeEnd = datetime.datetime(2013,5,9,23,59,59) PBLheight = 3000. if date == '20130510': timeStart = datetime.datetime(2013,5,10,6,0,0) timeEnd = datetime.datetime(2013,5,10,23,59,59) PBLheight = 3000. if date == '20130518': timeStart = datetime.datetime(2013,5,18,6,0,0) timeEnd = datetime.datetime(2013,5,18,23,59,59) PBLheight = 2500. if date == '20130524': timeStart = datetime.datetime(2013,5,24,6,0,0) timeEnd = datetime.datetime(2013,5,24,23,59,59) PBLheight = 4500. if date == '20130525': timeStart = datetime.datetime(2013,5,25,6,0,0) timeEnd = datetime.datetime(2013,5,25,23,59,59) PBLheight = 3000. if date == '20130527': timeStart = datetime.datetime(2013,5,27,6,0,0) timeEnd = datetime.datetime(2013,5,27,23,59,59) PBLheight = 3000. if date == '20130528': timeStart = datetime.datetime(2013,5,28,6,0,0) timeEnd = datetime.datetime(2013,5,28,23,59,59) PBLheight = 4000. dictOut = {'timeStart':timeStart, 'timeEnd':timeEnd, 'heightPBL':PBLheight} #,'20130504', '20130505','20130506','20130509','20130510' # '20130414','20130420', '20130426','20130428', '20130430','20130524','20130525','20130527', '20130528' return(dictOut) #------------------------------------------------------------------------------------- def f_calculateCloudBaseTopThickness(cloudMask, time, height, humanInfo): """ date : wednesday 13 may 2020 author: <NAME> goal: build a function to identify all cloud base and cloud top of clouds in the vertical profile at the same time. Human observations for the day distinguish manually PBL from non-PBL clouds. An additional dataset of PBL clouds is delivered based on this information. Concept of the code: step 1: given the cloud mask, find all cloud base and cloud tops. step 2: build cloud database with all clouds saved as xarray dataset step 3: identify cloud properties of PBL clouds using timeStart, timeEnd, MaxCTheight input: cloudmask, time, height, humanInfo (dictionary including timeStart, timeEnd, PBLheight from human obs on the day) output: AllCloudDataset (xarray Dataset including cloud base, cloud top, cloud thickness, level number) PBLcloudDataset (xarray Dataset for PBL clouds with cloud base, cloud top, cloud thickness, level number) """ dimTime = len(time) dimHeight = len(height) heightPBL = humanInfo['heightPBL'] timeStart = humanInfo['timeStart'] timeEnd = humanInfo['timeEnd'] # STEP 1: identifying all cloud bases and tops # --------------------------------------------------- # converting cloud mask to 1 / 0 matrices BinaryMatrix = np.zeros((dimTime, dimHeight)) for itime in range(dimTime): for iH in range(dimHeight): if cloudMask[itime, iH] != 0.: BinaryMatrix[itime, iH] = 1 # calculating gradient of binary cloud mask gradBinary = np.diff(BinaryMatrix, axis=1) # counting max number of cloud base/cloud top found numberCB = [] numberCT = [] for itime in range(dimTime): column = gradBinary[itime, :] numberCB.append(len(np.where(column == -1.)[0][:])) numberCT.append(len(np.where(column == 1.)[0][:])) NCB = max(numberCB) NCT = max(numberCT) # generating cloud base and cloud top arrays CBarray = np.zeros((dimTime, NCB)) CBarray.fill(np.nan) CTarray = np.zeros((dimTime, NCT)) CTarray.fill(np.nan) NlayersArray = np.zeros((dimTime)) NlayersArray.fill(np.nan) # if no cloud bases or no cloud tops are found, then CB and CT are assigned to nan if (NCB == 0) or (NCT == 0): CBarray[iTime, :] = np.nan CTarray[iTime, :] = np.nan else: # if some cloud base / cloud tops are found, all the found values are stored # storing cloud base and cloud top arrays for iTime in range(dimTime): column = gradBinary[iTime, :] indCB = np.where(column == -1.)[0][:] NfoundCB = len(indCB) indCT = np.where(column == 1.)[0][:] NfoundCT = len(indCT) CBarray[iTime, 0:NfoundCB] = height[indCB] CTarray[iTime, 0:NfoundCT] = height[indCT] NlayersArray[iTime] = numberCB[iTime] # calculating cloud thickness based on the cloud base and tops found ( 2d array (time, Nlevels)) cloudThicknessDatabase = CTarray - CBarray # generating array of levels levels = np.arange(NCB) # step 2: build cloud database with all clouds saved as xarray dataset clouds = xr.Dataset( data_vars = {'cloudBase' : (('time', 'levels'), CBarray), 'cloudTop' : (('time', 'levels'), CTarray), 'cloudThick': (('time', 'levels'), cloudThicknessDatabase)}, coords = {'levels': levels, 'time' : time}) # step 3: identify cloud properties of PBL clouds using timeStart, timeEnd, MaxCTheight cloudsTimeWindow = clouds.sel(time=slice(timeStart, timeEnd)) PBLclouds = cloudsTimeWindow.where(cloudsTimeWindow.cloudTop < heightPBL) return(clouds, PBLclouds) #-------------------------------------------------------------------------- def f_calculateMinCloudBaseTop(clouds, PBLclouds, date_arr): """author: <NAME> date: 18/05/2020 goal: function to calculate the minimum cloud base for the PBL and the corresponding cloud top input: clouds - list of xarray datasets of cloud properties PBLclouds - list of xarray datasets of PBL cloud properties date_arr - array of days to be processed output: minimum cloud base and corresponding cloud tops in matrices of dimtime, Nfiles dimensions """ # definition of output matrices dimTime = 9600 Nfiles = len(date_arr) CBarr_obs = np.zeros((dimTime, Nfiles)) CTarr_obs = np.zeros((dimTime, Nfiles)) TKarr_obs = np.zeros((dimTime, Nfiles)) CBarr_PBL_obs = np.zeros((dimTime, Nfiles)) CTarr_PBL_obs = np.zeros((dimTime, Nfiles)) TKarr_PBL_obs = np.zeros((dimTime, Nfiles)) # for each day, reading and saving minimum cloud base and corresponding cloud top for indFile in range(Nfiles): # readingt the date date = date_arr[indFile] yy = int(date[0:4]) mm = int(date[4:6]) dd = int(date[6:8]) timeStandard = pd.date_range(start=datetime.datetime(yy,mm,dd,0,0,0), \ end=datetime.datetime(yy,mm,dd,23,59,59), freq='9s') # reading xarray datasets of the day PBLcloud_dataset = PBLclouds[indFile] cloud_dataset = clouds[indFile] PBLCloudsStandard = PBLcloud_dataset.reindex({'time':timeStandard}) meanCB_obs = np.nanmin(cloud_dataset.cloudBase.values, axis=1) meanCT_obs = np.nanmin(cloud_dataset.cloudTop.values, axis=1) meanTK_obs = np.nanmin(cloud_dataset.cloudThick.values, axis=1) meanCB_obs = np.nanmin(cloud_dataset.cloudBase.values, axis=1) meanCT_obs = np.nanmin(cloud_dataset.cloudTop.values, axis=1) meanTK_obs = np.nanmin(cloud_dataset.cloudThick.values, axis=1) meanCB_PBL_obs = np.nanmin(PBLCloudsStandard.cloudBase.values, axis=1) meanCT_PBL_obs = np.nanmin(PBLCloudsStandard.cloudTop.values, axis=1) meanTK_PBL_obs = np.nanmin(PBLCloudsStandard.cloudThick.values, axis=1) CBarr_obs[:, indFile] = meanCB_obs CTarr_obs[:, indFile] = meanCT_obs TKarr_obs[:, indFile] = meanTK_obs CBarr_PBL_obs[:, indFile] = meanCB_PBL_obs CTarr_PBL_obs[:, indFile] = meanCT_PBL_obs TKarr_PBL_obs[:, indFile] = meanTK_PBL_obs return (CBarr_obs, CTarr_obs, TKarr_obs, CBarr_PBL_obs) #--------------------------------------------------------------------------------- def f_resampleArrays2StandardData(A, index, strDate): """ author : <NAME> date : 10/04/2020 goal : resample data with some misssing times (matrices of dimT < 9600) to the standard size (9600,150) input : matrix of data to resize, datetime_array, height_array output : ndarray of resampled matrix with nans wherever missing data are located """ import numpy as np import pandas as pd DF = pd.Series(A, index=index) # I first construct my regular time index every 9s # Obviously I put a little more periods (entire day would be 9600) index = pd.date_range(strDate, periods=9600, freq='9s') # There you go, by default missing values should be NaN DFresampled = DF.loc[index] return(DFresampled.values) #--------------------------------------------------------------------------------- def f_resample2StandardData(A, index, cols, strDate): """ author : <NAME> date : 10/04/2020 goal : resample data with some missing times (matrices of dimT < 9600) to the standard size (9600,150) input : matrix of data to resize, datetime_array, height_array output : ndarray of resampled matrix with nans wherever missing data are located """ import numpy as np import pandas as pd DF = pd.DataFrame(A, index=index, columns=cols) # I first construct my regular time index every 9s # Obviously I put a little more periods (entire day would be 9600) index = pd.date_range(strDate, periods=9600, freq='9s') # There you go, by default missing values should be NaN DFresampled = DF.loc[index] return(DFresampled.values) #aa # closest function #--------------------------------------------------------------------------------- # date : 16.10.2017 # author: <NAME> # goal: return the index of the element of the input array that in closest to the value provided to the function def f_closest(array,value): idx = (np.abs(array-value)).argmin() return idx def getNearestIndex(timeRef, timeStamp): """this function finds the nearest element of timeRef array to the value timeStamp within the given tolerance and returns the index of the element found. If non is found within the given tolerance, it returns nan.""" try: index = timeRef.index.get_loc(timeStamp, method='nearest') except: index = np.nan return index def getIndexList(dataTable, reference): """this function reads the less resolved time array (dataTable) and the time array to be used as reference (reference) and the tolerance. then for every value in the reference array, it finds the index of the nearest element of dataTable for a fixed tolerance. It provides as output the list of indeces of dataTable corresponding to the closest elements of the reference array. """ #print(len(reference)) indexList = [] for value in reference: #print(value) index = getNearestIndex(dataTable, value) indexList.append(index) return indexList def getIndexListsuka(dataTable, reference): indexList = [] for value in reference: #print(value) index = dataTable.index.get_loc(value, method='nearest') indexList.append(index) return indexList def getResampledDataPd(emptyDataFrame, LessResolvedDataFrame, indexList): # it reads the dataframe to be filled with the resampled data (emptyDataFrame), then the originally less resolved # data (dataDataFrame) and the list of indeces of the less resolved time array upsampled # to the highly resolved resolutions. Then, with a loop on the indeces of the indexList, # It assigns to the emptydataframe the values of the less resolved dataframe called by the # corresponding index of the indexlist. The output is the filled emptydataFrame for i, index in enumerate(indexList): try: emptyDataFrame.iloc[i]=LessResolvedDataFrame.iloc[index] except: pass return emptyDataFrame # function to calculate LWC from #--------------------------------------------------------------------------------- # date : 23.10.2019 # author: <NAME> # goal: calculate LWC using standard Frisch approach # input: linear reflectivity matrix, radar range gate resolution (assumed constant), \ #time array, height attar, LWP time serie # output: LWC matrix (time, height) def f_calculateLWCFrisch(Ze_lin, deltaZ, datetime_ICON, height_ICON, LWP_obs_res): LWC_Frisch = np.zeros((len(datetime_ICON), len(height_ICON))) LWC_Frisch.fill(np.nan) LWP_obs_res = np.insert(LWP_obs_res,0,np.nan) for indT in range(len(datetime_ICON)): for indH in range(len(height_ICON)): num = LWP_obs_res[indT] * np.sqrt(Ze_lin[indT,indH]) den = deltaZ*np.nansum(np.sqrt(Ze_lin[indT,:])) #print(den) #print(num) LWC_Frisch[indT,indH] = num/den return(LWC_Frisch) # function to define cb and ct of the first cloud layer in a column appearing when reading from the top #--------------------------------------------------------------------------------- # date : 31.01.2019 # author: <NAME> # goal: return the index of the element of the input array that in closest to the value provided to the function def f_calcCloudBaseTop(cloudMask, dimTime, dimHeight, height): # converting cloud mask to 1 / 0 matrices BinaryMatrix = np.zeros((dimTime, dimHeight)) for itime in range(dimTime): for iH in range(dimHeight): if cloudMask[itime,iH] != 0.: BinaryMatrix[itime,iH] = 1 # calculating gradient of binary cloud mask gradBinary = np.diff(BinaryMatrix,axis=1) # counting max number of cloud base/cloud top found numberCB = [] numberCT = [] for itime in range(dimTime): column = gradBinary[itime,:] numberCB.append(len(np.where(column == 1.)[0][:])) numberCT.append(len(np.where(column ==-1.)[0][:])) NCB=max(numberCB) NCT=max(numberCT) # generating cloud base and cloud top arrays CBarray = np.zeros((dimTime,NCB)) CBarray.fill(np.nan) CTarray = np.zeros((dimTime,NCT)) CTarray.fill(np.nan) # storing cloud base and cloud top arrays for iTime in range(dimTime): column = gradBinary[iTime,:] indCB=np.where(column == -1.)[0][:] NfoundCB=len(indCB) indCT=np.where(column == 1.)[0][:] NfoundCT=len(indCT) CBarray[iTime,0:NfoundCB]=height[indCB] CTarray[iTime,0:NfoundCT]=height[indCT] return (CBarray,CTarray) # function to define cb and ct of boundary layer clouds in a column appearing when reading from the top #--------------------------------------------------------------------------------- # date : 22.10.2019 # author: <NAME> # input: cloudMask, dimension of time array, dimension of height array, height from model/obs (cloudnet) # output: array of: # - CBarray: time array having 4 dimensions to record four different cloud base heights per time stamp # - CTarray: time array having 4 dimensions to record four different cloud top heights per time stamp # - NlayersArray: number of distinct cloud layers identified per time stamp # - CB_collective: minimum cloud base identified per time stamp # - CT_collective: maximum cloud top identified per time stamp # goal: def f_calcCloudBaseTopPBLclouds(cloudMask, dimTime, dimHeight, height, cloudTimeArray, time): # cloud mask for identifying cloud base and cloud top of PBL clouds #CloudMaskCut = cloudMask # filtering clouds above 5000mt # ind_above = np.where(height > 5000.) #CloudMaskCut[:, ind_above] = 0. # converting cloud mask to 1 / 0 matrices BinaryMatrix = np.zeros((dimTime, dimHeight)) for itime in range(dimTime): for iH in range(dimHeight): if cloudMask[itime,iH] != 0.: BinaryMatrix[itime,iH] = 1 # calculating gradient of binary cloud mask gradBinary = np.diff(BinaryMatrix,axis=1) # counting max number of cloud base/cloud top found numberCB = [] numberCT = [] for itime in range(dimTime): column = gradBinary[itime,:] numberCB.append(len(np.where(column == 1.)[0][:])) numberCT.append(len(np.where(column ==-1.)[0][:])) NCB=max(numberCB) NCT=max(numberCT) # generating cloud base and cloud top arrays CBarray = np.zeros((dimTime,NCB)) CBarray.fill(np.nan) CTarray = np.zeros((dimTime,NCT)) CTarray.fill(np.nan) NlayersArray = np.zeros((dimTime)) NlayersArray.fill(np.nan) # if no cloud bases or no cloud tops are found, then CB and CT are assigned to nan if (NCB == 0) or (NCT == 0): CB_collective = np.zeros((dimTime)) CB_collective.fill(np.nan) CT_collective = np.zeros((dimTime)) CT_collective.fill(np.nan) CB_PBL_out = np.zeros((dimTime)) CB_PBL_out.fill(np.nan) CT_PBL_out = np.zeros((dimTime)) CT_PBL_out.fill(np.nan) else: # if some cloud base / cloud tops are found, all the found values are stored # storing cloud base and cloud top arrays for iTime in range(dimTime): column = gradBinary[iTime,:] indCB = np.where(column == -1.)[0][:] NfoundCB = len(indCB) indCT = np.where(column == 1.)[0][:] NfoundCT = len(indCT) CBarray[iTime,0:NfoundCB] = height[indCB] CTarray[iTime,0:NfoundCT] = height[indCT] NlayersArray[iTime] = numberCB[iTime] # we define a collective cloud base/top to consider multilayer PBL clouds as one # we assign min CB and max CT for each PBl cloud found. CB_collective = np.asarray(CBarray[:,0]) CT_collective = np.asarray(CTarray[:,0]) for ind in range(dimTime): # if (np.isnan(CB[ind,0]) == True): CB_collective[ind] = np.nanmin(CBarray[ind,:]) CT_collective[ind] = np.nanmax(CTarray[ind,:]) # filtering clouds in PBL using human filtering for hours #if np.count_nonzero(~np.isnan(CB_collective)) != 0: timeStart = cloudTimeArray[0] timeEnd = cloudTimeArray[1] CB_PBL = pd.Series(np.repeat(np.nan, len(time)), index=time) maskt = (CB_PBL.index > timeStart) * (CB_PBL.index < timeEnd) CB_PBL.loc[maskt] = CB_collective[maskt] CT_PBL = pd.Series(np.repeat(np.nan, len(time)), index=time) maskt = (CT_PBL.index > timeStart) * (CT_PBL.index < timeEnd) CT_PBL.loc[maskt] = CT_collective[maskt] CT_PBL_out = CT_PBL.values CB_PBL_out = CB_PBL.values return (CBarray, CTarray, NlayersArray, CB_PBL_out, CT_PBL_out, CB_collective, CT_collective) def f_calcCloudBaseTopPBLcloudsV2(cloudMask, dimTime, dimHeight, height, cloudTimeArray, \ time): """ @ author: cacquist @ date : 10 November 2019 @ goal : this function corresponds to the version2 processing mode. It has been generated to detect PBL clouds over JOYCE and it has been tuned with statistical observed mean PBL cloud properties from the site. INPUT: - cloudMask : matrix of 0/1 containing cloud mask - dimTime : dimension of time array - dimHeight : dimension of height array - cloudTimeArry : - time : time array OUTPUTS: - CBarray : array containing all cloud bases found with the gradient method - CTarray : array containing all cloud tops found with the gradient method - NlayersArray : number fo cloud base/top found for each time - CB_PBL_out : array of boundary layer cloud bases found - CT_PBL_out : array of boundary layer cloud tops found - CB_collective : array of minimum cloud base found - CT_collective : array of maximum cloud top found Methodology: It sets the cloud base to be below 2500mt and the cloud geometrical thickness to be 600 mt. Check for cloud base height to be below 2500 mt: If cloud base does not fullfill the condition, no PBL cloud base and top are found and it returns nans. If cloud base fullfills the condition, then it checks for cloud tops. If maximum cloud top is found above the CB + 600 mt, lower cloud tops are searched among the cloud tops below that height and the minimum is taken. If none are found cloud top nd cloud base are assigned to nan. """ meanCloudThickness = 600. minCBheight = 2500. # cloud mask for identifying cloud base and cloud top of PBL clouds # filtering clouds above 5000mt #cloudMaskCut = cloudMask #ind_above = np.where(height > 5000.) #cloudMaskCut[:, ind_above] = 0. # converting cloud mask to 1 / 0 matrices BinaryMatrix = np.zeros((dimTime, dimHeight)) for itime in range(dimTime): for iH in range(dimHeight): if cloudMask[itime,iH] != 0.: BinaryMatrix[itime,iH] = 1 # calculating gradient of binary cloud mask gradBinary = np.diff(BinaryMatrix,axis=1) # counting max number of cloud base/cloud top found numberCB = [] numberCT = [] for itime in range(dimTime): column = gradBinary[itime,:] numberCB.append(len(np.where(column == 1.)[0][:])) numberCT.append(len(np.where(column ==-1.)[0][:])) NCB=max(numberCB) NCT=max(numberCT) # generating cloud base and cloud top arrays CBarray = np.zeros((dimTime,NCB)) CBarray.fill(np.nan) CTarray = np.zeros((dimTime,NCT)) CTarray.fill(np.nan) NlayersArray = np.zeros((dimTime)) NlayersArray.fill(np.nan) # if no cloud bases or no cloud tops are found, then CB and CT are assigned to nan if (NCB == 0) or (NCT == 0): CB_collective = np.zeros((dimTime)) CB_collective.fill(np.nan) CT_collective = np.zeros((dimTime)) CT_collective.fill(np.nan) CB_PBL_out = np.zeros((dimTime)) CB_PBL_out.fill(np.nan) CT_PBL_out = np.zeros((dimTime)) CT_PBL_out.fill(np.nan) else: # if some cloud base / cloud tops are found, all the found values are stored # storing cloud base and cloud top arrays for iTime in range(dimTime): column = gradBinary[iTime,:] indCB = np.where(column == -1.)[0][:] NfoundCB = len(indCB) indCT = np.where(column == 1.)[0][:] NfoundCT = len(indCT) CBarray[iTime,0:NfoundCB] = height[indCB] CTarray[iTime,0:NfoundCT] = height[indCT] NlayersArray[iTime] = numberCB[iTime] # we define a collective cloud base/top to consider multilayer PBL clouds as one # we assign min CB and max CT for each PBl cloud found. CB_collective = np.asarray(CBarray[:,0]) CT_collective = np.asarray(CTarray[:,0]) CB_PBL_out = np.repeat(np.nan, len(time)) CT_PBL_out = np.repeat(np.nan, len(time)) for ind in range(dimTime): # if (np.isnan(CB[ind,0]) == True): CB_collective[ind] = np.nanmin(CBarray[ind,:]) CT_collective[ind] = np.nanmax(CTarray[ind,:]) #selecting temporal window in which cloud top and base for PBL clouds have to be calculated if (time[ind] > cloudTimeArray[0]) * (time[ind] < cloudTimeArray[1]): if (CB_collective[ind] < minCBheight): # for boundary layer clouds, we can assume the lowest cloud base is correct # we can also assume that from the lowest cloud base, the cloud does not extend # in the vertical for more than 1500 mt. If the max cloud top is above 1500 mt then # we select among cloud tops, those that are located withing such distance from cloud base maxCTheightPBL = np.nanmin(CBarray[ind,:]) + meanCloudThickness #print('max cloud top', maxCTheightPBL) if (np.nanmax(CTarray[ind,:]) > maxCTheightPBL): findLowerCT = np.where(CTarray[ind,:] < maxCTheightPBL) if (len(findLowerCT[0]) == 0): # no elements are found below the maximum allowed height for cloud top CT_PBL_out[ind] = np.nan CB_PBL_out[ind] = np.nan else: #print('sono qui') CT_PBL_out[ind] = np.nanmin(CTarray[ind,findLowerCT]) # assigning minmum cloud top CB_PBL_out[ind] = CB_collective[ind] # assigning cloud base if it is below 2500 mt return (CBarray, CTarray, NlayersArray, CB_PBL_out, CT_PBL_out, CB_collective, CT_collective) #--------------------------------------------------------------------------------- # date : 28.01.2019 # author: <NAME> # goal: function that calculates cloud fraction over 30 minutes of time for the whole day for ICON-LEM # input: # QI_ICON_LEM, \ # QC_ICON_LEM, # datetime_ICON, # height_2_ICON_LEM, # QiThreshold, # QcThreshold # # output: # mean_CF_liquid_ICON, # mean_CF_ice_ICON, # mean_CF_tot_ICON, # datetime_out #-------------------------------------------------------------------------------- def f_calculateCloudFractionICON(QI, QC, yy, mm, dd, time, height, QiThreshold, QcThreshold): # calculation of cloud fraction for ICON_LEM # creating a dataframe with for Qi and Qc with time and height using pandas dataframe QI_ICON_DF = pd.DataFrame(QI, index=time, columns=height) QC_ICON_DF = pd.DataFrame(QC, index=time, columns=height) # defining mean cloud fraction matrices to contain average profile every hour for the supersite mean_CF_liquid_ICON = np.zeros((48,150)) mean_CF_ice_ICON = np.zeros((48,150)) mean_CF_tot_ICON = np.zeros((48,150)) deltaT = datetime.timedelta(minutes=30) indInt = 0 datetime_out = [] # --- loop on hours to calculate the mean hourly profile for itime in range(0,48): if indInt == 0: HourInf = datetime.datetime(int(yy), int(mm), int(dd), 0, 0, 0) else: HourInf = HourInf + deltaT HourSup = HourInf + deltaT datetime_out.append(HourInf) indInt = indInt + 1 Qi_sliced_t = QI_ICON_DF.loc[(QI_ICON_DF.index < HourSup) * (QI_ICON_DF.index > HourInf),:] Qc_sliced_t = QC_ICON_DF.loc[(QC_ICON_DF.index < HourSup) * (QC_ICON_DF.index > HourInf),:] # ---- loop on heights: for each height counting the number of elements # larger than the threshold and # calculating the cloud fraction as the ratio between this number and # the number of elements counted in the hour #print len(DF_qi_hour[DF_qi_hour.iloc[:,0] > QiThreshold]) #print len(DF_qi_hour.iloc[:,0]) for iheight in range(len(height)-1): #for iheight in range(2): # extracting array DF_qi_arr = Qi_sliced_t.loc[:,height[iheight]] DF_qc_arr = Qc_sliced_t.loc[:,height[iheight]] NelemTot = len(DF_qi_arr) # posing conditions on cloud fraction for liquid only Cond_iceClouds=np.isfinite(DF_qi_arr[DF_qi_arr > QiThreshold] * DF_qc_arr[DF_qc_arr < QcThreshold]) Cond_iceClouds.apply(int) Num_iceCloud=Cond_iceClouds.sum() Cond_LiquidClouds=np.isfinite(DF_qc_arr[DF_qi_arr < QiThreshold] * DF_qc_arr[DF_qc_arr > QcThreshold]) Cond_LiquidClouds.apply(int) Num_liquidCloud=Cond_LiquidClouds.sum() #print(Num_liquidCloud) #print(Num_iceCloud) if float(NelemTot) == 0: print('Houston, we have a problem!') else: mean_CF_ice_ICON[itime,iheight]=float(Num_iceCloud)/float(NelemTot) mean_CF_liquid_ICON[itime,iheight]=float(Num_liquidCloud)/float(NelemTot) mean_CF_tot_ICON[itime,iheight]=float(Num_iceCloud+Num_liquidCloud)/float(NelemTot) # defining dictionary containing data to have as output dict_CF = {} # filling dictionaries with data dict_CF = { 'TotalCloudFraction':mean_CF_tot_ICON, 'LiquidCloudFraction':mean_CF_liquid_ICON, 'IceCloudFraction':mean_CF_ice_ICON, 'height':height, 'time':datetime_out, } return(dict_CF) def f_plotTest(matrix, time, height, figname): pathFig = '/work/cacquist/HDCP2_S2/statistics/figs/patch003/figures_JAMES/' fig, ax = plt.subplots(figsize=(10, 5)) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() matplotlib.rc('xtick', labelsize=10) # sets dimension of ticks in the plots matplotlib.rc('ytick', labelsize=10) # sets dimension of ticks in the plots ax.xaxis.set_major_formatter(mdates.DateFormatter("%H:%M")) ax.xaxis.set_minor_formatter(mdates.DateFormatter("%H:%M")) cax = ax.pcolormesh(time, height, matrix, vmin=0, vmax=3, cmap=plt.cm.get_cmap("GnBu", 4)) ax.set_ylim(0., 15000) # limits of the y-axes # ax.set_xlim(timeStart, timeEnd) # limits of the x-axes ax.set_title("cloud mask model", fontsize=10) ax.set_xlabel("time [hh:mm]", fontsize=10) ax.set_ylabel("height [m]", fontsize=10) cbar = fig.colorbar(cax, ticks=[0, 1, 2, 3], orientation='vertical', aspect=10) cbar.ticks = ([0, 1, 2, 3]) cbar.ax.set_yticklabels(['no cloud', 'liquid', 'ice', 'mixed phase']) cbar.set_label(label="cloud type", size=10) cbar.ax.tick_params(labelsize=10) plt.tight_layout() plt.savefig(pathFig + figname + '_cloudMask.png') return () """ function to derive wind speed and direction #--------------------------------------------------------------------------------- date : 17.12.2018 author: <NAME> (<EMAIL>) goal: derive wind speed and direction in form of list and matrices input: - datetime_ICON: time array - height_ICON: height array - u_ms: zonal wind - v_ms: meridional wind output: - ws: list of wind speed - wd: list of wind directions - wind_abs: matrix of wind speed - wind_dir_trig_from_degrees: matrix of wind direction in degrees indicating the direction from where wind is coming """ #-------------------------------------------------------------------------------- def f_calcWindSpeed_Dir(datetime_ICON, height_ICON, u_ms, v_ms): import math wind_abs = np.sqrt(u_ms**2 + v_ms**2) wind_dir_trig_to = np.zeros((len(datetime_ICON),len(height_ICON))) wind_dir_trig_to_degrees = np.zeros((len(datetime_ICON),len(height_ICON))) wind_dir_trig_from_degrees = np.zeros((len(datetime_ICON),len(height_ICON))) wind_dir_cardinal = np.zeros((len(datetime_ICON),len(height_ICON))) ws = [] wd = [] for itime in range(len(datetime_ICON)): for iHeight in range(len(height_ICON)): # wind dir in unit circle coordinates (wind_dir_trig_to), which increase counterclockwise and have a zero on the x-axis wind_dir_trig_to[itime, iHeight] = math.atan2(v_ms[itime, iHeight],u_ms[itime, iHeight]) # wind dir in degrees (wind_dir_trig_to_degrees) dir where wind goes wind_dir_trig_to_degrees[itime, iHeight] = wind_dir_trig_to[itime, iHeight] * 180/math.pi ## -111.6 degrees # wind dir in degrees (wind_dir_trig_to_degrees) dir from where wind comes wind_dir_trig_from_degrees[itime, iHeight] = wind_dir_trig_to_degrees[itime, iHeight] + 180 ## 68.38 degrees # wind dir in cardinal coordinates from the wind dir in degrees (wind_dir_trig_to_degrees) dir from where wind comes wind_dir_cardinal[itime, iHeight] = 90 - wind_dir_trig_from_degrees[itime, iHeight] if np.isfinite(wind_dir_trig_from_degrees[itime, iHeight]) and \ np.isfinite(wind_abs[itime, iHeight]) and \ (wind_abs[itime, iHeight] != 0.): wd.append(wind_dir_trig_from_degrees[itime, iHeight]) ws.append(wind_abs[itime, iHeight]) WindDictionary={'windDirection':ws, 'windSpeed':wd, } return(WindDictionary) # function to plot color time heigth maps from a dictionary of initial data #--------------------------------------------------------------------------------- # date : 14.12.2018 # author: <NAME> (<EMAIL>) # goal: function to derive pdfs of vertical and horizontal wind below cloud base # check for vertical wind values observed below cloud base. for every time stamp. # methodology: for observations: # if there is cloud base in observations, store vertical wind values recorded in the 300m below cloud base. # if there is no cloud, store vertical wind values in the 5 bins below mean estimated cloud base. # input : vertical wind, horizontal wind, time, height # output: verticalWindPDF_cloud, verticalWindPDF_nocloud, horizontalWindPDF_cloud, horizontalWindPDF_nocloud #-------------------------------------------------------------------------------- def f_pdfsBelowCloudBase(w_ICON, Hwind, height, datetime_ICON, datetimeHourArr, height_ICON, mean_CB_arr_OBS, CB_array_OBS, timeStart, timeEnd): verticalWindPDF_cloud = [] horizontalWindPDF_cloud = [] verticalWindPDF_nocloud = [] horizontalWindPDF_nocloud = [] distHeight = 400. vertWind_ICON_DF = pd.DataFrame(w_ICON, index=datetime_ICON, columns=height) HorWind_ICON_DF = pd.DataFrame(Hwind, index=datetime_ICON, columns=height_ICON) limTimeInf = timeStart limTimeSup = timeEnd # establishing height below which to check for wind for indTime in range(len(datetime_ICON)): if (datetime_ICON[indTime] > limTimeInf) * (datetime_ICON[indTime] < limTimeSup): # case of no clouds, read mean cloud base height in the hour and extract height if np.isfinite(CB_array_OBS[indTime]) == False: findHourInd = f_closest(np.asarray(datetimeHourArr), datetime_ICON[indTime]) CBHeight = mean_CB_arr_OBS[findHourInd] mask_h_vertWind = (vertWind_ICON_DF.columns < CBHeight) * (vertWind_ICON_DF.columns > CBHeight-distHeight) valuesWwind = vertWind_ICON_DF.values[indTime, mask_h_vertWind].flatten() mask_h_horwind = (HorWind_ICON_DF.columns < CBHeight) * (HorWind_ICON_DF.columns > CBHeight-distHeight) valuesHwind = HorWind_ICON_DF.values[indTime, mask_h_horwind].flatten() for indValw in range(len(valuesWwind)): verticalWindPDF_nocloud.append(valuesWwind[indValw]) for indValh in range(len(valuesHwind)): horizontalWindPDF_nocloud.append(valuesHwind[indValh]) # case of clouds: read cloud base height and extract bins below. else: CBHeight = CB_array_OBS[indTime] mask_h_vertWind = (vertWind_ICON_DF.columns < CBHeight) * (vertWind_ICON_DF.columns > CBHeight-distHeight) valuesWwind = vertWind_ICON_DF.values[indTime, mask_h_vertWind].flatten() mask_h_horwind = (HorWind_ICON_DF.columns < CBHeight) * (HorWind_ICON_DF.columns > CBHeight-distHeight) valuesHwind = HorWind_ICON_DF.values[indTime, mask_h_horwind].flatten() for indValw in range(len(valuesWwind)): verticalWindPDF_cloud.append(valuesWwind[indValw]) for indValh in range(len(valuesHwind)): horizontalWindPDF_cloud.append(valuesHwind[indValh]) return(verticalWindPDF_cloud, verticalWindPDF_nocloud, horizontalWindPDF_cloud, horizontalWindPDF_nocloud) def f_calcPblHeightRN(thetaV,Uwind,Vwind,height,time,device): """ PBL height calculation function -------------------------------------------------------------------------------- date created : 15.01.2018 date modifed : 05.12.2019 author: <NAME> goal: calculate the boundary layer height following the richardson number derivation according to Seidel Et al, 2010 #--------------------------------------------------------------------------------- """ g = 9.8 # gravity constant Rithreshold = 0.25 # Threshold values for Ri #Rithreshold2 = 0.2 dimTime = len(time) dimHeight = len(height) if (device == 'mod'): zs = height[149] # height of the surface reference if (device == 'obs'): zs = height[0] RiMatrix = np.zeros((dimTime, dimHeight)) # Richardson number matrix PBLheightArr = [] RiCol = np.zeros((dimHeight)) # calculating richardson number matrix for iTime in range(dimTime): thetaS = thetaV[iTime,149] for iHeight in range(dimHeight): den = ((Uwind[iTime,iHeight])**2 + (Vwind[iTime,iHeight])**2) if den == 0.: RiMatrix[iTime,iHeight] = 0. else: RiMatrix[iTime,iHeight] = (1/den) * (g/thetaS) * (thetaV[iTime,iHeight]-thetaS)*(height[iHeight]-zs) # find index in height where Ri > Rithreshold for iTime in range(dimTime): RiCol=RiMatrix[iTime,:] #print(RiCol) #print(np.where(RiCol > Rithreshold2)[0][:]) #print(len(np.where(RiCol > Rithreshold)[0][:])) if len(np.where(RiCol > Rithreshold)[0][:]) != 0: PBLheightArr.append(height[np.where(RiCol > Rithreshold)[0][-1]] - height[dimHeight-1]) else: PBLheightArr.append(0) return PBLheightArr def f_calcPblHeightTW(stdWmatrix,sigmaThreshold,height2,time, device): """ PBL height calculation function based on threshold on std w method -------------------------------------------------------------------------------- date created : 05.12.2019 author: <NAME> goal: calculate the boundary layer height following the method of a threshold on sigma w as indicated in Schween et al., 2014. The algorithm takes the maximum of the heights below 2000m at which the sigma values is larger than 0.4. 2000m is a conservative value threshold obtained from the paper from Schween et al., 2014 on MLH at JOYCE #--------------------------------------------------------------------------------- """ dimTime = len(time) PBLheightTW = np.zeros((dimTime)) PBLheightTW.fill(np.nan) #std_matrix[:,height < height[142]] = 0. for ind in range(len(time)): if device == 'mod': column = stdWmatrix[ind,:] aboveThr = column > sigmaThreshold #selecting heights below 2000 Hsel = height2[aboveThr] Hbelow = Hsel[Hsel < 2000.] if np.count_nonzero((Hbelow)) != 0: PBLheightTW[ind] = np.nanmax(Hbelow) return(PBLheightTW) # function to calculate the convective condensation level height and temperature #--------------------------------------------------------------------------------- # date : 17.05.2018 # author: <NAME> # goal: function that calculates the convective condensation level (CCL) height and temperature. # for the definition of the CCL check this: https://en.wikipedia.org/wiki/Convective_condensation_level # input: # - T field (time, height) # - RH field (time, height) ( es: 75,0) # - P field (time, height) # - height [in m] # - datetime [in datetime format] # output: # - Z_ccl (time) time serie of the height of the CCL # - T_CCl (time) time serie of the temperature a parcel should have to reach the height for condensation # - T_dew point (time, height ) dew point temperature field for every time, height # method: the function first calculates the dew point temperature field and the dew point at the surface for every time. Then, we derive the saturation mixing ratio at the surface for T=Td. Then, we calculate the mixing ratio field #-------------------------------------------------------------------------------- def f_CCL(T_ICON, P_ICON, RH_ICON, height_ICON, datetime_ICON, Hsurf): # temperature has to be provided in K # RH in % ( 70.14) # P In Kpa dimHeight = len(height_ICON) # defining constants cost_rvl = np.power(5423,-1.) #K E0 = 0.611 # Kpa T0 = 273. # K Rv = 461 # J K^-1 Kg^-1 epsilon = 0.622 Ad_rate = -9.8 # K/Km # ---- substituting RH = 0. to RH = nan to avoid log(0) cases RH_ICON [ RH_ICON == 0.] = np.nan T_ICON [ T_ICON == 0.] = np.nan # ---- calculating due point temperature profile for each time (The dew point is \ # the temperature to which air must be cooled to become saturated with water vapor. ) Td = np.power(np.power(T_ICON,-1.)-cost_rvl*np.log(RH_ICON/100.),-1.) # ---- calculating mixing ratio at the surface for T dew point Td_surf = Td[:, dimHeight-1] P_surf = P_ICON[:,dimHeight-1] RH_surf = RH_ICON[:,dimHeight-1] for indtime in range(len(datetime_ICON)): if (~np.isfinite(RH_surf[indtime])): RH_surf[indtime] = RH_ICON[indtime,dimHeight-2] if (~np.isfinite(Td_surf[indtime])): Td_surf[indtime] = Td[indtime,dimHeight-2] # ---- calculating the saturation mixing ratio for td at the surface (assuming RH =100%) M0 = epsilon*E0*np.exp((1./Rv)*(T0**(-1.)-Td_surf**(-1.))) / (P_surf - E0*np.exp((1./Rv)*(T0**(-1.)-Td_surf**(-1.)))) # ---- calculating mixing ratio profile for each P,T, RH using profile RH m = (RH_ICON/100.)*epsilon*E0*np.exp((1./Rv)*(T0**(-1.)-T_ICON**(-1.))) / (P_ICON - (RH_ICON/100.)*E0*np.exp((1./Rv)*(T0**(-1.)-T_ICON**(-1.)))) #fig, ax = plt.subplots(figsize=(12,5)) #plt.plot(m[5000,:],height_ICON) #plt.plot(np.repeat(M0[5000],len(height_ICON)), height_ICON) #plt.ylim(0,6000) # ---- calculating indeces of height of Z_ccl and Z_CCL height ind_CCL = [] dimHeight=len(height_ICON) #print(dimHeight) for indTime in range(len(datetime_ICON)): for indHeight in range(dimHeight-2,1,-1): #print(height_ICON[indHeight]) if (m[indTime,indHeight] < M0[indTime] and m[indTime,indHeight-1] > M0[indTime] ): ind_CCL.append(indHeight) break if indHeight == 1: ind_CCL.append(dimHeight-1) print(len(ind_CCL)) z_ccl = height_ICON[ind_CCL] # ---- finding z(CCL) using the dry adiabatic lapse rate T_ground_CCL = [] for indTime in range(len(ind_CCL)): T_top = T_ICON[indTime, ind_CCL[indTime]] T_ground_CCL.append(T_top - Ad_rate* z_ccl[indTime]*10.**(-3)) dict_out={'z_ccl':z_ccl, 'T_ccl':T_ground_CCL, 'Td':Td } return(dict_out) def f_CCL_new(T, P, RH, height, time, date): """ function to calculate convective condensation level (CCL). For more info on definitions of this level, read pp.250 of Petty : A first course in atmospheric thermodynamics input: T: temperature , to be provided in K relative humidity, in % (es: 70.14) pressure, in Kpa device, string for "model" or "obs" procedure: step 1: calculate dew point T step 2: calculate saturation mixing ratio m0 at t=Td, P=Psurf step 3: calculate, for every value of P, Td(m=m0, P) step 4: check, for every level of P, if there's a level i of P for which T(P)i-1 < Td(m0,P)i < T(P)i+1. If the level is found, assign T_star = T(P)i and Z_ccl as the height corresponding to that pressure height. step 5: calculate Tc using adiabatic lapse rate to come back at the height of the surface. output: T_ccl, z_ccl """ #pathFig = '/work/cacquist/HDCP2_S2/statistics/figs/' + patch + '/figures_JAMES/debugging/' print('calculating CCL height and T_CCL') # defining constants cost_rvl = np.power(5423, -1.) # K E0 = 0.611 # Kpa T0 = 273. # K Rv = 461 # J K^-1 Kg^-1 L = 5.6 * 10 ** 6 # J/Kg epsilon = 0.622 Ad_rate = -9.8 # K/Km # assigning dimensions: dimHeight = len(height) dimTime = len(time) # step 1: calculating due point temperature profile for each time (The dew point is \ # the temperature to which air must be cooled to become saturated with water vapor. ) # substituting RH = 0. to RH = nan to avoid log(0) cases RH[RH == 0.] = np.nan T[T == 0.] = np.nan # calculating Td Td = np.power(np.power(T, -1.) - cost_rvl * np.log(RH / 100.), -1.) # step 2: calculating mixing ratio at the surface for T = Td and P=Psurf # finding index of height corresponding to lowest level in height indHmin = np.nanargmin((height)) # reading values of P, T, RH at the corresponding height Td_surf = Td[:, indHmin] P_surf = P[:, indHmin] RH_surf = RH[:, indHmin] m0 = epsilon * E0 * np.exp((1. / Rv) * (T0 ** (-1.) - Td_surf ** (-1.))) / ( P_surf - E0 * np.exp((1. / Rv) * (T0 ** (-1.) - Td_surf ** (-1.)))) #print(Td_surf, P_surf, RH_surf, m0) # step 3: calculating Td(m=m0, P) for every P value z_ccl = np.zeros((dimTime)) T_cclTop = np.zeros((dimTime)) z_ccl.fill(np.nan) # indPlotCount = 0 for indTime in range(dimTime): Tdm0_profile = np.zeros((dimHeight)) Tdm0_profile.fill(np.nan) indCCLprofile = [] Tm0_surface = 1 / ((1 / T0) - ((1 / L) * Rv * np.log((m0 * P[:, indHmin]) / (E0 * epsilon)))) for indHeight in range(dimHeight - 1): Tdm0_profile[indHeight] = 1 / ( (1 / T0) - ((1 / L) * Rv * np.log((m0[indTime] * P[indTime, indHeight]) / (E0 * epsilon)))) # print(T[indTime, indHmin]) if (T[indTime, indHeight] < Tdm0_profile[indHeight]) and ( T[indTime, indHeight + 1] > Tdm0_profile[indHeight]): indCCLprofile.append(indHeight) # print(Tdm0_profile[indHmin]) # print(T[indTime, indHmin]) #print(indCCLprofile) ##fig, ax = plt.subplots(figsize=(12, 5)) # plt.plot(Tdm0_profile, height, label='TDm0') # plt.plot(T[indTime, :], height, label='T') # plt.legend() # plt.plot(time, z_ccl3) # plt.plot(np.repeat(M0[5000],len(height)), height) # plt.ylim(0, 6000) # plt.savefig(pathFig + str(indPlotCount) + 'Tm0_profile_Check.png', format='png') # indPlotCount = indPlotCount +1 # print(len(indCCLprofile)) if len(indCCLprofile) == 0: z_ccl[indTime] = np.nan T_cclTop[indTime] = np.nan else: z_ccl[indTime] = np.nanmin(height[indCCLprofile]) T_cclTop[indTime] = np.nanmin(T[indTime, np.nanargmin(height[indCCLprofile])]) # fig, ax = plt.subplots(figsize=(12,5)) # plt.plot(time, z_ccl) # plt.ylim(0,6000) # plt.savefig(pathFig+date+'_z_ccl_mod.png', format='png') print(z_ccl) # ---- finding z(CCL) using the dry adiabatic lapse rate T_ground_CCL = np.zeros((dimTime)) for indTime in range(dimTime): T_ground_CCL[indTime] = (T_cclTop[indTime] - Ad_rate * z_ccl[indTime] * 10. ** (-3)) # providing output as standardized xarray output format #DatasetOut = xr.Dataset( # data_vars={'z_ccl' : (('time'), z_ccl), # 't_ccltop': (('time'), T_cclTop), # 't_ccl' : (('time'), T_ground_CCL), # 'T_dew' : (('time', 'height'), Td)}, # coords={'time' : time, # 'height': height}) #return (DatasetOut) DatasetOut = {'time':time, 'height':height, 'z_ccl':z_ccl, 'T_ground_ccl':T_ground_CCL, 'T_top_ccl':T_cclTop, 'T_dew':Td} return (DatasetOut) # moving variance calculation function #--------------------------------------------------------------------------------- # date : 17.01.2018 # author: <NAME> # goal: function that calculates the moving average of an array of values over a given window given as imput #-------------------------------------------------------------------------------- def runningMeanVariance(x, N): return np.power(pd.rolling_std(x, N),2) # variance of vertical velocity calculation #--------------------------------------------------------------------------------- # date : 17.01.2018 # author: <NAME> # goal: function that calculates the variance of the vertical velocity matrix # input: # - matrix of vertical velocity # - time array # - height array # - time window for the running mean (30 min for comparing to obs) #-------------------------------------------------------------------------------- def f_calcWvariance(Wwind,time,height,window, res): """ OBSOLETE FUNCTION NOT USED ANYMORE author: <NAME> date: 05.12.2019 goal: calculation of variance of vertical velocity. The function performs the calculation of the standard deviation of vertical velocity as in the paper from Schween et al., 2014., AMT, doi:10.5194/amt-7-3685-2014 input: - Wwind: vertical velocity matrix (time, height) - time: time array - height: height array - window: time window over which to calculate the standard deviation - res: resolution at which calculate the standard deviation (in the paper it is 5 min) """ dimTime = len(time) dimHeight = len(height) variance = np.zeros((dimTime,dimHeight)) for iheight in range(dimHeight): # reading array of w values at a given height Warray = Wwind[:,iheight] s =
pd.Series(Warray)
pandas.Series
# ---------------------------------------------------------------------------- # Copyright (c) 2018-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from qiime2.plugin.testing import TestPluginBase from q2_diversity_lib import (faith_pd, pielou_evenness, observed_features, shannon_entropy) import io import biom import skbio import numpy as np import pandas as pd import pandas.util.testing as pdt import copy nonphylogenetic_measures = [observed_features, pielou_evenness, shannon_entropy] class SmokeTests(TestPluginBase): package = 'q2_diversity_lib.tests' def setUp(self): super().setUp() self.empty_table = biom.Table(np.array([]), [], []) def test_non_phylogenetic_passed_empty_table(self): for measure in nonphylogenetic_measures: with self.assertRaisesRegex(ValueError, "empty"): measure(table=self.empty_table) class FaithPDTests(TestPluginBase): package = 'q2_diversity_lib.tests' def setUp(self): super().setUp() self.input_table = biom.Table(np.array([[1, 0, .5, 999, 1], [0, 1, 2, 0, 1], [0, 0, 0, 1, 1]]), ['A', 'B', 'C'], ['S1', 'S2', 'S3', 'S4', 'S5']) self.input_tree = skbio.TreeNode.read(io.StringIO( '((A:0.3, B:0.50):0.2, C:100)root;')) self.faith_pd_expected = pd.Series({'S1': 0.5, 'S2': 0.7, 'S3': 1.0, 'S4': 100.5, 'S5': 101}, name='faith_pd') def test_receives_empty_table(self): empty_table = biom.Table(np.array([]), [], []) with self.assertRaisesRegex(ValueError, "empty"): faith_pd(table=empty_table, phylogeny=self.input_tree) def test_method(self): actual = faith_pd(table=self.input_table, phylogeny=self.input_tree) pdt.assert_series_equal(actual, self.faith_pd_expected) def test_accepted_types_have_consistent_behavior(self): freq_table = self.input_table rel_freq_table = copy.deepcopy(self.input_table).norm(axis='sample', inplace=False) p_a_table = copy.deepcopy(self.input_table).pa() accepted_tables = [freq_table, rel_freq_table, p_a_table] for table in accepted_tables: actual = faith_pd(table=table, phylogeny=self.input_tree) pdt.assert_series_equal(actual, self.faith_pd_expected) def test_error_rewriting(self): tree = skbio.TreeNode.read(io.StringIO( '((A:0.3):0.2, C:100)root;')) with self.assertRaisesRegex(skbio.tree.MissingNodeError, 'feature_ids.*phylogeny'): faith_pd(table=self.input_table, phylogeny=tree) class ObservedFeaturesTests(TestPluginBase): package = 'q2_diversity_lib.tests' def setUp(self): super().setUp() self.input_table = biom.Table(np.array([[1, 0, .5, 999, 1], [0, 1, 2, 0, 5], [0, 0, 0, 1, 10]]), ['A', 'B', 'C'], ['S1', 'S2', 'S3', 'S4', 'S5']) # Calculated by hand: self.observed_features_expected = pd.Series( {'S1': 1, 'S2': 1, 'S3': 2, 'S4': 2, 'S5': 3}, name='observed_features') def test_method(self): actual = observed_features(table=self.input_table) pdt.assert_series_equal(actual, self.observed_features_expected) def test_accepted_types_have_consistent_behavior(self): freq_table = self.input_table rel_freq_table = copy.deepcopy(self.input_table).norm(axis='sample', inplace=False) p_a_table = copy.deepcopy(self.input_table).pa() accepted_tables = [freq_table, rel_freq_table, p_a_table] for table in accepted_tables: actual = observed_features(table) pdt.assert_series_equal(actual, self.observed_features_expected) class PielouEvennessTests(TestPluginBase): package = 'q2_diversity_lib.tests' def setUp(self): super().setUp() self.input_table = biom.Table(np.array([[0, 1, 1, 1, 999, 1], [0, 0, 1, 1, 999, 1], [0, 0, 0, 1, 999, 2]]), ['A', 'B', 'C'], ['S1', 'S2', 'S3', 'S4', 'S5', 'S6']) # Calculated by hand: self.pielou_evenness_expected = pd.Series( {'S1': np.NaN, 'S2': np.NaN, 'S3': 1, 'S4': 1, 'S5': 1, 'S6': 0.946394630357186}, name='pielou_evenness') def test_method(self): actual = pielou_evenness(table=self.input_table)
pdt.assert_series_equal(actual, self.pielou_evenness_expected)
pandas.util.testing.assert_series_equal
import queue import logging import numpy as np import pandas as pd from nltk.tokenize import word_tokenize from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import CountVectorizer from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_array, check_is_fitted ps = PorterStemmer() class BaseDatasetDependentTSTransformer(BaseEstimator, TransformerMixin): """ A base time series transformer for time series mapping methods that need to be fitted on train data set before being able to map text samples into time series. This kind of transformers will be fitted on each fold's train set and then transform sample texts from both train and test sets of each fold. """ pass class BaseDatasetIndependentTSTransformer(BaseEstimator, TransformerMixin): """ A base time series transformer for time series mapping methods that do not need to be fitted on train data set before being able to map text samples into time series. This kind of transformers will directly transform text samples from the whole dataset into time series. """ pass def to_stemmed_tokens(text): ''' Split a text into stemmed tokens without converting capital letters to lowercase. Parameters ---------- text : str The text sample to be splitted. Returns ------- tokens : list The tokens splitted from the text sample. ''' # without lowering all letters tokens = [] for token in word_tokenize(text): # because porter stemmer automatically lowering all capital letters, we need to bring back any capital letter if exist stem = ps.stem(token) if stem != token: stem_char_list = list(stem) length = np.minimum(len(stem), len(token)) for i in range(length): # if stemmer lowered a letter, bring it back to capital if (stem[i] != token[i]) and (stem[i].upper() == token[i]): stem_char_list[i] = token[i] stem = "".join(stem_char_list) tokens.append(stem) return tokens class TokenLenSeqTransformer(BaseDatasetIndependentTSTransformer): """ An implementaion of token length sequence time series mapping method Parameters ---------- name : str, default='tokenlenseq' Name (in short) of the time series mapping method, also used as the name of the column storing time series values in the time series dataframe output from the transform method. split_function : func, default=nltk.tokenize.word_tokenize The function used to split a text into a list of tokens. """ def __init__(self, name="tokenlenseq", split_function=word_tokenize): self.name = name self.split_function = split_function def fit(self, X, y=None): """ Not used """ # Return the classifier return self def token_length_sequence(self, text): """ Split the text sample and compute the length sequence. Parameters ---------- text : str The text to be splitted and computed into length sequence Returns ------- length_sequence : list The token length sequence of the sample text. """ length_sequence = [] tokens = self.split_function(text) if len(tokens) == 0: # if no token can be split from the text, the ts has only one value 0 length_sequence.append(0) else: for token in tokens: length_sequence.append(len(token)) return length_sequence def transform(self, X): """ Map text samples into token length sequence time series Parameters ---------- X : array-like, shape (n_samples,) The input sample texts. Returns ------- ts : pandas.DataFrame, shape (n_datapoints, 2) The dataframe containing the time series, first column stores the data points, second column stores the ids of the time series """ # Input validation check_array(np.reshape(X, (-1, 1)), dtype=str) # map to ts seq = [] for counter, text in enumerate(X): seq.append(pd.DataFrame({ self.name : np.array(self.token_length_sequence(text)) })) seq[-1]['id'] = counter return pd.concat(seq) class TokenFreqSeqTransformer(BaseDatasetDependentTSTransformer): """ An implementaion of token frequency sequence time series mapping method Parameters ---------- name : str, default='tokenfreqseq' Name (in short) of the time series mapping method, also used as the name of the column storing time series values in the time series dataframe output from the transform method. split_function : func, default=authorshipattribution.ts.to_stemmed_tokens The function used to split a text into a list of tokens. """ def __init__(self, name="tokenfreqseq", split_function=to_stemmed_tokens): self.name = name self.split_function = split_function def token_frequency_dictionary(self, texts): ''' Split an array of texts into words and build a token frequency dictionary from them. The token frequency dictionary will have all unique tokens in the texts as keys and the number of occurrence of them in the texts. Parameters ---------- texts : array-like, shape (n_samples,) The text samples the dictionary would be built from. Returns ------- tokenfreq_dict : dict The token frequency dictionary built from the text samples. ''' tokenfreq_dict = {} for text in texts: features = self.split_function(text) for feature in features: if feature not in tokenfreq_dict: tokenfreq_dict[feature] = 1 else: tokenfreq_dict[feature] += 1 return tokenfreq_dict def fit(self, X, y=None): """ Compute the token frequency dictionary. Parameters ---------- X : array-like, shape (n_samples,) The input sample texts. y : Not used Returns ------- self : TokenFreqSeqTransformer The fitted transformer. """ # compute token frequency dictionary self.tokenfreq_dict = self.token_frequency_dictionary(X) # Return the classifier return self def token_frequencies(self, text): ''' Splits text into tokens using the split_function and returns the corresponding frequencies of the tokens in the token frequency dictionary. Tokens that are not found in the token frequency dictionary will be given values of 0. Parameters ---------- text : str The text to be split and transform into frequencies. Returns ------- frequencies : list The token frequency sequence of the sample text. ''' tokens = self.split_function(text) frequencies = [] for token in tokens: try: frequencies.append(self.tokenfreq_dict[token]) except KeyError: frequencies.append(0) return frequencies def transform(self, X): """ Map text samples into token frequency sequence time series Parameters ---------- X : array-like, shape (n_samples,) The input sample texts. Returns ------- ts : pandas.DataFrame, shape (n_datapoints, 2) The dataframe containing the time series, first column stores the data points, second column stores the ids of the time series """ # Input validation check_array(np.reshape(X, (-1, 1)), dtype=str) # fitted validation check_is_fitted(self, 'tokenfreq_dict') # map to ts seq = [] for counter, text in enumerate(X): frequencies = self.token_frequencies(text) if len(frequencies) == 0: seq.append(pd.DataFrame({ self.name : np.array([0]) })) else: seq.append(pd.DataFrame({ self.name : np.log1p(np.array(frequencies)) })) seq[-1]['id'] = counter return pd.concat(seq) def get_classifiers(self): """ Get the fitted classifiers/transformers. Returns ------- : dict A dictionary contains names of all classifiers/transformers along with the classifers/transformers objects. """ return {} def get_fitted_data(self): """ Get the fitted data. Returns ------- : dict A dictionary contains names of all fitted data along with the actual data. """ return { 'tokenfreq_dict' : self.tokenfreq_dict } class TokenRankSeqTransformer(BaseDatasetDependentTSTransformer): """ An implementaion of token rank time series mapping method Parameters ---------- name : str, default='tokenrankseq' Name (in short) of the time series mapping method, also used as the name of the column storing time series values in the time series dataframe output from the transform method. split_function : func, default=authorshipattribution.ts.to_stemmed_tokens The function used to split a text into a list of tokens. """ def __init__(self, name="tokenrankseq", split_function=to_stemmed_tokens): self.name = name self.split_function = split_function def token_rank_dictionary(self, tokenfreq_dict): ''' Rank the tokens in the token frequency dictionary. The tokens in the token frequency dictionary will be ranked based on their numbers of occurrences, and the tokens with the same number of occurrences will be given arbitrary rank in their rank interval. Parameters ---------- tokenfreq_dict : dict The token frequency dictionary built from text samples. Returns ------- tokenrank_dict : dict The token rank dictionary built from the token frequency dictionary. ''' freq_to_rank_dict = dict.fromkeys(tokenfreq_dict.values()) # sort the frequency dictionary token_freq_sorted = sorted([freq for freq in tokenfreq_dict.values()], reverse=True) # give ranks for tokens, for multiple orccurrences of the same frequency, keep increment the rank, and store these ranks # in a queue for the corresponding frequence for rank, freq in enumerate(token_freq_sorted): if freq_to_rank_dict[freq] == None: freq_to_rank_dict[freq] = queue.Queue() freq_to_rank_dict[freq].put(rank+1) # Give each token their corresponding rank based on their frequency, for tokens with the same frequency, the ranks stored # in the corresponding queue are given one by one. The assignment is effectively random. tokenrank_dict = {} for token, freq in tokenfreq_dict.items(): tokenrank_dict[token] = freq_to_rank_dict[freq].get() return tokenrank_dict def fit(self, X, y=None): """ Compute the token frequency dictionary and token rank dictionary. Parameters ---------- X : array-like, shape (n_samples,) The input sample texts. y : Not used Returns ------- self : TokenRankSeqTransformer The fitted transformer. """ # compute token frequency dictionary and token rank dictionary tft = TokenFreqSeqTransformer() self.tokenfreq_dict = tft.token_frequency_dictionary(X) self.tokenrank_dict = self.token_rank_dictionary(self.tokenfreq_dict) # Return the classifier return self def transform(self, X): """ Map text samples into token frequency sequence time series Parameters ---------- X : array-like, shape (n_samples,) The input sample texts. Returns ------- ts : pandas.DataFrame, shape (n_datapoints, 2) The dataframe containing the time series, first column stores the data points, second column stores the ids of the time series """ # Input validation check_array(np.reshape(X, (-1, 1)), dtype=str) # fitted validation check_is_fitted(self, ['tokenfreq_dict', 'tokenrank_dict']) # map to ts token_max_rank = max(self.tokenrank_dict.values()) seq = [] for counter, text in enumerate(X): features = self.split_function(text) ranks = [] for feature in features: try: ranks.append(self.tokenrank_dict[feature]) except KeyError: # if the word is new, give the maximum rank + 1 ranks.append(token_max_rank + 1) if len(ranks) == 0: seq.append(pd.DataFrame({ self.name : np.array([0]) })) else: seq.append(pd.DataFrame({ self.name : np.log1p(np.array(ranks)) })) seq[-1]['id'] = counter return
pd.concat(seq)
pandas.concat
from typing import List import astral import numpy as np import pandas as pd from quantities.date_time import Time, Date, DateTime, TimeDelta from quantities.geometry import Angle from nummath import interpolation, graphing from sun.horizon import HorizonProfile class Location: def __init__(self, name: str, region: str, latitude: float, longitude: float, altitude: float, timezone: str = 'UTC'): self.name = name self.region = region self.latitude = latitude self.longitude = longitude self.timezone = timezone # see Wikipedia: list of tz database time zones self.altitude = altitude self.astral_location = astral.Location(( self.name, self.region, self.latitude, self.longitude, self.timezone, self.altitude )) class SunPosition: def __init__(self, azimuth, elevation): self.azimuth = Angle(azimuth, 'deg') self.elevation = Angle(elevation, 'deg') self.zenith = Angle(90.0 - elevation, 'deg') def __str__(self): return f"(azimuth {self.azimuth('deg'):.1f}°, " \ f"elevation {self.elevation('deg'):.1f}°, " \ f"zenith {self.zenith('deg'):.1f}°)" @property def coordinate(self): return self.azimuth, self.elevation, self.zenith class SunPositionCalculator: @staticmethod def calculate_position(location: Location, date: Date, time: Time): loc = location.astral_location py_datetime = DateTime(date=date, time=time).py_datetime return SunPosition( azimuth=loc.solar_azimuth(py_datetime), elevation=loc.solar_elevation(py_datetime) ) @staticmethod def sunrise(location: Location, date: Date) -> Time: loc = location.astral_location sunrise = loc.sunrise(date.py_date) return Time(sunrise.hour, sunrise.minute, sunrise.second) @staticmethod def sunset(location: Location, date: Date) -> Time: loc = location.astral_location sunset = loc.sunset(date.py_date) return Time(sunset.hour, sunset.minute, sunset.second) @staticmethod def solar_noon(location: Location, date: Date) -> Time: loc = location.astral_location solar_noon = loc.solar_noon(date.py_date) return Time(solar_noon.hour, solar_noon.minute, solar_noon.second) @staticmethod def daylight_time(location: Location, date: Date) -> TimeDelta: loc = location.astral_location start_time, end_time = loc.daylight(date.py_date) return TimeDelta(DateTime.from_py_datetime(start_time), DateTime.from_py_datetime(end_time)) class SunPath: def __init__(self, location: Location, date: Date): self.label = date.py_date.strftime('%b %d') # date format string example: 'Jun 21' self.t_ax = [Time(h, 0, 0) for h in range(24)] sun_positions = [SunPositionCalculator.calculate_position(location, date, t) for t in self.t_ax] self.azi_ax = [sp.azimuth('deg') for sp in sun_positions] self.elev_ax = [sp.elevation('deg') for sp in sun_positions] self.spi = interpolation.CubicSplineInterPol(x_data=self.azi_ax, y_data=self.elev_ax) data = np.array([[elem[0], elem[1], elem[2]] for elem in zip(self.t_ax, self.azi_ax, self.elev_ax)]) cols = ['time', 'azimuth(°)', 'elevation(°)'] self.dataframe =
pd.DataFrame(data=data, columns=cols)
pandas.DataFrame
import os import math import pandas as pd import datetime variables = { 'East Region Hospitals': 'resource_type', 'Current Census': 'cnt_used', 'Total Capacity': 'cnt_capacity', 'Available*': 'cnt_available', 'Current Utilization': 'pct_used', 'Available Capacity': 'pct_available' } def cleanData(data, fileName): # source data frame from csv file df =
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- from copy import deepcopy import warnings from itertools import chain, combinations from collections import Counter from typing import Dict, Iterable, Iterator, List, Optional, Tuple, Union import numpy as np import pandas as pd from scipy.stats import (pearsonr as pearsonR, spearmanr as spearmanR, kendalltau as kendallTau) from tqdm.auto import tqdm import xgboost from sklearn.base import RegressorMixin, ClassifierMixin, ClusterMixin, TransformerMixin from sklearn.model_selection import train_test_split, BaseCrossValidator, KFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import (r2_score as R2, mean_squared_error as MSE, roc_auc_score as ROCAUC, confusion_matrix, multilabel_confusion_matrix, matthews_corrcoef as MCC, explained_variance_score as eVar, max_error as maxE, mean_absolute_error as MAE, mean_squared_log_error as MSLE, mean_poisson_deviance as MPD, mean_gamma_deviance as MGD, ) from prodec.Descriptor import Descriptor from prodec.Transform import Transform from .reader import read_molecular_descriptors, read_protein_descriptors from .preprocess import yscrambling from .neuralnet import (BaseNN, SingleTaskNNClassifier, SingleTaskNNRegressor, MultiTaskNNRegressor, MultiTaskNNClassifier ) pd.set_option('mode.chained_assignment', None) def filter_molecular_descriptors(data: Union[pd.DataFrame, Iterator], column_name: str, keep_values: Iterable, progress: bool = True, total: Optional[int] = None) -> pd.DataFrame: """Filter the data so that the desired column contains only the desired data. :param data: data to be filtered, either a dataframe or an iterator of chunks :param column_name: name of the column to apply the filter on :param keep_values: allowed values :return: a pandas dataframe """ if isinstance(data, pd.DataFrame): return data[data[column_name].isin(keep_values)] elif progress: return pd.concat([chunk[chunk[column_name].isin(keep_values)] for chunk in tqdm(data, total=total, desc='Loading molecular descriptors')], axis=0) else: return pd.concat([chunk[chunk[column_name].isin(keep_values)] for chunk in data], axis=0) def model_metrics(model, y_true, x_test) -> dict: """Determine performance metrics of a model Beware R2 = 1 - (Residual sum of squares) / (Total sum of squares) != (Pearson r)² R2_0, R2_0_prime, K and k_prime are derived from <NAME>., & <NAME>. (2010). Predictive Quantitative Structure–Activity Relationships Modeling. In <NAME> & <NAME> (Eds.), Handbook of Chemoinformatics Algorithms. Chapman and Hall/CRC. https://www.taylorfrancis.com/books/9781420082999 :param model: model to check the performance of :param y_true: true labels :param x_test: testing set of features :return: a dictionary of metrics """ y_pred = model.predict(x_test) # Regression metrics if isinstance(model, (RegressorMixin, SingleTaskNNRegressor, MultiTaskNNRegressor)): # Slope of predicted vs observed k = sum(xi * yi for xi, yi in zip(y_true, y_pred)) / sum(xi ** 2 for xi in y_true) # Slope of observed vs predicted k_prime = sum(xi * yi for xi, yi in zip(y_true, y_pred)) / sum(yi ** 2 for yi in y_pred) # Mean averages y_true_mean = y_true.mean() y_pred_mean = y_pred.mean() return {'number' : y_true.size, 'R2' : R2(y_true, y_pred) if len(y_pred) >= 2 else 0, 'MSE' : MSE(y_true, y_pred, squared=True) if len(y_pred) >= 2 else 0, 'RMSE' : MSE(y_true, y_pred, squared=False) if len(y_pred) >= 2 else 0, 'MSLE' : MSLE(y_true, y_pred) if len(y_pred) >= 2 else 0, 'RMSLE' : np.sqrt(MSLE(y_true, y_pred)) if len(y_pred) >= 2 else 0, 'MAE' : MAE(y_true, y_pred) if len(y_pred) >= 2 else 0, 'Explained Variance' : eVar(y_true, y_pred) if len(y_pred) >= 2 else 0, 'Max Error' : maxE(y_true, y_pred) if len(y_pred) >= 2 else 0, 'Mean Poisson Distrib' : MPD(y_true, y_pred) if len(y_pred) >= 2 else 0, 'Mean Gamma Distrib' : MGD(y_true, y_pred) if len(y_pred) >= 2 else 0, 'Pearson r': pearsonR(y_true, y_pred)[0] if len(y_pred) >= 2 else 0, 'Spearman r' : spearmanR(y_true, y_pred)[0] if len(y_pred) >= 2 else 0, 'Kendall tau': kendallTau(y_true, y_pred)[0] if len(y_pred) >= 2 else 0, 'R2_0 (pred. vs. obs.)' : 1 - (sum((xi - k_prime * yi) **2 for xi, yi in zip(y_true, y_pred)) / sum((xi - y_true_mean) ** 2 for xi in y_true)) if len(y_pred) >= 2 else 0, 'R\'2_0 (obs. vs. pred.)' : 1 - (sum((yi - k * xi) **2 for xi, yi in zip(y_true, y_pred)) / sum((yi - y_pred_mean) ** 2 for yi in y_pred)) if len(y_pred) >= 2 else 0, 'k slope (pred. vs obs.)' : k, 'k\' slope (obs. vs pred.)' : k_prime, } # Classification elif isinstance(model, (ClassifierMixin, SingleTaskNNClassifier, MultiTaskNNClassifier)): # Binary classification if len(model.classes_) == 2: tn, fp, fn, tp = confusion_matrix(y_true, y_pred, labels=model.classes_).ravel() values = {} try: mcc = MCC(y_true, y_pred) values['MCC'] = mcc except RuntimeWarning: pass values[':'.join(str(x) for x in model.classes_)] = ':'.join([str(int(sum(y_true == class_))) for class_ in model.classes_]) values['ACC'] = (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) != 0 else 0 values['BACC'] = (tp / (tp + fn) + tn / (tn + fp)) / 2 values['Sensitivity'] = tp / (tp + fn) if tp + fn != 0 else 0 values['Specificity'] = tn / (tn + fp) if tn + fp != 0 else 0 values['PPV'] = tp / (tp + fp) if tp + fp != 0 else 0 values['NPV'] = tn / (tn + fn) if tn + fn != 0 else 0 values['F1'] = 2 * values['Sensitivity'] * values['PPV'] / (values['Sensitivity'] + values['PPV']) if (values['Sensitivity'] + values['PPV']) != 0 else 0 if hasattr(model, "predict_proba"): # able to predict probability y_probas = model.predict_proba(x_test) if y_probas.shape[1] == 1: y_proba = y_probas.ravel() values['AUC 1'] = ROCAUC(y_true, y_probas) else: for i in range(len(model.classes_)): y_proba = y_probas[:, i].ravel() try: values['AUC %s' % model.classes_[i]] = ROCAUC(y_true, y_proba) except ValueError: warnings.warn('Only one class present in y_true. ROC AUC score is not defined in that case. ' 'Stratify your folds to avoid such warning.') values['AUC %s' % model.classes_[i]] = np.nan # Multiclasses else: i = 0 values = {} for contingency_matrix in multilabel_confusion_matrix(y_true, y_pred): tn, fp, fn, tp = contingency_matrix.ravel() try: mcc = MCC(y_true, y_pred) values['%s|MCC' % model.classes_[i]] = mcc except RuntimeWarning: pass values['%s|number' % model.classes_[i]] = int(sum(y_true == model.classes_[i])) values['%s|ACC' % model.classes_[i]] = (tp + tn) / (tp + tn + fp + fn) if ( tp + tn + fp + fn) != 0 else 0 values['%s|BACC' % model.classes_[i]] = (tp / (tp + fn) + tn / (tn + fp)) / 2 values['%s|Sensitivity' % model.classes_[i]] = tp / (tp + fn) if tp + fn != 0 else 0 values['%s|Specificity' % model.classes_[i]] = tn / (tn + fp) if tn + fp != 0 else 0 values['%s|PPV' % model.classes_[i]] = tp / (tp + fp) if tp + fp != 0 else 0 values['%s|NPV' % model.classes_[i]] = tn / (tn + fn) if tn + fn != 0 else 0 values['%s|F1' % model.classes_[i]] = 2 * values['%s|Sensitivity' % model.classes_[i]] * values[ '%s|PPV' % model.classes_[i]] / (values['%s|Sensitivity' % model.classes_[i]] + values[ '%s|PPV' % model.classes_[i]]) if (values['%s|Sensitivity' % model.classes_[i]] + values[ '%s|PPV' % model.classes_[i]]) != 0 else 0 i += 1 if hasattr(model, "predict_proba"): # able to predict probability y_probas = model.predict_proba(x_test) try: values['AUC 1 vs 1'] = ROCAUC(y_true, y_probas, average="macro", multi_class="ovo") values['AUC 1 vs All'] = ROCAUC(y_true, y_probas, average="macro", multi_class="ovr") except ValueError: warnings.warn('Only one class present in y_true. ROC AUC score is not defined in that case. ' 'Stratify your folds to avoid such warning.') values['AUC 1 vs 1'] = np.nan values['AUC 1 vs All'] = np.nan return values else: raise ValueError('model can only be classifier or regressor.') def crossvalidate_model(data: pd.DataFrame, model: Union[RegressorMixin, ClassifierMixin], folds: BaseCrossValidator, groups: List[int] = None, verbose: bool = False ) -> Tuple[pd.DataFrame, Dict[str, Union[RegressorMixin, ClassifierMixin]]]: """Create a machine learning model predicting values in the first column :param data: data containing the dependent vairable (in the first column) and other features :param model: estimator (may be classifier or regressor) to use for model building :param folds: cross-validator :param groups: groups to split the labels according to :param verbose: whether to show fold progression :return: cross-validated performance and model trained on the entire dataset """ X, y = data.iloc[:, 1:], data.iloc[:, 0].values.ravel() performance = [] if verbose: pbar = tqdm(desc='Fitting model', total=folds.n_splits + 1) models = {} # Perform cross-validation for i, (train, test) in enumerate(folds.split(X, y, groups)): if verbose: pbar.set_description(f'Fitting model on fold {i + 1}', refresh=True) model.fit(X.iloc[train, :], y[train]) models[f'Fold {i + 1}'] = deepcopy(model) performance.append(model_metrics(model, y[test], X.iloc[test, :])) if verbose: pbar.update() # Organize result in a dataframe performance = pd.DataFrame(performance) performance.index = [f'Fold {i + 1}' for i in range(folds.n_splits)] # Add average and sd of performance performance.loc['Mean'] = [np.mean(performance[col]) if ':' not in col else '-' for col in performance] performance.loc['SD'] = [np.std(performance[col]) if ':' not in col else '-' for col in performance] # Fit model on the entire dataset if verbose: pbar.set_description('Fitting model on entire training set', refresh=True) model.fit(X, y) models['Full model'] = deepcopy(model) if verbose: pbar.update() return performance, models def train_test_proportional_group_split(data: pd.DataFrame, groups: List[int], test_size: float = 0.30, verbose: bool = False ) -> Tuple[pd.DataFrame, pd.DataFrame, List[int], List[int]]: """Split the data into training and test sets according to the groups that respect most test_size :param data: the data to be split up into training and test sets :param groups: groups to split the data according to :param test_size: approximate proportion of the input dataset to determine the test set :param verbose: whether to log to stdout or not :return: training and test sets and training and test groups """ counts = Counter(groups) size = sum(counts.values()) # Get ordered permutations of groups without repetitions permutations = list(chain.from_iterable(combinations(counts.keys(), r) for r in range(len(counts)))) # Get proportion of each permutation proportions = [sum(counts[x] for x in p) / size for p in permutations] # Get permutation minimizing difference to test_size best, proportion = min(zip(permutations, proportions), key=lambda x: (x[1] - test_size) ** 2) del counts, permutations, proportions if verbose: print(f'Best group permutation corresponds to {proportion:.2%} of the data') # Get test set assignment assignment = np.where(group in best for group in groups) opposite = np.logical_not(assignment) # Get training groups t_groups = [x for x in groups if x not in best] return data[opposite], data[assignment], t_groups, best def qsar(data: pd.DataFrame, endpoint: str = 'pchembl_value_Mean', num_points: int = 30, delta_activity: float = 2, version: str = 'latest', descriptors: str = 'mold2', descriptor_path: Optional[str] = None, descriptor_chunksize: Optional[int] = 50000, activity_threshold: float = 6.5, model: Union[RegressorMixin, ClassifierMixin] = xgboost.XGBRegressor(verbosity=0), folds: int = 5, stratify: bool = False, split_by: str = 'Year', split_year: int = 2013, test_set_size: float = 0.30, cluster_method: ClusterMixin = None, custom_groups: pd.DataFrame = None, scale: bool = False, scale_method: TransformerMixin = StandardScaler(), yscramble: bool = False, random_state: int = 1234, verbose: bool = True ) -> Tuple[pd.DataFrame, Dict[str, Optional[Union[TransformerMixin, LabelEncoder, BaseCrossValidator, Dict[str, Union[RegressorMixin, ClassifierMixin]]]]]]: """Create QSAR models for as many targets with selected data source(s), data quality, minimum number of datapoints and minimum activity amplitude. :param data: Papyrus activity data :param endpoint: value to be predicted or to derive classes from :param num_points: minimum number of points for the activity of a target to be modelled :param delta_activity: minimum difference between most and least active compounds for a target to be modelled :param descriptors: type of desriptors to be used for model training :param descriptor_path: path to Papyrus descriptors (default: pystow's default path) :param descriptor_chunksize: chunk size of molecular descriptors to be iteratively loaded (None disables chunking) :param activity_threshold: threshold activity between acvtive and inactive compounds (ignored if using a regressor) :param model: machine learning model to be used for QSAR modelling :param folds: number of cross-validation folds to be performed :param stratify: whether to stratify folds for cross validation, ignored if model is RegressorMixin :param split_by: how should folds be determined {'random', 'Year', 'cluster', 'custom'} If 'random', exactly test_set_size is extracted for test set. If 'Year', the size of the test and training set are not looked at If 'cluster' or 'custom', the groups giving proportion closest to test_set_size will be used to defined the test set :param split_year: Year from which on the test set is extracted (ignored if split_by is not 'Year') :param test_set_size: proportion of the dataset to be used as test set :param cluster_method: clustering method to use to extract test set and cross-validation folds (ignored if split_by is not 'cluster') :param custom_groups: custom groups to use to extract test set and cross-validation fold (ignored if split_by is not 'custom'). Groups must be a pandas DataFrame with only two Series. The first Series is either InChIKey or connectivity (depending on whether stereochemistry data are being use or not). The second Series must be the group assignment of each compound. :param scale: should the features be scaled using the custom scaling_method :param scale_method: scaling method to be applied to features (ignored if scale is False) :param yscramble: should the endpoint be shuffled to compare performance to the unshuffled endpoint :param random_state: seed to use for train/test splitting and KFold shuffling :param verbose: log details to stdout :return: both: - a dataframe of the cross-validation results where each line is a fold of QSAR modelling of an accession - a dictionary of the feature scaler (if used), label encoder (if mode is a classifier), the data splitter for cross-validation, and for each accession in the data: the fitted models on each cross-validation fold and the model fitted on the complete training set. """ if split_by.lower() not in ['year', 'random', 'cluster', 'custom']: raise ValueError("split not supported, must be one of {'Year', 'random', 'cluster', 'custom'}") if not isinstance(model, (RegressorMixin, ClassifierMixin)): raise ValueError('model type can only be a Scikit-Learn compliant regressor or classifier') warnings.filterwarnings("ignore", category=RuntimeWarning) if isinstance(model, (xgboost.XGBRegressor, xgboost.XGBClassifier)): warnings.filterwarnings("ignore", category=UserWarning) model_type = 'regressor' if isinstance(model, RegressorMixin) else 'classifier' # Keep only required fields merge_on = 'connectivity' if 'connectivity' in data.columns else 'InChIKey' if model_type == 'regressor': features_to_ignore = [merge_on, 'target_id', endpoint, 'Year'] data = data[data['relation'] == '='][features_to_ignore] else: features_to_ignore = [merge_on, 'target_id', 'Activity_class', 'Year'] preserved = data[~data['Activity_class'].isna()] preserved = preserved.drop( columns=[col for col in preserved if col not in [merge_on, 'target_id', 'Activity_class', 'Year']]) active = data[data['Activity_class'].isna() & (data[endpoint] > activity_threshold)] active = active[~active['relation'].str.contains('<')][features_to_ignore] active.loc[:, 'Activity_class'] = 'A' inactive = data[data['Activity_class'].isna() & (data[endpoint] <= activity_threshold)] inactive = inactive[~inactive['relation'].str.contains('>')][features_to_ignore] inactive.loc[:, 'Activity_class'] = 'N' data = pd.concat([preserved, active, inactive]) # Change endpoint endpoint = 'Activity_class' del preserved, active, inactive # Get and merge molecular descriptors descs = read_molecular_descriptors(descriptors, 'connectivity' not in data.columns, version, descriptor_chunksize, descriptor_path) descs = filter_molecular_descriptors(descs, merge_on, data[merge_on].unique()) data = data.merge(descs, on=merge_on) data = data.drop(columns=[merge_on]) del descs # Table of results results, models = [], {} targets = list(data['target_id'].unique()) n_targets = len(targets) if verbose: pbar = tqdm(total=n_targets, smoothing=0.1) # Build QSAR model for targets reaching criteria for i_target in range(n_targets - 1, -1, -1): tmp_data = data[data['target_id'] == targets[i_target]] if verbose: pbar.set_description(f'Building QSAR for target: {targets[i_target]} #datapoints {tmp_data.shape[0]}', refresh=True) # Insufficient data points if tmp_data.shape[0] < num_points: if model_type == 'regressor': results.append(pd.DataFrame([[targets[i_target], tmp_data.shape[0], f'Number of points {tmp_data.shape[0]} < {num_points}']], columns=['target', 'number', 'error'])) else: data_classes = Counter(tmp_data[endpoint]) results.append( pd.DataFrame([[targets[i_target], ':'.join(str(data_classes.get(x, 0)) for x in ['A', 'N']), f'Number of points {tmp_data.shape[0]} < {num_points}']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue if model_type == 'regressor': min_activity = tmp_data[endpoint].min() max_activity = tmp_data[endpoint].max() delta = max_activity - min_activity # Not enough activity amplitude if delta < delta_activity: results.append(pd.DataFrame([[targets[i_target], tmp_data.shape[0], f'Delta activity {delta} < {delta_activity}']], columns=['target', 'number', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue else: data_classes = Counter(tmp_data[endpoint]) # Only one activity class if len(data_classes) == 1: results.append( pd.DataFrame([[targets[i_target], ':'.join(str(data_classes.get(x, 0)) for x in ['A', 'N']), 'Only one activity class']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue # Not enough data in minority class for all folds elif not all(x >= folds for x in data_classes.values()): results.append( pd.DataFrame([[targets[i_target], ':'.join(str(data_classes.get(x, 0)) for x in ['A', 'N']), f'Not enough data in minority class for all {folds} folds']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue # Set groups for fold enumerator and extract test set if split_by.lower() == 'year': groups = tmp_data['Year'] test_set = tmp_data[tmp_data['Year'] >= split_year] if test_set.empty: if model_type == 'regressor': results.append(pd.DataFrame([[targets[i_target], tmp_data.shape[0], f'No test data for temporal split at {split_year}']], columns=['target', 'number', 'error'])) else: data_classes = Counter(tmp_data[endpoint]) results.append( pd.DataFrame([[targets[i_target], ':'.join(str(data_classes.get(x, 0)) for x in ['A', 'N']), f'No test data for temporal split at {split_year}']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue training_set = tmp_data[~tmp_data.index.isin(test_set.index)] if training_set.empty or training_set.shape[0] < folds: if model_type == 'regressor': results.append(pd.DataFrame([[targets[i_target], tmp_data.shape[0], f'Not enough training data for temporal split at {split_year}']], columns=['target', 'number', 'error'])) else: data_classes = Counter(tmp_data[endpoint]) results.append( pd.DataFrame([[targets[i_target], ':'.join(str(data_classes.get(x, 0)) for x in ['A', 'N']), f'Not enough training data for temporal split at {split_year}']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue if model_type == 'classifier': train_data_classes = Counter(training_set[endpoint]) test_data_classes = Counter(test_set[endpoint]) if len(train_data_classes) < 2: results.append(pd.DataFrame([[targets[i_target], ':'.join(str(train_data_classes.get(x, 0)) for x in ['A', 'N']), f'Only one activity class in traing set for temporal split at {split_year}']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() continue elif len(test_data_classes) < 2: results.append(pd.DataFrame([[targets[i_target], ':'.join(str(test_data_classes.get(x, 0)) for x in ['A', 'N']), f'Only one activity class in traing set for temporal split at {split_year}']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue training_groups = training_set['Year'] elif split_by.lower() == 'random': training_groups = None training_set, test_set = train_test_split(tmp_data, test_size=test_set_size, random_state=random_state) elif split_by.lower() == 'cluster': groups = cluster_method.fit_predict(tmp_data.drop(columns=features_to_ignore)) training_set, test_set, training_groups, _ = train_test_proportional_group_split(tmp_data, groups, test_set_size, verbose=verbose) elif split_by.lower() == 'custom': # Merge from custom split DataFrame groups = tmp_data[[merge_on]].merge(custom_groups, on=merge_on).iloc[:, 1].tolist() training_set, test_set, training_groups, _ = train_test_proportional_group_split(tmp_data, groups, test_set_size, verbose=verbose) # Drop columns not used for training training_set = training_set.drop(columns=['Year', 'target_id']) test_set = test_set.drop(columns=['Year', 'target_id']) X_train, y_train = training_set.drop(columns=[endpoint]), training_set.loc[:, endpoint] X_test, y_test = test_set.drop(columns=[endpoint]), test_set.loc[:, endpoint] # Scale data if scale: X_train.loc[X_train.index, X_train.columns] = scale_method.fit_transform(X_train) X_test.loc[X_test.index, X_test.columns] = scale_method.transform(X_test) # Encode labels if model_type == 'classifier': lblenc = LabelEncoder() y_train = pd.Series(data=lblenc.fit_transform(y_train), index=y_train.index, dtype=y_train.dtype, name=y_train.name) y_test = pd.Series(data=lblenc.transform(y_test), index=y_test.index, dtype=y_test.dtype, name=y_test.name) y_train = y_train.astype(np.int32) y_test = y_test.astype(np.int32) # Reorganize data training_set = pd.concat([y_train, X_train], axis=1) test_set = pd.concat([y_test, X_test], axis=1) del X_train, y_train, X_test, y_test # Y-scrambling if yscramble: training_set = yscrambling(data=training_set, y_var=endpoint, random_state=random_state) test_set = yscrambling(data=test_set, y_var=endpoint, random_state=random_state) # Make sure enough data if model_type == 'classifier': train_data_classes = Counter(training_set['Activity_class']) train_enough_data = np.all(np.array(list(train_data_classes.values())) > folds) test_data_classes = Counter(test_set['Activity_class']) test_enough_data = np.all(np.array(list(test_data_classes.values())) > folds) if not train_enough_data: results.append(pd.DataFrame([[targets[i_target], ':'.join(str(train_data_classes.get(x, 0)) for x in ['A', 'N']), f'Not enough data in minority class of the training set for all {folds} folds']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue elif not test_enough_data: results.append(pd.DataFrame([[targets[i_target], ':'.join(str(test_data_classes.get(x, 0)) for x in ['A', 'N']), f'Not enough data in minority class of the training set for all {folds} folds']], columns=['target', 'A:N', 'error'])) if verbose: pbar.update() models[targets[i_target]] = None continue # Define folding scheme for cross validation if stratify and model_type == 'classifier': kfold = StratifiedKFold(n_splits=folds, shuffle=True, random_state=random_state) else: kfold = KFold(n_splits=folds, shuffle=True, random_state=random_state) performance, cv_models = crossvalidate_model(training_set, model, kfold, training_groups) full_model = cv_models['Full model'] X_test, y_test = test_set.iloc[:, 1:], test_set.iloc[:, 0].values.ravel() performance.loc['Test set'] = model_metrics(full_model, y_test, X_test) performance.loc[:, 'target'] = targets[i_target] results.append(performance.reset_index()) models[targets[i_target]] = cv_models if verbose: pbar.update() if isinstance(model, (xgboost.XGBRegressor, xgboost.XGBClassifier)): warnings.filterwarnings("default", category=UserWarning) warnings.filterwarnings("default", category=RuntimeWarning) # Formatting return values return_val = {} if scale: return_val['scaler'] = deepcopy(scale_method) if model_type == 'classifier': return_val['label_encoder'] = deepcopy(lblenc) if stratify: return_val['data_splitter'] = StratifiedKFold(n_splits=folds, shuffle=True, random_state=random_state) else: return_val['data_splitter'] = KFold(n_splits=folds, shuffle=True, random_state=random_state) return_val = {**return_val, **models} if len(results) is False: return
pd.DataFrame()
pandas.DataFrame
from os import path import matplotlib.pyplot as plt import numpy as np import os import pandas as pd from pathlib import Path import ptitprince as pt # ---------- # Loss Plots # ---------- def save_loss_plot(path, loss_function, v_path=None, show=True): df = pd.read_csv(path) if v_path is not None: vdf = pd.read_csv(v_path) else: vdf = None p = Path(path) n = p.stem d = p.parents[0] out_path = os.path.join(d, n + '_loss.png') fig, ax = plot_loss(df, vdf=vdf, x_lab='Iteration', y_lab=loss_function, save=out_path, show=show) def plot_loss(df, vdf=None, x_lab='Iteration', y_lab='BCE Loss', save=None, show=True): x = df['Unnamed: 0'].values y = df['loss'].values epochs = len(df['epoch'].unique()) no_batches = int(len(x) / epochs) epoch_ends = np.array([((i + 1) * no_batches) - 1 for i in range(epochs)]) epoch_end_x = x[epoch_ends] epoch_end_y = y[epoch_ends] fig, ax = plt.subplots() leg = ['loss',] ax.plot(x, y, linewidth=2) ax.scatter(epoch_end_x, epoch_end_y) title = 'Training loss' if vdf is not None: if len(vdf) > epochs: vy = vdf.groupby('batch_id').mean()['validation_loss'].values vx = vdf['batch_id'].unique() else: vy = vdf['validation_loss'].values vx = epoch_end_x title = title + ' with validation loss' leg.append('validation loss') if len(vdf) > epochs: #vy_err = v_df.groupby('batch_id').sem()['validation_loss'].values #ax.errorbar(vx, vy, vy_err, marker='.') ax.plot(vx, vy, linewidth=2, marker='o') else: ax.plot(vx, vy, linewidth=2, marker='o') ax.set(xlabel=x_lab, ylabel=y_lab) ax.set_title(title) ax.legend(leg) fig.set_size_inches(13, 9) if save is not None: plt.savefig(save, dpi=300) if show: plt.show() return fig, ax def save_channel_loss_plot(path, show=True): df = pd.read_csv(path) p = Path(path) n = p.stem d = p.parents[0] out_path = os.path.join(d, n + '_channel-loss.png') fig, ax = plot_channel_losses(df, save=out_path, show=show) def plot_channel_losses(df, x_lab='Iteration', y_lab='BCE Loss', save=None, show=True): cols = list(df.columns) x = df['Unnamed: 0'].values non_channel_cols = ['Unnamed: 0', 'epoch', 'batch_num', 'loss', 'data_id'] channel_losses = [col for col in cols if col not in non_channel_cols] #print(channel_losses) if len(channel_losses) > 5: #print('four plots') fig, axs = plt.subplots(2, 2) zs, ys, xs, cs = [], [], [], [] for col in channel_losses: y = df[col].values if col.startswith('z'): ls = _get_linestyle(zs) axs[0, 0].plot(x, y, linewidth=1, linestyle=ls) zs.append(col) if col.startswith('y'): ls = _get_linestyle(ys) axs[0, 1].plot(x, y, linewidth=1, linestyle=ls) ys.append(col) if col.startswith('x'): ls = _get_linestyle(xs) axs[1, 0].plot(x, y, linewidth=1, linestyle=ls) xs.append(col) if col.startswith('cent') or col == 'mask': ls = _get_linestyle(cs) axs[1, 1].plot(x, y, linewidth=1, linestyle=ls) cs.append(col) axs[0, 0].set_title('Z affinities losses') axs[0, 0].legend(zs) axs[0, 1].set_title('Y affinities losses') axs[0, 1].legend(ys) axs[1, 0].set_title('X affinities losses') axs[1, 0].legend(xs) axs[1, 1].set_title('Object interior losses') axs[1, 1].legend(cs) fig.set_size_inches(13, 9) elif len(channel_losses) <= 5: #print('two plots') fig, axs = plt.subplots(2, 1) affs, cs = [], [] for col in channel_losses: y = df[col].values if col.startswith('z') or col.startswith('y') or col.startswith('x'): ls = _get_linestyle(affs) axs[0].plot(x, y, linewidth=2, linestyle=ls) affs.append(col) if col.startswith('cent') or col == 'mask': axs[1].plot(x, y, linewidth=2) cs.append(col) axs[0].set_title('Affinities losses') axs[0].legend(affs) axs[1].set_title('Object interior losses') axs[1].legend(cs) fig.set_size_inches(14, 14) for ax in axs.flat: ax.set(xlabel=x_lab, ylabel=y_lab) if save is not None: plt.savefig(save, dpi=300) if show: plt.show() return fig, axs def _get_linestyle(lis): if len(lis) == 0: ls = '-' elif len(lis) == 1: ls = '--' else: ls = ':' return ls # -------- # VI Plots # -------- def VI_plot( path, cond_ent_over="GT | Output", cond_ent_under="Output | GT", lab="", save=False, show=True): df = pd.read_csv(path) overseg = df[cond_ent_over].values o_groups = [cond_ent_over] * len(overseg) underseg = df[cond_ent_under].values u_groups = [cond_ent_under] * len(underseg) groups = o_groups + u_groups x = 'Variation of information' y = 'Conditional entropy' data = { x : groups, y : np.concatenate([overseg, underseg]) } data = pd.DataFrame(data) o = 'h' pal = 'Set2' sigma = .2 f, ax = plt.subplots(figsize=(12, 10)) pt.RainCloud(x = x, y = y, data = data, palette = pal, bw = sigma, width_viol = .6, ax = ax, orient = o) p = Path(path) plt.title(p.stem) if save: save_path = os.path.join(p.parents[0], p.stem + lab + '_VI_rainclout_plot.png') plt.savefig(save_path, bbox_inches='tight') if show: plt.show() def experiment_VI_plots( paths, names, title, out_name, out_dir, cond_ent_over="GT | Output", cond_ent_under="Output | GT", show=True ): plt.rcParams.update({'font.size': 16}) groups = [] ce0 = [] ce1 = [] for i, p in enumerate(paths): df = pd.read_csv(p) ce0.append(df[cond_ent_over].values) ce1.append(df[cond_ent_under].values) groups += [names[i]] * len(df) x = 'Experiment' data = { x : groups, cond_ent_over : np.concatenate(ce0), cond_ent_under : np.concatenate(ce1) } data = pd.DataFrame(data) o = 'h' pal = 'Set2' sigma = .2 f, axs = plt.subplots(1, 2, figsize=(14, 10)) #, sharex=True) #, sharey=True) ax0 = axs[0] ax1 = axs[1] pt.RainCloud(x = x, y = cond_ent_over, data = data, palette = pal, bw = sigma, width_viol = .6, ax = ax0, orient = o) ax0.set_title('Over-segmentation conditional entropy') pt.RainCloud(x = x, y = cond_ent_under, data = data, palette = pal, bw = sigma, width_viol = .6, ax = ax1, orient = o) ax1.set_title('Under-segmentation conditional entropy') f.suptitle(title) os.makedirs(out_dir, exist_ok=True) save_path = os.path.join(out_dir, out_name + '_VI_rainclould_plots.png') plt.savefig(save_path, bbox_inches='tight') if show: plt.show() # ----------------------- # Average Precision Plots # ----------------------- def plot_experiment_APs(paths, names, title, out_dir, out_name, show=True): dfs = [pd.read_csv(path) for path in paths] os.makedirs(out_dir, exist_ok=True) out_path = os.path.join(out_dir, out_name) plot_AP(dfs, names, out_path, title, show=show) def plot_AP(dfs, names, out_path, title, thresh_name='threshold', ap_name='average_precision', show=True): plt.rcParams.update({'font.size': 16}) plt.rcParams["figure.figsize"] = (10,10) fig = plt.figure() for df in dfs: plt.plot(df[thresh_name].values, df[ap_name].values) plt.xlabel('IoU threshold') plt.ylabel('Average precision') plt.title(title) plt.legend(names) fig.savefig(out_path) if show: plt.show() # ------------------------------ # Object Number Difference Plots # ------------------------------ def plot_experiment_no_diff(paths, names, title, out_dir, out_name, col_name='n_diff', show=True): dfs = [pd.read_csv(path) for path in paths] plt.rcParams.update({'font.size': 16}) os.makedirs(out_dir, exist_ok=True) out_path = os.path.join(out_dir, out_name) groups = [] n_diff = [] for i, df in enumerate(dfs): vals = df[col_name].values n_diff.append(vals) groups += [names[i]] * len(df) x = 'Experiment' data = { x : groups, 'n_diff' : np.concatenate(n_diff), } data =
pd.DataFrame(data)
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a":
pd.Series([1, 2, 3, 2, 5])
pandas.Series