prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import collections import copy import unittest import functools import itertools import types import numpy as np import numpy.testing as npt import pandas as pd import scipy.stats from skbio import Sequence, DNA, RNA, Protein, TabularMSA from skbio.sequence import GrammaredSequence from skbio.util import classproperty from skbio.util._decorator import overrides from skbio.util._testing import ReallyEqualMixin from skbio.metadata._testing import (MetadataMixinTests, PositionalMetadataMixinTests) from skbio.util import assert_data_frame_almost_equal from skbio.util._testing import assert_index_equal class TabularMSASubclass(TabularMSA): """Used for testing purposes.""" pass class TestTabularMSAMetadata(unittest.TestCase, ReallyEqualMixin, MetadataMixinTests): def setUp(self): self._metadata_constructor_ = functools.partial(TabularMSA, []) class TestTabularMSAPositionalMetadata(unittest.TestCase, ReallyEqualMixin, PositionalMetadataMixinTests): def setUp(self): def factory(axis_len, positional_metadata=None): return TabularMSA([DNA('A' * axis_len)], positional_metadata=positional_metadata) self._positional_metadata_constructor_ = factory class TestTabularMSA(unittest.TestCase, ReallyEqualMixin): def test_from_dict_empty(self): self.assertEqual(TabularMSA.from_dict({}), TabularMSA([], index=[])) def test_from_dict_single_sequence(self): self.assertEqual(TabularMSA.from_dict({'foo': DNA('ACGT')}), TabularMSA([DNA('ACGT')], index=['foo'])) def test_from_dict_multiple_sequences(self): msa = TabularMSA.from_dict( {1: DNA('ACG'), 2: DNA('GGG'), 3: DNA('TAG')}) # Sort because order is arbitrary. msa.sort() self.assertEqual( msa, TabularMSA([DNA('ACG'), DNA('GGG'), DNA('TAG')], index=[1, 2, 3])) def test_from_dict_invalid_input(self): # Basic test to make sure error-checking in the TabularMSA constructor # is being invoked. with self.assertRaisesRegex( ValueError, 'must match the number of positions'): TabularMSA.from_dict({'a': DNA('ACG'), 'b': DNA('ACGT')}) def test_constructor_invalid_dtype(self): with self.assertRaisesRegex(TypeError, 'GrammaredSequence.*Sequence'): TabularMSA([Sequence('')]) with self.assertRaisesRegex(TypeError, 'GrammaredSequence.*int'): TabularMSA([42, DNA('')]) def test_constructor_not_monomorphic(self): with self.assertRaisesRegex(TypeError, 'matching type.*RNA.*DNA'): TabularMSA([DNA(''), RNA('')]) with self.assertRaisesRegex(TypeError, 'matching type.*float.*Protein'): TabularMSA([Protein(''), Protein(''), 42.0, Protein('')]) def test_constructor_unequal_length(self): with self.assertRaisesRegex( ValueError, 'must match the number of positions.*1 != 0'): TabularMSA([Protein(''), Protein('P')]) with self.assertRaisesRegex( ValueError, 'must match the number of positions.*1 != 3'): TabularMSA([Protein('PAW'), Protein('ABC'), Protein('A')]) def test_constructor_non_iterable(self): with self.assertRaises(TypeError): TabularMSA(42) def test_constructor_minter_and_index_both_provided(self): with self.assertRaisesRegex(ValueError, 'both.*minter.*index'): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=str, index=['a', 'b']) def test_constructor_invalid_minter_callable(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=float) def test_constructor_missing_minter_metadata_key(self): with self.assertRaises(KeyError): TabularMSA([DNA('ACGT', metadata={'foo': 'bar'}), DNA('TGCA')], minter='foo') def test_constructor_unhashable_minter_metadata_key(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], minter=[]) def test_constructor_index_length_mismatch_iterable(self): with self.assertRaisesRegex(ValueError, 'sequences.*2.*index length.*0'): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=iter([])) def test_constructor_index_length_mismatch_index_object(self): with self.assertRaisesRegex(ValueError, 'sequences.*2.*index length.*0'): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=pd.Index([])) def test_constructor_invalid_index_scalar(self): with self.assertRaises(TypeError): TabularMSA([DNA('ACGT'), DNA('TGCA')], index=42) def test_constructor_non_unique_labels(self): msa = TabularMSA([DNA('ACGT'), DNA('ACGT')], index=[1, 1]) assert_index_equal(msa.index, pd.Int64Index([1, 1])) def test_constructor_empty_no_index(self): # sequence empty msa = TabularMSA([]) self.assertIsNone(msa.dtype) self.assertEqual(msa.shape, (0, 0)) assert_index_equal(msa.index, pd.RangeIndex(0)) with self.assertRaises(StopIteration): next(iter(msa)) # position empty seqs = [DNA(''), DNA('')] msa = TabularMSA(seqs) self.assertIs(msa.dtype, DNA) self.assertEqual(msa.shape, (2, 0)) assert_index_equal(msa.index,
pd.RangeIndex(2)
pandas.RangeIndex
# Functions for OCR block identification script # import io, json, sys, os, psycopg2, logging, subprocess, swifter, re, dateparser from glob import glob from pathlib import Path from psycopg2.extras import RealDictCursor from time import localtime, strftime from fuzzywuzzy import fuzz import pandas as pd from datetime import date #Insert query insert_q = "INSERT INTO ocr_interpreted_blocks (document_id, block_id, data_type, interpreted_value, verbatim_value, data_source, match_score) VALUES (%(document_id)s, %(block_id)s, %(data_type)s, %(interpreted_value)s, %(verbatim_value)s, %(data_source)s, %(match_score)s) ON CONFLICT (document_id, block_id, data_type) DO UPDATE SET interpreted_value = %(interpreted_value)s, verbatim_value = %(verbatim_value)s" #OCR Database conn = psycopg2.connect(host = settings.ocr_host, database = settings.ocr_db, user = settings.ocr_user, password = settings.ocr_password, connect_timeout = 60) conn.autocommit = True db_cursor = conn.cursor(cursor_factory=RealDictCursor) #GIS database conn2 = psycopg2.connect(host = settings.gis_host, database = settings.gis_db, user = settings.gis_user, password = settings.gis_password, connect_timeout = 60) db_cursor2 = conn2.cursor(cursor_factory=RealDictCursor) #Delete previous id's db_cursor.execute("DELETE FROM ocr_interpreted_blocks WHERE document_id IN (SELECT document_id FROM ocr_documents WHERE project_id = %(project_id)s)", {'project_id': settings.project_id}) logger1.debug(db_cursor.query.decode("utf-8")) #Get entries with confidence value over the threshold from settings db_cursor.execute("SELECT document_id, block, string_agg(word_text, ' ') as block_text, avg(confidence) as block_confidence FROM (SELECT * FROM ocr_entries WHERE confidence > %(confidence)s AND document_id IN (SELECT document_id FROM ocr_documents WHERE project_id = %(project_id)s) order by word) b GROUP BY document_id, block, word_line", {'confidence': settings.confidence, 'project_id': settings.project_id}) ocr_blocks = db_cursor.fetchall() logger1.debug(db_cursor.query.decode("utf-8")) #Iterate for dates from_year = 1800 def check_year(block_text): """ Check if block of text is a year """ from_year = 1800 today = date.today() cur_year = today.strftime("%Y") interpreted_value = "" alpha_block = re.sub(r'\W+ ,-/', '', block_text).strip() if len(alpha_block) < 5 or len(re.sub(r'\W+', '', ocr_block['block_text']).strip()) < 5: alpha_block_yr = re.sub(r'\W+', '', alpha_block).strip() if len(alpha_block_yr) == 4: #Could be a year try: for y in range(from_year, int(cur_year)): if int(alpha_block_yr) == y: interpreted_value = "{}".format(alpha_block_yr) return interpreted_value except: continue return None #Iterate blocks for ocr_block in ocr_blocks: logger1.info("Block text: {}".format(ocr_block['block_text'])) #Identify year #This year today = date.today() cur_year = today.strftime("%Y") interpreted_value = "" alpha_block = re.sub(r'\W+ ,-/', '', ocr_block['block_text']).strip() if len(alpha_block) < 5 or len(re.sub(r'\W+', '', ocr_block['block_text']).strip()) < 5: #Too short to parse alpha_block_yr = re.sub(r'\W+', '', alpha_block).strip() if len(alpha_block_yr) == 4: #Year try: for y in range(from_year, int(cur_year)): if int(alpha_block_yr) == y: interpreted_value = "{}".format(alpha_block_yr) db_cursor.execute(insert_q, {'document_id': ocr_block['document_id'], 'block_id': ocr_block['block'], 'data_type': 'Date (year)', 'interpreted_value': interpreted_value, 'verbatim_value': alpha_block, 'data_source': '', 'match_score': 0}) logger1.info('Date (year): {}'.format(interpreted_value)) break except: continue else: continue if alpha_block in settings.collector_strings: #Codeword that indicates this is a collector continue if "No." in alpha_block: #Codeword that indicates this is not a date continue if alpha_block[-1] == "\'": #Ends in quote, so it should be an elevation, not a date elev_text = alpha_block.split(' ') elev_text = elev_text[len(elev_text) - 1].strip() interpreted_value = "{}\'".format(re.findall(r'\d+', elev_text)) db_cursor.execute(insert_q, {'document_id': ocr_block['document_id'], 'block_id': ocr_block['block'], 'data_type': 'elevation', 'interpreted_value': interpreted_value, 'verbatim_value': elev_text, 'data_source': '', 'match_score': 0}) logger1.info('Elevation: {}'.format(interpreted_value)) continue if alpha_block[-1] == "m" or alpha_block[-1] == "masl": #Ends in quote, so it should be an elevation, not a date elev_text = alpha_block.split(' ') elev_text = elev_text[len(elev_text) - 1].strip() interpreted_value = "{}m".format(re.findall(r'\d+', elev_text)) db_cursor.execute(insert_q, {'document_id': ocr_block['document_id'], 'block_id': ocr_block['block'], 'data_type': 'elevation', 'interpreted_value': interpreted_value, 'verbatim_value': elev_text, 'data_source': '', 'match_score': 0}) logger1.info('Elevation: {}'.format(interpreted_value)) continue for i in range(from_year, int(cur_year)): if interpreted_value == "": if str(i) in ocr_block['block_text']: #Check if can directly parse the date for d_format in ['DMY', 'YMD', 'MDY']: if dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) != None: this_date = dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) interpreted_value = this_date.strftime("%Y-%m-%d") verbatim_value = alpha_block continue #Check if there is a month in roman numerals roman_month = {"I": "Jan", "II": "Feb", "III": "Mar", "IV": "Apr", "V": "May", "VI": "Jun", "VII": "Jul", "VIII": "Aug", "IX": "Sep", "X": "Oct", "XI": "Nov", "X11": "Dec"} for m in roman_month: if m in ocr_block['block_text']: #Possible year and month found this_text = ocr_block['block_text'].replace(m, roman_month[m]) alpha_block = re.sub(r'\W+ ,-/', '', this_text).strip() #Try to parse date for d_format in ['DMY', 'YMD', 'MDY']: if dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) != None: this_date = dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) interpreted_value = this_date.strftime("%Y-%m-%d") verbatim_value = alpha_block continue if interpreted_value == "": for i in range(99): if interpreted_value == "": if i < 10: i = "0{}".format(i) else: i = str(i) if "-{}".format(i) in ocr_block['block_text'] or "\'{}".format(i) in ocr_block['block_text'] or " {}".format(i) in ocr_block['block_text'] or "/{}".format(i) in ocr_block['block_text']: #Check if can directly parse the date alpha_block = re.sub(r'\W+ ,-/', '', ocr_block['block_text']).strip() for d_format in ['DMY', 'YMD', 'MDY']: if dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) != None: this_date = dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) if int(this_date.strftime("%Y")) > int(cur_year): #If it interprets year 64 as 2064 this_date_year = int(this_date.strftime("%Y")) - 1000 else: this_date_year = this_date.strftime("%Y") interpreted_value = "{}-{}".format(this_date_year, this_date.strftime("%m-%d")) verbatim_value = alpha_block break #Check if there is a month in roman numerals roman_month = {"I": "Jan", "II": "Feb", "III": "Mar", "IV": "Apr", "V": "May", "VI": "Jun", "VII": "Jul", "VIII": "Aug", "IX": "Sep", "X": "Oct", "XI": "Nov", "X11": "Dec"} for m in roman_month: if m in ocr_block['block_text']: #Possible year and month found this_text = ocr_block['block_text'].replace(m, roman_month[m]) alpha_block = re.sub(r'\W+ ,-/', '', this_text).strip() #Try to parse date for d_format in ['DMY', 'YMD', 'MDY']: if dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) != None: this_date = dateparser.parse(alpha_block, settings={'DATE_ORDER': d_format, 'PREFER_DATES_FROM': 'past', 'PREFER_DAY_OF_MONTH': 'first', 'REQUIRE_PARTS': ['month', 'year']}) if int(this_date.strftime("%Y")) > int(cur_year): #If it interprets year 64 as 2064 this_date_year = int(this_date.strftime("%Y")) - 1000 else: this_date_year = this_date.strftime("%Y") interpreted_value = "{}-{}".format(this_date_year, this_date.strftime("%m-%d")) verbatim_value = alpha_block break if interpreted_value != "": #Remove interpreted values in other fields db_cursor.execute(insert_q, {'document_id': ocr_block['document_id'], 'block_id': ocr_block['block'], 'data_type': 'Date (Y-M-D)', 'interpreted_value': interpreted_value, 'verbatim_value': verbatim_value, 'data_source': '', 'match_score': 0}) logger1.info('Date: {}'.format(interpreted_value)) continue #Get sub-state/province localities from GIS database db_cursor2.execute("SELECT name_2 || ', ' || name_1 || ', ' || name_0 as name, 'locality:sub-state' as name_type, uid FROM gadm2") sub_states = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) #Get state/provinces from GIS database db_cursor2.execute("SELECT name_1 || ', ' || name_0 as name, 'locality:state' as name_type, uid FROM gadm1") states = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) #Get countries from GIS database db_cursor2.execute("SELECT name_0 as name, 'locality:country' as name_type, uid FROM gadm0") countries = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) #Get counties, state db_cursor2.execute("SELECT name_2 || ' Co., ' || name_1 as name, 'locality:county' as name_type, uid FROM gadm2 WHERE name_0 = 'United States' AND type_2 = 'County'") counties = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) counties_list = pd.DataFrame(counties) db_cursor2.execute("SELECT name_2 || ' ' || type_2 || ', ' || name_1 as name, 'locality:county' as name_type, uid FROM gadm2 WHERE name_0 = 'United States'") counties = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) counties_list = counties_list.append(counties, ignore_index=True) db_cursor2.execute("SELECT DISTINCT g.name_2 || ', ' || s.abbreviation as name, 'locality:county' as name_type, g.uid FROM gadm2 g, us_state_abbreviations s WHERE g.name_1 = s.state AND g.name_0 = 'United States'") counties = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) counties_list = counties_list.append(counties, ignore_index=True) db_cursor2.execute("SELECT DISTINCT g.name_2 || ' Co., ' || s.abbreviation as name, 'locality:county' as name_type, g.uid FROM gadm2 g, us_state_abbreviations s WHERE g.name_1 = s.state AND g.name_0 = 'United States'") counties = db_cursor2.fetchall() logger1.debug(db_cursor2.query.decode("utf-8")) counties_list = counties_list.append(counties, ignore_index=True) #Close GIS database connection db_cursor2.close() conn2.close() #Iterate for localities for ocr_block in ocr_blocks: logger1.info("Block text: {}".format(ocr_block['block_text'])) #Countries localities_match =
pd.DataFrame(counties_list)
pandas.DataFrame
import re import numpy as np import pandas as pd from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import ( FunctionTransformer, LabelBinarizer, LabelEncoder, OneHotEncoder, OrdinalEncoder, StandardScaler, ) def transfrom_array_to_df_onehot(pl,nparray,onehot=True,overal_imp=False): col_list=[] col_list_int = pl["preprocessor"].transformers_[0][2] #changes col location #print(col_list_int) ordinal_col=pl["preprocessor"].transformers[1][2] original_col=pl["preprocessor"].transformers[2][2] col_list=col_list_int+ordinal_col if onehot: encoded_col=pl["preprocessor"].transformers_[2][1].named_steps["OneHotEnconding"].get_feature_names_out() #print(len(encoded_col)) new_enconded_list=[] for idx,col in enumerate(original_col): for n_col in encoded_col: #print(idx,col) # print("x"+str(idx)) if "x"+str(idx)+"_" in n_col: # print(col,n_col) new_enconded_list.append(col+"_"+n_col.split("_")[-1]) col_list=col_list+new_enconded_list print(col_list) #print(len(col_list)) else: col_list=col_list+original_col if overal_imp==True: imputed_cols_idx=pl["imputer"].indicator_.features_ imputed_indicator=[col_list[i] for i in imputed_cols_idx] # print(imputed_indicator) # print(len(imputed_indicator)) for imp_col in imputed_indicator: col_list.append(imp_col+"_imput_indicator") df1 =
pd.DataFrame(nparray, columns=col_list)
pandas.DataFrame
import datetime as dt import sqlite3 from os import listdir import numpy as np import pandas as pd import math """ ISSUES 12-15 NCATS_DEMOGRAPHICS and visit details - not even there X Diagnoses ok ACT Labs doesn't show up after "full list" ACT Laboratory Tests no show at all ACT Meds can't drill into X Procedures ok X COVID-19 broken Visit details not there """ """ New version loads totalnum reports into a SQLite3 db from basedir (below) with the name format report_[siteid]_[foo].csv. Columns must be (in order) c_fullname, agg_date, agg_count. (Case insensitive on column names however.) Date format for agg_date (as enforced by the totalnum report script), should be YYYY-MM-DD, but the python parser can handle others. Bigfullnamefile must be a file with all possible paths (e.g., from the concept dimension) with columns: c_fullname, c_name. hlevel and "domain" are inferred. SQLite db uses a totalnum_int column in the totalnums table and puts this for reference in bigfullname. By <NAME>, PhD 05-2020 """ """ Here's how I get the ontology data for the master list: select distinct concept_path, name_char from concept_dimension select distinct c_fullname, c_name, c_visualattributes, c_tooltip from act_covid and c_visualattributes not like '%H%' and c_synonym_cd!='Y' (only the first two columns are needed) To do this for the whole ACT ontology, use my act_master_vw (separate script) and: select distinct c_fullname, c_name, c_hlevel, c_visualattributes, c_tooltip from act_master_vw where c_visualattributes not like '%H%' and c_synonym_cd!='Y' """ # Thanks https://stackoverflow.com/questions/2298339/standard-deviation-for-sqlite class StdevFunc: def __init__(self): self.M = 0.0 self.S = 0.0 self.k = 1 def step(self, value): if value is None: return tM = self.M self.M += (value - tM) / self.k self.S += (value - tM) * (value - self.M) self.k += 1 def finalize(self): if self.k < 3: return None return math.sqrt(self.S / (self.k-2)) basedir = "/Users/jeffklann/HMS/Projects/ACT/totalnum_data/reports" bigfullnamefile = '/Users/jeffklann/HMS/Projects/ACT/totalnum_data/ACT_paths_full.csv' # ACT_covid_paths_v3.csv conn = sqlite3.connect(basedir + '/totalnums.db') conn.create_aggregate("stdev", 1, StdevFunc) """ SQL code that creates views and additional tables on the totalnum db for analytics """ def postProcess(): sql = r""" -- Create a pre-joined view for faster coding drop view if exists totalnums_recent_joined; create view totalnums_recent_joined as select c_hlevel,domain,c_visualattributes,f.fullname_int,c_fullname,c_name,agg_date,agg_count,site from bigfullname f left join totalnums_recent t on f.fullname_int=t.fullname_int; -- Create a view with old column names drop view if exists totalnums_oldcols; create view totalnums_oldcols as SELECT fullname_int, agg_date AS refresh_date, agg_count AS c, site FROM totalnums; drop view if exists totalnums_recent; -- Set up view for most recent totalnums create view totalnums_recent as select t.* from totalnums t inner join (select fullname_int, site, max(agg_date) agg_date from totalnums group by fullname_int, site) x on x.fullname_int=t.fullname_int and x.site=t.site and x.agg_date=t.agg_date; -- Get denominator: any pt in COVID ontology (commented out is any lab test which works better if the site has lab tests) drop view if exists anal_denom; create view anal_denom as select site, agg_count denominator from totalnums_recent where fullname_int in (select fullname_int from bigfullname where c_fullname='\ACT\UMLS_C0031437\SNOMED_3947185011\');--UMLS_C0022885\') -- View total / denominator = pct drop view if exists totalnums_recent_pct; create view totalnums_recent_pct as select fullname_int, agg_date, cast(cast(agg_count as float) / denominator * 100 as int) pct, tot.site from totalnums_recent tot inner join anal_denom d on tot.site=d.site; -- Site outliers: compute avg and stdev. -- I materialize this (rather than a view) because SQLite doesn't have a stdev function. drop table if exists outliers_sites; create table outliers_sites as select agg_count-stdev-average,* from totalnums_recent r inner join (select * from (select fullname_int,avg(agg_count) average, stdev(agg_count) stdev, count(*) num_sites from totalnums_recent r where agg_count>-1 group by fullname_int) where num_sites>1) stat on stat.fullname_int=r.fullname_int; -- Site outliers: compute avg and stdev. -- I materialize this (rather than a view) because SQLite doesn't have a stdev function. drop table if exists outliers_sites_pct; create table outliers_sites_pct as select pct-stdev-average,* from totalnums_recent_pct r inner join (select * from (select fullname_int,avg(pct) average, stdev(pct) stdev, count(*) num_sites from totalnums_recent_pct r where pct>=0 group by fullname_int) where num_sites>1) stat on stat.fullname_int=r.fullname_int; -- Add some fullnames for summary measures and reporting drop table if exists toplevel_fullnames; create table toplevel_fullnames as select fullname_int from bigfullname where c_fullname like '\ACT\Diagnosis\ICD10\%' and c_hlevel=2 and c_visualattributes not like 'L%' union all select fullname_int from bigfullname where c_fullname like '\ACT\Diagnosis\ICD9\V2_2018AA\A18090800\%' and c_hlevel=2 and c_visualattributes not like 'L%' union all select fullname_int from bigfullname where c_fullname like '\ACT\Procedures\CPT4\V2_2018AA\A23576389\%' and c_hlevel=2 and c_visualattributes not like 'L%' union all select fullname_int from bigfullname where c_fullname like '\ACT\Procedures\HCPCS\V2_2018AA\A13475665\%' and c_hlevel=2 and c_visualattributes not like 'L%' union all select fullname_int from bigfullname where c_fullname like '\ACT\Procedures\ICD10\V2_2018AA\A16077350\%' and c_hlevel=2 and c_visualattributes not like 'L%' union all select fullname_int from bigfullname where c_fullname like '\ACT\Lab\LOINC\V2_2018AA\%' and c_hlevel=7 and c_visualattributes not like 'L%' union all select fullname_int from bigfullname where c_fullname like '\ACT\Medications\MedicationsByVaClass\V2_09302018\%' and c_hlevel=5 and c_visualattributes not like 'L%'; create index toplevel_fullnames_f on toplevel_fullnames(fullname_int); """ cur = conn.cursor() cur.executescript(sql) cur.close() def buildDb(): # Build the main totalnums db files = [f for f in listdir(basedir) if ".csv" in f[-4:]] totals = [] # Load the files for f in files: print(basedir + '/' + f) tot = totalnum_load(basedir + '/' + f) totals.append(tot) # 11-20 - support both utf-8 and cp1252 print(bigfullnamefile) bigfullname = None try: bigfullname = pd.read_csv(bigfullnamefile,index_col='c_fullname',delimiter=',',dtype='str') except UnicodeDecodeError: bigfullname =
pd.read_csv(bigfullnamefile,index_col='c_fullname',delimiter=',',dtype='str',encoding='cp1252')
pandas.read_csv
import pytest import os import pandas as pd from lkmltools.bq_writer import BqWriter from google.cloud.storage.blob import Blob from google.cloud.bigquery.job import WriteDisposition from google.cloud.bigquery.job import LoadJobConfig def test_write_to_csv(): writer = BqWriter() df = pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}) target_bucket_name = "tmp_bucket" bucket_folder = "tmp_bucket" expected_filename = ( target_bucket_name + os.sep + bucket_folder + os.sep + BqWriter.FILENAME ) if os.path.exists(expected_filename): os.remove(expected_filename) filename = writer._write_to_csv( df, target_bucket_name, bucket_folder, local_filename=None ) assert ( filename == target_bucket_name + os.sep + bucket_folder + os.sep + BqWriter.FILENAME ) assert os.path.exists(filename) if os.path.exists(expected_filename): os.remove(expected_filename) def test_write_to_csv2(): writer = BqWriter() df =
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]})
pandas.DataFrame
# multivariate multihead multistep from keras.layers import Flatten from keras.layers import ConvLSTM2D from keras.layers.merge import concatenate from numpy import array from numpy import hstack from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import Reshape import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import os import gc import joblib import functions as func from sklearn.model_selection import RandomizedSearchCV from keras.utils import to_categorical from sklearn.pipeline import Pipeline from sklearn.metrics import make_scorer from sklearn.preprocessing import StandardScaler import time from sklearn.metrics import fbeta_score from sklearn.metrics import r2_score from keras.models import Sequential from keras.layers import LSTM from keras.layers import RepeatVector from keras.layers import TimeDistributed from keras.wrappers.scikit_learn import KerasClassifier from keras.wrappers.scikit_learn import KerasRegressor from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.optimizers import Adam from keras.constraints import maxnorm from keras.layers import Dropout from sklearn.linear_model import LogisticRegression from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import RandomForestRegressor from sklearn.multioutput import MultiOutputRegressor def R2_measure(y_true, y_pred): return r2_score(y_true, y_pred) def f2_measure(y_true, y_pred): return fbeta_score(y_true, y_pred, labels=[1, 2], beta=2, average='micro') def split_sequences(data, n_steps, n_step_out): data = data.values X, y = list(), list() for i in range(len(data)): end_ix = i + n_steps*6 if end_ix > len(data): break Kx = np.empty((1, 12)) for index in np.arange(i, i+(n_steps*6), step=6, dtype=int): eachhour = index + 6 if eachhour > len(data) or i+(n_steps*6) > len(data): break a = data[index: eachhour, : (-1*n_step_out)] hourlymean_x = np.round(np.mean(a, axis=0), decimals=2) hourlymean_y = data[eachhour-1, (-1*n_step_out):] hourlymean_x = hourlymean_x.reshape((1, hourlymean_x.shape[0])) if index != i: Kx = np.append(Kx, hourlymean_x, axis=0) else: Kx = hourlymean_x X.append(Kx) y.append(hourlymean_y) # print(np.array(X).shape) return np.array(X), np.array(y) def temporal_horizon(df, pd_steps, target): for pd_steps in [1, 3, 6, 12, 24, 36, 48, 60, 72]: pd_steps = pd_steps * 6 target_values = df[[target]] target_values = target_values.drop( target_values.index[0: pd_steps], axis=0) target_values.index = np.arange(0, len(target_values[target])) df['Target_'+target+'_t'+str(pd_steps)] = target_values df = df.drop(df.index[len(df.index)-(72*6): len(df.index)], axis=0) return df def create_reg_LSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): model = Sequential() model.add(Reshape(target_shape=( n_steps_in*totalsets, n_features), input_shape=(n_steps_in*n_features*totalsets,))) # print('n_Steps: ' + str(n_steps_in*totalsets) + # 'n_features: '+str(n_features)) model.add(LSTM(neurons, activation=activation, return_sequences=True, kernel_constraint=maxnorm(weight_constraint))) model.add(Dropout(dropout_rate)) # , return_sequences=True)) model.add(LSTM(neurons, activation=activation)) # model.add(Dense(neurons, activation=activation)) # Adding new layer model.add(Dense(n_steps_out)) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) print('model: ' + str(model)) return model def create_reg_NN_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): model = Sequential() model.add(Dense(neurons, activation=activation, kernel_constraint=maxnorm(weight_constraint), input_shape=(n_steps_in*n_features*totalsets,))) model.add(Dropout(dropout_rate)) model.add(Dense(neurons, activation=activation)) model.add(Dense(neurons, activation=activation)) # adding new layer model.add(Dense(n_steps_out)) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) print('model: ' + str(model)) return model def create_reg_endecodeLSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): model = Sequential() model.add(Reshape(target_shape=( n_steps_in*totalsets, n_features), input_shape=(n_steps_in*n_features*totalsets,))) model.add(LSTM(neurons, activation=activation, input_shape=(n_steps_in*totalsets, n_features))) model.add(RepeatVector(1)) model.add(LSTM(neurons, activation=activation, return_sequences=True)) model.add(TimeDistributed(Dense(n_steps_out))) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) return model def create_reg_CNNenLSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): model = Sequential() model.add(Reshape(target_shape=( n_steps_in*totalsets, n_features), input_shape=(n_steps_in*n_features*totalsets,))) model.add(Conv1D(64, 1, activation=activation, input_shape=(n_steps_in*totalsets, n_features))) model.add(MaxPooling1D()) model.add(Flatten()) model.add(RepeatVector(1)) model.add(LSTM(neurons, activation=activation, return_sequences=True)) model.add(TimeDistributed(Dense(100, activation=activation))) model.add(TimeDistributed(Dense(n_steps_out))) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) return model def create_reg_ConvLSTM_model(input_dim, n_steps_in, n_features, n_steps_out, neurons=1, learn_rate=0.01, dropout_rate=0.0, weight_constraint=0, activation='sigmoid'): # reshape from [samples, timesteps] into [samples, timesteps, rows, columns, features(channels)] model = Sequential() model.add(Reshape(target_shape=( n_steps_in, totalsets, n_features, 1), input_shape=(n_steps_in*n_features*totalsets,))) model.add(ConvLSTM2D(64, (1, 3), activation=activation, input_shape=(n_steps_in, totalsets, n_features, 1))) model.add(Flatten()) model.add(RepeatVector(1)) model.add(LSTM(neurons, activation=activation, return_sequences=True)) model.add(TimeDistributed(Dense(100, activation=activation))) model.add(TimeDistributed(Dense(n_steps_out))) opt = Adam(lr=learn_rate) model.compile(loss='mse', optimizer=opt) return model def algofind(model_name, input_dim, cat, n_steps_in, n_features, n_steps_out): if cat == 0: if model_name == 'endecodeLSTM': model = KerasRegressor(build_fn=create_reg_endecodeLSTM_model, input_dim=input_dim, epochs=1, batch_size=64, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'LSTM': model = KerasRegressor(build_fn=create_reg_LSTM_model, input_dim=input_dim, epochs=1, batch_size=64, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'CNNLSTM': model = KerasRegressor(build_fn=create_reg_CNNenLSTM_model, input_dim=input_dim, epochs=1, batch_size=64, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'ConvEnLSTM': model = KerasRegressor(build_fn=create_reg_ConvLSTM_model, input_dim=input_dim, epochs=1, batch_size=64, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'NN': model = KerasRegressor(build_fn=create_reg_NN_model, input_dim=input_dim, epochs=1, batch_size=64, n_steps_in=int(n_steps_in), n_features=int(n_features), n_steps_out=int(n_steps_out), verbose=0) elif model_name == 'DT': model = MultiOutputRegressor(DecisionTreeRegressor()) elif model_name == 'RF': model = MultiOutputRegressor(RandomForestRegressor()) elif model_name == 'LR': model = Pipeline( [('poly', MultiOutputRegressor(PolynomialFeatures()))]) # ,('fit', MultiOutputRegressor(Ridge()))]) elif model_name == 'SVC': model = MultiOutputRegressor(SVR()) return model totalsets = 1 def main(): method = 'OrgData' # , 'DOcategory', 'pHcategory'] # ysi_blue_green_algae (has negative values for leavon... what does negative mean!?) # , 'dissolved_oxygen', 'ph'] targets = ['dissolved_oxygen', 'ph'] # 'ysi_blue_green_algae' models = ['LSTM'] path = 'Sondes_data/train_Summer/' files = [f for f in os.listdir(path) if f.endswith( ".csv") and f.startswith('leavon')] # leavon for model_name in models: for target in targets: print(target) if target.find('category') > 0: cat = 1 directory = 'Results/bookThree/output_Cat_' + \ model_name+'/oversampling_cv_models/' data = {'target_names': 'target_names', 'method_names': 'method_names', 'window_nuggets': 'window_nuggets', 'temporalhorizons': 'temporalhorizons', 'CV': 'CV', 'file_names': 'file_names', 'std_test_score': 'std_test_score', 'mean_test_score': 'mean_test_score', 'params': 'params', 'bestscore': 'bestscore', 'F1_0': 'F1_0', 'F1_1': 'F1_1', 'P_0': 'P_0', 'P_1': 'P_1', 'R_0': 'R_0', 'R_1': 'R_1', 'acc0_1': 'acc0_1', 'F1_0_1': 'F1_0_1', 'F1_all': 'F1_all', 'fbeta': 'fbeta', 'imfeatures': 'imfeatures', 'configs': 'configs', 'scores': 'scores'} else: cat = 0 directory = 'Results/bookThree/output_Reg_' + \ model_name+'/oversampling_cv_models/' data = {'target_names': 'target_names', 'method_names': 'method_names', 'window_nuggets': 'window_nuggets', 'temporalhorizons': 'temporalhorizons', 'CV': 'CV', 'file_names': 'file_names', 'std_test_score': 'std_test_score', 'mean_test_score': 'mean_test_score', 'params': 'params', 'bestscore': 'bestscore', 'mape': 'mape', 'me': 'me', 'mae': 'mae', 'mse': 'mse', 'rmse': 'rmse', 'R2': 'R2', 'imfeatures': 'imfeatures', 'configs': 'configs', 'scores': 'scores'} if not os.path.exists(directory): os.makedirs(directory) for file in files: result_filename = 'results_'+target + \ '_'+file+'_'+str(time.time())+'.csv' dfheader = pd.DataFrame(data=data, index=[0]) dfheader.to_csv(directory+result_filename, index=False) PrH_index = 0 for n_steps_in in [36, 48, 60]: print(model_name) print(str(n_steps_in)) dataset =
pd.read_csv(path+file)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 5 10:15:25 2021 @author: lenakilian """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import geopandas as gpd from scipy.stats import pearsonr ghg_year = 2015 # 2017 dict_cat = 'category_8' # replacement for new_cats wd = r'/Users/lenakilian/Documents/Ausbildung/UoLeeds/PhD/Analysis/' years = list(range(2007, 2018, 2)) geog = 'MSOA' lookup = pd.read_csv(wd + 'data/raw/Geography/Conversion_Lookups/UK_full_lookup_2001_to_2011.csv')\ [['MSOA11CD', 'MSOA01CD', 'RGN11NM']].drop_duplicates() lookup = lookup.loc[(lookup['RGN11NM'] != 'Northern Ireland') & (lookup['RGN11NM'] != 'Wales') & (lookup['RGN11NM'] != 'Scotland')] lookup['London'] = False; lookup.loc[lookup['RGN11NM'] =='London', 'London'] = True emissions = {} for year in [ghg_year]: year_difference = years[1] - years[0] year_str = str(year) + '-' + str(year + year_difference - 1) emissions[year] = pd.read_csv(wd + 'data/processed/GHG_Estimates/' + geog + '_' + year_str + '.csv', index_col=0) # income data income = {} income[2017] = pd.read_csv(wd + 'data/raw/Income_Data/equivalised_income_2017-18.csv', header=4, encoding='latin1') income[2015] = pd.read_csv(wd + 'data/raw/Income_Data/equivalised_income_2015-16.csv', skiprows=5, header=None, encoding='latin1') income[2015].columns = income[2017].columns # import household numbers to adjust income temp = pd.read_csv(wd + 'data/raw/Geography/Census_Populations/no_households_england.csv').set_index('geography code')[['Household Composition: All categories: Household composition; measures: Value']] temp = temp.join(pd.read_csv(wd + 'data/raw/Geography/Census_Populations/census2011_pop_england_wales_msoa.csv').set_index('MSOA11CD')) for year in [2015, 2017]: income[year] = income[year].set_index('MSOA code')[['Net annual income after housing costs']].join(temp) income[year].columns = ['hhld_income', 'no_hhlds', 'pop'] income[year]['hhld_income'] = pd.to_numeric(income[year]['hhld_income'].astype(str).str.replace(',', ''), errors='coerce') income[year]['income'] = income[year]['hhld_income'] * income[year]['no_hhlds'] / income[year]['pop'] / (365/7) income[year] = income[year].dropna(how='all') # import census data # age age = pd.read_csv(wd + 'data/raw/Census/age_england_wales_msoa.csv', index_col=0, header=7)\ .apply(lambda x: pd.to_numeric(x, errors='coerce')).dropna(how='all') age.index = [str(x).split(' :')[0] for x in age.index] # disability disability = pd.read_csv(wd + 'data/raw/Census/DC3201EW - Long-term health problem or disability.csv', index_col=0, header=10)\ .apply(lambda x: pd.to_numeric(x, errors='coerce')).dropna(how='all').sum(axis=0, level=0).apply(lambda x: x/2) disability.index = [str(x).split(' :')[0] for x in disability.index] # ethnicity ethnicity = pd.read_excel(wd + 'data/raw/Census/KS201EW - Ethnic group.xlsx', index_col=0, header=8)\ .apply(lambda x: pd.to_numeric(x, errors='coerce')).dropna(how='all') ethnicity.index = [str(x).split(' :')[0] for x in ethnicity.index] # workplace workplace = pd.read_csv(wd + 'data/raw/Census/QS702EW - Distance to work.csv', index_col=0, header=8)\ .apply(lambda x: pd.to_numeric(x.astype(str).str.replace(',', ''), errors='coerce')).dropna(how='any') workplace.index = [str(x).split(' :')[0] for x in workplace.index] workplace.columns = ['pop', 'total_workplace_dist', 'avg_workplace_dist'] # combine all census data age = age[['All usual residents']]\ .join(pd.DataFrame(age.loc[:, 'Age 65 to 74':'Age 90 and over'].sum(axis=1))).rename(columns={0:'pop_65+'})\ .join(pd.DataFrame(age.loc[:, 'Age 0 to 4':'Age 10 to 14'].sum(axis=1))).rename(columns={0:'pop_14-'}) age['pop_65+_pct'] = age['pop_65+'] / age['All usual residents'] * 100 age['pop_14-_pct'] = age['pop_14-'] / age['All usual residents'] * 100 disability['not_lim_pct'] = disability['Day-to-day activities not limited'] / disability['All categories: Long-term health problem or disability'] * 100 disability = disability[['Day-to-day activities not limited', 'not_lim_pct']].rename(columns = {'Day-to-day activities not limited':'not_lim'}) disability['lim_pct'] = 100 - disability['not_lim_pct'] ethnicity['bame_pct'] = ethnicity.drop('White', axis=1).sum(1) / ethnicity.sum(1) * 100 census_data = age[['pop_65+_pct', 'pop_65+', 'pop_14-_pct', 'pop_14-']].join(disability).join(ethnicity[['bame_pct']])\ .join(workplace[['total_workplace_dist', 'avg_workplace_dist']], how='left') # add transport access ptal_2015 = gpd.read_file(wd + 'data/processed/GWR_data/gwr_data_london_' + str(ghg_year) + '.shp') ptal_2015 = ptal_2015.set_index('index')[['AI2015', 'PTAL2015', 'AI2015_ln']] # combine all with emissions data cat_dict =
pd.read_excel(wd + '/data/processed/LCFS/Meta/lcfs_desc_anne&john.xlsx')
pandas.read_excel
# -*- coding: utf-8 -*- """ This library contains all functions needed to produce the spatial files of a LARSIM raster model (tgb.dat, utgb.dat, profile.dat). It uses functions from the TATOO core library. Author: <NAME> Chair for Hydrology and River Basin Management Technical University of Munich Requires the following ArcGIS licenses: - Conversion Toolbox - Spatial Analyst System requirements: - Processor: no special requirements tested with Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz - Memory/RAM: depending on the size of the DEM to be processed tested with 32,0 GB RAM - Python IDE for Python 3 - ArcGIS Pro 2.5 Version: v1.0.0, 2021-05-02 """ __author__ = '<NAME>' __copyright__ = 'Copyright 2021' __credits__ = '' __license__ = 'CC BY-NC-ND 3.0 DE' __version__ = '1.0.0' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Production' # load modules import os import sys import copy import arcpy import numpy.matlib import numpy.lib.recfunctions import numpy as np import pandas as pd import tatoo_common as tc # check out ArcGIS spatial analyst license class LicenseError(Exception): pass try: if arcpy.CheckExtension("Spatial") == "Available": arcpy.CheckOutExtension("Spatial") print ("Checked out \"Spatial\" Extension") else: raise LicenseError except LicenseError: print("Spatial Analyst license is unavailable") except: print(arcpy.GetMessages(2)) # allow overwriting the outputs arcpy.env.overwriteOutput = True # %% function to preprocess a high-resolution digital elevation model def preprocess_dem(path_dem_hr, path_fnw, cellsz, h_burn, path_gdb_out, name_dem_mr_f='dem_mr_f', print_out=False): """ Aggregates a high-resolution digital elevation raster, covnert river network to model resolution raster, burns flow network raster into digital elevation raster and fills sinks of the resulting raster. JM 2021 Arguments: ----------- path_dem_hr: str path of the high-resolution digital elevation raster (e.g., 'c:\model_creation.gdb\dem_hr') path_fnw: str path of the flow network feature class or shape file (e.g., 'c:\fnw.shp') cellsz: integer edge length of the resulting model cells in [m] (e.g., 100) h_burn: integer depth of river network burning in digital elevation model path_gdb_out: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb') name_dem_mr_f: str name of the filled model-resolution digital elevation raster(e.g., 'dem_mr_f') print_out: boolean (optional, default: False) true if workprogress shall be print to command line (default: false) Returns: ----------- Saves the following files: - filled model-resolution digital elevation raster - model-resolution raster representation of the flow network """ # arcpy field names (ONLY CHANGE IF ARCPY FUNCTION CHANGES FORCE YOU!) f_oid = 'OBJECTID' # paths for intermediates path_dem_mr_sr = path_gdb_out + 'dem_mr_sr' path_dem_mr = path_gdb_out + 'dem_mr' path_fnw_mr = path_gdb_out + 'fnw_mr' path_dem_mr_cfnw = path_gdb_out + 'dem_mr_cfnw' # paths for outputs path_dem_mr_f = path_gdb_out + name_dem_mr_f # Aggregate high resolution digital elevation model to model resolution if print_out: print('...aggregate high resolution digital elevation model...') # create snap raster at origin of coordinate system dem_mr_sr = arcpy.sa.CreateConstantRaster( 1, 'INTEGER', cellsz, arcpy.Extent( 0.5 * cellsz, 0.5 * cellsz, cellsz + 0.5 * cellsz, cellsz + 0.5 * cellsz)) dem_mr_sr.save(path_dem_mr_sr) # save default and set environments default_env_snr = arcpy.env.snapRaster default_env_ext = arcpy.env.extent arcpy.env.snapRaster = path_dem_mr_sr arcpy.env.extent = path_dem_hr # aggregate high resolution DEM to model resolution if arcpy.Exists(path_dem_mr): arcpy.management.Delete(path_dem_mr) dem_mr = arcpy.sa.Aggregate(path_dem_hr, cellsz, 'MEAN', 'EXPAND', 'DATA') dem_mr.save(path_dem_mr) # cut rivers if print_out: print('...cut rivers...') # convert polylines to raster in model grid size arcpy.conversion.PolylineToRaster(path_fnw, f_oid, path_fnw_mr, 'MAXIMUM_LENGTH', 'NONE', path_dem_mr) # decrease model resolution elevation raster values at flow network raster cells dem_mr_cfnw = arcpy.sa.Con(arcpy.sa.IsNull(path_fnw_mr), path_dem_mr, dem_mr - h_burn) dem_mr_cfnw.save(path_dem_mr_cfnw) # reset environment parameters arcpy.env.snapRaster = default_env_snr arcpy.env.extent = default_env_ext # fill cut model resolution digital elevation raster sinks if print_out: print('...fill cut model resolution digital elevation raster sinks...') # fill sinks dem_mr_cfnw_f = arcpy.sa.Fill(path_dem_mr_cfnw, '') dem_mr_cfnw_f.save(path_dem_mr_f) # %% function to calculate the model watershed def calc_watershed(path_dem_mr_cfnw_f, path_pp, path_gdb_out, name_fd_mr='fd_mr', name_fd_mr_corr='fd_mr_corr', name_fa_mr='fa_mr', name_ws_s='ws_s', initial=True, name_fd_p_corr='fd_p_corr', path_fd_p_corr='', print_out=False): """ Creates the model watershed from a filled digital elevation raster using pour points. The correction point feature class is necessary for the initial calculation of the model watershed calculation. JM 2021 Arguments: ----------- path_dem_mr_cfnw_f: str path of the filled model-resolution digital elevation raster (e.g., 'c:\model_creation.gdb\dem_mr_cfnw_f') path_pp: str path of the pour point feature class (e.g., 'c:\model_creation.gdb\pp') path_gdb_out: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb') name_fd_mr: str name of the output model resolution flow direction raster (e.g., 'fd_mr') name_fd_mr: str name of the corrected output model resolution flow direction raster (e.g., 'fd_mr_corr') name_fa_mr: str name of the output model resolution flow accumulation raster (e.g., 'fa_mr') name_ws_s: str name of the output watershed polygon feature class (e.g., 'ws_s') initial: boolean (optional) true if it is the initial run to calculate the model watershed name_fd_p_corr: str (optional) name of the output flow direction correction point feature class (e.g., 'fd_p_corr') path_fd_p_corr: str (optional) path of the output flow direction correction point feature class needed for case initial=False (e.g., 'fd_p_corr') print_out: boolean (optional, default: False) true if workprogress shall be print to command line Returns: ----------- Saves the following outputs: - model resolution flow direction raster - watershed polygon feature class - flow direction correction point feature class (optional) """ # check inputs if not initial and not path_fd_p_corr: sys.exit('With initial=False path_fd_p_corr must not be an empty string!') # define internal field names f_pp = 'pp' f_pp_ws = 'ModelWatershed' # arcpy field names (ONLY CHANGE IF ARCPY FUNCTION CHANGES FORCE YOU!) f_oid = 'OBJECTID' f_val = 'Value' f_VAL = 'VALUE' # feature class names from input name_pp = os.path.split(path_pp)[1] # define paths of intermediates in working geodatabase path_ppc = path_gdb_out + 'ppc' path_spp = path_gdb_out + 'spp' path_ws_r = path_gdb_out + 'ws_r' path_ws_sr = path_gdb_out + 'ws_sr' path_ws_s_sj = path_gdb_out + 'ws_s_sj' if not initial: path_fd_r_corr = path_gdb_out + 'fd_r_corr' # paths for outputs path_fd_mr = path_gdb_out + name_fd_mr path_fd_mr_corr = path_gdb_out + name_fd_mr_corr path_fa_mr = path_gdb_out + name_fa_mr path_ws_s = path_gdb_out + name_ws_s if initial: path_fd_p_corr = path_gdb_out + name_fd_p_corr # calculate flow direction if print_out: print('...calculate flow direction raster...') if arcpy.Exists(path_fd_mr): arcpy.management.Delete(path_fd_mr) fd_mr = arcpy.sa.FlowDirection(path_dem_mr_cfnw_f, 'NORMAL', '', 'D8') fd_mr.save(path_fd_mr) # if run is initial, create correction flow direction point feature class # and copy flow direction raster. field_fd_corr = 'D8' if initial: # create flow direction correction feature class and add flow direction # binary field sr = arcpy.Describe(path_pp).spatialReference arcpy.CreateFeatureclass_management(path_gdb_out, name_fd_p_corr, 'POINT', '', 'DISABLED', 'DISABLED', sr, '', '0', '0', '0', '') arcpy.AddField_management(path_fd_p_corr, field_fd_corr, 'SHORT', '', '', '', '', 'NULLABLE', 'NON_REQUIRED', '') if arcpy.Exists(path_fd_mr_corr): arcpy.management.Delete(path_fd_mr_corr) arcpy.CopyRaster_management(path_fd_mr, path_fd_mr_corr, '', '', '255', 'NONE', 'NONE', '8_BIT_UNSIGNED', 'NONE', 'NONE', 'GRID', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') # else, correct flow direction raster using correction point features else: # get number of existing flow direction correction point features fd_p_corr_descr = arcpy.Describe(path_fd_p_corr) fd_p_nb = fd_p_corr_descr.extent.XMin # if there are existing point features (nb!=0), do correction if not np.isnan(fd_p_nb): # set environments default_env_snr = arcpy.env.snapRaster default_env_csz = arcpy.env.cellSize arcpy.env.snapRaster = path_fd_mr arcpy.env.cellSize = path_fd_mr # convert flow direction correction points to raster arcpy.PointToRaster_conversion(path_fd_p_corr, field_fd_corr, path_fd_r_corr, 'MOST_FREQUENT', 'NONE', path_fd_mr) # change environments default_env_ext = arcpy.env.extent default_env_mask = arcpy.env.mask arcpy.env.extent = 'MAXOF' arcpy.env.mask = path_fd_mr # replace flow direction values, where correction points are defined fd_mr_corr = arcpy.ia.Con(arcpy.ia.IsNull(path_fd_r_corr), path_fd_mr, path_fd_r_corr) fd_mr_corr.save(path_fd_mr_corr) # reset environments arcpy.env.snapRaster = default_env_snr arcpy.env.cellSize = default_env_csz arcpy.env.extent = default_env_ext arcpy.env.mask = default_env_mask # else, copy uncorrected flow direction raster else: print(('INFO: Flow direction correction point feature' 'class is empty. Original flow direction is used instead.')) if arcpy.Exists(path_fd_mr_corr): arcpy.management.Delete(path_fd_mr_corr) arcpy.CopyRaster_management(path_fd_mr, path_fd_mr_corr, '', '', '255', 'NONE', 'NONE', '8_BIT_UNSIGNED', 'NONE', 'NONE', 'GRID', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') if print_out: print('...calculate flow accumulation...') # calculate flow accumulation raster if arcpy.Exists(path_fa_mr): arcpy.management.Delete(path_fa_mr) fa_mr = arcpy.sa.FlowAccumulation(path_fd_mr_corr, '', 'DOUBLE', 'D8') fa_mr.save(path_fa_mr) # copy pour point feature class if arcpy.Exists(path_ppc): arcpy.management.Delete(path_ppc) arcpy.management.CopyFeatures(path_pp, path_ppc, '', '', '', '') # add adn calculate field using the object ID arcpy.AddField_management(path_ppc, f_pp, 'LONG', '', '', '', '', 'NULLABLE', 'NON_REQUIRED', '') arcpy.CalculateField_management(path_ppc, f_pp, '!{0}!'.format(f_oid), 'PYTHON3', '') # snap pour points to flow accumulation raster if arcpy.Exists(path_spp): arcpy.management.Delete(path_spp) spp = arcpy.sa.SnapPourPoint(path_ppc, fa_mr, '40', f_pp) spp.save(path_spp) if print_out: print('...calculate watershed...') # calculate watershed raster if arcpy.Exists(path_ws_r): arcpy.management.Delete(path_ws_r) ws_r = arcpy.sa.Watershed(path_fd_mr_corr, spp, f_val) ws_r.save(path_ws_r) # set environments arcpy.env.outputZFlag = 'Same As Input' arcpy.env.outputMFlag = 'Same As Input' # convert watershed raster to polygon features if arcpy.Exists(path_ws_sr): arcpy.management.Delete(path_ws_sr) arcpy.RasterToPolygon_conversion(path_ws_r, path_ws_sr, 'NO_SIMPLIFY', f_VAL, 'SINGLE_OUTER_PART', '') if print_out: print('...select model watersheds...') pp_fieldnames = [field.name for field in arcpy.ListFields(path_pp)] # if field exists, that identifies polygon as model watershed, delete watersheds # with the fields' value >= 1 if f_pp_ws in pp_fieldnames: # join created watershed polygons to pour points arcpy.SpatialJoin_analysis( path_ws_sr, path_pp, path_ws_s_sj, 'JOIN_ONE_TO_ONE', 'KEEP_ALL', "{0} '{0}' true true false 2 Short 0 0,First,#,{1},{0},-1,-1".format( f_pp_ws, name_pp), 'CONTAINS', '', '') # select and copy model watersheds marked with a positive integer sel_sql = f_pp_ws + ' >= 1' path_ws_s_sj_sel = arcpy.management.SelectLayerByAttribute( path_ws_s_sj, 'NEW_SELECTION', sel_sql) if arcpy.Exists(path_ws_s): arcpy.management.Delete(path_ws_s) arcpy.management.CopyFeatures(path_ws_s_sj_sel, path_ws_s, '', '', '', '') else: if arcpy.Exists(path_ws_s): arcpy.management.Delete(path_ws_s) arcpy.management.CopyFeatures(path_ws_sr, path_ws_s, '', '', '', '') # %% function to calculate the model cell network def calc_model_network(path_ws_s, path_fd_mr, path_fa_mr, path_gdb_out, path_files_out, name_fl_mr='fl_mr', name_tgb_p='tgb_p', name_mnw='mwn', print_out=False): """ Creates a point feature class representing the center of model cells as well as a polyline feature class representing the model network between the model cells (upstream-downstream-relation). JM 2021 Arguments: ----------- path_ws_s: str path of the output watershed polygon feature class (e.g., 'ws_s') path_fd_mr: str path of the output model resolution flow direction raster (e.g., 'fd_mr') path_fa_mr: str path of the output model resolution flow accumulation raster (e.g., 'fa_mr') path_gdb_out: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb') path_files_out: str storage path for intermediate data (e.g., 'c:\tmp_model_data\') name_fl_mr: str name of the extracted output model resolution flow length raster (e.g., 'fl_mr_e') name_tgb_p: str = (optional) name of the output model cell point feature class (e.g., 'tgb_p') name_tgbd_p: str = (optional) name of the output downstream model cell point feature class (e.g., 'tgbd_p') name_mnw: str = (optional) name of the output model network polyline feature class (e.g., 'mwn') print_out: boolean (optional) true if workprogress shall be print to command line Returns: ----------- df_data_tgb_p: pd.DataFrame - tgb: model element ID number (int) - tgb_down: downstream model element ID number (int) - tgb_type: model element type (str) - tgb_dtgb: real representative model element ID for dummy elements (int) - tgb_a: inflowing catchment area of each model element [km²] - x, y: x- and y-coordinates of element center [m] df_tgb_up: pd.DataFrame tgb_up1, tgb_up2: upstream model element ID numbers (int) Saves the following outputs: - extracted model resolution flow length raster - model cell point feature class - downstream model cell point feature class - model network polyline feature class """ # define internal variables def_val_dtgb = -1 # define internal field names f_tgb = 'tgb' f_tgb_down = 'tgb_down' f_tgb_type = 'tgb_type' f_tgb_dtgb = 'tgb_dtgb' f_tgb_a = 'tgb_a' f_x = 'x' f_y = 'y' f_nrflv = 'nrflv' f_tgb_up1 = 'up1' f_tgb_up2 = 'up2' # define key-words to identify element types str_headw = 'headwater' str_routing = 'routing' str_dummy = 'dummy' # arcpy field names (ONLY CHANGE IF ARCPY FUNCTION CHANGES FORCE YOU!) f_p_x = 'POINT_X' f_p_y = 'POINT_Y' # define paths of intermediates in working geodatabase path_fd_mr_e = path_gdb_out + 'fd_mr_e' path_fa_mr_e = path_gdb_out + 'fa_mr_e' name_tgb_down_p = 'tgb_down_p' # paths for outputs path_fl_mr_e = path_gdb_out + name_fl_mr path_mnw = path_gdb_out + name_mnw # create real representative index list for dummy subcatchments def real_repr_idx(df_tgb, str_dummy, print_out=False): if print_out: print(('...create representative index list for ' 'dummy subcatchments tgb_dtgb...')) # Preallocate arrays ser_tgb_dtgb = pd.Series(np.ones(df_tgb.shape[0]) * def_val_dtgb, index=df_tgb.index, name=f_tgb_dtgb).astype(np.int) # Iterate over all final index values for tgb in df_tgb.index: # if cell is a dummy, find the connected real cell if df_tgb.at[tgb, f_tgb_type] == str_dummy: # follow dummy cascade downwards until real cell and set index mm = copy.deepcopy(tgb) while df_tgb.at[mm, f_tgb_type] == str_dummy: mm = df_tgb.at[mm, f_tgb_down] ser_tgb_dtgb.at[tgb] = mm return ser_tgb_dtgb # calculations # (de-)activate additional debugging command line output debug = False # (False/True) # set workspace arcpy.env.workspace = path_gdb_out # clip flow direction raster to watershed polygon if print_out: print('...clip flow direction raster...') if arcpy.Exists(path_fd_mr_e): arcpy.management.Delete(path_fd_mr_e) fd_mr_e = arcpy.sa.ExtractByMask(path_fd_mr, path_ws_s) fd_mr_e.save(path_fd_mr_e) # clip flow accumulation raster to watershed polygon if print_out: print('...clip flow accumulation raster...') if arcpy.Exists(path_fa_mr_e): arcpy.management.Delete(path_fa_mr_e) fa_mr_e = arcpy.sa.ExtractByMask(path_fa_mr, path_ws_s) fa_mr_e.save(path_fa_mr_e) # calculate downstream flow length if print_out: print('...calculate flow length...') if arcpy.Exists(path_fl_mr_e): arcpy.management.Delete(path_fl_mr_e) fl_mr_e = arcpy.sa.FlowLength(fd_mr_e, 'DOWNSTREAM', '') fl_mr_e.save(path_fl_mr_e) if print_out: print('...import flow rasters...') # define paths of intermediates in working folder path_fd_c_tif = path_files_out + 'fd_c.tif' path_fa_c_tif = path_files_out + 'fa_c.tif' path_fl_c_tif = path_files_out + 'fl_c.tif' # import flow direction, accumulation and length as numpy rasters fd, ncols, nrows, cellsz, xll, yll, ctrl_tif_export = tc.fdal_raster_to_numpy( path_fd_mr_e, 'fd', path_fd_c_tif, True) fa, _, _, _, _, _, _ = tc.fdal_raster_to_numpy( path_fa_mr_e, 'fa', path_fa_c_tif, False) fl, _, _, _, _, _, _ = tc.fdal_raster_to_numpy( path_fl_mr_e, 'fl', path_fl_c_tif, True) # add a NaN boundary to all gis input data sets empty_row = np.zeros((1, ncols)) * np.nan empty_col = np.zeros((nrows + 2, 1)) * np.nan fa = np.concatenate((empty_row, fa, empty_row), axis=0) fa = np.concatenate((empty_col, fa, empty_col), axis=1) fd = np.concatenate((empty_row, fd, empty_row), axis=0) fd = np.concatenate((empty_col, fd, empty_col), axis=1) fl = np.concatenate((empty_row, fl, empty_row), axis=0) fl = np.concatenate((empty_col, fl, empty_col), axis=1) # adjust gis parameters for new sizes ncols = ncols + 2 nrows = nrows + 2 xll = xll - cellsz yll = yll - cellsz # set default data type for calculations for efficient RAM usage if ncols * nrows <= 32767: np_type = np.int32 else: np_type = np.int64 # get indices and number of not-nan-data gis_notnans = np.nonzero(~np.isnan(fd)) gis_notnans_x = gis_notnans[0] gis_notnans_y = gis_notnans[1] gis_notnans_count = gis_notnans_x.shape[0] # create lookup table connecting flow direction int-values to array indices fd_lu = np.array([[ 1, 0, 1], [ 2, 1, 1], [ 4, 1, 0], [ 8, 1,-1], [ 16, 0,-1], [ 32,-1,-1], [ 64,-1, 0], [128,-1, 1]]) # pre-allocate flow direction arrays fd_xd = np.empty((gis_notnans_count, 1), dtype=np_type) fd_yd = np.empty((gis_notnans_count, 1), dtype=np_type) # iterate flow direction int-values for ii in range(fd_lu.shape[0]): # get indices of not-nan flow direction values with fitting int-value fd_notnans_ii = fd[~np.isnan(fd)] == fd_lu[ii, 0] # set array x and y index at found indices fd_xd[fd_notnans_ii] = fd_lu[ii, 1] fd_yd[fd_notnans_ii] = fd_lu[ii, 2] # create vector of combined not-nan array and converted flow direction indices Jtm_down_xd = gis_notnans_x + np.int64(fd_xd[:, 0]) Jtm_down_yd = gis_notnans_y + np.int64(fd_yd[:, 0]) if print_out: print('...initialize arrays for iteration...') # create temporal index array with continuous number Jtm Jtm = np.ones((nrows, ncols), dtype=np_type) * -1 Jtm[gis_notnans_x, gis_notnans_y] = range(1, gis_notnans_count+1) # calculate temporal downstream cell array Jtm_down using flow direction indices. Jtm_down = np.ones((nrows, ncols),dtype=np_type) * -1 Jtm_down[gis_notnans] = Jtm[Jtm_down_xd, Jtm_down_yd] # find the catchment outlet where no downstream index is set OFr = np.nonzero(np.logical_and(Jtm != -1, Jtm_down == -1)) # mark the outlet cell in Jtm_down with a zero Jtm_down[OFr] = 0 # preallocate list for temporal upstream index calculation Jt_up Jt_up = np.ones((gis_notnans_count, 7), dtype=np_type) * -1 # iterate temporal upstream list for jt_ii, jt in enumerate(range(1, Jt_up.shape[0] + 1)): # find all rows in Jtm_down which do have jt as downstream cell verw = np.nonzero(Jtm_down == jt) # print subset in temporal upstream list Jt_up Jt_up[jt_ii, 0:verw[0].shape[0]] = Jtm[verw] # convert list to int Jt_up = np.int32(Jt_up) # calculate sum of necessary dummy cells (which have >2 upstream cells) D_count = np.nansum(Jt_up[:, 2:7] != -1) # calculate number of temporal index numbers jt Jt_count = Jt_up.shape[0] # calculate number of final indices j as sum of dummy and real cells J_count = Jt_count + D_count # preallocate temporal downstream list Jt_down Jt_down = np.ones((Jt_count, 1), dtype=np_type) * -1 # iterate over temporal index jt and fill list for jt_ii, jt in enumerate(range(1, Jt_count+1)): # look for downstream cell from matrix Jt_down[jt_ii] = Jtm_down[Jtm == jt] # preallocate lists for final indices J, J_type and J_jt, final upstream # and downstream lists J_up and J_down, and protocol list Done J_type = J_count * [None] J = np.array(range(1, J_count+1)) J_up = np.ones((J_count, 2), dtype=np_type) * -1 J_down = np.ones((J_count, ), dtype=np_type) * -1 J_jt = np.ones((J_count, 1), dtype=np_type) * -1 Done = np.ones((np.nanmax(Jtm)), dtype=np_type) * -1 # calculate protocol list D_contr D_contr = np.nansum(Jt_up[:, 2:] != -1, 1) # calculate final flow network index lists J, J_down, J_up, J_type, X and Y # iterating from largest flow length downstream to outlet (tree-climbing algorithm) if print_out: print('''...calculate final flow network index lists...''') # find cell with largest flow length and its temporal index jt = Jtm[fl == np.nanmax(fl)][0] jti = jt - 1 # preset upstream subset (ss) ss = Jt_up[jti, :] ss = ss[ss != -1] ssi = ss - 1 # calculate not done subset of upstream cell subset ssnotdone = ss[Done[ssi] == -1] # pre-set final index variable (0) jj = 0 # debug protocol if debug and print_out: im_pos = np.nonzero(Jtm == jt) x = im_pos[0] y = im_pos[1] print(' Initial cell at pos: {0:d}/{1:d} ({2:d})'.format(x, y, jt)) # while either outlet is not reached or not all upstream members are processed while jt != Jtm[OFr] or ssnotdone.shape[0] != 0: # case 1: HEADWATER CELL as ssnotnan is empty # -> create new index for headwater and move downwards if ss.shape[0] == 0: # increment final index, fill type and link lists jj += 1 jji = jj - 1 J_type[jji] = str_headw J_jt[jji, 0] = jt # debug protocol if debug and print_out: print('j: {0:d}, pos: {1:d}/{2:d} = {3:d} -> {4:d}, {5:s} cell'.format( jj, x, y, jt, Jt_down[jti, 0], str_headw)) # set upstream cell to 0, mark cell as done and go downwards J_up[jji, 0] = 0 Done[jti] = 1 jt = Jt_down[jti, 0] jti = jt - 1 # debug protocol if debug and print_out: im_pos = np.nonzero(Jtm == jt) x = im_pos[0] y = im_pos[1] print(' -> down to {0:d}/{1:d} = {2:d}'.format(x, y, jt)) else: # case 2: ROUTING CELL as all upstream cells are done # -> create new index for routing cell and move downwards if all(Done[ssi] == 1): # increment final index, fill type and link lists jj += 1 jji = jj - 1 J_type[jji] = str_routing J_jt[jji, 0] = jt # define upstream cell subset and give position indices ssj = np.flatnonzero(np.any(J_jt == ss, 1)) # if one or two upstream cells exist: # connect two real cells in Jt_up and Jt_down if ssj.shape[0] <= 2: ssjl = ssj.shape[0] ssjtu = Jt_up[jti, :ssjl] ssjtu = ssjtu[ssjtu != -1] J_up[jji, :ssjl] = J[np.flatnonzero(np.any(J_jt == ssjtu, 1))] J_down[ssj] = jj # else if > 2 upstream cells exist: # connect 1 real and 1 dammy cell in Jt_up and Jt_down else: real = J[np.amax(ssj)] dummy = np.amax(J_down[ssj]) J_up[jji, :] = [dummy, real] J_down[[dummy-1, real-1]] = jj # debug protocol if debug and print_out: pr_up = Jt_up[jti, :] pr_up = pr_up[pr_up != -1] print('''j: {0:d}, Pos: {1:d}/{2:d} = {3:d} -> {4:d}, Jt_up: {5:s}, {6:s} cell'''.format( jj, x, y, jt, Jt_down[jt-1], str(pr_up[~np.isnan(pr_up)])[1:-1], str_routing)) # mark cell as done and go downwards Done[jti] = 1 jt = Jt_down[jti, 0] jti = jt - 1 # debug protocol if debug and print_out: im_pos = np.nonzero(Jtm == jt) x = im_pos[0] y = im_pos[1] print(' -> down to {0:d}/{1:d} = {2:d}'.format(x, y, jt)) else: # case 3: DUMMY CELL as not all required dummy cells are # done but >= 2 upstream cells are done # -> create new index for dummy cell and move upwards to # the cell with the largest flow accumulation if np.sum(Done[ssi] != -1) >= 2: # increment final index, fill type and link lists jj += 1 jji = jj - 1 J_type[jji] = str_dummy J_jt[jji,0] = 0 # define upstream cell subset and give position indices ssj = np.flatnonzero(J_down[0:jji] == -1) # preallocate testing matrix (all are false) ssjt = np.zeros((ssj.shape[0], ), dtype=bool) # iterate upstream cell subset for ii, ssji in enumerate(ssj): jtupi = Jt_up[jti, :] jtupi = jtupi[jtupi != -1] # ssj exists in Jt_up -> test is TRUE if np.any(np.isin(jtupi, J_jt[ssji, 0])): ssjt[ii] = True # ssj does not exist in Jt_up but is dummy # -> test is TRUE elif J_type[ssji] == str_dummy: ssjt[ii] = True # reduce subset with testing matrix ssj = ssj[ssjt] # 'wrong neighbours' # (loose, not finished dummy strings) are removed if ssj.shape[0] > 2: ssj = ssj[-2:] # connect upstream cells in Jt_up and Jt_down J_up[jji, :] = J[ssj] J_down[ssj] = jj # debug protocol if debug and print_out: pr_up = Jt_up[jti, :] pr_up = pr_up[pr_up != -1] print('''j: {0:d}, Pos: {1:d}/{2:d} = {3:d} -> {4:d}, Jt_up: {5:s}, {6:s} cell'''.format( jj, x, y, jt, Jt_down[jti,0], str(pr_up[~np.isnan(pr_up)])[1:-1], str_dummy)) # decrement dummy protocol variable D_contr[jti] = D_contr[jti] - 1 # case 4 (else): UPWARDS MOVEMENT as not all required dummy # cells are done and < 2 upstream cells are done # -> do not create new index # calculate not done subset of upstream cells and its largest # flow accumulation cell preallocate subset for flow # accumulation calculation ssflowacc = np.zeros((ssnotdone.shape[0]), dtype=np_type) # iterate not done subset of upstream cells and find flow # accumulation for ii, iiv in enumerate(ssflowacc): ssflowacc[ii] = fa[Jtm == ssnotdone[ii]] # calculate temporal index of max. flow accumulation ssmaxind = ssnotdone[ssflowacc == np.amax(ssflowacc)] # go upstream to max flow acc or first cell if more than one # solutions exist jt = ssmaxind[0] jti = jt - 1 # debug protocol if debug and print_out: im_pos = np.nonzero(Jtm == jt) x = im_pos[0] y = im_pos[1] print(' -> up to {0:d}/{1:d} = {2:d}'.format(x, y, jt)) # find upstream cells and create subset (ss) ss = Jt_up[jti, :] ss = ss[ss != -1] ssi = ss - 1 # calculate not done subset of upstream cell subset ssnotdone = ss[Done[ssi] == -1] # Calculate values for catchment outlet if print_out: print('...calculate outlet...') # fill lists jj += 1 jji = jj - 1 J_jt[jji, 0] = jt J_type[jji] = str_routing # debug protocol if debug and print_out: pr_up = Jt_up[jti, :] pr_up = pr_up[pr_up != -1] print('''j: {0:d}, Pos: {1:d}/{2:d} = {3:d} -> {4:d}, Jt_up: {5:s}, {6:s} cell'''.format( jj, x, y, jt, Jt_down[jt-1], str(pr_up[~np.isnan(pr_up)])[1:-1], str_routing)) # define upstream cell subset and give position indices ssj = np.flatnonzero(np.any(J_jt == ss, 1)) # one or two upstream cells: connect two real cells in Jt_up and Jt_down if ssj.shape[0] <= 2: ssjl = ssj.shape[0] ssjtu = Jt_up[jti, :ssjl] ssjtu = ssjtu[ssjtu != -1] J_up[jji, :ssjl] = J[np.flatnonzero(np.any(J_jt == ssjtu, 1))] J_down[ssj] = jj # > 2 upstream cells: connect 1 real and 1 dammy cell in Jt_up and Jt_down else: real = J[np.amax(ssj)] dummy = np.amax(J_down[ssj]) J_up[jji, :] = [dummy, real] J_down[[dummy-1, real-1]] = jj # Define downstream cell as 0 J_down[jji] = Jt_down[jti] # create final index array Jm and final dummy index list J_dj if print_out: print('...create final index array and final dummy index list...') # preallocate arrays Jm = np.ones(Jtm.shape, dtype=np_type) * -1 J_dj = np.ones(J_up.shape[0], dtype=np_type) * def_val_dtgb # iterate all cells Jtm_it = np.nditer(Jtm, flags=['multi_index']) while not Jtm_it.finished: # if cell is a valid ID, find cell in list if Jtm_it[0] != -1: Jm[Jtm_it.multi_index] = J[np.flatnonzero(J_jt == Jtm_it[0])] Jtm_it.iternext() # create real representative index list for dummy cells iterating all # final indices for jj in range(1, J_up.shape[0]+1): jji = jj - 1 # if cell is a dummy, find the connected real cell if J_type[jji] == str_dummy: # follow dummy cascade downwards until real cell and set index mmi = jji while J_type[mmi] == str_dummy: mm = J_down[mmi] mmi = mm - 1 J_dj[jji] = mm # calculate cell name and coordinates if print_out: print('...calculate coordinates...') # preallocate variable X = [] Y = [] # iterate final index for jj in range(1, J_down.shape[0]+1): jji = jj - 1 # if jj is a dummy, insert X and Y coordinates using dummy list if J_type[jji] == str_dummy: # calculate coordinate indices xy = np.nonzero(Jm == J_dj[jji]) # if it is a head water or routing cell, insert X and Y coordinates # using index array else: # calculate coordinate indices xy = np.nonzero(Jm == jj) # if jj is no dummy, insert X and Y coordinates X.append(xll + (xy[1][0] + 1 - 0.5) * cellsz) Y.append(yll + (nrows - xy[0][0] - 1 + 0.5) * cellsz) # calculate upstream inflow catchment area of each routing cell # pre-allocate variable J_A = np.zeros(J.shape) # iterate all cells for jj_ii, jj in enumerate(J): # if it is a routing or the outflow cell, calculate area if J_type[jj_ii] == str_routing: J_A[jj_ii] = fa[Jm == jj] * ((cellsz / 1000)**2) # export model cell to point feature classes if print_out: print('...create model cell point feature classes...') # create pandas data frames structarr_tgb_in = list(zip(J_down, J_type, J_A, X, Y)) df_mn = pd.DataFrame(structarr_tgb_in, index=J, columns=[f_tgb_down, f_tgb_type, f_tgb_a, f_x, f_y]) df_tgb_up = pd.DataFrame(J_up, index=J, columns=[f_tgb_up1, f_tgb_up2]) # create real representative index list for dummy subcatchments ser_tgb_dtgb = real_repr_idx(df_mn, str_dummy, print_out=print_out) # create names of model subcatchments ser_nrflv = pd.Series(df_mn.shape[0] * '', index=df_mn.index, name=f_nrflv) for tgb, el_type in df_mn.loc[:, f_tgb_type].iteritems(): ser_nrflv.at[jj] = '{0:s}{1:05d}'.format(el_type[0].upper(), tgb) # summarize DataFrames df_tgb = pd.concat([df_mn, ser_tgb_dtgb, ser_nrflv], axis=1) # summarize information for export ser_tgb = df_tgb.index.to_series(name=f_tgb) df_data_tgb_p = pd.concat( [ser_tgb, df_tgb.loc[:, [f_tgb_down, f_tgb_type, f_tgb_dtgb, f_tgb_a, f_x, f_y]]], axis=1) # create spatial reference object sr_obj = arcpy.Describe(path_fd_mr_e).spatialReference # export to point feature classes tc.tgb_to_points(df_data_tgb_p, sr_obj, path_gdb_out, name_tgb_p, geometry_fields=(f_x, f_y)) tc.tgb_to_points(df_data_tgb_p, sr_obj, path_gdb_out, name_tgb_down_p, geometry_fields=(f_x, f_y)) # create model network polyline feature class if print_out: print('...create model network polyline feature class...') # import cell information arcpy.AddIndex_management(name_tgb_p, f_tgb_down, f_tgb_down, 'NON_UNIQUE', 'NON_ASCENDING') # delete non-relevant fields of downstream feature class arcpy.DeleteField_management(name_tgb_down_p, '{0}; {1}; {2}; {3}'.format( f_tgb_dtgb, f_tgb_down, f_tgb_type, f_tgb_a)) # add coordinates to both feature classes arcpy.AddXY_management(name_tgb_p) arcpy.AddXY_management(name_tgb_down_p) # alter coordinate fields of downstream feature class f_p_xd = 'POINT_Xd' f_p_yd = 'POINT_Yd' arcpy.AlterField_management(name_tgb_down_p, f_p_x, f_p_xd, f_p_xd, '', '4', 'NULLABLE', 'DO_NOT_CLEAR') arcpy.AlterField_management(name_tgb_down_p, f_p_y, f_p_yd, f_p_yd, '', '4', 'NULLABLE', 'DO_NOT_CLEAR') # join information from downstream cells tgb_l_join = arcpy.management.AddJoin(name_tgb_p, f_tgb_down, name_tgb_down_p, f_tgb, 'KEEP_COMMON') # calculate line features if arcpy.Exists(path_mnw): arcpy.management.Delete(path_mnw) arcpy.XYToLine_management(tgb_l_join, path_mnw, f_p_x, f_p_y, f_p_xd, f_p_yd, 'GEODESIC', f_tgb, sr_obj) # delete downstream neighbour model cell point feature class arcpy.Delete_management(name_tgb_down_p) return df_data_tgb_p, df_tgb_up # %% function to preprocesses raster files, which are used for routing parameters. def prepr_routing_rasters(path_dem_hr, path_fnw, path_ws_s, path_fa_mr, path_gdb_out, name_fa_hr='fa_hr', name_dem_hr_ws='dem_hr_ws', name_fl_fnw_mr='fl_fnw_mr', name_dem_max_mr='dem_max_mr', name_dem_min_mr='dem_min_mr', initial=True, print_out=False): """ Preprocesses raster files, which are used to calculate routing parameters. JM 2021 Arguments: ----------- path_dem_hr: str (e.g., 'c:\model_creation\dem_hr') path of the output watershed polygon feature class path_fnw: str (e.g., 'c:\model_creation\fnw') path of the flow network polyline feature class or shape file path_ws_s: str (e.g., 'c:\model_creation\ws_s') path of the model watershed polygon feature class path_fa_mr: str (e.g., 'c:\model_creation\fa_mr') path of the model resolution flow accumulation raster path_gdb_out: str (e.g., 'c:\model_creation.gdb') path of the output file geodatabase name_fa_hr: str (optional, default: 'fa_hr') name of the output extracted high resolution flow accumulation raster name_dem_hr_ws: str (optional, default: 'dem_hr_ws') name of the output extracted high resolution digital elevation raster name_fl_fnw_mr: str (optional, default: 'fl_fnw_mr') name of the output model resolution flow length at flow network location name_dem_max_mr: str (optional, default: 'dem_max_mr') name of the output model resolution maximum value of the high resolution DEM name_dem_min_mr: str (optional, default: 'dem_min_mr') name of the output model resolution minimum value of the high resolution DEM initial: boolean (optional, default: True) true if it is the first run and all steps have to be calculated from the scratch print_out: boolean (optional, default: False) true if workprogress shall be print to command line Returns: ----------- Saves the following outputs: - extracted high resolution digital elevation raster (model domain) - model resolution flow length at flow network location (else: NaN) - model resolution maximum value of the high resolution elevation raster - model resolution minimum value of the high resolution elevation raster """ # arcpy field names (ONLY CHANGE IF ARCPY FUNCTION CHANGES FORCE YOU!) f_oid = 'OBJECTID' f_val = 'Value' f_cellsz_x = 'CELLSIZEX' method_mean = 'MEAN' method_max = 'MAXIMUM' method_min = 'MINIMUM' # paths for intermediates path_fnw_r = path_gdb_out + 'fnw_r' path_fnw_mr = path_gdb_out + 'fnw_mr' path_dem_hr_f = path_gdb_out + 'dem_hr_f' path_fd_hr = path_gdb_out + 'fd_hr' path_fl_hr = path_gdb_out + 'fl_hr' path_fl_snfnw = path_gdb_out + 'fl_snfnw' path_fl_snfa_mr = path_gdb_out + 'fl_snfa_mr' if initial: path_fl_aggr_mr = path_gdb_out + 'fl_aggr_mr' # paths for outputs path_dem_hr_ws = path_gdb_out + name_dem_hr_ws path_fa_hr = path_gdb_out + name_fa_hr path_fl_fnw_mr = path_gdb_out + name_fl_fnw_mr if initial: path_dem_max_mr = path_gdb_out + name_dem_max_mr path_dem_min_mr = path_gdb_out + name_dem_min_mr # set workspace arcpy.env.workspace = path_gdb_out # if it is the first calculation run, calculate high-resolution flow length if initial: if print_out: print('...calculate high-resolution flow length...') # save default environments default_env_snr = arcpy.env.snapRaster default_env_ext = arcpy.env.extent # set environments arcpy.env.extent = 'MAXOF' arcpy.env.snapRaster = path_dem_hr # clip high resolution digital elevation raster to model domain if print_out: print(' step 1/7: clip high resolution DEM to model domain...') if arcpy.Exists(path_dem_hr_ws): arcpy.management.Delete(path_dem_hr_ws) dem_hr_ws = arcpy.sa.ExtractByMask(path_dem_hr, path_ws_s) dem_hr_ws.save(path_dem_hr_ws) # fill corrected high resolution digital elevation raster if print_out: print(' step 2/7: fill clipped high resolution DEM...') if arcpy.Exists(path_dem_hr_f): arcpy.management.Delete(path_dem_hr_f) dem_hr_f = arcpy.sa.Fill(path_dem_hr_ws, None) dem_hr_f.save(path_dem_hr_f) # calculate flow direction for filled digital elevation raster if print_out: print(' step 3/7: calculate high resolution flow direction...') if arcpy.Exists(path_fd_hr): arcpy.management.Delete(path_fd_hr) fd_hr = arcpy.sa.FlowDirection(path_dem_hr_f, 'NORMAL', None, 'D8') fd_hr.save(path_fd_hr) # calculate flow accumulation if print_out: print(' step 4/7: calculate high resolution flow accumulation...') if arcpy.Exists(path_fa_hr): arcpy.management.Delete(path_fa_hr) fa_hr = arcpy.sa.FlowAccumulation(path_fd_hr) fa_hr.save(path_fa_hr) # calculate flow length for flow direction if print_out: print(' step 5/7: calculate high resolution flow length...') if arcpy.Exists(path_fl_hr): arcpy.management.Delete(path_fl_hr) fl_hr = arcpy.sa.FlowLength(path_fd_hr, 'DOWNSTREAM', None) fl_hr.save(path_fl_hr) # convert flow network polyline feature class to high resolution raster if print_out: print((' step 6/7: convert flow network polyline feature ' 'class to high resolution raster...')) if arcpy.Exists(path_fnw_r): arcpy.management.Delete(path_fnw_r) arcpy.conversion.PolylineToRaster(path_fnw, 'OBJECTID', path_fnw_r, 'MAXIMUM_LENGTH', 'NONE', path_dem_hr_ws) # set flow length to nan if flow network raster is nan if print_out: print((' step 7/7: set flow length to nan if flow network ' 'raster is nan...')) if arcpy.Exists(path_fl_snfnw): arcpy.management.Delete(path_fl_snfnw) setn_expr = '{0} IS NULL'.format(f_val) fl_snfnw = arcpy.ia.SetNull(path_fnw_r, path_fl_hr, setn_expr) fl_snfnw.save(path_fl_snfnw) # reset environments arcpy.env.snapRaster = default_env_snr arcpy.env.extent = default_env_ext # Aggregate flow length to model resolution if print_out: print('...aggregate flow length to model resolution...') # save default environments default_env_snr = arcpy.env.snapRaster default_env_ext = arcpy.env.extent default_env_mask = arcpy.env.mask # set environments arcpy.env.snapRaster = path_fa_mr arcpy.env.extent = path_fa_mr arcpy.env.mask = path_fa_mr # get high resolution and model resolution cell size cell_sz_x_obj = arcpy.GetRasterProperties_management(path_dem_hr_ws, f_cellsz_x) cell_sz_x = np.int32(cell_sz_x_obj.getOutput(0)) cellsz_obj = arcpy.GetRasterProperties_management(path_fa_mr, f_cellsz_x) cellsz = np.int32(cellsz_obj.getOutput(0)) # aggregate flow length to final cell size if initial: fl_aggr_mr = arcpy.sa.Aggregate( path_fl_snfnw, str(np.int32(cellsz/cell_sz_x)), method_mean, 'EXPAND', 'DATA') fl_aggr_mr.save(path_fl_aggr_mr) # set aggregated flow length at flow accumulation areas < 0.1 km² to nan expr_sql = '{0:s} < {1:.0f}'.format(f_val, 1000/cellsz) fl_snfa_mr = arcpy.ia.SetNull(path_fa_mr, path_fl_aggr_mr, expr_sql) fl_snfa_mr.save(path_fl_snfa_mr) # convert polylines to raster in model grid size arcpy.conversion.PolylineToRaster(path_fnw, f_oid, path_fnw_mr, 'MAXIMUM_LENGTH', 'NONE', path_fa_mr) # set aggregated flow length to nan if aggregated flow network is nan as well if arcpy.Exists(path_fl_fnw_mr): arcpy.management.Delete(path_fl_fnw_mr) fl_fnw_mr = arcpy.ia.SetNull(arcpy.ia.IsNull(path_fnw_mr), path_fl_snfa_mr) fl_fnw_mr.save(path_fl_fnw_mr) # Aggregate high-resolution DEM to model resolution extracting min and max values if initial: if print_out: print(('...calculate min and max high resolution DEM values ' 'in model resolution...')) if arcpy.Exists(path_dem_max_mr): arcpy.management.Delete(path_dem_max_mr) if arcpy.Exists(path_dem_min_mr): arcpy.management.Delete(path_dem_min_mr) dem_max_mr = arcpy.sa.Aggregate(path_dem_hr_ws, str(cellsz), method_max, 'EXPAND', 'DATA') dem_min_mr = arcpy.sa.Aggregate(path_dem_hr_ws, str(cellsz), method_min, 'EXPAND', 'DATA') dem_max_mr.save(path_dem_max_mr) dem_min_mr.save(path_dem_min_mr) # reset environments arcpy.env.snapRaster = default_env_snr arcpy.env.extent = default_env_ext arcpy.env.mask = default_env_mask # %% function to create point feature class indicating elements, where no # high-resolution flow length shall be calculated def create_fl_ind_point(sr_obj, path_gdb_out, name_no_fnw_fl='no_fnw_fl', print_out=False): """ Creates a point feature class in the defined file geodatabase to be filled by the user with points. These points indicate cells, for which no high resolution flow length shall be calculated, but the model resolution is used instead. The point feature class has neither Z- nor M-values. JM 2021 Arguments: ----------- sr_obj: arcpy.SpatialReferenceObject arcpy.Object containing the spatial reference of the final feature class path_gdb_out: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb') name_no_fnw_fl: str (optional) name of the output indication point feature class (e.g., 'no_fnw_fl') print_out: boolean true if workprogress shall be print to command line Returns: ----------- Saves the output pour point feature class """ if print_out: print('...create indication point feature class...') # set path for output path_no_fnw_fl = path_gdb_out + name_no_fnw_fl # prepare indication point feature class if arcpy.Exists(path_no_fnw_fl): arcpy.management.Delete(path_no_fnw_fl) arcpy.CreateFeatureclass_management(path_gdb_out, name_no_fnw_fl, 'POINT', '', 'DISABLED', 'DISABLED', sr_obj, '', '0', '0', '0', '') # %% Create polygon feature class representing the model elements def create_element_polyg(path_tgb_p, path_sn_raster, path_gdb_out, name_tgb_s='tgb_s', print_out=False): """ Creates a polygon feature class in the defined file geodatabase, which includes all values of the input point feature class and represents the model element raster structure. The feature class only includes model elements, which are no dummy elements and covers the whole model domain. JM 2021 Arguments: ----------- path_tgb_p: str path of the flow network feature class or shape file (e.g., 'c:\model_creation.gdb\tgb_p') path_sn_raster: str path of the raster, which represents the model raster path_gdb_out: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb') name_tgb_s: str (optional, default: 'tgb_s') name of the output model element polygon feature class print_out: boolean true if workprogress shall be print to command line Returns: ----------- Saves a polygon feature class representing the model elements """ # define internal variables def_val_dtgb = -1 # define internal field names f_tgb = 'tgb' f_tgb_dtgb = 'tgb_dtgb' # arcpy field names (ONLY CHANGE IF ARCPY FUNCTION CHANGES FORCE YOU!) f_val = 'VALUE' f_cellsz_x = 'CELLSIZEX' f_gridcode = 'gridcode' # define paths of intermediates in working geodatabase name_tgb_p_nodum = 'tgb_p_nodum' name_tgb_p_sel = 'tgb_p_sel' name_tgb_r = 'tgb_r' # set workspace arcpy.env.workspace = path_gdb_out # Calculate model element polygons in raster structure if print_out: print('...Calculate model element polygons in raster structure...') # save original environment settings default_env_snr = arcpy.env.snapRaster # select elements which are not dummys and copy features to a new layer sel_expr = '{0:s} = {1:d}'.format(f_tgb_dtgb, def_val_dtgb) name_tgb_p_sel = arcpy.management.SelectLayerByAttribute( path_tgb_p, 'NEW_SELECTION', sel_expr, '') arcpy.CopyFeatures_management(name_tgb_p_sel, name_tgb_p_nodum, '', '', '', '') arcpy.management.SelectLayerByAttribute(path_tgb_p, 'CLEAR_SELECTION', '', None) # set environment arcpy.env.snapRaster = path_sn_raster # get model cell size cellsz_obj = arcpy.GetRasterProperties_management(path_sn_raster, f_cellsz_x) cellsz = np.int32(cellsz_obj.getOutput(0)) # create elment features from point layer converting to raster arcpy.PointToRaster_conversion(name_tgb_p_nodum, f_tgb, name_tgb_r, 'MOST_FREQUENT', 'NONE', str(cellsz)) arcpy.RasterToPolygon_conversion(name_tgb_r, name_tgb_s, 'NO_SIMPLIFY', f_val, 'SINGLE_OUTER_PART', '') arcpy.AlterField_management(name_tgb_s, f_gridcode, f_tgb, f_tgb) # restore environment arcpy.env.snapRaster = default_env_snr # %% summyrize GIS data for runoff concentration and routing parameter calculation def summar_gisdata_for_roandrout( path_tgb_p, path_dem_max_mr, path_dem_min_mr, path_fl_mr, path_fl_fnw_mr, path_no_fnw_fl, path_gdb_out, name_tgb_par_p='tgb_par_p', field_dem_max_mr='dem_max_mr', field_dem_min_mr='dem_min_mr', field_fl_fnw_mean_mr='fl_fnw_mean_mr', field_fl_mr='fl_mr', print_out=False): """ Creates a point feature class in the defined file geodatabase, which includes values of the maximum and minimum elevation as well as the flow network and the model resolution flow length within each model element. JM 2021 Arguments: ----------- path_tgb_p: str path of the flow network feature class or shape file (e.g., 'c:\model_creation.gdb\tgb_p') path_dem_max_mr: str path of the flow network feature class or shape file (e.g., 'c:\model_creation.gdb\dem_max_mr') path_dem_min_mr: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb\dem_min_mr') path_fl_mr: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb\fl_mr') path_fl_fnw_mr: str path of the flow network feature class or shape file (e.g., 'c:\model_creation.gdb\fl_fnw_mr') path_no_fnw_fl: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb\no_fnw_fl') path_gdb_out: str path of the output file geodatabase (e.g., 'c:\model_creation.gdb') name_tgb_par_p: str (optional, default: 'tgb_par_p') name of the output model element point feature class with extracted parameters field_dem_max_mr: str (optional, default: 'dem_max_mr') name of the field in name_tgb_par_p containing max elevation value field_dem_min_mr: str (optional, default: 'dem_min_mr') name of the field in name_tgb_par_p containing min elevation value field_fl_fnw_mean_mr: str (optional, default: 'fl_fnw_mean_mr') name of the field in name_tgb_par_p containing flow network flow length field_fl_mr: str (optional, default: 'fl_mr') name of the field in name_tgb_par_p containing model resolution flow length print_out: boolean true if workprogress shall be print to command line Returns: ----------- Saves model element point feature class with extracted parameters: - minimum elevation - maximum elevation - model resolution flow length - flow network flow length """ # define internal variables f_tgb = 'tgb' # set workspace arcpy.env.workspace = path_gdb_out # define paths of intermediates in working geodatabase name_fl_fnw_mr_corr = 'fl_fnw_mr_corr' name_no_fnw_fl_r = 'no_fnwfl_r' # save original environment settings default_env_snr = arcpy.env.snapRaster default_env_ext = arcpy.env.extent # If field fl_mr (model resolution flow length) does not exist, # add field while extracting flow length values if not arcpy.ListFields(path_tgb_p, field_fl_mr): if print_out: print('...extract flow length values...') arcpy.gp.ExtractMultiValuesToPoints_sa( path_tgb_p, path_fl_mr + ' ' + field_fl_mr, 'NONE') # If there are any flow length correction points # remove values of fl_mr at TGBs marked with a feature point in no_fnw_fl if arcpy.management.GetCount(path_no_fnw_fl)[0] != '0': if print_out: print('...correct marked flow length values...') # set environments arcpy.env.extent = 'MAXOF' arcpy.env.snapRaster = path_fl_mr # convert correction points to raster and remove flow network flow length values arcpy.PointToRaster_conversion(path_no_fnw_fl, 'OBJECTID', name_no_fnw_fl_r, 'MOST_FREQUENT', 'NONE', path_fl_mr) fl_fnw_mr_corr = arcpy.ia.Con(arcpy.ia.IsNull(name_no_fnw_fl_r), path_fl_fnw_mr) fl_fnw_mr_corr.save(name_fl_fnw_mr_corr) # restore environments arcpy.env.extent = default_env_ext arcpy.env.snapRaster = default_env_snr # Extract min and max elevation and flow length values to model point features if print_out: print('...extract raster values to model point features...') # copy model element point features to a new feature class arcpy.management.CopyFeatures(path_tgb_p, name_tgb_par_p) # if there are any flow length correction points, add information from corrected if arcpy.management.GetCount(path_no_fnw_fl)[0] != '0': arcpy.sa.ExtractMultiValuesToPoints(name_tgb_par_p, [ [path_dem_max_mr, field_dem_max_mr], [path_dem_min_mr, field_dem_min_mr], [name_fl_fnw_mr_corr, field_fl_fnw_mean_mr]], 'NONE') # else use original files else: arcpy.sa.ExtractMultiValuesToPoints(name_tgb_par_p, [ [path_dem_max_mr, field_dem_max_mr], [path_dem_min_mr, field_dem_min_mr], [path_fl_fnw_mr, field_fl_fnw_mean_mr]], 'NONE') # delete identical (Workaround for Bug in ExtractMultiValuesToPoints) arcpy.management.DeleteIdentical(name_tgb_par_p, f_tgb, None, 0) # %% calculate parameters for tgb.dat def calc_roandrout_params(cellsz, q_spec_ch, name_tgb_par_p, field_dem_max_mr='dem_max_mr', field_dem_min_mr='dem_min_mr', field_fl_mr='fl_mr', field_fl_fnw_mean_mr='fl_fnw_mean_mr', def_fl_upper_lim=np.inf, def_fl_strct_mism=2, def_sl_min=0.0001, def_sl_excl_quant=None, def_zmin_rout_fac=0.5, def_zmax_fac=1, ser_q_in_corr=None, ch_est_method='combined', def_bx=0, def_bbx_fac=1, def_bnm=1.5, def_bnx=100, def_bnvrx=4, def_skm=30, def_skx=20, print_out=False): """ Creates a point feature class in the defined file geodatabase, which includes values of the maximum and minimum elevation as well as the flow network and the model resolution flow length within each model element. JM 2021 Arguments: ----------- cellsz: integer edge length of the model elements in [m] (e.g., 100) q_spec_ch: float channel forming specific flood discharge value [m3s-1km-2] (e.g., 0.21) name_tgb_par_p: str path of the input model element point feature class with following parameters for each element except dummy elements: - maximum elevation value - minimum elevation value - channel model resolution flow length - channel flow network flow length (e.g., 'c:\model_creation.gdb\tgb_p_fl') field_dem_max_mr: str (optional, default: 'dem_max_mr') name of the field in name_tgb_par_p containing max elevation value field_dem_min_mr: str (optional, default: 'dem_min_mr') name of the field in name_tgb_par_p containing min elevation value field_fl_mr: str (optional, default: 'fl_mr') name of the field in name_tgb_par_p containing model resolution flow length field_fl_fnw_mean_mr: str (optional, default: 'fl_fnw_mean_mr') name of the field in name_tgb_par_p containing flow network flow length def_sl_min: float (optional, default: 0.0001) minimum channel slope value to be maintained due to LARSIM-internal restrictions def_fl_strct_mism: int (optional, default: 2) default flow length for structural mismatch and negative transition deviations [m]. attention: 1 [m] is interpreted by LARSIM as 'no routing'! def_fl_upper_lim: int (optional, default: inf) upper threshold for realistic flow length [m] def_sl_excl_quant: float (optional, default: None) quantile of slope values to be set constant to quantile value (e.g., 0.999 sets the upper 0.1% of the slope values to the 0.1% quantile value) def_zmin_rout_fac: float (optional, default: 0.5) Factor to vary the lower elevation of runoff concentration between the minimum (0) and maximum (1) channel elevation of the element. By default, the factor is set to the average elevation (0.5) [-] def_zmax_fac: float (optional, default: 1) Factor to vary the upper elevation of runoff concentration between the minimum (0) and maximum (1) elevation of the element. By default, ser_q_in_corr: pandas.Series Series of channel-forming inflow (e.g., HQ2) at the corresponding model element ID in the serie's index. (e.g., pd.Series(np.array([2.8, 5.3]), index=[23, 359], name='q_in')) ch_est_method: string (optional, default: 'combined') String defining channel estimation function. Possible values: - 'Allen': Allen et al. (1994) - 'Krauter': Krauter (2006) - 'combined': Allen et al.(1994) for small and Krauter (2006) for large areas def_bx: float (optional, default: 0) Float defining the flat foreland width left and right [m] def_bbx_fac: float (optional, default: 1) Float factor defining the slopy foreland width left and right, which is calculated multiplying the channel width with this factor [-] def_bnm: float (optional, default: 1.5 = 67%) Float defining the channel embankment slope left and right [mL/mZ] def_bnx: float (optional, default: 100 = nearly flat foreland) Float defining the slopy foreland slope left and right [mL/mZ] def_bnvrx: float (optional, default: 4 = 25%) Float defining the outer foreland slope left and right [mL/mZ] def_skm: float (optional, default: 30 = natural channel, vegetated river bank) Float defining the Strickler roughness values in the channel [m1/3s-1] def_skx: float (optional, default: 20 = uneven vegetated foreland) Float defining the Strickler roughness values of the left and right foreland [m1/3s-1] print_out: boolean (optional, default: False) true if workprogress shall be print to command line Returns: ----------- df_data_tgbdat: pandas.DataFrame DataFrame of all parameters, which are needed in the resulting file. The DataFrame includes the model element ID as index and the following columns: - 'TGB': element ID number (int) - 'NRVLF': element name (str) - 'FT': element area (float) - 'HUT': lower elevation of runoff concentration [m] - 'HOT': upper elevation of runoff concentration [m] - 'TAL': maximum flow length for runoff concentration [km] - 'X': x-coordinate of element center [m] - 'Y': y-coordinate of element center [m] - 'KMU': lower stationing of routing [m] - 'KMO': upper stationing of routing [m] - 'GEF': channel slope for routing [m] - 'HM': channel depth [m] - 'BM': channel width [m] - 'BL': flat foreland width left [m] - 'BR': flat foreland width right [m] - 'BBL': slopy foreland width left [m] - 'BBR': slopy foreland width right [m] - 'BNM': channel embankment slope left and right [mL/mZ] - 'BNL': slopy foreland slope left [mL/mZ] - 'BNR': slopy foreland slope right [mL/mZ] - 'BNVRL': outer foreland slope left [mL/mZ] - 'BNVRR': outer foreland slope right [mL/mZ] - 'SKM': Strickler roughnes values in the channel [m1/3s-1] - 'SKL': Strickler roughnes values at the left foreland [m1/3s-1] - 'SKR': Strickler roughnes values at the right foreland [m1/3s-1] ser_tgb_down_nd: pandas.Series Series of corresponding downstream model element indices ignoring dummy elements. Model outlet remains -1 and dummy elements are represented as 0. ser_ft: pandas.Series Series of corresponding model element areas. Dummy elements have an area of 0. [km²] ser_area_outfl: pandas.Series Series of corresponding model element inflow catchment areas. Dummy elements have an area of 0. [km²] ser_ch_form_q: pandas.Series Series of elements' channel-forming discharge at the corresponding model element ID in the serie's index. """ # %% Redistribute flow length values at confluence points def redistr_flowl_at_conflp(ser_fl, ser_tgb_down_nd, ser_tgb_up_nd, ser_tgb_type_headw, ser_tgb_type_dummy): """ This function redistributes flow length values at cofluence points. Remember: there will result multipliers of 1 and sqrt(2) with the model resolution as flow length values from D8 flow length calculation. The LARSIM convention assumes the confluence point of cells upstream of the routing element. Therefore, the resulting discrepancies at confluence points have to be balanced in upstream routing elements. JM 2021 Arguments: ----------- ser_fl: pandas.Series Series of model element raster flow length corresponding to the serie's ascending index. The flow length is calculated using the D8-flow direction based on the model resolution digital elevation raster and using the 'DOWNSTREAM' option (outlet = 0). It may be clipped from a larger raster, whereby the outlet is not zero anymore. (e.g., pd.Series([300, 341, 200, 100], index=[1, 2, 3, 4], name='ser_fl')) ser_tgb_down_nd: pandas.Series Series of corresponding downstream model element indices ignoring dummy elements. Model outlet remains -1 and dummy elements are represented as 0. ser_tgb_up_nd: pandas.Series Series of corresponding upstream model element indices ignoring dummy elements. These are represented as empty array (e.g., []). ser_tgb_type_headw: pandas.Series Boolean Series, which identifies the headwater cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[1, 1, 0, 0], index=[1, 2, 3, 4], name='headwater', dtype='bool')) ser_tgb_type_dummy: pandas.Series Boolean Series, which identifies the dummy cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[0, 0, 0, 0], index=[1, 2, 3, 4], name='dummy', dtype='bool')) Returns: ----------- df_fl: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the following columns: - downstream share of flow length within cell ('down') - downstream share confluence correction value ('corr_conf_down') - corrected downstream share of flow length within cell ('corr_down') - upstream share of flow length within cell ('up') - corrected upstream share of flow length within cell ('corr_up') """ # define internal string variables f_up = 'up' f_down = 'down' f_corr_up = 'corr_up' f_corr_down = 'corr_down' f_corr_conf_down = 'corr_conf_down' # pre-allocate variable df_fl = pd.DataFrame(np.zeros((ser_fl.shape[0], 5)) * np.nan, index=ser_fl.index, columns=[f_down, f_corr_conf_down, f_corr_down, f_up, f_corr_up]) # copy model resolution flow length (GIS raster calculation) # (dummy cells are nan, outflow not) ser_fl.at[ser_tgb_type_dummy] = np.nan df_fl.at[ser_tgb_type_dummy, :] = np.nan # iterate elements to calculate flow length to downstream cell # (only head water and routing cells) for tgb, fl_sum_tgb in ser_fl.iteritems(): # if it is a head water or routing cell and not the outflow: if not ser_tgb_type_dummy.at[tgb] and tgb != np.max(df_fl.index): # get flow length of downstream cell fl_sum_down = ser_fl.loc[ser_tgb_down_nd.at[tgb]] # calculate flow length difference between recent and downstream cell df_fl.at[tgb, f_down] = (fl_sum_tgb - fl_sum_down) / 2 # iterate elements to calculate flow length to upstream cells and correct it for tgb, fl_sum_tgb in ser_fl.iteritems(): # if it is a head water cell set upstream flow length to zero if ser_tgb_type_headw.at[tgb]: df_fl.at[tgb, f_up] = 0 # if it is a routing cell allocate mean residuals to upstream cells elif not ser_tgb_type_dummy.at[tgb]: # get values of upstream cells fl_sum_up = ser_fl.loc[ser_tgb_up_nd.at[tgb]] # calculate mean of differences between recent and upstream cells fl_dif_up = np.nanmean(fl_sum_up - fl_sum_tgb) / 2 df_fl.at[tgb, f_up] = fl_dif_up # calculate mean downstream residuals and allocate it to upstream cells fl_dif_up_rest = (fl_sum_up - fl_sum_tgb) / 2 - fl_dif_up df_fl.loc[fl_dif_up_rest.index, f_corr_conf_down] = fl_dif_up_rest # calculate sums of flow length shares df_fl.loc[:, f_corr_down] = np.sum( df_fl.loc[:, [f_down, f_corr_conf_down]], axis=1) df_fl.loc[:, f_corr_up] = df_fl.loc[:, f_up].values return df_fl # %% Redistribute flow network flow length values at confluence points def redistr_flowl_polyl_at_conflp(ser_fl_fnw, ser_tgb_down_nd, ser_tgb_up_nd, ser_tgb_type_headw, ser_tgb_type_dummy, cellsz): """ This function redistributes the model resolution flow length values calculated based on existing flow path polyline features. Remember: The LARSIM convention assumes the confluence point of cells upstream of the routing element. Therefore, the resulting discrepancies at confluence points have to be balanced in upstream routing elements. Furthermore, the flow network balances might get negative with unavoidable influences of neighbouring flow network elements. This will be retained by setting discrepancies to a symbolic value of 1 to prevent LARSIM assuming a dummy cell. As it stays unclear, where the influencing flow network element belongs to, the (rather small) discrepancy has to stay unbalanced upstream. Additionally, to prevent instabilities in the water routing calculation, a correction and redistribution of very small flow lengths is introduced. If the flow length is smaller than 10% of the model's cell size, the difference to the actual flow length at the recent cell is redistributed from upstream cells to the recent one. JM 2021 Arguments: ----------- ser_fl_fnw: pandas.Series Series of model element polyline flow length corresponding to the serie's ascending index. The flow length is calculated using the accumulative lengths of polyline elements intersected with model raster polygons. The outlet is the minimum value, but has not to be zero. (e.g., pd.Series([308.4, 341.0, 204.5, 133.8], index=[1, 2, 3, 4], name='ser_fl_fnw')) ser_tgb_down_nd: pandas.Series Series of corresponding downstream model element indices ignoring dummy elements. Model outlet remains -1 and dummy elements are represented as 0. ser_tgb_up_nd: pandas.Series Series of corresponding upstream model element indices ignoring dummy elements. These are represented as empty array (e.g., []). ser_tgb_type_headw: pandas.Series Boolean Series, which identifies the headwater cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[1, 1, 0, 0], index=[1, 2, 3, 4], name='headwater', dtype='bool')) ser_tgb_type_dummy: pandas.Series Boolean Series, which identifies the dummy cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[0, 0, 0, 0], index=[1, 2, 3, 4], name='dummy', dtype='bool')) cellsz: int Integer, which defines the model element edge length in [m] Returns: ----------- df_fl_fnw: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the following columns: - original downstream share of flow length within cell ('down') - downstream correction value of confluences ('corr_conf_down') - downstream correction value of redistribution ('corr_red_down') - corrected downstream share of flow length within cell ('corr_down') - upstream share of flow length within cell ('up') - upstream correction value of redistribution ('corr_red_up') - corrected upstream share of flow length within cell ('corr_up') """ # define internal string variables f_up = 'up' f_down = 'down' f_corr_up = 'corr_up' f_corr_down = 'corr_down' f_corr_conf_down = 'corr_conf_down' f_corr_red_up = 'corr_red_up' f_corr_red_down = 'corr_red_down' # pre-allocate variable df_fl_fnw = pd.DataFrame(np.zeros((ser_fl_fnw.shape[0], 7))*np.nan, index=ser_fl_fnw.index, columns=[f_down, f_corr_conf_down, f_corr_red_down, f_corr_down, f_up, f_corr_red_up, f_corr_up]) # first column = high resolution flow length (GIS raster calculation) # (dummy cells are nan, outflow not) ser_fl_fnw.at[ser_tgb_type_dummy] = np.nan df_fl_fnw.at[ser_tgb_type_dummy, :] = np.nan # calculate flow distances for tgb, fl_sum in ser_fl_fnw.iteritems(): # if high resolution flow length is not nan... if not np.isnan(fl_sum): # if it is a head water cell only calculate downstream part if ser_tgb_type_headw.at[tgb]: # find downstream cell and get flow length fl_down = ser_fl_fnw.loc[ser_tgb_down_nd.at[tgb]] # calculate flow length difference between recent and # downstream cell df_fl_fnw.at[tgb, f_down] = (fl_sum - fl_down) / 2 # set difference between recent and upstream cell to zero df_fl_fnw.at[tgb, f_up] = 0 # if it is a routing cell... elif not ser_tgb_type_dummy.at[tgb]: # if it is not outflow if tgb != np.max(ser_fl_fnw.index): # find downstream cell and get flow length fl_down = ser_fl_fnw.loc[ser_tgb_down_nd.loc[tgb]] # downstream value is difference between recent and # downstream cell or 1 [m] if it would be smaller df_fl_fnw.at[tgb, f_down] \ = np.max([(fl_sum - fl_down) / 2, 1]) else: # downstream difference is 0 df_fl_fnw.at[tgb, f_down] = 0 # find upstream cells and get flow lengths jjnd_up = ser_tgb_up_nd.at[tgb] # calculate flow length difference between recent # and upstream cells fl_dif_up = (ser_fl_fnw.loc[jjnd_up] - fl_sum) / 2 # correct negative upstream difference values and protocol fl_dif_up_ii = np.logical_and(np.isnan(fl_dif_up), fl_dif_up < 0) fl_dif_up[fl_dif_up_ii] = 1 # calculate mean of difference between recent # and upstream cells if np.any(~np.isnan(fl_dif_up)): fl_difmean_up = np.nanmean(fl_dif_up) else: fl_difmean_up = np.nan df_fl_fnw.at[tgb, f_up] = fl_difmean_up # calculate residual from mean calculation df_fl_fnw.at[jjnd_up, f_corr_conf_down] \ = fl_dif_up - fl_difmean_up # iterate cells in reversed calculation order from outflow to most # upstream point and redistribute very small network values for tgb in reversed(ser_fl_fnw.index): # if high resolution flow length is not nan and it is a routing cell... fl_sum = ser_fl_fnw[tgb] if not np.isnan(fl_sum) \ and not (ser_tgb_type_headw.at[tgb] and ser_tgb_type_dummy.at[tgb]): # add downstream, upstream and remaining flow length part of # recent element fl_fnw = np.nansum( df_fl_fnw.loc[tgb, [f_down, f_corr_conf_down, f_up]]) # if the flow length is smaller than 10% of the cell size... if fl_fnw < cellsz / 10: # allocate the difference to 10% of cell size to the # recent element fl_fnw_dif_corr = cellsz / 10 - fl_fnw df_fl_fnw.at[tgb, f_corr_red_up] = fl_fnw_dif_corr # redistribute correction length to upstream cells df_fl_fnw.at[ser_tgb_up_nd.at[tgb], f_corr_red_down] \ = - fl_fnw_dif_corr # calculate sums of flow length shares df_fl_fnw.at[:, f_corr_down] = np.sum( df_fl_fnw.loc[:, [f_down, f_corr_conf_down, f_corr_red_down]], axis=1) df_fl_fnw.at[:, f_corr_up] = np.sum( df_fl_fnw.loc[:, [f_up, f_corr_red_up]], axis=1) return df_fl_fnw # %% Merge flow length from model resolution raster and flow network polylines def merge_fnw_and_mr_fl(df_fl_mr, df_fl_fnw, ser_j_down, ser_tgb_down_nd, ser_tgb_type_headw, ser_tgb_type_dummy, def_fl_upper_lim=np.inf, def_fl_strct_mism=2): """ This function merges both model resolution flow length sources (1) calculated based on existing flow path polyline features and (2) using the D8-flow direction based on the model resolution digital elevation raster and using the 'DOWNSTREAM' option (outlet = 0). The flow length calculated from flow network polylines and model resolution are potentially referenced to a different outflow point as the extent of the DEM is different. The extent of the flow network usually is larger, as the calculation of the model domain is based on the underlying high-resolution DEM. Therefore, flow lenght references have to be reset at the outflow point of the model. Consequently, the flow network and model resolution flow length values are merged. JM 2021 Arguments: ----------- df_fl_mr: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the model element ID as index and the following columns: - downstream share of flow length within cell ('down') - corrected downstream share of flow length within cell ('corr_down') - corrected upstream share of flow length within cell ('corr_up') df_fl_fnw: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the model element ID as index and the following columns: - corrected downstream share of flow length within cell ('corr_down') - corrected upstream share of flow length within cell ('corr_up') ser_j_down: pandas.Series Series of corresponding downstream model element indices. Model outlet remains -1 and dummy elements are represented as 0. ser_tgb_down_nd: pandas.Series Series of corresponding downstream model element indices ignoring dummy elements. Model outlet remains -1 and dummy elements are represented as 0. ser_tgb_up_nd: pandas.Series Series of corresponding upstream model element indices ignoring dummy elements. These are represented as empty array (e.g., []). ser_tgb_type_headw: pandas.Series Boolean Series, which identifies the headwater cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[1, 1, 0, 0], index=[1, 2, 3, 4], name='headwater', dtype='bool')) ser_tgb_type_dummy: pandas.Series Boolean Series, which identifies the dummy cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[0, 0, 0, 0], index=[1, 2, 3, 4], name='dummy', dtype='bool')) def_fl_upper_lim: int (optional, default: inf) upper threshold for realistic flow length [m] def_fl_strct_mism: int (optional, default: 2) default flow length for structural mismatch and negative transition deviations [m]. attention: 1 [m] is interpreted by LARSIM as 'no routing'! Returns: ----------- df_fl: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the model element ID as index and the following columns: - accumulative flow length at lower boundary of cell ('lower') - flow length value of cell ('length') - accumulative flow length at upper boundary of cell ('upper') """ # define internal string variables f_up = 'up' f_down = 'down' f_corr_up = 'corr_up' f_corr_down = 'corr_down' f_lower = 'lower' f_upper = 'upper' f_length = 'length' # pre-allocate DataFrame for indentification keys df_fl_keys = pd.DataFrame(np.zeros((df_fl_mr.shape[0], 2))*np.nan, index=df_fl_mr.index, columns=[f_down, f_up]) # pre-allocate DataFrame for flow length values df_fl = pd.DataFrame(np.zeros((df_fl_mr.shape[0], 3))*np.nan, index=df_fl_mr.index, columns=[f_lower, f_length, f_upper]) # calculate outflow cell index tgb_out = np.max(df_fl_mr.index) # pre-set outflow flow length value to 1 [m] df_fl.at[tgb_out, f_lower] = 1 # iterate all cells in reversed order for tgb in reversed(df_fl_mr.index): # if cell is a routing or headwater cell if not ser_tgb_type_dummy.at[tgb]: # find real downstream cell jjnd_down = ser_tgb_down_nd.at[tgb] # SET LOWER CUMULATIVE FLOW LENGTH OF RECENT AS UPPER OF DOWNSTREAM CELL if tgb != tgb_out: df_fl.at[tgb, f_lower] = df_fl.at[jjnd_down, f_upper] else: df_fl.at[tgb, f_lower] = 0 # DECIDE ABOUT BEHAVIOR USING DOWNSTREAM PART OF RECENT AND # UPSTREAM PART OF DOWNSTREAM CELL # get downstream flow network flow length of RECENT cell if tgb != tgb_out: fl_fnw_down = df_fl_fnw.loc[tgb, f_corr_down] else: fl_fnw_down = 0 # if (1) downstream flow network flow length of RECENT cell is > 0 # set downstream flow length to flow network flow length (key 1) # (no further distinction, as fl_fnw_down > 0 && fl_fnw_down_up <= 0 # cannot exist due to the definition of df_fl_fnw) if fl_fnw_down > 0: fl_down = df_fl_fnw.loc[tgb, f_corr_down] df_fl_keys.at[tgb, f_down] = 1 # if (2) downstream flow network flow length of RECENT cell is < 0 # than a potential structural mismatch between model resolution flow # length and flow network flow length resulting from cell aggregation # has to be corrected. The downstream flow length is set to flow network # flow length (key -1) elif fl_fnw_down < 0: fl_down = df_fl_fnw.loc[tgb, f_corr_down] df_fl_keys.at[tgb, f_down] = -1 # if (3) downstream flow network flow length of RECENT cell does not # exist (= 0), than model resolution flow length is used and further # distinction of cases is based on upstream flow network flow length # of DOWNSTREAM cell elif fl_fnw_down == 0: # get upstream flow network flow length of DOWNSTREAM cell # (except for outflow) if tgb != tgb_out: fl_fnw_down_up = df_fl_fnw.loc[jjnd_down, f_corr_up] else: fl_fnw_down_up = 0 # if (3.1) upstream flow network flow length of DOWNSTREAM cell # does not exist (<= 0), than both cells have model resolution # flow length and downstream flow length part is set to model # resolution flow length (key 100) if fl_fnw_down_up <= 0: fl_down = df_fl_mr.loc[tgb, f_corr_down] df_fl_keys.at[tgb, f_down] = 100 # if (3.2) upstream flow network flow length of DOWNSTREAM # cell exists (> 0) than there is a transition from downstream # flow network to recent cell model resolution flow length # and the difference of model resolution and flow network # flow length is calculated (key -100). else: fl_down = df_fl_mr.loc[tgb, f_down] * 2 - fl_fnw_down_up df_fl_keys.at[tgb, f_down] = -100 # CALCULATE UPSTREAM AND SUM OF FLOW LENGTH OF RECENT CELL # headwater cells: cell flow length = downstream part if ser_tgb_type_headw.at[tgb]: df_fl.at[tgb, f_length] = fl_down # routing cells: cell flow length = downstream + upstream flow length else: # get upstream flow network flow length of RECENT cell fl_fnw_up = df_fl_fnw.loc[tgb, f_corr_up] # if upstream flow network flow length of RECENT cell is > 0 # set upstream flow length to flow network flow length (key 1) if fl_fnw_up > 0: fl_up = fl_fnw_up df_fl_keys.at[tgb, f_up] = 1 # if upstream flow network flow length is = 0 (< 0 cannot exist) # set upstream flow length to model resolution flow length (key 100) else: fl_up = df_fl_mr.loc[tgb, f_corr_up] df_fl_keys.at[tgb, f_up] = 100 # sum down- and upstream flow length parts (except for outflow) if tgb != tgb_out: df_fl.at[tgb, f_length] = fl_down + fl_up else: df_fl.at[tgb, f_length] = fl_up # DO CORRECTIONS # if structural mismatches and transition values cannot be compensated # by upstream flow length part (flow length < 0), set flow length to # the threshold def_fl_strct_mism, a symbolic very small value if np.isin(df_fl_keys.at[tgb, f_down], [-1, -100]) \ and df_fl.at[tgb, f_length] <= def_fl_strct_mism: df_fl.at[tgb, f_length] = def_fl_strct_mism # if flow length is unrealistic high (flow length > def_fl_upper_lim), # set flow length to the threshold def_fl_upper_lim if df_fl.at[tgb, f_length] > def_fl_upper_lim: df_fl.at[tgb, f_length] = def_fl_upper_lim # CALCULATE UPSTREAM CUMULATIVE FLOW LENGTH OF RECENT CELL # headwater cells: use lower cumulative flow length as upper # (not used in LARSIM, as there is no routing in head water cells) if ser_tgb_type_headw.at[tgb]: df_fl.at[tgb, f_upper] = df_fl.at[tgb, f_lower] # routing cell, which is not outlet: calculate sum of downstream # cumulative flow length and flow length of recent cell elif tgb != tgb_out: df_fl.at[tgb, f_upper] = df_fl.at[tgb, f_length] \ + df_fl.at[tgb, f_lower] # routing cell, which is outlet: use flow length of recent cell else: df_fl.at[tgb, f_upper] = df_fl.at[tgb, f_length] # if cell is a dummy cell else: # take value from downstream cell for upper and lower value df_fl.at[tgb, [f_lower, f_upper]] = df_fl.loc[ser_j_down.at[tgb], f_upper] return df_fl # %% Calculate cumulative flow length values respecting LARSIM conventions def calc_cum_ch_fl(df_fl, ser_tgb_up, ser_tgb_type_headw, ser_tgb_type_dummy): """ This function calculates the cumulative flow length values respecting LARSIM conventions. In elements with a difference of 1 [m] between upper and lower cumulative flow length (KMO and KMU) will the routing be ignored. Therefore, dummy and head water elements shall be set to a difference of 1 between KMO and KMU (KMO - KMU = 1). The function returns a pandas.DataFrame for KMO and KMU. JM 2021 Arguments: ----------- df_fl: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the model element ID as index and the following columns: - accumulative flow length at lower boundary of cell ('lower') - flow length value of cell ('length') - accumulative flow length at upper boundary of cell ('upper') ser_tgb_up: pandas.Series Series of corresponding upstream model element indices. Dummy elements are represented as empty array (e.g., []). ser_tgb_type_headw: pandas.Series Boolean Series, which identifies the headwater cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[1, 1, 0, 0], index=[1, 2, 3, 4], name='headwater', dtype='bool')) ser_tgb_type_dummy: pandas.Series Boolean Series, which identifies the dummy cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[0, 0, 0, 0], index=[1, 2, 3, 4], name='dummy', dtype='bool')) Returns: ----------- df_cum_ch_fl: pandas.DataFrame DataFrame of corresponding runoff concentration parameters. The DataFrame includes the model element ID as index and the following columns: - corresponding lower cumulative flow length values (KMU) [m] - corresponding upper cumulative flow length values (KMO) [m] """ # define internal string variables f_kmu = 'kmu' f_kmo = 'kmo' f_lower = 'lower' f_upper = 'upper' # Calculate Dummy adds for KMO and KMU # pre-allocate arrays for adds dummy_adds = pd.DataFrame(np.zeros((ser_tgb_up.shape[0], 2)), index=ser_tgb_up.index, columns=[f_lower, f_upper]) # add of outlet is 1 tgb_out = np.max(ser_tgb_up.index) dummy_adds.at[tgb_out, f_lower] = 1 # iterate all cells for tgb in reversed(ser_tgb_up.index): # get upstream cell IDs tgb_up = ser_tgb_up.at[tgb] # lower add of upstream cell is upper add of recent cell dummy_adds.at[tgb_up, f_lower] = dummy_adds.at[tgb, f_upper] # get indices of upstream dummy cells tgb_up_dummys = ser_tgb_type_dummy.loc[tgb_up].index # if upstream cell is not a dummy cell, upper add = lower add dummy_adds.at[tgb_up, f_upper] = dummy_adds.loc[tgb_up, f_lower].values # if upstream cell is a dummy cell, upper add = upper add + 1 dummy_adds.at[tgb_up_dummys, f_upper] \ = dummy_adds.loc[tgb_up_dummys, f_upper].values + 1 # Calculate head water adds headw_adds = pd.Series(np.zeros((ser_tgb_up.shape[0])), index=ser_tgb_up.index, name=f_upper) headw_adds.at[ser_tgb_type_headw] = 1 # Add Dummy and Head Water Adds ser_kmu = np.round(df_fl.loc[:, f_lower], 0) + dummy_adds.loc[:, f_lower] ser_kmo = np.round(df_fl.loc[:, f_upper], 0) + dummy_adds.loc[:, f_upper] \ + headw_adds # summarize parameters df_cum_ch_fl = pd.concat([ser_kmu, ser_kmo], axis=1) df_cum_ch_fl.columns = [f_kmu, f_kmo] return df_cum_ch_fl # %% calculate channel elevation differences def calc_ch_zdif(ser_zlower, df_fl, ser_tgb_up_nd, ser_tgb_type_headw, ser_tgb_type_dummy, def_sl_min=0.0001): """ This function calculates the channel elevation differences and corrects them applying the LARSIM conventions. This means, that (1) a minimum channel slope is maintained. The slope value might be very small, but is not allowed to be zero. As there are LARSIM-internal rounding mechanisms, slope values smaller 0.0001 mL/mZ have to be avoided. Additionally, (2) multiple upstream neighbour elements have to be balanced, as only one elevation value can be applied to a single element. Potential conservation is achieved moving the elevation difference to the upstream element neighbours. JM 2021 Arguments: ----------- ser_zlower: pandas.Series Series of model elements' minimum elevation corresponding to the serie's ascending index. (e.g., pd.Series([308.4, 341.0, 204.5, 133.8], index=[1, 2, 3, 4], name='ser_zlower')) df_fl: pandas.DataFrame DataFrame of corresponding model resolution flow length values. The DataFrame includes the model element ID as index and the following columns: - accumulative flow length at lower boundary of cell ('lower') - flow length value of cell ('length') - accumulative flow length at upper boundary of cell ('upper') ser_tgb_up_nd: pandas.Series Series of corresponding upstream model element indices ignoring dummy elements. These are represented as empty array (e.g., []). ser_tgb_type_headw: pandas.Series Boolean Series, which identifies the headwater cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[1, 1, 0, 0], index=[1, 2, 3, 4], name='headwater', dtype='bool')) ser_tgb_type_dummy: pandas.Series Boolean Series, which identifies the dummy cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[0, 0, 0, 0], index=[1, 2, 3, 4], name='dummy', dtype='bool')) def_sl_min: float (optional, default: 0.0001) minimum channel slope value to be maintained due to LARSIM-internal restrictions Returns: ----------- df_ch_zdif: pandas.DataFrame DataFrame of corrected element elevation values. The DataFrame includes the model element ID as index and the following columns: - slope correction value [m] ('corr_sl') - balancing correction value [m] ('corr_bal') - corrected minimum channel elevation [m] ('lower_corr') - corrected channel elevation difference [m] ('ch_zdif') - corrected maximum channel elevation [m] ('upper_corr') """ # define internal string variables f_length = 'length' f_ch_zdif = 'ch_zdif' f_corr_sl = 'corr_sl' f_corr_bal = 'corr_bal' f_lower_corr = 'lower_corr' f_upper_corr = 'upper_corr' # pre-allocate arrays df_ch_zdif = pd.DataFrame( np.zeros((ser_tgb_up_nd.shape[0], 5)) * np.nan, index=ser_tgb_up_nd.index, columns=[f_corr_sl, f_corr_bal, f_lower_corr, f_ch_zdif, f_upper_corr]) # fill input columns (min and max elevation within cell) df_ch_zdif.lower_corr = ser_zlower # set dummy cell values to nan df_ch_zdif.at[ser_tgb_type_dummy, :] = np.nan # iterate all cells for tgb in reversed(ser_tgb_up_nd.index): # routing cells if not ser_tgb_type_dummy[tgb] and not ser_tgb_type_headw[tgb]: # get min elevation within cell zlower = df_ch_zdif.at[tgb, f_lower_corr] # find upstream cell ID number tgb_up_nd = ser_tgb_up_nd.at[tgb] # get elevation value for upstream cell zupper = df_ch_zdif.loc[tgb_up_nd, f_lower_corr] # calculate range threshold to prevent slope < def_sl_min zdif_sl_thr = def_sl_min * df_fl.at[tgb, f_length] # find cell pairs lower threshold slope sl_corr_bool = (zupper - zlower) <= zdif_sl_thr # if there is any, correct height differences lower than threshold if np.any(sl_corr_bool): # get and set min elevation correction values hd_corr = zdif_sl_thr - (zupper.loc[sl_corr_bool] - zlower) df_ch_zdif.at[tgb_up_nd[sl_corr_bool], f_corr_sl] = hd_corr # get and set max elevation correction values zupper_sl_corr = zupper.loc[sl_corr_bool] + hd_corr df_ch_zdif.at[tgb_up_nd[sl_corr_bool], f_lower_corr] = zupper_sl_corr zupper.at[sl_corr_bool] = zupper_sl_corr.iloc[0] else: df_ch_zdif.at[tgb_up_nd, f_corr_sl] = 0 # if more than one upstream cells exist... if np.any(tgb_up_nd): # ...calculate minimum value zupper_min = np.nanmin(zupper) df_ch_zdif.at[tgb, f_upper_corr] = zupper_min df_ch_zdif.at[tgb_up_nd, f_lower_corr] = zupper_min df_ch_zdif.at[tgb_up_nd, f_corr_bal] = zupper_min - zupper # if only one upstream cell exists take elevation value of it else: df_ch_zdif.at[tgb_up_nd, f_corr_bal] = 0 df_ch_zdif.at[tgb, f_upper_corr] = zupper # calculate elevation range within cell df_ch_zdif.loc[:, f_ch_zdif] = \ df_ch_zdif.loc[:, f_upper_corr] - df_ch_zdif.loc[:, f_lower_corr] return df_ch_zdif # %% calculate runoff concentration parameters def calc_roconc_params(ser_ch_zmin, ser_zmax, ser_fl_ch_down, ser_fl_headw_len, ser_tgb_type_headw, ser_tgb_type_dummy, cellsz, def_zmin_rout_fac=0.5, def_zmax_fac=1): """ This function calculates the runoff concentration parameters needed for the retention time estimation using the Kirpich formula (Kirpich, 1940). JM 2021 Arguments: ----------- ser_ch_zmin: pandas.Series [m] Series of model elements' minimum channel elevation corresponding to the serie's ascending index. (e.g., pd.Series([302.4, 330.0, 180.5, 120.8], index=[1, 2, 3, 4], name='ser_ch_zmin')) ser_zmax: pandas.Series Series of model elements' maximum elevation corresponding to the serie's ascending index. [m] (e.g., pd.Series([308.4, 341.0, 204.5, 133.8], index=[1, 2, 3, 4], name='ser_zmax')) ser_fl_ch_down: pandas.Series [m] Series of model elements' downstream channel flow length parts corresponding to the serie's ascending index. (e.g., pd.Series([202.4, 120.0, 29.5, 13.8], index=[1, 2, 3, 4], name='ser_fl_ch_down')) ser_fl_headw_len: pandas.Series Series of model elements' headwater flow length parts corresponding to the serie's ascending index. [m] (e.g., pd.Series([110.4, 231.0, 204.5, 133.8], index=[1, 2, 3, 4], name='ser_fl_headw_len')) ser_tgb_type_headw: pandas.Series Boolean Series, which identifies the headwater cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[1, 1, 0, 0], index=[1, 2, 3, 4], name='headw', dtype='bool')) ser_tgb_type_dummy: pandas.Series Boolean Series, which identifies the dummy cells corresponding to the serie's ascending index with True. (e.g., pd.Series(data=[0, 0, 0, 0], index=[1, 2, 3, 4], name='dummy', dtype='bool')) cellsz: int Integer, which defines the model element edge length in [m] (e.g., 100) def_zmin_rout_fac: float (optional, default: 0.5) Factor to vary the lower elevation of runoff concentration between the minimum (0) and maximum (1) channel elevation of the element. By default, the factor is set to the average elevation (0.5) [-] def_zmax_fac: float (optional, default: 1) Factor to vary the upper elevation of runoff concentration between the minimum (0) and maximum (1) elevation of the element. By default, the factor is set to the maximum elevation (1) [-] Returns: ----------- df_roconc_params: pandas.DataFrame DataFrame of runoff concentration parameters. The DataFrame includes the model element ID as index and the following columns: - lower runoff concentration elevation [m] ('hut') - upper runoff concentration elevation [m] ('hot') - maximum runoff concentration flow length [km] ('tal') """ # define internal string variables f_tal = 'tal' f_hut = 'hut' f_hot = 'hot' # calculate lower runoff concentration elevation # define HUT for head waters as low point of cell ser_hut = ser_ch_zmin + (ser_zmax - ser_ch_zmin) * def_zmin_rout_fac ser_hut.at[ser_tgb_type_headw] = ser_ch_zmin.loc[ser_tgb_type_headw] # calculate upper runoff concentration elevation ser_hot = ser_hut + (ser_zmax - ser_hut) * def_zmax_fac # correct negative and zero HOT-HUT zdif_corr_ii = np.round(ser_hot, 1) - np.round(ser_hut, 1) <= 0 ser_hot.at[zdif_corr_ii] = ser_hut.loc[zdif_corr_ii] + 0.1 # calculate maximum flow length # define TAL for cells with stream as mean of streight and diagonal line ser_tal = pd.Series(np.zeros(ser_hot.shape) + (np.sqrt(2) + 1) * cellsz / 4, index=ser_hot.index, name=f_tal) # define TAL for head waters balancing flow length upstream values ser_tal.at[ser_tgb_type_headw] = \ ser_fl_ch_down.loc[ser_tgb_type_headw] \ + ser_fl_headw_len.loc[ser_tgb_type_headw] # convert from [m] to [km] ser_tal = ser_tal / 1000 # summarize series df_roconc_params = pd.concat([ser_hut, ser_hot, ser_tal], axis=1) df_roconc_params.columns = [f_hut, f_hot, f_tal] df_roconc_params.at[ser_tgb_type_dummy, :] = np.nan return df_roconc_params # %% calculation # define key-words to identify element types str_headw = 'headwater' str_routing = 'routing' str_dummy = 'dummy' # define internal variables f_tgb = 'tgb' f_tgb_down = 'tgb_down' f_tgb_type = 'tgb_type' f_tgb_a = 'tgb_a' f_x = 'x' f_y = 'y' f_nrflv = 'nrflv' f_ft = 'ft' # define arcpy default field names f_pt_x = 'POINT_X' f_pt_y = 'POINT_Y' # calculate model network parameters if print_out: print('...import and pre-process data...') # Import model cell feature class attribute table and convert to pandas.DataFrame structarr_tgb_in = arcpy.da.FeatureClassToNumPyArray( name_tgb_par_p, [f_tgb, f_tgb_type, f_tgb_down, f_tgb_a, f_pt_x, f_pt_y, field_fl_mr, field_dem_max_mr, field_dem_min_mr, field_fl_fnw_mean_mr]) df_tgb_in = pd.DataFrame(np.sort(structarr_tgb_in, order=f_tgb), index=structarr_tgb_in[f_tgb]) df_tgb_in = df_tgb_in.rename(columns={f_pt_x: f_x, f_pt_y: f_y}) # convert string identifiers of model cells to logical arrays tgb_type_lookup, tgb_type_tgb_id = np.unique(df_tgb_in.loc[:, f_tgb_type], return_inverse=True) ser_tgb_type_headw = pd.Series( tgb_type_tgb_id == np.nonzero(tgb_type_lookup == str_headw)[0][0], dtype=bool, index=df_tgb_in.index, name=str_headw) ser_tgb_type_routing = pd.Series(tgb_type_tgb_id == np.nonzero( tgb_type_lookup == str_routing)[0][0], dtype=bool, index=df_tgb_in.index, name=str_routing) ser_tgb_type_dummy = pd.Series(tgb_type_tgb_id == np.nonzero( tgb_type_lookup == str_dummy)[0][0], dtype=bool, index=df_tgb_in.index, name=str_dummy) # calculate upstream model element indices ser_tgb_up = tc.get_upstream_idx(df_tgb_in.loc[:, f_tgb_down]) # get up- and downstream model cell indices while ignoring dummy elements ser_tgb_down_nd = tc.get_downstream_idx_ign_dumm( df_tgb_in.loc[:, f_tgb_down], ser_tgb_type_dummy) ser_tgb_up_nd = tc.get_upstream_idx_ign_dumm( df_tgb_in.loc[:, f_tgb_down], ser_tgb_type_headw, ser_tgb_type_dummy) # calculate model network parameters if print_out: print('...calculate model network parameters...') # redistribute model resolution flow length values at confluence points ser_fl = copy.deepcopy(df_tgb_in.loc[:, field_fl_mr]) df_fl_mr = redistr_flowl_at_conflp(ser_fl, ser_tgb_down_nd, ser_tgb_up_nd, ser_tgb_type_headw, ser_tgb_type_dummy) # redistribute flow network flow length values at confluence points # (including redistribution of very small flow length values) ser_fl_fnw = copy.deepcopy(df_tgb_in.loc[:, field_fl_fnw_mean_mr]) df_fl_fnw = redistr_flowl_polyl_at_conflp( ser_fl_fnw, ser_tgb_down_nd, ser_tgb_up_nd, ser_tgb_type_headw, ser_tgb_type_dummy, cellsz) # merge flow length resulting from model resolution raster and flow network polylines df_fl = merge_fnw_and_mr_fl(df_fl_mr, df_fl_fnw, df_tgb_in.loc[:, f_tgb_down], ser_tgb_down_nd, ser_tgb_type_headw, ser_tgb_type_dummy, def_fl_upper_lim=def_fl_upper_lim, def_fl_strct_mism=def_fl_strct_mism) # calculate cumulative flow length values respecting LARSIM conventions df_cum_ch_fl = calc_cum_ch_fl(df_fl, ser_tgb_up, ser_tgb_type_headw, ser_tgb_type_dummy) # calculate channel elevation differences df_ch_zdif = calc_ch_zdif(df_tgb_in.loc[:, field_dem_min_mr], df_fl, ser_tgb_up_nd, ser_tgb_type_headw, ser_tgb_type_dummy, def_sl_min=def_sl_min) # calculate slope for routing ser_ch_gef = tc.calc_ch_sl(df_ch_zdif.loc[:, 'ch_zdif'], df_fl.loc[:, 'length'], ser_tgb_type_routing, def_sl_excl_quant=def_sl_excl_quant) # calculate runoff concentration parameters if print_out: print('...calculate runoff concentration parameters...') df_roconc_params = calc_roconc_params(df_ch_zdif.lower_corr, df_tgb_in.loc[:, field_dem_max_mr], df_fl_mr.corr_down, df_fl.length, ser_tgb_type_headw, ser_tgb_type_dummy, cellsz, def_zmin_rout_fac=def_zmin_rout_fac, def_zmax_fac=def_zmax_fac) # calculate routing parameters if print_out: print('...calculate routing parameters...') # calculate channel-forming discharge ser_ch_form_q = tc.calc_ch_form_q(df_tgb_in.loc[:, f_tgb_a], df_tgb_in.loc[:, f_tgb_down], q_spec=q_spec_ch, ser_q_in_corr=ser_q_in_corr) # calculate tripel trapezoid river cross section df_ttp = tc.calc_ttp(ser_ch_form_q, ser_tgb_type_routing, ch_est_method=ch_est_method, def_bx=def_bx, def_bbx_fac=def_bbx_fac, def_bnm=def_bnm, def_bnx=def_bnx, def_bnvrx=def_bnvrx, def_skm=def_skm, def_skx=def_skx) # calculate informative parameters if print_out: print('...calculate informative parameters...') # calculate inflow catchment size informative value ser_area_outfl = df_tgb_in.loc[:, f_tgb_a] + (cellsz**2) / (10**6) ser_area_outfl.at[~ser_tgb_type_routing] = 0 # create names of elements ser_nrflv =
pd.Series(df_tgb_in.shape[0]*'', index=df_tgb_in.index, name=f_nrflv)
pandas.Series
import os from unittest.mock import patch from itertools import product import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from mavedbconvert import validators, enrich2, constants from tests import ProgramTestCase class TestEnrich2ParseInput(ProgramTestCase): def setUp(self): super().setUp() self.wt = "GCTGAT" self.path = os.path.join(self.data_dir, "enrich2", "test_store.h5") self.store = pd.HDFStore(self.path, "w") self.enrich2 = enrich2.Enrich2( self.path, wt_sequence=self.wt, offset=0, one_based=True ) scores, shared, counts, *_ = self.mock_variants_frames() self.store["/main/variants/scores/"] = scores self.store["/main/variants/scores_shared/"] = shared self.store["/main/variants/counts/"] = counts scores, shared, counts, *_ = self.mock_synonymous_frames() self.store["/main/synonymous/scores/"] = scores self.store["/main/synonymous/scores_shared/"] = shared self.store["/main/synonymous/counts/"] = counts self.files = [ os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_counts_c1.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_counts_c2.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_scores_c1.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_scores_c2.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_variants_counts_c1.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_variants_counts_c2.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_variants_scores_c1.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_variants_scores_c2.csv", ) ), ] self.store.close() self.store = pd.HDFStore(self.path, mode="r") def tearDown(self): self.store.close() def mock_variants_frames(self, scores_hgvs=None, counts_hgvs=None): counts_index = pd.MultiIndex.from_product( [["c1", "c2"], ["rep1", "rep2"], ["t0", "t1"]], names=["condition", "selection", "timepoint"], ) scores_shared_index = pd.MultiIndex.from_product( [["c1", "c2"], ["rep1", "rep2"], ["SE", "score"]], names=["condition", "selection", "value"], ) scores_index = pd.MultiIndex.from_product( [["c1", "c2"], ["SE", "epsilon", "score"]], names=["condition", "value"] ) if scores_hgvs is None: scores_hgvs = [ "c.2C>T (p.Ala1Val), c.3T>C (p.Ala1=)", "c.5A>G (p.Asp2Gly), c.6T>A (p.Asp2Glu)", ] if counts_hgvs is None: counts_hgvs = [ "c.2C>T (p.Ala1Val), c.3T>C (p.Ala1=)", "c.5A>G (p.Asp2Gly), c.6T>A (p.Asp2Glu)", ] expected = self.parse_rows(scores_hgvs) expected_nt = [t[0] for t in expected] expected_pro = [t[1] for t in expected] scores = pd.DataFrame( np.random.randn(len(scores_hgvs), len(scores_index)), index=scores_hgvs, columns=scores_index, ) shared = pd.DataFrame( np.random.randn(len(scores_hgvs), len(scores_shared_index)), index=scores_hgvs, columns=scores_shared_index, ) counts = pd.DataFrame( np.random.randint( low=0, high=100, size=(len(scores_hgvs), len(counts_index)) ), index=counts_hgvs, columns=counts_index, ) return scores, shared, counts, expected_nt, expected_pro def mock_synonymous_frames(self, scores_hgvs=None, counts_hgvs=None): counts_index = pd.MultiIndex.from_product( [["c1", "c2"], ["rep1", "rep2"], ["t0", "t1"]], names=["condition", "selection", "timepoint"], ) scores_shared_index = pd.MultiIndex.from_product( [["c1", "c2"], ["rep1", "rep2"], ["SE", "score"]], names=["condition", "selection", "value"], ) scores_index = pd.MultiIndex.from_product( [["c1", "c2"], ["SE", "epsilon", "score"]], names=["condition", "value"] ) if scores_hgvs is None: scores_hgvs = ["p.Ala1Val, p.Ala1=", "p.Asp2Gly, p.Asp2Glu"] if counts_hgvs is None: counts_hgvs = ["p.Ala1Val, p.Ala1=", "p.Asp2Gly, p.Asp2Glu"] expected = self.parse_rows(scores_hgvs) expected_nt = [t[0] for t in expected] expected_pro = [t[1] for t in expected] scores = pd.DataFrame( np.random.randn(len(scores_hgvs), len(scores_index)), index=scores_hgvs, columns=scores_index, ) shared = pd.DataFrame( np.random.randn(len(scores_hgvs), len(scores_shared_index)), index=scores_hgvs, columns=scores_shared_index, ) counts = pd.DataFrame( np.random.randint( low=0, high=100, size=(len(scores_hgvs), len(counts_index)) ), index=counts_hgvs, columns=counts_index, ) return scores, shared, counts, expected_nt, expected_pro def tearDown(self): self.store.close() super().tearDown() if os.path.isdir(self.enrich2.output_directory): os.removedirs(self.enrich2.output_directory) def parse_rows(self, variants, element=None): return [self.enrich2.parse_row((v, element)) for v in list(variants)] @patch.object(pd.DataFrame, "to_csv", return_value=None) def test_saves_to_output_directory(self, patch): output = os.path.join(self.data_dir, "enrich2", "new") p = enrich2.Enrich2(src=self.store, dst=output, wt_sequence=self.wt, offset=0) p.parse_input(p.load_input_file()) for call_args in patch.call_args_list: self.assertIn(output, call_args[0][0]) @patch.object(pd.DataFrame, "to_csv", return_value=None) def test_saves_to_file_location_if_no_dst_supplied(self, patch): p = enrich2.Enrich2(src=self.store, wt_sequence=self.wt, offset=0) p.parse_input(self.enrich2.load_input_file()) expected_base_path = os.path.normpath( os.path.join(self.data_dir, "enrich2", "test_store") ) for call_args in patch.call_args_list: self.assertIn(expected_base_path, call_args[0][0]) @patch("mavedbconvert.enrich2.get_replicate_score_dataframes") def test_iterates_over_all_available_tables(self, patch): self.enrich2.convert() self.assertIn(constants.synonymous_table, patch.call_args_list[0][0]) self.assertIn(constants.variants_table, patch.call_args_list[1][0]) @patch( "mavedbconvert.enrich2.drop_null", side_effect=lambda scores_df, counts_df: (scores_df, counts_df), ) def test_calls_drop_null(self, patch): self.enrich2.convert() patch.assert_called() def test_scores_index_order_retained_in_hgvs_columns(self): self.enrich2.convert() *_, expected_nt, expected_pro = self.mock_variants_frames() nt_pro_tuples = self.parse_rows( self.store["/main/variants/scores/"]["c1"].index ) self.assertListEqual(expected_nt, [t[0] for t in nt_pro_tuples]) self.assertListEqual(expected_pro, [t[1] for t in nt_pro_tuples]) *_, expected_nt, expected_pro = self.mock_synonymous_frames() nt_pro_tuples = self.parse_rows( self.store["/main/synonymous/scores/"]["c1"].index ) self.assertListEqual(expected_nt, [t[0] for t in nt_pro_tuples]) self.assertListEqual(expected_pro, [t[1] for t in nt_pro_tuples]) def test_counts_index_order_retained_in_hgvs_columns(self): self.enrich2.convert() *_, expected_nt, expected_pro = self.mock_variants_frames() nt_pro_tuples = self.parse_rows( self.store["/main/variants/counts/"]["c1"].index ) self.assertListEqual(expected_nt, [t[0] for t in nt_pro_tuples]) self.assertListEqual(expected_pro, [t[1] for t in nt_pro_tuples]) *_, expected_nt, expected_pro = self.mock_synonymous_frames() nt_pro_tuples = self.parse_rows( self.store["/main/synonymous/counts/"]["c1"].index ) self.assertListEqual(expected_nt, [t[0] for t in nt_pro_tuples]) self.assertListEqual(expected_pro, [t[1] for t in nt_pro_tuples]) def test_outputs_expected_synonymous_counts_for_each_condition(self): self.enrich2.convert() *_, _, expected_pro = self.mock_synonymous_frames() # C1 result = pd.read_csv(self.files[0], sep=",") expected = pd.DataFrame({constants.pro_variant_col: expected_pro}) for (rep, tp) in product(["rep1", "rep2"], ["t0", "t1"]): expected[rep + "_" + tp] = self.store["/main/synonymous/counts/"]["c1"][ rep ][tp].values.astype(int) assert_frame_equal(result, expected) # C2 result = pd.read_csv(self.files[1], sep=",") expected = pd.DataFrame({constants.pro_variant_col: expected_pro}) for (rep, tp) in product(["rep1", "rep2"], ["t0", "t1"]): expected[rep + "_" + tp] = self.store["/main/synonymous/counts/"]["c2"][ rep ][tp].values.astype(int) assert_frame_equal(result, expected) def test_outputs_expected_synonymous_scores_for_each_condition(self): self.enrich2.convert() *_, _, expected_pro = self.mock_synonymous_frames() table_scores = "/main/synonymous/scores/" table_shared = "/main/synonymous/scores_shared/" # C1 result = pd.read_csv(self.files[2], sep=",") expected = pd.DataFrame( { constants.pro_variant_col: expected_pro, "SE": self.store[table_scores]["c1"]["SE"].values.astype(float), "epsilon": self.store[table_scores]["c1"]["epsilon"].values.astype( float ), "score": self.store[table_scores]["c1"]["score"].values.astype(float), }, columns=[ constants.pro_variant_col, "SE", "epsilon", "score", "SE_rep1", "score_rep1", "SE_rep2", "score_rep2", ], ) for (value, rep) in product(["SE", "score"], ["rep1", "rep2"]): expected[value + "_" + rep] = self.store[table_shared]["c1"][rep][ value ].values.astype(float) assert_frame_equal(result, expected) # C2 result = pd.read_csv(self.files[3], sep=",") expected = pd.DataFrame( { constants.pro_variant_col: expected_pro, "SE": self.store[table_scores]["c2"]["SE"].values.astype(float), "epsilon": self.store[table_scores]["c2"]["epsilon"].values.astype( float ), "score": self.store[table_scores]["c2"]["score"].values.astype(float), }, columns=[ constants.pro_variant_col, "SE", "epsilon", "score", "SE_rep1", "score_rep1", "SE_rep2", "score_rep2", ], ) for (value, rep) in product(["SE", "score"], ["rep1", "rep2"]): expected[value + "_" + rep] = self.store[table_shared]["c2"][rep][ value ].values.astype(float) assert_frame_equal(result, expected) def test_outputs_expected_variants_counts_for_each_condition(self): self.enrich2.convert() *_, expected_nt, expected_pro = self.mock_variants_frames() # C1 result = pd.read_csv(self.files[4], sep=",") expected = pd.DataFrame( { constants.nt_variant_col: expected_nt, constants.pro_variant_col: expected_pro, } ) for (rep, tp) in product(["rep1", "rep2"], ["t0", "t1"]): expected[rep + "_" + tp] = self.store["/main/variants/counts/"]["c1"][rep][ tp ].values.astype(int) assert_frame_equal(result, expected) # C2 result = pd.read_csv(self.files[5], sep=",") expected = pd.DataFrame( { constants.nt_variant_col: expected_nt, constants.pro_variant_col: expected_pro, } ) for (rep, tp) in product(["rep1", "rep2"], ["t0", "t1"]): expected[rep + "_" + tp] = self.store["/main/variants/counts/"]["c2"][rep][ tp ].values.astype(int) assert_frame_equal(result, expected) def test_outputs_expected_variants_scores_for_each_condition(self): self.enrich2.convert() *_, expected_nt, expected_pro = self.mock_variants_frames() table_scores = "/main/variants/scores/" table_shared = "/main/variants/scores_shared/" # C1 result = pd.read_csv(self.files[6], sep=",") expected = pd.DataFrame( { constants.pro_variant_col: expected_pro, constants.nt_variant_col: expected_nt, "SE": self.store[table_scores]["c1"]["SE"].values.astype(float), "epsilon": self.store[table_scores]["c1"]["epsilon"].values.astype( float ), "score": self.store[table_scores]["c1"]["score"].values.astype(float), }, columns=[ constants.nt_variant_col, constants.pro_variant_col, "SE", "epsilon", "score", "SE_rep1", "score_rep1", "SE_rep2", "score_rep2", ], ) for (value, rep) in product(["SE", "score"], ["rep1", "rep2"]): expected[value + "_" + rep] = self.store[table_shared]["c1"][rep][ value ].values.astype(float) assert_frame_equal(result, expected) # C2 result = pd.read_csv(self.files[7], sep=",") expected = pd.DataFrame( { constants.pro_variant_col: expected_pro, constants.nt_variant_col: expected_nt, "SE": self.store[table_scores]["c2"]["SE"].values.astype(float), "epsilon": self.store[table_scores]["c2"]["epsilon"].values.astype( float ), "score": self.store[table_scores]["c2"]["score"].values.astype(float), }, columns=[ constants.nt_variant_col, constants.pro_variant_col, "SE", "epsilon", "score", "SE_rep1", "score_rep1", "SE_rep2", "score_rep2", ], ) for (value, rep) in product(["SE", "score"], ["rep1", "rep2"]): expected[value + "_" + rep] = self.store[table_shared]["c2"][rep][ value ].values.astype(float) assert_frame_equal(result, expected) def test_counts_and_scores_output_define_same_variants_when_input_does_not(self): self.store.close() self.store = pd.HDFStore(self.path, "w") scores, shared, counts, expected_nt, expected_pro = self.mock_variants_frames( counts_hgvs=[ "c.2C>T (p.Ala1Val), c.3T>C (p.Ala1=)", # Does not appear in scores "c.5A>G (p.Asp2Gly), c.6T>C (p.Asp2=)", ] ) self.store["/main/variants/scores/"] = scores self.store["/main/variants/scores_shared/"] = shared self.store["/main/variants/counts/"] = counts self.store.close() self.enrich2.convert() df_counts = pd.read_csv(self.files[4]) # c1 df_scores = pd.read_csv(self.files[6]) # c1 validators.validate_datasets_define_same_variants(df_scores, df_counts) df_counts = pd.read_csv(self.files[5]) # c2 df_scores = pd.read_csv(self.files[7]) # c2 validators.validate_datasets_define_same_variants(df_scores, df_counts) def test_drops_null_rows(self): self.store.close() self.store = pd.HDFStore(self.path, "w") scores, shared, counts, expected_nt, expected_pro = self.mock_variants_frames() # Add a null row scores = scores.reindex(scores.index.values.tolist() + ["c.1G>G (p.Ala1=)"]) shared = shared.reindex(shared.index.values.tolist() + ["c.1G>G (p.Ala1=)"]) counts = counts.reindex(counts.index.values.tolist() + ["c.1G>G (p.Ala1=)"]) self.store["/main/variants/scores/"] = scores self.store["/main/variants/scores_shared/"] = shared self.store["/main/variants/counts/"] = counts self.store.close() self.enrich2.convert() df_counts = pd.read_csv(self.files[4]) # c1 df_scores = pd.read_csv(self.files[6]) # c1 self.assertNotIn("c.1G>G", df_counts[constants.nt_variant_col]) self.assertNotIn("c.1G>G", df_scores[constants.nt_variant_col]) self.assertNotIn("p.Ala1=", df_counts[constants.pro_variant_col]) self.assertNotIn("p.Ala1=", df_scores[constants.pro_variant_col]) df_counts = pd.read_csv(self.files[5]) # c1 df_scores = pd.read_csv(self.files[7]) # c1 self.assertNotIn("c.1G>G", df_counts[constants.nt_variant_col]) self.assertNotIn("c.1G>G", df_scores[constants.nt_variant_col]) self.assertNotIn("p.Ala1=", df_counts[constants.pro_variant_col]) self.assertNotIn("p.Ala1=", df_scores[constants.pro_variant_col]) class TestEnrich2ParseInputNoVariants(ProgramTestCase): def setUp(self): super().setUp() self.wt = "GCTGAT" self.path = os.path.join(self.data_dir, "enrich2", "test_store.h5") self.store = pd.HDFStore(self.path, "w") self.enrich2 = enrich2.Enrich2( self.path, wt_sequence=self.wt, offset=0, one_based=True ) scores, shared, counts, *_ = self.mock_synonymous_frames() self.store["/main/synonymous/scores/"] = scores self.store["/main/synonymous/scores_shared/"] = shared self.store["/main/synonymous/counts/"] = counts self.files = [ os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_counts_c1.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_counts_c2.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_scores_c1.csv", ) ), os.path.normpath( os.path.join( self.data_dir, "enrich2", "test_store", "mavedb_test_store_synonymous_scores_c2.csv", ) ), ] self.store.close() self.store =
pd.HDFStore(self.path, mode="r")
pandas.HDFStore
# Copyright 2021 AI Singapore. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import os import pandas as pd from rarity.data_loader import CSVDataLoader, DataframeLoader # add this in the conftest.py under tests folder from selenium.webdriver.chrome.options import Options def pytest_setup_options(): options = Options() # added mainly for integration test in gitlab-ci to resolve # (unknown error: DevToolsActivePort file doesn't exist) # (The process started from chrome location /usr/bin/google-chrome is no longer running, # so ChromeDriver is assuming that Chrome has crashed.) # solution reference => https://github.com/plotly/dash/issues/1420 options.add_argument('--no-sandbox') return options @pytest.fixture def csv_loader_single_modal_reg(): SAMPLE_DATA_DIR = './tests/sample_data/regression/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelA.csv') MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Regression' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_single_modal_cls(): SAMPLE_DATA_DIR = './tests/sample_data/classification/binary/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelA.csv') MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_reg(): SAMPLE_DATA_DIR = './tests/sample_data/regression/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Regression' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_cls(): SAMPLE_DATA_DIR = './tests/sample_data/classification/binary/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_cls_multi(): SAMPLE_DATA_DIR = './tests/sample_data/classification/multiclass/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'multiclass_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Multiclass-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_single_modal_reg(): DF_FEATURES = pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6]], columns=['x1', 'x2', 'x3']) DF_Y_TRUE = pd.DataFrame([[22.6], [36.6]], columns=['actual']) DF_Y_PRED_1 = pd.DataFrame([[22.2], [35.0]], columns=['pred']) MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Regression' data_loader = DataframeLoader(DF_FEATURES, DF_Y_TRUE, df_yPred_ls=[DF_Y_PRED_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_single_modal_cls(): DF_FEATURES = pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6], [0.3, 2.3, 5.2]], columns=['x1', 'x2', 'x3']) DF_Y_TRUE = pd.DataFrame([[0], [1], [1]], columns=['actual']) DF_Y_PRED_1 = pd.DataFrame([[0.38, 0.62], [0.86, 0.14], [0.78, 0.22]], columns=['0', '1']) MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = DataframeLoader(DF_FEATURES, DF_Y_TRUE, df_yPred_ls=[DF_Y_PRED_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_bimodal_reg(): DF_FEATURES = pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6]], columns=['x1', 'x2', 'x3']) DF_Y_TRUE = pd.DataFrame([[22.6], [36.6]], columns=['actual']) DF_Y_PRED_1 = pd.DataFrame([[22.2], [35.0]], columns=['pred']) DF_Y_PRED_2 = pd.DataFrame([[22.2], [35.0]], columns=['pred']) MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Regression' data_loader = DataframeLoader(DF_FEATURES, DF_Y_TRUE, df_yPred_ls=[DF_Y_PRED_1, DF_Y_PRED_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_bimodal_cls(): DF_FEATURES = pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6]], columns=['x1', 'x2', 'x3']) DF_Y_TRUE = pd.DataFrame([[0], [1]], columns=['actual']) DF_Y_PRED_1 = pd.DataFrame([[0.38, 0.62], [0.86, 0.14]], columns=['0', '1']) DF_Y_PRED_2 = pd.DataFrame([[0.56, 0.44], [0.68, 0.32]], columns=['0', '1']) MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = DataframeLoader(DF_FEATURES, DF_Y_TRUE, df_yPred_ls=[DF_Y_PRED_1, DF_Y_PRED_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_bimodal_cls_multi(): DF_FEATURES =
pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6], [0.3, 2.3, 5.2]], columns=['x1', 'x2', 'x3'])
pandas.DataFrame
# -*- coding: utf-8 -*- import logging logger = logging.getLogger('main_logger') import pandas as pd import dataset import model from torch.utils.data import DataLoader import torch import torch.nn as nn from tqdm.auto import tqdm def predict_effnet(conf): device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") # import the test dataframe where the id of the test images are test_df =
pd.read_csv(conf['dir_df_test'])
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Project 2 - GeoTweet # # @Author <NAME> (daddyjab)<br> # @Date 3/25/19<br> # @File ETL_for_GeoTweet # # # Dependencies # In[1]: # Dependencies import tweepy import json import time import os import pandas as pd from datetime import datetime from dateutil import tz import requests from pprint import pprint # Database dependencies # Imports the method used for connecting to DBs from sqlalchemy import create_engine, asc, desc, between, distinct, func, null, nullsfirst, nullslast, or_, and_, not_ from sqlalchemy.orm import sessionmaker, relationship # Imports the methods needed to abstract classes into tables from sqlalchemy.ext.declarative import declarative_base # Allow us to declare column types from sqlalchemy import Column, Integer, String, Float, ForeignKey # API Keys from api_config import * # Twitter API # key_twitter_tweetquestor_consumer_api_key # key_twitter_tweetquestor_consumer_api_secret_key # key_twitter_tweetquestor_access_token # key_twitter_tweetquestor_access_secret_token # Flickr API # key_flicker_infoquestor_key # key_flicker_infoquestor_secret # # Database Configuration for `locations` and `trends` Tables # In[2]: # Setup the database using SQLAlchemy Base = declarative_base() # In[3]: # Database schema for Twitter 'locations' table class Location(Base): __tablename__ = 'locations' # Defining the columns for the table 'locations', # which will hold all of the locations in the U.S. for which # top trends data is available, as well as location specific # info like latitude/longitude id = Column( Integer, primary_key = True) woeid = Column( Integer ) twitter_country = Column( String(100) ) tritter_country_code = Column( String(10) ) twitter_name = Column( String(250) ) twitter_parentid = Column( Integer ) twitter_type = Column( String(50) ) country_name = Column( String(250) ) country_name_only = Column( String(250) ) country_woeid = Column( Integer ) county_name = Column( String(250) ) county_name_only = Column( String(250) ) county_woeid = Column( Integer ) latitude = Column( Float ) longitude = Column( Float ) name_full = Column( String(250) ) name_only = Column( String(250) ) name_woe = Column( String(250) ) place_type = Column( String(250) ) state_name = Column( String(250) ) state_name_only = Column( String(250) ) state_woeid = Column( Integer ) timezone = Column( String(250) ) # Relationship between Location and Trend is through 'woeid' in each trend = relationship("Trend", backref='Trend.woeid', primaryjoin='Location.woeid==Trend.woeid', lazy='dynamic') # Database schema for Twitter 'trends' table class Trend(Base): __tablename__ = 'trends' # Defining the columns for the table 'trends', # which will hold all of the top trends associated with # locations in the 'locations' table id = Column( Integer, primary_key = True) woeid = Column( Integer, ForeignKey(Location.woeid) ) twitter_as_of = Column( String(100) ) twitter_created_at = Column( String(100) ) twitter_name = Column( String(250) ) twitter_tweet_name = Column( String(250) ) twitter_tweet_promoted_content = Column( String(250) ) twitter_tweet_query = Column( String(250) ) twitter_tweet_url = Column( String(250) ) twitter_tweet_volume = Column( Float ) # In[ ]: # # Database Setup for `twitter_trends.db` Database # In[4]: # Create an engine that stores data in the local directory's SQLite file # 'data/twitter_trends.db'. # NOTE: Since this Jupyter notebook is running in the ./resources folder # the path to the database is a little different db_path_jupyter_notebook = "sqlite:///../data/twitter_trends.db" # But the Flask app will run from the main folder db_path_flask_app = "sqlite:///data/twitter_trends.db" engine = create_engine(db_path_jupyter_notebook) # Create all table in the engine # (The equivalent of Create Table statements in raw SQL) Base.metadata.create_all(engine) # Bind the engine to the metadata of the Base class so that the # declaratives can be accessed through a DBSession instance Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) # A DBSession() instance establishes all conversations with the database # and represents a "staging zone" for all the objects loaded into the # database session object. Any change made against the objects in the # session won't be persisted into the database until you call # session.commit(). If you're not happy about the changes, you can # revert all of them back to the last commit by calling # session.rollback() session = DBSession() # In[ ]: # # Tweepy Setup for Twitter API Access # In[5]: # Setup Tweepy API Authentication to access Twitter auth = tweepy.OAuthHandler(key_twitter_tweetquestor_consumer_api_key, key_twitter_tweetquestor_consumer_api_secret_key) auth.set_access_token(key_twitter_tweetquestor_access_token, key_twitter_tweetquestor_access_secret_token) api = tweepy.API(auth, parser=tweepy.parsers.JSONParser()) # In[ ]: # # Function Definitions: Twitter API Rate Limit Management # In[6]: def api_calls_remaining( a_api, a_type = "place"): # Return the number of Twitter API calls remaining # for the specified API type: # 'place': Top 10 trending topics for a WOEID # 'closest': Locations near a specificed lat/long for which Twitter has trending topic info # 'available': Locations for which Twitter has topic info # Get Twitter rate limit information using the Tweepy API rate_limits = a_api.rate_limit_status() # Focus on the rate limits for trends calls trends_limits = rate_limits['resources']['trends'] # Return the remaining requests available for the # requested type of trends query (or "" if not a valid type) try: remaining = trends_limits[ f"/trends/{a_type}" ]['remaining'] print(f"Twitter API 'trends/{a_type}' - API Calls Remaining: {remaining}") except: return "" return remaining # In[7]: def api_time_before_reset( a_api, a_type = "place"): # Return the number of minutes until the Twitter API is reset # for the specified API type: # 'place': Top 10 trending topics for a WOEID # 'closest': Locations near a specificed lat/long for which Twitter has trending topic info # 'available': Locations for which Twitter has topic info # Get Twitter rate limit information using the Tweepy API rate_limits = a_api.rate_limit_status() # Focus on the rate limits for trends calls trends_limits = rate_limits['resources']['trends'] # Return the reset time for the # requested type of trends query (or "" if not a valid type) try: reset_ts = trends_limits[ f"/trends/{a_type}" ]['reset'] except: return -1 # Calculate the remaining time using datetime methods to # get the UTC time from the POSIX timestamp reset_utc = datetime.utcfromtimestamp(reset_ts) # Current the current time current_utc = datetime.utcnow() # Calculate the number of seconds remaining, # Assumption: reset time will be >= current time time_before_reset = (reset_utc - current_utc).total_seconds() / 60.0 # Tell the datetime object that it's in UTC time zone since # datetime objects are 'naive' by default reset_utc = reset_utc.replace(tzinfo = tz.tzutc() ) # Convert time zone reset_local = reset_utc.astimezone( tz.tzlocal() ) # Tell the datetime object that it's in UTC time zone since # datetime objects are 'naive' by default current_utc = current_utc.replace(tzinfo = tz.tzutc() ) # Convert time zone current_local = current_utc.astimezone( tz.tzlocal() ) print(f"Twitter API 'trends/{a_type}' - Time Before Rate Limit Reset: {time_before_reset:.1f}: Reset Time: {reset_local.strftime('%Y-%m-%d %H:%M:%S')}, Local Time: {current_local.strftime('%Y-%m-%d %H:%M:%S')}") # Return the time before reset (in minutes) return time_before_reset # In[ ]: # # Function Definitions: Twitter Locations with Available Trends Info # In[8]: def get_loc_with_trends_available_to_df( a_api ): # Get locations that have trends data from a api.trends_available() call, # flatten the data, and create a dataframe # Obtain the WOEID locations for which Twitter Trends info is available try: trends_avail = a_api.trends_available() except TweepError as e: # No top trends info available for this WOEID, return False print(f"Error obtaining top trends for WOEID {a_woeid}: ", e) return False # Import trend availability info into a dataframe trends_avail_df =
pd.DataFrame.from_dict(trends_avail, orient='columns')
pandas.DataFrame.from_dict
''' Created on Feb. 25, 2020 @author: cefect helper functions w/ Qgis api ''' #============================================================================== # imports------------ #============================================================================== #python import os, configparser, logging, inspect, copy, datetime, re import pandas as pd import numpy as np #qgis from qgis.core import * from qgis.analysis import QgsNativeAlgorithms from qgis.gui import QgisInterface from PyQt5.QtCore import QVariant, QMetaType from PyQt5.QtWidgets import QProgressBar """throws depceciationWarning""" import processing #============================================================================== # customs #============================================================================== mod_logger = logging.getLogger('Q') #get the root logger from hlpr.exceptions import QError as Error import hlpr.basic as basic from hlpr.basic import get_valid_filename #============================================================================== # globals #============================================================================== fieldn_max_d = {'SpatiaLite':50, 'ESRI Shapefile':10, 'Memory storage':50, 'GPKG':50} npc_pytype_d = {'?':bool, 'b':int, 'd':float, 'e':float, 'f':float, 'q':int, 'h':int, 'l':int, 'i':int, 'g':float, 'U':str, 'B':int, 'L':int, 'Q':int, 'H':int, 'I':int, 'O':str, #this is the catchall 'object' } type_qvar_py_d = {10:str, 2:int, 135:float, 6:float, 4:int, 1:bool, 16:datetime.datetime, 12:str} #QVariant.types to pythonic types #parameters for lots of statistic algos stat_pars_d = {'First': 0, 'Last': 1, 'Count': 2, 'Sum': 3, 'Mean': 4, 'Median': 5, 'St dev (pop)': 6, 'Minimum': 7, 'Maximum': 8, 'Range': 9, 'Minority': 10, 'Majority': 11, 'Variety': 12, 'Q1': 13, 'Q3': 14, 'IQR': 15} #============================================================================== # classes ------------- #============================================================================== class Qcoms(basic.ComWrkr): #baseclass for working w/ pyqgis outside the native console driverName = 'SpatiaLite' #default data creation driver type out_dName = driverName #default output driver/file type q_hndls = ['crs', 'crsid', 'algo_init', 'qap', 'vlay_drivers'] algo_init = False #flag indicating whether the algos have been initialized qap = None mstore = None def __init__(self, feedback=None, #init controls init_q_d = {}, #container of initilzied objects crsid = 'EPSG:4326', #default crsID if no init_q_d is passed **kwargs ): """" #======================================================================= # plugin use #======================================================================= QprojPlugs don't execute super cascade #======================================================================= # Qgis inheritance #======================================================================= for single standalone runs all the handles will be generated and Qgis instanced for console runs handles should be passed to avoid re-instancing Qgis for session standalone runs handles passed for swapping crs run set_crs() on the session prior to spawning the child """ #======================================================================= # defaults #======================================================================= if feedback is None: """by default, building our own feedbacker passed to ComWrkr.setup_feedback() """ feedback = MyFeedBackQ() #======================================================================= # cascade #======================================================================= super().__init__( feedback = feedback, **kwargs) #initilzie teh baseclass log = self.logger #======================================================================= # attachments #======================================================================= self.fieldn_max_d=fieldn_max_d self.crsid=crsid #======================================================================= # Qgis setup COMMON #======================================================================= """both Plugin and StandAlone runs should call these""" self.qproj = QgsProject.instance() """ each worker will have their own store used to wipe any intermediate layers """ self.mstore = QgsMapLayerStore() #build a new map store #do your own init (standalone r uns) if len(init_q_d) == 0: self._init_standalone() else: #check everything is there miss_l = set(self.q_hndls).difference(init_q_d.keys()) assert len(miss_l)==0, 'init_q_d missing handles: %s'%miss_l #set the handles for k,v in init_q_d.items(): setattr(self, k, v) self._upd_qd() self.proj_checks() #======================================================================= # attach inputs #======================================================================= self.logger.debug('Qcoms.__init__ finished w/ out_dir: \n %s'%self.out_dir) return #========================================================================== # standalone methods----------- #========================================================================== def _init_standalone(self, #setup for qgis runs crsid = None, ): """ WARNING! do not call twice (phantom crash) """ log = self.logger.getChild('_init_standalone') if crsid is None: crsid = self.crsid #======================================================================= # #crs #======================================================================= crs = QgsCoordinateReferenceSystem(crsid) assert isinstance(crs, QgsCoordinateReferenceSystem), 'bad crs type' assert crs.isValid() self.crs = crs self.qproj.setCrs(crs) log.info('crs set to \'%s\''%self.crs.authid()) #======================================================================= # setup qgis #======================================================================= self.qap = self.init_qgis() self.algo_init = self.init_algos() self.set_vdrivers() #======================================================================= # wrap #======================================================================= self._upd_qd() log.debug('Qproj._init_standalone finished') return def _upd_qd(self): #set a fresh parameter set self.init_q_d = {k:getattr(self, k) for k in self.q_hndls} def init_qgis(self, #instantiate qgis gui = False): """ WARNING: need to hold this app somewhere. call in the module you're working in (scripts) """ log = self.logger.getChild('init_qgis') try: QgsApplication.setPrefixPath(r'C:/OSGeo4W64/apps/qgis-ltr', True) app = QgsApplication([], gui) # Update prefix path #app.setPrefixPath(r"C:\OSGeo4W64\apps\qgis", True) app.initQgis() #logging.debug(QgsApplication.showSettings()) """ was throwing unicode error""" log.info(u' QgsApplication.initQgis. version: %s, release: %s'%( Qgis.QGIS_VERSION.encode('utf-8'), Qgis.QGIS_RELEASE_NAME.encode('utf-8'))) return app except: raise Error('QGIS failed to initiate') def init_algos(self): #initiilize processing and add providers """ crashing without raising an Exception """ log = self.logger.getChild('init_algos') if not isinstance(self.qap, QgsApplication): raise Error('qgis has not been properly initlized yet') from processing.core.Processing import Processing Processing.initialize() #crashing without raising an Exception QgsApplication.processingRegistry().addProvider(QgsNativeAlgorithms()) assert not self.feedback is None, 'instance needs a feedback method for algos to work' log.info('processing initilzied w/ feedback: \'%s\''%(type(self.feedback).__name__)) return True def set_vdrivers(self): log = self.logger.getChild('set_vdrivers') #build vector drivers list by extension """couldnt find a good built-in to link extensions with drivers""" vlay_drivers = {'SpatiaLite':'sqlite', 'OGR':'shp'} #vlay_drivers = {'sqlite':'SpatiaLite', 'shp':'OGR','csv':'delimitedtext'} for ext in QgsVectorFileWriter.supportedFormatExtensions(): dname = QgsVectorFileWriter.driverForExtension(ext) if not dname in vlay_drivers.keys(): vlay_drivers[dname] = ext #add in missing/duplicated for vdriver in QgsVectorFileWriter.ogrDriverList(): if not vdriver.driverName in vlay_drivers.keys(): vlay_drivers[vdriver.driverName] ='?' self.vlay_drivers = vlay_drivers log.debug('built driver:extensions dict: \n %s'%vlay_drivers) return def set_crs(self, #load, build, and set the project crs crsid = None, #integer crs = None, #QgsCoordinateReferenceSystem logger=None, ): #======================================================================= # setup and defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('set_crs') if crsid is None: crsid = self.crsid #======================================================================= # if not isinstance(crsid, int): # raise IOError('expected integer for crs') #======================================================================= #======================================================================= # build it #======================================================================= if crs is None: crs = QgsCoordinateReferenceSystem(crsid) assert isinstance(crs, QgsCoordinateReferenceSystem) self.crs=crs #overwrite if not self.crs.isValid(): raise IOError('CRS built from %i is invalid'%self.crs.authid()) #======================================================================= # attach to project #======================================================================= self.qproj.setCrs(self.crs) self.crsid = self.crs.authid() if not self.qproj.crs().description() == self.crs.description(): raise Error('qproj crs does not match sessions') log.info('crs set to EPSG: %s, \'%s\''%(self.crs.authid(), self.crs.description())) self._upd_qd() self.proj_checks(logger=log) return self.crs def proj_checks(self, logger=None): #log = self.logger.getChild('proj_checks') if not self.driverName in self.vlay_drivers: raise Error('unrecognized driver name') if not self.out_dName in self.vlay_drivers: raise Error('unrecognized driver name') assert self.algo_init assert not self.feedback is None assert not self.progressBar is None #======================================================================= # crs checks #======================================================================= assert isinstance(self.crs, QgsCoordinateReferenceSystem) assert self.crs.isValid() assert self.crs.authid()==self.qproj.crs().authid(), 'crs mismatch' assert self.crs.authid() == self.crsid, 'crs mismatch' assert not self.crs.authid()=='', 'got empty CRS!' #======================================================================= # handle checks #======================================================================= assert isinstance(self.init_q_d, dict) miss_l = set(self.q_hndls).difference(self.init_q_d.keys()) assert len(miss_l)==0, 'init_q_d missing handles: %s'%miss_l for k,v in self.init_q_d.items(): assert getattr(self, k) == v, k #log.info('project passed all checks') return def print_qt_version(self): import inspect from PyQt5 import Qt vers = ['%s = %s' % (k,v) for k,v in vars(Qt).items() if k.lower().find('version') >= 0 and not inspect.isbuiltin(v)] print('\n'.join(sorted(vers))) #=========================================================================== # LOAD/WRITE LAYERS----------- #=========================================================================== def load_vlay(self, fp, logger=None, providerLib='ogr', aoi_vlay = None, allow_none=True, #control check in saveselectedfeastures addSpatialIndex=True, ): assert os.path.exists(fp), 'requested file does not exist: %s'%fp if logger is None: logger = self.logger log = logger.getChild('load_vlay') basefn = os.path.splitext(os.path.split(fp)[1])[0] log.debug('loading from %s'%fp) vlay_raw = QgsVectorLayer(fp,basefn,providerLib) #======================================================================= # # checks #======================================================================= if not isinstance(vlay_raw, QgsVectorLayer): raise IOError #check if this is valid if not vlay_raw.isValid(): raise Error('loaded vlay \'%s\' is not valid. \n \n did you initilize?'%vlay_raw.name()) #check if it has geometry if vlay_raw.wkbType() == 100: raise Error('loaded vlay has NoGeometry') assert isinstance(self.mstore, QgsMapLayerStore) """only add intermediate layers to store self.mstore.addMapLayer(vlay_raw)""" if not vlay_raw.crs()==self.qproj.crs(): log.warning('crs mismatch: \n %s\n %s'%( vlay_raw.crs(), self.qproj.crs())) #======================================================================= # aoi slice #======================================================================= if isinstance(aoi_vlay, QgsVectorLayer): log.info('slicing by aoi %s'%aoi_vlay.name()) vlay = self.selectbylocation(vlay_raw, aoi_vlay, allow_none=allow_none, logger=log, result_type='layer') #check for no selection if vlay is None: return None vlay.setName(vlay_raw.name()) #reset the name #clear original from memory self.mstore.addMapLayer(vlay_raw) self.mstore.removeMapLayers([vlay_raw]) else: vlay = vlay_raw #======================================================================= # clean------ #======================================================================= #spatial index if addSpatialIndex and (not vlay_raw.hasSpatialIndex()==QgsFeatureSource.SpatialIndexPresent): self.createspatialindex(vlay_raw, logger=log) #======================================================================= # wrap #======================================================================= dp = vlay.dataProvider() log.info('loaded vlay \'%s\' as \'%s\' %s geo with %i feats from file: \n %s' %(vlay.name(), dp.storageType(), QgsWkbTypes().displayString(vlay.wkbType()), dp.featureCount(), fp)) return vlay def load_rlay(self, fp, aoi_vlay = None, logger=None): if logger is None: logger = self.logger log = logger.getChild('load_rlay') assert os.path.exists(fp), 'requested file does not exist: %s'%fp assert QgsRasterLayer.isValidRasterFileName(fp), \ 'requested file is not a valid raster file type: %s'%fp basefn = os.path.splitext(os.path.split(fp)[1])[0] #Import a Raster Layer log.debug('QgsRasterLayer(%s, %s)'%(fp, basefn)) rlayer = QgsRasterLayer(fp, basefn) """ hanging for some reason... QgsRasterLayer(C:\LS\03_TOOLS\CanFlood\_git\tutorials\1\haz_rast\haz_1000.tif, haz_1000) """ #======================================================================= # rlayer = QgsRasterLayer(r'C:\LS\03_TOOLS\CanFlood\_git\tutorials\1\haz_rast\haz_1000.tif', # 'haz_1000') #======================================================================= #=========================================================================== # check #=========================================================================== assert isinstance(rlayer, QgsRasterLayer), 'failed to get a QgsRasterLayer' assert rlayer.isValid(), "Layer failed to load!" if not rlayer.crs() == self.qproj.crs(): log.warning('loaded layer \'%s\' crs mismatch!'%rlayer.name()) log.debug('loaded \'%s\' from \n %s'%(rlayer.name(), fp)) #======================================================================= # aoi #======================================================================= if not aoi_vlay is None: log.debug('clipping w/ %s'%aoi_vlay.name()) assert isinstance(aoi_vlay, QgsVectorLayer) rlay2 = self.cliprasterwithpolygon(rlayer,aoi_vlay, logger=log, layname=rlayer.name()) #clean up mstore = QgsMapLayerStore() #build a new store mstore.addMapLayers([rlayer]) #add the layers to the store mstore.removeAllMapLayers() #remove all the layers else: rlay2 = rlayer return rlay2 def write_rlay(self, #make a local copy of the passed raster layer rlayer, #raster layer to make a local copy of extent = 'layer', #write extent control #'layer': use the current extent (default) #'mapCanvas': use the current map Canvas #QgsRectangle: use passed extents resolution = 'raw', #resolution for output opts = ["COMPRESS=LZW"], #QgsRasterFileWriter.setCreateOptions out_dir = None, #directory for puts newLayerName = None, logger=None, ): """ because processing tools only work on local copies #======================================================================= # coordinate transformation #======================================================================= NO CONVERSION HERE! can't get native API to work. use gdal_warp instead """ #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger if out_dir is None: out_dir = self.out_dir if newLayerName is None: newLayerName = rlayer.name() newFn = get_valid_filename('%s.tif'%newLayerName) #clean it out_fp = os.path.join(out_dir, newFn) log = logger.getChild('write_rlay') log.debug('on \'%s\' w/ \n crs:%s \n extents:%s\n xUnits:%.4f'%( rlayer.name(), rlayer.crs(), rlayer.extent(), rlayer.rasterUnitsPerPixelX())) #======================================================================= # precheck #======================================================================= assert isinstance(rlayer, QgsRasterLayer) assert os.path.exists(out_dir) if os.path.exists(out_fp): msg = 'requested file already exists! and overwrite=%s \n %s'%( self.overwrite, out_fp) if self.overwrite: log.warning(msg) else: raise Error(msg) #======================================================================= # extract info from layer #======================================================================= """consider loading the layer and duplicating the renderer? renderer = rlayer.renderer()""" provider = rlayer.dataProvider() #build projector projector = QgsRasterProjector() #projector.setCrs(provider.crs(), provider.crs()) #build and configure pipe pipe = QgsRasterPipe() if not pipe.set(provider.clone()): #Insert a new known interface in default place raise Error("Cannot set pipe provider") if not pipe.insert(2, projector): #insert interface at specified index and connect raise Error("Cannot set pipe projector") #pipe = rlayer.pipe() #coordinate transformation """see note""" transformContext = self.qproj.transformContext() #======================================================================= # extents #======================================================================= if extent == 'layer': extent = rlayer.extent() elif extent=='mapCanvas': assert isinstance(self.iface, QgisInterface), 'bad key for StandAlone?' #get the extent, transformed to the current CRS extent = QgsCoordinateTransform( self.qproj.crs(), rlayer.crs(), transformContext ).transformBoundingBox(self.iface.mapCanvas().extent()) assert isinstance(extent, QgsRectangle), 'expected extent=QgsRectangle. got \"%s\''%extent #expect the requested extent to be LESS THAN what we have in the raw raster assert rlayer.extent().width()>=extent.width(), 'passed extents too wide' assert rlayer.extent().height()>=extent.height(), 'passed extents too tall' #======================================================================= # resolution #======================================================================= #use the resolution of the raw file if resolution == 'raw': """this respects the calculated extents""" nRows = int(extent.height()/rlayer.rasterUnitsPerPixelY()) nCols = int(extent.width()/rlayer.rasterUnitsPerPixelX()) else: """dont think theres any decent API support for the GUI behavior""" raise Error('not implemented') #======================================================================= # #build file writer #======================================================================= file_writer = QgsRasterFileWriter(out_fp) #file_writer.Mode(1) #??? if not opts is None: file_writer.setCreateOptions(opts) log.debug('writing to file w/ \n %s'%( {'nCols':nCols, 'nRows':nRows, 'extent':extent, 'crs':rlayer.crs()})) #execute write error = file_writer.writeRaster( pipe, nCols, nRows, extent, rlayer.crs(), transformContext) log.info('wrote to file \n %s'%out_fp) #======================================================================= # wrap #======================================================================= if not error == QgsRasterFileWriter.NoError: raise Error(error) assert os.path.exists(out_fp) assert QgsRasterLayer.isValidRasterFileName(out_fp), \ 'requested file is not a valid raster file type: %s'%out_fp return out_fp def vlay_write(self, #write a VectorLayer vlay, out_fp=None, driverName='GPKG', fileEncoding = "CP1250", opts = QgsVectorFileWriter.SaveVectorOptions(), #empty options object overwrite=None, logger=None): """ help(QgsVectorFileWriter.SaveVectorOptions) QgsVectorFileWriter.SaveVectorOptions.driverName='GPKG' opt2 = QgsVectorFileWriter.BoolOption(QgsVectorFileWriter.CreateOrOverwriteFile) help(QgsVectorFileWriter) """ #========================================================================== # defaults #========================================================================== if logger is None: logger=self.logger log = logger.getChild('vlay_write') if overwrite is None: overwrite=self.overwrite if out_fp is None: out_fp = os.path.join(self.out_dir, '%s.gpkg'%vlay.name()) #=========================================================================== # assemble options #=========================================================================== opts.driverName = driverName opts.fileEncoding = fileEncoding #=========================================================================== # checks #=========================================================================== #file extension fhead, ext = os.path.splitext(out_fp) if not 'gpkg' in ext: raise Error('unexpected extension: %s'%ext) if os.path.exists(out_fp): msg = 'requested file path already exists!. overwrite=%s \n %s'%( overwrite, out_fp) if overwrite: log.warning(msg) os.remove(out_fp) #workaround... should be away to overwrite with the QgsVectorFileWriter else: raise Error(msg) if vlay.dataProvider().featureCount() == 0: raise Error('\'%s\' has no features!'%( vlay.name())) if not vlay.isValid(): Error('passed invalid layer') #======================================================================= # write #======================================================================= error = QgsVectorFileWriter.writeAsVectorFormatV2( vlay, out_fp, QgsCoordinateTransformContext(), opts, ) #======================================================================= # wrap and check #======================================================================= if error[0] == QgsVectorFileWriter.NoError: log.info('layer \' %s \' written to: \n %s'%(vlay.name(),out_fp)) return out_fp raise Error('FAILURE on writing layer \' %s \' with code:\n %s \n %s'%(vlay.name(),error, out_fp)) def load_dtm(self, #convienece loader for assining the correct attribute fp, logger=None, **kwargs): if logger is None: logger=self.logger log=logger.getChild('load_dtm') self.dtm_rlay = self.load_rlay(fp, logger=log, **kwargs) return self.dtm_rlay #========================================================================== # GENERIC METHODS----------------- #========================================================================== def vlay_new_df2(self, #build a vlay from a df df_raw, geo_d = None, #container of geometry objects {fid: QgsGeometry} crs=None, gkey = None, #data field linking with geo_d (if None.. uses df index) layname='df', index = False, #whether to include the index as a field logger=None, ): """ performance enhancement over vlay_new_df simpler, clearer although less versatile """ #======================================================================= # setup #======================================================================= if crs is None: crs = self.qproj.crs() if logger is None: logger = self.logger log = logger.getChild('vlay_new_df') #======================================================================= # index fix #======================================================================= df = df_raw.copy() if index: if not df.index.name is None: coln = df.index.name df.index.name = None else: coln = 'index' df[coln] = df.index #======================================================================= # precheck #======================================================================= #make sure none of hte field names execeed the driver limitations max_len = self.fieldn_max_d[self.driverName] #check lengths boolcol = df_raw.columns.str.len() >= max_len if np.any(boolcol): log.warning('passed %i columns which exeed the max length=%i for driver \'%s\'.. truncating: \n %s'%( boolcol.sum(), max_len, self.driverName, df_raw.columns[boolcol].tolist())) df.columns = df.columns.str.slice(start=0, stop=max_len-1) #make sure the columns are unique assert df.columns.is_unique, 'got duplicated column names: \n %s'%(df.columns.tolist()) #check datatypes assert np.array_equal(df.columns, df.columns.astype(str)), 'got non-string column names' #check the geometry if not geo_d is None: assert isinstance(geo_d, dict) if not gkey is None: assert gkey in df_raw.columns #assert 'int' in df_raw[gkey].dtype.name #check gkey match l = set(df_raw[gkey].drop_duplicates()).difference(geo_d.keys()) assert len(l)==0, 'missing %i \'%s\' keys in geo_d: %s'%(len(l), gkey, l) #against index else: #check gkey match l = set(df_raw.index).difference(geo_d.keys()) assert len(l)==0, 'missing %i (of %i) fid keys in geo_d: %s'%(len(l), len(df_raw), l) #=========================================================================== # assemble the fields #=========================================================================== #column name and python type fields_d = {coln:np_to_pytype(col.dtype) for coln, col in df.items()} #fields container qfields = fields_build_new(fields_d = fields_d, logger=log) #======================================================================= # assemble the features #======================================================================= #convert form of data feats_d = dict() for fid, row in df.iterrows(): feat = QgsFeature(qfields, fid) #loop and add data for fieldn, value in row.items(): #skip null values if pd.isnull(value): continue #get the index for this field findx = feat.fieldNameIndex(fieldn) #get the qfield qfield = feat.fields().at(findx) #make the type match ndata = qtype_to_pytype(value, qfield.type(), logger=log) #set the attribute if not feat.setAttribute(findx, ndata): raise Error('failed to setAttribute') #setgeometry if not geo_d is None: if gkey is None: gobj = geo_d[fid] else: gobj = geo_d[row[gkey]] feat.setGeometry(gobj) #stor eit feats_d[fid]=feat log.debug('built %i \'%s\' features'%( len(feats_d), QgsWkbTypes.geometryDisplayString(feat.geometry().type()), )) #======================================================================= # get the geo type #=======================================================================\ if not geo_d is None: gtype = QgsWkbTypes().displayString(next(iter(geo_d.values())).wkbType()) else: gtype='None' #=========================================================================== # buidl the new layer #=========================================================================== vlay = vlay_new_mlay(gtype, crs, layname, qfields, list(feats_d.values()), logger=log, ) self.createspatialindex(vlay, logger=log) #======================================================================= # post check #======================================================================= if not geo_d is None: if vlay.wkbType() == 100: raise Error('constructed layer has NoGeometry') return vlay def check_aoi(self, #special c hecks for AOI layers vlay): assert isinstance(vlay, QgsVectorLayer) assert 'Polygon' in QgsWkbTypes().displayString(vlay.wkbType()) assert vlay.dataProvider().featureCount()==1 assert vlay.crs() == self.qproj.crs(), 'aoi CRS (%s) does not match project (%s)'%(vlay.crs(), self.qproj.crs()) return #========================================================================== # ALGOS-------------- #========================================================================== def deletecolumn(self, in_vlay, fieldn_l, #list of field names invert=False, #whether to invert selected field names layname = None, logger=None, ): #======================================================================= # presets #======================================================================= algo_nm = 'qgis:deletecolumn' if logger is None: logger=self.logger log = logger.getChild('deletecolumn') self.vlay = in_vlay #======================================================================= # field manipulations #======================================================================= fieldn_l = self._field_handlr(in_vlay, fieldn_l, invert=invert, logger=log) if len(fieldn_l) == 0: log.debug('no fields requsted to drop... skipping') return self.vlay #======================================================================= # assemble pars #======================================================================= #assemble pars ins_d = { 'COLUMN' : fieldn_l, 'INPUT' : in_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT'} log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] #=========================================================================== # post formatting #=========================================================================== if layname is None: layname = '%s_delf'%self.vlay.name() res_vlay.setName(layname) #reset the name return res_vlay def joinattributesbylocation(self, #data definitions vlay, join_vlay, #layer from which to extract attribue values onto th ebottom vlay jlay_fieldn_l, #list of field names to extract from the join_vlay selected_only = False, jvlay_selected_only = False, #only consider selected features on the join layer #algo controls prefix = '', method=0, #one-to-many predicate_l = ['intersects'],#list of geometric serach predicates discard_nomatch = False, #Discard records which could not be joined #data expectations join_nullvs = True, #allow null values on jlay_fieldn_l on join_vlay join_df = None, #if join_nullvs=FALSE, data to check for nulls (skips making a vlay_get_fdf) allow_field_rename = False, #allow joiner fields to be renamed when mapped onto the main allow_none = False, #geometry expectations expect_all_hits = False, #wheter every main feature intersects a join feature expect_j_overlap = False, #wheter to expect the join_vlay to beoverlapping expect_m_overlap = False, #wheter to expect the mainvlay to have overlaps logger=None, ): """ TODO: really need to clean this up... discard_nomatch: TRUE: two resulting layers have no features in common FALSE: in layer retains all non matchers, out layer only has the non-matchers? METHOD: Join type - 0: Create separate feature for each located feature (one-to-many) - 1: Take attributes of the first located feature only (one-to-one) """ #======================================================================= # presets #======================================================================= if logger is None: logger=self.logger log = logger.getChild('joinattributesbylocation') self.vlay = vlay algo_nm = 'qgis:joinattributesbylocation' predicate_d = {'intersects':0,'contains':1,'equals':2,'touches':3,'overlaps':4,'within':5, 'crosses':6} jlay_fieldn_l = self._field_handlr(join_vlay, jlay_fieldn_l, invert=False) #======================================================================= # jgeot = vlay_get_bgeo_type(join_vlay) # mgeot = vlay_get_bgeo_type(self.vlay) #======================================================================= mfcnt = self.vlay.dataProvider().featureCount() #jfcnt = join_vlay.dataProvider().featureCount() mfnl = vlay_fieldnl(self.vlay) expect_overlaps = expect_j_overlap or expect_m_overlap #======================================================================= # geometry expectation prechecks #======================================================================= """should take any geo if not (jgeot == 'polygon' or mgeot == 'polygon'): raise Error('one of the layres has to be a polygon') if not jgeot=='polygon': if expect_j_overlap: raise Error('join vlay is not a polygon, expect_j_overlap should =False') if not mgeot=='polygon': if expect_m_overlap: raise Error('main vlay is not a polygon, expect_m_overlap should =False') if expect_all_hits: if discard_nomatch: raise Error('discard_nomatch should =FALSE if you expect all hits') if allow_none: raise Error('expect_all_hits=TRUE and allow_none=TRUE') #method checks if method==0: if not jgeot == 'polygon': raise Error('passed method 1:m but jgeot != polygon') if not expect_j_overlap: if not method==0: raise Error('for expect_j_overlap=False, method must = 0 (1:m) for validation') """ #======================================================================= # data expectation checks #======================================================================= #make sure none of the joiner fields are already on the layer if len(mfnl)>0: #see if there are any fields on the main l = basic.linr(jlay_fieldn_l, mfnl, result_type='matching') if len(l) > 0: #w/a prefix if not prefix=='': log.debug('%i fields on the joiner \'%s\' are already on \'%s\'... prefixing w/ \'%s\': \n %s'%( len(l), join_vlay.name(), self.vlay.name(), prefix, l)) else: log.debug('%i fields on the joiner \'%s\' are already on \'%s\'...renameing w/ auto-sufix: \n %s'%( len(l), join_vlay.name(), self.vlay.name(), l)) if not allow_field_rename: raise Error('%i field names overlap: %s'%(len(l), l)) #make sure that the joiner attributes are not null if not join_nullvs: if jvlay_selected_only: raise Error('not implmeneted') #pull thedata if join_df is None: join_df = vlay_get_fdf(join_vlay, fieldn_l=jlay_fieldn_l, db_f=self.db_f, logger=log) #slice to the columns of interest join_df = join_df.loc[:, jlay_fieldn_l] #check for nulls booldf = join_df.isna() if np.any(booldf): raise Error('got %i nulls on \'%s\' field %s data'%( booldf.sum().sum(), join_vlay.name(), jlay_fieldn_l)) #======================================================================= # assemble pars #======================================================================= #convert predicate to code pred_code_l = [predicate_d[name] for name in predicate_l] #selection flags if selected_only: """WARNING! This will limit the output to only these features (despite the DISCARD_NONMATCHING flag)""" main_input = self._get_sel_obj(self.vlay) else: main_input = self.vlay if jvlay_selected_only: join_input = self._get_sel_obj(join_vlay) else: join_input = join_vlay #assemble pars ins_d = { 'DISCARD_NONMATCHING' : discard_nomatch, 'INPUT' : main_input, 'JOIN' : join_input, 'JOIN_FIELDS' : jlay_fieldn_l, 'METHOD' : method, 'OUTPUT' : 'TEMPORARY_OUTPUT', #'NON_MATCHING' : 'TEMPORARY_OUTPUT', #not working as expected. see get_misses 'PREDICATE' : pred_code_l, 'PREFIX' : prefix} log.info('extracting %i fields from %i feats from \'%s\' to \'%s\' join fields: %s'% (len(jlay_fieldn_l), join_vlay.dataProvider().featureCount(), join_vlay.name(), self.vlay.name(), jlay_fieldn_l)) log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay, join_cnt = res_d['OUTPUT'], res_d['JOINED_COUNT'] log.debug('got results: \n %s'%res_d) #=========================================================================== # post checks #=========================================================================== hit_fcnt = res_vlay.dataProvider().featureCount() if not expect_overlaps: if not discard_nomatch: if not hit_fcnt == mfcnt: raise Error('in and out fcnts dont match') else: pass #log.debug('expect_overlaps=False, unable to check fcnts') #all misses if join_cnt == 0: log.warning('got no joins from \'%s\' to \'%s\''%( self.vlay.name(), join_vlay.name())) if not allow_none: raise Error('got no joins!') if discard_nomatch: if not hit_fcnt == 0: raise Error('no joins but got some hits') #some hits else: #check there are no nulls if discard_nomatch and not join_nullvs: #get data on first joiner fid_val_ser = vlay_get_fdata(res_vlay, jlay_fieldn_l[0], logger=log, fmt='ser') if np.any(fid_val_ser.isna()): raise Error('discard=True and join null=FALSe but got %i (of %i) null \'%s\' values in the reuslt'%( fid_val_ser.isna().sum(), len(fid_val_ser), fid_val_ser.name )) #======================================================================= # get the new field names #======================================================================= new_fn_l = set(vlay_fieldnl(res_vlay)).difference(vlay_fieldnl(self.vlay)) #======================================================================= # wrap #======================================================================= log.debug('finished joining %i fields from %i (of %i) feats from \'%s\' to \'%s\' join fields: %s'% (len(new_fn_l), join_cnt, self.vlay.dataProvider().featureCount(), join_vlay.name(), self.vlay.name(), new_fn_l)) return res_vlay, new_fn_l, join_cnt def joinbylocationsummary(self, vlay, #polygon layer to sample from join_vlay, #layer from which to extract attribue values onto th ebottom vlay jlay_fieldn_l, #list of field names to extract from the join_vlay jvlay_selected_only = False, #only consider selected features on the join layer predicate_l = ['intersects'],#list of geometric serach predicates smry_l = ['sum'], #data summaries to apply discard_nomatch = False, #Discard records which could not be joined use_raw_fn=False, #whether to convert names back to the originals layname=None, ): """ WARNING: This ressets the fids discard_nomatch: TRUE: two resulting layers have no features in common FALSE: in layer retains all non matchers, out layer only has the non-matchers? """ """ view(join_vlay) """ #======================================================================= # presets #======================================================================= algo_nm = 'qgis:joinbylocationsummary' predicate_d = {'intersects':0,'contains':1,'equals':2,'touches':3,'overlaps':4,'within':5, 'crosses':6} summaries_d = {'count':0, 'unique':1, 'min':2, 'max':3, 'range':4, 'sum':5, 'mean':6} log = self.logger.getChild('joinbylocationsummary') #======================================================================= # defaults #======================================================================= if isinstance(jlay_fieldn_l, set): jlay_fieldn_l = list(jlay_fieldn_l) #convert predicate to code pred_code_l = [predicate_d[pred_name] for pred_name in predicate_l] #convert summaries to code sum_code_l = [summaries_d[smry_str] for smry_str in smry_l] if layname is None: layname = '%s_jsmry'%vlay.name() #======================================================================= # prechecks #======================================================================= if not isinstance(jlay_fieldn_l, list): raise Error('expected a list') #check requested join fields fn_l = [f.name() for f in join_vlay.fields()] s = set(jlay_fieldn_l).difference(fn_l) assert len(s)==0, 'requested join fields not on layer: %s'%s #check crs assert join_vlay.crs().authid() == vlay.crs().authid() #======================================================================= # assemble pars #======================================================================= main_input=vlay if jvlay_selected_only: join_input = self._get_sel_obj(join_vlay) else: join_input = join_vlay #assemble pars ins_d = { 'DISCARD_NONMATCHING' : discard_nomatch, 'INPUT' : main_input, 'JOIN' : join_input, 'JOIN_FIELDS' : jlay_fieldn_l, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREDICATE' : pred_code_l, 'SUMMARIES' : sum_code_l, } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] #=========================================================================== # post formatting #=========================================================================== res_vlay.setName(layname) #reset the name #get new field names nfn_l = set([f.name() for f in res_vlay.fields()]).difference([f.name() for f in vlay.fields()]) """ view(res_vlay) """ #======================================================================= # post check #======================================================================= for fn in nfn_l: rser = vlay_get_fdata(res_vlay, fieldn=fn, logger=log, fmt='ser') if rser.isna().all().all(): log.warning('%s \'%s\' got all nulls'%(vlay.name(), fn)) #======================================================================= # rename fields #======================================================================= if use_raw_fn: assert len(smry_l)==1, 'rename only allowed for single sample stat' rnm_d = {s:s.replace('_%s'%smry_l[0],'') for s in nfn_l} s = set(rnm_d.values()).symmetric_difference(jlay_fieldn_l) assert len(s)==0, 'failed to convert field names' res_vlay = vlay_rename_fields(res_vlay, rnm_d, logger=log) nfn_l = jlay_fieldn_l log.info('sampled \'%s\' w/ \'%s\' (%i hits) and \'%s\'to get %i new fields \n %s'%( join_vlay.name(), vlay.name(), res_vlay.dataProvider().featureCount(), smry_l, len(nfn_l), nfn_l)) return res_vlay, nfn_l def joinattributestable(self, #join csv edata to a vector layer vlay, table_fp, fieldNm, method = 1, #join type #- 0: Create separate feature for each matching feature (one-to-many) #- 1: Take attributes of the first matching feature only (one-to-one) csv_params = {'encoding':'System', 'type':'csv', 'maxFields':'10000', 'detectTypes':'yes', 'geomType':'none', 'subsetIndex':'no', 'watchFile':'no'}, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger if layname is None: layname = '%s_j'%vlay.name() algo_nm = 'native:joinattributestable' log = self.logger.getChild('joinattributestable') #======================================================================= # prechecks #======================================================================= assert isinstance(vlay, QgsVectorLayer) assert os.path.exists(table_fp) assert fieldNm in [f.name() for f in vlay.fields()], 'vlay missing link field %s'%fieldNm #======================================================================= # setup table layer #======================================================================= uriW = QgsDataSourceUri() for pName, pValue in csv_params.items(): uriW.setParam(pName, pValue) table_uri = r'file:///' + table_fp.replace('\\','/') +'?'+ str(uriW.encodedUri(), 'utf-8') table_vlay = QgsVectorLayer(table_uri,'table',"delimitedtext") assert fieldNm in [f.name() for f in table_vlay.fields()], 'table missing link field %s'%fieldNm #======================================================================= # assemble p ars #======================================================================= ins_d = { 'DISCARD_NONMATCHING' : True, 'FIELD' : 'xid', 'FIELDS_TO_COPY' : [], 'FIELD_2' : 'xid', 'INPUT' : vlay, 'INPUT_2' : table_vlay, 'METHOD' : method, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREFIX' : '' } #======================================================================= # execute #======================================================================= log.debug('executing \'native:buffer\' with ins_d: \n %s'%ins_d) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] res_vlay.setName(layname) #reset the name log.debug('finished w/ %i feats'%res_vlay.dataProvider().featureCount()) return res_vlay def cliprasterwithpolygon(self, rlay_raw, poly_vlay, layname = None, #output = 'TEMPORARY_OUTPUT', logger = None, ): """ clipping a raster layer with a polygon mask using gdalwarp """ #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('cliprasterwithpolygon') if layname is None: layname = '%s_clipd'%rlay_raw.name() algo_nm = 'gdal:cliprasterbymasklayer' #======================================================================= # precheck #======================================================================= assert isinstance(rlay_raw, QgsRasterLayer) assert isinstance(poly_vlay, QgsVectorLayer) assert 'Poly' in QgsWkbTypes().displayString(poly_vlay.wkbType()) assert rlay_raw.crs() == poly_vlay.crs() #======================================================================= # run algo #======================================================================= ins_d = { 'ALPHA_BAND' : False, 'CROP_TO_CUTLINE' : True, 'DATA_TYPE' : 0, 'EXTRA' : '', 'INPUT' : rlay_raw, 'KEEP_RESOLUTION' : True, 'MASK' : poly_vlay, 'MULTITHREADING' : False, 'NODATA' : None, 'OPTIONS' : '', 'OUTPUT' : 'TEMPORARY_OUTPUT', 'SET_RESOLUTION' : False, 'SOURCE_CRS' : None, 'TARGET_CRS' : None, 'X_RESOLUTION' : None, 'Y_RESOLUTION' : None, } log.debug('executing \'%s\' with ins_d: \n %s \n\n'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['OUTPUT']): """failing intermittently""" raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def cliprasterwithpolygon2(self, #with saga rlay_raw, poly_vlay, ofp = None, layname = None, #output = 'TEMPORARY_OUTPUT', logger = None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('cliprasterwithpolygon') if layname is None: if not ofp is None: layname = os.path.splitext(os.path.split(ofp)[1])[0] else: layname = '%s_clipd'%rlay_raw.name() if ofp is None: ofp = os.path.join(self.out_dir,layname+'.sdat') if os.path.exists(ofp): msg = 'requseted filepath exists: %s'%ofp if self.overwrite: log.warning('DELETING'+msg) os.remove(ofp) else: raise Error(msg) algo_nm = 'saga:cliprasterwithpolygon' #======================================================================= # precheck #======================================================================= if os.path.exists(ofp): msg = 'requested filepath exists: %s'%ofp if self.overwrite: log.warning(msg) else: raise Error(msg) if not os.path.exists(os.path.dirname(ofp)): os.makedirs(os.path.dirname(ofp)) #assert QgsRasterLayer.isValidRasterFileName(ofp), 'invalid filename: %s'%ofp assert 'Poly' in QgsWkbTypes().displayString(poly_vlay.wkbType()) assert rlay_raw.crs() == poly_vlay.crs() #======================================================================= # run algo #======================================================================= ins_d = { 'INPUT' : rlay_raw, 'OUTPUT' : ofp, 'POLYGONS' : poly_vlay } log.debug('executing \'%s\' with ins_d: \n %s \n\n'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['OUTPUT']): """failing intermittently""" raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def srastercalculator(self, formula, rlay_d, #container of raster layers to perform calculations on logger=None, layname=None, ofp=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('srastercalculator') assert 'a' in rlay_d if layname is None: if not ofp is None: layname = os.path.splitext(os.path.split(ofp)[1])[0] else: layname = '%s_calc'%rlay_d['a'].name() if ofp is None: ofp = os.path.join(self.out_dir, layname+'.sdat') if not os.path.exists(os.path.dirname(ofp)): log.info('building basedir: %s'%os.path.dirname(ofp)) os.makedirs(os.path.dirname(ofp)) if os.path.exists(ofp): msg = 'requseted filepath exists: %s'%ofp if self.overwrite: log.warning(msg) os.remove(ofp) else: raise Error(msg) #======================================================================= # execute #======================================================================= algo_nm = 'saga:rastercalculator' ins_d = { 'FORMULA' : formula, 'GRIDS' : rlay_d.pop('a'), 'RESAMPLING' : 3, 'RESULT' : ofp, 'TYPE' : 7, 'USE_NODATA' : False, 'XGRIDS' : list(rlay_d.values())} log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['RESULT']): raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['RESULT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def grastercalculator(self, #GDAL raster calculator formula, rlay_d, #container of raster layers to perform calculations on nodata=0, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('grastercalculator') algo_nm = 'gdal:rastercalculator' if layname is None: layname = '%s_calc'%rlay_d['a'].name() #======================================================================= # prechecks #======================================================================= assert 'A' in rlay_d #======================================================================= # populate #======================================================================= for rtag in ('A', 'B', 'C', 'D', 'E', 'F'): #set dummy placeholders for missing rasters if not rtag in rlay_d: rlay_d[rtag] = None #check what the usre pasased else: assert isinstance(rlay_d[rtag], QgsRasterLayer), 'passed bad %s'%rtag assert rtag in formula, 'formula is missing a reference to \'%s\''%rtag #======================================================================= # execute #======================================================================= ins_d = { 'BAND_A' : 1, 'BAND_B' : -1, 'BAND_C' : -1, 'BAND_D' : -1, 'BAND_E' : -1, 'BAND_F' : -1, 'EXTRA' : '', 'FORMULA' : formula, 'INPUT_A' : rlay_d['A'], 'INPUT_B' : rlay_d['B'], 'INPUT_C' : rlay_d['C'], 'INPUT_D' : rlay_d['D'], 'INPUT_E' : rlay_d['E'], 'INPUT_F' : rlay_d['F'], 'NO_DATA' : nodata, 'OPTIONS' : '', 'OUTPUT' : 'TEMPORARY_OUTPUT', 'RTYPE' : 5 } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) assert os.path.exists(res_d['OUTPUT']), 'failed to get result' res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def qrastercalculator(self, #QGIS native raster calculator formula, ref_layer = None, #reference layer logger=None, layname=None, ): """executes the algorhithim... better to use the constructor directly QgsRasterCalculator""" #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('qrastercalculator') algo_nm = 'qgis:rastercalculator' if layname is None: if ref_layer is None: layname = 'qrastercalculator' else: layname = '%s_calc'%ref_layer.name() #======================================================================= # execute #======================================================================= """ formula = '\'haz_100yr_cT2@1\'-\'dtm_cT1@1\'' """ ins_d = { 'CELLSIZE' : 0, 'CRS' : None, 'EXPRESSION' : formula, 'EXTENT' : None, 'LAYERS' : [ref_layer], #referecnce layer 'OUTPUT' : 'TEMPORARY_OUTPUT' } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['RESULT']): raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['RESULT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay def addgeometrycolumns(self, #add geometry data as columns vlay, layname=None, logger=None, ): if logger is None: logger=self.logger log = logger.getChild('addgeometrycolumns') algo_nm = 'qgis:exportaddgeometrycolumns' #======================================================================= # assemble pars #======================================================================= #assemble pars ins_d = { 'CALC_METHOD' : 0, #use layer's crs 'INPUT' : vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT'} log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] #=========================================================================== # post formatting #=========================================================================== if layname is None: layname = '%s_gcol'%self.vlay.name() res_vlay.setName(layname) #reset the name return res_vlay def buffer(self, vlay, distance, #buffer distance to apply dissolve = False, end_cap_style = 0, join_style = 0, miter_limit = 2, segments = 5, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger if layname is None: layname = '%s_buf'%vlay.name() algo_nm = 'native:buffer' log = self.logger.getChild('buffer') distance = float(distance) #======================================================================= # prechecks #======================================================================= if distance==0 or np.isnan(distance): raise Error('got no buffer!') #======================================================================= # build ins #======================================================================= """ distance = 3.0 dcopoy = copy.copy(distance) """ ins_d = { 'INPUT': vlay, 'DISSOLVE' : dissolve, 'DISTANCE' : distance, 'END_CAP_STYLE' : end_cap_style, 'JOIN_STYLE' : join_style, 'MITER_LIMIT' : miter_limit, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'SEGMENTS' : segments} #======================================================================= # execute #======================================================================= log.debug('executing \'native:buffer\' with ins_d: \n %s'%ins_d) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] res_vlay.setName(layname) #reset the name log.debug('finished') return res_vlay def selectbylocation(self, #select features (from main laye) by geoemtric relation with comp_vlay vlay, #vlay to select features from comp_vlay, #vlay to compare result_type = 'select', method= 'new', #Modify current selection by pred_l = ['intersect'], #list of geometry predicate names #expectations allow_none = False, logger = None, ): #======================================================================= # setups and defaults #======================================================================= if logger is None: logger=self.logger algo_nm = 'native:selectbylocation' log = logger.getChild('selectbylocation') #=========================================================================== # #set parameter translation dictoinaries #=========================================================================== meth_d = {'new':0} pred_d = { 'are within':6, 'intersect':0, 'overlap':5, } #predicate (name to value) pred_l = [pred_d[pred_nm] for pred_nm in pred_l] #======================================================================= # setup #======================================================================= ins_d = { 'INPUT' : vlay, 'INTERSECT' : comp_vlay, 'METHOD' : meth_d[method], 'PREDICATE' : pred_l } log.debug('executing \'%s\' on \'%s\' with: \n %s' %(algo_nm, vlay.name(), ins_d)) #=========================================================================== # #execute #=========================================================================== _ = processing.run(algo_nm, ins_d, feedback=self.feedback) #======================================================================= # check #======================================================================= fcnt = vlay.selectedFeatureCount() if fcnt == 0: msg = 'No features selected!' if allow_none: log.warning(msg) else: raise Error(msg) #======================================================================= # wrap #======================================================================= log.debug('selected %i (of %i) features from %s' %(vlay.selectedFeatureCount(),vlay.dataProvider().featureCount(), vlay.name())) return self._get_sel_res(vlay, result_type=result_type, logger=log, allow_none=allow_none) def saveselectedfeatures(self,#generate a memory layer from the current selection vlay, logger=None, allow_none = False, layname=None): #=========================================================================== # setups and defaults #=========================================================================== if logger is None: logger = self.logger log = logger.getChild('saveselectedfeatures') algo_nm = 'native:saveselectedfeatures' if layname is None: layname = '%s_sel'%vlay.name() #======================================================================= # precheck #======================================================================= fcnt = vlay.selectedFeatureCount() if fcnt == 0: msg = 'No features selected!' if allow_none: log.warning(msg) return None else: raise Error(msg) log.debug('on \'%s\' with %i feats selected'%( vlay.name(), vlay.selectedFeatureCount())) #======================================================================= # # build inputs #======================================================================= ins_d = {'INPUT' : vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT'} log.debug('\'native:saveselectedfeatures\' on \'%s\' with: \n %s' %(vlay.name(), ins_d)) #execute res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] assert isinstance(res_vlay, QgsVectorLayer) #=========================================================================== # wrap #=========================================================================== res_vlay.setName(layname) #reset the name return res_vlay def polygonfromlayerextent(self, vlay, round_to=0, #adds a buffer to the result? logger=None, layname=None): """ This algorithm takes a map layer and generates a new vector layer with the minimum bounding box (rectangle polygon with N-S orientation) that covers the input layer. Optionally, the extent can be enlarged to a rounded value. """ #=========================================================================== # setups and defaults #=========================================================================== if logger is None: logger = self.logger log = logger.getChild('polygonfromlayerextent') algo_nm = 'qgis:polygonfromlayerextent' if layname is None: layname = '%s_exts'%vlay.name() #======================================================================= # precheck #======================================================================= #======================================================================= # # build inputs #======================================================================= ins_d = {'INPUT' : vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'ROUND_TO':round_to} log.debug('\'%s\' on \'%s\' with: \n %s' %(algo_nm, vlay.name(), ins_d)) #execute res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] assert isinstance(res_vlay, QgsVectorLayer) #=========================================================================== # wrap #=========================================================================== res_vlay.setName(layname) #reset the name return res_vlay def fixgeometries(self, vlay, logger=None, layname=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger if layname is None: layname = '%s_fix'%vlay.name() algo_nm = 'native:fixgeometries' log = self.logger.getChild('fixgeometries') #======================================================================= # build ins #======================================================================= """ distance = 3.0 dcopoy = copy.copy(distance) """ ins_d = { 'INPUT': vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', } #======================================================================= # execute #======================================================================= log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) res_vlay = res_d['OUTPUT'] res_vlay.setName(layname) #reset the name log.debug('finished') return res_vlay def createspatialindex(self, in_vlay, logger=None, ): #======================================================================= # presets #======================================================================= algo_nm = 'qgis:createspatialindex' if logger is None: logger=self.logger log = self.logger.getChild('createspatialindex') in_vlay #======================================================================= # assemble pars #======================================================================= #assemble pars ins_d = { 'INPUT' : in_vlay } log.debug('executing \'%s\' with ins_d: \n %s'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) #=========================================================================== # post formatting #=========================================================================== #======================================================================= # if layname is None: # layname = '%s_si'%self.vlay.name() # # res_vlay.setName(layname) #reset the name #======================================================================= return def warpreproject(self, #repojrect a raster rlay_raw, crsOut = None, #crs to re-project to layname = None, options = 'COMPRESS=DEFLATE|PREDICTOR=2|ZLEVEL=9', output = 'TEMPORARY_OUTPUT', logger = None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger = self.logger log = logger.getChild('warpreproject') if layname is None: layname = '%s_rproj'%rlay_raw.name() algo_nm = 'gdal:warpreproject' if crsOut is None: crsOut = self.crs #just take the project's #======================================================================= # precheck #======================================================================= """the algo accepts 'None'... but not sure why we'd want to do this""" assert isinstance(crsOut, QgsCoordinateReferenceSystem), 'bad crs type' assert isinstance(rlay_raw, QgsRasterLayer) assert rlay_raw.crs() != crsOut, 'layer already on this CRS!' #======================================================================= # run algo #======================================================================= ins_d = { 'DATA_TYPE' : 0, 'EXTRA' : '', 'INPUT' : rlay_raw, 'MULTITHREADING' : False, 'NODATA' : None, 'OPTIONS' : options, 'OUTPUT' : output, 'RESAMPLING' : 0, 'SOURCE_CRS' : None, 'TARGET_CRS' : crsOut, 'TARGET_EXTENT' : None, 'TARGET_EXTENT_CRS' : None, 'TARGET_RESOLUTION' : None, } log.debug('executing \'%s\' with ins_d: \n %s \n\n'%(algo_nm, ins_d)) res_d = processing.run(algo_nm, ins_d, feedback=self.feedback) log.debug('finished w/ \n %s'%res_d) if not os.path.exists(res_d['OUTPUT']): """failing intermittently""" raise Error('failed to get a result') res_rlay = QgsRasterLayer(res_d['OUTPUT'], layname) #======================================================================= # #post check #======================================================================= assert isinstance(res_rlay, QgsRasterLayer), 'got bad type: %s'%type(res_rlay) assert res_rlay.isValid() assert rlay_raw.bandCount()==res_rlay.bandCount(), 'band count mismatch' res_rlay.setName(layname) #reset the name log.debug('finished w/ %s'%res_rlay.name()) return res_rlay #=========================================================================== # ALGOS - CUSTOM-------- #=========================================================================== def vlay_pts_dist(self, #get the distance between points in a given order vlay_raw, ifn = 'fid', #fieldName to index by request = None, result = 'vlay_append', #result type logger=None): #=========================================================================== # defaults #=========================================================================== if logger is None: logger=self.logger log = logger.getChild('vlay_pts_dist') if request is None: request = QgsFeatureRequest( ).addOrderBy(ifn, ascending=True ).setSubsetOfAttributes([ifn], vlay_raw.fields()) #=========================================================================== # precheck #=========================================================================== assert 'Point' in QgsWkbTypes().displayString(vlay_raw.wkbType()), 'passed bad geo type' #see if indexer is unique ifn_d = vlay_get_fdata(vlay_raw, fieldn=ifn, logger=log) assert len(set(ifn_d.values()))==len(ifn_d) #=========================================================================== # loop and calc #=========================================================================== d = dict() first, geo_prev = True, None for i, feat in enumerate(vlay_raw.getFeatures(request)): assert not feat.attribute(ifn) in d, 'indexer is not unique!' geo = feat.geometry() if first: first=False else: d[feat.attribute(ifn)] = geo.distance(geo_prev) geo_prev = geo log.info('got %i distances using \"%s\''%(len(d), ifn)) #=========================================================================== # check #=========================================================================== assert len(d) == (vlay_raw.dataProvider().featureCount() -1) #=========================================================================== # results typing #=========================================================================== if result == 'dict': return d elif result == 'vlay_append': #data manip ncoln = '%s_dist'%ifn df_raw = vlay_get_fdf(vlay_raw, logger=log) df = df_raw.join(pd.Series(d, name=ncoln), on=ifn) assert df[ncoln].isna().sum()==1, 'expected 1 null' #reassemble geo_d = vlay_get_fdata(vlay_raw, geo_obj=True, logger=log) return self.vlay_new_df2(df, geo_d=geo_d, logger=log, layname='%s_%s'%(vlay_raw.name(), ncoln)) #========================================================================== # privates---------- #========================================================================== def _field_handlr(self, #common handling for fields vlay, #layer to check for field presence fieldn_l, #list of fields to handle invert = False, logger=None, ): if logger is None: logger=self.logger log = logger.getChild('_field_handlr') #======================================================================= # all flag #======================================================================= if isinstance(fieldn_l, str): if fieldn_l == 'all': fieldn_l = vlay_fieldnl(vlay) log.debug('user passed \'all\', retrieved %i fields: \n %s'%( len(fieldn_l), fieldn_l)) else: raise Error('unrecognized fieldn_l\'%s\''%fieldn_l) #======================================================================= # type setting #======================================================================= if isinstance(fieldn_l, tuple) or isinstance(fieldn_l, np.ndarray) or isinstance(fieldn_l, set): fieldn_l = list(fieldn_l) #======================================================================= # checking #======================================================================= if not isinstance(fieldn_l, list): raise Error('expected a list for fields, instead got \n %s'%fieldn_l) #vlay_check(vlay, exp_fieldns=fieldn_l) #======================================================================= # #handle inversions #======================================================================= if invert: big_fn_s = set(vlay_fieldnl(vlay)) #get all the fields #get the difference fieldn_l = list(big_fn_s.difference(set(fieldn_l))) log.debug('inverted selection from %i to %i fields'% (len(big_fn_s), len(fieldn_l))) return fieldn_l def _get_sel_obj(self, vlay): #get the processing object for algos with selections log = self.logger.getChild('_get_sel_obj') assert isinstance(vlay, QgsVectorLayer) if vlay.selectedFeatureCount() == 0: raise Error('Nothing selected on \'%s\'. exepects some pre selection'%(vlay.name())) #handle project layer store if self.qproj.mapLayer(vlay.id()) is None: #layer not on project yet. add it if self.qproj.addMapLayer(vlay, False) is None: raise Error('failed to add map layer \'%s\''%vlay.name()) log.debug('based on %i selected features from \'%s\''%(len(vlay.selectedFeatureIds()), vlay.name())) return QgsProcessingFeatureSourceDefinition(source=vlay.id(), selectedFeaturesOnly=True, featureLimit=-1, geometryCheck=QgsFeatureRequest.GeometryAbortOnInvalid) def _get_sel_res(self, #handler for returning selection like results vlay, #result layer (with selection on it result_type='select', #expectiions allow_none = False, logger=None ): #======================================================================= # setup #======================================================================= if logger is None: logger = self.logger log = logger.getChild('_get_sel_res') #======================================================================= # precheck #======================================================================= if vlay.selectedFeatureCount() == 0: if not allow_none: raise Error('nothing selected') return None #log.debug('user specified \'%s\' for result_type'%result_type) #======================================================================= # by handles #======================================================================= if result_type == 'select': #log.debug('user specified \'select\', doing nothing with %i selected'%vlay.selectedFeatureCount()) result = None elif result_type == 'fids': result = vlay.selectedFeatureIds() #get teh selected feature ids elif result_type == 'feats': result = {feat.id(): feat for feat in vlay.getSelectedFeatures()} elif result_type == 'layer': result = self.saveselectedfeatures(vlay, logger=log) else: raise Error('unexpected result_type kwarg') return result def _in_out_checking(self,res_vlay, ): """placeholder""" def __exit__(self, #destructor *args,**kwargs): self.mstore.removeAllMapLayers() super().__exit__(*args,**kwargs) #initilzie teh baseclass class MyFeedBackQ(QgsProcessingFeedback): """ wrapper for easier reporting and extended progress Dialogs: built by QprojPlug.qproj_setup() Qworkers: built by Qcoms.__init__() """ def __init__(self, logger=mod_logger): self.logger=logger.getChild('FeedBack') super().__init__() def setProgressText(self, text): self.logger.debug(text) def pushInfo(self, info): self.logger.info(info) def pushCommandInfo(self, info): self.logger.info(info) def pushDebugInfo(self, info): self.logger.info(info) def pushConsoleInfo(self, info): self.logger.info(info) def reportError(self, error, fatalError=False): self.logger.error(error) def upd_prog(self, #advanced progress handling prog_raw, #pass None to reset method='raw', #whether to append value to the progress ): #======================================================================= # defaults #======================================================================= #get the current progress progress = self.progress() #=================================================================== # prechecks #=================================================================== #make sure we have some slots connected """not sure how to do this""" #======================================================================= # reseting #======================================================================= if prog_raw is None: """ would be nice to reset the progressBar.. .but that would be complicated """ self.setProgress(0) return #======================================================================= # setting #======================================================================= if method=='append': prog = min(progress + prog_raw, 100) elif method=='raw': prog = prog_raw elif method == 'portion': rem_prog = 100-progress prog = progress + rem_prog*(prog_raw/100) assert prog<=100 #=================================================================== # emit signalling #=================================================================== self.setProgress(prog) #============================================================================== # FUNCTIONS---------- #============================================================================== def init_q(gui=False): try: QgsApplication.setPrefixPath(r'C:/OSGeo4W64/apps/qgis-ltr', True) app = QgsApplication([], gui) # Update prefix path #app.setPrefixPath(r"C:\OSGeo4W64\apps\qgis", True) app.initQgis() #logging.debug(QgsApplication.showSettings()) """ was throwing unicode error""" print(u' QgsApplication.initQgis. version: %s, release: %s'%( Qgis.QGIS_VERSION.encode('utf-8'), Qgis.QGIS_RELEASE_NAME.encode('utf-8'))) return app except: raise Error('QGIS failed to initiate') def vlay_check( #helper to check various expectations on the layer vlay, exp_fieldns = None, #raise error if these field names are OUT uexp_fieldns = None, #raise error if these field names are IN real_atts = None, #list of field names to check if attribute value are all real bgeot = None, #basic geo type checking fcnt = None, #feature count checking. accepts INT or QgsVectorLayer fkey = None, #optional secondary key to check mlay = False, #check if its a memory layer or not chk_valid = False, #check layer validty logger = mod_logger, db_f = False, ): #======================================================================= # prechecks #======================================================================= if vlay is None: raise Error('got passed an empty vlay') if not isinstance(vlay, QgsVectorLayer): raise Error('unexpected type: %s'%type(vlay)) log = logger.getChild('vlay_check') checks_l = [] #======================================================================= # expected field names #======================================================================= if not basic.is_null(exp_fieldns): #robust null checking skip=False if isinstance(exp_fieldns, str): if exp_fieldns=='all': skip=True if not skip: fnl = basic.linr(exp_fieldns, vlay_fieldnl(vlay), 'expected field names', vlay.name(), result_type='missing', logger=log, fancy_log=db_f) if len(fnl)>0: raise Error('%s missing expected fields: %s'%( vlay.name(), fnl)) checks_l.append('exp_fieldns=%i'%len(exp_fieldns)) #======================================================================= # unexpected field names #======================================================================= if not basic.is_null(uexp_fieldns): #robust null checking #fields on the layer if len(vlay_fieldnl(vlay))>0: fnl = basic.linr(uexp_fieldns, vlay_fieldnl(vlay), 'un expected field names', vlay.name(), result_type='matching', logger=log, fancy_log=db_f) if len(fnl)>0: raise Error('%s contains unexpected fields: %s'%( vlay.name(), fnl)) #no fields on the layer else: pass checks_l.append('uexp_fieldns=%i'%len(uexp_fieldns)) #======================================================================= # null value check #======================================================================= #========================================================================== # if not real_atts is None: # # #pull this data # df = vlay_get_fdf(vlay, fieldn_l = real_atts, logger=log) # # #check for nulls # if np.any(df.isna()): # raise Error('%s got %i nulls on %i expected real fields: %s'%( # vlay.name(), df.isna().sum().sum(), len(real_atts), real_atts)) # # # checks_l.append('real_atts=%i'%len(real_atts)) #========================================================================== #======================================================================= # basic geometry type #======================================================================= #========================================================================== # if not bgeot is None: # bgeot_lay = vlay_get_bgeo_type(vlay) # # if not bgeot == bgeot_lay: # raise Error('basic geometry type expectation \'%s\' does not match layers \'%s\''%( # bgeot, bgeot_lay)) # # checks_l.append('bgeot=%s'%bgeot) #========================================================================== #======================================================================= # feature count #======================================================================= if not fcnt is None: if isinstance(fcnt, QgsVectorLayer): fcnt=fcnt.dataProvider().featureCount() if not fcnt == vlay.dataProvider().featureCount(): raise Error('\'%s\'s feature count (%i) does not match %i'%( vlay.name(), vlay.dataProvider().featureCount(), fcnt)) checks_l.append('fcnt=%i'%fcnt) #======================================================================= # fkey #======================================================================= #============================================================================== # if isinstance(fkey, str): # fnl = vlay_fieldnl(vlay) # # if not fkey in fnl: # raise Error('fkey \'%s\' not in the fields'%fkey) # # fkeys_ser = vlay_get_fdata(vlay, fkey, logger=log, fmt='ser').sort_values() # # if not np.issubdtype(fkeys_ser.dtype, np.number): # raise Error('keys are non-numeric. type: %s'%fkeys_ser.dtype) # # if not fkeys_ser.is_unique: # raise Error('\'%s\' keys are not unique'%fkey) # # if not fkeys_ser.is_monotonic: # raise Error('fkeys are not monotonic') # # if np.any(fkeys_ser.isna()): # raise Error('fkeys have nulls') # # checks_l.append('fkey \'%s\'=%i'%(fkey, len(fkeys_ser))) #============================================================================== #======================================================================= # storage type #======================================================================= if mlay: if not 'Memory' in vlay.dataProvider().storageType(): raise Error('\"%s\' unexpected storage type: %s'%( vlay.name(), vlay.dataProvider().storageType())) checks_l.append('mlay') #======================================================================= # validty #======================================================================= #========================================================================== # if chk_valid: # vlay_chk_validty(vlay, chk_geo=True) # # checks_l.append('validity') #========================================================================== #======================================================================= # wrap #======================================================================= log.debug('\'%s\' passed %i checks: %s'%( vlay.name(), len(checks_l), checks_l)) return def load_vlay( #load a layer from a file fp, providerLib='ogr', logger=mod_logger): """ what are we using this for? see instanc emethod """ log = logger.getChild('load_vlay') assert os.path.exists(fp), 'requested file does not exist: %s'%fp basefn = os.path.splitext(os.path.split(fp)[1])[0] #Import a Raster Layer vlay_raw = QgsVectorLayer(fp,basefn,providerLib) #check if this is valid if not vlay_raw.isValid(): log.error('loaded vlay \'%s\' is not valid. \n \n did you initilize?'%vlay_raw.name()) raise Error('vlay loading produced an invalid layer') #check if it has geometry if vlay_raw.wkbType() == 100: log.error('loaded vlay has NoGeometry') raise Error('no geo') #========================================================================== # report #========================================================================== vlay = vlay_raw dp = vlay.dataProvider() log.info('loaded vlay \'%s\' as \'%s\' %s geo with %i feats from file: \n %s' %(vlay.name(), dp.storageType(), QgsWkbTypes().displayString(vlay.wkbType()), dp.featureCount(), fp)) return vlay def vlay_write( #write a VectorLayer vlay, out_fp, driverName='GPKG', fileEncoding = "CP1250", opts = QgsVectorFileWriter.SaveVectorOptions(), #empty options object overwrite=False, logger=mod_logger): """ help(QgsVectorFileWriter.SaveVectorOptions) QgsVectorFileWriter.SaveVectorOptions.driverName='GPKG' opt2 = QgsVectorFileWriter.BoolOption(QgsVectorFileWriter.CreateOrOverwriteFile) help(QgsVectorFileWriter) TODO: Move this back onto Qcoms """ #========================================================================== # defaults #========================================================================== log = logger.getChild('vlay_write') #=========================================================================== # assemble options #=========================================================================== opts.driverName = driverName opts.fileEncoding = fileEncoding #=========================================================================== # checks #=========================================================================== #file extension fhead, ext = os.path.splitext(out_fp) if not 'gpkg' in ext: raise Error('unexpected extension: %s'%ext) if os.path.exists(out_fp): msg = 'requested file path already exists!. overwrite=%s \n %s'%( overwrite, out_fp) if overwrite: log.warning(msg) os.remove(out_fp) #workaround... should be away to overwrite with the QgsVectorFileWriter else: raise Error(msg) if vlay.dataProvider().featureCount() == 0: raise Error('\'%s\' has no features!'%( vlay.name())) if not vlay.isValid(): Error('passed invalid layer') error = QgsVectorFileWriter.writeAsVectorFormatV2( vlay, out_fp, QgsCoordinateTransformContext(), opts, ) #======================================================================= # wrap and check #======================================================================= if error[0] == QgsVectorFileWriter.NoError: log.info('layer \' %s \' written to: \n %s'%(vlay.name(),out_fp)) return out_fp raise Error('FAILURE on writing layer \' %s \' with code:\n %s \n %s'%(vlay.name(),error, out_fp)) def vlay_get_fdf( #pull all the feature data and place into a df vlay, fmt='df', #result fomrat key. #dict: {fid:{fieldname:value}} #df: index=fids, columns=fieldnames #limiters request = None, #request to pull data. for more customized requestes. fieldn_l = None, #or field name list. for generic requests #modifiers reindex = None, #optinal field name to reindex df by #expectations expect_all_real = False, #whether to expect all real results allow_none = False, db_f = False, logger=mod_logger, feedback=MyFeedBackQ()): """ performance improvement Warning: requests with getFeatures arent working as expected for memory layers this could be combined with vlay_get_feats() also see vlay_get_fdata() (for a single column) RETURNS a dictionary in the Qgis attribute dictionary format: key: generally feat.id() value: a dictionary of {field name: attribute value} """ #=========================================================================== # setups and defaults #=========================================================================== log = logger.getChild('vlay_get_fdf') assert isinstance(vlay, QgsVectorLayer) all_fnl = [fieldn.name() for fieldn in vlay.fields().toList()] if fieldn_l is None: #use all the fields fieldn_l = all_fnl else: vlay_check(vlay, fieldn_l, logger=logger, db_f=db_f) if allow_none: if expect_all_real: raise Error('cant allow none and expect all reals') #=========================================================================== # prechecks #=========================================================================== if not reindex is None: if not reindex in fieldn_l: raise Error('requested reindexer \'%s\' is not a field name'%reindex) if not vlay.dataProvider().featureCount()>0: raise Error('no features!') if len(fieldn_l) == 0: raise Error('no fields!') if fmt=='dict' and not (len(fieldn_l)==len(all_fnl)): raise Error('dict results dont respect field slicing') assert hasattr(feedback, 'setProgress') #=========================================================================== # build the request #=========================================================================== feedback.setProgress(2) if request is None: """WARNING: this doesnt seem to be slicing the fields. see Alg().deletecolumns() but this will re-key things request = QgsFeatureRequest().setSubsetOfAttributes(fieldn_l,vlay.fields())""" request = QgsFeatureRequest() #never want geometry request = request.setFlags(QgsFeatureRequest.NoGeometry) log.debug('extracting data from \'%s\' on fields: %s'%(vlay.name(), fieldn_l)) #=========================================================================== # loop through each feature and extract the data #=========================================================================== fid_attvs = dict() #{fid : {fieldn:value}} fcnt = vlay.dataProvider().featureCount() for indxr, feat in enumerate(vlay.getFeatures(request)): #zip values fid_attvs[feat.id()] = feat.attributes() feedback.setProgress((indxr/fcnt)*90) #=========================================================================== # post checks #=========================================================================== if not len(fid_attvs) == vlay.dataProvider().featureCount(): log.debug('data result length does not match feature count') if not request.filterType()==3: #check if a filter fids was passed """todo: add check to see if the fiter request length matches tresult""" raise Error('no filter and data length mismatch') #check the field lengthes if not len(all_fnl) == len(feat.attributes()): raise Error('field length mismatch') #empty check 1 if len(fid_attvs) == 0: log.warning('failed to get any data on layer \'%s\' with request'%vlay.name()) if not allow_none: raise Error('no data found!') else: if fmt == 'dict': return dict() elif fmt == 'df': return pd.DataFrame() else: raise Error('unexpected fmt type') #=========================================================================== # result formatting #=========================================================================== log.debug('got %i data elements for \'%s\''%( len(fid_attvs), vlay.name())) if fmt == 'dict': return fid_attvs elif fmt=='df': #build the dict df_raw =
pd.DataFrame.from_dict(fid_attvs, orient='index', columns=all_fnl)
pandas.DataFrame.from_dict
import os import pandas as pd def get_data(): """ Loads the data for the project. """ import os import pandas as pd pardir = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) datadir = pardir + "\\Data" datadir offense = [] defense = [] offensel = [] defensel = [] for f in os.listdir(datadir): if f[11] == "O": offense.append(datadir + "\\" + f) if f[11] == "D": defense.append(datadir + "\\" + f) for f in offense: offensel.append(pd.read_excel(f,0)) for f in defense: defensel.append(pd.read_excel(f,0)) return offensel, defensel def clean_data(offense, defense): """ Prepares the data for the project. :param offense: DataFrame. The offense team data. :param defense: DataFrame. The defense team data. """ import pandas as pd i = 2002 for f in offense: f.insert(0, "Year", i) i+= 1 j = 2002 for g in defense: g.insert(0, "Year", j) j+= 1 for i in range(0, len(offense)): offense[i] = offense[i].drop([32,33,34]) for i in range(0, len(defense)): defense[i] = defense[i].drop([32,33,34]) combined = [] i = 0 for f in offense: combined.append(f.merge(defense[i], how='inner', on=["Year","Tm"])) i+=1 finalframe =
pd.concat(combined, ignore_index=True)
pandas.concat
from collections import namedtuple import dask.array as da import dask.dataframe as dd import numpy as np import pandas as pd import pandas.testing as tm import pytest from dask.array.utils import assert_eq as assert_eq_ar from dask.dataframe.utils import assert_eq as assert_eq_df from dask_ml.datasets import make_classification from dask_ml.utils import ( _num_samples, assert_estimator_equal, check_array, check_chunks, check_consistent_length, check_matching_blocks, check_random_state, handle_zeros_in_scale, slice_columns, ) df = dd.from_pandas(pd.DataFrame(5 * [range(42)]).T, npartitions=5) s = dd.from_pandas(pd.Series([0, 1, 2, 3, 0]), npartitions=5) a = da.from_array(np.array([0, 1, 2, 3, 0]), chunks=3) X, y = make_classification(chunks=(2, 20)) Foo = namedtuple("Foo", "a_ b_ c_ d_") Bar = namedtuple("Bar", "a_ b_ d_ e_") def test_slice_columns(): columns = [2, 3] df2 = slice_columns(df, columns) X2 = slice_columns(X, columns) assert list(df2.columns) == columns assert_eq_df(df[columns].compute(), df2.compute()) assert_eq_ar(X.compute(), X2.compute()) def test_handle_zeros_in_scale(): s2 = handle_zeros_in_scale(s) a2 = handle_zeros_in_scale(a) assert list(s2.compute()) == [1, 1, 2, 3, 1] assert list(a2.compute()) == [1, 1, 2, 3, 1] x = np.array([1, 2, 3, 0], dtype="f8") expected = np.array([1, 2, 3, 1], dtype="f8") result = handle_zeros_in_scale(x) np.testing.assert_array_equal(result, expected) x = pd.Series(x) expected = pd.Series(expected) result = handle_zeros_in_scale(x)
tm.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
import os import tempfile import pandas as pd import pytest from pandas.util import testing as pdt from .. import simulation as sim from ...utils.testing import assert_frames_equal def setup_function(func): sim.clear_sim() sim.enable_cache() def teardown_function(func): sim.clear_sim() sim.enable_cache() @pytest.fixture def df(): return pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=['x', 'y', 'z']) def test_tables(df): wrapped_df = sim.add_table('test_frame', df) @sim.table() def test_func(test_frame): return test_frame.to_frame() / 2 assert set(sim.list_tables()) == {'test_frame', 'test_func'} table = sim.get_table('test_frame') assert table is wrapped_df assert table.columns == ['a', 'b'] assert table.local_columns == ['a', 'b'] assert len(table) == 3 pdt.assert_index_equal(table.index, df.index) pdt.assert_series_equal(table.get_column('a'), df.a) pdt.assert_series_equal(table.a, df.a)
pdt.assert_series_equal(table['b'], df['b'])
pandas.util.testing.assert_series_equal
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ from datetime import datetime from inspect import signature from io import StringIO import os from pathlib import Path import sys import numpy as np import pytest from pandas.compat import PY310 from pandas.errors import ( EmptyDataError, ParserError, ParserWarning, ) from pandas import ( DataFrame, Index, Series, Timestamp, compat, ) import pandas._testing as tm from pandas.io.parsers import TextFileReader from pandas.io.parsers.c_parser_wrapper import CParserWrapper xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail") skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip") def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self) -> None: self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = { "usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ",", } parser.engine = "c" parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({"A": [1, 10], "B": [2334, 13], "C": [5, 10.0]}) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("squeeze", [True, False]) def test_squeeze(all_parsers, squeeze): data = """\ a,1 b,2 c,3 """ parser = all_parsers index = Index(["a", "b", "c"], name=0) expected = Series([1, 2, 3], name=1, index=index) result = parser.read_csv_check_warnings( FutureWarning, "The squeeze argument has been deprecated " "and will be removed in a future version. " 'Append .squeeze\\("columns"\\) to the call to squeeze.\n\n', StringIO(data), index_col=0, header=None, squeeze=squeeze, ) if not squeeze: expected = DataFrame(expected) tm.assert_frame_equal(result, expected) else: tm.assert_series_equal(result, expected) # see gh-8217 # # Series should not be a view. assert not result._is_view @xfail_pyarrow def test_unnamed_columns(all_parsers): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ parser = all_parsers expected = DataFrame( [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64, columns=["A", "B", "C", "Unnamed: 3", "Unnamed: 4"], ) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_csv_mixed_type(all_parsers): data = """A,B,C a,1,2 b,3,4 c,4,5 """ parser = all_parsers expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_read_csv_low_memory_no_rows_with_index(all_parsers): # see gh-21141 parser = all_parsers if not parser.low_memory: pytest.skip("This is a low-memory specific test") data = """A,B,C 1,1,1,2 2,2,3,4 3,3,4,5 """ result = parser.read_csv(StringIO(data), low_memory=True, index_col=0, nrows=0) expected = DataFrame(columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_read_csv_dataframe(all_parsers, csv1): parser = all_parsers result = parser.read_csv(csv1, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", [3, 3.0]) def test_read_nrows(all_parsers, nrows): # see gh-10476 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame( [["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"], ) parser = all_parsers result = parser.read_csv(StringIO(data), nrows=nrows) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", [1.2, "foo", -1]) def test_read_nrows_bad(all_parsers, nrows): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = r"'nrows' must be an integer >=0" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), nrows=nrows) def test_nrows_skipfooter_errors(all_parsers): msg = "'skipfooter' not supported with 'nrows'" data = "a\n1\n2\n3\n4\n5\n6" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=1, nrows=5) @xfail_pyarrow def test_missing_trailing_delimiters(all_parsers): parser = all_parsers data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = parser.read_csv(StringIO(data)) expected = DataFrame( [[1, 2, 3, 4], [1, 3, 3, np.nan], [1, 4, 5, np.nan]], columns=["A", "B", "C", "D"], ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_skip_initial_space(all_parsers): data = ( '"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' "1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, " "314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, " "70.06056, 344.98370, 1, 1, -0.689265, -0.692787, " "0.212036, 14.7674, 41.605, -9999.0, -9999.0, " "-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128" ) parser = all_parsers result = parser.read_csv( StringIO(data), names=list(range(33)), header=None, na_values=["-9999.0"], skipinitialspace=True, ) expected = DataFrame( [ [ "09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, 1.00361, 1.12551, 330.65659, 355626618.16711, 73.48821, 314.11625, 1917.09447, 179.71425, 80.0, 240.0, -350, 70.06056, 344.9837, 1, 1, -0.689265, -0.692787, 0.212036, 14.7674, 41.605, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0, 12, 128, ] ] ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_trailing_delimiters(all_parsers): # see gh-2442 data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=False) expected = DataFrame({"A": [1, 4, 7], "B": [2, 5, 8], "C": [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(all_parsers): # https://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv board","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals series","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa:E501 parser = all_parsers result = parser.read_csv( StringIO(data), escapechar="\\", quotechar='"', encoding="utf-8" ) assert result["SEARCH_TERM"][2] == 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals series' tm.assert_index_equal(result.columns, Index(["SEARCH_TERM", "ACTUAL_URL"])) @xfail_pyarrow def test_ignore_leading_whitespace(all_parsers): # see gh-3374, gh-6607 parser = all_parsers data = " a b c\n 1 2 3\n 4 5 6\n 7 8 9" result = parser.read_csv(StringIO(data), sep=r"\s+") expected = DataFrame({"a": [1, 4, 7], "b": [2, 5, 8], "c": [3, 6, 9]}) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("usecols", [None, [0, 1], ["a", "b"]]) def test_uneven_lines_with_usecols(all_parsers, usecols): # see gh-12203 parser = all_parsers data = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10""" if usecols is None: # Make sure that an error is still raised # when the "usecols" parameter is not provided. msg = r"Expected \d+ fields in line \d+, saw \d+" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) else: expected = DataFrame({"a": [0, 3, 8], "b": [1, 4, 9]}) result = parser.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "data,kwargs,expected", [ # First, check to see that the response of parser when faced with no # provided columns raises the correct error, with or without usecols. ("", {}, None), ("", {"usecols": ["X"]}, None), ( ",,", {"names": ["Dummy", "X", "Dummy_2"], "usecols": ["X"]}, DataFrame(columns=["X"], index=[0], dtype=np.float64), ), ( "", {"names": ["Dummy", "X", "Dummy_2"], "usecols": ["X"]}, DataFrame(columns=["X"]), ), ], ) def test_read_empty_with_usecols(all_parsers, data, kwargs, expected): # see gh-12493 parser = all_parsers if expected is None: msg = "No columns to parse from file" with pytest.raises(EmptyDataError, match=msg): parser.read_csv(StringIO(data), **kwargs) else: result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "kwargs,expected", [ # gh-8661, gh-8679: this should ignore six lines, including # lines with trailing whitespace and blank lines. ( { "header": None, "delim_whitespace": True, "skiprows": [0, 1, 2, 3, 5, 6], "skip_blank_lines": True, }, DataFrame([[1.0, 2.0, 4.0], [5.1, np.nan, 10.0]]), ), # gh-8983: test skipping set of rows after a row with trailing spaces. ( { "delim_whitespace": True, "skiprows": [1, 2, 3, 5, 6], "skip_blank_lines": True, }, DataFrame({"A": [1.0, 5.1], "B": [2.0, np.nan], "C": [4.0, 10]}), ), ], ) def test_trailing_spaces(all_parsers, kwargs, expected): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa:E501 parser = all_parsers result = parser.read_csv(StringIO(data.replace(",", " ")), **kwargs) tm.assert_frame_equal(result, expected) def test_raise_on_sep_with_delim_whitespace(all_parsers): # see gh-6607 data = "a b c\n1 2 3" parser = all_parsers with pytest.raises(ValueError, match="you can only specify one"): parser.read_csv(StringIO(data), sep=r"\s", delim_whitespace=True) def test_read_filepath_or_buffer(all_parsers): # see gh-43366 parser = all_parsers with pytest.raises(TypeError, match="Expected file path name or file-like"): parser.read_csv(filepath_or_buffer=b"input") @xfail_pyarrow @pytest.mark.parametrize("delim_whitespace", [True, False]) def test_single_char_leading_whitespace(all_parsers, delim_whitespace): # see gh-9710 parser = all_parsers data = """\ MyColumn a b a b\n""" expected = DataFrame({"MyColumn": list("abab")}) result = parser.read_csv( StringIO(data), skipinitialspace=True, delim_whitespace=delim_whitespace ) tm.assert_frame_equal(result, expected) # Skip for now, actually only one test fails though, but its tricky to xfail @skip_pyarrow @pytest.mark.parametrize( "sep,skip_blank_lines,exp_data", [ (",", True, [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0], [-70.0, 0.4, 1.0]]), (r"\s+", True, [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0], [-70.0, 0.4, 1.0]]), ( ",", False, [ [1.0, 2.0, 4.0], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5.0, np.nan, 10.0], [np.nan, np.nan, np.nan], [-70.0, 0.4, 1.0], ], ), ], ) def test_empty_lines(all_parsers, sep, skip_blank_lines, exp_data): parser = all_parsers data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ if sep == r"\s+": data = data.replace(",", " ") result = parser.read_csv(StringIO(data), sep=sep, skip_blank_lines=skip_blank_lines) expected = DataFrame(exp_data, columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_whitespace_lines(all_parsers): parser = all_parsers data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = DataFrame([[1, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"]) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "data,expected", [ ( """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """, DataFrame( [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]], columns=["A", "B", "C", "D"], index=["a", "b", "c"], ), ), ( " a b c\n1 2 3 \n4 5 6\n 7 8 9", DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["a", "b", "c"]), ), ], ) def test_whitespace_regex_separator(all_parsers, data, expected): # see gh-6607 parser = all_parsers result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) def test_sub_character(all_parsers, csv_dir_path): # see gh-16893 filename = os.path.join(csv_dir_path, "sub_char.csv") expected = DataFrame([[1, 2, 3]], columns=["a", "\x1ab", "c"]) parser = all_parsers result = parser.read_csv(filename) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("filename", ["sé-es-vé.csv", "ru-sй.csv", "中文文件名.csv"]) def test_filename_with_special_chars(all_parsers, filename): # see gh-15086. parser = all_parsers df = DataFrame({"a": [1, 2, 3]}) with
tm.ensure_clean(filename)
pandas._testing.ensure_clean
""" Created at EPFL 2020 @author: <NAME>meters Placing detectors on edges Input requirements: - dataframe with edges, needed column names = 'N1', 'N2', 'length' - Linestring column in x-y coordinates (needed for interpolate function) with name = 'geom' Note: Linestring object can follow curves, not just straight lines between begin and end node """ # Choice between two implementations: # - single detectors # - multiple detectors at once import pneumapackage.compassbearing as cpb from pneumapackage.__init__ import path_results from pneumapackage.settings import * import geopandas as gpd import pandas as pd import osmnx as ox from pyproj import Proj from shapely.geometry import Point, LineString import leuvenmapmatching.util.dist_euclidean as distxy from pathlib import Path import os # Single implementation # gdf = dataframe with edges with Linestring object in x-y coordinates # distance = specified distance of point object from start node of linestring object # relative = place point object on relative position wrt to length of edge # reverse = specified distance of point object starting from end node of linestring object class Detectors: def __init__(self, gdf_netw, n_det, length_detector, dfi, double_loops, lonlat=False, gdf_special=None): self.network = gdf_netw self.n_det = n_det self.dfi = dfi self.len_det = length_detector if type(double_loops) in (int, float): self.double_loops = True self.loop_width = double_loops else: self.double_loops = False self.loop_width = 0 self.det_loc = make_double_detector(self.network, self.dfi, n_det=self.n_det, loop_width=self.loop_width, make_double_loops=self.double_loops) self.det_loc_latlon = get_xy_to_crs_double_loops(self.det_loc, n_det=self.n_det, double_loops=self.double_loops, lonlat=lonlat) self.det_edges = make_detector_edges(self.det_loc_latlon, self.len_det, double_loops=self.double_loops) self.features = edge_features(gdf_special, length_detector, lonlat=lonlat) self.det_edges_all = self.det_edges[0] self.det_edges_all_ts = {} self.det_selection = {} def info(self): det_info = {'number_detectors': self.n_det, 'distance_from_intersection': self.dfi, 'length_detector': self.len_det, 'double_loops': self.double_loops, 'loop_width': self.loop_width} return det_info def detector_selection(self, index_list): det_sel = self.det_edges_all[self.det_edges_all['_id'].isin(index_list)] self.det_selection = det_sel return det_sel def detector_projected(self): det_loc = self.det_loc tmp_det = pd.merge(det_loc, self.network[['_id', 'x1', 'y1', 'x2', 'y2']], how='left', on='_id') for ind in range(1, self.n_det + 1): tmp_det[f'crd{ind}'] = [t.coords[0] for t in tmp_det[f'detector {ind}']] det_proj = tmp_det.apply(help_det_proj, column_name=f'crd{ind}', axis=1) det_loc[f'proj_det{ind}'] = det_proj self.det_loc = det_loc def features_projected(self): ft = self.features ft = ft.reset_index() tmp_ft = pd.merge(ft, self.network[['_id', 'x1', 'y1', 'x2', 'y2']], how='left', on='_id') ft_proj = tmp_ft.apply(help_det_proj, column_name='xy', axis=1) ft['proj_feature'] = ft_proj ft.set_index(['_id', 'index'], inplace=True) self.features = ft def detector_to_shapefile(self, det_sel=False, filename=None, folder=path_results): detector = self.det_edges_all fn = '' if filename is not None: fn = filename if det_sel: detector = self.det_selection Path(folder + "/shapefiles").mkdir(parents=True, exist_ok=True) for det in range(1, self.n_det + 1): det_gdf = gpd.GeoDataFrame(detector[['_id', 'n1', 'n2']], geometry=detector[f'det_edge_{det}']) det_gdf_shp = det_gdf.copy() det_gdf_shp.crs = 'epsg:4326' shp_fn = os.path.join(folder, 'shapefiles', f'detector_{det}{fn}') det_gdf_shp.to_file(filename=shp_fn) if self.double_loops: det_bis_gdf = gpd.GeoDataFrame(detector[['_id', 'n1', 'n2']], geometry=detector[f'det_edge_{det}bis']) det_bis_gdf_shp = det_bis_gdf.copy() det_bis_gdf_shp.crs = 'epsg:4326' shp_fnbis = os.path.join(folder, 'shapefiles', f'detector_{det}bis{fn}') det_bis_gdf_shp.to_file(filename=shp_fnbis) def make_detector(gdf, distance, relative=False, reverse=False): if distance < 0: raise Exception('distance should be positive. The value was: {}'.format(distance)) if relative: if 1 < distance: raise Exception('distance should be lower or equal to 1 to be relative. ' 'The value was: {}'.format(distance)) if gdf.crs.to_epsg() == 4326: gdf = ox.project_gdf(gdf) name = [] id_b = [] if not reverse: for i, j in gdf.iterrows(): if relative: d = gdf.loc[i, 'geometry'].interpolate(distance, normalized=relative) elif gdf['length'][i] > distance: d = gdf.loc[i, 'geometry'].interpolate(distance, normalized=relative) else: d = gdf.loc[i, 'geometry'].interpolate(0.1, normalized=True) id = gdf.loc[i, ['n1', 'n2']] name.append(d) id_b.append(id) else: for i, j in gdf.iterrows(): if gdf['length'][i] > distance: d = gdf.loc[i, 'geometry'].interpolate(gdf.loc[i, 'length'] - distance, normalized=relative) else: d = gdf.loc[i, 'geometry'].interpolate(0.9, normalized=True) id = gdf.loc[i, ['n1', 'n2']] name.append(d) id_b.append(id) name = pd.DataFrame(name, columns=['detector_1']) id_b = pd.DataFrame(id_b, columns=['n1', 'n2']) name =
pd.concat([name, id_b], axis=1)
pandas.concat
from dataclasses import replace from tika import parser import utils import json from datetime import datetime import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.width', None) def get_meta_indices(alist): for index, item in enumerate(alist): if "AUSFAHRLISTE" in item: return [i for i in range(index, len(alist))] class Ausfahrliste: """ Separation of customer info is based on the fact that each customer has a number. If you look keenly after splitting the extracted pdf, you'll find that customer numbers are not preceded by any space while other numbers are (apart from plz or regional code). Thus, we are taking advantage of these two facts to separate customers. Assumption: There is no way number of customers are going to be more than 1000 so the region code can never be a customer number. """ def __init__(self, afile): self.afile = afile self.table = None def read_pdf(self): return parser.from_file(self.afile) def get_content(self): contents = self.read_pdf()["content"] contents = utils.replace_unreasonable_text(text=contents, text2replace="76356 in Eimer legen", replacer_text="in Eimer legen\n76356 Weingarten") return contents def create_reasonable_pdf_text_splits(self): return self.get_content().split("\n") def get_indices_of_customer_numbers(self): """ Here we are taking advantage of the fact that a customer number has no preceding space in the string. :return: list """ customer_line_indices = [] for index, line in enumerate(self.create_reasonable_pdf_text_splits()): line_splits = line.split(" ") if utils.is_comma(line_splits): # Every customer line must have a comma if len(line_splits) > 0: # This ensures all blank items are removed try: int(line_splits[0]) # we are looking for an integer if len(line_splits[0]) < 5: # Region code should not be the first customer line customer_line_indices.append(index) except ValueError: "" return customer_line_indices def create_index_spans_for_customers(self): """ We take advantage of the preceding function where we create customer indices to create spans of indices :return: dictionary """ indices = self.get_indices_of_customer_numbers() customer_spans = {} for index, _ in enumerate(indices): if index < len(indices) - 1: customer_spans[f'customer_no {index + 1}'] = [i for i in range(indices[index], indices[index + 1])] else: customer_spans[f'customer_no {index + 1}'] = [i for i in range(indices[index], len(self.create_reasonable_pdf_text_splits()))] # from the last index containing customer no to the end of the document return customer_spans def get_actual_customer_data_using_indices(self): """ using the indices in the preceding function, let us get customer data :return: dictionary """ customer_indices_dict = self.create_index_spans_for_customers() mixed_customer_data = self.create_reasonable_pdf_text_splits() customer_data_dict = customer_indices_dict for key in customer_indices_dict: single_customer_indices = customer_indices_dict[key] customer_data_dict[key] = [mixed_customer_data[i] for i in single_customer_indices] # if key == "customer_no 6" or key == "customer_no 7" or key == "customer_no 10": # print_json(customer_data_dict[key]) return customer_data_dict def get_meta_info(self): whole_document_list = self.create_reasonable_pdf_text_splits() whole_document_list = [i for i in whole_document_list if i != ""] meta_dict = {} for index, item in enumerate(whole_document_list): splits = item.split(" ") if "Route" in splits: for sub_index, sub_item in enumerate(splits): if "." in sub_item: meta_dict["date"] = datetime.strftime(datetime.strptime(sub_item, "%d.%m.%y"), "%Y-%m-%d") if "Seite" in sub_item: meta_dict["page"] = splits[sub_index + 1] if "Route" in sub_item: meta_dict["route"] = splits[sub_index - 1] if "eigene" in splits: for sub_index, sub_item in enumerate(splits): if "." in sub_item: meta_dict["date"] = datetime.strftime(datetime.strptime(sub_item, "%d.%m.%y"), "%Y-%m-%d") if "Seite" in sub_item: meta_dict["page"] = splits[sub_index + 1] if "Tour:" in splits: for sub_index, sub_item in enumerate(splits): if sub_item == "Tour:": meta_dict["tour"] = splits[sub_index + 1] if sub_item == "Logistikpartner:": meta_dict["logistikpartner"] = utils.list2string( [splits[i] for i in [sub_index + 1, sub_index + 2]]) if sub_item == "km": meta_dict["short distance"] = splits[sub_index - 1] try: long_route = splits[sub_index + 1] meta_dict["long route"] = utils.remove_brackets(long_route) except IndexError: meta_dict["long distance"] = "" if "Kommissionierzone:" in splits: meta_dict["bakery"] = utils.list2string(splits[1:]) return meta_dict def get_list_of_breads_for_this_ausfahrliste(self): breads = [] customer_dict = self.get_actual_customer_data_using_indices() for key in customer_dict: bread_dict = utils.get_breads(customer_dict[key]) specific_customer_breads = [i for i in bread_dict.keys()] for bread in specific_customer_breads: if bread not in breads: breads.append(bread) return sorted(breads) def make_customer_table(self): all_breads = self.get_list_of_breads_for_this_ausfahrliste() customer_dict = self.get_actual_customer_data_using_indices() dict_list = [] for key in customer_dict: customer_no = key.split(" ")[1] alist = customer_dict[key] customer_name = utils.get_customer_name(alist) customer_partial_address = utils.get_customer_partial_address(alist) customer_status = utils.get_customer_status(alist) customer_plz = utils.get_region_plz(alist) customer_address = f'{customer_partial_address}{customer_plz}' customer_instructions = utils.get_additional_customer_information(alist) customer_info_as_dict = { "no": customer_no, "name": customer_name, "address": customer_address, "status": customer_status, "instructions": customer_instructions } bread_dict = utils.get_breads(alist) for bread in all_breads: if bread in bread_dict: customer_info_as_dict[bread] = bread_dict[bread] else: customer_info_as_dict[bread] = 0 dict_list.append(pd.DataFrame(customer_info_as_dict, index=[0])) df =
pd.concat(dict_list)
pandas.concat
import streamlit as st import json import requests import pandas as pd import numpy as np import re from datetime import datetime as dt from datetime import time import matplotlib.pyplot as plt import seaborn as sns import matplotlib st.set_page_config(layout="centered", page_title="DataCracy Dashboard", page_icon = '💙') #SLACK_BEARER_TOKEN = os.environ.get('SLACK_BEARER_TOKEN') ## Get in setting of Streamlit Share SLACK_BEARER_TOKEN = st.secrets["TOKEN"] DTC_GROUPS_URL = ('https://raw.githubusercontent.com/anhdanggit/atom-assignments/main/data/datacracy_groups.csv') #st.write(json_data['SLACK_BEARER_TOKEN']) @st.cache def load_users_df(): # Slack API User Data endpoint = "https://slack.com/api/users.list" headers = {"Authorization": "Bearer {}".format(SLACK_BEARER_TOKEN)} response_json = requests.post(endpoint, headers=headers).json() user_dat = response_json['members'] # Convert to CSV user_dict = {'user_id':[],'name':[],'display_name':[],'real_name':[],'title':[],'is_bot':[]} for i in range(len(user_dat)): user_dict['user_id'].append(user_dat[i]['id']) user_dict['name'].append(user_dat[i]['name']) user_dict['display_name'].append(user_dat[i]['profile']['display_name']) user_dict['real_name'].append(user_dat[i]['profile']['real_name_normalized']) user_dict['title'].append(user_dat[i]['profile']['title']) user_dict['is_bot'].append(int(user_dat[i]['is_bot'])) user_df =
pd.DataFrame(user_dict)
pandas.DataFrame
"""Loads, standardizes and validates input data for the simulation. Abstract the extract and transform pieces of the artifact ETL. The intent here is to provide a uniform interface around this portion of artifact creation. The value of this interface shows up when more complicated data needs are part of the project. See the BEP project for an example. `BEP <https://github.com/ihmeuw/vivarium_gates_bep/blob/master/src/vivarium_gates_bep/data/loader.py>`_ .. admonition:: No logging is done here. Logging is done in vivarium inputs itself and forwarded. """ import pandas as pd from gbd_mapping import causes, covariates, risk_factors, sequelae from db_queries import ( get_covariate_estimates, get_location_metadata, get_population, ) from vivarium_gbd_access.utilities import get_draws from vivarium.framework.artifact import EntityKey from vivarium_gbd_access import constants as gbd_constants, gbd from vivarium_inputs import ( globals as vi_globals, interface, utilities as vi_utils, utility_data, ) from vivarium_inputs.mapping_extension import alternative_risk_factors from vivarium_gates_iv_iron.constants import data_keys, metadata from vivarium_gates_iv_iron.constants.data_values import MATERNAL_HEMORRHAGE_SEVERITY_PROBABILITY from vivarium_gates_iv_iron.data import utilities from vivarium_gates_iv_iron.utilities import ( create_draws, get_lognorm_from_quantiles, get_truncnorm_from_quantiles, get_random_variable_draws_for_location, ) def get_data(lookup_key: str, location: str) -> pd.DataFrame: """Retrieves data from an appropriate source. Parameters ---------- lookup_key The key that will eventually get put in the artifact with the requested data. location The location to get data for. Returns ------- The requested data. """ mapping = { data_keys.POPULATION.LOCATION: load_population_location, data_keys.POPULATION.STRUCTURE: load_population_structure, data_keys.POPULATION.AGE_BINS: load_age_bins, data_keys.POPULATION.DEMOGRAPHY: load_demographic_dimensions, data_keys.POPULATION.TMRLE: load_theoretical_minimum_risk_life_expectancy, data_keys.POPULATION.ACMR: load_standard_data, data_keys.POPULATION.PREGNANT_LACTATING_WOMEN_LOCATION_WEIGHTS: get_pregnant_lactating_women_location_weights, data_keys.POPULATION.WOMEN_REPRODUCTIVE_AGE_LOCATION_WEIGHTS: get_women_reproductive_age_location_weights, data_keys.PREGNANCY.INCIDENCE_RATE: load_pregnancy_incidence_rate, data_keys.PREGNANCY.PREGNANT_PREVALENCE: get_prevalence_pregnant, data_keys.PREGNANCY.NOT_PREGNANT_PREVALENCE: get_prevalence_not_pregnant, data_keys.PREGNANCY.POSTPARTUM_PREVALENCE: get_prevalence_postpartum, data_keys.PREGNANCY.INCIDENCE_RATE_MISCARRIAGE: load_standard_data, data_keys.PREGNANCY.INCIDENCE_RATE_ECTOPIC: load_standard_data, data_keys.PREGNANCY.ASFR: load_asfr, data_keys.PREGNANCY.SBR: load_sbr, data_keys.LBWSG.DISTRIBUTION: load_metadata, data_keys.LBWSG.CATEGORIES: load_metadata, data_keys.LBWSG.EXPOSURE: load_lbwsg_exposure, data_keys.PREGNANCY_OUTCOMES.STILLBIRTH: load_pregnancy_outcome, data_keys.PREGNANCY_OUTCOMES.LIVE_BIRTH: load_pregnancy_outcome, data_keys.PREGNANCY_OUTCOMES.OTHER: load_pregnancy_outcome, data_keys.MATERNAL_DISORDERS.CSMR: load_standard_data, data_keys.MATERNAL_DISORDERS.INCIDENCE_RATE: load_standard_data, data_keys.MATERNAL_DISORDERS.YLDS: load_maternal_disorders_ylds, data_keys.MATERNAL_HEMORRHAGE.CSMR: load_standard_data, data_keys.MATERNAL_HEMORRHAGE.INCIDENCE_RATE: load_standard_data, data_keys.HEMOGLOBIN.MEAN: get_hemoglobin_data, data_keys.HEMOGLOBIN.STANDARD_DEVIATION: get_hemoglobin_data, } return mapping[lookup_key](lookup_key, location) def load_population_location(key: str, location: str) -> str: if key != data_keys.POPULATION.LOCATION: raise ValueError(f"Unrecognized key {key}") return location def load_population_structure(key: str, location: str) -> pd.DataFrame: if location == "LMICs": world_bank_1 = filter_population(interface.get_population_structure("World Bank Low Income")) world_bank_2 = filter_population(interface.get_population_structure("World Bank Lower Middle Income")) population_structure =
pd.concat([world_bank_1, world_bank_2])
pandas.concat
## ÇOK DEĞİŞKENLİ REGRESYON İÇİN VERİ HAZIRLAMA #------------------------------------------------------ ## KÜTÜPHANELER import pandas as pd import matplotlib.pyplot as plt import numpy as np #--------------------------------- ## VERİ YÜKLEME veri = pd.read_csv("C:\\Users\\Computer\\Desktop\\python-machine_learning\\Veriler\\data.csv") print(veri,"\n") #------------------------------------------------------ ## KATEGORİK VERİ DÖNÜŞÜMÜ # ulke kolonu için ulke = veri.iloc[:,0:1].values from sklearn import preprocessing le = preprocessing.LabelEncoder() ulke[:,0] = le.fit_transform(veri.iloc[:,0]) one_hot_encoder = preprocessing.OneHotEncoder() ulke = one_hot_encoder.fit_transform(ulke).toarray() print(ulke,"\n") #----------------------------------------------------- # cinsiyet kolonu için cınsıyet = veri.iloc[:,-1:].values from sklearn import preprocessing le = preprocessing.LabelEncoder() cınsıyet[:,-1] = le.fit_transform(veri.iloc[:,-1]) one_hot_encoder = preprocessing.OneHotEncoder() cınsıyet = one_hot_encoder.fit_transform(cınsıyet).toarray() print(cınsıyet,"\n") #--------------------------------------------------------- ## VERİLERİN BİRLEŞTİRİLMESİ #---------------------------------------- boy_kilo_yas = veri[["boy","kilo","yas"]] print(boy_kilo_yas) # ben boy kilo ve yas kolonlarını önceden seçmediğim için şimdi burda aldım #--------------------------------------- sonuc = pd.DataFrame(data=ulke, index=range(22), columns=['fr','tr','us']) sonuc_1 = pd.DataFrame(data=boy_kilo_yas, index=range(22), columns=['boy','kilo','yas']) sonuc_2 = pd.DataFrame(data=cınsıyet[:,:1], index=range(22), columns=['cinsiyet']) # Biz burda numeric hale dönüştürdüğümüz 2 cinsiyet kolonundan birini kullandık # çünkü ikisini birden kullanırsak "dumy trap" denen sorunu yaşayabilirdik. s=pd.concat([sonuc,sonuc_1],axis=1) #burda ulke ve boy kilo yas verilerini birleştirdik s_1=
pd.concat([s,sonuc_2],axis=1)
pandas.concat
# -*- coding:utf-8 -*- # @Time : 2020/1/122:48 # @Author : liuqiuxi # @Email : <EMAIL> # @File : fundfeedsjqdata.py # @Project : datafeeds # @Software: PyCharm # @Remark : This is class of option market import pandas as pd import datetime import copy from datafeeds.jqdatafeeds import BaseJqData from datafeeds.utils import BarFeedConfig from datafeeds import logger class AFundQuotationJqData(BaseJqData): LOGGER_NAME = "AFundQuotationJqData" def __init__(self): super(AFundQuotationJqData, self).__init__() self.__adjust_name_dict = {"F": "pre", "B": "post"} self.__need_adjust_columns = ["close"] self.__logger = logger.get_logger(name=self.LOGGER_NAME) def get_quotation(self, securityIds, items, frequency, begin_datetime, end_datetime, adjusted=None): securityIds_OTC = [] securityIds_EXC = [] # 判断场内场外基金 for securityId in securityIds: code_suffix = securityId[securityId.find(".") + 1:] if code_suffix == "OF": securityIds_OTC.append(securityId) elif code_suffix == "SH" or code_suffix == "SZ": securityIds_EXC.append(securityId) else: self.__logger.warning("the securityId: %s did't support in fund quotation, we remove it" % securityId) # 得到场内基金数据 if len(securityIds_EXC) > 0: data0 = self.__get_exchange_quotation(securityIds=securityIds_EXC, items=items, frequency=frequency, begin_datetime=begin_datetime, end_datetime=end_datetime, adjusted=adjusted) else: data0 = pd.DataFrame() # 得到场外基金数据 if len(securityIds_OTC) > 0: data1 = self.__get_otc_quotation(securityIds=securityIds_OTC, items=items, frequency=frequency, begin_datetime=begin_datetime, end_datetime=end_datetime, adjusted=adjusted) else: data1 = pd.DataFrame() # merge OTC and EXC if not data0.empty and not data1.empty: columns = list(set(data0.columns).union(set(data1.columns))) for column in columns: if column not in data0.columns: data0.loc[:, column] = None if column not in data1.columns: data1.loc[:, column] = None data0 = data0.loc[:, columns].copy(deep=True) data1 = data1.loc[:, columns].copy(deep=True) data = pd.concat(objs=[data0, data1], axis=0, join="outer") else: if data0.empty: data = data1.copy(deep=True) elif data1.empty: data = data0.copy(deep=True) else: raise BaseException("[AFundQuotationJqData] something may wrong") data.reset_index(inplace=True, drop=True) data.sort_values(by=["securityId", "dateTime"], axis=0, ascending=True, inplace=True) data.reset_index(inplace=True, drop=True) non_find_securityIds = list(set(securityIds) - set(data.loc[:, "securityId"])) if len(non_find_securityIds) > 0: self.__logger.warning("we can't get securityIds: %s data, please check it" % non_find_securityIds) return data def __get_exchange_quotation(self, securityIds, items, frequency, begin_datetime, end_datetime, adjusted): connect = self.connect() securityIds = self.wind_to_default(securityIds=securityIds) frequency = self.get_frequency_cycle(frequency=frequency) adjusted = self.__adjust_name_dict.get(adjusted, None) rename_dict = BarFeedConfig.get_jq_data_items().get(self.LOGGER_NAME) data = pd.DataFrame() for securityId in securityIds: data0 = connect.get_price(security=securityId, start_date=begin_datetime, end_date=end_datetime, frequency=frequency, skip_paused=False, fq=adjusted) data0.loc[:, "dateTime"] = data0.index securityId = self.default_to_wind(securityIds=[securityId]) data0.loc[:, "securityId"] = securityId data = pd.concat(objs=[data, data0], axis=0, join="outer") data.rename(columns=rename_dict, inplace=True) # choose items to data default_items = list(rename_dict.values()) real_items = [] for item in items: if item in ["securityId", "dateTime"]: self.__logger.info("There is no need add item: %s to parameters items" % item) elif item in default_items: real_items.append(item) else: self.__logger.warning("item %s not in default items, so we remove this item to data" % item) data = data.loc[:, ["dateTime", "securityId"] + real_items].copy(deep=True) connect.logout() return data def __get_otc_quotation(self, securityIds, items, frequency, begin_datetime, end_datetime, adjusted): connect = self.connect() finance = connect.finance if frequency != 86400: self.__logger.warning("otc quotation only support daily data, the frequency: %d not support now") return
pd.DataFrame()
pandas.DataFrame
from itertools import combinations import pandas as pd import pytest mock_data = { "block": [ 1, 1, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ], "class": [ "test class 1", "test class 1", "test class 2", "test class 2", "test class 3", "test class 3", "test class 3", "test class 3", "test class 4", "test class 4", "test class 5", "test class 5", "test class 5", "test class 6", "test class 7", "test class 8", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 7", "test class 9", "test class 9", ], "student": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Test 1", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Test 1", "Test 2", "Test 3", "Test 4", "Test 5", "Test 6", "Test 7", "Test 8", "Test 9", "Test 10", "Test 11", "Test 12", "Test 13", "Test 14", "Test 15", "Test 16", "Test 17", "Test 18", "Test 19", "Test 20", "Test 21", "Test 22", "Test 23", "Test 24", "Test 25", "Test 26", "<NAME>", "<NAME>", ], } @pytest.fixture(scope="session") def class_size_check(test_schedule): df = pd.read_excel(str(test_schedule), engine="openpyxl") class_size = ( df.groupby( [ "block", "class", ] ) .size() .to_frame() .reset_index() ) class_size = [ {"block": x[0], "class_name": x[1], "total_students": x[2]} for x in class_size.to_numpy() ] return class_size @pytest.fixture(scope="session") def student_matches_check(test_schedule): df = pd.read_excel(str(test_schedule), engine="openpyxl") blocks = df["block"].sort_values().unique() total_blocks = df["block"].max() match_df = df.pivot(index="student", columns="block", values="class").reset_index() matches = [{i: []} for i in range(total_blocks, 1, -1)] all_combinations = [] for r in range(len(blocks) + 1): found_combinations = combinations(blocks, r) combinations_list = list(found_combinations) for comb in combinations_list: if len(comb) > 1: all_combinations += combinations_list all_combinations.sort(reverse=True, key=len) for comb in all_combinations: exclude = [] for match in matches: for m in match: for student_matches in match[m]: for student_match in student_matches: exclude.append(student_match) match_df = match_df[~match_df["student"].isin(exclude)] matches_key = len(comb) matches_loc = total_blocks - len(comb) match_some_df = match_df.groupby(list(comb)) for match in match_some_df: match_list = match[1][["student"]].values.tolist() check = [x.pop() for x in match_list if len(match_list) > 1] if check: matches[matches_loc][matches_key].append(check) return matches @pytest.fixture(scope="session") def student_classes_check(test_schedule): df = pd.read_excel(str(test_schedule), engine="openpyxl") student_classes = {} # type: ignore for student in ( df[["student", "block", "class"]] .sort_values( by=[ "block", "class", ] ) .to_numpy() ): if student[0] in student_classes: student_classes[student[0]]["blocks"][student[1]] = student[2] else: student_classes[student[0]] = {"blocks": {student[1]: student[2]}} return student_classes @pytest.fixture def test_schedule_df(): return pd.DataFrame(mock_data) @pytest.fixture(scope="session") def test_schedule(tmp_path_factory): save_dir = tmp_path_factory.mktemp("schedule").joinpath("original_schedule.xlsx") df = pd.DataFrame(mock_data) df.to_excel(save_dir, index=False, engine="openpyxl") return save_dir @pytest.fixture(scope="session") def test_schedule_csv(tmp_path_factory): save_dir = tmp_path_factory.mktemp("schedule").joinpath("original_schedule.csv") df =
pd.DataFrame(mock_data)
pandas.DataFrame
""" Authors: <NAME> and <NAME> """ from bloomberg import BBG import pandas as pd from sklearn import preprocessing import numpy as np import matplotlib.pyplot as plt bbg = BBG() min_max_scaler = preprocessing.MinMaxScaler() # Pulling IBOVESPA and S&P indexes volatility, as well as general US and BR 10-year bonds # Original Date: '28-fev-1967' start_date = pd.to_datetime('01-jan-2010') end_date = pd.to_datetime('today') df = bbg.fetch_series(securities=['SPX Index', 'IBOV Index', 'USGG10YR Index', 'GEBR10Y Index'], fields=['VOLATILITY_90D', 'Volatil 90D'], startdate=start_date, enddate=end_date) volSPX_90 = pd.DataFrame(data=df['SPX Index']) volSPX_90 = volSPX_90.droplevel('FIELD') volSPX_90 = volSPX_90.resample('Q').last() volIBOV_90 = pd.DataFrame(data=df['IBOV Index']) volIBOV_90 = volIBOV_90.droplevel('FIELD') volIBOV_90 = volIBOV_90.resample('Q').last() volbonds_90 = pd.DataFrame(data=df['USGG10YR Index']) volbonds_90 = volbonds_90.droplevel('FIELD') volbonds_90 = volbonds_90.resample('Q').last() voltitul_90 =
pd.DataFrame(data=df['GEBR10Y Index'])
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import os DATASET_FOLDER = '../../datasets/' def gen_worldbank_countries(): # Écrit un csv avec les pays et les codes associés des pays qui nous intéresses df_des = dataframe_flood() df = pd.DataFrame(df_des.groupby('Country')[['Country', 'ISO']].head(1)) df.rename(columns={'Country': 'name', 'ISO':'code'}, inplace=True) df.to_csv(f'{DATASET_FOLDER}worldbank_countries.csv', index=False) def dataframe_flood(): # Renvoit une dataframe avec les désastres de type flood try: df =
pd.read_excel(f'{DATASET_FOLDER}emdat_public_2020_09_12_query_uid-tAnKEX.xlsx', index_col=0)
pandas.read_excel
# -*- coding: utf-8 -*- import gc import os import pickle import random from argparse import ArgumentParser import numpy as np import pandas as pd import torch from transformers import GPT2Tokenizer from experiment import Intervention, Model from utils import convert_results_to_pd np.random.seed(1) torch.manual_seed(1) def get_template_list(): # Get list of all considered templates # "That" sentences are ours # "Because" sentences are a subset # from https://arxiv.org/pdf/1807.11714.pdf (Lu et al.) return ["The {} said that", "The {} yelled that", "The {} whispered that", "The {} wanted that", "The {} desired that", "The {} wished that", "The {} ate because", "The {} ran because", "The {} drove because", "The {} slept because", "The {} cried because", "The {} laughed because", "The {} went home because", "The {} stayed up because", "The {} was fired because", "The {} was promoted because", "The {} yelled because"] def get_intervention_types(): return ['man_indirect', 'woman_indirect'] def construct_interventions(base_sent, tokenizer, DEVICE, gender='female'): interventions = {} if gender == 'female': filename = 'experiment_data/professions_female_stereo.json' else: filename = 'experiment_data/professions_male_stereo.json' with open(filename, 'r') as f: all_word_count = 0 used_word_count = 0 for l in f: # there is only one line that eval's to an array for j in eval(l): all_word_count += 1 biased_word = j[0] try: interventions[biased_word] = Intervention( tokenizer, base_sent, [biased_word, "man", "woman"], ["he", "she"], device=DEVICE) used_word_count += 1 except: pass # print("excepted {} due to tokenizer splitting.".format( # biased_word)) print("Only used {}/{} neutral words due to tokenizer".format( used_word_count, all_word_count)) return interventions def compute_odds_ratio(df, gender='female', col='odds_ratio'): # filter some stuff out df['profession'] = df['base_string'].apply(lambda s: s.split()[1]) df['definitional'] = df['profession'].apply(get_stereotypicality) df = df.loc[df['definitional'] < 0.75, :] df = df[df['candidate2_base_prob'] > 0.01] df = df[df['candidate1_base_prob'] > 0.01] if gender == 'female': odds_base = df['candidate1_base_prob'] / df['candidate2_base_prob'] odds_intervention = df['candidate1_prob'] / df['candidate2_prob'] else: odds_base = df['candidate2_base_prob'] / df['candidate1_base_prob'] odds_intervention = df['candidate2_prob'] / df['candidate1_prob'] odds_ratio = odds_intervention / odds_base df[col] = odds_ratio return df def sort_odds_obj(df): df['odds_diff'] = df['odds_ratio'].apply(lambda x: x-1) df_sorted = df.sort_values(by=['odds_diff'], ascending=False) return df_sorted def get_stereotypicality(vals): return abs(profession_stereotypicality[vals]['definitional']) profession_stereotypicality = {} with open("experiment_data/professions.json") as f: for l in f: for p in eval(l): profession_stereotypicality[p[0]] = { 'stereotypicality': p[2], 'definitional': p[1], 'total': p[2]+p[1], 'max': max([p[2],p[1]], key=abs)} # get global list def get_all_contrib(templates, tokenizer, out_dir=''): # get marginal contrib to empty set female_df = get_intervention_results(templates, tokenizer, gender='female') male_df = get_intervention_results(templates, tokenizer, gender='male') gc.collect() # compute odds ratio differently for each gender female_df = compute_odds_ratio(female_df, gender='female') male_df = compute_odds_ratio(male_df, gender='male') female_df = female_df[['layer','neuron', 'odds_ratio']] male_df = male_df[['layer','neuron', 'odds_ratio']] gc.collect() # merge and average df = pd.concat([female_df, male_df]) df = df.groupby(['layer','neuron'], as_index=False).mean() df_sorted = sort_odds_obj(df) layer_list = df_sorted['layer'].values neuron_list = df_sorted['neuron'].values odds_list = df_sorted['odds_ratio'].values marg_contrib = {} marg_contrib['layer'] = layer_list marg_contrib['neuron'] = neuron_list marg_contrib['val'] = odds_list pickle.dump(marg_contrib, open(out_dir + "/marg_contrib_" + model_type + ".pickle", "wb" )) return layer_list, neuron_list def get_intervention_results(templates, tokenizer, DEVICE='cuda', gender='female', layers_to_adj=[], neurons_to_adj=[], intervention_loc='all', df_layer=None, df_neuron=None): if gender == 'female': intervention_type = 'man_indirect' else: intervention_type = 'woman_indirect' df = [] for template in templates: # pickle.dump(template + "_" + gender, open("results/log.pickle", "wb" ) ) interventions = construct_interventions(template, tokenizer, DEVICE, gender) intervention_results = model.neuron_intervention_experiment(interventions, intervention_type, layers_to_adj=layers_to_adj, neurons_to_adj=neurons_to_adj, intervention_loc=intervention_loc) df_template = convert_results_to_pd(interventions, intervention_results, df_layer, df_neuron) # calc odds ratio and odds-abs df.append(df_template) gc.collect() return pd.concat(df) def get_neuron_intervention_results(templates, tokenizer, layers, neurons): female_df = get_intervention_results(templates, tokenizer, gender='female', layers_to_adj=layers, neurons_to_adj=[neurons], intervention_loc='neuron', df_layer=layers, df_neuron=neurons[0]) male_df = get_intervention_results(templates, tokenizer, gender='male', layers_to_adj=layers, neurons_to_adj=[neurons], intervention_loc='neuron', df_layer=layers, df_neuron=neurons[0]) female_df = compute_odds_ratio(female_df, gender='female') male_df = compute_odds_ratio(male_df, gender='male') df = pd.concat([female_df, male_df]) return df['odds_ratio'].mean() def top_k_by_layer(model, model_type, tokenizer, templates, layer, layer_list, neuron_list, k=50, out_dir=''): layer_2_ind = np.where(layer_list == layer)[0] neuron_2 = neuron_list[layer_2_ind] odd_abs_list = [] for i in range(k): print(i) temp_list = list(neuron_2[:i+1]) neurons = [temp_list] # get marginal contrib to empty set female_df = get_intervention_results(templates, tokenizer, gender='female', layers_to_adj=len(temp_list)*[layer], neurons_to_adj=neurons, intervention_loc='neuron', df_layer=layer, df_neuron=neurons[0]) male_df = get_intervention_results(templates, tokenizer, gender='male', layers_to_adj=len(temp_list)*[layer], neurons_to_adj=neurons, intervention_loc='neuron', df_layer=layer, df_neuron=neurons[0]) gc.collect() # compute odds ratio differently for each gender female_df = compute_odds_ratio(female_df, gender='female') male_df = compute_odds_ratio(male_df, gender='male') # merge and average df =
pd.concat([female_df, male_df])
pandas.concat
#!/usr/bin/python # -*- coding: UTF-8 -*- import datetime import os import pandas as pd deskPath = os.path.join(os.path.expanduser("~"), 'Desktop') import csv with open(deskPath+'\\ExportData.csv','r',encoding='UTF-8') as csvfile: csv_reader = csv.reader(csvfile) dates = [] cols = [] framedate = {} allrow = [] for row in csv_reader: allrow.append(row) if row[0] != '' and row[0] not in dates: dates.append(row[0]) if row[1] != '' and row[1] not in cols: cols.append(row[1]) framedate[row[1]] = {} for row1 in allrow: framedate[row1[1]][row1[0]] = row1[2] df =
pd.DataFrame(framedate, columns=cols, index=dates)
pandas.DataFrame
""" SIR 3S Logfile Utilities (short: Lx) """ __version__='192.168.3.11.dev1' import os import sys import logging logger = logging.getLogger(__name__) import argparse import unittest import doctest import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import py7zr import pandas as pd import h5py import subprocess import csv import glob import warnings #warnings.simplefilter(action='ignore', category=PerformanceWarning) # pd.set_option("max_rows", None) # pd.set_option("max_columns", None) # pd.reset_option('max_rows') # ... class LxError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def fTCCast(x): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) v=x try: if x in ['true','True']: v=1 elif x in ['false','False','']: v=0 else: try: v = float(x) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float schlaegt fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) try: v = pd.to_numeric(x,errors='raise',downcast='float') #logStrTmp="{:s}{!s:s}: Konvertierung mit pd.to_numeric liefert: {!s:s}".format(logStr,x,v) #logger.debug(logStrTmp) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float mit pd.to_numeric schlaegt auch fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) #x='2021-04-20 10:56:12.000' #t = pd.Timestamp(x) #t # Timestamp('2021-04-20 10:56:12') #i=int(t.to_datetime64())/1000000000 #i # 1618916172.0 #pd.to_datetime(i,unit='s',errors='coerce'): Timestamp('2021-04-20 10:56:12') try: t = pd.Timestamp(x) i=int(t.to_datetime64())/1000000000 v=pd.to_numeric(i,errors='raise',downcast='float') except Exception as e: logStrTmp="{:s}{!s:s}: Konvertierung zu float (mit pd.to_numeric) schlaegt (auch nach Annahme vaulue=Zeitstring) fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.debug(logStrTmp) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return v def getTCsOPCDerivative(TCsOPC,col,shiftSize,windowSize,fct=None): """ returns a df index: ProcessTime cols: col dt dValue dValueDt dValueDtRollingMean """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) mDf=pd.DataFrame() try: s=TCsOPC[col].dropna() mDf=pd.DataFrame(s) dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) mDf['dValueDtRollingMean']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return mDf logFilenamePattern='([0-9]+)(_)+([0-9]+)(\.log)' # group(3) ist Postfix und Nr. logFilenameHeadPattern='([0-9,_]+)(\.log)' # group(1) ist Head und H5-Key # nicht alle IDs werden von RE pID erfasst # diese werden mit pID2, getDfFromODIHelper und in getDfFromODI "nachbehandelt" pID=re.compile('(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)\.(?P<B>[a-z,A-Z,0-9,_]+)\.(?P<C1>[a-z,A-Z,0-9]+)_(?P<C2>[a-z,A-Z,0-9]+)_(?P<C3>[a-z,A-Z,0-9]+)_(?P<C4>[a-z,A-Z,0-9]+)_(?P<C5>[a-z,A-Z,0-9]+)(?P<C6>_[a-z,A-Z,0-9]+)?(?P<C7>_[a-z,A-Z,0-9]+)?\.(?P<D>[a-z,A-Z,0-9,_]+)\.(?P<E>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?') pID2='(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?' def getDfFromODIHelper(row,col,colCheck,pID2=pID2): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if not pd.isnull(row[colCheck]): res= row[col] resStr='ColCheckOk' elif pd.isnull(row[col]): res=re.search(pID2,row['ID']).group(col) if res != None: resStr='ColNowOk' else: resStr='ColStillNotOk' else: res = row[col] resStr='ColWasOk' except: res = row[col] resStr='ERROR' finally: if resStr not in ['ColCheckOk','ColNowOk']: logger.debug("{:s}col: {:s} resStr: {:s} row['ID']: {:s} res: {:s}".format(logStr,col, resStr,row['ID'],str(res))) #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return res def getDfFromODI(ODIFile,pID=pID): """ returns a defined df from ODIFile """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfID=None try: df=pd.read_csv(ODIFile,delimiter=';') s = pd.Series(df['ID'].unique()) dfID=s.str.extract(pID.pattern,expand=True) dfID['ID']=s dfC=dfID['C1']+'_'+dfID['C2']+'_'+dfID['C3']+'_'+dfID['C4']+'_'+dfID['C5']+'_'+dfID['C6']#+'_'+dfID['C7'] dfID.loc[:,'C']=dfC.values dfID['C']=dfID.apply(lambda row: row['C']+'_'+row['C7'] if not pd.isnull(row['C7']) else row['C'],axis=1) dfID=dfID[['ID','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] for col in ['Prae','Post','A']: dfID[col]=dfID.apply(lambda row: getDfFromODIHelper(row,col,'A'),axis=1) dfID.sort_values(by=['ID'], axis=0,ignore_index=True,inplace=True) dfID.set_index('ID',verify_integrity=True,inplace=True) dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','Post']='.EIN' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','A']='Objects' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','B']='3S_XYZ_PUMPE' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','C']='3S_XYZ_GSI_01' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','D']='Out' #dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN',:] dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','Post']='.SOLLW' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','A']='Objects' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','B']='3S_XYZ_RSCHIEBER' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','C']='3S_XYZ_PCV_01' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','D']='Out' #dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW',:] dfID['yUnit']=dfID.apply(lambda row: getDfFromODIHelperyUnit(row),axis=1) dfID['yDesc']=dfID.apply(lambda row: getDfFromODIHelperyDesc(row),axis=1) dfID=dfID[['yUnit','yDesc','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfID def addInitvalueToDfFromODI(INITFile,dfID): """ returns dfID extended with new Cols Initvalue and NumOfInits """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDext=dfID try: df=pd.read_csv(INITFile,delimiter=';',header=None,names=['ID','Value'])#,index_col=0) dfGrped=df.groupby(by=['ID'])['Value'].agg(['count','min','max','mean','last']) dfIDext=dfID.merge(dfGrped,left_index=True,right_index=True,how='left').filter(items=dfID.columns.to_list()+['last','count']).rename(columns={'last':'Initvalue','count':'NumOfInits'}) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDext def fODIMatch(dfODI,TYPE=None,OBJTYPE=None,NAME1=None,NAME2=None): df=dfODI if TYPE != None: df=df[df['TYPE']==TYPE] if OBJTYPE != None: df=df[df['OBJTYPE']==OBJTYPE] if NAME1 != None: df=df[df['NAME1']==NAME1] if NAME2 != None: df=df[df['NAME2']==NAME2] return df def fODIFindAllSchieberSteuerungsIDs(dfODI,NAME1=None,NAME2=None): # dfODI: pd.read_csv(ODI,delimiter=';') df=fODIMatch(dfODI,TYPE='OL_2',OBJTYPE='VENT',NAME1=NAME1,NAME2=NAME2) return sorted(list(df['ID'].unique())+[ID for ID in df['REF_ID'].unique() if not pd.isnull(ID)]) def fODIFindAllZeilenWithIDs(dfODI,IDs): return dfODI[dfODI['ID'].isin(IDs) | dfODI['REF_ID'].isin(IDs)] def getDfFromODIHelperyUnit(row): """ returns Unit """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) unit=None try: if row['E'] in ['AL_S','SB_S']: unit='[-]' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: unit='[Nm³/h]' elif row['E'] in ['AC_AV','LR_AV']: unit='[mm/s²]' else: unit='TBD in Lx' except: unit='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return unit def getDfFromODIHelperyDesc(row): """ returns Desc """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) desc=None try: if row['E'] in ['AL_S','SB_S']: desc='Status' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: desc='Fluss' elif row['E'] in ['AC_AV','LR_AV']: desc='Beschleunigung' else: desc='TBD in Lx' except: desc='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return desc def getDfIDUniqueCols(dfID): """ returns df with uniques """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDUniqueCols=pd.DataFrame() try: # Spalte mit der groessten Anzahl von Auspraegungen feststellen lenMax=0 colMax='' # ueber alle Spalten for idx,col in enumerate(dfID): s=pd.Series(dfID[col].unique()) if len(s) > lenMax: lenMax=len(s) colMax=col s=pd.Series(dfID[colMax].unique(),name=colMax) s.sort_values(inplace=True) s=pd.Series(s.values,name=colMax) dfIDUniqueCols=pd.DataFrame(s) # ueber alle weiteren Spalten for idx,col in enumerate([col for col in dfID.columns if col != colMax]): # s unique erzeugen s=pd.Series(dfID[col].unique(),name=col) # s sortieren s.sort_values(inplace=True) s=pd.Series(s.values,name=col) dfIDUniqueCols=pd.concat([dfIDUniqueCols,s],axis=1) dfIDUniqueCols=dfIDUniqueCols[dfID.columns] except: logger.error("{0:s}".format(logStr)) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDUniqueCols def getIDsFromID(ID='Objects.3S_XYZ_SEG_INFO.3S_L_6_KED_39_EL1.In.AL_S',dfID=None,matchCols=['B','C1','C2','C3','C4','C5','D'],any=False): """ returns IDs matching ID """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: IDsMatching=[] s=dfID.loc[ID,:] for ID,row in dfID.iterrows(): match=True for col in [col for col in row.index.values if col in matchCols]: #if str(row[col])!=str(s[col]): if row[col]!=s[col]: match=False break else: if any: break if match: IDsMatching.append(ID) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) #except: # logger.error("{0:s}".format(logStr)) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return sorted(IDsMatching) def getLDSResVecDf( ID # ResVec-Defining-Channel; i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In.AL_S / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In.AL_S ,dfID ,TCsLDSResDf ,matchCols # i.e. ['B','C1','C2','C3','C4','C5','C6','D'] for Segs; i.e. ['B','C','D'] for Drks ): """ returns a df with LDSResChannels as columns (AL_S, ...); derived by Filtering columns from TCsLDSResDf and renaming them """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: IDs=getIDsFromID(ID=ID,dfID=dfID,matchCols=matchCols) dfFiltered=TCsLDSResDf.filter(items=IDs) colDct={} for col in dfFiltered.columns: m=re.search(pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except: logger.error("{0:s}".format(logStr)) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetFirstAndLastValidIdx(df): """ returns (tFirst,tLast) """ for idx,col in enumerate(df.columns): tF=df[col].first_valid_index() tL=df[col].last_valid_index() if idx==0: tFirst=tF tLast=tL else: if tF < tFirst: tFirst=tF if tL > tLast: tLast=tL return (tFirst,tLast) def fGetIDSets( dfID ,divNr #'7' ,pipelineNrLst #['43','44'] ,fctIn=None # Funktion von ID die Falsch heraus gibt, wenn ID (doch) nicht in Menge sein soll ): # returns Dct: key: Bezeichner einer ID-Menge; value: zugeh. IDs IDSets={} IDs=[] for ID in sorted(dfID.index.unique()): m=re.search(pID,ID) if m != None: C1= m.group('C1') C2= m.group('C2') C3= m.group('C3') C4= m.group('C4') C5= m.group('C5') if C1 in [divNr] and C3 in pipelineNrLst: # u.a. SEG ErgVecs IDs.append(ID) elif C2 in [divNr] and C4 in pipelineNrLst: IDs.append(ID) elif C3 in [divNr] and C5 in pipelineNrLst: # FT, PTI, etc. IDs.append(ID) if fctIn != None: IDs=[ID for ID in IDs if fctIn(ID)] IDSets['IDs']=IDs IDsAlarm=[ID for ID in IDs if re.search(pID,ID).group('E') == 'AL_S'] IDSets['IDsAlarm']=IDsAlarm IDsAlarmSEG=[ID for ID in IDsAlarm if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsAlarmSEG']=IDsAlarmSEG IDsAlarmDruck=[ID for ID in IDsAlarm if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsAlarmDruck']=IDsAlarmDruck IDsStat=[ID for ID in IDs if re.search(pID,ID).group('E') == 'STAT_S'] IDSets['IDsStat']=IDsStat IDsStatSEG=[ID for ID in IDsStat if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsStatSEG']=IDsStatSEG IDsStatDruck=[ID for ID in IDsStat if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsStatDruck']=IDsStatDruck ### IDsSb=[ID for ID in IDs if re.search(pID,ID).group('E') == 'SB_S'] IDSets['IDsSb']=IDsSb IDsSbSEG=[ID for ID in IDsSb if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsSbSEG']=IDsSbSEG IDsSbDruck=[ID for ID in IDsSb if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsSbDruck']=IDsSbDruck ### IDsZHK=[ID for ID in IDs if re.search(pID,ID).group('E') == 'ZHKNR_S'] IDSets['IDsZHK']=IDsZHK IDsZHKSEG=[ID for ID in IDsZHK if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsZHKSEG']=IDsZHKSEG IDsZHKDruck=[ID for ID in IDsZHK if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsZHKDruck']=IDsZHKDruck IDsFT=[ID for ID in IDs if re.search(pID,ID).group('C4') == 'FT'] IDSets['IDsFT']=IDsFT IDsPT=[ID for ID in IDs if re.search(pID,ID).group('C4') == 'PTI'] IDSets['IDsPT']=IDsPT IDsPT_BCIND=[ID for ID in IDs if re.search(pID,ID).group('C5') == 'PTI' and re.search(pID,ID).group('E') == 'BCIND_S' ] IDSets['IDsPT_BCIND']=IDsPT_BCIND ### Schieber IDsZUST=[ID for ID in IDs if re.search(pID,ID).group('E') == 'ZUST'] IDsZUST=sorted(IDsZUST,key=lambda x: re.match(pID,x).group('C5')) IDSets['IDsZUST']=IDsZUST IDs_3S_XYZ_ESCHIEBER=[ID for ID in IDs if re.search(pID,ID).group('B') == '3S_FBG_ESCHIEBER'] IDs_3S_XYZ_ESCHIEBER=sorted(IDs_3S_XYZ_ESCHIEBER,key=lambda x: re.match(pID,x).group('C6')) IDSets['IDs_3S_XYZ_ESCHIEBER']=IDs_3S_XYZ_ESCHIEBER IDs_XYZ_ESCHIEBER=[ID for ID in IDs if re.search(pID,ID).group('B') == 'FBG_ESCHIEBER'] IDs_XYZ_ESCHIEBER=sorted(IDs_XYZ_ESCHIEBER,key=lambda x: re.match(pID,x).group('C5')) # IDSets['IDs_XYZ_ESCHIEBER']=IDs_XYZ_ESCHIEBER IDs_XYZ_ESCHIEBER_Ohne_ZUST=[ID for ID in IDs_XYZ_ESCHIEBER if re.search(pID,ID).group('E') != 'ZUST'] IDs_XYZ_ESCHIEBER_Ohne_ZUST=sorted(IDs_XYZ_ESCHIEBER_Ohne_ZUST,key=lambda x: re.match(pID,x).group('C5')) IDSets['IDs_XYZ_ESCHIEBER_Ohne_ZUST']=IDs_XYZ_ESCHIEBER_Ohne_ZUST IDsSchieberAlle=IDsZUST+IDs_XYZ_ESCHIEBER_Ohne_ZUST+IDs_3S_XYZ_ESCHIEBER IDSets['IDsSchieberAlle']=IDsSchieberAlle IDsSchieberAlleOhneLAEUFT=[ID for ID in IDsSchieberAlle if re.search('LAEUFT$',ID) == None] IDsSchieberAlleOhneLAEUFT=[ID for ID in IDsSchieberAlleOhneLAEUFT if re.search('LAEUFT_NICHT$',ID) == None] IDSets['IDsSchieberAlleOhneLAEUFT']=IDsSchieberAlleOhneLAEUFT return IDSets h5KeySep='/' def fValueFct(x): return pd.to_numeric(x,errors='ignore',downcast='float') class AppLog(): """ SIR 3S App Log (SQC Log) Maintains a H5-File. Existing H5-File will be deleted (if not initialized with h5File=...). H5-Keys are: * init * lookUpDf * lookUpDfZips (if initialized with zip7Files=...) * Logfilenames praefixed by Log without extension Attributes: * h5File * lookUpDf zipName logName FirstTime (ScenTime - not #LogTime) LastTime (ScenTime - mot #LogTime) * lookUpDfZips """ TCsdfOPCFill=False # wenn Wahr, werden in TCsdfOPCFill die NULLen aufgefuellt; default: Falsch @classmethod def getTCsFromDf(cls,df,dfID=pd.DataFrame(),TCsdfOPCFill=TCsdfOPCFill): """ returns several TC-dfs from df Verarbeitung von dfs gemaess extractTCsToH5s; siehe dort Args: * df: a df with Log-Data * columns: ['ID','ProcessTime','ScenTime','SubSystem','Value','Direction'] * dfID * index: ID * erf. nur, wenn IDs nach Res1 und Res2 aufgeteilt werden sollen * TCsdfOPCFill: if True (default): fill NaNs in this df Time curve dfs: cols: * Time (TCsdfOPC: ProcessTime, other: ScenTime) * ID * Value Time curve dfs: * TCsdfOPC * TCsSirCalc * TCsLDSIn * TCsLDSRes (dfID empty) or TCsLDSRes1, TCsLDSRes2 """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: TCsdfOPC=pd.DataFrame() TCsdfSirCalc=pd.DataFrame() TCsdfLDSIn=pd.DataFrame() if not dfID.empty: TCsdfLDSRes1=pd.DataFrame() TCsdfLDSRes2=pd.DataFrame() else: TCsdfLDSRes=pd.DataFrame() if not dfID.empty: df=df.merge(dfID,how='left',left_on='ID',right_index=True,suffixes=('','_r')) logger.debug("{0:s}{1:s}".format(logStr,'TCsdfOPC ...')) TCsdfOPC=df[(df['SubSystem'].str.contains('^OPC')) ### & ~(df['Value'].isnull()) # ueberfluessig, wenn df dies bereits erfuellt ][['ProcessTime','ID','Value']].pivot_table(index='ProcessTime', columns='ID', values='Value',aggfunc='last') if TCsdfOPCFill: for col in TCsdfOPC.columns: TCsdfOPC[col]=TCsdfOPC[col].fillna(method='ffill') TCsdfOPC[col]=TCsdfOPC[col].fillna(method='bfill') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfSirCalc ...')) TCsdfSirCalc=df[(df['SubSystem'].str.contains('^SirCalc')) | (df['SubSystem'].str.contains('^RTTM')) ][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSIn ...')) TCsdfLDSIn=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^<-'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') if not dfID.empty: logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes1 ...')) TCsdfLDSRes1=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->')) & (df['B'].str.contains('^3S_FBG_SEG_INFO'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 ...')) TCsdfLDSRes2=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->')) & (df['B'].str.contains('^3S_FBG_DRUCK'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') else: logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes ...')) TCsdfLDSRes=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not dfID.empty: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes def __init__(self,logFile=None,zip7File=None,h5File=None,h5FileName=None,readWithDictReader=False,nRows=None,readWindowsLog=False): """ (re-)initialize logFile: wird gelesen und in H5 abgelegt addZip7File(zip7File) liest alle Logs eines zipFiles und legt diese in H5 ab zipFile: 1. logFile wird gelesen und in H5 abgelegt addZip7File(zip7File) liest alle Logs eines zipFiles und legt diese in H5 ab die Initialisierung mit zipFile ist identisch mit der Initialisierung mit logFile wenn logFile das 1. logFile des Zips ist nach addZip7File(zip7File) - ggf. mehrfach fuer mehrere Zips: koennen Daten mit self.get(...) gelesen werden (liefert 1 df) koennen Daten mit self.getTCs(...) gelesen werden (liefert mehrere dfs in TC-Form) koennen Daten mit self.getTCsSpecified(...) gelesen werden (liefert 1 df in TC-Form) koennen Daten in TC-Form mit self.extractTCsToH5s(...) in separate H5s gelesen werden mit self.getTCsFromH5s(...) koennen die TCs wieder gelesen werden === addZip7File(zip7File) - ggf. mehrfach - und extractTCsToH5s(...) sind Bestandteil einer 7Zip-Verarbeitung vor der eigentlichen Analyse === h5File: die lookUp-Dfs vom H5-File werden gelesen die zum H5-File zugehoerigen TC-H5-Filenamen werden belegt die TC-H5-Files werden nicht auf Existenz geprüft oder gar gelesen """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) self.lookUpDf=pd.DataFrame() self.lookUpDfZips=pd.DataFrame() try: if logFile != None and zip7File != None and h5File != None: logger.debug("{0:s}{1:s}".format(logStr,'3 Files (logFile and zip7File and h5File) specified.')) elif logFile != None and zip7File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (logFile and zip7File) specified.')) elif logFile != None and h5File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (logFile and h5File) specified.')) elif h5File != None and zip7File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (h5File and zip7File) specified.')) elif logFile != None: self.__initlogFile(logFile,h5FileName=h5FileName,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) elif zip7File != None: self.__initzip7File(zip7File,h5FileName=h5FileName,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) elif h5File != None: self.__initWithH5File(h5File) else: logger.debug("{0:s}{1:s}".format(logStr,'No File (logFile XOR zip7File XOR h5File) specified.')) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initlogFile(self,logFile,h5FileName=None,readWithDictReader=False,readWindowsLog=False): """ (re-)initialize with logFile """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn logFile nicht existiert ... if not os.path.exists(logFile): logger.debug("{0:s}logFile {1:s} not existing.".format(logStr,logFile)) else: df = self.__processALogFile(logFile=logFile,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) self.__initH5File(logFile,df,h5FileName=h5FileName) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initH5File(self,h5File,df,h5FileName=None): """ creates self.h5File and writes 'init'-Key Logfile df to it Args: * h5File: name of logFile or zip7File; the Dir is the Dir of the H5-File * df * h5FileName: the H5-FileName without Dir and Extension; if None (default), "Log ab ..." is used """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: (h5FileHead,h5FileTail)=os.path.split(h5File) # H5-File if h5FileName==None: h5FileTail="Log ab {0:s}.h5".format(str(df['#LogTime'].min())).replace(':',' ').replace('-',' ') else: h5FileTail=h5FileName+'.h5' self.h5File=os.path.join(h5FileHead,h5FileTail) # wenn H5 existiert wird es geloescht if os.path.exists(self.h5File): os.remove(self.h5File) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileTail)) # init-Logfile schreiben self.__toH5('init',df) logger.debug("{0:s}'init'-Key Logfile done.".format(logStr)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initWithH5File(self,h5File,useRawHdfAPI=False): """ self.h5File=h5File self.lookUpDf self.lookUpDfZips die lookUp-Dfs werden gelesen vom H5-File die zum H5-File zugehoerigen TC-H5-Filenamen werden belegt, wenn diese H5-Files existieren die TC-H5-Files werden nicht gelesen der zum H5-File zugehoerige CVD-Filename wird belegt, wenn das H5-File existiert das H5-File wird nicht gelesen """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # H5 existiert if os.path.exists(h5File): self.h5File=h5File # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: if 'lookUpDf' in h5KeysStripped: self.lookUpDf=h5Store['lookUpDf'] if 'lookUpDfZips' in h5KeysStripped: self.lookUpDfZips=h5Store['lookUpDfZips'] else: if 'lookUpDf' in h5KeysStripped: self.lookUpDf=pd.read_hdf(self.h5File, key='lookUpDf') if 'lookUpDfZips' in h5KeysStripped: self.lookUpDfZips=pd.read_hdf(self.h5File, key='lookUpDfZips') else: logStrFinal="{0:s}h5File {1:s} not existing.".format(logStr,h5File) logger.debug(logStrFinal) raise LxError(logStrFinal) #TC-H5s (name,ext)=os.path.splitext(self.h5File) TCPost='_TC' h5FileOPC=name+TCPost+'OPC'+ext h5FileSirCalc=name+TCPost+'SirCalc'+ext h5FileLDSIn=name+TCPost+'LDSIn'+ext h5FileLDSRes1=name+TCPost+'LDSRes1'+ext h5FileLDSRes2=name+TCPost+'LDSRes2'+ext h5FileLDSRes=name+TCPost+'LDSRes'+ext if os.path.exists(h5FileOPC): self.h5FileOPC=h5FileOPC logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileOPC)) if os.path.exists(h5FileSirCalc): self.h5FileSirCalc=h5FileSirCalc logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileSirCalc)) if os.path.exists(h5FileLDSIn): self.h5FileLDSIn=h5FileLDSIn logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSIn)) if os.path.exists(h5FileLDSRes): self.h5FileLDSRes=h5FileLDSRes logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes)) if os.path.exists(h5FileLDSRes1): self.h5FileLDSRes1=h5FileLDSRes1 logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes1)) if os.path.exists(h5FileLDSRes2): self.h5FileLDSRes2=h5FileLDSRes2 logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes2)) h5FileCVD=name+'_'+'CVD'+ext if os.path.exists(h5FileCVD): self.h5FileCVD=h5FileCVD logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileCVD)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def getInitDf(self,useRawHdfAPI=False): """ returns InitDf from H5-File """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=pd.DataFrame() # H5 existiert if os.path.exists(self.h5File): # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: if 'init' in h5KeysStripped: df=h5Store['init'] else: if 'init' in h5KeysStripped: df=pd.read_hdf(self.h5File, key='init') else: logStrFinal="{0:s}h5File {1:s} not existing.".format(logStr,h5File) logger.debug(logStrFinal) raise LxError(logStrFinal) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return df def __initzip7File(self,zip7File,h5FileName=None,nRows=None,readWithDictReader=False,readWindowsLog=False): """ (re-)initialize with zip7File """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) else: (zip7FileHead, zip7FileTail)=os.path.split(zip7File) zipFileDirname=os.path.dirname(zip7File) logger.debug("{0:s}zipFileDirname: {1:s}".format(logStr,zipFileDirname)) aDfRead=False with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,len(allLogFiles))) logger.debug("{0:s}getnames(): {1:s}.".format(logStr,str(allLogFiles))) extDirLstTBDeleted=[] extDirLstExistingLogged=[] for idx,logFileNameInZip in enumerate(allLogFiles): logger.debug("{0:s}idx: {1:d} logFileNameInZip: {2:s}".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(zipFileDirname,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # logFileHead == dirname() logger.debug("{0:s}idx: {1:d} logFileHead: {2:s} logFileTail: {3:s}".format(logStr,idx,logFileHead,logFileTail)) (name, ext)=os.path.splitext(logFile) logger.debug("{0:s}idx: {1:d} name: {2:s} ext: {3:s}".format(logStr,idx,name,ext)) if logFileHead!='': # logFileHead == dirname() if os.path.exists(logFileHead) and logFileHead not in extDirLstExistingLogged: logger.debug("{0:s}idx: {1:d} Verz. logFileHead: {2:s} existiert bereits.".format(logStr,idx,logFileHead)) extDirLstExistingLogged.append(logFileHead) elif not os.path.exists(logFileHead): logger.debug("{0:s}idx: {1:d} Verz. logFileHead: {2:s} existiert noch nicht.".format(logStr,idx,logFileHead)) extDirLstTBDeleted.append(logFileHead) # kein Logfile zu prozessieren ... if ext == '': continue # Logfile prozessieren ... if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren zip7FileObj.extract(path=zipFileDirname,targets=logFileNameInZip) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,nRows=nRows,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue else: aDfRead=True # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) # wir wollen nur das 1. File lesen ... if aDfRead: break; for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) self.__initH5File(zip7File,df,h5FileName=h5FileName) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __toH5(self,key,df,useRawHdfAPI=False,updLookUpDf=False,logName='',zipName='',noDfStorage=False): """ write df with key to H5-File (if not noDfStorage) Args: * updLookUpDf: if True, self.lookUpDf is updated with * zipName (the Zip of logFile) * logName (the name of the logFile i.e. 20201113_0000004.log) * FirstTime (the first ScenTime in df) * LastTime (the last ScenTime in df) self.lookUpDf is not wriiten to H5 """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: (h5FileHead,h5FileTail)=os.path.split(self.h5File) if not noDfStorage: if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: try: h5Store.put(key,df) except Exception as e: logger.error("{0:s}Writing df with h5Key={1:s} to {2:s} FAILED!".format(logStr,key,h5FileTail)) raise e else: df.to_hdf(self.h5File, key=key) logger.debug("{0:s}Writing df with h5Key={1:s} to {2:s} done.".format(logStr,key,h5FileTail)) if updLookUpDf: s=df['ScenTime']#['#LogTime'] FirstTime=s.iloc[0] LastTime=s.iloc[-1] if self.lookUpDf.empty: data={ 'zipName': [zipName] ,'logName': [logName] ,'FirstTime' : [FirstTime] ,'LastTime' : [LastTime] } self.lookUpDf = pd.DataFrame (data, columns = ['zipName','logName','FirstTime','LastTime']) self.lookUpDf['zipName']=self.lookUpDf['zipName'].astype(str) self.lookUpDf['logName']=self.lookUpDf['logName'].astype(str) else: data={ 'zipName': zipName ,'logName': logName ,'FirstTime' : FirstTime ,'LastTime' : LastTime } self.lookUpDf=self.lookUpDf.append(data,ignore_index=True) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __processALogFile(self,logFile=None,delimiter='\t',nRows=None,readWithDictReader=False,fValueFct=fValueFct,readWindowsLog=False): """ process logFile Args: * logFile: logFile to be processed * nRows: number of logFile rows to be processed; default: None (:= all rows are processed); if readWithDictReader: last row is also processed * readWithDictReader: if True, csv.DictReader is used; default: None (:= pd.read_csv is used) Returns: * df: logFile processed to df * converted: * #LogTime: to datetime * ProcessTime: to datetime * Value: to float64 * ID,Direction,SubSystem,LogLevel,State,Remark: to str * new: * ScenTime datetime """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=None try: with open(logFile,'r') as f: pass (logFileHead,logFileTail)=os.path.split(logFile) if readWithDictReader: restkey='+' with open(logFile,"r") as csvFile: # 1. Zeile enthaelt die Ueberschrift reader = csv.DictReader(csvFile,delimiter=delimiter,restkey=restkey) logger.debug("{0:s}{1:s} csv.DictReader reader processed.".format(logStr,logFileTail)) # If a row has more fields than fieldnames, the remaining data is put in a list and stored with the fieldname specified by restkey. colNames=reader.fieldnames dcts = [dct for dct in reader] # alle Zeilen lesen logger.debug("{0:s}{1:s} csv.DictReader-Ergebnis processed.".format(logStr,logFileTail)) if nRows!=None: dcts=dcts[0:nRows]+[dcts[-1]] # nur die Spaltennamen werden als row-Spalten erzeugt rows = [[dct[colName] for colName in colNames] for dct in dcts] logger.debug("{0:s}{1:s} rows processed.".format(logStr,logFileTail)) # die "ueberfluessigen" Spalten an die letzte Spalte dranhaengen for i, dct in enumerate(dcts): if restkey in dct: restValue=dct[restkey] restValueStr = delimiter.join(restValue) newValue=rows[i][-1]+delimiter+restValueStr #logger.debug("{0:s}{1:s} restValueStr: {2:s} - Zeile {3:10d}: {4:s} - neuer Wert letzte Spalte: {5:s}.".format(logStr,logFileTail,restValueStr,i,str(rows[i]),newValue)) rows[i][-1]=rows[i][-1]+newValue logger.debug("{0:s}{1:s} restkey processed.".format(logStr,logFileTail)) index=range(len(rows)) df = pd.DataFrame(rows,columns=colNames,index=index) else: if nRows==None: df=pd.read_csv(logFile,delimiter=delimiter,error_bad_lines=False,warn_bad_lines=True,low_memory=False) else: df=pd.read_csv(logFile,delimiter=delimiter,error_bad_lines=False,warn_bad_lines=True,low_memory=False,nrows=nRows) logger.debug("{0:s}{1:s} pd.DataFrame processed.".format(logStr,logFileTail)) #logger.debug("{0:s}df: {1:s}".format(logStr,str(df))) #LogTime df['#LogTime']=pd.to_datetime(df['#LogTime'],unit='ms',errors='coerce') # NaT #ProcessTime df['ProcessTime']=pd.to_datetime(df['ProcessTime'],unit='ms',errors='coerce') # NaT logger.debug("{0:s}{1:s} col ProcessTime processed.".format(logStr,logFileTail)) #Value df['Value']=df.Value.str.replace(',', '.') # Exception: Line: 1137: <class 'AttributeError'>: Can only use .str accessor with string values! df['Value']=fValueFct(df['Value'].values) # df['ValueProcessed'].apply(fValueFct) logger.debug("{0:s}{1:s} col Value processed.".format(logStr,logFileTail)) #Strings for col in ['ID','Direction','SubSystem','LogLevel','State','Remark']: df[col]=df[col].astype(str) logger.debug("{0:s}{1:s} String-cols processed.".format(logStr,logFileTail)) #1618249551621 STD CVD 1615442324000 p-p BEGIN_OF_NEW_CONTROL_VOLUME 6-10-SV1-RB~6-10-BID-RB NULL NULL # String in beiden Faellen (Linux und Windows) gleich? #1618249551621 STD CVD <- 156 CV_ID ##ScenTime ## SubSystem Direction ProcessTime ID Value State Remark ## Linux --- ## 1615029280000 INF SQC Starting cycle for 2021-03-06 12:14:38.000 ## 1615029280000 STD LDS MCL 1615029278000 Main cycle loop 06.03.2021 12:14:38.000 (ScenTime: Tag und Zeit in Klartext; Spalte ProcessTime ScenTime!) ## Windows --- ## 1618256150711 STD SQC 1615457121000 Main cycle loop 11:05:21.000 (ScenTime-Zeit in Klartext; Spalte ProcessTime ScenTime!) dfScenTime=df[df['ID']=='Main cycle loop'][['ProcessTime']] dfScenTime.rename(columns={'ProcessTime':'ScenTime'},inplace=True) df=df.join(dfScenTime) df['ScenTime']=df['ScenTime'].fillna(method='ffill') df['ScenTime']=df['ScenTime'].fillna(method='bfill') if df['ScenTime'].isnull().values.all(): logger.debug("{0:s}Keine Zeile mit ID=='Main cycle loop' gefunden. ScenTime zu #LogTime gesetzt.".format(logStr)) df['ScenTime']=df['#LogTime'] # wenn keine Zeile mit ID=='Main cycle loop' gefunden wurde, wird ScenTime zu #LogTime gesetzt # finalisieren df=df[['#LogTime','LogLevel','SubSystem','Direction','ProcessTime','ID','Value','ScenTime','State','Remark']] logger.debug("{0:s}{1:s} processed with nRows: {2:s} (None if all).".format(logStr,logFileTail,str(nRows))) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return df def rebuildLookUpDfZips(self,zip7Files,readWithDictReader=True,readWindowsLog=False): """ (re-)initialize with zip7Files only persistent outcome is lookUpDfZips (Attribute and H5-Persistence) lookUpdf is changed but not H5-stored (Re-)Init with AppLog(h5File=...) after using rebuildLookUpDfZips to obtain old lookUpdf main Usage of rebuildLookUpDfZips is to determine which zip7Files to add by i.e.: zip7FilesToAdd=lx.lookUpDfZips[~(lx.lookUpDfZips['LastTime']<timeStartAusschnitt) & ~(lx.lookUpDfZips['FirstTime']>timeEndAusschnitt)].index.to_list() """ #noDfStorage=False logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: #self.__initzip7File(zip7File=zip7Files[0],h5FileName=h5FileName,nRows=1,readWithDictReader=True) for zip7File in zip7Files: logger.info("{0:s}addZip7File: {1:s}".format(logStr,zip7File)) self.addZip7File(zip7File,firstsAndLastsLogsOnly=True,nRows=1,readWithDictReader=readWithDictReader,noDfStorage=True,readWindowsLog=readWindowsLog) logger.debug("{0:s}lookUpDf: {1:s}".format(logStr,self.lookUpDf.to_string())) df=self.lookUpDf.groupby(by='zipName').agg(['min', 'max']) logger.debug("{0:s}df: {1:s}".format(logStr,df.to_string())) minTime=df.loc[:,('FirstTime','min')] maxTime=df.loc[:,('LastTime','max')] minFileNr=df.loc[:,('logName','min')].apply(lambda x: int(re.search(logFilenamePattern,x).group(3))) maxFileNr=df.loc[:,('logName','max')].apply(lambda x: int(re.search(logFilenamePattern,x).group(3))) s=(maxTime-minTime)/(maxFileNr-minFileNr) lookUpDfZips=s.to_frame().rename(columns={0:'TimespanPerLog'}) lookUpDfZips['NumOfFiles']=maxFileNr-minFileNr lookUpDfZips['FirstTime']=minTime lookUpDfZips['LastTime']=maxTime lookUpDfZips['minFileNr']=minFileNr lookUpDfZips['maxFileNr']=maxFileNr lookUpDfZips=lookUpDfZips[['FirstTime','LastTime','TimespanPerLog','NumOfFiles','minFileNr','maxFileNr']] # lookUpDfZips schreiben self.lookUpDfZips=lookUpDfZips self.__toH5('lookUpDfZips',self.lookUpDfZips) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def addZip7File(self,zip7File,firstsAndLastsLogsOnly=False,nRows=None,readWithDictReader=False,noDfStorage=False,readWindowsLog=False): """ add zip7File Args: * zipFile: zipFile which LogFiles shall be added * Args for internal Usage: * firstsAndLastsLogsOnly (True dann) * nRows (1 dann) * readWithDictReader (True dann) d.h. es werden nur die ersten und letzten Logs pro Zip angelesen und dort auch nur die 1. und letzte Zeile und das mit DictReader """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) else: (zip7FileHead, zip7FileTail)=os.path.split(zip7File) logger.debug("{0:s}zip7FileHead (leer wenn zip7 im selben Verz.): {1:s} zip7FileTail: {2:s}.".format(logStr,zip7FileHead,zip7FileTail)) logger.info("{0:s}zip7File: {1:s} ...".format(logStr,zip7File)) tmpDir=os.path.dirname(zip7File) tmpDirContent=glob.glob(tmpDir) with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() allLogFilesLen=len(allLogFiles) logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,allLogFilesLen)) extDirLstTBDeleted=[] extDirLstExistingLogged=[] for idx,logFileNameInZip in enumerate(allLogFiles): if firstsAndLastsLogsOnly: if idx not in [0,1,allLogFilesLen-2,allLogFilesLen-1]: #logger.debug("{0:s}idx: {1:d} item: {2:s} NOT processed ...".format(logStr,idx,logFileNameInZip)) continue logger.info("{0:s}idx: {1:d} item: {2:s} ...".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(tmpDir,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # evtl. bezeichnet logFileNameInZip keine Datei sondern ein Verzeichnis (name, ext)=os.path.splitext(logFileNameInZip) if ext == '': # Verzeichnis! extDir=os.path.join(tmpDir,logFileNameInZip) (extDirHead, extDirTail)=os.path.split(extDir) if os.path.exists(extDir) and extDir in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) bereits.".format(logStr,idx,extDirTail)) extDirLstExistingLogged.append(extDir) elif os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) elif not os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) # kein Logfile zu prozessieren ... continue # logFileNameInZip bezeichnet eine Datei if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren logger.debug("{0:s}Log: {1:s} wird extrahiert ... ".format(logStr,logFileTail)) import lzma try: zip7FileObj.extract(path=tmpDir,targets=logFileNameInZip) except lzma.LZMAError: logger.warning("{0:s}Log: {1:s} nicht erfolgreich extrahiert - continue ... ".format(logStr,logFileTail)) continue except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) logger.debug("{0:s}Log: {1:s} wurde extrahiert. ".format(logStr,logFileTail)) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,nRows=nRows,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) # ... (name, ext)=os.path.splitext(logFileTail) key='Log'+name if zip7FileHead != '': zipName=os.path.join(os.path.relpath(zip7FileHead),zip7FileTail) else: zipName=zip7FileTail # df schreiben self.__toH5(key,df,updLookUpDf=True,logName=logFileTail,zipName=zipName,noDfStorage=noDfStorage)#os.path.join(os.path.relpath(zip7FileHead),zip7FileTail)) # danach gleich lookUpDf schreiben ... self.__toH5('lookUpDf',self.lookUpDf,noDfStorage=noDfStorage) for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def getTotalLogTime(self): """ Returns Tuple: firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal # Brutto-Logzeit, Netto-Logzeit, Summe aller Zeiten zwischen 2 Logdateien (sollte = Brutto-Netto sein) """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Inhalt der Logs tdTotal=pd.Timedelta('0 Seconds') tdBetweenFilesTotal=pd.Timedelta('0 Seconds') for idx,(index,row) in enumerate(self.lookUpDf.iterrows()): if idx > 0: tdBetweenFiles=row["FirstTime"]-lastTime tdBetweenFilesTotal=tdBetweenFilesTotal+tdBetweenFiles if tdBetweenFiles > pd.Timedelta('0 second'): if tdBetweenFiles > pd.Timedelta('1 second'): logger.info("{:s}Zeitdifferenz: {!s:s} zwischen {:s} ({:s}) und {:s} ({:s})".format(logStr, str(tdBetweenFiles).replace('days','Tage') ,lastFile,lastZip ,row["logName"],row["zipName"] )) pass if tdBetweenFiles < pd.Timedelta('0 second'): if tdBetweenFiles < -pd.Timedelta('1 second'): pass logger.info("{:s}Zeitueberlappung > 1s: {!s:s} zwischen {:s} ({:s}) und {:s} ({:s})".format(logStr, str(tdBetweenFiles).replace('days','Tage') ,lastFile,lastZip ,row["logName"],row["zipName"] )) td=row["LastTime"]-row["FirstTime"] if type(td) == pd.Timedelta: tdTotal=tdTotal+td else: print(index)# Fehler! lastTime=row["LastTime"] lastFile=row["logName"] lastZip=row["zipName"] firstTime=self.lookUpDf.iloc[0]["FirstTime"] lastTime=self.lookUpDf.iloc[-1]["LastTime"] tdTotalGross=lastTime-firstTime tdTotalGross,tdTotal,tdBetweenFilesTotal except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal def extractTCsToH5s(self,dfID=pd.DataFrame(),timeStart=None,timeEnd=None,TCsdfOPCFill=TCsdfOPCFill): """ extracts TC-Data (and CVD-Data) from H5 to seperate H5-Files (Postfixe: _TCxxx.h5 and _CVD.h5) TCsdfOPCFill: wenn Wahr, werden in TCsdfOPCFill die NULLen aufgefuellt; default: Falsch wenn timeStart != None: es wird an exisitierende .h5s angehaengt; sonst werden diese ueberschrieben """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # _TCxxx.h5 anlegen (OPC, SirCalc, LDSIn, LDSRes1, LDSRes2 (,LDSRes)) and _CVD.h5 # ueber alle dfs in H5 (unter Berücksichtigung von timeStart und timeEnd) # lesen # TC-Teilmenge ermitteln: 'ID','ProcessTime','ScenTime','SubSystem','Value','Direction' # Zeilen mit 'Value' isnull() werden NICHT gelesen # d.h. bei einer Logfile-Semantik welche durch NULL-Zeilen einen Wert auf (was auch immer) zuruecksetzt wuerde der Wert bei einer Stop-Plot-Ausgabe auf dem letzten Nicht-NULL Wert verharren ... # ... zunaechst ... # Untermengen bilden: ['TCsdfOPC','TCsdfSirCalc','TCsdfLDSIn','TCsdfLDSRes1','TCsdfLDSRes2' (,'TCsdfLDSRes')] # ... NULLen (NaNs) entstehen durch die Pivotierung mit Index = Time: nicht fuer alles Times (Obermenge) gibt es fuer jede ID Values # speichern (name,ext)=os.path.splitext(self.h5File) TCPost='_TC' self.h5FileOPC=name+TCPost+'OPC'+ext self.h5FileSirCalc=name+TCPost+'SirCalc'+ext self.h5FileLDSIn=name+TCPost+'LDSIn'+ext if not dfID.empty: # Attribute self.h5FileLDSRes1=name+TCPost+'LDSRes1'+ext self.h5FileLDSRes2=name+TCPost+'LDSRes2'+ext # Komplement wird geloescht h5FileLDSRes=name+TCPost+'LDSRes'+ext try: # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes): os.remove(h5FileLDSRes) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes)) del self.h5FileLDSRes except: pass else: # Attribut self.h5FileLDSRes=name+TCPost+'LDSRes'+ext # Komplemente werden geloescht h5FileLDSRes1=name+TCPost+'LDSRes1'+ext h5FileLDSRes2=name+TCPost+'LDSRes2'+ext try: # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes1): os.remove(h5FileLDSRes1) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes1)) # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes2): os.remove(h5FileLDSRes2) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes2)) del self.h5FileLDSRes1 del self.h5FileLDSRes2 except: pass self.h5FileCVD=name+'_'+'CVD'+ext h5Keys,h5KeysPost=self.__getH5Keys(timeStart=timeStart,timeEnd=timeEnd) h5KeysOPC=['TCsOPC'+x for x in h5KeysPost] h5KeysSirCalc=['TCsSirCalc'+x for x in h5KeysPost] h5KeysLDSIn=['TCsLDSIn'+x for x in h5KeysPost] h5KeysLDSRes1=['TCsLDSRes1'+x for x in h5KeysPost] h5KeysLDSRes2=['TCsLDSRes2'+x for x in h5KeysPost] h5KeysLDSRes=['TCsLDSRes'+x for x in h5KeysPost] h5KeysCVD=['CVDRes'+x for x in h5KeysPost] h5KeysAll=zip(h5Keys,h5KeysOPC,h5KeysSirCalc,h5KeysLDSIn,h5KeysLDSRes1,h5KeysLDSRes2,h5KeysLDSRes,h5KeysCVD) for idx,(h5Key,h5KeyOPC,h5KeySirCalc,h5KeyLDSIn,h5KeyLDSRes1,h5KeyLDSRes2,h5KeyLDSRes,h5KeyCVD) in enumerate(h5KeysAll): #H5-Write-Modus if idx==0: if timeStart!=None: mode='a' else: mode='w' else: mode='a' logger.info("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=pd.read_hdf(self.h5File, key=h5Key) # CVD ------------------------------------------------------------------------------------------------- dfCVD=df[df['SubSystem']=='CVD'] df=df[['ID','ProcessTime','ScenTime','SubSystem','Value','Direction']] df['Value']=df['Value'].apply(lambda x: fTCCast(x)) df=df[~(df['Value'].isnull())] if not dfID.empty: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) else: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) logger.debug("{0:s}{1:s}".format(logStr,'Write ...')) TCsdfOPC.to_hdf(self.h5FileOPC,h5KeyOPC, mode=mode) TCsdfSirCalc.to_hdf(self.h5FileSirCalc,h5KeySirCalc, mode=mode) TCsdfLDSIn.to_hdf(self.h5FileLDSIn,h5KeyLDSIn, mode=mode) if not dfID.empty: TCsdfLDSRes1.to_hdf(self.h5FileLDSRes1,h5KeyLDSRes1, mode=mode) TCsdfLDSRes2.to_hdf(self.h5FileLDSRes2,h5KeyLDSRes2, mode=mode) else: TCsdfLDSRes.to_hdf(self.h5FileLDSRes,h5KeyLDSRes, mode=mode) # --- dfCVD.to_hdf(self.h5FileCVD,h5KeyCVD, mode=mode) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return def shrinkH5File(self): """ die dfs werden geloescht im H5-File extract TCs to H5s ### MUSS ### vorher gelaufen sein nach shrinkH5File stehen im Master-H5 die eigentlichen Daten nicht mehr zur Verfuegung """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # H5 existiert if os.path.exists(self.h5File): # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) # /Log20201216_0000001 logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) for key in h5Keys: if re.match('(^/Log)',key): logger.debug("{0:s}key removed: {1:s}".format(logStr,str(key))) h5Store.remove(key.replace(h5KeySep,'')) else: logger.debug("{0:s}key NOT removed: {1:s}".format(logStr,str(key))) with pd.HDFStore(self.h5File) as h5Store: pass shrinkCmd="ptrepack --chunkshape=auto --propindexes --complib=blosc "+self.h5File+" "+self.h5File+".Shrinked" logger.debug("{0:s}shrinkCmd: {1:s}".format(logStr,shrinkCmd)) if os.path.exists(self.h5File+".Shrinked"): os.remove(self.h5File+".Shrinked") os.system(shrinkCmd) os.remove(self.h5File) os.rename(self.h5File+".Shrinked",self.h5File) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def get(self,timeStart=None,timeEnd=None,filter_fct=None,filterAfter=True,useRawHdfAPI=False): """ returns df with filter_fct applied """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfRet=None try: dfLst=[] dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: for h5Key in h5Keys: logger.debug("{0:s}Get (pd.HDFStore) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=h5Store[h5Key] if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) else: for h5Key in h5Keys: logger.debug("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=pd.read_hdf(self.h5File, key=h5Key) if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) dfRet=pd.concat(dfLst) del dfLst if filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) dfRet=pd.DataFrame(dfRet[dfRet.apply(filter_fct,axis=1)].values,columns=dfRet.columns) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfRet def getFromZips(self,timeStart=None,timeEnd=None,filter_fct=None,filterAfter=True,readWithDictReader=False,readWindowsLog=False): """ returns df from Zips die Daten werden von den Zips gelesen: Log extrahieren, parsen, wieder loeschen die Initalisierung muss mit AppLog(zip7Files=...) erfolgt sein da nur dann self.lookUpDfZips existiert """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfRet=None try: dfLst=[] timeStart=pd.Timestamp(timeStart) timeEnd=pd.Timestamp(timeEnd) # zips die prozessiert werden muessen dfLookUpZips=self.lookUpDfZips if timeStart!=None: dfLookUpZips=dfLookUpZips[dfLookUpZips['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpZips=dfLookUpZips[dfLookUpZips['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende for index, row in dfLookUpZips.iterrows(): zip7File=index (zip7FileHead, zip7FileTail)=os.path.split(zip7File) dTime=timeStart-row['FirstTime'] nStart = int(dTime.total_seconds()/row['TimespanPerLog'].total_seconds()) dTime=timeEnd-timeStart nDelta = int(dTime.total_seconds()/row['TimespanPerLog'].total_seconds())+1 nEnd=nStart+nDelta logger.debug("{0:s}zip7File: {1:s}: Start: {2:d}/{3:07d} End: {4:d}/{5:07d}".format(logStr,zip7FileTail ,nStart,nStart+row['minFileNr'] ,nStart+nDelta,nStart+row['minFileNr']+nDelta)) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) tmpDir=os.path.dirname(zip7File) tmpDirContent=glob.glob(tmpDir) with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() allLogFilesLen=len(allLogFiles) logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,allLogFilesLen)) extDirLstTBDeleted=[] extDirLstExistingLogged=[] idxEff=0 for idx,logFileNameInZip in enumerate(allLogFiles): if idx < nStart-idxEff or idx > nEnd+idxEff: continue logger.debug("{0:s}idx: {1:d} item: {2:s} ...".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(tmpDir,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # evtl. bezeichnet logFileNameInZip keine Datei sondern ein Verzeichnis (name, ext)=os.path.splitext(logFileNameInZip) if ext == '': # Verzeichnis! extDir=os.path.join(tmpDir,logFileNameInZip) (extDirHead, extDirTail)=os.path.split(extDir) if os.path.exists(extDir) and extDir in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) bereits.".format(logStr,idx,extDirTail)) extDirLstExistingLogged.append(extDir) elif os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) elif not os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) # kein Logfile zu prozessieren ... idxEff+=1 continue # logFileNameInZip bezeichnet eine Datei if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren zip7FileObj.extract(path=tmpDir,targets=logFileNameInZip) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue else: if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) dfRet=pd.concat(dfLst) del dfLst if filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) dfRet=pd.DataFrame(dfRet[dfRet.apply(filter_fct,axis=1)].values,columns=dfRet.columns) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfRet def getTCs(self,dfID=pd.DataFrame(),timeStart=None,timeEnd=None,TCsdfOPCFill=TCsdfOPCFill,persistent=False,overwrite=True): """ returns TCs-dfs Verarbeitung von dfs gemaess extractTCsToH5s; siehe dort """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: TCKeys=['<KEY>','TCsdfSirCalc','TCsdfLDSIn','TCsdfLDSRes1','TCsdfLDSRes2a','TCsdfLDSRes2b','TCsdfLDSRes2c'] if persistent: with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) #logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if set(TCKeys) & set(h5KeysStripped) == set(TCKeys): if not overwrite: logger.debug("{0:s}persistent: TCKeys {1:s} existieren alle bereits - return aus H5-File ...".format(logStr,str(TCKeys))) TCsdfOPC=pd.read_hdf(self.h5File,key='<KEY>') TCsdfSirCalc=pd.read_hdf(self.h5File,key='TCsdfSirCalc') TCsdfLDSIn=pd.read_hdf(self.h5File,key='TCsdfLDSIn') TCsdfLDSRes1=pd.read_hdf(self.h5File,key='TCsdfLDSRes1') TCsdfLDSRes2a=pd.read_hdf(self.h5File,key='TCsdfLDSRes2a') TCsdfLDSRes2b=pd.read_hdf(self.h5File,key='TCsdfLDSRes2b') TCsdfLDSRes2c=pd.read_hdf(self.h5File,key='TCsdfLDSRes2c') logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2a,TCsdfLDSRes2b,TCsdfLDSRes2c else: logger.debug("{0:s}persistent: TCKeys {1:s} existieren alle bereits - sollen aber ueberschrieben werden ...".format(logStr,str(TCKeys))) else: logger.debug("{0:s}persistent: TCKeys {1:s} existieren nicht (alle) ...".format(logStr,str(TCKeys))) dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) dfLst=[] for h5Key in h5Keys: logger.debug("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) dfSingle=pd.read_hdf(self.h5File, key=h5Key) dfSingle=dfSingle[['ID','ProcessTime','ScenTime','SubSystem','Value','Direction']] dfSingle=dfSingle[~(dfSingle['Value'].isnull())] dfLst.append(dfSingle) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) df=pd.concat(dfLst) del dfLst logger.debug("{0:s}{1:s}".format(logStr,'Concat finished. Filter & Pivot ...')) if not dfID.empty: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) else: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) if persistent: logger.debug("{0:s}peristent: TCKeys {1:s} nach H5-File ...".format(logStr,str(TCKeys))) TCsdfOPC.to_hdf(self.h5File,key='TCsdfOPC') TCsdfSirCalc.to_hdf(self.h5File,key='TCsdfSirCalc') TCsdfLDSIn.to_hdf(self.h5File,key='TCsdfLDSIn') TCsdfLDSRes1.to_hdf(self.h5File,key='TCsdfLDSRes1') TCsdfLDSRes2a.to_hdf(self.h5File,key='TCsdfLDSRes2a') TCsdfLDSRes2b.to_hdf(self.h5File,key='TCsdfLDSRes2b') TCsdfLDSRes2c.to_hdf(self.h5File,key='TCsdfLDSRes2c') except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not dfID.empty: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2#a,TCsdfLDSRes2b,TCsdfLDSRes2c else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1 def getTCsFromH5s(self,timeStart=None,timeEnd=None, LDSResOnly=False, LDSResColsSpecified=None, LDSResTypeSpecified=None, timeShiftPair=None): """ returns several TC-dfs from TC-H5s: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 or TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes LDSResOnly: TCsdfLDSRes1,TCsdfLDSRes2 or TCsdfLDSRes LDSResColsSpecified: return in LDSRes df(s) only the specified cols all cols are returned otherwise LDSResTypeSpecified: return TCsdfLDSRes1 (SEG) for 'SEG' or TCsdfLDSRes2 (Druck) for 'Druck' both are returned otherwise timeShiftPair: (preriod,freq): i.e. (1,'H'); if not None index is shifted """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: try: self.h5FileLDSRes1 Res2=True except: Res2=False TCsdfOPC=pd.DataFrame() TCsdfSirCalc=pd.DataFrame() TCsdfLDSIn=pd.DataFrame() if Res2: TCsdfLDSRes1=pd.DataFrame() TCsdfLDSRes2=
pd.DataFrame()
pandas.DataFrame
### imports starts import sys from pathlib import Path import pickle import cv2 import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Input from tensorflow.keras.optimizers import Adam util_dir = Path.cwd().parent.joinpath('Utility') sys.path.insert(1, str(util_dir)) from Configuration import frcnn_config from DataGenerator import DataGeneratorV2 from Abstract import make_anchors, normalize_anchor, propose_score_bbox_list from Layers import rpn from Information import * ### import ends def rpn_propose_RoI(C): pstage('RPN is predicting Regions of Interest (RoIs) without NMS') #input_shape, ratio, anchor_scales, anchor_ratios anchors = make_anchors(C.input_shape, C.base_net.ratio, C.anchor_scales, C.anchor_ratios) row_num, col_num = C.input_shape[:2] input_shape = [row_num, col_num] ### reconstruct model pinfo('Reconstructing model') # reconstruct model file cwd = Path.cwd() weights_dir = C.weight_dir model_weights = weights_dir.joinpath(C.rpn_model_name+'.h5') pdebug(model_weights) # load model input_layer = Input(shape=C.input_shape) x = C.base_net.get_base_net(input_layer) rpn_layer = rpn(C.anchor_scales, C.anchor_ratios) classifier = rpn_layer.classifier(x) regressor = rpn_layer.regression(x) model = Model(inputs=input_layer, outputs = [classifier,regressor]) model.load_weights(model_weights, by_name=True) ############################ Predicting by training data ################################### pinfo('Start predicting for training data') ### preparing input data train_generator = DataGeneratorV2(C.train_img_inputs_npy, C.train_labels_npy, C.train_deltas_npy, batch_size=1, shuffle=False) ### predicting by model pinfo('RPN is scoring anchors and proposing delta suggestions') outputs_raw = model.predict(x=train_generator) score_maps = outputs_raw[0] delta_maps = outputs_raw[1] ### filter out negative anchors and adjust positive anchors all_bbox = [] img_idx = 0 bbox_idx = 0 dict_for_df={} bbox_df = pd.read_csv(C.train_bbox_reference_file, index_col=0) img_names = bbox_df['FileName'].unique().tolist() imgNum = len(img_names) if len(img_names) != len(score_maps): perr('Number of images is inconsistent with the number of outputs') sys.exit() for img_name, score_map, delta_map in zip(img_names, score_maps, delta_maps): sys.stdout.write(t_info(f'Proposing bounding boxes for image: {img_idx+1}/{imgNum}','\r')) if img_idx+1 == imgNum: sys.stdout.write('\n') sys.stdout.flush() # select all bbox whose objective score is >= 0.5 and put them in a list score_bbox_pairs = propose_score_bbox_list(anchors, score_map, delta_map) scores, bbox_raws = [], [] for score_bbox in score_bbox_pairs: scores.append(score_bbox[0]) bbox_raws.append(score_bbox[1]) # trimming bboxes for i, bbox in enumerate(bbox_raws): if bbox[0] < 0: bbox_raws[i][0] = 0 if bbox[1] > 1: bbox_raws[i][1] = 1 if bbox[2] < 0: bbox_raws[i][2] = 0 if bbox[3] > 1: bbox_raws[i][3] = 1 if bbox[1] < bbox[0]: pwarn(f"bbox {i} XMax is less than XMin") if bbox[3] < bbox[2]: pwarn(f"bbox {i} YMax is less than YMin") # save parameters to dict for score, bbox in zip(scores, bbox_raws): dict_for_df[bbox_idx] = {'FileName': str(img_name),\ 'XMin':bbox[0],\ 'XMax':bbox[1],\ 'YMin':bbox[2],\ 'YMax':bbox[3],\ 'Score':score} bbox_idx += 1 img_idx += 1 # save proposed bboxes to local output_df = pd.DataFrame.from_dict(dict_for_df, "index") output_file = C.sub_data_dir.joinpath("mc_RoI_prediction_no_NMS_train.csv") output_df.to_csv(output_file) C.set_train_proposal(output_file) ############################ Predicting by validation data ################################### pinfo('Start predicting for validation data') ### preparing input data val_generator = DataGeneratorV2(C.validation_img_inputs_npy, C.validation_labels_npy, C.validation_deltas_npy, batch_size=1, shuffle=False) ### predicting by model pinfo('RPN is scoring anchors and proposing delta suggestions') outputs_raw = model.predict(x=val_generator) score_maps = outputs_raw[0] delta_maps = outputs_raw[1] ### filter out negative anchors and adjust positive anchors all_bbox = [] img_idx = 0 bbox_idx = 0 dict_for_df={} bbox_df =
pd.read_csv(C.validation_bbox_reference_file, index_col=0)
pandas.read_csv
from django.conf import settings import pandas as pd import os info_path = os.path.join(settings.BASE_DIR, 'info.pkl') fin_path = os.path.join(settings.BASE_DIR, 'fin.pkl') mc_path = os.path.join(settings.BASE_DIR, 'mc.pkl') info = pd.read_pickle(info_path) fin = pd.read_pickle(fin_path) mc =
pd.read_pickle(mc_path)
pandas.read_pickle
import pandas as pd def multiIDgnomad(CHR, position, ref, alt): position_list = str(position).split(',') chr_element = ['chr']*len(list(str(position).split(','))) chr_list = [str(CHR)]*len(str(position).split(',')) chr_final = list(map("".join,list(zip(chr_element,chr_list)))) ref_list = str(ref).split(',') alt_list = str(alt).split(',') outlist = list(map(":".join, list(zip(chr_final,position_list)))) outlist = list(map("".join, list(zip(outlist,ref_list)))) outlist = list(map(">".join, list(zip(outlist,alt_list)))) outlist = [x.rstrip('>').replace('nan>','').replace('>nan','') for x in outlist] outlist = ','.join(outlist) return(outlist) def multiID(CHR, position, ref, alt): position_list = str(position).split(',') chr_element = ['chr']*len(list(str(position).split(','))) chr_list = [str(CHR)]*len(str(position).split(',')) chr_final = list(map("".join,list(zip(chr_element,chr_list)))) ref_list = str(ref).split(',') alt_list = str(alt).split(',') outlist = list(map("_".join, list(zip(chr_final,position_list,ref_list,alt_list)))) outlist = ','.join(outlist) return(outlist) df = pd.read_csv('/path/to/Alleles_20201228.csv',sep='\t') #df['actionable'].loc[(df['SYMBOL'] == 'CYP4F2') & (df['allele'] == '*2')] = 'Yes' df = df.loc[(df['count_carrier_ids'].astype(str) != 'nan') & (df['actionable'] == 'Yes')].copy() reference = pd.read_csv('/path/to/reference_HAPLOTYPES_20201130_hg38_hg19.csv',sep='\t') reference['ID2'] = reference['SYMBOL'] + '_' + reference['allele'].astype(str) reference['multiID_gnomad'] = reference.apply(lambda x: multiIDgnomad(x['chr'], x['position_hg19_gnomad'],x['ref_gnomad'],x['alt_gnomad']),axis=1) df['multiID_gnomad'] = df['ID2'].map(dict(zip(list(reference['ID2']),list(reference['multiID_gnomad'])))) sampleinfo = pd.read_csv('/home/jlanillos/CNIO/PGx/dictionary_proc.csv',sep='\t') sampleinfo['sample'] = sampleinfo['sample'].astype(str) gender = pd.read_csv('/path/to/gender.csv',sep='\t') gender_dict = dict(zip(list(gender['annonimousID'].astype(str)),list(gender['gender']))) country_dict = dict(zip(list(sampleinfo['sample']),list(sampleinfo['from']))) country_dict_general = dict(zip(list(sampleinfo['sample']),list(sampleinfo['from_general']))) def calculateNallelesperRS(multiID_gnomad, gts): multiID_gnomad = multiID_gnomad.split(',') d_al = list() for al in multiID_gnomad: genotypes = [j.split(',')[multiID_gnomad.index(al)] for j in gts.split(';')] heteroz = genotypes.count('0/1') homoz = 2*genotypes.count('1/1') wt = 2*genotypes.count('0/0') + heteroz # Adding all wt alleles, including those from 0/0 individuals and those from 0/1 othergenotypes = list() for z in list(set(genotypes)): if (z != '0/1') and (z != '1/1') and (z != '0/0'): othergenotypes.append(z) wt = wt + 2*genotypes.count(z) # assume that other values different than 0/1, 1/1 and 0/0 are considered as 0/0 too d_al.append(','.join([str(heteroz + homoz),str(wt)])) return(';'.join(d_al)) # New function added to solve the count of alleles in X-chrom genes such as G6PD def correctNallelesperRS_chromX(multiID_gnomad, gts, samples, gender_dict): multiID_gnomad = multiID_gnomad.split(',') samples = [i.rstrip('_gt') for i in samples.split(',')] gender_samples = [gender_dict[i] for i in samples] d_al = list() for al in multiID_gnomad: genotypes = [j.split(',')[multiID_gnomad.index(al)] for j in gts.split(';')] genotypes_female = [i for i,j in zip(genotypes, gender_samples) if j == 'F'] genotypes_male = [i for i,j in zip(genotypes, gender_samples) if j == 'M'] heteroz = genotypes_female.count('0/1') + genotypes_male.count('0/1') homoz = 2*genotypes_female.count('1/1') + genotypes_male.count('1/1') wt = 2*genotypes_female.count('0/0') + genotypes_male.count('0/0') othergenotypes = list() for z in list(set(genotypes)): if (z != '0/1') and (z != '1/1') and (z != '0/0'): othergenotypes.append(z) wt = wt + 2*genotypes_female.count(z) + genotypes_male.count(z) # assume that other values different than 0/1, 1/1 and 0/0 are considered as 0/0 too d_al.append(','.join([str(heteroz + homoz),str(wt)])) return(';'.join(d_al)) def splitByCountry(carrier_ids, carrier_gt, wt_ids, wt_gt, country_dict, country, key): carrier_ids = carrier_ids.replace('_gt','').split(',') carrier_gt = carrier_gt.split(';') new_carrier_ids = list() new_carrier_gt = list() wt_ids = wt_ids.replace('_gt','').split(',') wt_gt = wt_gt.split(';') new_wt_ids = list() new_wt_gt = list() for i,j in zip(carrier_ids,carrier_gt): if country_dict[i] == country: new_carrier_ids.append(i+'_gt') new_carrier_gt.append(j) new_carrier_ids = ','.join(new_carrier_ids) new_carrier_gt = ';'.join(new_carrier_gt) for i,j in zip(wt_ids,wt_gt): if country_dict[i] == country: new_wt_ids.append(i+'_gt') new_wt_gt.append(j) new_wt_ids = ','.join(new_wt_ids) new_wt_gt = ';'.join(new_wt_gt) if key == 'onlypositivevalues_carrier_ids': outlist = new_carrier_ids elif key == 'onlypositivevalues_carrier_gt': outlist = new_carrier_gt elif key == 'onlypositivevalues_wt_ids': outlist = new_wt_ids elif key == 'onlypositivevalues_wt_gt': outlist = new_wt_gt return(outlist) countries = list(set(sampleinfo['from'])) cols = ['onlypositivevalues_carrier_ids','onlypositivevalues_carrier_gt','onlypositivevalues_wt_ids','onlypositivevalues_wt_gt'] for country in countries: for col in cols: df[country + '_' + col] = df.apply(lambda x: splitByCountry(x['onlypositivevalues_carrier_ids'],x['onlypositivevalues_carrier_gt'],x['onlypositivevalues_wt_ids'],x['onlypositivevalues_wt_gt'], country_dict, country, col),axis = 1) df['aux'] = df[country + '_' +'onlypositivevalues_carrier_gt'].astype(str) + ';' + df[country + '_' + 'onlypositivevalues_wt_gt'].astype(str) df['aux'] = df['aux'].apply(lambda x: x.replace('nan;','').replace(';nan','').rstrip(';').lstrip(';')) df['aux_ids'] = df[country + '_' +'onlypositivevalues_carrier_ids'].astype(str) + ',' + df[country + '_' + 'onlypositivevalues_wt_ids'].astype(str) df['aux_ids'] = df['aux_ids'].apply(lambda x: x.replace('nan,','').replace(',nan','').rstrip(',').lstrip(',')) df[country + '_N_alleles'] = df.apply(lambda x: calculateNallelesperRS(x['multiID_gnomad'], x['aux']) if str(x['chr']) != 'X' else correctNallelesperRS_chromX(x['multiID_gnomad'], x['aux'], x['aux_ids'], gender_dict),axis=1) countries = ['LATAM'] # list(set(sampleinfo['from_general'])) cols = ['onlypositivevalues_carrier_ids','onlypositivevalues_carrier_gt','onlypositivevalues_wt_ids','onlypositivevalues_wt_gt'] for country in countries: for col in cols: df[country + '_' + col] = df.apply(lambda x: splitByCountry(x['onlypositivevalues_carrier_ids'],x['onlypositivevalues_carrier_gt'],x['onlypositivevalues_wt_ids'],x['onlypositivevalues_wt_gt'], country_dict_general, country, col),axis = 1) df['aux'] = df[country + '_' +'onlypositivevalues_carrier_gt'].astype(str) + ';' + df[country + '_' + 'onlypositivevalues_wt_gt'].astype(str) df['aux'] = df['aux'].apply(lambda x: x.replace('nan;','').replace(';nan','').rstrip(';').lstrip(';')) df['aux_ids'] = df[country + '_' +'onlypositivevalues_carrier_ids'].astype(str) + ',' + df[country + '_' + 'onlypositivevalues_wt_ids'].astype(str) df['aux_ids'] = df['aux_ids'].apply(lambda x: x.replace('nan,','').replace(',nan','').rstrip(',').lstrip(',')) df[country + '_N_alleles'] = df.apply(lambda x: calculateNallelesperRS(x['multiID_gnomad'], x['aux']) if str(x['chr']) != 'X' else correctNallelesperRS_chromX(x['multiID_gnomad'], x['aux'], x['aux_ids'], gender_dict),axis=1) country = 'ALL' df['aux'] = df['onlypositivevalues_carrier_gt'].astype(str) + ';' + df['onlypositivevalues_wt_gt'].astype(str) df['aux'] = df['aux'].apply(lambda x: x.replace('nan;','').replace(';nan','').rstrip(';').lstrip(';')) df['aux_ids'] = df['onlypositivevalues_carrier_ids'].astype(str) + ',' + df['onlypositivevalues_wt_ids'].astype(str) df['aux_ids'] = df['aux_ids'].apply(lambda x: x.replace('nan,','').replace(',nan','').rstrip(',').lstrip(',')) df[country + '_N_alleles'] = df.apply(lambda x: calculateNallelesperRS(x['multiID_gnomad'], x['aux']) if str(x['chr']) != 'X' else correctNallelesperRS_chromX(x['multiID_gnomad'], x['aux'], x['aux_ids'], gender_dict),axis=1) gnomad =
pd.read_csv('/path/to/gnomAD_info/gnomAD_rs_alleles_pop.info.csv',sep='\t')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd log_data = open('./data/access.log', 'r') fields = ['ts', 'elapsed', 'remhost', 'status', 'bytes', 'method', 'url', 'rfc931', 'peerstatus', 'type'] split_list = list() for line in log_data: ls = line.split() l_type = ls[9] l_url = ls[6] # if l.type == "text/html": if l_type == "application/vnd.apple.mpegurl": # Group by Time Interval file = (l_url).split("/")[-1] if file == "playlist.m3u8": # split_list.append(line.split()) split_list.append([ls[0], ls[2], ls[6], file]) df =
pd.DataFrame(split_list, columns=['ts', 'remhost', 'url', 'file'])
pandas.DataFrame
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-20') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-21', '2015-01-22') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 310, pd.Timestamp('2015-01-09')), (10, 311, pd.Timestamp('2015-01-15')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-11')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateWindows(NextEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader(bz.data(events), columns) class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp('2015-01-14') @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-09'), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp('2015-01-20')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20')], 'estimate': [130., 131., 230., 231.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30 }) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [140., 240.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40 }) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [150., 250.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50 }) return pd.concat([ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ]) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (-1., 2., 3., 4., 5., 6., 7., 100), 'effective_date': (pd.Timestamp('2014-01-01'), # Filter out # Split before Q1 event & after first estimate pd.Timestamp('2015-01-07'), # Split before Q1 event pd.Timestamp('2015-01-09'), # Split before Q1 event pd.Timestamp('2015-01-13'), # Split before Q1 event pd.Timestamp('2015-01-15'), # Split before Q1 event pd.Timestamp('2015-01-18'), # Split after Q1 event and before Q2 event pd.Timestamp('2015-01-30'), # Filter out - this is after our date index pd.Timestamp('2016-01-01')) }) sid_10_splits = pd.DataFrame({ SID_FIELD_NAME: 10, 'ratio': (.2, .3), 'effective_date': ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp('2015-01-07'), # Apply a single split before Q1 event. pd.Timestamp('2015-01-20')), }) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame({ SID_FIELD_NAME: 20, 'ratio': (.4, .5, .6, .7, .8, .9,), 'effective_date': ( pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18'), pd.Timestamp('2015-01-30')), }) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame({ SID_FIELD_NAME: 30, 'ratio': (8, 9, 10, 11, 12), 'effective_date': ( # Split before the event and before the # split-asof-date. pd.Timestamp('2015-01-07'), # Split on date of event but before the # split-asof-date. pd.Timestamp('2015-01-09'), # Split after the event, but before the # split-asof-date. pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18')), }) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame({ SID_FIELD_NAME: 40, 'ratio': (13, 14), 'effective_date': ( pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-22') ) }) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame({ SID_FIELD_NAME: 50, 'ratio': (15, 16), 'effective_date': ( pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14') ) }) return pd.concat([ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ]) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-12') ]), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150. * 1 / 16, pd.Timestamp('2015-01-09')), ], pd.Timestamp('2015-01-13')), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')) ], pd.Timestamp('2015-01-14')), pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-01-21') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 221*.8*.9, pd.Timestamp('2015-02-10')), (30, 231, pd.Timestamp('2015-01-20')), (40, 240.*13*14, pd.Timestamp('2015-02-10')), (50, 250., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-19')] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11*12, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-02-10')), (30, 131*11*12, pd.Timestamp('2015-01-20')), (40, 140. * 13 * 14, pd.Timestamp('2015-02-10')), (50, 150., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousWithSplitAdjustedWindows(PreviousWithSplitAdjustedWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 130*1/10, cls.window_test_start_date), (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140, pd.Timestamp('2015-01-09')), (50, 150.*1/15*1/16, pd.Timestamp('2015-01-09'))], pd.Timestamp('2015-01-09') ), cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/15*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-12') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-13') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-14') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*5, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*.7, cls.window_test_start_date), (20, 121*.7, pd.Timestamp('2015-01-07')), (30, 230*11, cls.window_test_start_date), (40, 240, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), cls.create_expected_df_for_factor_compute( [(0, 100*5*6, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110*.3, pd.Timestamp('2015-01-09')), (10, 111*.3, pd.Timestamp('2015-01-12')), (20, 120*.7*.8, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-07')), (30, 230*11*12, cls.window_test_start_date), (30, 231, pd.Timestamp('2015-01-20')), (40, 240*13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-21') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-22') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8, cls.window_test_start_date), (20, 221*.8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250.,
pd.Timestamp('2015-01-12')
pandas.Timestamp
from IPython import embed import pandas as pd import numpy as np import os import sys sys.path.insert(0,'..') from run_model import QuaLiKizDuoNN, QuaLiKizMultiNN, QuaLiKizNDNN, QuaLiKizComboNN simple_nns = ['efe_GB', 'efi_GB', ] # 'dfe_GB', # 'dfi_GB', # 'gam_GB_less2max', # 'gam_GB_leq2max', # 'vte_GB_plus_vce_GB', # 'vti_GB_plus_vci_GB'] # #combo_nns = {'efe_GB2': ['efe_GB_min_efeETG_GB', 'efeETG_GB', lambda x, y: x + y], # 'vte_GB_plus_vce_GB2': ['vte_GB', 'vce_GB', lambda x, y: x + y], # 'vti_GB_plus_vci_GB2': ['vti_GB', 'vci_GB', lambda x, y: x + y] #} #nns = [] #for name in simple_nns: # nn = QuaLiKizNDNN.from_json('nns/nn_' + name + '.json') # nns.append(nn) nn_dict = {} path = 'nns' for file_ in os.listdir(path): if file_.endswith('.json'): nn_dict[file_[3:-5]] = QuaLiKizNDNN.from_json(os.path.join(path, file_)) #efe_fancy = 1. + (3.) / (2. + 1) + (5.) / (4. + 1) #efi_fancy = (2. * 3.) / (2. + 1) + (4. * 5.) / (4. + 1) efe_GB_A = QuaLiKizComboNN('efe_GB_A', [nn_dict['efeETG_GB'], nn_dict['efiITG_GB_div_efeITG_GB'], nn_dict['efiITG_GB_plus_efeITG_GB'], nn_dict['efiTEM_GB_div_efeTEM_GB'], nn_dict['efiTEM_GB_plus_efeTEM_GB']], lambda a, b, c, d, e: a + c / (b + 1) + e / (d + 1)) efi_GB_A = QuaLiKizComboNN('efi_GB_A', [ nn_dict['efiITG_GB_div_efeITG_GB'], nn_dict['efiITG_GB_plus_efeITG_GB'], nn_dict['efiTEM_GB_div_efeTEM_GB'], nn_dict['efiTEM_GB_plus_efeTEM_GB']], lambda b, c, d, e: (b * c) / (b + 1) + (d * e) / (d + 1)) efe_GB_C = QuaLiKizComboNN('efe_GB_C', [nn_dict['efi_GB_div_efe_GB'], nn_dict['efi_GB_plus_efe_GB']], lambda a, b: b / (a + 1)) efi_GB_C = QuaLiKizComboNN('efi_GB_C', [nn_dict['efi_GB_div_efe_GB'], nn_dict['efi_GB_plus_efe_GB']], lambda a, b: (a * b) / (a + 1)) efe_GB_D = nn_dict['efe_GB'] efi_GB_D = nn_dict['efi_GB'] nns = [ efe_GB_A, efi_GB_A, efe_GB_C, efi_GB_C, efe_GB_D, efi_GB_D, nn_dict['efeTEM_GB'], nn_dict['efeETG_GB'], nn_dict['efeITG_GB'], nn_dict['efiTEM_GB'], nn_dict['efiITG_GB'] ] nn = QuaLiKizMultiNN(nns) # #for name, recipe in combo_nns.items(): # nn1 = QuaLiKizNDNN.from_json('nns/nn_' + recipe[0] + '.json') # nn2 = QuaLiKizNDNN.from_json('nns/nn_' + recipe[1] + '.json') # nn = QuaLiKizDuoNN(name, nn1, nn2, recipe[2]) # nns.append(nn) #nn = QuaLiKizMultiNN(nns) if __name__ == '__main__': scann = 24 input =
pd.DataFrame()
pandas.DataFrame
import json import cv2 import pandas as pd import numpy as np from .process_steps import Analysis from .parameters import SpotlobParameterSet from .process_opencv import draw_contours, crop_to_contour class CircleAnalysis(Analysis): def __init__(self, calibration=None, extended_output=True): self.calibration = calibration super(CircleAnalysis, self).__init__( self.analyze, [], extended_output=extended_output) def analyze(self, metadata): contours = metadata['contours'] areas = [] ellipses_positions = [] ellipses_major_axes = [] ellipses_minor_axes = [] ellipses_angles = [] for cont in contours: # AREA areas += [cv2.contourArea(cont)] # ELLIPSE try: e_pos, (e_major_ax, e_minor_ax), angle = cv2.fitEllipse(cont) except cv2.error: e_pos, (e_major_ax, e_minor_ax), angle = np.nan, (np.nan, np.nan), np.nan ellipses_positions += [np.array(e_pos)] ellipses_major_axes += [e_major_ax] ellipses_minor_axes += [e_minor_ax] ellipses_angles += [angle] res_dict = {"area_px2": areas, "ellipse_position_px": ellipses_positions, "ellipse_majorAxis_px": ellipses_major_axes, "ellipse_minorAxis_px": ellipses_minor_axes, "ellipse_angle": ellipses_angles} if self.extended_output: res_dict.update({"contours": contours}) result =
pd.DataFrame(res_dict)
pandas.DataFrame
import forecaster as fc import optimizer as opt import trader as td import datetime as dt import utilities as util import numpy as np import pandas as pd import matplotlib.pyplot as plt def calc_start_date(end_date=dt.datetime(2017,1,1), data_size=12): return end_date-dt.timedelta(weeks=int(data_size * 52/12)) def run_today(start_date=dt.datetime(2015,1,1), end_date=dt.datetime(2017,1,1), n_days=21, data_size=12, myport=['AAPL', 'GOOG'], allocations=[0.5,0.5], train_size=0.7, max_k=50, max_trade_size=0.1, gen_plot=False, verbose=False, savelogs=False): """ :param start_date: Beginning of time period :param end_date: End of time period :param n_days: Number of days into the future to predict the daily returns of a fund :param data_size: The number of months of data to use in the machine learning model. :param myport: The funds available in your portfolio :param allocations: The percentage of your portfolio invested in the funds :param train_size: The percentage of data used for training the ML model, remained used for testing. :param max_k: Maximum number of neighbors used in kNN :param max_trade_size: The maximum percentage of your portfolio permitted to be traded in any one transaction. :param gen_plot: Boolean to see if you want to plot results :param verbose: Boolean to print out information during execution of application. :return: """ start_date = calc_start_date(end_date, data_size)#end_date - dt.timedelta(weeks=int(data_size * 52/12)) #print('start:', start_date, 'end:', end_date) if verbose: print('-'*20 + '\nFORECAST\n' + '-'*20) forecast = fc.forecast(start_date, end_date, symbols=myport, train_size=train_size, n_days=n_days, max_k=max_k, gen_plot=gen_plot, verbose=verbose, savelogs=savelogs) if verbose: print('\n'+'-'*20 + '\nOPTIMIZE\n' + '-'*20) target_allocations = opt.optimize_return(forecast, myport, allocations, gen_plot=gen_plot, verbose=verbose, savelogs=savelogs) if verbose: print('\n' + '-'*20 + '\nORDERS\n' + '-'*20) trade_date = forecast.index.max() orders = td.create_orders(myport, allocations, target_allocations, trade_date=trade_date,max_trade_size=max_trade_size, verbose=verbose, savelogs=savelogs) if verbose: print(orders) new_allocations = allocations.copy() for i in range(orders.shape[0]): # fix this code so that the correct allocations are updated! index = myport.index(orders.loc[i, 'Symbol']) #symbol = orders.loc[i, 'Symbol'] if orders.loc[i, 'Action'] == 'SELL': new_allocations[index] -= orders.loc[i, 'Quantity'] else: new_allocations[index] += orders.loc[i, 'Quantity'] adr_current, vol_current, sr_current, pv_current = util.compute_returns(forecast, allocations=allocations) adr_target, vol_target, sr_target, pv_target = util.compute_returns(forecast, allocations=target_allocations) adr_new, vol_new, sr_new, pv_new = util.compute_returns(forecast, allocations=new_allocations) if verbose: print("Portfolios:", "Current", "Target","New") print("Daily return: %.5f %.5f %.5f" % (adr_current, adr_target, adr_new)) print("Daily Risk: %.5f %.5f %.5f" % (vol_current, vol_target, vol_new)) print("Sharpe Ratio: %.5f %.5f %.5f" % (sr_current, sr_target, sr_new)) print("Return vs Risk: %.5f %.5f %.5f" % (adr_current/vol_current, adr_target/vol_target, adr_new/vol_new)) print("\nALLOCATIONS\n" + "-" * 40) print("Symbol", "Current", "Target", 'New') for i, symbol in enumerate(myport): print("%s %.3f %.3f %.3f" % (symbol, allocations[i], target_allocations[i], new_allocations[i])) # Compare daily portfolio value with SPY using a normalized plot if gen_plot: fig, ax = plt.subplots() ax.scatter(vol_current, adr_current, c='green', s=15, alpha=0.5) # Current portfolio ax.scatter(vol_target, adr_target, c='red', s=15, alpha=0.5) # ef ax.scatter(vol_new, adr_new, c='black', s=25, alpha=0.75) # ef ax.set_xlabel('St. Dev. Daily Returns') ax.set_ylabel('Mean Daily Returns') #ax.set_xlim(min(vol)/1.5, max(vol)*1.5) #ax.set_ylim(min(adr)/1.5, max(adr)*1.5) ax.grid() ax.grid(linestyle=':') fig.tight_layout() plt.show() # add code to plot here df_temp = pd.concat([pv_current, pv_target, pv_new], keys=['Current', 'Target', 'New'], axis=1) df_temp = df_temp / df_temp.ix[0, :] util.plot_data(df_temp, 'Forecasted Daily portfolio value and SPY', 'Date-21', 'Normalized Price') if False: # meh was going to plot portfolio values for the last year but trying something else now prior_prices = util.load_data(myport, start_date, end_date) prior_prices.fillna(method='ffill', inplace=True) prior_prices.fillna(method='bfill', inplace=True) #prices_SPY = prior_prices['SPY'] # SPY prices, for benchmark comparison prior_prices = prior_prices[myport] # prices of portfolio symbols forecast_prices = forecast * prior_prices time_span = pd.date_range(forecast.index.min(), end_date + dt.timedelta(days=n_days*2)) forecast_prices = forecast_prices.reindex(time_span) forecast_prices = forecast_prices.shift(periods=n_days*2) forecast_prices = forecast_prices.dropna() forecast_prices = pd.concat([prior_prices, forecast_prices], axis=0) adr_current, vol_current, sr_current, pv_current = util.compute_returns(forecast_prices, allocations=allocations) adr_target, vol_target, sr_target, pv_target = util.compute_returns(forecast_prices, allocations=target_allocations) adr_new, vol_new, sr_new, pv_new = util.compute_returns(forecast_prices, allocations=new_allocations) df_temp =
pd.concat([pv_current, pv_target, pv_new], keys=['Current', 'Target', 'New'], axis=1)
pandas.concat
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33:
pd.Timestamp("2012-06-04 00:00:00")
pandas.Timestamp
# Copyright 2017-2021 QuantRocket LLC - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # To run: python3 -m unittest discover -s tests/ -p test_*.py -t . -v import os import unittest from unittest.mock import patch import glob import pickle import joblib import inspect import pandas as pd import numpy as np from moonshot import MoonshotML from moonshot.cache import TMP_DIR from moonshot.exceptions import MoonshotError from sklearn.tree import DecisionTreeClassifier class SKLearnMachineLearningTestCase(unittest.TestCase): def setUp(self): """ Trains a scikit-learn model. """ self.model = DecisionTreeClassifier() # Predict Y will be same as X X = np.array([[1,1],[0,0]]) Y = np.array([1,0]) self.model.fit(X, Y) self.pickle_path = "{0}/decision_tree_model.pkl".format(TMP_DIR) self.joblib_path = "{0}/decision_tree_model.joblib".format(TMP_DIR) def tearDown(self): """ Remove cached files. """ for file in glob.glob("{0}/moonshot*.pkl".format(TMP_DIR)): os.remove(file) for file in (self.pickle_path, self.joblib_path): if os.path.exists(file): os.remove(file) def test_complain_if_mix_dataframe_and_series(self): """ Tests error handling when the features list contains a mix of DataFrames and Series. """ # pickle model with open(self.pickle_path, "wb") as f: pickle.dump(self.model, f) class DecisionTreeML1(MoonshotML): MODEL = self.pickle_path def prices_to_features(self, prices): features = [] # DataFrame then Series features.append(prices.loc["Close"] > 10) features.append(prices.loc["Close"]["FI12345"] > 10) return features, None class DecisionTreeML2(MoonshotML): MODEL = self.pickle_path def prices_to_features(self, prices): features = [] # Series then DataFrame features.append(prices.loc["Close"]["FI12345"] > 10) features.append(prices.loc["Close"] > 10) return features, None def mock_get_prices(*args, **kwargs): dt_idx = pd.DatetimeIndex(["2018-05-01","2018-05-02","2018-05-03", "2018-05-04"]) fields = ["Close"] idx = pd.MultiIndex.from_product([fields, dt_idx], names=["Field", "Date"]) prices = pd.DataFrame( { "FI12345": [ # Close 9, 11, 10.50, 9.99, ], "FI23456": [ # Close 9.89, 11, 8.50, 10.50, ], }, index=idx ) prices.columns.name = "Sid" return prices def mock_download_master_file(f, *args, **kwargs): master_fields = ["Timezone", "Symbol", "SecType", "Currency", "PriceMagnifier", "Multiplier"] securities = pd.DataFrame( { "FI12345": [ "America/New_York", "ABC", "STK", "USD", None, None ], "FI23456": [ "America/New_York", "DEF", "STK", "USD", None, None, ] }, index=master_fields ) securities.columns.name = "Sid" securities.T.to_csv(f, index=True, header=True) f.seek(0) with patch("moonshot.strategies.base.get_prices", new=mock_get_prices): with patch("moonshot.strategies.base.download_master_file", new=mock_download_master_file): with self.assertRaises(MoonshotError) as cm: results = DecisionTreeML1().backtest() self.assertIn( "features should be either all DataFrames or all Series, not a mix of both", repr(cm.exception)) # clear cache for file in glob.glob("{0}/moonshot*.pkl".format(TMP_DIR)): os.remove(file) with self.assertRaises(MoonshotError) as cm: results = DecisionTreeML2().backtest() self.assertIn( "features should be either all DataFrames or all Series, not a mix of both", repr(cm.exception)) def test_complain_if_no_targets(self): """ Tests error handling when prices_to_features doesn't return a two-tuple. """ # pickle model with open(self.pickle_path, "wb") as f: pickle.dump(self.model, f) class DecisionTreeML(MoonshotML): MODEL = self.pickle_path def prices_to_features(self, prices): features = [] features.append(prices.loc["Close"] > 10) features.append(prices.loc["Close"] > 100) return features def mock_get_prices(*args, **kwargs): dt_idx = pd.DatetimeIndex(["2018-05-01","2018-05-02","2018-05-03", "2018-05-04"]) fields = ["Close"] idx =
pd.MultiIndex.from_product([fields, dt_idx], names=["Field", "Date"])
pandas.MultiIndex.from_product
__all__ = ["plot_centroids", "plot_histogram", "plot_scatter"] try: # noinspection PyUnresolvedReferences from matplotlib import use use('Agg') # noinspection PyUnresolvedReferences import matplotlib.pyplot as plt # noinspection PyUnresolvedReferences import matplotlib.ticker except ImportError: # raise ImportError("Unable to import matplotlib") pass import logging from pathlib import Path from typing import Optional, Tuple import numpy as np import pandas as pd import seaborn as sns from torch import Tensor import torch from .datasets.types import TensorGroup from .types import TorchOrNp, PathOrStr, OptStr def plot_scatter(ax, x: TorchOrNp, y: TorchOrNp, title: str, # legend: Optional[List[str]] = None, xlabel: str = "", ylabel: str = "", log_x: bool = False, log_y: bool = False, xmin: Optional[float] = None, xmax: Optional[float] = None, ymin: Optional[float] = None, ymax: Optional[float] = None): # Automatically convert to numpy if isinstance(x, Tensor): x = x.numpy() if isinstance(y, Tensor): y = y.numpy() ax.scatter(x, y) # if legend is not None: # ax.legend(legend) if xlabel: ax.set_xlabel(xlabel) if ylabel: ax.set_ylabel(ylabel) ax.set_title(title) if log_x: ax.set_xscale("log") if log_y: ax.set_yscale("log") # Set the minimum and maximum values if specified ax.set_xlim(xmin=xmin, xmax=xmax) ax.set_ylim(ymin=ymin, ymax=ymax) def plot_histogram(ax, vals: TorchOrNp, n_bins: int, title: str, hist_range: Optional[Tuple[float, float]] = None, xlabel: str = ""): if isinstance(vals, Tensor): vals = vals.numpy() n_ele = vals.shape[0] # N is the count in each bin, bins is the lower-limit of the bin _, bins, patches = ax.hist(vals, bins=n_bins, range=hist_range, weights=np.ones(n_ele) / n_ele) # Now we format the y-axis to display percentage ax.yaxis.set_major_formatter(matplotlib.ticker.PercentFormatter(1)) ax.set_title(title) if xlabel: ax.set_xlabel(xlabel) def plot_centroids(filename: PathOrStr, ts_grp: TensorGroup, title: OptStr = None, decision_boundary: Optional[Tuple[float, float]] = None) -> None: filename = Path(filename) msg = f"Generating centroid plot to path \"{str(filename)}\"" logging.debug(f"Starting: {msg}") # Combine all the data into one tensor x, y = [ts_grp.p_x], [torch.zeros([ts_grp.p_x.shape[0]], dtype=ts_grp.u_tr_y[1].dtype)] flds = [(1, (ts_grp.u_tr_x, ts_grp.u_tr_y)), (3, (ts_grp.u_te_x, ts_grp.u_te_y))] for y_offset, (xs, ys) in flds: x.append(xs) y.append(ys.clamp_min(0) + y_offset) x, y = torch.cat(x, dim=0), torch.cat(y, dim=0) def _build_labels(lbl: int) -> str: if lbl == 0: return "Pos" sgn = "+" if lbl % 2 == 0 else "-" ds = "U-te" if (lbl - 1) // 2 == 1 else "U-tr" return f"{ds} {sgn}" y_str = [_build_labels(_y) for _y in y.cpu().numpy()] # Residual code from t-SNE plotting. Just list class counts unique, counts = torch.unique(y.squeeze(), return_counts=True) for uniq, cnt in zip(unique.squeeze(), counts.squeeze()): logging.debug("Centroids %s: %d elements", _build_labels(uniq.item()), int(cnt.item())) label_col_name = "Label" data = {'x1': x[:, 0].squeeze(), 'x2': x[:, 1].squeeze(), label_col_name: y_str} flatui = ["#0d14e0", "#4bf05b", "#09ac15", "#e6204e", "#ba141d"] markers = ["P", "s", "D", "X", "^"] width, height = 8, 8 plt.figure(figsize=(8, 8)) ax = sns.lmplot(x="x1", y="x2", hue="Label", hue_order=["Pos", "U-tr +", "U-te +", "U-tr -", "U-te -"], # palette=sns.color_palette("bright", unique.shape[0]), palette=sns.color_palette(flatui), data=
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index)
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 3 10:14:40 2019 Adapted from code created as part of Udemy course: Deep Learning A-Z™: Hands-On Artificial Neural Networks (https://www.udemy.com/deep-learning-a-z/) """ # # Deep Learning: Stacked LSTM Recurrent Neural Network (RNN) Model in Python # Predict stock price using a Long-Short Term Memory (LSTM) Recurrent Neural # Network (RNN) # ## Part 1: Data Preprocessing # Import required libraries import os import datetime as dt import pandas as pd import numpy as np import urllib.request import json import math import matplotlib.pyplot as plt from timeit import default_timer as timer from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from keras.models import Sequential # Initializes the Neural Network from keras.layers import Dense, Dropout, LSTM import config as cfg # stores my API keys import warnings # ### Turn off Depreciation and Future warnings warnings.simplefilter(action='ignore', category=DeprecationWarning) warnings.simplefilter(action='ignore', category=FutureWarning) # %reset -f # Set random seed seed = 42 np.random.seed(seed) # Set the plotting style plt.style.use('seaborn-whitegrid') # Set the date range now = dt.datetime.now() file_date = now.strftime('%Y-%m-%d') start_date = dt.datetime(now.year - 10, now.month, now.day) start_date = start_date.strftime('%Y-%m-%d') # end_date = dt.datetime(now.year, now.month, now.day) # end_date = pd.to_datetime(end_date) # Determine prediction period num_days_pred = 80 # Set params dropout_rate = 0.2 batch_size = 32 epochs = 500 ########## # # Alpha Vantage API ########## api_key = cfg.ALPHA_VANTAGE_API_KEY # Import list of stocks # Use 'TSX:' to identify Canadian stocks stock_symbols = ['AAPL', 'IBM', 'TSLA', 'RY', 'JPM'] # Loop through each stock in list for index in range(0, len(stock_symbols)): stock_symbol = stock_symbols[index] print("\n*********** STOCK SYMBOL: %s ***********\n" % stock_symbol) # url_string_daily = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=%s&outputsize=full&apikey=%s" % ( # stock_symbol, api_key) url_string_daily = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol={}&outputsize=full&apikey={}".format( stock_symbol, api_key) # Save data to file save_data_to_file = '../data/processed/3.0-ng-alpha-vantage-intraday-stock-market-data-{}-{}.csv'.format( stock_symbol, file_date) save_results_to_file = '../data/processed/3.0-ng-lstm-rnn-model-prediction-results-{}-{}.csv'.format( stock_symbol, file_date) # Store date, open, high, low, close, adjusted close, volume, and dividend amount values # to a Pandas DataFrame with urllib.request.urlopen(url_string_daily) as url: data = json.loads(url.read().decode()) # extract stock market data data = data['Time Series (Daily)'] df_alpha = pd.DataFrame(columns=['Date', 'Open', 'High', 'Low', 'Close', 'Adjusted Close', 'Volume', 'Dividend Amount']) for k, v in data.items(): date = dt.datetime.strptime(k, '%Y-%m-%d') data_row = [date.date(), float(v['1. open']), float(v['2. high']), float(v['3. low']), float(v['4. close']), float(v['5. adjusted close']), float(v['6. volume']), float(v['7. dividend amount'])] df_alpha.loc[-1, :] = data_row df_alpha.index = df_alpha.index + 1 print('Data saved to : {}'.format(save_data_to_file)) df_alpha.to_csv(save_data_to_file, index=False) # Load it from the CSV df_alpha = pd.read_csv(save_data_to_file) # ### Sort DataFrame by date df_alpha = df_alpha.sort_values('Date') # Filter data to last n years from start_date df_alpha = df_alpha[(df_alpha['Date'] >= start_date)] # ### Visualize the Adjusted Close Price plt.figure(figsize=(12, 6)) plt.plot(range(df_alpha.shape[0]), df_alpha['Adjusted Close']) plt.xticks(range(0, df_alpha.shape[0], 251), df_alpha['Date'].loc[::251], rotation=90) plt.title('Daily Stock Price (Adj Close): {}'.format(stock_symbol)) plt.xlabel('Date', fontsize=14) plt.ylabel('Adj. Close Price', fontsize=14) plt.savefig('../reports/figures/3.0-ng-alpha-vantage-daily-stock-market-data-adj-close-price-{}-{}.png'.format(stock_symbol, file_date), bbox_inches='tight', dpi=300) print(plt.show()) # ### Splitting Data into Training and Test # ### NOTE: We can't use train_test_split because it would randomly pick rows and the # ### order of rows is critical to our analysis # Split data into Training and Test sets # All stock data except last 60 days data_train = df_alpha[:(len(df_alpha) - num_days_pred)] data_test = df_alpha[-num_days_pred:] # Last n days of stock data # Plot Training set plt.figure(figsize=(12, 6)) plt.plot(range(data_train.shape[0]), data_train['Adjusted Close']) plt.xticks(range(0, data_train.shape[0], 251), data_train['Date'].loc[::251], rotation=90) plt.title( 'Daily Stock Price (Adj. Close): {} [Training Data]'.format(stock_symbol)) plt.xlabel('Date', fontsize=14) plt.ylabel('Adj. Close Price', fontsize=14) plt.savefig('../reports/figures/3.0-ng-training-data-{}-adj-close-{}.png'.format(stock_symbol, file_date), bbox_inches='tight', dpi=300) print(plt.show()) # Plot Test set plt.figure(figsize=(12, 6)) plt.plot(range(data_test.shape[0]), data_test['Adjusted Close']) plt.xticks(range(0, data_test.shape[0], 5), data_test['Date'].loc[::5], rotation=90) plt.title( 'Daily Stock Price (Adj. Close): {} [Test Data]'.format(stock_symbol)) plt.xlabel('Date', fontsize=14) plt.ylabel('Adj. Close Price', fontsize=14) plt.savefig('../reports/figures/3.0-ng-test-data-{}-adj-close-{}.png'.format(stock_symbol, file_date), bbox_inches='tight', dpi=300) print(plt.show()) # # Describe the training data # print(data_train.shape) # print(data_train.describe().T) # # # Describe the test data # print(data_test.shape) # print(data_test.describe().T) # Create a numpy array of 1 column that we care about - Adj Close Stock Price training_set = data_train.iloc[:, 5:6].values # Get the real Adj Closing stock prices for last n days real_stock_price = data_test.iloc[:, 5:6].values # Feature Scaling # With RNNs it is recommended to apply normalization for feature scaling sc = MinMaxScaler(feature_range=(0, 1), copy=True) # Scale the training set training_set_scaled = sc.fit_transform(training_set) # Create a data structure with n timesteps and 1 output (use the previous # n days' stock prices to predict the next output = n/20 months of prices) X_train = [] y_train = [] for i in range(num_days_pred, len(data_train)): # append the previous n days' stock prices X_train.append(training_set_scaled[i - num_days_pred:i, 0]) # predict the stock price on the next day y_train.append(training_set_scaled[i, 0]) # Convert X_train and y_train to numpy arrays X_train, y_train = np.array(X_train), np.array(y_train) # Reshape the data to add additional indicators (e.g. volume, closing price, etc.) # if needed (currently only predicting opening price) X_train = np.reshape(X_train, (X_train.shape[0], # number of rows in x_train X_train.shape[1], # number of columns in x_train 1)) # number of input layers (currently only opening price) # Part 2: Build the Recurrent Neural Network (RNN) Model # Import the required Keras libraries and packages # Add a timer start = timer() # Initialize the RNN model = Sequential() # Add the 1st LSTM layer with Dropout regularization model.add(LSTM(units=num_days_pred, # number of memory cells (neurons) in this layer return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(Dropout(rate=dropout_rate)) # Add a 2nd LSTM layer with Dropout regularization model.add(LSTM(units=num_days_pred, # number of memory cells (neurons) in this layer return_sequences=True)) model.add(Dropout(rate=dropout_rate)) # Add a 3rd LSTM layer with Dropout regularization model.add(LSTM(units=num_days_pred, # number of memory cells (neurons) in this layer return_sequences=True)) model.add(Dropout(rate=dropout_rate)) # Add a 4th (and last) LSTM layer with Dropout regularization # number of memory cells (neurons) in this layer model.add(LSTM(units=num_days_pred)) model.add(Dropout(rate=dropout_rate)) # Add the output layer model.add(Dense(units=1)) # Compile the Recurrent Neural Network (RNN) model.compile(optimizer='adam', loss='mean_squared_error') # Fit the Recurrent Neural Network (RNN) to the Training Set model.fit(x=X_train, y=y_train, batch_size=batch_size, epochs=epochs, verbose=0) # Elapsed time in minutes end = timer() print('Elapsed time in minutes: ') print(0.1 * round((end - start) / 6)) # Add an end of work message os.system('say "your {} model has finished processing"'.format(stock_symbol)) # Print summary of the neural network architecture print(model.summary()) # Part 3: Make Prediction and Visualize the Results # Get the predicted Open stock prices for last n days data_total = df_alpha['Adjusted Close'] # first financial day is the difference between the length of the dataset_total and dataset_test inputs = data_total[len(data_total) - len(data_test) - num_days_pred:].values inputs = inputs.reshape(-1, 1) inputs = sc.transform(inputs) # Scale the inputs X_test = [] for i in range(num_days_pred, len(data_test) + num_days_pred): # append the previous n days' stock prices X_test.append(inputs[i-num_days_pred:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predicted_stock_price = model.predict(X_test) # Invert the feature scaling predicted_stock_price = sc.inverse_transform(predicted_stock_price) # Add calculation of differences between prediction and actual - ups and downs df_date =
pd.DataFrame(data_test.iloc[:, 0:1].values)
pandas.DataFrame
""" Attempt to read and manipulate data using pandas, then plot some of it. I've attempted to read in the ICP-OES file 'Whorley_C2016major_Grn.csv' and I'll try to find the average and standard deviation of each analyte, 5 replicates per analyte. """ # Imports import numpy as np import matplotlib.pyplot as plt import pandas as pd # Local Imports, File Paths import os, sys sys.path.append(os.path.abspath('shared')) import my_module as mymod myplace = 'twho' # Input / Output Directories in_dir = '../' + myplace + '_data/' out_dir = '../' + myplace + '_output/' #Define Input / Output File Names in_fn = in_dir + 'Whorley_C2016major_Grn.csv' out_fn = out_dir + 'C2016maj.png' # Read in the data file df =
pd.read_csv(in_fn)
pandas.read_csv
"""Dynamic file checks.""" from dataclasses import dataclass from datetime import date, timedelta from typing import Dict, Set import re import pandas as pd import numpy as np from .errors import ValidationFailure, APIDataFetchError from .datafetcher import get_geo_signal_combos, threaded_api_calls from .utils import relative_difference_by_min, TimeWindow, lag_converter class DynamicValidator: """Class for validation of static properties of individual datasets.""" @dataclass class Parameters: """Configuration parameters.""" # data source name, one of # https://cmu-delphi.github.io/delphi-epidata/api/covidcast_signals.html data_source: str # span of time over which to perform checks time_window: TimeWindow # date that this df_to_test was generated; typically 1 day after the last date in df_to_test generation_date: date # number of days back to perform sanity checks, starting from the last date appearing in # df_to_test max_check_lookbehind: timedelta # names of signals that are smoothed (7-day avg, etc) smoothed_signals: Set[str] # maximum number of days behind do we expect each signal to be max_expected_lag: Dict[str, int] # minimum number of days behind do we expect each signal to be min_expected_lag: Dict[str, int] def __init__(self, params): """ Initialize object and set parameters. Arguments: - params: dictionary of user settings; if empty, defaults will be used """ common_params = params["common"] dynamic_params = params.get("dynamic", dict()) self.test_mode = dynamic_params.get("test_mode", False) self.params = self.Parameters( data_source=common_params["data_source"], time_window=TimeWindow.from_params(common_params["end_date"], common_params["span_length"]), generation_date=date.today(), max_check_lookbehind=timedelta( days=max(7, dynamic_params.get("ref_window_size", 14))), smoothed_signals=set(dynamic_params.get("smoothed_signals", [])), min_expected_lag=lag_converter(common_params.get( "min_expected_lag", dict())), max_expected_lag=lag_converter(common_params.get( "max_expected_lag", dict())) ) def validate(self, all_frames, report): """ Perform all checks over the combined data set from all files. Parameters ---------- all_frames: pd.DataFrame combined data from all input files report: ValidationReport report to which the results of these checks will be added """ # Get 14 days prior to the earliest list date outlier_lookbehind = timedelta(days=14) # Get all expected combinations of geo_type and signal. geo_signal_combos = get_geo_signal_combos(self.params.data_source) all_api_df = threaded_api_calls(self.params.data_source, self.params.time_window.start_date - outlier_lookbehind, self.params.time_window.end_date, geo_signal_combos) # Keeps script from checking all files in a test run. kroc = 0 # Comparison checks # Run checks for recent dates in each geo-sig combo vs semirecent (previous # week) API data. for geo_type, signal_type in geo_signal_combos: geo_sig_df = all_frames.query( "geo_type == @geo_type & signal == @signal_type") # Drop unused columns. geo_sig_df.drop(columns=["geo_type", "signal"]) report.increment_total_checks() if geo_sig_df.empty: report.add_raised_error(ValidationFailure(check_name="check_missing_geo_sig_combo", geo_type=geo_type, signal=signal_type, message="file with geo_type-signal combo " "does not exist")) continue max_date = geo_sig_df["time_value"].max() self.check_min_allowed_max_date( max_date, geo_type, signal_type, report) self.check_max_allowed_max_date( max_date, geo_type, signal_type, report) # Get relevant reference data from API dictionary. api_df_or_error = all_api_df[(geo_type, signal_type)] report.increment_total_checks() if isinstance(api_df_or_error, APIDataFetchError): report.add_raised_error(api_df_or_error) continue # Only do outlier check for cases and deaths signals if (signal_type in ["confirmed_7dav_cumulative_num", "confirmed_7dav_incidence_num", "confirmed_cumulative_num", "confirmed_incidence_num", "deaths_7dav_cumulative_num", "deaths_cumulative_num"]): # Outlier dataframe earliest_available_date = geo_sig_df["time_value"].min() source_df = geo_sig_df.query( 'time_value <= @self.params.time_window.end_date & ' 'time_value >= @self.params.time_window.start_date' ) # These variables are interpolated into the call to `api_df_or_error.query()` # below but pylint doesn't recognize that. # pylint: disable=unused-variable outlier_start_date = earliest_available_date - outlier_lookbehind outlier_end_date = earliest_available_date - timedelta(days=1) outlier_api_df = api_df_or_error.query( 'time_value <= @outlier_end_date & time_value >= @outlier_start_date') # pylint: enable=unused-variable self.check_positive_negative_spikes( source_df, outlier_api_df, geo_type, signal_type, report) # Check data from a group of dates against recent (previous 7 days, # by default) data from the API. for checking_date in self.params.time_window.date_seq: create_dfs_or_error = self.create_dfs( geo_sig_df, api_df_or_error, checking_date, geo_type, signal_type, report) if not create_dfs_or_error: continue recent_df, reference_api_df = create_dfs_or_error self.check_max_date_vs_reference( recent_df, reference_api_df, checking_date, geo_type, signal_type, report) self.check_rapid_change_num_rows( recent_df, reference_api_df, checking_date, geo_type, signal_type, report) if not re.search("cumulative", signal_type): self.check_avg_val_vs_reference( recent_df, reference_api_df, checking_date, geo_type, signal_type, report) # Keeps script from checking all files in a test run. kroc += 1 if self.test_mode and kroc == 2: break def check_min_allowed_max_date(self, max_date, geo_type, signal_type, report): """Check if time since data was generated is reasonable or too long ago. The most recent data should be at least max_expected_lag from generation date Arguments: - max_date: date of most recent data to be validated; datetime format. - geo_type: str; geo type name (county, msa, hrr, state) as in the CSV name - signal_type: str; signal name as in the CSV name - report: ValidationReport; report where results are added Returns: - None """ min_thres = timedelta(days = self.params.max_expected_lag.get( signal_type, self.params.max_expected_lag.get('all', 10))) if max_date < self.params.generation_date - min_thres: report.add_raised_error( ValidationFailure("check_min_max_date", geo_type=geo_type, signal=signal_type, message="date of most recent generated file seems too long ago")) report.increment_total_checks() def check_max_allowed_max_date(self, max_date, geo_type, signal_type, report): """Check if time since data was generated is reasonable or too recent. The most recent data should be at most min_expected_lag from generation date Arguments: - max_date: date of most recent data to be validated; datetime format. - geo_type: str; geo type name (county, msa, hrr, state) as in the CSV name - signal_type: str; signal name as in the CSV name - report: ValidationReport; report where results are added Returns: - None """ max_thres = timedelta(days = self.params.min_expected_lag.get( signal_type, self.params.min_expected_lag.get('all', 1))) if max_date > self.params.generation_date - max_thres: report.add_raised_error( ValidationFailure("check_max_max_date", geo_type=geo_type, signal=signal_type, message="date of most recent generated file seems too recent")) report.increment_total_checks() def create_dfs(self, geo_sig_df, api_df_or_error, checking_date, geo_type, signal_type, report): """Create recent_df and reference_api_df from params. Raises error if recent_df is empty. Arguments: - geo_sig_df: Pandas dataframe of test data - api_df_or_error: pandas dataframe of reference data, either from the COVIDcast API or semirecent data - geo_type: str; geo type name (county, msa, hrr, state) as in the CSV name - signal_type: str; signal name as in the CSV name - report: ValidationReport; report where results are added Returns: - False if recent_df is empty, else (recent_df, reference_api_df) (after reference_api_df has been padded if necessary) """ # recent_lookbehind: start from the check date and working backward in time, # how many days at a time do we want to check for anomalies? # Choosing 1 day checks just the daily data. recent_lookbehind = timedelta(days=1) recent_cutoff_date = checking_date - \ recent_lookbehind + timedelta(days=1) recent_df = geo_sig_df.query( 'time_value <= @checking_date & time_value >= @recent_cutoff_date') report.increment_total_checks() if recent_df.empty: min_thres = timedelta(days = self.params.max_expected_lag.get( signal_type, self.params.max_expected_lag.get('all', 10))) if checking_date < self.params.generation_date - min_thres: report.add_raised_error( ValidationFailure("check_missing_geo_sig_date_combo", checking_date, geo_type, signal_type, "test data for a given checking date-geo type-signal type" " combination is missing. Source data may be missing" " for one or more dates")) return False # Reference dataframe runs backwards from the recent_cutoff_date # # These variables are interpolated into the call to `api_df_or_error.query()` # below but pylint doesn't recognize that. # pylint: disable=unused-variable reference_start_date = recent_cutoff_date - self.params.max_check_lookbehind if signal_type in self.params.smoothed_signals: # Add an extra 7 days to the reference period. reference_start_date = reference_start_date - \ timedelta(days=7) reference_end_date = recent_cutoff_date - timedelta(days=1) # pylint: enable=unused-variable # Subset API data to relevant range of dates. reference_api_df = api_df_or_error.query( "time_value >= @reference_start_date & time_value <= @reference_end_date") report.increment_total_checks() if reference_api_df.empty: report.add_raised_error( ValidationFailure("empty_reference_data", checking_date, geo_type, signal_type, "reference data is empty; comparative checks could not " "be performed")) return False reference_api_df = self.pad_reference_api_df( reference_api_df, geo_sig_df, reference_end_date) return (geo_sig_df, reference_api_df) def pad_reference_api_df(self, reference_api_df, geo_sig_df, reference_end_date): """Check if API data is missing, and supplement from test data. Arguments: - reference_api_df: API data within lookbehind range - geo_sig_df: Test data - reference_end_date: Supposed end date of reference data Returns: - reference_api_df: Supplemented version of original """ reference_api_df_max_date = reference_api_df.time_value.max() if reference_api_df_max_date < reference_end_date: # Querying geo_sig_df, only taking relevant rows geo_sig_df_supplement = geo_sig_df.query( 'time_value <= @reference_end_date & time_value > \ @reference_api_df_max_date')[[ "geo_id", "val", "se", "sample_size", "time_value"]] # Matching time_value format geo_sig_df_supplement["time_value"] = \ pd.to_datetime(geo_sig_df_supplement["time_value"], format = "%Y-%m-%d %H:%M:%S") reference_api_df = pd.concat( [reference_api_df, geo_sig_df_supplement]) return reference_api_df def check_max_date_vs_reference(self, df_to_test, df_to_reference, checking_date, geo_type, signal_type, report): """ Check if reference data is more recent than test data. Arguments: - df_to_test: pandas dataframe of a single CSV of source data (one day-signal-geo_type combo) - df_to_reference: pandas dataframe of reference data, either from the COVIDcast API or semirecent data - geo_type: str; geo type name (county, msa, hrr, state) as in the CSV name - signal_type: str; signal name as in the CSV name - report: ValidationReport; report where results are added Returns: - None """ if df_to_test["time_value"].max() < df_to_reference["time_value"].max(): report.add_raised_error( ValidationFailure("check_max_date_vs_reference", checking_date, geo_type, signal_type, "reference df has days beyond the max date in the =df_to_test=")) report.increment_total_checks() def check_rapid_change_num_rows(self, df_to_test, df_to_reference, checking_date, geo_type, signal_type, report): """ Compare number of obervations per day in test dataframe vs reference dataframe. Arguments: - df_to_test: pandas dataframe of CSV source data - df_to_reference: pandas dataframe of reference data, either from the COVIDcast API or semirecent data - checking_date: datetime date - geo_type: str; geo type name (county, msa, hrr, state) as in the CSV name - signal_type: str; signal name as in the CSV name - report: ValidationReport; report where results are added Returns: - None """ test_rows_per_reporting_day = df_to_test[df_to_test['time_value'] == checking_date].shape[0] reference_rows_per_reporting_day = df_to_reference.shape[0] / len( set(df_to_reference["time_value"])) try: compare_rows = relative_difference_by_min( test_rows_per_reporting_day, reference_rows_per_reporting_day) except ZeroDivisionError as e: print(checking_date, geo_type, signal_type) raise e if abs(compare_rows) > 0.35: report.add_raised_error( ValidationFailure("check_rapid_change_num_rows", checking_date, geo_type, signal_type, "Number of rows per day seems to have changed rapidly (reference " "vs test data)")) report.increment_total_checks() def check_positive_negative_spikes(self, source_df, api_frames, geo, sig, report): """ Adapt Dan's corrections package to Python (only consider spikes). See https://github.com/cmu-delphi/covidcast-forecast/tree/dev/corrections/data_corrections Statistics for a right shifted rolling window and a centered rolling window are used to determine outliers for both positive and negative spikes. As it is now, ststat will always be NaN for source frames. Arguments: - source_df: pandas dataframe of CSV source data - api_frames: pandas dataframe of reference data, either from the COVIDcast API or semirecent data - geo: str; geo type name (county, msa, hrr, state) as in the CSV name - sig: str; signal name as in the CSV name - report: ValidationReport; report where results are added """ report.increment_total_checks() # Combine all possible frames so that the rolling window calculations make sense. source_frame_start = source_df["time_value"].min() # This variable is interpolated into the call to `add_raised_error()` # below but pylint doesn't recognize that. # pylint: disable=unused-variable source_frame_end = source_df["time_value"].max() # pylint: enable=unused-variable all_frames =
pd.concat([api_frames, source_df])
pandas.concat
#!/usr/bin/env python """ Evaluation of conformal predictors. """ # Authors: <NAME> # TODO: cross_val_score/run_experiment should possibly allow multiple to be evaluated on identical folding from __future__ import division from cqr.nonconformist_base import RegressorMixin, ClassifierMixin import sys import numpy as np import pandas as pd from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.base import clone, BaseEstimator class BaseIcpCvHelper(BaseEstimator): """Base class for cross validation helpers. """ def __init__(self, icp, calibration_portion): super(BaseIcpCvHelper, self).__init__() self.icp = icp self.calibration_portion = calibration_portion def predict(self, x, significance=None): return self.icp.predict(x, significance) class ClassIcpCvHelper(BaseIcpCvHelper, ClassifierMixin): """Helper class for running the ``cross_val_score`` evaluation method on IcpClassifiers. See also -------- IcpRegCrossValHelper Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.ensemble import RandomForestClassifier >>> from cqr.nonconformist import IcpClassifier >>> from cqr.nonconformist import ClassifierNc, MarginErrFunc >>> from cqr.nonconformist import ClassIcpCvHelper >>> from cqr.nonconformist import class_mean_errors >>> from cqr.nonconformist import cross_val_score >>> data = load_iris() >>> nc = ProbEstClassifierNc(RandomForestClassifier(), MarginErrFunc()) >>> icp = IcpClassifier(nc) >>> icp_cv = ClassIcpCvHelper(icp) >>> cross_val_score(icp_cv, ... data.data, ... data.target, ... iterations=2, ... folds=2, ... scoring_funcs=[class_mean_errors], ... significance_levels=[0.1]) ... # doctest: +SKIP class_mean_errors fold iter significance 0 0.013333 0 0 0.1 1 0.080000 1 0 0.1 2 0.053333 0 1 0.1 3 0.080000 1 1 0.1 """ def __init__(self, icp, calibration_portion=0.25): super(ClassIcpCvHelper, self).__init__(icp, calibration_portion) def fit(self, x, y): split = StratifiedShuffleSplit(y, n_iter=1, test_size=self.calibration_portion) for train, cal in split: self.icp.fit(x[train, :], y[train]) self.icp.calibrate(x[cal, :], y[cal]) class RegIcpCvHelper(BaseIcpCvHelper, RegressorMixin): """Helper class for running the ``cross_val_score`` evaluation method on IcpRegressors. See also -------- IcpClassCrossValHelper Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.ensemble import RandomForestRegressor >>> from cqr.nonconformist import IcpRegressor >>> from cqr.nonconformist import RegressorNc, AbsErrorErrFunc >>> from cqr.nonconformist import RegIcpCvHelper >>> from cqr.nonconformist import reg_mean_errors >>> from cqr.nonconformist import cross_val_score >>> data = load_boston() >>> nc = RegressorNc(RandomForestRegressor(), AbsErrorErrFunc()) >>> icp = IcpRegressor(nc) >>> icp_cv = RegIcpCvHelper(icp) >>> cross_val_score(icp_cv, ... data.data, ... data.target, ... iterations=2, ... folds=2, ... scoring_funcs=[reg_mean_errors], ... significance_levels=[0.1]) ... # doctest: +SKIP fold iter reg_mean_errors significance 0 0 0 0.185771 0.1 1 1 0 0.138340 0.1 2 0 1 0.071146 0.1 3 1 1 0.043478 0.1 """ def __init__(self, icp, calibration_portion=0.25): super(RegIcpCvHelper, self).__init__(icp, calibration_portion) def fit(self, x, y): split = train_test_split(x, y, test_size=self.calibration_portion) x_tr, x_cal, y_tr, y_cal = split[0], split[1], split[2], split[3] self.icp.fit(x_tr, y_tr) self.icp.calibrate(x_cal, y_cal) # ----------------------------------------------------------------------------- # # ----------------------------------------------------------------------------- def cross_val_score(model,x, y, iterations=10, folds=10, fit_params=None, scoring_funcs=None, significance_levels=None, verbose=False): """Evaluates a conformal predictor using cross-validation. Parameters ---------- model : object Conformal predictor to evaluate. x : numpy array of shape [n_samples, n_features] Inputs of data to use for evaluation. y : numpy array of shape [n_samples] Outputs of data to use for evaluation. iterations : int Number of iterations to use for evaluation. The data set is randomly shuffled before each iteration. folds : int Number of folds to use for evaluation. fit_params : dictionary Parameters to supply to the conformal prediction object on training. scoring_funcs : iterable List of evaluation functions to apply to the conformal predictor in each fold. Each evaluation function should have a signature ``scorer(prediction, y, significance)``. significance_levels : iterable List of significance levels at which to evaluate the conformal predictor. verbose : boolean Indicates whether to output progress information during evaluation. Returns ------- scores : pandas DataFrame Tabulated results for each iteration, fold and evaluation function. """ fit_params = fit_params if fit_params else {} significance_levels = (significance_levels if significance_levels is not None else np.arange(0.01, 1.0, 0.01)) df = pd.DataFrame() columns = ['iter', 'fold', 'significance', ] + [f.__name__ for f in scoring_funcs] for i in range(iterations): idx = np.random.permutation(y.size) x, y = x[idx, :], y[idx] cv = KFold(y.size, folds) for j, (train, test) in enumerate(cv): if verbose: sys.stdout.write('\riter {}/{} fold {}/{}'.format( i + 1, iterations, j + 1, folds )) m = clone(model) m.fit(x[train, :], y[train], **fit_params) prediction = m.predict(x[test, :], significance=None) for k, s in enumerate(significance_levels): scores = [scoring_func(prediction, y[test], s) for scoring_func in scoring_funcs] df_score = pd.DataFrame([[i, j, s] + scores], columns=columns) df = df.append(df_score, ignore_index=True) return df def run_experiment(models, csv_files, iterations=10, folds=10, fit_params=None, scoring_funcs=None, significance_levels=None, normalize=False, verbose=False, header=0): """Performs a cross-validation evaluation of one or several conformal predictors on a collection of data sets in csv format. Parameters ---------- models : object or iterable Conformal predictor(s) to evaluate. csv_files : iterable List of file names (with absolute paths) containing csv-data, used to evaluate the conformal predictor. iterations : int Number of iterations to use for evaluation. The data set is randomly shuffled before each iteration. folds : int Number of folds to use for evaluation. fit_params : dictionary Parameters to supply to the conformal prediction object on training. scoring_funcs : iterable List of evaluation functions to apply to the conformal predictor in each fold. Each evaluation function should have a signature ``scorer(prediction, y, significance)``. significance_levels : iterable List of significance levels at which to evaluate the conformal predictor. verbose : boolean Indicates whether to output progress information during evaluation. Returns ------- scores : pandas DataFrame Tabulated results for each data set, iteration, fold and evaluation function. """ df = pd.DataFrame() if not hasattr(models, '__iter__'): models = [models] for model in models: is_regression = model.get_problem_type() == 'regression' n_data_sets = len(csv_files) for i, csv_file in enumerate(csv_files): if verbose: print('\n{} ({} / {})'.format(csv_file, i + 1, n_data_sets)) data = pd.read_csv(csv_file, header=header) x, y = data.values[:, :-1], data.values[:, -1] x = np.array(x, dtype=np.float64) if normalize: if is_regression: y = y - y.min() / (y.max() - y.min()) else: for j, y_ in enumerate(np.unique(y)): y[y == y_] = j scores = cross_val_score(model, x, y, iterations, folds, fit_params, scoring_funcs, significance_levels, verbose) ds_df =
pd.DataFrame(scores)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Created by <NAME> import unittest import pandas as pd import pandas.testing as pdtest from allfreqs import AlleleFreqs from allfreqs.classes import Reference, MultiAlignment from allfreqs.tests.constants import ( REAL_ALG_X_FASTA, REAL_ALG_X_NOREF_FASTA, REAL_RSRS_FASTA, REAL_ALG_L6_FASTA, REAL_ALG_L6_NOREF_FASTA, SAMPLE_MULTIALG_FASTA, SAMPLE_MULTIALG_NOREF_FASTA, SAMPLE_REF_FASTA, SAMPLE_MULTIALG_CSV, SAMPLE_MULTIALG_NOREF_CSV, SAMPLE_REF_CSV, sample_sequences_df, SAMPLE_SEQUENCES_DICT, sample_sequences_freqs, sample_sequences_freqs_amb, SAMPLE_FREQUENCIES, SAMPLE_FREQUENCIES_AMB, REAL_ALG_X_DF, REAL_X_FREQUENCIES, REAL_ALG_L6_DF, REAL_L6_FREQUENCIES, TEST_CSV ) class TestBasic(unittest.TestCase): def setUp(self) -> None: ref = Reference("AAG-CTNGGGCATTTCAGGGTGAGCCCGGGCAATACAGGG-TAT") alg = MultiAlignment(SAMPLE_SEQUENCES_DICT) self.af = AlleleFreqs(multialg=alg, reference=ref) self.af_amb = AlleleFreqs(multialg=alg, reference=ref, ambiguous=True) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_frequencies_ambiguous(self): # Given/When exp_freqs = sample_sequences_freqs_amb() # Then pdtest.assert_frame_equal(self.af_amb.frequencies, exp_freqs) def test__get_frequencies(self): # Given test_freq = pd.Series({'A': 0.2, 'C': 0.2, 'G': 0.1, 'T': 0.3, '-': 0.1, 'N': 0.1}) exp_freq = {'A': 0.2, 'C': 0.2, 'G': 0.1, 'T': 0.3, 'gap': 0.1, 'oth': 0.1} # When result = self.af._get_frequencies(test_freq) # Then self._dict_almost_equal(result, exp_freq) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) def test_to_csv_ambiguous(self): # Given/When self.af_amb.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES_AMB) # Then pdtest.assert_frame_equal(result, expected) @staticmethod def _dict_almost_equal(expected: dict, result: dict, acc=10**-8) -> bool: """Compare to dictionaries and ensure that all their values are the same, accounting for some fluctuation up to the given accuracy value. Args: expected: expected dictionary result: resulting dictionary acc: accuracy to use [default: 10**-8] """ if expected.keys() == result.keys(): for key in expected.keys(): if abs(expected[key] - result[key]) < acc: continue return True return False # From Fasta class TestFromFasta(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=SAMPLE_MULTIALG_FASTA) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestFromFastaNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=SAMPLE_MULTIALG_NOREF_FASTA, reference=SAMPLE_REF_FASTA) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) # From Csv class TestFromCsv(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_csv(sequences=SAMPLE_MULTIALG_CSV) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) class TestFromCsvNoRef(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_csv(sequences=SAMPLE_MULTIALG_NOREF_CSV, reference=SAMPLE_REF_CSV) def test_df(self): # Given/When exp_df = sample_sequences_df() # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = sample_sequences_freqs() # Then pdtest.assert_frame_equal(self.af.frequencies, exp_freqs) def test_to_csv(self): # Given/When self.af.to_csv(TEST_CSV) result = pd.read_csv(TEST_CSV) expected = pd.read_csv(SAMPLE_FREQUENCIES) # Then pdtest.assert_frame_equal(result, expected) # Real Datasets class TestRealDatasetsX(unittest.TestCase): def setUp(self) -> None: self.af = AlleleFreqs.from_fasta(sequences=REAL_ALG_X_FASTA) def test_df(self): # Given/When exp_df = pd.read_csv(REAL_ALG_X_DF, index_col=0) # Then pdtest.assert_frame_equal(self.af.df, exp_df) def test_frequencies(self): # Given/When exp_freqs = pd.read_csv(REAL_X_FREQUENCIES) # Then
pdtest.assert_frame_equal(self.af.frequencies, exp_freqs)
pandas.testing.assert_frame_equal
"""Unit tests for compaction.""" from io import StringIO import numpy as np # type: ignore import pandas # type: ignore from pytest import approx, mark, raises # type: ignore from compaction import compact from compaction.cli import load_config, run_compaction def test_to_analytical() -> None: c = 3.68e-8 rho_s = 2650.0 rho_w = 1000.0 phi_0 = 0.6 g = 9.81 dz = np.full(2000, 10.0) phi = np.full(len(dz), phi_0) phi_numerical = compact( dz, phi, porosity_min=0.0, porosity_max=phi_0, c=c, gravity=g, rho_grain=rho_s, rho_void=rho_w, ) z = np.cumsum(dz * (1 - phi) / (1 - phi_numerical)) phi_analytical = np.exp(-c * g * (rho_s - rho_w) * z) / ( np.exp(-c * g * (rho_s - rho_w) * z) + (1.0 - phi_0) / phi_0 ) sup_norm = np.max(np.abs(phi_numerical - phi_analytical) / phi_analytical) assert sup_norm < 0.01 def test_spatially_distributed() -> None: """Test with spatially distributed inputs.""" dz = np.full((100, 10), 1.0) phi = np.full((100, 10), 0.5) phi_new = compact(dz, phi, porosity_max=0.5) assert phi_new[0] == approx(phi[0]) assert np.all(phi_new[1:] < phi[1:]) assert np.all(np.diff(phi_new, axis=0) < 0.0) @mark.parametrize("size", (10, 100, 1000, 10000)) @mark.benchmark(group="compaction") def test_grid_size(benchmark, size) -> None: dz = np.full((size, 100), 1.0) phi = np.full((size, 100), 0.5) phi_new = compact(dz, phi, porosity_max=0.5) phi_new = benchmark(compact, dz, phi, porosity_max=0.5) assert phi_new[0] == approx(phi[0]) assert np.all(phi_new[1:] < phi[1:]) assert np.all(np.diff(phi_new, axis=0) < 0.0) @mark.parametrize("size", (10, 100, 1000, 10000)) @mark.benchmark(group="compaction-with-dz") def test_grid_size_with_dz(benchmark, size) -> None: dz = np.full((size, 100), 1.0) phi = np.full((size, 100), 0.5) phi_new = compact(dz, phi, porosity_max=0.5) dz_new = np.empty_like(dz) phi_new = benchmark(compact, dz, phi, porosity_max=0.5, return_dz=dz_new) assert phi_new[0] == approx(phi[0]) assert np.all(phi_new[1:] < phi[1:]) assert np.all(np.diff(phi_new, axis=0) < 0.0) assert dz_new[0] == approx(dz[0]) assert np.all(dz_new[1:] < dz[1:]) assert np.all(np.diff(dz_new, axis=0) < 0.0) def test_bad_return_dz() -> None: dz = np.full((10, 100), 1.0) phi = np.full((10, 100), 0.5) dz_new = np.empty((10, 100), dtype=int) with raises(TypeError): compact(dz, phi, porosity_max=0.5, return_dz=dz_new) dz_new = np.empty((1, 100), dtype=dz.dtype) with raises(TypeError): compact(dz, phi, porosity_max=0.5, return_dz=dz_new) def test_decreasing_porosity() -> None: """Test porosity decreases with depth.""" dz = np.full(100, 1.0) phi = np.full(100, 0.5) phi_new = compact(dz, phi, porosity_max=0.5) assert phi_new[0] == approx(phi[0]) assert np.all(phi_new[1:] < phi[1:]) assert np.all(np.diff(phi_new) < 0.0) def test_equilibrium_compaction() -> None: """Test steady-state compaction.""" dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5) dz_1 = dz_0 * (1 - phi_0) / (1 - phi_1) phi_2 = compact(dz_1, phi_1, porosity_max=0.5) assert np.all(phi_2 == approx(phi_1)) def test_no_decompaction() -> None: """Test removing sediment does not cause decompaction.""" dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5) dz_1 = dz_0 * (1 - phi_0) / (1 - phi_1) dz_1[0] /= 2.0 phi_2 = compact(dz_1, phi_1, porosity_max=0.5) assert np.all(phi_2 == approx(phi_1)) def test_increasing_load() -> None: """Test adding sediment increases compaction.""" dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5) dz_1 = dz_0 * (1 - phi_0) / (1 - phi_1) dz_1[0] *= 2.0 phi_2 = compact(dz_1, phi_1, porosity_max=0.5) assert np.all(phi_2[1:] < phi_1[1:]) def test_zero_compaction() -> None: """Test compaction coefficient of zero.""" dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5, c=0.0) assert np.all(phi_1 == approx(phi_0)) def test_increasing_compactability() -> None: """Test large compaction coefficient leads to more compaction.""" dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5, c=1e-6) phi_2 = compact(dz_0, phi_0, porosity_max=0.5, c=1e-3) assert np.all(phi_2[1:] < phi_1[1:]) def test_void_is_air() -> None: """Test empty void space.""" dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5, rho_void=0.0) phi_2 = compact(dz_0, phi_0, porosity_max=0.5, rho_void=1000.0) assert np.all(phi_1[1:] < phi_2[1:]) def test_all_void() -> None: dz_0 = np.full(100, 1000.0) phi_0 = np.full(100, 1.0) dz_1 = np.empty_like(dz_0) phi_1 = compact(dz_0, phi_0, return_dz=dz_1) assert np.all(dz_1 == approx(0.0)) assert np.all(phi_1 == approx(1.0)) def test_load_config_defaults() -> None: """Test load_config without file name.""" config = load_config() defaults = { "constants": { "c": 5e-8, "porosity_min": 0.0, "porosity_max": 0.5, "rho_grain": 2650.0, "rho_void": 1000.0, } } assert config == defaults config = load_config(StringIO("")) assert config == defaults config = load_config(StringIO("[another_group]")) assert config == defaults config = load_config(StringIO("[compaction]")) assert config == defaults config = load_config(StringIO("[compaction]")) assert config == defaults def test_load_config_from_file() -> None: """Test config vars from a file.""" file_like = StringIO( """[compaction.constants] c = 3.14 """ ) config = load_config(file_like) expected = { "constants": { "c": 3.14, "porosity_min": 0.0, "porosity_max": 0.5, "rho_grain": 2650.0, "rho_void": 1000.0, } } assert config == expected def test_run(tmpdir) -> None: dz_0 = np.full(100, 1.0) phi_0 = np.full(100, 0.5) phi_1 = compact(dz_0, phi_0, porosity_max=0.5) with tmpdir.as_cwd(): df =
pandas.DataFrame.from_dict({"dz": dz_0, "porosity": phi_0})
pandas.DataFrame.from_dict
# import start import ast import asyncio import calendar import platform import subprocess as sp import time import traceback import xml.etree.ElementTree as Et from collections import defaultdict from datetime import datetime import math import numpy as np import pandas as pd from Utility.CDPConfigValues import CDPConfigValues from Utility.Utilities import Utilities from Utility.WebConstants import WebConstants from WebConnection.WebConnection import WebConnection # import end ## Function to reverse a string #def reverse(string): # string = string[::-1] # return string class Preprocessor: """ Preprocessor class is used for preparing the extracted data to be fed to the training algorithm for further processing. """ def __init__(self, project, previous_preprocessed_df=None, preprocessed=None): """ :param timestamp_column: Contains the committer timestamp :type timestamp_column: str :param email_column: Contains the committer timestamp :type email_column: str :param project: project key to be processed :type project: str :param project_name: project name to be processed :type project_name: str :param web_constants: Constants load from file :type web_constants: class WebConstants :param base_timestamp: Instantiating committer timestamp :type base_timestamp: str :param developer_stats_df: creating dataframe variable for developer stats :type developer_stats_df: pandas dataframe :param developer_sub_module_stats_df: creating dataframe variable for developer sub module stats :type developer_sub_module_stats_df: pandas dataframe """ self.timestamp_column = "COMMITTER_TIMESTAMP" self.email_column = "COMMITTER_EMAIL" self.project = project self.project_name = CDPConfigValues.configFetcher.get('name', project) self.web_constants = WebConstants(project) self.base_timestamp = "" self.developer_stats_df = "" self.developer_sub_module_stats_df = "" if preprocessed is None: if previous_preprocessed_df is None: self.file_path = f"{CDPConfigValues.preprocessed_file_path}/{self.project_name}" self.github_data_dump_df = pd.read_csv( f"{CDPConfigValues.cdp_dump_path}/{self.project_name}/{CDPConfigValues.commit_details_file_name}") self.pre_processed_file_path = f"{CDPConfigValues.preprocessed_file_path}/{self.project_name}" CDPConfigValues.create_directory(self.pre_processed_file_path) self.stats_dataframe = pd.DataFrame() self.sub_module_list = list() else: self.file_path = f"{CDPConfigValues.schedule_file_path}/{self.project_name}" self.github_data_dump_df = pd.DataFrame(previous_preprocessed_df) self.github_data_dump_df = self.github_data_dump_df.apply( lambda x: x.str.strip() if x.dtype == "object" else x) self.github_data_dump_df["COMMITTER_TIMESTAMP"] = self.github_data_dump_df["COMMITTER_TIMESTAMP"].apply( lambda x: pd.Timestamp(x, tz="UTC")) self.github_data_dump_df["COMMITTER_TIMESTAMP"] = self.github_data_dump_df["COMMITTER_TIMESTAMP"].apply( lambda x: pd.Timestamp(x)) self.github_data_dump_df['COMMITTER_TIMESTAMP'] = self.github_data_dump_df['COMMITTER_TIMESTAMP'].astype( str) self.github_data_dump_df['COMMITTER_TIMESTAMP'] = self.github_data_dump_df['COMMITTER_TIMESTAMP'].apply( lambda x: x[:-6]) self.filter_data_frame(self.github_data_dump_df) if self.github_data_dump_df.shape[0] != 0: self.github_data_dump_df["COMMITTER_EMAIL"] = \ self.github_data_dump_df[["COMMITTER_EMAIL", "COMMITTER_NAME"]].apply(self.replace_blank_email, axis=1) else: self.github_data_dump_df = previous_preprocessed_df @staticmethod def replace_blank_email(row): if row["COMMITTER_EMAIL"] is None or row["COMMITTER_EMAIL"] == "": return str(row["COMMITTER_NAME"]).replace(" ", "") + "@noemail" else: return row["COMMITTER_EMAIL"] def filter_data_frame(self, data_frame): if self.project_name == "spring-boot": data_frame = data_frame[data_frame["FILE_NAME"].str.endswith(".java")] elif self.project_name == "opencv": data_frame = data_frame[ (data_frame["FILE_NAME"].str.endswith(".hpp") | data_frame["FILE_NAME"].str.endswith(".cpp") | data_frame["FILE_NAME"].str.endswith(".h") | data_frame["FILE_NAME"].str.endswith(".cc") | data_frame["FILE_NAME"].str.endswith(".c") | data_frame["FILE_NAME"].str.endswith(".py") | data_frame["FILE_NAME"].str.endswith(".java") | data_frame["FILE_NAME"].str.endswith(".cl") )] # data_frame["FILE_NAME"].str.endswith(".cs") elif self.project_name == "corefx": data_frame = data_frame[ (data_frame["FILE_NAME"].str.endswith(".cs") | data_frame["FILE_NAME"].str.endswith(".h") | data_frame["FILE_NAME"].str.endswith(".c") | data_frame["FILE_NAME"].str.endswith(".vb"))] self.github_data_dump_df = data_frame def convert_month_day_date_hour_to_categorical(self, ): """ This method takes the month, day and hour and applies one hot encoding manually """ convert_date_to_categorical_start_time = time.time() timestamp_column_in_df = self.github_data_dump_df['COMMITTER_TIMESTAMP'] dayList = list() monthList = list() dateList = list() hourList = list() mondayList = list() tuesdayList = list() wednesdayList = list() thursdayList = list() fridayList = list() saturdayList = list() sundayList = list() for timestamp_value in timestamp_column_in_df: new_date_format = datetime.strptime(timestamp_value, '%Y-%m-%d %H:%M:%S') weekdayStr = calendar.day_name[new_date_format.weekday()] dayList.append(weekdayStr) if weekdayStr == 'Sunday': sundayList.append('1') mondayList.append('0') tuesdayList.append('0') wednesdayList.append('0') thursdayList.append('0') fridayList.append('0') saturdayList.append('0') elif weekdayStr == 'Monday': sundayList.append('0') mondayList.append('1') tuesdayList.append('0') wednesdayList.append('0') thursdayList.append('0') fridayList.append('0') saturdayList.append('0') elif weekdayStr == 'Tuesday': sundayList.append('0') mondayList.append('0') tuesdayList.append('1') wednesdayList.append('0') thursdayList.append('0') fridayList.append('0') saturdayList.append('0') elif weekdayStr == 'Wednesday': sundayList.append('0') mondayList.append('0') tuesdayList.append('0') wednesdayList.append('1') thursdayList.append('0') fridayList.append('0') saturdayList.append('0') elif weekdayStr == 'Thursday': sundayList.append('0') mondayList.append('0') tuesdayList.append('0') wednesdayList.append('0') thursdayList.append('1') fridayList.append('0') saturdayList.append('0') elif weekdayStr == 'Friday': sundayList.append('0') mondayList.append('0') tuesdayList.append('0') wednesdayList.append('0') thursdayList.append('0') fridayList.append('1') saturdayList.append('0') elif weekdayStr == 'Saturday': sundayList.append('0') mondayList.append('0') tuesdayList.append('0') wednesdayList.append('0') thursdayList.append('0') fridayList.append('0') saturdayList.append('1') monthList.append(new_date_format.month) dateList.append(new_date_format.day) hourList.append(new_date_format.hour) self.github_data_dump_df['DAY'] = dayList self.github_data_dump_df['MONTH'] = monthList self.github_data_dump_df['DATE'] = dateList self.github_data_dump_df['HOUR'] = hourList self.github_data_dump_df['SUNDAY'] = sundayList self.github_data_dump_df['MONDAY'] = mondayList self.github_data_dump_df['TUESDAY'] = tuesdayList self.github_data_dump_df['WEDNESDAY'] = wednesdayList self.github_data_dump_df['THURSDAY'] = thursdayList self.github_data_dump_df['FRIDAY'] = fridayList self.github_data_dump_df['SATURDAY'] = saturdayList convert_date_to_categorical_end_time = time.time() print(f"Time taken to convert datetime to Categorical is " f"{convert_date_to_categorical_end_time - convert_date_to_categorical_start_time}") @staticmethod def file_status_to_cat(value): """ THelper method for replacing string to single character value """ if value == 'modified': return 'M' elif value == 'added': return 'A' elif value == 'renamed': return 'R' else: return 'D' def file_status_to_categorical(self, ): """ This method modifies the string value of the file status to categorical (single character) """ file_status_start_time = time.time() self.github_data_dump_df['FILE_STATUS'] = self.github_data_dump_df['FILE_STATUS'].apply(self.file_status_to_cat) file_status_end_time = time.time() print(f"Time Taken to convert file status to categorical {file_status_end_time - file_status_start_time}") def determine_commit_is_fix(self, closed_events_df=None): """ This method modifies the dataframe to label commits as isFix corresponding to commmits :param closed_events_df: dataframe containing the closed events list :type closed_events_df: pandas dataframe """ commit_isFix_start_time = time.time() if closed_events_df is None: closed_issue_df = pd.read_csv( f"{CDPConfigValues.cdp_dump_path}/{self.project_name}/{CDPConfigValues.closed_events_list_file_name}") else: closed_issue_df = closed_events_df commits_closed_df = pd.DataFrame( closed_issue_df.loc[closed_issue_df["commitid"] != ""]["commitid"].drop_duplicates()) commits_closed_df = commits_closed_df.dropna() commits_closed_df.columns = ["COMMIT_ID"] search_pattern = "|".join(commits_closed_df["COMMIT_ID"].to_list()) isFix = self.github_data_dump_df["COMMIT_ID"].str.contains(search_pattern) self.github_data_dump_df["IsFix"] = isFix.replace((True, False), (1, 0)) commit_isFix_end_time = time.time() print(f"Time Taken for determining for Commit is for Fix {commit_isFix_end_time - commit_isFix_start_time}") def get_commit_type(self): """ This method based on the commit message containing merge text labels each record as a merge or non-merge commit. """ commit_type_start_time = time.time() search_pattern = "|".join(["Merge pull request"]) isFix = self.github_data_dump_df["COMMIT_MESSAGE"].str.contains(search_pattern) self.github_data_dump_df["COMMIT_TYPE"] = isFix.replace((True, False), (1, 0)) commit_type_end_time = time.time() print(f"Time Taken for getting commit type is {commit_type_end_time - commit_type_start_time}") def get_file_size(self, ): """ The method extracts the file size using the github rest URL service for each commit and corresponding files. """ file_age_start_time = time.time() self.github_data_dump_df = self.github_data_dump_df.sort_values(by=["COMMITTER_TIMESTAMP"], ascending=[True]) commit_id_list = self.github_data_dump_df["COMMIT_ID"].drop_duplicates().to_list() print(f"Total Content Urls to be requested {len(commit_id_list)}") file_size_url_list = Utilities.format_url(self.web_constants.file_size_url, commit_id_list) batch_size = int(CDPConfigValues.git_api_batch_size) web_connection = WebConnection() results = web_connection.get_async_file_size(file_size_url_list, self.github_data_dump_df, self.web_constants, batch_size) file_size = results[0] failed_urls = results[1] loop_counter = 1 while len(failed_urls) > 0 and loop_counter < 200: loop_counter = loop_counter + 1 print(f"Sleeping for {60 * loop_counter} Seconds in get_file_size ...") time.sleep(60 * loop_counter) print(f"Total Failed URL's re-trying {len(failed_urls)}") results = web_connection.get_async_file_size(failed_urls, self.github_data_dump_df, self.web_constants, batch_size=batch_size) failed_urls = results[1] file_size = file_size + results[0] file_size_df = pd.DataFrame(file_size, columns=["COMMIT_ID", "FILE_NAME", "FILE_SIZE"]) file_size_df = file_size_df.drop_duplicates() file_size_df = file_size_df.sort_values(by=["COMMIT_ID"]) self.github_data_dump_df = self.github_data_dump_df.sort_values(by=["COMMIT_ID"]) self.github_data_dump_df = pd.merge(self.github_data_dump_df, file_size_df, how="left", left_on=["COMMIT_ID", "FILE_NAME"], right_on=["COMMIT_ID", "FILE_NAME"]) file_age_end_time = time.time() print(f"Fetched all file sizes in {file_age_end_time - file_age_start_time}") @staticmethod async def calculate_commit_file_age_and_number_of_developer_mp(file_df, file_name): """ The method is a helper method which calculates the file age and number of developers for a single file :param file_df: dataframe containing the file details :type file_df: pandas dataframe :param file_name: Name of the file :type file_name: str """ number_of_developers, file_age = list(), list() counter = 0 df_len = len(file_df) result = defaultdict() # file_age_normal = list() while counter < df_len: # Changed as part of review comment # if counter == 0 or file_df["FILE_STATUS"].iloc[counter] == "A": if counter == 0: file_age.append(0) # file_age_normal.append(0) elif counter > 0: # file_age_normal.append( # (file_df["COMMITTER_TIMESTAMP"].iloc[counter] - file_df["COMMITTER_TIMESTAMP"].iloc[ # counter - 1])) age = (file_df["COMMITTER_TIMESTAMP"].iloc[counter] - file_df["COMMITTER_TIMESTAMP"].iloc[ counter - 1]).days * 24 * 3600 + \ (file_df["COMMITTER_TIMESTAMP"].iloc[counter] - file_df["COMMITTER_TIMESTAMP"].iloc[ counter - 1]).seconds file_age.append(age) current_timestamp = file_df["COMMITTER_TIMESTAMP"].iloc[counter] # if file_df["FILE_STATUS"].iloc[counter] == "A": # Changed as part of review comment if counter == 0: number_of_developers.append(1) else: number_of_developers.append( len(set(file_df.loc[file_df["COMMITTER_TIMESTAMP"] <= current_timestamp]["COMMITTER_NAME"]))) counter = counter + 1 await asyncio.sleep(0) result[file_name] = (file_age, number_of_developers) return result async def execute_calculate_commit_file_age_and_number_of_developer_mp(self, batch): result = await asyncio.gather( *[self.calculate_commit_file_age_and_number_of_developer_mp( self.github_data_dump_df.loc[self.github_data_dump_df["FILE_NAME"] == file][ ["COMMIT_ID", "COMMITTER_NAME", "FILE_STATUS", "COMMITTER_TIMESTAMP"]], file) for file in batch] ) return result def get_commit_file_age_and_number_of_developer_mp(self, ): """ The method calculates the file age which is difference of current change and the last change for that file. The other output is the number of developers who have worked on that file. """ commit_age_no_of_dev_start_time = time.time() self.github_data_dump_df["COMMITTER_TIMESTAMP"] = pd.to_datetime( self.github_data_dump_df["COMMITTER_TIMESTAMP"]) self.github_data_dump_df = self.github_data_dump_df.sort_values(by=["FILE_NAME", "COMMITTER_TIMESTAMP"], ascending=[True, True]) file_names = self.github_data_dump_df["FILE_NAME"] file_names = file_names.drop_duplicates().to_list() commit_file_age, number_of_developers, failed_batches = list(), list(), list() results = defaultdict() batch_size = 100 file_batches = list(Utilities.create_batches(file_names, batch_size=batch_size)) print(f"For Getting Commit File Age and Numbre of Developers, Batch size {batch_size}") total_batches = len(file_batches) batch_counter, percent = 0, 0 print(f"Total Batches to be executed for getting commit file age and number of developer is {total_batches}") for batch in file_batches: try: loop = asyncio.get_event_loop() asyncio.set_event_loop(asyncio.new_event_loop()) if (total_batches * percent) // 100 == batch_counter: print( f"Total Batches completed is {batch_counter} and Failed batches Count is {len(failed_batches)}") percent = percent + 10 results_list = loop.run_until_complete( self.execute_calculate_commit_file_age_and_number_of_developer_mp(batch)) for result in results_list: for result_key in result.keys(): results[result_key] = result[result_key] except Exception as e: print(f"Exception Occurred!!!\n{traceback.print_tb(e.__traceback__)}") for file_name in batch: failed_batches.append(file_name) batch_counter = batch_counter + 1 """Retrieving the result of the dictionary on sorted order of the keys (author is the result_key)""" for result_key in sorted(results.keys()): commit_file_age = commit_file_age + results[result_key][0] number_of_developers = number_of_developers + results[result_key][1] self.github_data_dump_df["FILE_AGE"] = commit_file_age self.github_data_dump_df["NO_OF_DEV"] = number_of_developers commit_age_no_of_dev_end_time = time.time() print(f"Time Taken FILE_AGE and NO_OF_DEV {commit_age_no_of_dev_end_time - commit_age_no_of_dev_start_time}") async def calculate_developer_experience(self, file_df, author_name): """ Helper method for developer experience """ file_df["Year"] = (pd.to_datetime(self.base_timestamp) - pd.to_datetime(file_df["COMMITTER_TIMESTAMP"])) / ( np.timedelta64(1, 'D') * 365) file_df["Year"] = file_df["Year"].apply(lambda x: math.ceil(x) + 1) unique_file_df = file_df unique_file_df = unique_file_df.drop_duplicates() exp = list() dev_exp = defaultdict() counter = 0 while counter < (len(unique_file_df)): current_timestamp = unique_file_df["COMMITTER_TIMESTAMP"].iloc[counter] commit_id = unique_file_df["COMMIT_ID"].iloc[counter] # if counter == 0: # exp.append((commit_id, current_timestamp, 0)) # else: # year_count = unique_file_df.loc[unique_file_df["COMMITTER_TIMESTAMP"] < current_timestamp][ # "Year"].value_counts().rename_axis('Year').reset_index(name='Counts') # year_count["Exp"] = year_count["Counts"] / (year_count["Year"]) # # exp.append((commit_id, current_timestamp, year_count["Exp"].sum())) # year_count = unique_file_df.iloc[counter] # Changed as part of review comment year_count = unique_file_df.iloc[0:counter + 1][ "Year"].value_counts().rename_axis('Year').reset_index(name='Counts') # year_count = unique_file_df.loc[unique_file_df["COMMITTER_TIMESTAMP"] <= current_timestamp][ # "Year"].value_counts().rename_axis('Year').reset_index(name='Counts') year_count["Exp"] = year_count["Counts"] / (year_count["Year"]) exp.append((commit_id, current_timestamp, year_count["Exp"].sum())) counter = counter + 1 exp_df =
pd.DataFrame(exp, columns=["COMMIT_ID", "COMMITTER_TIMESTAMP", "EXP"])
pandas.DataFrame
from datetime import datetime from decimal import Decimal import numpy as np import pytest import pytz from pandas.compat import is_platform_little_endian from pandas import CategoricalIndex, DataFrame, Index, Interval, RangeIndex, Series import pandas._testing as tm class TestFromRecords: def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH#6140 if not is_platform_little_endian(): pytest.skip("known failure of test on non-little endian") # construction with a null in a recarray # GH#6140 expected = DataFrame({"EXPIRY": [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[ns]")] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): pytest.skip("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [("EXPIRY", "<M8[m]")] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df._to_dict_of_blocks() tuples = [] columns = [] dtypes = [] for dtype, b in blocks.items(): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in blocks.items(): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = DataFrame.from_records(tuples, columns=columns).reindex( columns=df.columns ) # created recarray and with to_records recarray (have dtype info) result2 = DataFrame.from_records(recarray, columns=columns).reindex( columns=df.columns ) result3 = DataFrame.from_records(recarray2, columns=columns).reindex( columns=df.columns ) # list of tupels (no dtype info) result4 = DataFrame.from_records(lists, columns=columns).reindex( columns=df.columns ) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, RangeIndex(8)) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index("C"), columns.index("E1")] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result["C"], df["C"]) tm.assert_series_equal(result["E1"], df["E1"].astype("float64")) # empty case result = DataFrame.from_records([], columns=["foo", "bar", "baz"]) assert len(result) == 0 tm.assert_index_equal(result.columns, Index(["foo", "bar", "baz"])) result = DataFrame.from_records([]) assert len(result) == 0 assert len(result.columns) == 0 def test_from_records_dictlike(self): # test the dict methods df = DataFrame( { "A": np.array(np.random.randn(6), dtype=np.float64), "A1": np.array(np.random.randn(6), dtype=np.float64), "B": np.array(np.arange(6), dtype=np.int64), "C": ["foo"] * 6, "D": np.array([True, False] * 3, dtype=bool), "E": np.array(np.random.randn(6), dtype=np.float32), "E1": np.array(np.random.randn(6), dtype=np.float32), "F": np.array(np.arange(6), dtype=np.int32), } ) # columns is in a different order here than the actual items iterated # from the dict blocks = df._to_dict_of_blocks() columns = [] for dtype, b in blocks.items(): columns.extend(b.columns) asdict = {x: y for x, y in df.items()} asdict2 = {x: y.values for x, y in df.items()} # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records(asdict).reindex(columns=df.columns)) results.append( DataFrame.from_records(asdict, columns=columns).reindex(columns=df.columns) ) results.append( DataFrame.from_records(asdict2, columns=columns).reindex(columns=df.columns) ) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) # should pass df1 = DataFrame.from_records(df, index=["C"]) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index="C") tm.assert_index_equal(df1.index, Index(df.C)) # should fail msg = r"Shape of passed values is \(10, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(df, index=[2]) with pytest.raises(KeyError, match=r"^2$"): DataFrame.from_records(df, index=2) def test_from_records_non_tuple(self): class Record: def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = [tuple(rec) for rec in recs] result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # GH#2633 result = DataFrame.from_records([], index="foo", columns=["foo", "bar"]) expected = Index(["bar"]) assert len(result) == 0 assert result.index.name == "foo" tm.assert_index_equal(result.columns, expected) def test_from_records_series_list_dict(self): # GH#27358 expected = DataFrame([[{"a": 1, "b": 2}, {"a": 3, "b": 4}]]).T data = Series([[{"a": 1, "b": 2}], [{"a": 3, "b": 4}]]) result = DataFrame.from_records(data) tm.assert_frame_equal(result, expected) def test_from_records_series_categorical_index(self): # GH#32805 index = CategoricalIndex( [Interval(-20, -10), Interval(-10, 0), Interval(0, 10)] ) series_of_dicts = Series([{"a": 1}, {"a": 2}, {"b": 3}], index=index) frame = DataFrame.from_records(series_of_dicts, index=index) expected = DataFrame( {"a": [1, 2, np.NaN], "b": [np.NaN, np.NaN, 3]}, index=index ) tm.assert_frame_equal(frame, expected) def test_frame_from_records_utc(self): rec = {"datum": 1.5, "begin_time": datetime(2006, 4, 27, tzinfo=pytz.utc)} # it works DataFrame.from_records([rec], index="begin_time") def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=("i4,f4,a10")) arr[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) tm.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)" with pytest.raises(ValueError, match=msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index="f1") # what to do? records = indexed_frame.to_records() assert len(records.dtype.names) == 3 records = indexed_frame.to_records(index=False) assert len(records.dtype.names) == 2 assert "index" not in records.dtype.names def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=["a", "b", "c", "d"]) assert np.isnan(df["c"][0]) def test_from_records_iterator(self): arr = np.array( [(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5.0, 5.0, 6, 6), (7.0, 7.0, 8, 8)], dtype=[ ("x", np.float64), ("u", np.float32), ("y", np.int64), ("z", np.int32), ], ) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame( { "x": np.array([1.0, 3.0], dtype=np.float64), "u": np.array([1.0, 3.0], dtype=np.float32), "y": np.array([2, 4], dtype=np.int64), "z": np.array([2, 4], dtype=np.int32), } ) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5.0, 6), (7.0, 8)] df = DataFrame.from_records(iter(arr), columns=["x", "y"], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=["x", "y"]), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" yield (i, letters[i % len(letters)], i / length) columns_names = ["Integer", "String", "Float"] columns = [ [i[j] for i in tuple_generator(10)] for j in range(len(columns_names)) ] data = {"Integer": columns[0], "String": columns[1], "Float": columns[2]} expected =
DataFrame(data, columns=columns_names)
pandas.DataFrame
''' Implementation of SimpleImputer that returns Pandas DataFrame ''' from pandas import DataFrame from sklearn.base import BaseEstimator, TransformerMixin from sklearn.impute import SimpleImputer class DataFrameSimpleImputer(BaseEstimator, TransformerMixin): def __init__(self, fit_params): self.simple_imputer = None self.fit_params = fit_params def fit(self, X, y=None): self.simple_imputer = SimpleImputer(**self.fit_params) return self def transform(self, X, y=None): data = self.simple_imputer.fit_transform(X) return
DataFrame(data, columns=X.columns.values)
pandas.DataFrame
import pandas as pd import random import numpy as np from multiprocessing import Pool import time import math import itertools from scipy.stats import binom as binom_stat, rankdata from scipy.special import binom from src.core.regression.accuracy_scores import \ hazard_ratio, \ dynamic_auc, \ logrank from src.core.utils import seconds_to_hours from .feature_pre_selector import FeaturePreSelector from .feature_selector import FeatureSelector from .preprocessor import Preprocessor from .model import Model class ExhaustiveBase( FeaturePreSelector, FeatureSelector, Preprocessor, Model, ): y_features = None def __init__( self, df, ann, n_k, output_dir, feature_pre_selector, feature_pre_selector_kwargs, feature_selector, feature_selector_kwargs, preprocessor, preprocessor_kwargs, model, model_kwargs, model_cv_ranges, model_cv_folds, scoring_functions, main_scoring_function, main_scoring_threshold, limit_feature_subsets=False, n_feature_subsets=None, shuffle_feature_subsets=True, n_processes=1, random_state=None, verbose=True, ): """Class constructor Parameters ---------- df : pandas.DataFrame A pandas DataFrame whose rows represent samples and columns represent features. ann : pandas.DataFrame DataFrame with annotation of samples. Three columns are mandatory: Class (binary labels), Dataset (dataset identifiers) and Dataset type (Training, Filtration, Validation). n_k : pandas.DataFrame DataFrame with columns n and k defining a grid for exhaustive feature selection: n is a number of selected features, k is a length of each features subset. output_dir : str Path to dir for output files feature_pre_selector : callable Function for feature pre-selection. For examples, see feature_pre_selectors.py. feature_pre_selector_kwargs : dict Dict of keyword arguments for feature pre-selector. feature_selector : callable Function for feature selection. For examples, see feature_selectors.py. feature_selector_kwargs : dict Dict of keyword arguments for feature selector. preprocessor : sklearn.preprocessing-like Class for data preprocessing, should have fit and transform methods. Any method from sklearn.preprocessing will be suitable. preprocessor_kwargs : dict Dict of keyword arguments for preprocessor initialization. model : sklearn-like Model class, should have fit and predict methods. Most of the sklearn models will be suitable. model_kwargs : dict Dict of keyword arguments for model initialization. model_cv_ranges : dict Dict defining model parameters which should be cross-validated. Keys are parameter names, values are iterables for grid search. model_cv_folds : int Number of fold for K-Folds cross-validation. limit_feature_subsets : bool If true, limit the number of processed feature subsets. n_feature_subsets : int Number of processed feature subsets. shuffle_feature_subsets : bool If true, processed feature subsets are selected randomly. max_n : int Maximal number of selected features. max_estimated_time : float Maximal estimated time of pipeline running scoring_functions : dict Dict with scoring functions which will be calculated for each model. Keys are names (arbitrary strings), values are sklearn.metrics-like callables (should accept y_true, y_pred arguments and return a score). main_scoring_function : str Key from scoring_functions dict defining the "main" scoring function which will be optimized during cross-validation and will be used for model filtering. main_scoring_threshold : float A number defining threshold for model filtering: models with score below this threshold on training/filtration sets will not be further evaluated. n_processes : int Number of processes. random_state : int Random seed (set to an arbitrary integer for reproducibility). verbose : bool If True, print running time for each pair of n, k. """ FeaturePreSelector.__init__( self, df, ann, preselector_function=feature_pre_selector, kwargs=feature_pre_selector_kwargs, ) Preprocessor.__init__( self, preprocessor_model=preprocessor, kwargs=preprocessor_kwargs, ) FeatureSelector.__init__( self, self.df, self.ann, output_dir, selector_function=feature_selector, kwargs=feature_selector_kwargs, ) Model.__init__( self, model=model, kwargs=model_kwargs, random_state=random_state, ) self.model_cv_ranges = model_cv_ranges self.model_cv_folds = model_cv_folds self.n_k = n_k self.output_dir = output_dir self.n_processes = n_processes self.random_state = random_state self.verbose = verbose self.limit_feature_subsets = limit_feature_subsets self.n_feature_subsets = n_feature_subsets self.shuffle_feature_subsets = shuffle_feature_subsets self.scoring_functions = scoring_functions self.main_scoring_function = main_scoring_function self.main_scoring_threshold = main_scoring_threshold self.datasets_ids = self.ann[['Dataset', 'Dataset type']].drop_duplicates().to_numpy() def exhaustive_run(self): """Run the pipeline for classifier construction using exhaustive feature selection. Returns ------- pandas.DataFrame DataFrame with constructed classifiers and their quality scores. """ # Iterate over n, k pairs all_result_dfs = [] all_counts = [] summary_n_k = pd.DataFrame(columns=[ 'n', 'k', 'num_training_reliable', 'num_validation_reliable', 'percentage_reliable', ]) for n, k in zip(self.n_k['n'], self.n_k['k']): df_n_k_results, _ = self.exhaustive_run_n_k(n, k) df_n_k_results['n'] = n df_n_k_results['k'] = k df_n_k_results.sort_values( by=[column for column in df_n_k_results.columns if 'Training' in column], ascending=False, inplace=True, ) all_result_dfs.append(df_n_k_results) # Save models res =
pd.concat(all_result_dfs, axis=0)
pandas.concat
# -*- coding: utf-8 -*- """ This module holds functions for processing the geometry for setting up the geometry of a ThermalNetwork based on a street geometry and a table of buildings. This file is part of project dhnx (). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location: https://github.com/oemof/DHNx This module is not fully tested yet, so use it with care. SPDX-License-Identifier: MIT """ try: import geopandas as gpd except ImportError: print("Need to install geopandas to process geometry data.") try: from shapely.geometry import LineString from shapely.geometry import MultiPoint from shapely.geometry import Point from shapely.geometry import shape from shapely.ops import cascaded_union from shapely.ops import nearest_points except ImportError: print("Need to install shapely to process geometry.") import logging import numpy as np import pandas as pd from . import geometry_operations as go def line_of_point(point, gdf_lines): """Gets index of geometry of a GeoDataFrame, a point is located next to, with a distance lower than 1e-8. Parameters ---------- point : shapely.geometry.Point gdf_lines : geopandas.GeoDataFrame Returns ------- int, float or str : Index of GeoDataFrame or Warning, if no geometry found. """ ind = None for k, l in gdf_lines.iterrows(): if l['geometry'].distance(point) < 1e-8: ind = k if ind is None: return Warning('No line found which has point on it!') return ind def point_to_array(point): """Returns the coordinates of a point as numpy.array Parameters ---------- point : shapely.geometry.Point Returns ------- numpy.array() """ return np.array([point.x, point.y]) def calc_lot_foot(line, point): """ Calculates the lot foot point. Parameters ---------- line : shapely.geometry.LineString point : shapely.geometry.Point Returns ------- shapely.geometry.Point """ s_1 = shape(line).boundary[0] s_2 = shape(line).boundary[1] g_1 = point_to_array(s_1) # end point 1 of line g_2 = point_to_array(s_2) # end point 2 of line x_1 = point_to_array(point) # calculate lotfusspunkt u = g_2 - g_1 # vector of direction n = np.array([u[1], -u[0]]) # normal vector of line x_0 = g_1 # point on line y = x_1 - (np.dot((x_1 - x_0), n) / np.dot(n, n)) * n lot_foot_point = Point(y[0], y[1]) # # alternative generation via intersection # # (=> intersections point is not exaclty on lines as well) # y = x_1 - 2*(np.dot((x_1 - x_0), n)/np.dot(n, n)) * n # lot_line = LineString([(y[0], y[1]), (x_1[0], x_1[1])]) # lot_foot_point = lot_line.intersection(line) return lot_foot_point def create_object_connections(points, lines, tol_distance=1): """Connects points to a line network. Generally, the nearest point of the next line is used as connection the point. Depending on the geometry, there are 3 options, the connection is created: - nearest point is line ending => the connection line starts from this line ending - nearest point is on the next line: a) line endings are outside the tolerance => line is split and the nearest point is used as connection point b) line endings are within the tolerance distance => the next line ending is used as connection point The tolerance distance avoids the generation of short line elements. This is for example the case if two buildings are directly opposite of the street. Using simply the nearest point method could result in very short lines. Parameters ---------- points : geopandas.GeoDataFrame Points which should be connected to the line. GeoDataFrame with Points as geometry. lines : geopandas.GeoDataFrame The line-network to which the Points should be connected. The line geometry needs to consists of simple lines based on one starting and one ending point. LineStrings which contain more than 2 points are not allowed. tol_distance : float Tolerance distance for choosing the end of the line instead of the nearest point. Returns ------- geopandas.GeoDataFrame : The newly created connection lines geopandas.GeoDataFrame : The updated lines (some lines are split. All lines should only touch at the line endings. """ # check linestrings for _, c in lines.iterrows(): if len(c['geometry'].coords) > 2: raise ValueError("The Linestrings must consists of simple lines," " with only two coordinates!") # empty geopandas dataframe for house connections conn_lines = gpd.GeoDataFrame() # iterate over all houses for index, row in points.iterrows(): house_geo = row['geometry'] # the same with the original lines all_lines = lines['geometry'] mergedlines = cascaded_union(all_lines) # new nearest point method ############ ######### n_p = nearest_points(mergedlines, house_geo)[0] # get index of line which is closest to the house line_index = line_of_point(n_p, lines) # get geometry of supply line supply_line = lines.loc[line_index, 'geometry'] # get end points of line supply_line_p0 = Point(list(supply_line.coords)[0]) supply_line_p1 = Point(list(supply_line.coords)[1]) supply_line_points = [supply_line_p0, supply_line_p1] supply_line_mulitpoints = MultiPoint(supply_line_points) if n_p in supply_line_points: # case that nearest point is a line ending logging.info( 'Connect buildings... id {}: ' 'Connected to supply line ending (nearest point)'.format(index) ) con_line = LineString([n_p, house_geo]) conn_lines = conn_lines.append({'geometry': con_line}, ignore_index=True) else: dist_to_endings = [x.distance(n_p) for x in supply_line_points] if min(dist_to_endings) >= tol_distance: # line is split, no line ending is close to the nearest point # this also means the original supply line needs to be deleted logging.info( 'Connect buildings... id {}: Supply line split'.format(index)) con_line = LineString([n_p, house_geo]) conn_lines = conn_lines.append({'geometry': con_line}, ignore_index=True) lines.drop([line_index], inplace=True) lines = lines.append( {'geometry': LineString([supply_line_p0, n_p])}, ignore_index=True ) lines = lines.append( {'geometry': LineString([n_p, supply_line_p1])}, ignore_index=True ) else: # case that one or both line endings are closer than tolerance # thus, the next line ending is chosen logging.info( 'Connect buildings... id {}: Connected to Supply line ending ' 'due to tolerance'.format(index)) conn_point = nearest_points(supply_line_mulitpoints, n_p)[0] con_line = LineString([conn_point, house_geo]) conn_lines = conn_lines.append({'geometry': con_line}, ignore_index=True) logging.info('Connection of buildings completed.') connection_lines = gpd.GeoDataFrame(conn_lines, crs=lines.crs) return connection_lines, lines def check_geometry_type(gdf, types): """ Checks, if a geodataframe has only the given geometry types in its GeoSeries. Parameters ---------- gdf : geopandas.GeoDataFrame DataFrame to be checked. types : list List of types allowed for GeoDataFrame. """ actual_types = set(gdf['geometry'].type) for type in actual_types: if type not in types: raise TypeError( "Your input geometry has the wrong type. " "Expected: {}. Got: {}".format(types, type) ) def create_points_from_polygons(gdf, method='midpoint'): """ Converts the geometry of a polygon layer to a point layer. Parameters ---------- gdf : geopandas.GeoDataFrame method : str Method to create a point from a polygon. Returns ------- geopandas.GeoDataFrame : GeoDataFrame with a point geometry. """ if gdf['geometry'].values[0].type == 'Point': return gdf if method == 'midpoint': gdf['geometry'] = gdf['geometry'].centroid return gdf raise ValueError( 'No other method than >midpoint< implemented!' ) def process_geometry(lines, consumers, producers, method='midpoint', projected_crs=4647, tol_distance=2): """ This function connects the consumers and producers to the line network, and prepares the attributes of the geopandas.GeoDataFrames for importing as dhnx.ThermalNetwork. The ids of the lines are overwritten. Parameters ---------- lines : geopandas.GeoDataFrame Potential routes for the DHS. Expected geometry Linestrings or MultilineStrings. The graph of this line network should be connected. consumers : geopandas.GeoDataFrame Location of demand/consumers. Expected geometry: Polygons or Points. producers : geopandas.GeoDataFrame Location of supply sites. Expected geometry: Polygons or Points. method : str Method for creating the point if polygons are given for the consumers and producers. multi_connections : bool Setting if a building should be connected to multiple streets. projected_crs : EPSG integer code EPSG Coordinate reference system number (eg 4647), which is used for the geometry operations. A projected crs must be used! tol_distance : float Tolerance distance at connection the points to the line network for choosing the end of the line instead of the lot. Returns ------- dict : Dictionary with 4 geopandas.GeoDataFrames: The keys of the Dict are equal to the components of the dhnx.ThermalNetwork: 'forks', 'consumers', 'producers', 'pipes'. """ # check whether the expected geometry is used for geo dataframes check_geometry_type(lines, types=['LineString', 'MultiLineString']) for gdf in [producers, consumers]: check_geometry_type(gdf, types=['Polygon', 'Point', 'MultiPolygon']) # # split multilinestrings to single lines with only 1 starting and 1 ending point lines = go.split_multilinestr_to_linestr(lines) # check and convert crs if it is not already the `projected_crs` lines = go.check_crs(lines, crs=projected_crs) for layer in [producers, consumers]: layer = go.check_crs(layer, crs=projected_crs) layer = create_points_from_polygons(layer, method=method) layer.reset_index(inplace=True, drop=True) layer.index.name = 'id' if 'id' in layer.columns: layer.drop(['id'], axis=1, inplace=True) layer['lat'] = layer['geometry'].apply(lambda x: x.y) layer['lon'] = layer['geometry'].apply(lambda x: x.x) producers['id_full'] = 'producers-' + producers.index.astype('str') producers['type'] = 'G' consumers['id_full'] = 'consumers-' + consumers.index.astype('str') consumers['type'] = 'H' # Add lines to consumers and producers lines_consumers, lines = create_object_connections(consumers, lines, tol_distance=tol_distance) lines_producers, lines = create_object_connections(producers, lines, tol_distance=tol_distance) # Weld continuous line segments together and cut loose ends lines = go.weld_segments( lines, lines_producers, lines_consumers, # debug_plotting=True, ) # add additional line identifier lines_producers['type'] = 'GL' # GL for generation line lines['type'] = 'DL' # DL for distribution line lines_consumers['type'] = 'HL' # HL for house line # generate forks point layer forks = go.create_forks(lines) # concat lines lines_all =
pd.concat([lines, lines_consumers, lines_producers], sort=False)
pandas.concat
import multiprocessing as mp import os import string import warnings import numpy as np import pandas as pd import uncertainties as un from nptdms import TdmsFile from numpy import NaN, sqrt from scipy.stats import t from tables import NoSuchNodeError from uncertainties import unumpy as unp from . import diodes from ..images import schlieren from ... import uncertainty from ...dir import d_drive from ...simulation import thermo _DIR = os.path.split(__file__)[0] _STRUCTURE_END_DATES = ( pd.Timestamp("2019-11-01"), pd.Timestamp("2020-05-05") ) _SPATIAL_VARIATIONS = pd.read_csv( os.path.join( _DIR, "../../data", "spatial_variations.csv" ) ) def _collect_schlieren_dirs( base_dir, test_date ): """ When reading in camera data from these tests, we will ignore the spatial directory since it contains no schlieren information. It will still be used, but not in this step. Directories containing a `.old` file have a different structure than newer directories, which must be accounted for. Parameters ---------- base_dir : str Base data directory, (e.g. `/d/Data/Raw/`) test_date : str ISO 8601 formatted date of test data Returns ------- list ordered list of directories containing diode output """ raw_dir = os.path.join( base_dir, test_date ) if not os.path.isdir(raw_dir): return [] contents = os.listdir(raw_dir) if ".old" in contents: raw_dir = os.path.join( base_dir, test_date, "Camera" ) contents = os.listdir(raw_dir) return sorted([ os.path.join(raw_dir, item) for item in contents if os.path.isdir(os.path.join(raw_dir, item)) and "shot" in item.lower() and os.path.exists(os.path.join(raw_dir, item, "frames")) and os.path.exists(os.path.join(raw_dir, item, "bg")) ]) class _ProcessStructure0: @classmethod def _collect_test_dirs( cls, base_dir, test_date ): """ The first step of reading in an old test directory is to determine which directories contain valid tests. Under the old DAQ system, the .vi would generate a new folder each time it was run. Only tests which successfully generate a `diodes.tdms` file can be considered completed tests. Some of these may still be failed detonations; this issue will be dealt with on joining with schlieren data, which contains information about whether or not a detonation attempt succeeded. Parameters ---------- base_dir : str Base data directory, (e.g. `/d/Data/Raw/`) test_date : str ISO 8601 formatted date of test data Returns ------- list ordered list of directories containing diode output """ raw_dir = os.path.join( base_dir, test_date, "Sensors" ) return sorted([ root for root, _, files in os.walk(raw_dir, topdown=True) if "diodes.tdms" in files ]) @classmethod def _get_cutoff_pressure( cls, df_tdms_pressure, kind="fuel", ): """ This function accepts a dataframe imported from a `pressure.tdms` file. Old test data was output in amps; this was good and I should probably have kept it that way. Old tests also logged each fill event separately. Extract the desired data, build a confidence interval, apply the calibration, and output the resulting value including uncertainty. Parameters ---------- df_tdms_pressure : pd.DataFrame Dataframe containing test-specific pressure trace kind : str Kind of cutoff pressure to get, e.g. fuel, oxidizer Returns ------- un.ufloat Float with applied uncertainty """ kind = kind.title() if kind not in {"Fuel", "Oxidizer", "Vacuum", "Diluent"}: raise ValueError("bad kind") # in these tests there is no vacuum logging. These are undiluted tests, # which means the diluent pressure is identical to the vacuum pressure. if kind == "Vacuum": kind = "Diluent" pressure = df_tdms_pressure[ "/'%s Fill'/'Manifold'" % kind ].dropna() * uncertainty.PRESSURE_CAL["slope"] + \ uncertainty.PRESSURE_CAL["intercept"] # TODO: update calculation to be like new pressure calc return unp.uarray( pressure, uncertainty.u_pressure(pressure, daq_err=False) ).mean() @classmethod def _get_partial_pressure( cls, df_tdms_pressure, kind="fuel" ): """ Fill order: vacuum -> (diluent) -> oxidizer -> fuel Parameters ---------- df_tdms_pressure : pd.DataFrame Dataframe containing test-specific pressure trace kind : str Kind of cutoff pressure to get, e.g. fuel, oxidizer Returns ------- un.ufloat Float with applied uncertainty """ p_ox = cls._get_cutoff_pressure(df_tdms_pressure, "oxidizer") if kind.lower() == "fuel": return cls._get_cutoff_pressure(df_tdms_pressure, "fuel") - p_ox elif kind.lower() == "oxidizer": return p_ox else: raise ValueError("only fuels and oxidizers in this analysis") @classmethod def _get_initial_pressure( cls, df_tdms_pressure ): """ In old data, the initial mixture pressure is the fuel cutoff pressure Parameters ---------- df_tdms_pressure : pd.DataFrame Dataframe containing test-specific pressure trace Returns ------- un.ufloat Float with applied uncertainty """ return cls._get_cutoff_pressure(df_tdms_pressure, kind="fuel") @classmethod def _get_initial_temperature( cls, df_tdms_temperature ): """ Old temperatures need to come from the tube thermocouple, which is type K, because the manifold thermocouple was jacked up at the time. Parameters ---------- df_tdms_temperature : pd.DataFrame Dataframe containing test-specific temperature trace Returns ------- un.ufloat Test-averaged initial temperature with applied uncertainty """ # TODO: update calculation to be like new pressure calc return un.ufloat( df_tdms_temperature["/'Test Readings'/'Tube'"].mean(), uncertainty.u_temperature( df_tdms_temperature["/'Test Readings'/'Tube'"], tc_type="K", collapse=True ) ) @classmethod def __call__( cls, base_dir, test_date, f_a_st=0.04201680672268907, multiprocess=False ): """ Process data from an old-style data set. Parameters ---------- base_dir : str Base data directory, (e.g. `/d/Data/Raw/`) test_date : str ISO 8601 formatted date of test data f_a_st : float Stoichiometric fuel/air ratio for the test mixture. Default value is for propane/air. multiprocess : bool Set to True to parallelize processing of a single day's tests Returns ------- List[pd.DataFrame, dict] A list in which the first item is a dataframe of the processed tube data and the second is a dictionary containing background-subtracted schlieren images """ df = pd.DataFrame( columns=["date", "shot", "sensors", "diodes", "schlieren"], ) df["sensors"] = cls._collect_test_dirs(base_dir, test_date) df["schlieren"] = _collect_schlieren_dirs(base_dir, test_date) df = df[df["schlieren"].apply(lambda x: "failed" not in x)] df["date"] = test_date df["shot"] = [ int(os.path.split(d)[1].lower().replace("shot", "").strip()) for d in df["schlieren"].values ] images = dict() if multiprocess: pool = mp.Pool() results = pool.starmap( cls._process_single_test, [[idx, row, f_a_st] for idx, row in df.iterrows()] ) pool.close() for idx, row_results in results: df.at[idx, "phi"] = row_results["phi"] df.at[idx, "u_phi"] = row_results["u_phi"] df.at[idx, "p_0"] = row_results["p_0"] df.at[idx, "u_p_0"] = row_results["u_p_0"] df.at[idx, "t_0"] = row_results["t_0"] df.at[idx, "u_t_0"] = row_results["u_t_0"] df.at[idx, "p_fuel"] = row_results["p_fuel"] df.at[idx, "u_p_fuel"] = row_results["u_p_fuel"] df.at[idx, "p_oxidizer"] = row_results["p_oxidizer"] df.at[idx, "u_p_oxidizer"] = row_results["u_p_oxidizer"] df.at[idx, "wave_speed"] = row_results["wave_speed"] df.at[idx, "u_wave_speed"] = row_results["u_wave_speed"] df.at[idx, "diodes"] = row_results["diodes"] images.update(row_results["schlieren"]) else: for idx, row in df.iterrows(): _, row_results = cls._process_single_test(idx, row, f_a_st) # output results df.at[idx, "phi"] = row_results["phi"] df.at[idx, "u_phi"] = row_results["u_phi"] df.at[idx, "p_0"] = row_results["p_0"] df.at[idx, "u_p_0"] = row_results["u_p_0"] df.at[idx, "t_0"] = row_results["t_0"] df.at[idx, "u_t_0"] = row_results["u_t_0"] df.at[idx, "p_fuel"] = row_results["p_fuel"] df.at[idx, "u_p_fuel"] = row_results["u_p_fuel"] df.at[idx, "p_oxidizer"] = row_results["p_oxidizer"] df.at[idx, "u_p_oxidizer"] = row_results["u_p_oxidizer"] df.at[idx, "wave_speed"] = row_results["wave_speed"] df.at[idx, "u_wave_speed"] = row_results["u_wave_speed"] df.at[idx, "diodes"] = row_results["diodes"] images.update(row_results["schlieren"]) return df, images @classmethod def _process_single_test( cls, idx, row, f_a_st ): """ Process a single row of test data. This has been separated into its own function to facilitate the use of multiprocessing. Parameters ---------- row : pd.Series Current row of test data f_a_st : float Stoichiometric fuel/air ratio for the test mixture. Returns ------- Tuple(Int, Dict) Calculated test data and associated uncertainty values for the current row """ # background subtraction image = { "{:s}_shot{:02d}".format( row["date"], row["shot"] ): schlieren.bg_subtract_all_frames(row["schlieren"]) } # gather pressure data df_tdms_pressure = TdmsFile( os.path.join( row["sensors"], "pressure.tdms" ) ).as_dataframe() p_init = cls._get_initial_pressure(df_tdms_pressure) p_fuel = cls._get_partial_pressure( df_tdms_pressure, kind="fuel" ) p_oxidizer = cls._get_partial_pressure( df_tdms_pressure, kind="oxidizer" ) phi = thermo.get_equivalence_ratio(p_fuel, p_oxidizer, f_a_st) # gather temperature data loc_temp_tdms = os.path.join( row["sensors"], "temperature.tdms" ) if os.path.exists(loc_temp_tdms): df_tdms_temperature = TdmsFile( os.path.join( row["sensors"], "temperature.tdms" ) ).as_dataframe() t_init = cls._get_initial_temperature(df_tdms_temperature) else: t_init = un.ufloat(NaN, NaN) # wave speed measurement diode_loc = os.path.join(row["sensors"], "diodes.tdms") wave_speed = diodes.calculate_velocity(diode_loc)[0] # output results out = dict() out["diodes"] = diode_loc out["schlieren"] = image out["phi"] = phi.nominal_value out["u_phi"] = phi.std_dev out["p_0"] = p_init.nominal_value out["u_p_0"] = p_init.std_dev out["t_0"] = t_init.nominal_value out["u_t_0"] = t_init.std_dev out["p_fuel"] = p_fuel.nominal_value out["u_p_fuel"] = p_fuel.std_dev out["p_oxidizer"] = p_oxidizer.nominal_value out["u_p_oxidizer"] = p_oxidizer.std_dev out["wave_speed"] = wave_speed.nominal_value out["u_wave_speed"] = wave_speed.std_dev return idx, out class _ProcessStructure1: @classmethod def __call__( cls, base_dir, test_date, sample_time=pd.Timedelta(seconds=70), mech="gri30.cti", diode_spacing=1.0668, multiprocess=False ): """ Process data from a day of testing using the newer directory structure Parameters ---------- base_dir : str Base data directory, (e.g. `/d/Data/Raw/`) test_date : str ISO 8601 formatted date of test data sample_time : None or pd.Timedelta Length of hold period at the end of a fill state. If None is passed, value will be read from nominal test conditions. mech : str Mechanism for cantera calculations diode_spacing : float Diode spacing, in meters multiprocess : bool Set true to parallelize data analysis Returns ------- Tuple[pd.DataFrame, Dict] Tuple containing a dataframe of test results and a dictionary of background subtracted schlieren images """ dir_data = os.path.join(base_dir, test_date) df_tests = cls._find_test_times(base_dir, test_date) n_found_tests = len(df_tests) n_shot_dirs = len([d for d in os.listdir(dir_data) if "Shot" in d]) if n_found_tests == 0: raise ValueError("No tests detected in sensor log.tdms") elif n_found_tests != n_shot_dirs: raise ValueError("Number of tests does not match number of shots") df_nominal = cls._load_nominal_conditions(dir_data) df_sensor = TdmsFile(os.path.join( dir_data, "sensor log.tdms" )).as_dataframe() df_pressure = cls._extract_sensor_data(df_sensor, "pressure") df_temperature = cls._extract_sensor_data(df_sensor, "temperature") del df_sensor df_schlieren = pd.DataFrame(columns=["shot", "schlieren"]) df_schlieren["schlieren"] = _collect_schlieren_dirs( base_dir, test_date ) df_schlieren["shot"] = df_schlieren["schlieren"] df_schlieren["shot"] = [ int(os.path.split(d)[1].lower().replace("shot", "").strip()) for d in df_schlieren["schlieren"] if "failed" not in d ] df_tests = df_tests.merge(df_schlieren, on="shot", how="left") df_diode_locs = pd.DataFrame(columns=["shot", "diodes"]) df_diode_locs["diodes"] = diodes.find_diode_data(dir_data) df_diode_locs["shot"] = [ int( os.path.split( os.path.dirname(d))[1].lower().replace( "shot", "" ).strip() ) for d in df_diode_locs["diodes"] ] df_tests = df_tests.merge(df_diode_locs, on="shot", how="left") df_state = TdmsFile(os.path.join( base_dir, test_date, "tube state.tdms" )).as_dataframe() df_state.columns = ["time", "state", "mode"] images = dict() if multiprocess: pool = mp.Pool() results = pool.starmap( cls._process_single_test, [[ idx, df_nominal, df_pressure, df_temperature, df_state, sample_time, test_time_row, mech, diode_spacing ] for idx, test_time_row in df_tests.iterrows()] ) pool.close() for idx, row_results in results: if row_results["schlieren"] is not None: images.update(row_results["schlieren"]) df_tests.at[idx, "t_0"] = row_results["t_0"] df_tests.at[idx, "u_t_0"] = row_results["u_t_0"] df_tests.at[idx, "p_0_nom"] = row_results["p_0_nom"] df_tests.at[idx, "p_0"] = row_results["p_0"] df_tests.at[idx, "u_p_0"] = row_results["u_p_0"] df_tests.at[idx, "phi_nom"] = row_results["phi_nom"] df_tests.at[idx, "phi"] = row_results["phi"] df_tests.at[idx, "u_phi"] = row_results["u_phi"] df_tests.at[idx, "fuel"] = row_results["fuel"] df_tests.at[idx, "p_fuel"] = row_results["p_fuel"] df_tests.at[idx, "u_p_fuel"] = row_results["u_p_fuel"] df_tests.at[idx, "oxidizer"] = row_results["oxidizer"] df_tests.at[idx, "p_oxidizer"] = row_results["p_oxidizer"] df_tests.at[idx, "u_p_oxidizer"] = row_results["u_p_oxidizer"] df_tests.at[idx, "diluent"] = row_results["diluent"] df_tests.at[idx, "p_diluent"] = row_results["p_diluent"] df_tests.at[idx, "u_p_diluent"] = row_results["u_p_diluent"] df_tests.at[idx, "dil_mf_nom"] = row_results["dil_mf_nom"] df_tests.at[idx, "dil_mf"] = row_results["dil_mf"] df_tests.at[idx, "u_dil_mf"] = row_results["u_dil_mf"] df_tests.at[idx, "wave_speed"] = row_results["wave_speed"] df_tests.at[idx, "u_wave_speed"] = row_results["u_wave_speed"] df_tests.at[idx, "cutoff_fuel"] = row_results["cutoff_fuel"] df_tests.at[idx, "cutoff_vacuum"] = row_results["cutoff_vacuum"] df_tests.at[idx, "cutoff_diluent"] = \ row_results["cutoff_diluent"] df_tests.at[idx, "cutoff_oxidizer"] = \ row_results["cutoff_oxidizer"] df_tests.at[idx, "u_cutoff_fuel"] = \ row_results["u_cutoff_fuel"] df_tests.at[idx, "u_cutoff_vacuum"] = \ row_results["u_cutoff_vacuum"] df_tests.at[idx, "u_cutoff_diluent"] = \ row_results["u_cutoff_diluent"] df_tests.at[idx, "u_cutoff_oxidizer"] = \ row_results["u_cutoff_oxidizer"] else: for idx, test_time_row in df_tests.iterrows(): # noinspection PyTypeChecker _, row_results = cls._process_single_test( idx, df_nominal, df_pressure, df_temperature, df_state, sample_time, test_time_row, mech, diode_spacing ) # output results if row_results["schlieren"] is not None: images.update(row_results["schlieren"]) df_tests.at[idx, "t_0"] = row_results["t_0"] df_tests.at[idx, "u_t_0"] = row_results["u_t_0"] df_tests.at[idx, "p_0_nom"] = row_results["p_0_nom"] df_tests.at[idx, "p_0"] = row_results["p_0"] df_tests.at[idx, "u_p_0"] = row_results["u_p_0"] df_tests.at[idx, "phi_nom"] = row_results["phi_nom"] df_tests.at[idx, "phi"] = row_results["phi"] df_tests.at[idx, "u_phi"] = row_results["u_phi"] df_tests.at[idx, "fuel"] = row_results["fuel"] df_tests.at[idx, "p_fuel"] = row_results["p_fuel"] df_tests.at[idx, "u_p_fuel"] = row_results["u_p_fuel"] df_tests.at[idx, "oxidizer"] = row_results["oxidizer"] df_tests.at[idx, "p_oxidizer"] = row_results["p_oxidizer"] df_tests.at[idx, "u_p_oxidizer"] = row_results["u_p_oxidizer"] df_tests.at[idx, "diluent"] = row_results["diluent"] df_tests.at[idx, "p_diluent"] = row_results["p_diluent"] df_tests.at[idx, "u_p_diluent"] = row_results["u_p_diluent"] df_tests.at[idx, "dil_mf_nom"] = row_results["dil_mf_nom"] df_tests.at[idx, "dil_mf"] = row_results["dil_mf"] df_tests.at[idx, "u_dil_mf"] = row_results["u_dil_mf"] df_tests.at[idx, "wave_speed"] = row_results["wave_speed"] df_tests.at[idx, "u_wave_speed"] = row_results["u_wave_speed"] df_tests.at[idx, "cutoff_fuel"] = row_results["cutoff_fuel"] df_tests.at[idx, "cutoff_vacuum"] = row_results["cutoff_vacuum"] df_tests.at[idx, "cutoff_diluent"] = \ row_results["cutoff_diluent"] df_tests.at[idx, "cutoff_oxidizer"] = \ row_results["cutoff_oxidizer"] df_tests.at[idx, "u_cutoff_fuel"] = \ row_results["u_cutoff_fuel"] df_tests.at[idx, "u_cutoff_vacuum"] = \ row_results["u_cutoff_vacuum"] df_tests.at[idx, "u_cutoff_diluent"] = \ row_results["u_cutoff_diluent"] df_tests.at[idx, "u_cutoff_oxidizer"] = \ row_results["u_cutoff_oxidizer"] df_tests["date"] = test_date # keep diluent dtype consistent as object. Using notna because pd.where # works backwards compared with np.where and also my brain. df_tests["diluent"].where( df_tests["diluent"].notna(), "None", inplace=True ) return df_tests, images @classmethod def _process_single_test( cls, idx, df_nominal, df_pressure, df_temperature, df_state, sample_time, test_time_row, mech="gri30.cti", diode_spacing=1.0668 ): """ Parameters ---------- idx : int Index of the test to be analyzed df_nominal : pd.DataFrame Dataframe of nominal test conditions, untrimmed df_pressure : pd.DataFrame Dataframe of full-day test pressures df_temperature : pd.DataFrame Dataframe of full-day test temperatures df_state : pd.DataFrame Dataframe of tube state changes, untrimmed sample_time : None or pd.Timedelta Length of hold period at the end of a fill state. If None is passed, value will be read from nominal test conditions. test_time_row : pd.Series Row of current test in the main test dataframe mech : str Mechanism for cantera calculations diode_spacing : float Diode spacing, in meters Returns ------- Tuple[Int, Dict] A tuple containing the index of the analyzed test and a dictionary of the test results """ out = dict() # collect nominal test conditions df_test_nominal = cls._get_test_nominal(df_nominal, test_time_row) fuel = df_test_nominal["fuel"] oxidizer = df_test_nominal["oxidizer"] if oxidizer.lower() == "air": oxidizer_species = "O2:1 N2:3.76" else: oxidizer_species = oxidizer diluent = df_test_nominal["diluent"] dil_mf_nom = df_test_nominal["diluent_mol_frac_nominal"] phi_nom = df_test_nominal["phi_nominal"] p_0_nom = df_test_nominal["p_0_nominal"] if sample_time is None: if hasattr(df_test_nominal, "sample_time"): sample_time = pd.Timedelta( seconds=df_test_nominal["sample_time"] ) else: sample_time = pd.Timedelta(seconds=70) # collect current test temperature with uncertainty # TODO: move to separate function and update calculation to be like # new pressure calc temps = cls._collect_current_test_df( df_temperature, test_time_row )["temperature"].values temps = unp.uarray( temps, uncertainty.u_temperature(temps) ) t_0 = temps.mean() # collect current test pressures df_current_test_pressure = cls._collect_current_test_df( df_pressure, test_time_row ) df_state_cutoff_times = cls._get_pressure_cutoff_times( df_state, test_time_row, sample_time ) # extract cutoff pressures p_cutoff_vac = cls._get_cutoff_pressure( "vacuum", df_current_test_pressure, df_state_cutoff_times ) p_cutoff_fuel = cls._get_cutoff_pressure( "fuel", df_current_test_pressure, df_state_cutoff_times ) p_cutoff_oxidizer = cls._get_cutoff_pressure( "oxidizer", df_current_test_pressure, df_state_cutoff_times ) p_cutoff_diluent = cls._get_cutoff_pressure( "diluent", df_current_test_pressure, df_state_cutoff_times ) # calculate partial pressures p_fuel = p_cutoff_fuel - p_cutoff_vac p_diluent = p_cutoff_diluent - p_cutoff_fuel # TODO: since current detonations use air as an oxidizer, add vacuum # cutoff pressure to oxidizer partial pressure. Change this if non-air # oxidizers are used # using minimum in case of fill order change p_oxidizer = p_cutoff_oxidizer - np.nanmin(( p_cutoff_diluent, p_cutoff_fuel )) + p_cutoff_vac # oxidizer is the last fill state, which means that p_0 == p_oxidizer p_0 = cls._get_cutoff_pressure( "oxidizer", df_current_test_pressure, df_state_cutoff_times ) # calculate equivalence ratio and diluent mole fraction phi = thermo.get_equivalence_ratio( p_fuel, p_oxidizer, thermo.get_f_a_st( fuel, oxidizer_species, mech ) ) dil_mf = thermo.get_dil_mol_frac(p_fuel, p_oxidizer, p_diluent) # get wave speed wave_speed = diodes.calculate_velocity( test_time_row["diodes"], diode_spacing=diode_spacing )[0] # background subtract schlieren if not pd.isnull(test_time_row["schlieren"]): # do bg subtraction date = os.path.split( os.path.dirname( test_time_row["schlieren"] ) )[1] out["schlieren"] = { "{:s}_shot{:02d}".format( date, int(test_time_row["shot"]) ): schlieren.bg_subtract_all_frames( test_time_row["schlieren"]) } else: out["schlieren"] = None out["t_0"] = t_0.nominal_value out["u_t_0"] = t_0.std_dev out["p_0_nom"] = p_0_nom out["p_0"] = p_0.nominal_value out["u_p_0"] = p_0.std_dev out["phi_nom"] = phi_nom out["phi"] = phi.nominal_value out["u_phi"] = phi.std_dev out["fuel"] = fuel out["p_fuel"] = p_fuel.nominal_value out["u_p_fuel"] = p_fuel.std_dev out["oxidizer"] = oxidizer out["p_oxidizer"] = p_oxidizer.nominal_value out["u_p_oxidizer"] = p_oxidizer.std_dev out["diluent"] = diluent out["p_diluent"] = p_diluent.nominal_value out["u_p_diluent"] = p_diluent.std_dev out["dil_mf_nom"] = dil_mf_nom out["dil_mf"] = dil_mf.nominal_value out["u_dil_mf"] = dil_mf.std_dev out["wave_speed"] = wave_speed.nominal_value out["u_wave_speed"] = wave_speed.std_dev out["cutoff_fuel"] = p_cutoff_fuel.nominal_value out["cutoff_vacuum"] = p_cutoff_vac.nominal_value out["cutoff_diluent"] = p_cutoff_oxidizer.nominal_value out["cutoff_oxidizer"] = p_cutoff_diluent.nominal_value out["u_cutoff_fuel"] = p_cutoff_fuel.std_dev out["u_cutoff_vacuum"] = p_cutoff_vac.std_dev out["u_cutoff_diluent"] = p_cutoff_oxidizer.std_dev out["u_cutoff_oxidizer"] = p_cutoff_diluent.std_dev return idx, out @staticmethod def _load_nominal_conditions(dir_data): """ Loads nominal test conditions from disk Parameters ---------- dir_data : str Directory containing a test_conditions.csv file Returns ------- pd.DataFrame Dataframe of nominal test conditions """ df_conditions = pd.read_csv( os.path.join( dir_data, "test_conditions.csv" ) ) df_conditions["datetime"] = pd.to_datetime( df_conditions["datetime"], utc=False ) # drop unnecessary information df_conditions = df_conditions[ [k for k in df_conditions.keys() if k not in {"p_dil", "p_ox", "p_f"}] ] old_cols = [ "datetime", "diluent_mol_frac", "equivalence", "init_pressure" ] new_cols = [ "time", "diluent_mol_frac_nominal", "phi_nominal", "p_0_nominal" ] df_conditions.rename( columns={o: n for o, n in zip(old_cols, new_cols)}, inplace=True ) df_conditions["p_0_nominal"] *= 101325 # p_0 recorded in atm cus im dum return df_conditions @staticmethod def _get_test_nominal( df_nominal, test_time_row ): """ Collects nominal test conditions for a given test from a dataframe of nominal test conditions Parameters ---------- df_nominal : pd.DataFrame Nominal test condition dataframe -- see _load_nominal_conditions test_time_row : pd.Series Row of current test in the main test dataframe Returns ------- pd.Series Nominal test conditions for a particular test """ # subtract one because n_true is on (1, len) while idx is on (0, len-1) # noinspection PyUnresolvedReferences # cumsum is on pd.Series you fool best_idx = (df_nominal["time"] < test_time_row[ "end"]).cumsum().max() - 1 return df_nominal.iloc[best_idx] @staticmethod def _extract_sensor_data( df_sensor, which="pressure", dropna=True ): """ Extracts pressure or temperature data from full sensor dataframe. Dropna option is included due to NaNs populated by pandas/nptdms, which are caused by temperature and pressure traces having different lengths. Parameters ---------- df_sensor : pd.DataFrame Dataframe of full tube tdms output which : str `pressure` or `temperature` dropna : bool Whether to drop NaN values from the output dataframe Returns ------- pd.DataFrame Desired trace chosen by `which` """ if not {"temperature", "pressure"}.intersection({which}): raise ValueError("which must be temperature or pressure") df_sens_out = df_sensor[[ "/'%s'/'time'" % which, "/'%s'/'manifold'" % which ]].dropna() df_sens_out.columns = ["time", which] if dropna: df_sens_out.dropna(inplace=True) return df_sens_out @staticmethod def _find_test_times( base_dir, test_date ): """ Locates start and end times of tests in a larger dataframe containing all tube data Parameters ---------- base_dir : str Base data directory, (e.g. `/d/Data/Raw/`) test_date : str ISO 8601 formatted date of test data Returns ------- pd.DataFrame Dataframe containing start and end times of each test """ # end times # The tube will only automatically go `Closed -> Vent` at the end of # a completed test cycle loc_state = os.path.join(base_dir, test_date, "tube state.tdms") df_state = TdmsFile(loc_state).as_dataframe() df_state.columns = ["time", "state", "mode"] df_test_times = pd.DataFrame(columns=["shot", "start", "end"]) df_test_times["end"] = df_state[ (df_state["state"].shift(1) == "Tube Closed") & (df_state["state"] == "Tube Vent") & (df_state["mode"] == "auto") ]["time"] df_test_times.reset_index(drop=True, inplace=True) df_test_times["shot"] = df_test_times.index.values # start times # A test will be considered to have started at the last automatic mix # section purge preceding its end time. for i, time in enumerate(df_test_times["end"].values): df_test_times.at[i, "start"] = df_state[ (df_state["time"].values < time) & (df_state["state"] == "Mix Section Purge") & (df_state["mode"] == "auto") ].iloc[-1].time df_test_times["start"] = pd.to_datetime(df_test_times["start"]) return df_test_times @staticmethod def _mask_df_by_row_time( df_in, test_row, include_ends=True ): """ Creates a mask of a dataframe with a `time` column from a series object containing `start` and `end` time stamps. Parameters ---------- df_in : pd.DataFrame Dataframe containing a `time` column test_row : pd.Series Series containing `start` and `end` time stamp entries include_ends : bool True to include end points, false to exclude them Returns ------- pd.Series Boolean series; True where time is within the desired range and False where it isn't. """ start_time = test_row["start"] end_time = test_row["end"] if isinstance(start_time, pd.Series): start_time = start_time.values[0] end_time = end_time.values[0] if include_ends: return ( (df_in["time"] >= start_time) & (df_in["time"] <= end_time) ) else: return ( (df_in["time"] > start_time) & (df_in["time"] < end_time) ) @classmethod def _get_pressure_cutoff_times( cls, df_state, test_time_row, sample_time ): """ Locates start and end times of tube fill events Parameters ---------- df_state : pd.DataFrame Dataframe containing tube state changes test_time_row : pd.Series Row of current test in the main test dataframe sample_time : pd.Timedelta Length of hold period at the end of a fill state Returns ------- pd.DataFrame Dataframe containing start and end times of each portion of the tube fill sequence """ # noinspection PyUnresolvedReferences # lol it's a pd.Series of booleans you fool state_mask = cls._mask_df_by_row_time( df_state, test_time_row, include_ends=False ).values df_state_row = pd.DataFrame( data={ "state": [ "vacuum", "fuel", "diluent", "oxidizer" ], "end": [ df_state[ state_mask & (df_state["state"] == "Fuel Fill") ]["time"].min(), df_state[ state_mask & (df_state["state"] == "Diluent Fill") ]["time"].min(), df_state[ state_mask & (df_state["state"] == "Oxidizer Fill") ]["time"].min(), df_state[ state_mask & (df_state["state"] == "Mixing") ]["time"].min(), ] } ) df_state_row["start"] = df_state_row["end"] - sample_time return df_state_row @classmethod def _get_cutoff_pressure( cls, state, df_current_test_pressure, df_state_cutoff_times ): """ Gets the cutoff pressure for a particular tube fill state Parameters ---------- state : str One of the main tube fill states: vacuum, fuel, diluent, oxidizer df_current_test_pressure : pd.DataFrame Dataframe containing current test pressure trace df_state_cutoff_times : pd.DataFrame Dataframe of state cutoff times -- see _get_pressure_cutoff_times Returns ------- un.ufloat Mean pressure value with uncertainty estimate """ press = cls._collect_current_test_df( df_current_test_pressure, df_state_cutoff_times[df_state_cutoff_times["state"] == state] )["pressure"].values # calculate sample uncertainty num_samples = len(press) sem = press.std() / sqrt(num_samples) u_sample = un.ufloat( 0, sem * t.ppf(0.975, num_samples - 1), tag="sample" ) press = unp.uarray( press, uncertainty.u_pressure(press, daq_err=False) ) press = press.mean() + u_sample return press @classmethod def _collect_current_test_df( cls, df_to_slice, test_time_row ): """ Slices a temperature or pressure dataframe using _mask_by_row_time Parameters ---------- df_to_slice : pd.DataFrame Dataframe with a `time` column test_time_row : pd.Series Series containing `start` and `end` timestamps Returns ------- pd.DataFrame Sliced portion of input dataframe """ return df_to_slice[cls._mask_df_by_row_time(df_to_slice, test_time_row)] class _ProcessStructure2: # TODO: add docstrings @staticmethod def _collect_shot_directories( dir_raw, date ): """ Find all `Shot XX` directories within a single day's raw data directory Parameters ---------- dir_raw : str directory for daily raw data date : str ISO-8601 formatted date string (YYYY-MM-DD) Returns ------- list """ dir_search = os.path.join(dir_raw, date) return sorted( os.path.join(dir_search, d) for d in os.listdir(dir_search) if "shot" in d.lower() ) @staticmethod def _get_shot_no_from_dir( dir_shot ): """ Extract shot number from shot directory Parameters ---------- dir_shot : str directory containing shot data Returns ------- int """ return int("".join( (i for i in os.path.split(dir_shot)[1] if i in string.digits) )) @staticmethod def _population_uncertainty( data ): """ Calculate a 95% confidence interval on measured data. Returns as a ufloat with a nominal value of 0 for easy addition with instrumentation uncertainty. Parameters ---------- data : np.array array of data points Returns ------- un.ufloat """ num_samples = len(data) if num_samples > 0: sem = np.std(unp.nominal_values(data)) / sqrt(num_samples) return un.ufloat( 0, sem * t.ppf(0.975, num_samples - 1), tag="sample" ) else: return un.ufloat(np.NaN, np.NaN) @classmethod def _get_fill_cutoffs( cls, fill_tdms ): """ Extracts fill cutoff pressures from fill.tdms Parameters ---------- fill_tdms : TdmsFile TDMS file of shot fill data Returns ------- dict dictionary with keys: * vacuum * fuel * diluent * oxidizer """ cutoffs = dict( vacuum=un.ufloat(np.NaN, np.NaN), fuel=un.ufloat(np.NaN, np.NaN), diluent=un.ufloat(np.NaN, np.NaN), oxidizer=un.ufloat(np.NaN, np.NaN) ) for cutoff in cutoffs.keys(): press = fill_tdms.channel_data(cutoff, "pressure") if len(press) == 0: if cutoff == "diluent": pass else: raise ValueError("Empty cutoff pressure for %s" % cutoff) else: press = unp.uarray( press, uncertainty.u_pressure(press, daq_err=False) ) cutoffs[cutoff] = press.mean() + \ cls._population_uncertainty(press) return cutoffs @staticmethod def _get_diluent_mol_frac( partials ): """ Calculate diluent mole fraction from component partial pressures Parameters ---------- partials : dict dictionary of partial pressures (fuel, oxidizer, diluent) Returns ------- un.ufloat """ if np.isnan(partials["diluent"].nominal_value): # undiluted mixture return un.ufloat(0, 0) else: return partials["diluent"] / sum(partials.values()) @classmethod def _read_fill_tdms( cls, dir_shot, oxidizer_is_air ): """ Read in partial pressures, fill cutoff pressures, initial conditions, and diluent mass fraction from fill.tdms Parameters ---------- dir_shot : str shot data directory oxidizer_is_air : bool If oxidizer is air, vacuum is lumped in with oxidizer Returns ------- dict dictionary with keys: * partials * cutoffs * initial * dil_mf """ fill_tdms = TdmsFile(os.path.join(dir_shot, "fill.tdms")) initial = cls._get_initial_conditions(fill_tdms) cutoffs = cls._get_fill_cutoffs(fill_tdms) partials = cls._get_partials_from_cutoffs(cutoffs, oxidizer_is_air) dil_mf = cls._get_diluent_mol_frac(partials) return dict( partials=partials, cutoffs=cutoffs, initial=initial, dil_mf=dil_mf ) @classmethod def _get_initial_conditions( cls, fill_tdms ): """ Collects initial conditions from fill.tdms Parameters ---------- fill_tdms : TdmsFile TDMS file with fill data Returns ------- dict dictionary with the keys: * pressure * temperature """ pressure = fill_tdms.channel_data("oxidizer", "pressure") u_pop_pressure = cls._population_uncertainty(pressure) pressure = unp.uarray( pressure, uncertainty.u_pressure( pressure, daq_err=False ) ) temperature = fill_tdms.channel_data("oxidizer", "temperature") u_pop_temperature = cls._population_uncertainty(temperature) temperature = unp.uarray( temperature, uncertainty.u_pressure( temperature, daq_err=False ) ) initial = dict( pressure=np.mean(pressure) + u_pop_pressure, temperature=np.mean(temperature) + u_pop_temperature, ) return initial @staticmethod def _get_partials_from_cutoffs( cutoffs, oxidizer_is_air ): """ Calculates component partial pressures from fill cutoff pressures Parameters ---------- cutoffs : dict dictionary of cutoff pressures (output of _get_fill_cutoffs) oxidizer_is_air : bool If oxidizer is air, vacuum is lumped in with oxidizer Returns ------- dict dictionary with keys: * fuel * oxidizer * diluent """ partials = dict() partials["fuel"] = cutoffs["fuel"] - cutoffs["vacuum"] # propagate nan +/- nan for undiluted mixtures if np.isnan(cutoffs["diluent"].std_dev): partials["diluent"] = cutoffs["diluent"] else: partials["diluent"] = cutoffs["diluent"] - cutoffs["fuel"] # using nanmax in case fill order changes again in the future partials["oxidizer"] = cutoffs["oxidizer"] - np.nanmax(( cutoffs["fuel"], cutoffs["diluent"] )) if oxidizer_is_air: partials["oxidizer"] += cutoffs["vacuum"] return partials @staticmethod def _check_for_schlieren( dir_shot ): """ Returns shot directory if schlieren data was collected, and np.NaN if not. Parameters ---------- dir_shot : str shot data directory Returns ------- str or np.NaN """ pth_frames = os.path.join(dir_shot, "frames") pth_bg = os.path.join(dir_shot, "bg") if os.path.exists(pth_frames) and os.path.exists(pth_bg): # directories exist. make sure they have files in them. num_frames = len([f for f in os.listdir(pth_frames) if f.lower()[-4:] == ".tif"]) num_bg = len([f for f in os.listdir(pth_bg) if f.lower()[-4:] == ".tif"]) if num_frames > 0 and num_bg == 101: # everything is awesome return dir_shot return np.NaN @staticmethod def _check_for_diodes( dir_shot ): """ Returns path to diode file if it exists and is not empty, otherwise returns np.NaN Parameters ---------- dir_shot : str shot data directory Returns ------- str or np.NaN """ # TODO: update this with the proper diode file size once known diode_path = os.path.join(dir_shot, "diodes.tdms") if os.path.exists(diode_path): if os.path.getsize(diode_path) > 4096: # diode tdms exists and is at least larger than empty # (empty is 4096 bytes) return diode_path return np.NaN @staticmethod def _get_nominal_conditions( dir_shot ): """ Reads in nominal conditions from conditions.csv, which should end up as a dataframe with only one row. Parameters ---------- dir_shot : str shot data directory Returns ------- pd.DataFrame """ pth_nominal = os.path.join(dir_shot, "conditions.csv") if os.path.exists(pth_nominal): return pd.read_csv(pth_nominal).iloc[0] else: raise FileExistsError("%s not found" % pth_nominal) @staticmethod def _process_schlieren( dir_shot, shot_no, date ): """ Background subtract all schlieren frames for a given shot Parameters ---------- dir_shot : str shot data directory shot_no : int shot number date : str shot date Returns ------- dict dictionary with keys of the form: "/schlieren/dYYYY-MM-DD/shotXX/frame_XX """ processed = schlieren.bg_subtract_all_frames(dir_shot) return { "/schlieren/d{:s}/shot{:02d}/frame_{:02d}".format( date.replace("-", "_"), shot_no, i ): pd.DataFrame(frame) for i, frame in enumerate(processed) } @classmethod def process_single_test( cls, date, dir_shot, shot_no, mech, diode_spacing, ): """ Process data from a single shot Parameters ---------- date : str shot date dir_shot : str shot data directory shot_no : int shot number mech : str mechanism for cantera calculations diode_spacing : float distance between photodiodes, in meters Returns ------- tuple (shot no., results dataframe, schlieren dictionary) """ results = pd.Series( index=( "shot", "start", "end", "schlieren", "diodes", "t_0", "u_t_0", "p_0_nom", "p_0", "u_p_0", "phi_nom", "phi", "u_phi", "fuel", "p_fuel", "u_p_fuel", "oxidizer", "p_oxidizer", "u_p_oxidizer", "diluent", "p_diluent", "u_p_diluent", "dil_mf_nom", "dil_mf", "u_dil_mf", "wave_speed", "u_wave_speed", "cutoff_fuel", "cutoff_vacuum", "cutoff_diluent", "cutoff_oxidizer", "u_cutoff_fuel", "u_cutoff_vacuum", "u_cutoff_diluent", "u_cutoff_oxidizer", "date", ), dtype="object" ) results["date"] = date results["shot"] = shot_no # check for schlieren and diode files # these are paths if they exist and NaN if they don't in order to # conform to convention that arose during early data management. # I don't like it, but that's how it is now. results["schlieren"] = cls._check_for_schlieren(dir_shot) results["diodes"] = cls._check_for_diodes(dir_shot) # background subtract schlieren if not pd.isnull(results["schlieren"]): schlieren_out = cls._process_schlieren( results["schlieren"], results["shot"], date ) else: schlieren_out = dict() # nominal conditions # from conditions.csv nominal = cls._get_nominal_conditions(dir_shot) for key in ("start", "end"): nominal[key] = pd.to_datetime(nominal[key]) for key in ("p_0_nom", "phi_nom", "dil_mf_nom"): # using float() instead of astype(float) because this should be a # series, therefore nominal[key] returns a value rather than an # array of values nominal[key] = float(nominal[key]) nominal["end"] = pd.to_datetime(nominal["end"]) for key in ("start", "end", "p_0_nom", "phi_nom", "fuel", "oxidizer", "dil_mf_nom"): results[key] = nominal[key] if pd.isna(nominal["diluent"]): results["diluent"] = "None" else: results["diluent"] = nominal["diluent"] # wave speed # from diodes.tdms if pd.isna(results["diodes"]): # this would happen anyway, but explicit is better than implicit results["wave_speed"] = np.NaN results["u_wave_speed"] = np.NaN else: wave_speed = diodes.calculate_velocity( results["diodes"], diode_spacing )[0] results["wave_speed"] = wave_speed.nominal_value results["u_wave_speed"] = wave_speed.std_dev # measured initial conditions # from fill.tdms oxidizer_is_air = results["oxidizer"].lower() == "air" fill_info = cls._read_fill_tdms(dir_shot, oxidizer_is_air) initial = fill_info["initial"] results["p_0"] = initial["pressure"].nominal_value results["u_p_0"] = initial["pressure"].std_dev results["t_0"] = initial["temperature"].nominal_value results["u_t_0"] = initial["temperature"].std_dev # measured cutoff pressures # from fill.tdms cutoffs = fill_info["cutoffs"] results["cutoff_fuel"] = cutoffs["fuel"].nominal_value results["u_cutoff_fuel"] = cutoffs["fuel"].std_dev results["cutoff_diluent"] = cutoffs["diluent"].nominal_value results["u_cutoff_diluent"] = cutoffs["diluent"].std_dev results["cutoff_oxidizer"] = cutoffs["oxidizer"].nominal_value results["u_cutoff_oxidizer"] = cutoffs["oxidizer"].std_dev results["cutoff_vacuum"] = cutoffs["vacuum"].nominal_value results["u_cutoff_vacuum"] = cutoffs["vacuum"].std_dev # measured partial pressures and dilution # from fill.tdms partials = fill_info["partials"] results["p_fuel"] = partials["fuel"].nominal_value results["u_p_fuel"] = partials["fuel"].std_dev results["p_diluent"] = partials["diluent"].nominal_value results["u_p_diluent"] = partials["diluent"].std_dev results["p_oxidizer"] = partials["oxidizer"].nominal_value results["u_p_oxidizer"] = partials["oxidizer"].std_dev results["dil_mf"] = fill_info["dil_mf"].nominal_value results["u_dil_mf"] = fill_info["dil_mf"].std_dev # equivalence ratio # from partials (fill.tdms) and nominal f/ox (conditions.csv) phi = thermo.get_equivalence_ratio( partials["fuel"], partials["oxidizer"], thermo.get_f_a_st( nominal["fuel"], nominal["oxidizer"], mech ) ) results["phi"] = phi.nominal_value results["u_phi"] = phi.std_dev return shot_no, results.to_frame().T, schlieren_out @classmethod def process_all_tests( cls, date, dir_raw, mech, diode_spacing, multiprocessing ): """ Process all tests on a given day Parameters ---------- date : str test date dir_raw : str raw data directory for given day mech : str mechanism for cantera calculations diode_spacing : float diode spacing in meters multiprocessing : bool whether or not to use multiprocessing to speed up calculations Returns ------- tuple (processed dataframe, schlieren dictionary) """ shot_dirs = cls._collect_shot_directories(dir_raw, date) shot_nums = [cls._get_shot_no_from_dir(d) for d in shot_dirs] df_out = pd.DataFrame() schlieren_out = dict() if multiprocessing: pool = mp.Pool() results = sorted(pool.starmap( cls.process_single_test, [(date, d, sn, mech, diode_spacing) for d, sn in zip(shot_dirs, shot_nums)] )) pool.close() for (_, df_shot, shot_schlieren) in results: df_out = pd.concat((df_out, df_shot), ignore_index=True) schlieren_out.update(shot_schlieren) else: for sn, d in zip(shot_nums, shot_dirs): _, df_shot, shot_schlieren = cls.process_single_test( date, d, sn, mech, diode_spacing ) df_out = pd.concat((df_out, df_shot), ignore_index=True) schlieren_out.update(shot_schlieren) df_out = to_df_dtyped(df_out) return df_out, schlieren_out def store_processed_schlieren( day, img, img_key, frame_no, overwrite, store ): current_frame_loc = "schlieren/{:s}/{:s}/frame_{:02d}".format( day, img_key[-6:], frame_no ) if not overwrite and "/" + current_frame_loc in store.keys(): w_str = "Ignoring {:s}.".format( current_frame_loc ) warnings.warn(w_str) pass else: store.put( current_frame_loc, pd.DataFrame(img) ) def row_dateshot_string(df_row): return "_".join(df_row[["date", "shot"]].astype(str)) def to_df_dtyped(df_or_series): """ Enforces column dtypes so the HDFStore is happy. Everything happens in place, but the dataframe is returned anyway. Parameters ---------- df_or_series : pd.DataFrame or pd.Series dataframe or series of processed tube data Returns ------- pd.DataFrame """ out = df_or_series.copy() if isinstance(out, pd.Series): out = out.to_frame().T elif not isinstance(out, pd.DataFrame): raise TypeError("argument must be a dataframe or series") int_keys = ( "shot", ) time_keys = ( "start", "end", ) float_keys = ( "t_0", "u_t_0", "p_0_nom", "p_0", "u_p_0", "phi_nom", "phi", "u_phi", "p_fuel", "u_p_fuel", "p_oxidizer", "u_p_oxidizer", "p_diluent", "u_p_diluent", "dil_mf_nom", "dil_mf", "u_dil_mf", "wave_speed", "u_wave_speed", "cutoff_fuel", "cutoff_vacuum", "cutoff_diluent", "cutoff_oxidizer", "u_cutoff_fuel", "u_cutoff_vacuum", "u_cutoff_diluent", "u_cutoff_oxidizer", ) for k in int_keys: out[k] = out[k].astype(int) for k in time_keys: out[k] = pd.to_datetime(out[k]) for k in float_keys: out[k] = out[k].astype(float) return out def store_processed_test( test_row, existing_tests, overwrite, store ): current_test = row_dateshot_string(test_row) if current_test in existing_tests: if overwrite: mask = existing_tests == current_test store["data"][mask] = test_row.values else: w_str = "Ignoring {:s} shot {:d}.".format( test_row["date"], test_row["shot"] ) warnings.warn(w_str) pass else: store.append( "data", to_df_dtyped(test_row), min_itemsize={ "schlieren": 50, "diodes": 50 } ) def get_existing_tests( store ): try: existing_tests = store["data"].apply( row_dateshot_string, axis=1 ).values except KeyError or NoSuchNodeError: existing_tests = "" return existing_tests def process_multiple_days( dates_to_process, loc_processed_h5=os.path.join( d_drive, "Data", "Processed", "tube_data.h5" ), raw_base_dir=os.path.join( d_drive, "Data", "Raw" ), multiprocess=True, overwrite=False ): """ Process multiple days worth of tube data Parameters ---------- dates_to_process : List[Str] or str List of dates to post process as YYYY-MM-DD loc_processed_h5 : str Location of processed data HDF5 raw_base_dir : str Base directory where raw data directories are located. You shouldn't need to change this. multiprocess : bool Whether to use multiprocessing for each day to speed things up overwrite : bool Whether or not to overwrite existing processed data in the processed data HDF5 database """ if hasattr(dates_to_process, "lower"): # it's a string. make it a list. dates_to_process = [dates_to_process] with pd.HDFStore( os.path.join( _DIR, "../../data", "tube_data_template.h5" ), "r" ) as store: df_out = store["data"] for day in dates_to_process: df_day, day_schlieren = process_by_date( day, raw_base_dir, multiprocess ) # force df_day to match desired structure df_day = pd.concat((df_out, df_day), sort=False, ignore_index=True) day = "d" + day.replace("-", "_") with
pd.HDFStore(loc_processed_h5, "a")
pandas.HDFStore
import textwrap import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd from .utils import maybe_save_fig, shifted_color_map def product_heatmap(*a, **kws): return feature_loading_heatmap( *a, original_features_axis_label='product name', **kws) def feature_loading_heatmap( loadings, feature_labels, font_size=16, tick_font_size=4, figsize=(50, 10), major_tick_label_size=6, minor_tick_label_size=0, cmap=mpl.cm.PuOr_r, shift_color_map=True, save_fig=None, original_features_axis_label='original features'): """Plot the loadings on features as a heatmap. Parameters ---------- loadings : array of shape [number of loadings on features, number of features] The vectors of loadings on features, stacked horizontally. For example, loadings could be PCA().components_. feature_labels : list of strings of length equal to the number of products The names of the features font_size, tick_font_size, : int, optional, default: 16 `font_size` is the font size of the labels of the axes and color bar. The others are sizes of ticks. major_tick_label_size, minor_tick_label_size : int, optional, default 4, 6 Sizes of the ticks cmap : matplotlib color map shift_color_map : bool, default: True Whether to shift the colormap `cmap` to center it at zero. save_fig : string or None, optional, default: None If not None, then save the figure to the path specified by `save_fig` """ fig, ax = plt.subplots(figsize=figsize) vmin = np.min(loadings) vmax = np.max(loadings) if shift_color_map: midpoint = 1 - vmax / (vmax + np.abs(vmin)) cmap = shifted_color_map(cmap, midpoint=midpoint) axim = ax.matshow(loadings, cmap=cmap, aspect=10, vmin=vmin, vmax=vmax) ax.set_xlabel(original_features_axis_label, size=font_size) ax.set_ylabel('component', size=font_size) ax.tick_params(axis='both', which='major', labelsize=major_tick_label_size) ax.tick_params(axis='both', which='minor', labelsize=minor_tick_label_size) ax.set_xticks(list(range(loadings.shape[1]))) ax.set_xticklabels(feature_labels, rotation=90, fontsize=tick_font_size) cax, kwargs = mpl.colorbar.make_axes( [ax], location='bottom', fraction=0.05, aspect=40, pad=.04, label='loading') cb = fig.colorbar(axim, cax=cax, **kwargs) text = cb.ax.xaxis.label font = mpl.font_manager.FontProperties(size=font_size) text.set_font_properties(font) maybe_save_fig(fig, save_fig) return fig, ax def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'): """Return a colormap with its center shifted. Useful for data with a negative min and positive max and you want the middle of the colormap's dynamic range to be at zero Adapted from: http://stackoverflow.com/a/20528097/6301373 Parameters ---------- cmap : The matplotlib colormap to be altered start : Offset from lowest point in the colormap's range. Defaults to 0.0 (no lower ofset). Should be between 0.0 and `midpoint`. midpoint : The new center of the colormap. Defaults to 0.5 (no shift). Should be between 0.0 and 1.0. In general, this should be 1 - vmax/(vmax + abs(vmin)) For example if your data range from -15.0 to +5.0 and you want the center of the colormap at 0.0, `midpoint` should be set to 1 - 5/(5 + 15)) or 0.75 stop : Offset from highets point in the colormap's range. Defaults to 1.0 (no upper ofset). Should be between `midpoint` and 1.0. """ cdict = { 'red': [], 'green': [], 'blue': [], 'alpha': []} # regular index to compute the colors reg_index = np.linspace(start, stop, 257) # shifted index to match the data shift_index = np.hstack([ np.linspace(0.0, midpoint, 128, endpoint=False), np.linspace(midpoint, 1.0, 129, endpoint=True)]) for ri, si in zip(reg_index, shift_index): r, g, b, a = cmap(ri) cdict['red'].append((si, r, r)) cdict['green'].append((si, g, g)) cdict['blue'].append((si, b, b)) cdict['alpha'].append((si, a, a)) newcmap = mpl.colors.LinearSegmentedColormap(name, cdict) plt.register_cmap(cmap=newcmap) return newcmap def biplot(scores, loadings, axis=None, labels=None, figsize=(8, 4), xlabel='Score on the first principal component', ylabel='Score on the second principal component', scatter_size=20, label_offset=0.1, fontsize=14, label_font_size=10, scale_loadings=1, arrow_color='r', label_color='r', arrow_width=.001, arrow_alpha=0.5, scatter_alpha=0.5, score_color='b', tick_color='b', save_fig=None): """Create a biplot of the principal component analysis of a dataset. Parameters ---------- scores : array of shape [number of samples, number of principal components] The scores of the data on the principal components. The number of principal components should be at least two. loadings : numpy array of shape [number of features, number of principal components] The loadings of features on the principal components axis : matplotlib axis, optional, default: None The axis on which to attach the biplot. If None, create a new figure. labels : list of strings, optional, default: None The labels of the features to be plotted next to the arrowheads figsize : tuple (width, height), optional, default: (8, 4) The size of the figure xlabel, ylabel : str or None, optional The labels of the axes. If None, then no label is shown. scatter_size : float, default 20 Size of the scatter points in units of points^2 label_offset : scalar, optional, default: 0.1 The amount by which to scale the position of the label compared to the location of the arrowhead, relative to the 2-norm of the loading. fontsize : int, optional, default: 14 The font size of the axes' labels label_font_size : int, optional, default: 14 The font size of the labels of the arrows (the loading vectors) scale_loadings : float, optional, default: 1 The amount by which to scale the loading vectors to make them easier to see. arrow_color : string, optional, default: 'r' The color of the loading vectors (arrows) score_color : string, optional, default: 'b' The color of the scores (scatter plot) arrow_width : float, optional, default: 0.001 The width of the loading vectors' arrows arrow_alpha, scatter_alpha : float, optional, default: 0.5 The opacity of the arrows and of the scatter plot label_color : string, optional, default: 'r' The color of the labels of the loading vectors (arrows) tick_color : string, optional, default: 'b' The color of the ticks and axis labels save_fig : None or a path and file name, optional, default: None If save_fig is not False or None, then the figure is saved to this file name. """ n = loadings.shape[0] # number of features to be plotted as arrows if scores.shape[1] < 2: raise ValueError("The number of principal component scores" + " must be at least 2.") if axis is None: fig, axis = plt.subplots(figsize=figsize) else: fig = axis.figure axis.scatter( *scores[:, :2].T, alpha=scatter_alpha, color=score_color, s=scatter_size) if xlabel is not None: axis.set_xlabel(xlabel, color=tick_color, fontsize=fontsize) if ylabel is not None: axis.set_ylabel(ylabel, color=tick_color, fontsize=fontsize) for tl in axis.get_xticklabels() + axis.get_yticklabels(): tl.set_color(tick_color) for i in range(n): axis.arrow(0, 0, loadings[i, 0] * scale_loadings, loadings[i, 1] * scale_loadings, color=arrow_color, alpha=arrow_alpha, width=arrow_width) if labels is not None: label_position = np.array([loadings[i, 0], loadings[i, 1]]) * scale_loadings label_position += (label_offset * label_position / np.linalg.norm(label_position)) axis.text(*label_position, labels[i], color=label_color, ha='center', va='center', wrap=True, fontsize=label_font_size, alpha=1) maybe_save_fig(fig, save_fig) return def plot_variance_explained( explained_variance_ratio, labels_var_explained=[0, 1], labels_cumulative_var_explained=[0, 1, 9, 99, 199], fig_title='Variance explained by the principal components', save_fig=None): """Plot the ratio of variance explained by the principal components. Returns a row of two plots of the variance explained by each component and of the cumulative variance explained up to a certain component. Parameters ---------- explained_variance_ratio : array of shape [n_components] This is PCA().explained_variance_ratio labels_var_explained : list of int's, optional, default: [0, 1] Which principal components to label in the plot of variance explained by each component. labels_cumulative_var_explained : list of int's, optional, default: [0, 1, 9, 99, 199] Which principal components to label in the plot of cumulative variance explained by each component. Including integer `i` in this list means label the fraction of variance explained by all components 0, 1, ..., i, so the label is "i + 1 components". fig_title : str, optional, default: 'Variance explained by the principal components' The figure's title (i.e., its `suptitle`). save_fig : None or file path If None, do not save the file to disk. Otherwise, save the file to the path `save_fig`. Returns ------- fig, ax : matplotib Figure and AxesSubplot objects The row of two figures showing (1) fraction of variance explained by each principal component and (2) the cumulative fraction of variance explained by each principal component. """ n_components = len(explained_variance_ratio) fig, axes = plt.subplots(nrows=1, ncols=2, sharex=True, sharey=True, figsize=(8, 4)) options = {'s': 5, 'marker': 'o'} axes[0].scatter(range(n_components), explained_variance_ratio, **options) axes[0].set_ylabel('explained variance') axes[0].set_xlabel('principal component') # Label some of the points for i, var in enumerate(explained_variance_ratio[labels_var_explained]): axes[0].text( i + .03, var + .03, ('{var:.1%} (component {n_comp})'.format(var=var, n_comp=i))) axes[1].scatter(np.array(range(n_components)), np.cumsum(explained_variance_ratio), **options) axes[1].set_ylabel('cumulative explained variance') for i, var in enumerate(np.cumsum(explained_variance_ratio)): if i in labels_cumulative_var_explained: axes[1].text( i + 5, var - .06, ('{var:.1%} ({n_comp} component'.format( var=var, n_comp=i + 1) + ('s)' if i + 1 != 1 else ')')) ) axes[1].set_xlabel('number of principal components') axes[0].set_xlim(-5, n_components + .5) axes[0].set_ylim(0, 1) fig.suptitle(fig_title, size=14) maybe_save_fig(fig, save_fig) return fig, axes def loadings_histograms( pca, feature_labels, n_components='all', bins=50, n_features_to_label=10, max_text_len=35, text_kws={'color': 'white', 'bbox': {'facecolor': 'k', 'alpha': 0.7, 'pad': 1}}, save_fig=None): """Plot histograms of the loadings for each principal component. Inputs ------ pca : fitted sklearn.decomposition.pca.PCA object feature_labels : list of strings of length equal to `pca.components_.shape[1]` The labels of the features bins : int The number of bins to use in the histograms n_components : 'all' or int The number of principal components to show. The components shown are 0, 1, ..., n_components - 1. If n_components is 'all', then all components are shown. n_features_to_label : int, default: 10 The number of most highly and least weighted features to label on the histogram. If 0, then do not show any such labels. max_text_len : int, default: 35 The maximum number of characters to use in the labels of the most/least weighted features. save_fig : None or file path, default: None If not None, then save the figure to this path text_kws : dict The keywrod arguments for the text labels of the features. """ if n_components == 'all': pca_weights = pd.DataFrame(pca.components_.T) else: pca_weights =
pd.DataFrame(pca.components_[:n_components].T)
pandas.DataFrame
import importlib import inspect import os import warnings from unittest.mock import patch import cloudpickle import numpy as np import pandas as pd import pytest from skopt.space import Categorical from evalml.exceptions import ( ComponentNotYetFittedError, EnsembleMissingPipelinesError, MethodPropertyNotFoundError, ) from evalml.model_family import ModelFamily from evalml.pipelines import BinaryClassificationPipeline from evalml.pipelines.components import ( LSA, PCA, ARIMARegressor, BaselineClassifier, BaselineRegressor, CatBoostClassifier, CatBoostRegressor, ComponentBase, DateTimeFeaturizer, DFSTransformer, DropColumns, DropNullColumns, DropRowsTransformer, ElasticNetClassifier, ElasticNetRegressor, Estimator, ExtraTreesClassifier, ExtraTreesRegressor, Imputer, LightGBMClassifier, LightGBMRegressor, LinearDiscriminantAnalysis, LinearRegressor, LogisticRegressionClassifier, NaturalLanguageFeaturizer, OneHotEncoder, Oversampler, PerColumnImputer, PolynomialDetrender, ProphetRegressor, RandomForestClassifier, RandomForestRegressor, RFClassifierSelectFromModel, RFRegressorSelectFromModel, SelectByType, SelectColumns, SimpleImputer, StandardScaler, SVMClassifier, SVMRegressor, TargetImputer, TimeSeriesBaselineEstimator, TimeSeriesFeaturizer, Transformer, Undersampler, XGBoostClassifier, XGBoostRegressor, ) from evalml.pipelines.components.ensemble import ( StackedEnsembleBase, StackedEnsembleClassifier, StackedEnsembleRegressor, ) from evalml.pipelines.components.estimators.classifiers.vowpal_wabbit_classifiers import ( VowpalWabbitBinaryClassifier, VowpalWabbitMulticlassClassifier, ) from evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor import ( VowpalWabbitRegressor, ) from evalml.pipelines.components.transformers.encoders.label_encoder import ( LabelEncoder, ) from evalml.pipelines.components.transformers.preprocessing.log_transformer import ( LogTransformer, ) from evalml.pipelines.components.transformers.samplers.base_sampler import ( BaseSampler, ) from evalml.pipelines.components.utils import ( _all_estimators, _all_transformers, all_components, generate_component_code, ) from evalml.problem_types import ProblemTypes @pytest.fixture(scope="module") def test_classes(): class MockComponent(ComponentBase): name = "Mock Component" modifies_features = True modifies_target = False training_only = False class MockEstimator(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] class MockTransformer(Transformer): name = "Mock Transformer" def transform(self, X, y=None): return X return MockComponent, MockEstimator, MockTransformer @pytest.fixture(scope="module") def test_estimator_needs_fitting_false(): class MockEstimatorNeedsFittingFalse(Estimator): name = "Mock Estimator Needs Fitting False" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] needs_fitting = False def predict(self, X): pass return MockEstimatorNeedsFittingFalse class MockFitComponent(ComponentBase): name = "Mock Fit Component" modifies_features = True modifies_target = False training_only = False def __init__(self, param_a=2, param_b=10, random_seed=0): parameters = {"param_a": param_a, "param_b": param_b} super().__init__(parameters=parameters, component_obj=None, random_seed=0) def fit(self, X, y=None): pass def predict(self, X): return np.array( [self.parameters["param_a"] * 2, self.parameters["param_b"] * 10] ) def test_init(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes assert MockComponent().name == "Mock Component" assert MockEstimator().name == "Mock Estimator" assert MockTransformer().name == "Mock Transformer" def test_describe(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes params = {"param_a": "value_a", "param_b": 123} component = MockComponent(parameters=params) assert component.describe(return_dict=True) == { "name": "Mock Component", "parameters": params, } estimator = MockEstimator(parameters=params) assert estimator.describe(return_dict=True) == { "name": "Mock Estimator", "parameters": params, } transformer = MockTransformer(parameters=params) assert transformer.describe(return_dict=True) == { "name": "Mock Transformer", "parameters": params, } def test_describe_component(): enc = OneHotEncoder() imputer = Imputer() simple_imputer = SimpleImputer("mean") column_imputer = PerColumnImputer({"a": "mean", "b": ("constant", 100)}) scaler = StandardScaler() feature_selection_clf = RFClassifierSelectFromModel( n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf ) feature_selection_reg = RFRegressorSelectFromModel( n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf ) drop_col_transformer = DropColumns(columns=["col_one", "col_two"]) drop_null_transformer = DropNullColumns() datetime = DateTimeFeaturizer() natural_language_featurizer = NaturalLanguageFeaturizer() lsa = LSA() pca = PCA() lda = LinearDiscriminantAnalysis() ft = DFSTransformer() us = Undersampler() assert enc.describe(return_dict=True) == { "name": "One Hot Encoder", "parameters": { "top_n": 10, "features_to_encode": None, "categories": None, "drop": "if_binary", "handle_unknown": "ignore", "handle_missing": "error", }, } assert imputer.describe(return_dict=True) == { "name": "Imputer", "parameters": { "categorical_impute_strategy": "most_frequent", "categorical_fill_value": None, "numeric_impute_strategy": "mean", "numeric_fill_value": None, }, } assert simple_imputer.describe(return_dict=True) == { "name": "Simple Imputer", "parameters": {"impute_strategy": "mean", "fill_value": None}, } assert column_imputer.describe(return_dict=True) == { "name": "Per Column Imputer", "parameters": { "impute_strategies": {"a": "mean", "b": ("constant", 100)}, "default_impute_strategy": "most_frequent", }, } assert scaler.describe(return_dict=True) == { "name": "Standard Scaler", "parameters": {}, } assert feature_selection_clf.describe(return_dict=True) == { "name": "RF Classifier Select From Model", "parameters": { "number_features": 5, "n_estimators": 10, "max_depth": None, "percent_features": 0.3, "threshold": -np.inf, "n_jobs": -1, }, } assert feature_selection_reg.describe(return_dict=True) == { "name": "RF Regressor Select From Model", "parameters": { "number_features": 5, "n_estimators": 10, "max_depth": None, "percent_features": 0.3, "threshold": -np.inf, "n_jobs": -1, }, } assert drop_col_transformer.describe(return_dict=True) == { "name": "Drop Columns Transformer", "parameters": {"columns": ["col_one", "col_two"]}, } assert drop_null_transformer.describe(return_dict=True) == { "name": "Drop Null Columns Transformer", "parameters": {"pct_null_threshold": 1.0}, } assert datetime.describe(return_dict=True) == { "name": "DateTime Featurization Component", "parameters": { "features_to_extract": ["year", "month", "day_of_week", "hour"], "encode_as_categories": False, "date_index": None, }, } assert natural_language_featurizer.describe(return_dict=True) == { "name": "Natural Language Featurization Component", "parameters": {}, } assert lsa.describe(return_dict=True) == { "name": "LSA Transformer", "parameters": {}, } assert pca.describe(return_dict=True) == { "name": "PCA Transformer", "parameters": {"n_components": None, "variance": 0.95}, } assert lda.describe(return_dict=True) == { "name": "Linear Discriminant Analysis Transformer", "parameters": {"n_components": None}, } assert ft.describe(return_dict=True) == { "name": "DFS Transformer", "parameters": {"index": "index"}, } assert us.describe(return_dict=True) == { "name": "Undersampler", "parameters": { "sampling_ratio": 0.25, "sampling_ratio_dict": None, "min_samples": 100, "min_percentage": 0.1, }, } try: oversampler = Oversampler() assert oversampler.describe(return_dict=True) == { "name": "Oversampler", "parameters": { "sampling_ratio": 0.25, "sampling_ratio_dict": None, "k_neighbors_default": 5, "n_jobs": -1, }, } except ImportError: pass # testing estimators base_classifier = BaselineClassifier() base_regressor = BaselineRegressor() lr_classifier = LogisticRegressionClassifier() en_classifier = ElasticNetClassifier() en_regressor = ElasticNetRegressor() et_classifier = ExtraTreesClassifier(n_estimators=10, max_features="auto") et_regressor = ExtraTreesRegressor(n_estimators=10, max_features="auto") rf_classifier = RandomForestClassifier(n_estimators=10, max_depth=3) rf_regressor = RandomForestRegressor(n_estimators=10, max_depth=3) linear_regressor = LinearRegressor() svm_classifier = SVMClassifier() svm_regressor = SVMRegressor() assert base_classifier.describe(return_dict=True) == { "name": "Baseline Classifier", "parameters": {"strategy": "mode"}, } assert base_regressor.describe(return_dict=True) == { "name": "Baseline Regressor", "parameters": {"strategy": "mean"}, } assert lr_classifier.describe(return_dict=True) == { "name": "Logistic Regression Classifier", "parameters": { "penalty": "l2", "C": 1.0, "n_jobs": -1, "multi_class": "auto", "solver": "lbfgs", }, } assert en_classifier.describe(return_dict=True) == { "name": "Elastic Net Classifier", "parameters": { "C": 1.0, "l1_ratio": 0.15, "n_jobs": -1, "multi_class": "auto", "solver": "saga", "penalty": "elasticnet", }, } assert en_regressor.describe(return_dict=True) == { "name": "Elastic Net Regressor", "parameters": { "alpha": 0.0001, "l1_ratio": 0.15, "max_iter": 1000, "normalize": False, }, } assert et_classifier.describe(return_dict=True) == { "name": "Extra Trees Classifier", "parameters": { "n_estimators": 10, "max_features": "auto", "max_depth": 6, "min_samples_split": 2, "min_weight_fraction_leaf": 0.0, "n_jobs": -1, }, } assert et_regressor.describe(return_dict=True) == { "name": "Extra Trees Regressor", "parameters": { "n_estimators": 10, "max_features": "auto", "max_depth": 6, "min_samples_split": 2, "min_weight_fraction_leaf": 0.0, "n_jobs": -1, }, } assert rf_classifier.describe(return_dict=True) == { "name": "Random Forest Classifier", "parameters": {"n_estimators": 10, "max_depth": 3, "n_jobs": -1}, } assert rf_regressor.describe(return_dict=True) == { "name": "Random Forest Regressor", "parameters": {"n_estimators": 10, "max_depth": 3, "n_jobs": -1}, } assert linear_regressor.describe(return_dict=True) == { "name": "Linear Regressor", "parameters": {"fit_intercept": True, "normalize": False, "n_jobs": -1}, } assert svm_classifier.describe(return_dict=True) == { "name": "SVM Classifier", "parameters": { "C": 1.0, "kernel": "rbf", "gamma": "auto", "probability": True, }, } assert svm_regressor.describe(return_dict=True) == { "name": "SVM Regressor", "parameters": {"C": 1.0, "kernel": "rbf", "gamma": "auto"}, } try: xgb_classifier = XGBoostClassifier( eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75 ) xgb_regressor = XGBoostRegressor( eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75 ) assert xgb_classifier.describe(return_dict=True) == { "name": "XGBoost Classifier", "parameters": { "eta": 0.1, "max_depth": 3, "min_child_weight": 1, "n_estimators": 75, "n_jobs": 12, "eval_metric": "logloss", }, } assert xgb_regressor.describe(return_dict=True) == { "name": "XGBoost Regressor", "parameters": { "eta": 0.1, "max_depth": 3, "min_child_weight": 1, "n_estimators": 75, "n_jobs": 12, }, } except ImportError: pass try: cb_classifier = CatBoostClassifier() cb_regressor = CatBoostRegressor() assert cb_classifier.describe(return_dict=True) == { "name": "CatBoost Classifier", "parameters": { "allow_writing_files": False, "n_estimators": 10, "eta": 0.03, "max_depth": 6, "bootstrap_type": None, "silent": True, "n_jobs": -1, }, } assert cb_regressor.describe(return_dict=True) == { "name": "CatBoost Regressor", "parameters": { "allow_writing_files": False, "n_estimators": 10, "eta": 0.03, "max_depth": 6, "bootstrap_type": None, "silent": False, "n_jobs": -1, }, } except ImportError: pass try: lg_classifier = LightGBMClassifier() lg_regressor = LightGBMRegressor() assert lg_classifier.describe(return_dict=True) == { "name": "LightGBM Classifier", "parameters": { "boosting_type": "gbdt", "learning_rate": 0.1, "n_estimators": 100, "max_depth": 0, "num_leaves": 31, "min_child_samples": 20, "n_jobs": -1, "bagging_fraction": 0.9, "bagging_freq": 0, }, } assert lg_regressor.describe(return_dict=True) == { "name": "LightGBM Regressor", "parameters": { "boosting_type": "gbdt", "learning_rate": 0.1, "n_estimators": 20, "max_depth": 0, "num_leaves": 31, "min_child_samples": 20, "n_jobs": -1, "bagging_fraction": 0.9, "bagging_freq": 0, }, } except ImportError: pass try: prophet_regressor = ProphetRegressor() assert prophet_regressor.describe(return_dict=True) == { "name": "Prophet Regressor", "parameters": { "changepoint_prior_scale": 0.05, "date_index": None, "holidays_prior_scale": 10, "seasonality_mode": "additive", "seasonality_prior_scale": 10, "stan_backend": "CMDSTANPY", }, } except ImportError: pass try: vw_binary_classifier = VowpalWabbitBinaryClassifier( loss_function="classic", learning_rate=0.1, decay_learning_rate=1.0, power_t=0.1, passes=1, ) vw_multi_classifier = VowpalWabbitMulticlassClassifier( loss_function="classic", learning_rate=0.1, decay_learning_rate=1.0, power_t=0.1, passes=1, ) vw_regressor = VowpalWabbitRegressor( learning_rate=0.1, decay_learning_rate=1.0, power_t=0.1, passes=1 ) assert vw_binary_classifier.describe(return_dict=True) == { "name": "Vowpal Wabbit Binary Classifier", "parameters": { "loss_function": "classic", "learning_rate": 0.1, "decay_learning_rate": 1.0, "power_t": 0.1, "passes": 1, }, } assert vw_multi_classifier.describe(return_dict=True) == { "name": "Vowpal Wabbit Multiclass Classifier", "parameters": { "loss_function": "classic", "learning_rate": 0.1, "decay_learning_rate": 1.0, "power_t": 0.1, "passes": 1, }, } assert vw_regressor.describe(return_dict=True) == { "name": "Vowpal Wabbit Regressor", "parameters": { "learning_rate": 0.1, "decay_learning_rate": 1.0, "power_t": 0.1, "passes": 1, }, } except ImportError: pass def test_missing_attributes(X_y_binary): class MockComponentName(ComponentBase): pass with pytest.raises(TypeError): MockComponentName() class MockComponentModelFamily(ComponentBase): name = "Mock Component" with pytest.raises(TypeError): MockComponentModelFamily() class MockEstimatorWithoutAttribute(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL with pytest.raises(TypeError): MockEstimatorWithoutAttribute() def test_missing_methods_on_components(X_y_binary, test_classes): X, y = X_y_binary MockComponent, MockEstimator, MockTransformer = test_classes component = MockComponent() with pytest.raises( MethodPropertyNotFoundError, match="Component requires a fit method or a component_obj that implements fit", ): component.fit(X) estimator = MockEstimator() estimator._is_fitted = True with pytest.raises( MethodPropertyNotFoundError, match="Estimator requires a predict method or a component_obj that implements predict", ): estimator.predict(X) with pytest.raises( MethodPropertyNotFoundError, match="Estimator requires a predict_proba method or a component_obj that implements predict_proba", ): estimator.predict_proba(X) with pytest.raises( MethodPropertyNotFoundError, match="Estimator requires a feature_importance property or a component_obj that implements feature_importances_", ): estimator.feature_importance transformer = MockTransformer() transformer._is_fitted = True with pytest.raises( MethodPropertyNotFoundError, match="Component requires a fit method or a component_obj that implements fit", ): transformer.fit(X, y) transformer.transform(X) with pytest.raises( MethodPropertyNotFoundError, match="Component requires a fit method or a component_obj that implements fit", ): transformer.fit_transform(X) def test_component_fit(X_y_binary): X, y = X_y_binary class MockEstimator: def fit(self, X, y): pass class MockComponent(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] hyperparameter_ranges = {} def __init__(self): parameters = {} est = MockEstimator() super().__init__(parameters=parameters, component_obj=est, random_seed=0) est = MockComponent() assert isinstance(est.fit(X, y), ComponentBase) def test_component_fit_transform(X_y_binary): X, y = X_y_binary class MockTransformerWithFitTransform(Transformer): name = "Mock Transformer" hyperparameter_ranges = {} def fit_transform(self, X, y=None): return X def transform(self, X, y=None): return X def __init__(self): parameters = {} super().__init__(parameters=parameters, component_obj=None, random_seed=0) class MockTransformerWithFitTransformButError(Transformer): name = "Mock Transformer" hyperparameter_ranges = {} def fit_transform(self, X, y=None): raise RuntimeError def transform(self, X, y=None): return X def __init__(self): parameters = {} super().__init__(parameters=parameters, component_obj=None, random_seed=0) class MockTransformerWithFitAndTransform(Transformer): name = "Mock Transformer" hyperparameter_ranges = {} def fit(self, X, y=None): return self def transform(self, X, y=None): return X def __init__(self): parameters = {} super().__init__(parameters=parameters, component_obj=None, random_seed=0) # convert data to pd DataFrame, because the component classes don't # standardize to pd DataFrame X = pd.DataFrame(X) y = pd.Series(y) component = MockTransformerWithFitTransform() assert isinstance(component.fit_transform(X, y), pd.DataFrame) component = MockTransformerWithFitTransformButError() with pytest.raises(RuntimeError): component.fit_transform(X, y) component = MockTransformerWithFitAndTransform() assert isinstance(component.fit_transform(X, y), pd.DataFrame) def test_model_family_components(test_classes): _, MockEstimator, _ = test_classes assert MockEstimator.model_family == ModelFamily.LINEAR_MODEL def test_regressor_call_predict_proba(test_classes): X = np.array([]) _, MockEstimator, _ = test_classes component = MockEstimator() component._is_fitted = True with pytest.raises(MethodPropertyNotFoundError): component.predict_proba(X) def test_component_describe(test_classes, caplog): MockComponent, _, _ = test_classes component = MockComponent() component.describe(print_name=True) out = caplog.text assert "Mock Component" in out def test_component_parameters_getter(test_classes): MockComponent, _, _ = test_classes component = MockComponent({"test": "parameter"}) assert component.parameters == {"test": "parameter"} component.parameters["test"] = "new" assert component.parameters == {"test": "parameter"} def test_component_parameters_init( logistic_regression_binary_pipeline_class, linear_regression_pipeline_class ): for component_class in all_components(): print("Testing component {}".format(component_class.name)) component = component_class() parameters = component.parameters component2 = component_class(**parameters) parameters2 = component2.parameters assert parameters == parameters2 def test_clone_init(): params = {"param_a": 2, "param_b": 11} clf = MockFitComponent(**params) clf_clone = clf.clone() assert clf.parameters == clf_clone.parameters assert clf_clone.random_seed == clf.random_seed def test_clone_fitted(X_y_binary): X, y = X_y_binary params = {"param_a": 3, "param_b": 7} clf = MockFitComponent(**params) clf.fit(X, y) predicted = clf.predict(X) clf_clone = clf.clone() assert clf_clone.random_seed == clf.random_seed assert clf.parameters == clf_clone.parameters with pytest.raises(ComponentNotYetFittedError, match="You must fit"): clf_clone.predict(X) clf_clone.fit(X, y) predicted_clone = clf_clone.predict(X) np.testing.assert_almost_equal(predicted, predicted_clone) def test_components_init_kwargs(): for component_class in all_components(): try: component = component_class() except EnsembleMissingPipelinesError: continue if component._component_obj is None: continue if isinstance(component, StackedEnsembleBase): continue obj_class = component._component_obj.__class__.__name__ module = component._component_obj.__module__ importlib.import_module(module, obj_class) patched = module + "." + obj_class + ".__init__" if component_class == LabelEncoder: # scikit-learn's LabelEncoder found in different module than where we import from patched = module[: module.rindex(".")] + "." + obj_class + ".__init__" def all_init(self, *args, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) with patch(patched, new=all_init) as _: component = component_class(test_arg="test") component_with_different_kwargs = component_class(diff_test_arg="test") assert component.parameters["test_arg"] == "test" if not isinstance(component, (PolynomialDetrender, LabelEncoder)): assert component._component_obj.test_arg == "test" # Test equality of different components with same or different kwargs assert component == component_class(test_arg="test") assert component != component_with_different_kwargs def test_component_has_random_seed(): for component_class in all_components(): params = inspect.signature(component_class.__init__).parameters assert "random_seed" in params def test_transformer_transform_output_type(X_y_binary): X_np, y_np = X_y_binary assert isinstance(X_np, np.ndarray) assert isinstance(y_np, np.ndarray) y_list = list(y_np) X_df_no_col_names = pd.DataFrame(X_np) range_index = pd.RangeIndex(start=0, stop=X_np.shape[1], step=1) X_df_with_col_names = pd.DataFrame( X_np, columns=["x" + str(i) for i in range(X_np.shape[1])] ) y_series_no_name = pd.Series(y_np) y_series_with_name = pd.Series(y_np, name="target") datatype_combos = [ (X_np, y_np, range_index), (X_np, y_list, range_index), (X_df_no_col_names, y_series_no_name, range_index), (X_df_with_col_names, y_series_with_name, X_df_with_col_names.columns), ] for component_class in _all_transformers(): if component_class in [PolynomialDetrender, LogTransformer, LabelEncoder]: # Skipping because these tests are handled in their respective test files continue print("Testing transformer {}".format(component_class.name)) for X, y, X_cols_expected in datatype_combos: print( 'Checking output of transform for transformer "{}" on X type {} cols {}, y type {} name {}'.format( component_class.name, type(X), X.columns if isinstance(X, pd.DataFrame) else None, type(y), y.name if isinstance(y, pd.Series) else None, ) ) component = component_class() # SMOTE will throw an error if we pass a ratio lower than the current class balance if "Oversampler" == component_class.name: # we cover this case in test_oversamplers continue elif component_class == TimeSeriesFeaturizer: # covered in test_delayed_feature_transformer.py continue component.fit(X, y=y) transform_output = component.transform(X, y=y) if component.modifies_target: assert isinstance(transform_output[0], pd.DataFrame) assert isinstance(transform_output[1], pd.Series) else: assert isinstance(transform_output, pd.DataFrame) if isinstance(component, SelectColumns) or isinstance( component, SelectByType ): assert transform_output.shape == (X.shape[0], 0) elif isinstance(component, PCA) or isinstance( component, LinearDiscriminantAnalysis ): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] <= X.shape[1] elif isinstance(component, DFSTransformer): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] >= X.shape[1] elif component.modifies_target: assert transform_output[0].shape == X.shape assert transform_output[1].shape[0] == X.shape[0] assert len(transform_output[1].shape) == 1 else: assert transform_output.shape == X.shape assert list(transform_output.columns) == list(X_cols_expected) transform_output = component.fit_transform(X, y=y) if component.modifies_target: assert isinstance(transform_output[0], pd.DataFrame) assert isinstance(transform_output[1], pd.Series) else: assert isinstance(transform_output, pd.DataFrame) if isinstance(component, SelectColumns) or isinstance( component, SelectByType ): assert transform_output.shape == (X.shape[0], 0) elif isinstance(component, PCA) or isinstance( component, LinearDiscriminantAnalysis ): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] <= X.shape[1] elif isinstance(component, DFSTransformer): assert transform_output.shape[0] == X.shape[0] assert transform_output.shape[1] >= X.shape[1] elif component.modifies_target: assert transform_output[0].shape == X.shape assert transform_output[1].shape[0] == X.shape[0] assert len(transform_output[1].shape) == 1 else: assert transform_output.shape == X.shape assert list(transform_output.columns) == list(X_cols_expected) @pytest.mark.parametrize( "cls", [ cls for cls in all_components() if cls not in [ StackedEnsembleClassifier, StackedEnsembleRegressor, ] ], ) def test_default_parameters(cls): assert ( cls.default_parameters == cls().parameters ), f"{cls.__name__}'s default parameters don't match __init__." @pytest.mark.parametrize("cls", [cls for cls in all_components()]) def test_default_parameters_raise_no_warnings(cls): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") cls() assert len(w) == 0 def test_estimator_check_for_fit(X_y_binary): class MockEstimatorObj: def __init__(self): pass def fit(self, X, y): return self def predict(self, X): series = pd.Series([0] * len(X)) series.ww.init() return series def predict_proba(self, X): df = pd.DataFrame({0: [0] * len(X)}) df.ww.init() return df class MockEstimator(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] def __init__(self, parameters=None, component_obj=None, random_seed=0): est = MockEstimatorObj() super().__init__( parameters=parameters, component_obj=est, random_seed=random_seed ) X, y = X_y_binary est = MockEstimator() with pytest.raises(ComponentNotYetFittedError, match="You must fit"): est.predict(X) with pytest.raises(ComponentNotYetFittedError, match="You must fit"): est.predict_proba(X) est.fit(X, y) est.predict(X) est.predict_proba(X) def test_transformer_check_for_fit(X_y_binary): class MockTransformerObj: def __init__(self): pass def fit(self, X, y): return self def transform(self, X, y=None): return X def fit_transform(self, X, y=None): return X class MockTransformer(Transformer): name = "Mock Transformer" def __init__(self, parameters=None, component_obj=None, random_seed=0): transformer = MockTransformerObj() super().__init__( parameters=parameters, component_obj=transformer, random_seed=random_seed, ) def transform(self, X, y=None): return X def inverse_transform(self, X, y=None): return X, y X, y = X_y_binary trans = MockTransformer() with pytest.raises(ComponentNotYetFittedError, match="You must fit"): trans.transform(X) with pytest.raises(ComponentNotYetFittedError, match="You must fit"): trans.inverse_transform(X, y) trans.fit(X, y) trans.transform(X) trans.fit_transform(X, y) trans.inverse_transform(X, y) def test_transformer_check_for_fit_with_overrides(X_y_binary): class MockTransformerWithOverride(Transformer): name = "Mock Transformer" def fit(self, X, y): return self def transform(self, X, y=None): df = pd.DataFrame() df.ww.init() return df class MockTransformerWithOverrideSubclass(Transformer): name = "Mock Transformer Subclass" def fit(self, X, y): return self def transform(self, X, y=None): df = pd.DataFrame() df.ww.init() return df X, y = X_y_binary transformer = MockTransformerWithOverride() transformer_subclass = MockTransformerWithOverrideSubclass() with pytest.raises(ComponentNotYetFittedError, match="You must fit"): transformer.transform(X) with pytest.raises(ComponentNotYetFittedError, match="You must fit"): transformer_subclass.transform(X) transformer.fit(X, y) transformer.transform(X) transformer_subclass.fit(X, y) transformer_subclass.transform(X) def test_all_transformers_needs_fitting(): for component_class in _all_transformers() + _all_estimators(): if component_class.__name__ in [ "DropColumns", "SelectColumns", "SelectByType", ]: assert not component_class.needs_fitting else: assert component_class.needs_fitting def test_all_transformers_check_fit(X_y_binary, ts_data_binary): for component_class in _all_transformers(): X, y = X_y_binary if not component_class.needs_fitting: continue component = component_class() # SMOTE will throw errors if we call it but cannot oversample if "Oversampler" == component_class.name: component = component_class(sampling_ratio=1) elif component_class == TimeSeriesFeaturizer: X, y = ts_data_binary component = component_class(date_index="date") with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}" ): component.transform(X, y) component.fit(X, y) component.transform(X, y) component = component_class() if "Oversampler" == component_class.name: component = component_class(sampling_ratio=1) elif component_class == TimeSeriesFeaturizer: component = component_class(date_index="date") component.fit_transform(X, y) component.transform(X, y) def test_all_estimators_check_fit( X_y_binary, ts_data, test_estimator_needs_fitting_false, helper_functions ): estimators_to_check = [ estimator for estimator in _all_estimators() if estimator not in [ StackedEnsembleClassifier, StackedEnsembleRegressor, TimeSeriesBaselineEstimator, VowpalWabbitBinaryClassifier, VowpalWabbitMulticlassClassifier, VowpalWabbitRegressor, ] ] + [test_estimator_needs_fitting_false] for component_class in estimators_to_check: if not component_class.needs_fitting: continue if ( ProblemTypes.TIME_SERIES_REGRESSION in component_class.supported_problem_types ): X, y = ts_data else: X, y = X_y_binary component = helper_functions.safe_init_component_with_njobs_1(component_class) with patch.object(component, "_component_obj") as mock_component_obj: with patch.object( mock_component_obj, "predict" ) as mock_component_obj_predict: mock_component_obj_predict.return_value = pd.Series([0] * len(y)) if "Prophet" in component.name: mock_component_obj_predict.return_value = { "yhat": pd.Series([0] * len(y)), "ds": pd.Series([0] * len(y)), } with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}", ): component.predict(X) if ( ProblemTypes.BINARY in component.supported_problem_types or ProblemTypes.MULTICLASS in component.supported_problem_types ): with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}", ): component.predict_proba(X) with pytest.raises( ComponentNotYetFittedError, match=f"You must fit {component_class.__name__}", ): component.feature_importance component.fit(X, y) if ( ProblemTypes.BINARY in component.supported_problem_types or ProblemTypes.MULTICLASS in component.supported_problem_types ): component.predict_proba(X) component.predict(X) component.feature_importance @pytest.mark.parametrize("data_type", ["li", "np", "pd", "ww"]) def test_all_transformers_check_fit_input_type( data_type, X_y_binary, make_data_type, ts_data_binary ): for component_class in _all_transformers(): X, y = X_y_binary X = make_data_type(data_type, X) y = make_data_type(data_type, y) kwargs = {} if not component_class.needs_fitting or "Oversampler" in component_class.name: # since SMOTE determines categorical columns through the logical type, it can only accept ww data continue if component_class == TimeSeriesFeaturizer: X, y = ts_data_binary kwargs = {"date_index": "date"} component = component_class(**kwargs) component.fit(X, y) def test_no_fitting_required_components( X_y_binary, test_estimator_needs_fitting_false, helper_functions ): X, y = X_y_binary for component_class in all_components() + [test_estimator_needs_fitting_false]: if not component_class.needs_fitting: component = helper_functions.safe_init_component_with_njobs_1( component_class ) if issubclass(component_class, Estimator): component.predict(X) else: component.transform(X, y) def test_serialization(X_y_binary, ts_data, tmpdir, helper_functions): path = os.path.join(str(tmpdir), "component.pkl") requires_date_index = [ARIMARegressor, ProphetRegressor, TimeSeriesFeaturizer] for component_class in all_components(): print("Testing serialization of component {}".format(component_class.name)) component = helper_functions.safe_init_component_with_njobs_1(component_class) if component_class in requires_date_index: component = component_class(date_index="date") X, y = ts_data else: X, y = X_y_binary component.fit(X, y) for pickle_protocol in range(cloudpickle.DEFAULT_PROTOCOL + 1): component.save(path, pickle_protocol=pickle_protocol) loaded_component = ComponentBase.load(path) assert component.parameters == loaded_component.parameters assert component.describe(return_dict=True) == loaded_component.describe( return_dict=True ) if issubclass(component_class, Estimator) and not ( isinstance( component, ( StackedEnsembleClassifier, StackedEnsembleRegressor, VowpalWabbitBinaryClassifier, VowpalWabbitMulticlassClassifier, VowpalWabbitRegressor, ), ) ): assert ( component.feature_importance == loaded_component.feature_importance ).all() @patch("cloudpickle.dump") def test_serialization_protocol(mock_cloudpickle_dump, tmpdir): path = os.path.join(str(tmpdir), "pipe.pkl") component = LogisticRegressionClassifier() component.save(path) assert len(mock_cloudpickle_dump.call_args_list) == 1 assert ( mock_cloudpickle_dump.call_args_list[0][1]["protocol"] == cloudpickle.DEFAULT_PROTOCOL ) mock_cloudpickle_dump.reset_mock() component.save(path, pickle_protocol=42) assert len(mock_cloudpickle_dump.call_args_list) == 1 assert mock_cloudpickle_dump.call_args_list[0][1]["protocol"] == 42 @pytest.mark.parametrize("estimator_class", _all_estimators()) def test_estimators_accept_all_kwargs( estimator_class, logistic_regression_binary_pipeline_class, linear_regression_pipeline_class, ): estimator = estimator_class() if estimator._component_obj is None: pytest.skip( f"Skipping {estimator_class} because does not have component object." ) if estimator_class.model_family == ModelFamily.ENSEMBLE: params = estimator.parameters elif estimator_class.model_family == ModelFamily.PROPHET: params = estimator.get_params() else: params = estimator._component_obj.get_params() if "random_state" in params: del params["random_state"] estimator_class(**params) def test_component_equality_different_classes(): # Tests that two classes which are equivalent are not equal class MockComponent(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False class MockComponentWithADifferentName(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False assert MockComponent() != MockComponentWithADifferentName() def test_component_equality_subclasses(): class MockComponent(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False class MockEstimatorSubclass(MockComponent): pass assert MockComponent() != MockEstimatorSubclass() def test_component_equality(): class MockComponent(ComponentBase): name = "Mock Component" model_family = ModelFamily.NONE modifies_features = True modifies_target = False training_only = False def __init__(self, param_1=0, param_2=0, random_seed=0, **kwargs): parameters = {"param_1": param_1, "param_2": param_2} parameters.update(kwargs) super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed ) def fit(self, X, y=None): return self # Test self-equality mock_component = MockComponent() assert mock_component == mock_component # Test defaults assert MockComponent() == MockComponent() # Test random_state and random_seed assert MockComponent(random_seed=10) == MockComponent(random_seed=10) assert MockComponent(random_seed=10) != MockComponent(random_seed=0) # Test parameters assert MockComponent(1, 2) == MockComponent(1, 2) assert MockComponent(1, 2) != MockComponent(1, 0) assert MockComponent(0, 2) != MockComponent(1, 2) # Test fitted equality mock_component.fit(pd.DataFrame({})) assert mock_component != MockComponent() @pytest.mark.parametrize("component_class", all_components()) def test_component_equality_all_components( component_class, logistic_regression_binary_pipeline_class, linear_regression_pipeline_class, ): component = component_class() parameters = component.parameters equal_component = component_class(**parameters) assert component == equal_component def test_component_equality_with_subclasses(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes mock_component = MockComponent() mock_estimator = MockEstimator() mock_transformer = MockTransformer() assert mock_component != mock_estimator assert mock_component != mock_transformer assert mock_estimator != mock_component assert mock_estimator != mock_transformer assert mock_transformer != mock_component assert mock_transformer != mock_estimator def test_mock_component_str(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes assert str(MockComponent()) == "Mock Component" assert str(MockEstimator()) == "Mock Estimator" assert str(MockTransformer()) == "Mock Transformer" def test_mock_component_repr(): component = MockFitComponent() assert repr(component) == "MockFitComponent(param_a=2, param_b=10)" component_with_params = MockFitComponent(param_a=29, param_b=None, random_seed=42) assert repr(component_with_params) == "MockFitComponent(param_a=29, param_b=None)" component_with_nan = MockFitComponent(param_a=np.nan, param_b=float("nan")) assert ( repr(component_with_nan) == "MockFitComponent(param_a=np.nan, param_b=np.nan)" ) component_with_inf = MockFitComponent(param_a=np.inf, param_b=float("-inf")) assert ( repr(component_with_inf) == "MockFitComponent(param_a=float('inf'), param_b=float('-inf'))" ) @pytest.mark.parametrize("component_class", all_components()) def test_component_str( component_class, logistic_regression_binary_pipeline_class, linear_regression_pipeline_class, ): component = component_class() assert str(component) == component.name @pytest.mark.parametrize( "categorical", [ { "type": Categorical(["mean", "median", "mode"]), "categories": Categorical(["blue", "green"]), }, {"type": ["mean", "median", "mode"], "categories": ["blue", "green"]}, ], ) def test_categorical_hyperparameters(X_y_binary, categorical): X, y = X_y_binary class MockEstimator: def fit(self, X, y): pass class MockComponent(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ["binary"] hyperparameter_ranges = categorical def __init__(self, agg_type, category="green"): parameters = {"type": agg_type, "categories": category} est = MockEstimator() super().__init__(parameters=parameters, component_obj=est, random_seed=0) assert MockComponent(agg_type="mean").fit(X, y) assert MockComponent(agg_type="moat", category="blue").fit(X, y) def test_generate_code_errors(): with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(BinaryClassificationPipeline([RandomForestClassifier])) with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(LinearRegressor) with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(Imputer) with pytest.raises(ValueError, match="Element must be a component instance"): generate_component_code(ComponentBase) def test_generate_code(): expected_code = ( "from evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier import LogisticRegressionClassifier" "\n\nlogisticRegressionClassifier = LogisticRegressionClassifier(**{'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'})" ) component_code = generate_component_code(LogisticRegressionClassifier()) assert component_code == expected_code expected_code = ( "from evalml.pipelines.components.estimators.regressors.et_regressor import ExtraTreesRegressor" "\n\nextraTreesRegressor = ExtraTreesRegressor(**{'n_estimators': 50, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1})" ) component_code = generate_component_code(ExtraTreesRegressor(n_estimators=50)) assert component_code == expected_code expected_code = ( "from evalml.pipelines.components.transformers.imputers.imputer import Imputer" "\n\nimputer = Imputer(**{'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'categorical_fill_value': None, 'numeric_fill_value': None})" ) component_code = generate_component_code(Imputer()) assert component_code == expected_code def test_generate_code_custom(test_classes): MockComponent, MockEstimator, MockTransformer = test_classes expected_code = "mockComponent = MockComponent(**{})" component_code = generate_component_code(MockComponent()) assert component_code == expected_code expected_code = "mockEstimator = MockEstimator(**{})" component_code = generate_component_code(MockEstimator()) assert component_code == expected_code expected_code = "mockTransformer = MockTransformer(**{})" component_code = generate_component_code(MockTransformer()) assert component_code == expected_code @pytest.mark.parametrize("transformer_class", _all_transformers()) @pytest.mark.parametrize("use_custom_index", [True, False]) def test_transformer_fit_and_transform_respect_custom_indices( use_custom_index, transformer_class, X_y_binary, ts_data_binary ): check_names = True if transformer_class == DFSTransformer: check_names = False if use_custom_index: pytest.skip("The DFSTransformer changes the index so we skip it.") if transformer_class == PolynomialDetrender: pytest.skip( "Skipping PolynomialDetrender because we test that it respects custom indices in " "test_polynomial_detrender.py" ) X, y = X_y_binary kwargs = {} if transformer_class == TimeSeriesFeaturizer: kwargs.update({"date_index": "date"}) X, y = ts_data_binary X = pd.DataFrame(X) y = pd.Series(y) if use_custom_index: custom_index = range(100, 100 + X.shape[0]) X.index = custom_index y.index = custom_index X_original_index = X.index.copy() y_original_index = y.index.copy() transformer = transformer_class(**kwargs) transformer.fit(X, y)
pd.testing.assert_index_equal(X.index, X_original_index)
pandas.testing.assert_index_equal
""" The static functions for various calculations and required parameters """ # external packages from astrodbkit2.astrodb import Database, REFERENCE_TABLES # used for pulling out database and querying from astropy.coordinates import SkyCoord from flask_wtf import FlaskForm # web forms from markdown2 import markdown # using markdown formatting import numpy as np # numerical python import pandas as pd # running dataframes from tqdm import tqdm from wtforms import StringField, SubmitField # web forms # internal packages import argparse # system arguments from typing import Union, List # type hinting def sysargs(): """ These are the system arguments given after calling this python script Returns ------- _args The different argument parameters, can be grabbed via their long names (e.g. _args.host) """ _args = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) _args.add_argument('-i', '--host', default='127.0.0.1', help='Local IP Address to host server, default 127.0.0.1') _args.add_argument('-p', '--port', default=8000, help='Local port number to host server through, default 8000', type=int) _args.add_argument('-d', '--debug', help='Run Flask in debug mode?', default=False, action='store_true') _args.add_argument('-f', '--file', default='SIMPLE.db', help='Database file path relative to current directory, default SIMPLE.db') _args = _args.parse_args() return _args class SimpleDB(Database): # this keeps pycharm happy about unresolved references """ Wrapper class for astrodbkit2.Database specific to SIMPLE """ Sources = None # initialise class attribute Photometry = None Parallaxes = None Spectra = None PhotometryFilters = None class Inventory: """ For use in the solo result page where the inventory of an object is queried, grabs also the RA & Dec """ ra: float = 0 dec: float = 0 def __init__(self, resultdict: dict, args): """ Constructor method for Inventory Parameters ---------- resultdict: dict The dictionary of all the key: values in a given object inventory """ self.results: dict = resultdict # given inventory for a target for key in self.results: # over every key in inventory if args.debug: print(key) if key in REFERENCE_TABLES: # ignore the reference table ones continue lowkey: str = key.lower() # lower case of the key mkdown_output: str = self.listconcat(key) # get in markdown the dataframe value for given key setattr(self, lowkey, mkdown_output) # set the key attribute with the dataframe for given key try: srcs: pd.DataFrame = self.listconcat('Sources', rtnmk=False) # open the Sources result self.ra, self.dec = srcs.ra[0], srcs.dec[0] except (KeyError, AttributeError): pass return def listconcat(self, key: str, rtnmk: bool = True) -> Union[pd.DataFrame, str]: """ Concatenates the list for a given key Parameters ---------- key: str The key corresponding to the inventory rtnmk: bool Switch for whether to return either a markdown string or a dataframe Returns ------- df: Union[pd.DataFrame, str] Either the dataframe for a given key or the markdown parsed string """ obj: List[dict] = self.results[key] # the value for the given key df: pd.DataFrame = pd.concat([pd.DataFrame(objrow, index=[i]) # create dataframe from found dict for i, objrow in enumerate(obj)], ignore_index=True) # every dict in the list urlinks = [] if rtnmk and key == 'Spectra': for src in df.spectrum.values: # over every source in table srclnk = f'<a href="{src}" target="_blank">Link</a>' # construct hyperlink urlinks.append(srclnk) # add that to list df.drop(columns=[col for col in df.columns if any([substr in col for substr in ('wave', 'flux')])], inplace=True) df = df.loc[:, 'telescope':].copy() df['download'] = urlinks df['observation_date'] = df['observation_date'].dt.date if rtnmk: # return markdown boolean df.rename(columns={s: s.replace('_', ' ') for s in df.columns}, inplace=True) # renaming columns return markdown(df.to_html(index=False, escape=False, classes='table table-dark table-bordered table-striped')) # html then markdown return df # otherwise return dataframe as is class SearchForm(FlaskForm): """ Searchbar class """ search = StringField('Search for an object:', id='autocomplete') # searchbar submit = SubmitField('Query', id='querybutton') # clicker button to send request def all_sources(db_file: str): """ Queries the full table to get all the sources Parameters ---------- db_file: str The connection string to the database Returns ------- allresults Just the main IDs fullresults The full dataframe of all the sources """ db = SimpleDB(db_file, connection_arguments={'check_same_thread': False}) # open database fullresults: pd.DataFrame = db.query(db.Sources).pandas() allresults: list = fullresults['source'].tolist() # gets all the main IDs in the database return allresults, fullresults def find_colours(photodf: pd.DataFrame, allbands: np.ndarray, photfilters: pd.DataFrame): """ Find all the colours using available photometry Parameters ---------- photodf: pd.DataFrame The dataframe with all photometry in allbands: np.ndarray All the photometric bands photfilters: pd.DataFrame The filters Returns ------- photodf: pd.DataFrame The dataframe with all photometry and colours in """ for band in allbands: # loop over all bands bandtrue = band if '(' in band: # duplicate bands bandtrue = band[:band.find('(')] if bandtrue not in photfilters.columns: # check if we have this in the dictionary raise KeyError(f'{bandtrue} not yet a supported filter') for nextband in allbands: # over all bands if band == nextband: # don't make a colour of same band (0) continue nextbandtrue = nextband if '(' in nextband: # duplicate bands nextbandtrue = nextband[:nextband.find('(')] if nextbandtrue not in photfilters.columns: # check if we have this in dictionary raise KeyError(f'{nextbandtrue} not yet a supported filter') if photfilters.at['effective_wavelength', bandtrue] >= \ photfilters.at['effective_wavelength', nextbandtrue]: # if not blue-red continue try: photodf[f'{band}-{nextband}'] = photodf[band] - photodf[nextband] # colour except KeyError: photodf[f'{band}-{nextband}'] = photodf[bandtrue] - photodf[nextband] # colour for full sample return photodf def parse_photometry(photodf: pd.DataFrame, allbands: np.ndarray, multisource: bool = False) -> pd.DataFrame: """ Parses the photometry dataframe handling multiple references for same magnitude Parameters ---------- photodf: pd.DataFrame The dataframe with all photometry in allbands: np.ndarray All the photometric bands multisource: bool Switch whether to iterate over initial dataframe with multiple sources Returns ------- newphoto: pd.DataFrame DataFrame of effectively transposed photometry """ def replacer(val: int) -> str: """ Swapping an integer value for a string denoting the value Parameters ---------- val: int The input number Returns ------- _: str The formatted string of the value """ if not val: return '' return f'({val})' def one_source_iter(onephotodf: pd.DataFrame): """ Parses the photometry dataframe handling multiple references for same magnitude for one object Parameters ---------- onephotodf: pd.DataFrame The dataframe with all the photometry in it Returns ------- thisnewphot: pd.DataFrame DataFrame of transposed photometry """ onephotodf.set_index('band', inplace=True) # set the band as the index thisnewphot: pd.DataFrame = onephotodf.loc[:, ['magnitude']].T # flip the dataframe and keep only mags s =
pd.Series(thisnewphot.columns)
pandas.Series
""" 5. Running Bycycle on 3D Arrays =============================== Compute bycycle features for 3D organizations of timeseries. Bycycle supports computing the features of 3D signals using :func:`~.compute_features_3d`. Signals may be organized in a different ways, including (n_participants, n_channels, n_timepoints) or (n_channels, n_epochs, n_timepoints). The difference between these organizations is that continuity may be assumed across epochs, but not channels. The ``axis`` argument is used to specificy the axis to iterate over in parallel. """ #################################################################################################### import numpy as np import pandas as pd import matplotlib.pyplot as plt from neurodsp.sim import sim_combined from bycycle.group import compute_features_3d from bycycle.plts import plot_feature_categorical from bycycle.utils import flatten_dfs #################################################################################################### # Example 1. The ``axis`` Argument # -------------------------------- # # Here, we will show how the axis arguments works by iterating over slices of an 3D array. # The axis argument be may specified as: # # - ``axis=0`` : Iterates over 2D slices along the zeroth dimension, (i.e. for each channel in # (n_channels, n_epochs, n_timepoints)). # - ``axis=1`` : Iterates over 2D slices along the first dimension (i.e. across flatten epochs in # (n_epochs, n_timepoints)). # - ``axis=(0, 1)`` : Iterates over 1D slices along the zeroth and first dimension (i.e across # each signal independently in (n_participants, n_channels, n_timepoints)). # #################################################################################################### arr = np.ones((2, 3, 4)) dim0_len = np.shape(arr)[0] dim1_len = np.shape(arr)[1] print("axis=0") for dim0 in range(dim0_len): print(np.shape(arr[dim0])) print("\naxis=1") for dim1 in range(dim1_len): print(np.shape(arr[:, dim1])) print("\naxis=(0, 1)") for dim0 in range(dim0_len): for dim1 in range(dim1_len): print(np.shape(arr[dim0, dim1])) #################################################################################################### # # Example 2. 3D Array (n_channels, n_epochs, n_timepoints) # -------------------------------------------------------- # The features from a 3d array of (n_channels, n_epochs, n_timepoints) will be computed here. # Bursting frequencies and rise-decay symmetry will be modulated across channels and epochs, # respectively. The bursting frequencies and rise-decay symmetries will then be compared between # the simulated parameters and bycycle's caculation. #################################################################################################### # Simulation settings n_seconds = 10 fs = 500 f_range = (5, 15) n_channels = 5 n_epochs = 10 # Define rdsym values for rest and task trials rdsym_rest = 0.5 rdsym_task = 0.75 #################################################################################################### # Simulate a 3d timeseries sim_components_rest = {'sim_powerlaw': dict(exponent=-2), 'sim_bursty_oscillation': dict(cycle='asine', rdsym=rdsym_rest)} sim_components_task = {'sim_powerlaw': dict(exponent=-2), 'sim_bursty_oscillation': dict(cycle='asine', rdsym=rdsym_task)} sigs_rest = np.zeros((n_channels, n_epochs, n_seconds*fs)) sigs_task = np.zeros((n_channels, n_epochs, n_seconds*fs)) freqs = np.linspace(5, 45, 5) for ch_idx, freq in zip(range(n_channels), freqs): sim_components_rest['sim_bursty_oscillation']['freq'] = freq sim_components_task['sim_bursty_oscillation']['freq'] = freq for ep_idx in range(n_epochs): sigs_task[ch_idx][ep_idx] = sim_combined(n_seconds, fs, components=sim_components_task) sigs_rest[ch_idx][ep_idx] = sim_combined(n_seconds, fs, components=sim_components_rest) #################################################################################################### # Compute features with an higher than default period consistency threshold. # This allows for more accurate estimates of burst frequency. thresholds = dict(amp_fraction_threshold=0., amp_consistency_threshold=.5, period_consistency_threshold=.9, monotonicity_threshold=.6, min_n_cycles=3) compute_kwargs = {'burst_method': 'cycles', 'threshold_kwargs': thresholds} dfs_rest = compute_features_3d(sigs_rest, fs, (1, 50), axis=0, compute_features_kwargs=compute_kwargs) dfs_task = compute_features_3d(sigs_task, fs, (1, 50), axis=0, compute_features_kwargs=compute_kwargs) #################################################################################################### # Merge epochs into a single dataframe df_rest = flatten_dfs(dfs_rest, ['rest'] * n_channels * n_epochs, 'Epoch') df_task = flatten_dfs(dfs_task, ['task'] * n_channels * n_epochs, 'Epoch') df_epochs = pd.concat([df_rest, df_task], axis=0) # Merge channels into a single dataframe ch_labels = ["CH{ch_idx}".format(ch_idx=ch_idx) for ch_idx in range(n_channels) for ep_idx in range(n_epochs)] df_channels = flatten_dfs(np.vstack([dfs_rest, dfs_task]), ch_labels * 2, 'Channel') # Limit to bursts df_epochs = df_epochs[df_epochs['is_burst'] == True] df_channels = df_channels[df_channels['is_burst'] == True] #################################################################################################### # Plot estimated frequency df_channels['freqs'] = fs / df_channels['period'].values plot_feature_categorical(df_channels, 'freqs', 'Channel', ylabel='Burst Frequency', xlabel=['CH00', 'CH01', 'CH02', 'CH03', 'CH04']) #################################################################################################### # Compare estimated frequency to simulatated frequency freqs_est = df_channels.groupby('Channel').mean()['freqs'].values df_freqs = pd.DataFrame() df_freqs['Channel'] = ['CH_0{idx}'.format(idx=idx) for idx in range(n_channels)] df_freqs['Simulated Freqs'] = freqs df_freqs['Calculated Freqs'] = freqs_est df_freqs['Error'] = np.abs(freqs - freqs_est) df_freqs #################################################################################################### # See how well bycycle estimated each bursting cycle's rise-decay symmetry within epochs rdsym_rest = df_epochs[df_epochs['Epoch'] == 'rest']['time_rdsym'].mean() rdsym_task = df_epochs[df_epochs['Epoch'] == 'task']['time_rdsym'].mean() df_rdsym =
pd.DataFrame()
pandas.DataFrame
import calendar from datetime import date, datetime, time import locale import unicodedata import numpy as np import pytest import pytz from pandas._libs.tslibs.timezones import maybe_get_tz from pandas.core.dtypes.common import is_integer_dtype, is_list_like import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, PeriodIndex, Series, TimedeltaIndex, bdate_range, date_range, period_range, timedelta_range) from pandas.core.arrays import PeriodArray import pandas.core.common as com import pandas.util.testing as tm from pandas.util.testing import assert_series_equal class TestSeriesDatetimeValues: def test_dt_namespace_accessor(self): # GH 7207, 11128 # test .dt namespace accessor ok_for_period = PeriodArray._datetimelike_ops ok_for_period_methods = ['strftime', 'to_timestamp', 'asfreq'] ok_for_dt = DatetimeIndex._datetimelike_ops ok_for_dt_methods = ['to_period', 'to_pydatetime', 'tz_localize', 'tz_convert', 'normalize', 'strftime', 'round', 'floor', 'ceil', 'day_name', 'month_name'] ok_for_td = TimedeltaIndex._datetimelike_ops ok_for_td_methods = ['components', 'to_pytimedelta', 'total_seconds', 'round', 'floor', 'ceil'] def get_expected(s, name): result = getattr(Index(s._values), prop) if isinstance(result, np.ndarray): if is_integer_dtype(result): result = result.astype('int64') elif not is_list_like(result): return result return Series(result, index=s.index, name=s.name) def compare(s, name): a = getattr(s.dt, prop) b = get_expected(s, prop) if not (is_list_like(a) and is_list_like(b)): assert a == b else: tm.assert_series_equal(a, b) # datetimeindex cases = [Series(
date_range('20130101', periods=5)
pandas.date_range
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion from itertools import product import unittest import pandas as pd import numpy as np import pyspark from databricks import koalas as ks from databricks.koalas.config import set_option, reset_option from databricks.koalas.frame import DataFrame from databricks.koalas.testing.utils import ReusedSQLTestCase, SQLTestUtils from databricks.koalas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) class OpsOnDiffFramesEnabledTest(ReusedSQLTestCase, SQLTestUtils): @classmethod def setUpClass(cls): super().setUpClass() set_option("compute.ops_on_diff_frames", True) @classmethod def tearDownClass(cls): reset_option("compute.ops_on_diff_frames") super().tearDownClass() @property def pdf1(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=[0, 1, 3, 5, 6, 8, 9, 10, 11], ) @property def pdf2(self): return pd.DataFrame( {"a": [9, 8, 7, 6, 5, 4, 3, 2, 1], "b": [0, 0, 0, 4, 5, 6, 1, 2, 3]}, index=list(range(9)), ) @property def pdf3(self): return pd.DataFrame( {"b": [1, 1, 1, 1, 1, 1, 1, 1, 1], "c": [1, 1, 1, 1, 1, 1, 1, 1, 1]}, index=list(range(9)), ) @property def pdf4(self): return pd.DataFrame( {"e": [2, 2, 2, 2, 2, 2, 2, 2, 2], "f": [2, 2, 2, 2, 2, 2, 2, 2, 2]}, index=list(range(9)), ) @property def pdf5(self): return pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0], "c": [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 10, 11], ).set_index(["a", "b"]) @property def pdf6(self): return pd.DataFrame( { "a": [9, 8, 7, 6, 5, 4, 3, 2, 1], "b": [0, 0, 0, 4, 5, 6, 1, 2, 3], "c": [9, 8, 7, 6, 5, 4, 3, 2, 1], "e": [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=list(range(9)), ).set_index(["a", "b"]) @property def pser1(self): midx = pd.MultiIndex( [["lama", "cow", "falcon", "koala"], ["speed", "weight", "length", "power"]], [[0, 3, 1, 1, 1, 2, 2, 2], [0, 2, 0, 3, 2, 0, 1, 3]], ) return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1], index=midx) @property def pser2(self): midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) return pd.Series([-45, 200, -1.2, 30, -250, 1.5, 320, 1, -0.3], index=midx) @property def pser3(self): midx = pd.MultiIndex( [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [1, 1, 2, 0, 0, 2, 2, 2, 1]], ) return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) @property def kdf1(self): return ks.from_pandas(self.pdf1) @property def kdf2(self): return ks.from_pandas(self.pdf2) @property def kdf3(self): return ks.from_pandas(self.pdf3) @property def kdf4(self): return ks.from_pandas(self.pdf4) @property def kdf5(self): return ks.from_pandas(self.pdf5) @property def kdf6(self): return ks.from_pandas(self.pdf6) @property def kser1(self): return ks.from_pandas(self.pser1) @property def kser2(self): return ks.from_pandas(self.pser2) @property def kser3(self): return ks.from_pandas(self.pser3) def test_ranges(self): self.assert_eq( (ks.range(10) + ks.range(10)).sort_index(), ( ks.DataFrame({"id": list(range(10))}) + ks.DataFrame({"id": list(range(10))}) ).sort_index(), ) def test_no_matched_index(self): with self.assertRaisesRegex(ValueError, "Index names must be exactly matched"): ks.DataFrame({"a": [1, 2, 3]}).set_index("a") + ks.DataFrame( {"b": [1, 2, 3]} ).set_index("b") def test_arithmetic(self): self._test_arithmetic_frame(self.pdf1, self.pdf2, check_extension=False) self._test_arithmetic_series(self.pser1, self.pser2, check_extension=False) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_arithmetic_extension_dtypes(self): self._test_arithmetic_frame( self.pdf1.astype("Int64"), self.pdf2.astype("Int64"), check_extension=True ) self._test_arithmetic_series( self.pser1.astype(int).astype("Int64"), self.pser2.astype(int).astype("Int64"), check_extension=True, ) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_arithmetic_extension_float_dtypes(self): self._test_arithmetic_frame( self.pdf1.astype("Float64"), self.pdf2.astype("Float64"), check_extension=True ) self._test_arithmetic_series( self.pser1.astype("Float64"), self.pser2.astype("Float64"), check_extension=True ) def _test_arithmetic_frame(self, pdf1, pdf2, *, check_extension): kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: if isinstance(actual, DataFrame): for dtype in actual.dtypes: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # Series assert_eq((kdf1.a - kdf2.b).sort_index(), (pdf1.a - pdf2.b).sort_index()) assert_eq((kdf1.a * kdf2.a).sort_index(), (pdf1.a * pdf2.a).sort_index()) if check_extension and not extension_float_dtypes_available: self.assert_eq( (kdf1["a"] / kdf2["a"]).sort_index(), (pdf1["a"] / pdf2["a"]).sort_index() ) else: assert_eq((kdf1["a"] / kdf2["a"]).sort_index(), (pdf1["a"] / pdf2["a"]).sort_index()) # DataFrame assert_eq((kdf1 + kdf2).sort_index(), (pdf1 + pdf2).sort_index()) # Multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf1.columns = columns kdf2.columns = columns pdf1.columns = columns pdf2.columns = columns # Series assert_eq( (kdf1[("x", "a")] - kdf2[("x", "b")]).sort_index(), (pdf1[("x", "a")] - pdf2[("x", "b")]).sort_index(), ) assert_eq( (kdf1[("x", "a")] - kdf2["x"]["b"]).sort_index(), (pdf1[("x", "a")] - pdf2["x"]["b"]).sort_index(), ) assert_eq( (kdf1["x"]["a"] - kdf2[("x", "b")]).sort_index(), (pdf1["x"]["a"] - pdf2[("x", "b")]).sort_index(), ) # DataFrame assert_eq((kdf1 + kdf2).sort_index(), (pdf1 + pdf2).sort_index()) def _test_arithmetic_series(self, pser1, pser2, *, check_extension): kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # MultiIndex Series assert_eq((kser1 + kser2).sort_index(), (pser1 + pser2).sort_index()) assert_eq((kser1 - kser2).sort_index(), (pser1 - pser2).sort_index()) assert_eq((kser1 * kser2).sort_index(), (pser1 * pser2).sort_index()) if check_extension and not extension_float_dtypes_available: self.assert_eq((kser1 / kser2).sort_index(), (pser1 / pser2).sort_index()) else: assert_eq((kser1 / kser2).sort_index(), (pser1 / pser2).sort_index()) def test_arithmetic_chain(self): self._test_arithmetic_chain_frame(self.pdf1, self.pdf2, self.pdf3, check_extension=False) self._test_arithmetic_chain_series( self.pser1, self.pser2, self.pser3, check_extension=False ) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_arithmetic_chain_extension_dtypes(self): self._test_arithmetic_chain_frame( self.pdf1.astype("Int64"), self.pdf2.astype("Int64"), self.pdf3.astype("Int64"), check_extension=True, ) self._test_arithmetic_chain_series( self.pser1.astype(int).astype("Int64"), self.pser2.astype(int).astype("Int64"), self.pser3.astype(int).astype("Int64"), check_extension=True, ) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_arithmetic_chain_extension_float_dtypes(self): self._test_arithmetic_chain_frame( self.pdf1.astype("Float64"), self.pdf2.astype("Float64"), self.pdf3.astype("Float64"), check_extension=True, ) self._test_arithmetic_chain_series( self.pser1.astype("Float64"), self.pser2.astype("Float64"), self.pser3.astype("Float64"), check_extension=True, ) def _test_arithmetic_chain_frame(self, pdf1, pdf2, pdf3, *, check_extension): kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) kdf3 = ks.from_pandas(pdf3) common_columns = set(kdf1.columns).intersection(kdf2.columns).intersection(kdf3.columns) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: if isinstance(actual, DataFrame): for column, dtype in zip(actual.columns, actual.dtypes): if column in common_columns: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assertFalse(isinstance(dtype, extension_dtypes)) else: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # Series assert_eq((kdf1.a - kdf2.b - kdf3.c).sort_index(), (pdf1.a - pdf2.b - pdf3.c).sort_index()) assert_eq( (kdf1.a * (kdf2.a * kdf3.c)).sort_index(), (pdf1.a * (pdf2.a * pdf3.c)).sort_index() ) if check_extension and not extension_float_dtypes_available: self.assert_eq( (kdf1["a"] / kdf2["a"] / kdf3["c"]).sort_index(), (pdf1["a"] / pdf2["a"] / pdf3["c"]).sort_index(), ) else: assert_eq( (kdf1["a"] / kdf2["a"] / kdf3["c"]).sort_index(), (pdf1["a"] / pdf2["a"] / pdf3["c"]).sort_index(), ) # DataFrame if check_extension and ( LooseVersion("1.0") <= LooseVersion(pd.__version__) < LooseVersion("1.1") ): self.assert_eq( (kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index(), almost=True ) else: assert_eq((kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index()) # Multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf1.columns = columns kdf2.columns = columns pdf1.columns = columns pdf2.columns = columns columns = pd.MultiIndex.from_tuples([("x", "b"), ("y", "c")]) kdf3.columns = columns pdf3.columns = columns common_columns = set(kdf1.columns).intersection(kdf2.columns).intersection(kdf3.columns) # Series assert_eq( (kdf1[("x", "a")] - kdf2[("x", "b")] - kdf3[("y", "c")]).sort_index(), (pdf1[("x", "a")] - pdf2[("x", "b")] - pdf3[("y", "c")]).sort_index(), ) assert_eq( (kdf1[("x", "a")] * (kdf2[("x", "b")] * kdf3[("y", "c")])).sort_index(), (pdf1[("x", "a")] * (pdf2[("x", "b")] * pdf3[("y", "c")])).sort_index(), ) # DataFrame if check_extension and ( LooseVersion("1.0") <= LooseVersion(pd.__version__) < LooseVersion("1.1") ): self.assert_eq( (kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index(), almost=True ) else: assert_eq((kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index()) def _test_arithmetic_chain_series(self, pser1, pser2, pser3, *, check_extension): kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) kser3 = ks.from_pandas(pser3) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # MultiIndex Series assert_eq((kser1 + kser2 - kser3).sort_index(), (pser1 + pser2 - pser3).sort_index()) assert_eq((kser1 * kser2 * kser3).sort_index(), (pser1 * pser2 * pser3).sort_index()) if check_extension and not extension_float_dtypes_available: if LooseVersion(pd.__version__) >= LooseVersion("1.0"): self.assert_eq( (kser1 - kser2 / kser3).sort_index(), (pser1 - pser2 / pser3).sort_index() ) else: expected = pd.Series( [249.0, np.nan, 0.0, 0.88, np.nan, np.nan, np.nan, np.nan, np.nan, -np.inf] + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], index=pd.MultiIndex( [ ["cow", "falcon", "koala", "koalas", "lama"], ["length", "power", "speed", "weight"], ], [ [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4], [0, 1, 2, 2, 3, 0, 0, 1, 2, 3, 0, 0, 3, 3, 0, 2, 3], ], ), ) self.assert_eq((kser1 - kser2 / kser3).sort_index(), expected) else: assert_eq((kser1 - kser2 / kser3).sort_index(), (pser1 - pser2 / pser3).sort_index()) assert_eq((kser1 + kser2 * kser3).sort_index(), (pser1 + pser2 * pser3).sort_index()) def test_mod(self): pser = pd.Series([100, None, -300, None, 500, -700]) pser_other = pd.Series([-150] * 6) kser = ks.from_pandas(pser) kser_other = ks.from_pandas(pser_other) self.assert_eq(kser.mod(kser_other).sort_index(), pser.mod(pser_other)) self.assert_eq(kser.mod(kser_other).sort_index(), pser.mod(pser_other)) self.assert_eq(kser.mod(kser_other).sort_index(), pser.mod(pser_other)) def test_rmod(self): pser = pd.Series([100, None, -300, None, 500, -700]) pser_other = pd.Series([-150] * 6) kser = ks.from_pandas(pser) kser_other = ks.from_pandas(pser_other) self.assert_eq(kser.rmod(kser_other).sort_index(), pser.rmod(pser_other)) self.assert_eq(kser.rmod(kser_other).sort_index(), pser.rmod(pser_other)) self.assert_eq(kser.rmod(kser_other).sort_index(), pser.rmod(pser_other)) def test_getitem_boolean_series(self): pdf1 = pd.DataFrame( {"A": [0, 1, 2, 3, 4], "B": [100, 200, 300, 400, 500]}, index=[20, 10, 30, 0, 50] ) pdf2 = pd.DataFrame( {"A": [0, -1, -2, -3, -4], "B": [-100, -200, -300, -400, -500]}, index=[0, 30, 10, 20, 50], ) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) self.assert_eq(pdf1[pdf2.A > -3].sort_index(), kdf1[kdf2.A > -3].sort_index()) self.assert_eq(pdf1.A[pdf2.A > -3].sort_index(), kdf1.A[kdf2.A > -3].sort_index()) self.assert_eq( (pdf1.A + 1)[pdf2.A > -3].sort_index(), (kdf1.A + 1)[kdf2.A > -3].sort_index() ) def test_loc_getitem_boolean_series(self): pdf1 = pd.DataFrame( {"A": [0, 1, 2, 3, 4], "B": [100, 200, 300, 400, 500]}, index=[20, 10, 30, 0, 50] ) pdf2 = pd.DataFrame( {"A": [0, -1, -2, -3, -4], "B": [-100, -200, -300, -400, -500]}, index=[20, 10, 30, 0, 50], ) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) self.assert_eq(pdf1.loc[pdf2.A > -3].sort_index(), kdf1.loc[kdf2.A > -3].sort_index()) self.assert_eq(pdf1.A.loc[pdf2.A > -3].sort_index(), kdf1.A.loc[kdf2.A > -3].sort_index()) self.assert_eq( (pdf1.A + 1).loc[pdf2.A > -3].sort_index(), (kdf1.A + 1).loc[kdf2.A > -3].sort_index() ) def test_bitwise(self): pser1 = pd.Series([True, False, True, False, np.nan, np.nan, True, False, np.nan]) pser2 =
pd.Series([True, False, False, True, True, False, np.nan, np.nan, np.nan])
pandas.Series
from clean2 import* import pandas as pd import matplotlib.pyplot as plt import math import datetime import time def main(): loop_set=[3,5] set3=[] #labels scaled at different window sizes set4=[] #labels without scaling for i in range(0,len(loop_set)): set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'0']) set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'1']) set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'2']) set4.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])]) data_window=pd.DataFrame() data_window_labels=pd.DataFrame() final_data=pd.DataFrame() predictors_1=pd.DataFrame() predictors=pd.DataFrame() predictors_final=pd.DataFrame() data_copy_labels=pd.DataFrame() data_predict=pd.DataFrame() close_win=pd.DataFrame() data=pd.DataFrame() data_copy=pd.DataFrame() labe_train=
pd.DataFrame()
pandas.DataFrame
import datetime import pandas as pd singleton = None def convert_receipt(receipt, contract_balance, block_info): dict_receipt = dict(receipt) new_dict = {"contract_balance" : str(contract_balance)} receipt_include = ["transactionHash", "from", "to", "gasUsed"] block_include = ["timestamp"] ## convert timestamp # copy only key:value pairs from receipt_include into new_dict (for loop) for key in receipt_include: new_dict[key] = receipt[key] # copy only key, value pairs from block_include into new_dict (for loop) for key in block_include: new_dict[key] = block_info[key] # do timestamp conversion from line 7 new_dict["timestamp"] = datetime.datetime.utcfromtimestamp(new_dict["timestamp"]) new_dict["transactionHash"] = new_dict["transactionHash"].hex() return new_dict def add_block(receipt, contract_balance, block_info): global singleton dict_receipt = convert_receipt(receipt, contract_balance, block_info) if not singleton: singleton = {} for key in dict_receipt.keys(): singleton[key] = [] for key, value in dict_receipt.items(): singleton[key].insert(0, value) return singleton def get_receipts(): if not singleton: return "There are no receipts to display." return singleton # Display the information on the webpage def update_block_chain_df(receipt, w3): # st.write("Transaction receipt mined:") dict_receipt = dict(receipt) contract_address = dict_receipt["to"] # Access the balance of an account using the address contract_balance = w3.eth.get_balance(contract_address) # st.write(contract_balance) # Access information for the most recent block block_info = w3.eth.get_block("latest") # st.write(dict(block_info)) # calls receipt to add block add_block(receipt, contract_balance, block_info) block_chain = get_receipts() # st.write(block_chain) block_chain_df =
pd.DataFrame.from_dict(block_chain)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd from domain.rastrigin.rastrigin_Categorize import rastrigin_Categorize from domain.cube.cube_Categorize import cube_Categorize from domain.wheelcase.wheelcase_Categorize import wheelcase_Categorize # param: maximize indicates whether to search for max. fitness or not (min search) def getBestPerCell(samples,fitness,d,edges): def feval(funcName,*args): return eval(funcName)(*args) fitness = pd.DataFrame(data=fitness) # print("samples") # print(samples) # print("fitness") # print(fitness) # print("edges") # print(edges) # Get features of all samples feature = feval(d.categorize, samples, d) # print("feature") # print(feature) # print("feature") # print(feature) for iDim in range(0,d.nDims): if ("df_bin" in locals()): df_add = pd.DataFrame(data=np.digitize(feature.iloc[:,iDim], edges[iDim])) df_bin = pd.concat([df_bin,df_add], axis=1) else: df_bin = pd.DataFrame(data=np.digitize(feature.iloc[:,iDim], edges[iDim])) # bin[:][iDim] = np.digitize(feature.iloc[:,iDim], edges[iDim]) # print("df_bin") # print(df_bin) # df_bin = pd.DataFrame(data=bin) fitness = pd.DataFrame(data=fitness) # print("fitness") # print(fitness) # a = df_bin.append(fitness.iloc[0], ignore_index=True) a = pd.concat([df_bin, fitness], axis=1) a.columns = range(a.shape[1]) # print("a") # print(a) sortedByFeatureAndFitness = a.sort_values(by=[0,1,2]) # print("sortedByFeatureAndFitness") # print(sortedByFeatureAndFitness) indxSortOne = list(sortedByFeatureAndFitness.index.values) # print("indxSortOne") # print(indxSortOne) # sortedByFeatureAndFitness.reset_index(drop=True, inplace=True) # if (maximize): df_drop_dupl = sortedByFeatureAndFitness.drop_duplicates(subset=[0,1], keep='first') # else: # df_drop_dupl = sortedByFeatureAndFitness.drop_duplicates(subset=[0,1], keep='last') indxSortTwo = list(df_drop_dupl.index.values) # print("indxSortTwo") # print(indxSortTwo) bestIndex = indxSortTwo # print("bestIndex") # print(bestIndex) # print("df_bin") # print(df_bin) bestBin =
pd.DataFrame(data=df_bin.iloc[bestIndex,:])
pandas.DataFrame
import sys import numpy as np import pandas as pd import json import os from joblib import Parallel, delayed from gtad_lib import opts thumos_class = { 7 : 'BaseballPitch', 9 : 'BasketballDunk', 12: 'Billiards', 21: 'CleanAndJerk', 22: 'CliffDiving', 23: 'CricketBowling', 24: 'CricketShot', 26: 'Diving', 31: 'FrisbeeCatch', 33: 'GolfSwing', 36: 'HammerThrow', 40: 'HighJump', 45: 'JavelinThrow', 51: 'LongJump', 68: 'PoleVault', 79: 'Shotput', 85: 'SoccerPenalty', 92: 'TennisSwing', 93: 'ThrowDiscus', 97: 'VolleyballSpiking', } def IOU(s1, e1, s2, e2): if (s2 > e1) or (s1 > e2): return 0 Aor = max(e1, e2) - min(s1, s2) Aand = min(e1, e2) - max(s1, s2) return float(Aand) / Aor def Soft_NMS(df, nms_threshold=1e-5, num_prop=200): ''' From BSN code :param df: :param nms_threshold: :return: ''' df = df.sort_values(by="score", ascending=False) tstart = list(df.xmin.values[:]) tend = list(df.xmax.values[:]) tscore = list(df.score.values[:]) rstart = [] rend = [] rscore = [] # frost: I use a trick here, remove the detection XDD # which is longer than 300 for idx in range(0, len(tscore)): if tend[idx] - tstart[idx] >= 300: tscore[idx] = 0 while len(tscore) > 1 and len(rscore) < num_prop and max(tscore)>0: max_index = tscore.index(max(tscore)) for idx in range(0, len(tscore)): if idx != max_index: tmp_iou = IOU(tstart[max_index], tend[max_index], tstart[idx], tend[idx]) if tmp_iou > 0: tscore[idx] = tscore[idx] * np.exp(-np.square(tmp_iou) / nms_threshold) rstart.append(tstart[max_index]) rend.append(tend[max_index]) rscore.append(tscore[max_index]) tstart.pop(max_index) tend.pop(max_index) tscore.pop(max_index) newDf =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import dash from dash.dependencies import Input, Output, State, MATCH, ALL import dash_core_components as dcc import dash_html_components as html from dash.exceptions import PreventUpdate import dash_bootstrap_components as dbc import dash_table import plotly.graph_objs as go from threading import Thread import queue import serial import serial.tools.list_ports import time from pathlib import Path import json import sqlite3 from datetime import datetime # globals... yuk FILE_DIR = '' APP_ID = 'serial_data' Q = queue.Queue() SERIAL_THREAD = None class SerialThread(Thread): def __init__(self, port, baud=115200): super().__init__() self.port = port self._isRunning = True self.ser_obj = serial.Serial(port=port, baudrate=baud, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, timeout=None) def run(self): while self._isRunning: try: while self.ser_obj.in_waiting > 2: try: line = self.ser_obj.readline() split_line = line.strip().decode("utf-8") Q.put(split_line) except: continue except: continue def stop(self): self._isRunning = False time.sleep(0.25) self.ser_obj.close() return None # layout layout = dbc.Container([ dbc.Row( dbc.Col([ dcc.Store(id=f'{APP_ID}_store'), dcc.Interval(id=f'{APP_ID}_interval', interval=2000, n_intervals=0, disabled=True), html.H2('Serial Data Plotter'), html.P('This tests plotting data from serial (arduino) using a background thread to collect the data and send it to a queue. ' 'Data is retrieved from the queue and stored in the browser as well as written to a file') ]) ), dbc.Row([ dbc.Col( dbc.FormGroup([ dbc.Button('COM Ports (refresh)', id=f'{APP_ID}_com_button'), dcc.Dropdown(id=f'{APP_ID}_com_dropdown', placeholder='Select COM port', options=[], multi=False), dbc.Textarea(id=f'{APP_ID}_com_desc_label', disabled=True ) ]), width=4 ), dbc.Col( dbc.FormGroup([ dbc.Label('Headers'), dbc.Button('Initialize Headers', id=f'{APP_ID}_init_header_button', block=True), dash_table.DataTable( id=f'{APP_ID}_header_dt', columns=[ {"name": 'Position', "id": 'pos', "type": 'numeric', 'editable': False}, {"name": 'Name', "id": 'name', "type": 'text', 'editable': False}, {"name": 'Format', "id": 'fmt', "type": 'text', "presentation": 'dropdown'} ], data=None, editable=True, row_deletable=False, dropdown={ 'fmt': { 'options': [ {'label': i, 'value': i} for i in ['text', 'real', 'integer'] ], }, } ), ]), width=4 ), ]), dbc.Row( dbc.Col([ dbc.Toast( children=[], id=f'{APP_ID}_header_toast', header="Initialize Headers", icon="danger", dismissable=True, is_open=False ), ], width="auto" ), ), dbc.Row([ dbc.Col( dbc.FormGroup([ dbc.Label('Filename'), dbc.Input(placeholder='filename', id=f'{APP_ID}_filename_input', type='text', value=f'data/my_data_{datetime.now().strftime("%m.%d.%Y.%H.%M.%S")}.db') ]) ) ]), dbc.ButtonGroup([ dbc.Button('Start', id=f'{APP_ID}_start_button', n_clicks=0, disabled=True, size='lg', color='secondary'), dbc.Button('Stop', id=f'{APP_ID}_stop_button', n_clicks=0, disabled=True, size='lg', color='secondary'), dbc.Button('Clear', id=f'{APP_ID}_clear_button', n_clicks=0, disabled=True, size='lg'), dbc.Button('Download Data', id=f'{APP_ID}_download_button', n_clicks=0, disabled=True, size='lg'), ], className='mt-2 mb-2' ), html.H2('Data Readouts'), dcc.Dropdown( id=f'{APP_ID}_readouts_dropdown', multi=True, options=[], value=None ), dbc.CardDeck( id=f'{APP_ID}_readouts_card_deck' ), html.H2('Data Plots', className='mt-2 mb-1'), dbc.ButtonGroup([ dbc.Button("Add Plot", id=f'{APP_ID}_add_figure_button'), dbc.Button("Remove Plot", id=f'{APP_ID}_remove_figure_button'), ]), html.Div( id=f'{APP_ID}_figure_div' ), ]) def add_dash(app): @app.callback( [Output(f'{APP_ID}_header_dt', 'data'), Output(f'{APP_ID}_header_toast', 'children'), Output(f'{APP_ID}_header_toast', 'is_open'), ], [Input(f'{APP_ID}_init_header_button', 'n_clicks')], [State(f'{APP_ID}_com_dropdown', 'value')] ) def serial_data_init_header(n_clicks, com): if n_clicks is None or com is None: raise PreventUpdate baud = 115200 try: ser_obj = serial.Serial(port=com, baudrate=baud, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, timeout=10) split_line = '_' while split_line[0] != '{': line = ser_obj.readline() split_line = line.strip().decode("utf-8") split_line = line.strip().decode("utf-8") jdic = json.loads(split_line) data = [{'pos': i, 'name': k} for i, k in enumerate(jdic.keys())] for i, k in enumerate(jdic.keys()): if isinstance(jdic[k], int): data[i].update({'fmt': 'integer'}) elif isinstance(jdic[k], float): data[i].update({'fmt': 'real'}) else: data[i].update({'fmt': 'text'}) ser_obj.close() return data, '', False except Exception as e: return [{}], html.P(str(e)), True return data, '', False @app.callback( Output(f'{APP_ID}_com_dropdown', 'options'), [Input(f'{APP_ID}_com_button', 'n_clicks')] ) def serial_data_refresh_com_ports(n_clicks): if n_clicks is None: raise PreventUpdate ports = [{'label': comport.device, 'value': comport.device} for comport in serial.tools.list_ports.comports()] return ports @app.callback( Output(f'{APP_ID}_com_desc_label', 'value'), [Input(f'{APP_ID}_com_dropdown', 'value')] ) def serial_data_com_desc(com): if com is None: raise PreventUpdate ports = [comport.device for comport in serial.tools.list_ports.comports()] idx = ports.index(com) descs = [comport.description for comport in serial.tools.list_ports.comports()] return descs[idx] @app.callback( [ Output(f'{APP_ID}_interval', 'disabled'), Output(f'{APP_ID}_start_button', 'disabled'), Output(f'{APP_ID}_start_button', 'color'), Output(f'{APP_ID}_stop_button', 'disabled'), Output(f'{APP_ID}_stop_button', 'color'), Output(f'{APP_ID}_clear_button', 'disabled'), Output(f'{APP_ID}_clear_button', 'color'), Output(f'{APP_ID}_filename_input', 'disabled'), Output(f'{APP_ID}_filename_input', 'value'), Output(f'{APP_ID}_header_dt', 'editable'), Output(f'{APP_ID}_store', 'clear_data'), ], [ Input(f'{APP_ID}_start_button', 'n_clicks'), Input(f'{APP_ID}_stop_button', 'n_clicks'), Input(f'{APP_ID}_clear_button', 'n_clicks'), Input(f'{APP_ID}_header_dt', 'data'), ], [ State(f'{APP_ID}_com_dropdown', 'value'), State(f'{APP_ID}_filename_input', 'value'), State(f'{APP_ID}_header_dt', 'data') ] ) def serial_data_start_stop(n_start, n_stop, n_clear, hdr_data, port, filename, data_header): global SERIAL_THREAD global Q ctx = dash.callback_context if any([n_start is None, n_stop is None, port is None, hdr_data is None, n_clear is None]): raise PreventUpdate if pd.DataFrame(hdr_data).empty: raise PreventUpdate df_hdr = pd.DataFrame(data_header).sort_values('pos') df_hdr['name'] = df_hdr['name'].fillna(df_hdr['pos'].astype(str)) headers = df_hdr['name'].tolist() trig = ctx.triggered[0]['prop_id'].split('.')[0] if trig == f'{APP_ID}_header_dt': if len(data_header[0].keys()) == 3 and ~df_hdr.isnull().values.any(): return True, False, 'success', True, 'secondary', True, 'secondary', False, filename, True, False else: return True, True, 'secondary', True, 'secondary', True, 'secondary', False, filename, True, False if trig == f'{APP_ID}_start_button': print(f'starting: {filename}') if filename is None or filename == '': filename = f'data/my_data_{datetime.now().strftime("%m.%d.%Y.%H.%M.%S")}.db' if (Path(FILE_DIR) / filename).exists(): clear = False else: clear = True SERIAL_THREAD = SerialThread(port, baud=115200) SERIAL_THREAD.start() return False, True, 'secondary', False, 'danger', True, 'secondary', True, filename, False, clear if trig == f'{APP_ID}_stop_button': print('stopping') SERIAL_THREAD.stop() with Q.mutex: Q.queue.clear() return True, False, 'success', True, 'secondary', False, 'warning', False, filename, True, False if trig == f'{APP_ID}_clear_button': print('clearing') filename = f'data/my_data_{datetime.now().strftime("%m.%d.%Y.%H.%M.%S")}.db' return True, False, 'success', True, 'secondary', True, 'secondary', False, filename, True, True @app.callback( Output(f'{APP_ID}_store', 'data'), [Input(f'{APP_ID}_interval', 'n_intervals')], [State(f'{APP_ID}_interval', 'disabled'), State(f'{APP_ID}_store', 'data'), State(f'{APP_ID}_filename_input', 'value'), State(f'{APP_ID}_header_dt', 'data') ] ) def serial_data_update_store(n_intervals, disabled, data, filename, data_header): global Q # get data from queue if disabled is not None and not disabled: new_data = [] while not Q.empty(): new_data_dic = json.loads(Q.get()) new_data.append(tuple((new_data_dic[c["name"]] for c in data_header if c["name"] in new_data_dic.keys()))) conn = sqlite3.connect(FILE_DIR + filename) c = conn.cursor() c.execute(''' SELECT count(name) FROM sqlite_master WHERE type='table' AND name='my_data' ''') if c.fetchone()[0] == 1: c.executemany(f'INSERT INTO my_data VALUES ({(",".join(["?"] * len(data_header)) )})', new_data) conn.commit() last_row_id = c.execute("SELECT COUNT() FROM my_data").fetchone()[0] conn.close() else: c.execute( f'''CREATE TABLE my_data (''' + ', '.join([f'{hdr["name"]} {hdr["fmt"]}' for hdr in data_header]) + ')' ) c.executemany(f'INSERT INTO my_data VALUES ({(",".join(["?"] * len(data_header)) )})', new_data) conn.commit() last_row_id = c.execute("SELECT COUNT() FROM my_data").fetchone()[0] conn.close() return last_row_id @app.callback( Output(f'{APP_ID}_readouts_dropdown', 'options'), Input(f'{APP_ID}_header_dt', 'data') ) def serial_data_readout_options(hdr_data): if hdr_data is None: raise PreventUpdate if pd.DataFrame(hdr_data).empty: raise PreventUpdate df_hdr =
pd.DataFrame(hdr_data)
pandas.DataFrame
import pandas as pd import numpy as np import h5py as h5 from typing import Optional, Union import datetime as dt from audata.file import File as AuFile """ Wrapper for the audata File class """ class File (AuFile): def __init__ (self, file: h5.File, time_reference: Optional[dt.datetime] = None, return_datetimes: bool = True): super().__init__(file) def numerics(self, loinc=[], signals=[], time='relative'): print('Show numerics for {}'.format(loinc)) def waveforms(self, loinc=[], signals=[], time='relative'): pass def show_map(self): print(
pd.DataFrame(self['Mapping'].hdf[:])
pandas.DataFrame
import calendar import datetime import warnings import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal from numpy.testing import assert_allclose import pytest from pvlib._deprecation import pvlibDeprecationWarning from pvlib.location import Location from pvlib import solarposition, spa from conftest import (fail_on_pvlib_version, requires_ephem, needs_pandas_0_17, requires_spa_c, requires_numba) # setup times and locations to be tested. times = pd.date_range(start=datetime.datetime(2014, 6, 24), end=datetime.datetime(2014, 6, 26), freq='15Min') tus = Location(32.2, -111, 'US/Arizona', 700) # no DST issues possible times_localized = times.tz_localize(tus.tz) tol = 5 @pytest.fixture() def golden(): return Location(39.742476, -105.1786, 'America/Denver', 1830.14) @pytest.fixture() def golden_mst(): return Location(39.742476, -105.1786, 'MST', 1830.14) @pytest.fixture() def expected_solpos(): return _expected_solpos_df() # hack to make tests work without too much modification while avoiding # pytest 4.0 inability to call features directly def _expected_solpos_df(): return pd.DataFrame({'elevation': 39.872046, 'apparent_zenith': 50.111622, 'azimuth': 194.340241, 'apparent_elevation': 39.888378}, index=['2003-10-17T12:30:30Z']) @pytest.fixture() def expected_solpos_multi(): return pd.DataFrame({'elevation': [39.872046, 39.505196], 'apparent_zenith': [50.111622, 50.478260], 'azimuth': [194.340241, 194.311132], 'apparent_elevation': [39.888378, 39.521740]}, index=['2003-10-17T12:30:30Z', '2003-10-18T12:30:30Z']) @pytest.fixture() def expected_rise_set_spa(): # for Golden, CO, from NREL SPA website times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2), datetime.datetime(2015, 8, 2), ]).tz_localize('MST') sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 7, 21, 55), datetime.datetime(2015, 8, 2, 5, 0, 27) ]).tz_localize('MST').tolist() sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 16, 47, 43), datetime.datetime(2015, 8, 2, 19, 13, 58) ]).tz_localize('MST').tolist() transit = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 12, 4, 45), datetime.datetime(2015, 8, 2, 12, 6, 58) ]).tz_localize('MST').tolist() return pd.DataFrame({'sunrise': sunrise, 'sunset': sunset, 'transit': transit}, index=times) @pytest.fixture() def expected_rise_set_ephem(): # for Golden, CO, from USNO websites times = pd.DatetimeIndex([datetime.datetime(2015, 1, 1), datetime.datetime(2015, 1, 2), datetime.datetime(2015, 1, 3), datetime.datetime(2015, 8, 2), ]).tz_localize('MST') sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 7, 22, 0), datetime.datetime(2015, 1, 2, 7, 22, 0), datetime.datetime(2015, 1, 3, 7, 22, 0), datetime.datetime(2015, 8, 2, 5, 0, 0) ]).tz_localize('MST').tolist() sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 16, 47, 0), datetime.datetime(2015, 1, 2, 16, 48, 0), datetime.datetime(2015, 1, 3, 16, 49, 0), datetime.datetime(2015, 8, 2, 19, 13, 0) ]).tz_localize('MST').tolist() transit = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 12, 4, 0), datetime.datetime(2015, 1, 2, 12, 5, 0), datetime.datetime(2015, 1, 3, 12, 5, 0), datetime.datetime(2015, 8, 2, 12, 7, 0) ]).tz_localize('MST').tolist() return pd.DataFrame({'sunrise': sunrise, 'sunset': sunset, 'transit': transit}, index=times) @fail_on_pvlib_version('0.7') def test_deprecated_07(): tt = pd.DatetimeIndex(['2015-01-01 00:00:00']).tz_localize('MST') with pytest.warns(pvlibDeprecationWarning): solarposition.get_sun_rise_set_transit(tt, 39.7, -105.2) # the physical tests are run at the same time as the NREL SPA test. # pyephem reproduces the NREL result to 2 decimal places. # this doesn't mean that one code is better than the other. @requires_spa_c def test_spa_c_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_c(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @requires_spa_c def test_spa_c_physical_dst(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_c(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_spa_python_numpy_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_python(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy') expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_spa_python_numpy_physical_dst(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_python(times, golden.latitude, golden.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy') expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @needs_pandas_0_17 def test_sun_rise_set_transit_spa(expected_rise_set_spa, golden): # solution from NREL SAP web calculator south = Location(-35.0, 0.0, tz='UTC') times = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 0), datetime.datetime(2004, 12, 4, 0)] ).tz_localize('UTC') sunrise = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 7, 8, 15), datetime.datetime(2004, 12, 4, 4, 38, 57)] ).tz_localize('UTC').tolist() sunset = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 17, 1, 4), datetime.datetime(2004, 12, 4, 19, 2, 3)] ).tz_localize('UTC').tolist() transit = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 12, 4, 36), datetime.datetime(2004, 12, 4, 11, 50, 22)] ).tz_localize('UTC').tolist() frame = pd.DataFrame({'sunrise': sunrise, 'sunset': sunset, 'transit': transit}, index=times) result = solarposition.sun_rise_set_transit_spa(times, south.latitude, south.longitude, delta_t=65.0) result_rounded = pd.DataFrame(index=result.index) # need to iterate because to_datetime does not accept 2D data # the rounding fails on pandas < 0.17 for col, data in result.iteritems(): result_rounded[col] = data.dt.round('1s') assert_frame_equal(frame, result_rounded) # test for Golden, CO compare to NREL SPA result = solarposition.sun_rise_set_transit_spa( expected_rise_set_spa.index, golden.latitude, golden.longitude, delta_t=65.0) # round to nearest minute result_rounded = pd.DataFrame(index=result.index) # need to iterate because to_datetime does not accept 2D data for col, data in result.iteritems(): result_rounded[col] = data.dt.round('s').tz_convert('MST') assert_frame_equal(expected_rise_set_spa, result_rounded) @requires_ephem def test_sun_rise_set_transit_ephem(expected_rise_set_ephem, golden): # test for Golden, CO compare to USNO, using local midnight result = solarposition.sun_rise_set_transit_ephem( expected_rise_set_ephem.index, golden.latitude, golden.longitude, next_or_previous='next', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert('MST') assert_frame_equal(expected_rise_set_ephem, result_rounded) # test next sunrise/sunset with times times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0), datetime.datetime(2015, 1, 2, 10, 15, 0), datetime.datetime(2015, 1, 2, 15, 3, 0), datetime.datetime(2015, 1, 2, 21, 6, 7) ]).tz_localize('MST') expected = pd.DataFrame(index=times, columns=['sunrise', 'sunset'], dtype='datetime64[ns]') expected['sunrise'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise']]) expected['sunset'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunset']]) expected['transit'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'transit']]) result = solarposition.sun_rise_set_transit_ephem(times, golden.latitude, golden.longitude, next_or_previous='next', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert('MST') assert_frame_equal(expected, result_rounded) # test previous sunrise/sunset with times times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0), datetime.datetime(2015, 1, 2, 10, 15, 0), datetime.datetime(2015, 1, 3, 3, 0, 0), datetime.datetime(2015, 1, 3, 13, 6, 7) ]).tz_localize('MST') expected = pd.DataFrame(index=times, columns=['sunrise', 'sunset'], dtype='datetime64[ns]') expected['sunrise'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise']]) expected['sunset'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset']]) expected['transit'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'transit']]) result = solarposition.sun_rise_set_transit_ephem( times, golden.latitude, golden.longitude, next_or_previous='previous', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert('MST') assert_frame_equal(expected, result_rounded) # test with different timezone times = times.tz_convert('UTC') expected = expected.tz_convert('UTC') # resuse result from previous for col, data in expected.iteritems(): expected[col] = data.dt.tz_convert('UTC') result = solarposition.sun_rise_set_transit_ephem( times, golden.latitude, golden.longitude, next_or_previous='previous', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert(times.tz) assert_frame_equal(expected, result_rounded) @requires_ephem def test_sun_rise_set_transit_ephem_error(expected_rise_set_ephem, golden): with pytest.raises(ValueError): solarposition.sun_rise_set_transit_ephem(expected_rise_set_ephem.index, golden.latitude, golden.longitude, next_or_previous='other') tz_naive = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0)]) with pytest.raises(ValueError): solarposition.sun_rise_set_transit_ephem(tz_naive, golden.latitude, golden.longitude, next_or_previous='next') @requires_ephem def test_sun_rise_set_transit_ephem_horizon(golden): times = pd.DatetimeIndex([datetime.datetime(2016, 1, 3, 0, 0, 0) ]).tz_localize('MST') # center of sun disk center = solarposition.sun_rise_set_transit_ephem( times, latitude=golden.latitude, longitude=golden.longitude) edge = solarposition.sun_rise_set_transit_ephem( times, latitude=golden.latitude, longitude=golden.longitude, horizon='-0:34') result_rounded = (edge['sunrise'] - center['sunrise']).dt.round('min') sunrise_delta = datetime.datetime(2016, 1, 3, 7, 17, 11) - \ datetime.datetime(2016, 1, 3, 7, 21, 33) expected = pd.Series(index=times, data=sunrise_delta, name='sunrise').dt.round('min') assert_series_equal(expected, result_rounded) @requires_ephem def test_pyephem_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.pyephem(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos.round(2), ephem_data[expected_solpos.columns].round(2)) @requires_ephem def test_pyephem_physical_dst(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.pyephem(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos.round(2), ephem_data[expected_solpos.columns].round(2)) @requires_ephem def test_calc_time(): import pytz import math # validation from USNO solar position calculator online epoch = datetime.datetime(1970, 1, 1) epoch_dt = pytz.utc.localize(epoch) loc = tus loc.pressure = 0 actual_time = pytz.timezone(loc.tz).localize( datetime.datetime(2014, 10, 10, 8, 30)) lb = pytz.timezone(loc.tz).localize(datetime.datetime(2014, 10, 10, tol)) ub = pytz.timezone(loc.tz).localize(datetime.datetime(2014, 10, 10, 10)) alt = solarposition.calc_time(lb, ub, loc.latitude, loc.longitude, 'alt', math.radians(24.7)) az = solarposition.calc_time(lb, ub, loc.latitude, loc.longitude, 'az', math.radians(116.3)) actual_timestamp = (actual_time - epoch_dt).total_seconds() assert_allclose((alt.replace(second=0, microsecond=0) - epoch_dt).total_seconds(), actual_timestamp) assert_allclose((az.replace(second=0, microsecond=0) - epoch_dt).total_seconds(), actual_timestamp) @requires_ephem def test_earthsun_distance(): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D') distance = solarposition.pyephem_earthsun_distance(times).values[0] assert_allclose(1, distance, atol=0.1) def test_ephemeris_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.ephemeris(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2) assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_ephemeris_physical_dst(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.ephemeris(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2) assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_ephemeris_physical_no_tz(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 19, 30, 30), periods=1, freq='D') ephem_data = solarposition.ephemeris(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2) assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_get_solarposition_error(golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) with pytest.raises(ValueError): solarposition.get_solarposition(times, golden.latitude, golden.longitude, pressure=82000, temperature=11, method='error this') @pytest.mark.parametrize("pressure, expected", [ (82000, _expected_solpos_df()), (90000, pd.DataFrame( np.array([[39.88997, 50.11003, 194.34024, 39.87205, 14.64151, 50.12795]]), columns=['apparent_elevation', 'apparent_zenith', 'azimuth', 'elevation', 'equation_of_time', 'zenith'], index=['2003-10-17T12:30:30Z'])) ]) def test_get_solarposition_pressure(pressure, expected, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.get_solarposition(times, golden.latitude, golden.longitude, pressure=pressure, temperature=11) this_expected = expected.copy() this_expected.index = times this_expected = np.round(this_expected, 5) ephem_data = np.round(ephem_data, 5) assert_frame_equal(this_expected, ephem_data[this_expected.columns]) @pytest.mark.parametrize("altitude, expected", [ (1830.14, _expected_solpos_df()), (2000, pd.DataFrame( np.array([[39.88788, 50.11212, 194.34024, 39.87205, 14.64151, 50.12795]]), columns=['apparent_elevation', 'apparent_zenith', 'azimuth', 'elevation', 'equation_of_time', 'zenith'], index=['2003-10-17T12:30:30Z'])) ]) def test_get_solarposition_altitude(altitude, expected, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.get_solarposition(times, golden.latitude, golden.longitude, altitude=altitude, temperature=11) this_expected = expected.copy() this_expected.index = times this_expected = np.round(this_expected, 5) ephem_data = np.round(ephem_data, 5) assert_frame_equal(this_expected, ephem_data[this_expected.columns]) @pytest.mark.parametrize("delta_t, method", [ (None, 'nrel_numpy'), pytest.param( None, 'nrel_numba', marks=[pytest.mark.xfail( reason='spa.calculate_deltat not implemented for numba yet')]), (67.0, 'nrel_numba'), (67.0, 'nrel_numpy'), ]) def test_get_solarposition_deltat(delta_t, method, expected_solpos_multi, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=2, freq='D', tz=golden.tz) with warnings.catch_warnings(): # don't warn on method reload or num threads warnings.simplefilter("ignore") ephem_data = solarposition.get_solarposition(times, golden.latitude, golden.longitude, pressure=82000, delta_t=delta_t, temperature=11, method=method) this_expected = expected_solpos_multi this_expected.index = times this_expected = np.round(this_expected, 5) ephem_data = np.round(ephem_data, 5) assert_frame_equal(this_expected, ephem_data[this_expected.columns]) def test_get_solarposition_no_kwargs(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.get_solarposition(times, golden.latitude, golden.longitude) expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2) assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @requires_ephem def test_get_solarposition_method_pyephem(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.get_solarposition(times, golden.latitude, golden.longitude, method='pyephem') expected_solpos.index = times expected_solpos = np.round(expected_solpos, 2) ephem_data = np.round(ephem_data, 2) assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_nrel_earthsun_distance(): times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2), datetime.datetime(2015, 8, 2)] ).tz_localize('MST') result = solarposition.nrel_earthsun_distance(times, delta_t=64.0) expected = pd.Series(np.array([0.983289204601, 1.01486146446]), index=times) assert_series_equal(expected, result) times = datetime.datetime(2015, 1, 2) result = solarposition.nrel_earthsun_distance(times, delta_t=64.0) expected = pd.Series(np.array([0.983289204601]), index=pd.DatetimeIndex([times, ])) assert_series_equal(expected, result) def test_equation_of_time(): times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00", freq="H") output = solarposition.spa_python(times, 37.8, -122.25, 100) eot = output['equation_of_time'] eot_rng = eot.max() - eot.min() # range of values, around 30 minutes eot_1 = solarposition.equation_of_time_spencer71(times.dayofyear) eot_2 = solarposition.equation_of_time_pvcdrom(times.dayofyear) assert np.allclose(eot_1 / eot_rng, eot / eot_rng, atol=0.3) # spencer assert np.allclose(eot_2 / eot_rng, eot / eot_rng, atol=0.4) # pvcdrom def test_declination(): times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00", freq="H") atmos_refract = 0.5667 delta_t = spa.calculate_deltat(times.year, times.month) unixtime = np.array([calendar.timegm(t.timetuple()) for t in times]) _, _, declination = spa.solar_position(unixtime, 37.8, -122.25, 100, 1013.25, 25, delta_t, atmos_refract, sst=True) declination = np.deg2rad(declination) declination_rng = declination.max() - declination.min() declination_1 = solarposition.declination_cooper69(times.dayofyear) declination_2 = solarposition.declination_spencer71(times.dayofyear) a, b = declination_1 / declination_rng, declination / declination_rng assert np.allclose(a, b, atol=0.03) # cooper a, b = declination_2 / declination_rng, declination / declination_rng assert np.allclose(a, b, atol=0.02) # spencer def test_analytical_zenith(): times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00", freq="H").tz_localize('Etc/GMT+8') lat, lon = 37.8, -122.25 lat_rad = np.deg2rad(lat) output = solarposition.spa_python(times, lat, lon, 100) solar_zenith = np.deg2rad(output['zenith']) # spa # spencer eot = solarposition.equation_of_time_spencer71(times.dayofyear) hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot)) decl = solarposition.declination_spencer71(times.dayofyear) zenith_1 = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl) # pvcdrom and cooper eot = solarposition.equation_of_time_pvcdrom(times.dayofyear) hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot)) decl = solarposition.declination_cooper69(times.dayofyear) zenith_2 = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl) assert np.allclose(zenith_1, solar_zenith, atol=0.015) assert np.allclose(zenith_2, solar_zenith, atol=0.025) def test_analytical_azimuth(): times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00", freq="H").tz_localize('Etc/GMT+8') lat, lon = 37.8, -122.25 lat_rad = np.deg2rad(lat) output = solarposition.spa_python(times, lat, lon, 100) solar_azimuth = np.deg2rad(output['azimuth']) # spa solar_zenith = np.deg2rad(output['zenith']) # spencer eot = solarposition.equation_of_time_spencer71(times.dayofyear) hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot)) decl = solarposition.declination_spencer71(times.dayofyear) zenith = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl) azimuth_1 = solarposition.solar_azimuth_analytical(lat_rad, hour_angle, decl, zenith) # pvcdrom and cooper eot = solarposition.equation_of_time_pvcdrom(times.dayofyear) hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot)) decl = solarposition.declination_cooper69(times.dayofyear) zenith = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl) azimuth_2 = solarposition.solar_azimuth_analytical(lat_rad, hour_angle, decl, zenith) idx = np.where(solar_zenith < np.pi/2) assert np.allclose(azimuth_1[idx], solar_azimuth.values[idx], atol=0.01) assert np.allclose(azimuth_2[idx], solar_azimuth.values[idx], atol=0.017) # test for NaN values at boundary conditions (PR #431) test_angles = np.radians(np.array( [[ 0., -180., -20.], [ 0., 0., -5.], [ 0., 0., 0.], [ 0., 0., 15.], [ 0., 180., 20.], [ 30., 0., -20.], [ 30., 0., -5.], [ 30., 0., 0.], [ 30., 180., 5.], [ 30., 0., 10.], [ -30., 0., -20.], [ -30., 0., -15.], [ -30., 0., 0.], [ -30., -180., 5.], [ -30., 180., 10.]])) zeniths = solarposition.solar_zenith_analytical(*test_angles.T) azimuths = solarposition.solar_azimuth_analytical(*test_angles.T, zenith=zeniths) assert not np.isnan(azimuths).any() def test_hour_angle(): """ Test conversion from hours to hour angles in degrees given the following inputs from NREL SPA calculator at Golden, CO date,times,eot,sunrise,sunset 1/2/2015,7:21:55,-3.935172,-70.699400,70.512721 1/2/2015,16:47:43,-4.117227,-70.699400,70.512721 1/2/2015,12:04:45,-4.026295,-70.699400,70.512721 """ longitude = -105.1786 # degrees times = pd.DatetimeIndex([ '2015-01-02 07:21:55.2132', '2015-01-02 16:47:42.9828', '2015-01-02 12:04:44.6340' ]).tz_localize('Etc/GMT+7') eot = np.array([-3.935172, -4.117227, -4.026295]) hours = solarposition.hour_angle(times, longitude, eot) expected = (-70.682338, 70.72118825000001, 0.000801250) # FIXME: there are differences from expected NREL SPA calculator values # sunrise: 4 seconds, sunset: 48 seconds, transit: 0.2 seconds # but the differences may be due to other SPA input parameters assert np.allclose(hours, expected) def test_sun_rise_set_transit_geometric(expected_rise_set_spa, golden_mst): """Test geometric calculations for sunrise, sunset, and transit times""" times = expected_rise_set_spa.index latitude = golden_mst.latitude longitude = golden_mst.longitude eot = solarposition.equation_of_time_spencer71(times.dayofyear) # minutes decl = solarposition.declination_spencer71(times.dayofyear) # radians sr, ss, st = solarposition.sun_rise_set_transit_geometric( times, latitude=latitude, longitude=longitude, declination=decl, equation_of_time=eot) # sunrise: 2015-01-02 07:26:39.763224487, 2015-08-02 05:04:35.688533801 # sunset: 2015-01-02 16:41:29.951096777, 2015-08-02 19:09:46.597355085 # transit: 2015-01-02 12:04:04.857160632, 2015-08-02 12:07:11.142944443 test_sunrise = solarposition._times_to_hours_after_local_midnight(sr) test_sunset = solarposition._times_to_hours_after_local_midnight(ss) test_transit = solarposition._times_to_hours_after_local_midnight(st) # convert expected SPA sunrise, sunset, transit to local datetime indices expected_sunrise = pd.DatetimeIndex(expected_rise_set_spa.sunrise.values, tz='UTC').tz_convert(golden_mst.tz) expected_sunset = pd.DatetimeIndex(expected_rise_set_spa.sunset.values, tz='UTC').tz_convert(golden_mst.tz) expected_transit = pd.DatetimeIndex(expected_rise_set_spa.transit.values, tz='UTC').tz_convert(golden_mst.tz) # convert expected times to hours since midnight as arrays of floats expected_sunrise = solarposition._times_to_hours_after_local_midnight( expected_sunrise) expected_sunset = solarposition._times_to_hours_after_local_midnight( expected_sunset) expected_transit = solarposition._times_to_hours_after_local_midnight( expected_transit) # geometric time has about 4-6 minute error compared to SPA sunset/sunrise expected_sunrise_error = np.array( [0.07910089555555544, 0.06908014805555496]) # 4.8[min], 4.2[min] expected_sunset_error = np.array( [-0.1036246955555562, -0.06983406805555603]) # -6.2[min], -4.2[min] expected_transit_error = np.array( [-0.011150788888889096, 0.0036508177777765383]) # -40[sec], 13.3[sec] assert np.allclose(test_sunrise, expected_sunrise, atol=np.abs(expected_sunrise_error).max()) assert np.allclose(test_sunset, expected_sunset, atol=np.abs(expected_sunset_error).max()) assert np.allclose(test_transit, expected_transit, atol=np.abs(expected_transit_error).max()) # put numba tests at end of file to minimize reloading @requires_numba def test_spa_python_numba_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) with warnings.catch_warnings(): # don't warn on method reload or num threads # ensure that numpy is the most recently used method so that # we can use the warns filter below warnings.simplefilter("ignore") ephem_data = solarposition.spa_python(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy', numthreads=1) with pytest.warns(UserWarning): ephem_data = solarposition.spa_python(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numba', numthreads=1) expected_solpos.index = times
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
pandas.util.testing.assert_frame_equal
import os import pandas as pd from base import BaseFeature from encoding_func import target_encoding from google.cloud import storage, bigquery from google.cloud import bigquery_storage_v1beta1 class CountEncodingPresentDomains(BaseFeature): def import_columns(self): return [ "tweet_id", "engaging_user_id" ] def _read_present_domains_count_from_bigquery( self, train_table_name: str, test_table_name) -> pd.DataFrame: self._logger.info(f"Reading from {train_table_name} and {test_table_name}") query = """ WITH subset AS ( ( SELECT tweet_id, any_value(present_domains) AS present_domains FROM {} GROUP BY tweet_id ) UNION ALL ( SELECT tweet_id, any_value(present_domains) AS present_domains FROM {} GROUP BY tweet_id ) ) , unnest_subset AS ( SELECT tweet_id, present_domain FROM subset, unnest(present_domains) AS present_domain ) , count_present_domain AS ( SELECT present_domain, COUNT(*) AS cnt FROM unnest_subset GROUP BY present_domain ) SELECT tweet_id, AVG(cnt) AS mean_value, min(cnt) AS min_value, max(cnt) AS max_value, case when stddev(cnt) is null then 1 else stddev(cnt) end AS std_value FROM ( SELECT A.tweet_id, A.present_domain, B.cnt FROM unnest_subset AS A LEFT OUTER JOIN count_present_domain AS B ON A.present_domain = B.present_domain ) GROUP BY tweet_id """.format(train_table_name, test_table_name) if self.debugging: query += " limit 10000" bqclient = bigquery.Client(project=self.PROJECT_ID) bqstorageclient = bigquery_storage_v1beta1.BigQueryStorageClient() df = ( bqclient.query(query) .result() .to_dataframe(bqstorage_client=bqstorageclient) ) return df def make_features(self, df_train_input, df_test_input): # read unnested present_media count_present_domains = self._read_present_domains_count_from_bigquery( self.train_table, self.test_table ) feature_names = ["mean_value", "max_value", "min_value", "std_value"] print(count_present_domains.shape) print(count_present_domains.isnull().sum()) df_train_features = pd.DataFrame() df_test_features = pd.DataFrame() df_train_input =
pd.merge(df_train_input, count_present_domains, on="tweet_id", how="left")
pandas.merge
import json import csv import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy import stats from calibration import * import pandas as pd from eval_metrics import * from tqdm import tqdm from scipy.stats import norm from scipy.stats import pearsonr import argparse import itertools from os import listdir from os.path import isfile, join from normalisation import * from error_ir import * from sklearn.metrics import average_precision_score def get_df(comet_dir, da_dir, nruns=100, docs=False, ens=True): SETUP_PATH = comet_dir files = [f for f in listdir(SETUP_PATH) if isfile(join(SETUP_PATH, f))] sys_files = [f for f in files if (f.split('_')[0] == 'system') and ('Human' not in f)] da_scores =
pd.read_csv(da_dir)
pandas.read_csv
"""Handle the raw data input/output and interface with external formats.""" from obspy.core import read from obspy.core.utcdatetime import UTCDateTime import pandas as pd import datetime as dt def load_stream(path): """Loads a Stream object from the file at path. Args: path: path to the input file, (for supported formats see, http://docs.obspy.org/tutorial/code_snippets/reading_seismograms.html) Returns: an obspy.core.Stream object (http://docs.obspy.org/packages/autogen/obspy.core.stream.Stream.html#obspy.core.stream.Stream) """ stream = read(path) stream.merge() # assert len(stream) == 3 # We need X,Y,Z traces return stream def load_catalog(path): """Loads a event catalog from a .csv file. Each row in the catalog references a know seismic event. Args: path: path to the input .csv file. Returns: catalog: A Pandas dataframe. """ catalog = pd.read_csv(path) # Check if utc_timestamp exists, otherwise create it if 'utc_timestamp' not in catalog.columns: utc_timestamp = [] for e in catalog.origintime.values: utc_timestamp.append(UTCDateTime(e).timestamp) catalog['utc_timestamp'] = utc_timestamp return catalog def write_stream(stream, path): stream.write(path, format='MSEED') def write_catalog(events, path): catalog = pd.DataFrame( {'utc_timestamp':
pd.Series([t.timestamp for t in events])
pandas.Series
import numpy as np import seaborn as sns import matplotlib.pylab as plt import math import os import pandas as pd import re def search_year(year, years): for idx, _year in enumerate(years): if idx == len(years) -1: continue if year >= _year and year < years[idx + 1]: return idx return -1 def save_plots_topics(folder, articles_df, column_name, topic_modeler, with_sorted = False, vmax = 800, relative_number = False, years = list(range(2008,2021)), cnt_per_plot = 25): if not os.path.exists(folder): os.makedirs(folder) topic_year = np.zeros((topic_modeler.n_components, len(years)-1), dtype = int if not relative_number else float) topic_map = {} topic_map_by_id = {} topic_id = 0 all_articles_by_year = np.zeros(len(years)-1, dtype=int) for i in range(len(articles_df)): year_ind = search_year(articles_df["year"].values[i], years) if year_ind >= 0: for topic in articles_df[column_name].values[i]: if topic not in topic_map: topic_map[topic] = topic_id topic_map_by_id[topic_id] = topic topic_id += 1 topic_year[topic_map[topic]][year_ind] += 1 all_articles_by_year[year_ind] += 1 if with_sorted: result = sorted([(idx, topic_val) for idx,topic_val in enumerate(np.sum(topic_year, axis = 1))],key=lambda x: x[1], reverse = True) else: result = [(idx, topic_val) for idx,topic_val in enumerate(np.sum(topic_year, axis = 1))] if relative_number: topic_year /= all_articles_by_year topic_year *= 100 for ind in range(math.ceil(topic_modeler.n_components/cnt_per_plot)): plt.figure(figsize=(15, 6), dpi=150) topic_year_df = pd.DataFrame(topic_year[[i for i, cnt in result[ind*cnt_per_plot:(ind+1)*cnt_per_plot]],:]) topic_year_df.index = [ topic_map_by_id[i] for i, cnt in result[ind*cnt_per_plot:(ind+1)*cnt_per_plot]] topic_year_df.columns = [ "%d-%d"%(years[idx], years[idx+1]) for idx, year in enumerate(years) if idx != len(years) -1] if relative_number: ax = sns.heatmap(topic_year_df, linewidth=0.5, cmap="YlGnBu", vmin = 0, vmax=vmax, annot=True, fmt=".1f") else: ax = sns.heatmap(topic_year_df, linewidth=0.5, cmap="YlGnBu", vmin = 0, vmax=vmax, annot=True, fmt="d") plt.tight_layout() plt.savefig(os.path.join(folder,'%d-%dtopics.png'%(ind*cnt_per_plot+1, (ind+1)*cnt_per_plot))) def save_plots_districts(folder, big_dataset,countries = ["Nigeria/", "Malawi/", "Kenya/", "Tanzania/", "Mali/", "Zambia/", "Burkina Faso/", "Philippines/", "Bangladesh/"], with_sorted = False, image_format="eps"): for country in countries: country_folder = os.path.join(folder, country) if not os.path.exists(country_folder): os.makedirs(country_folder) districts_dict = {} districts_dict_interv = {} for i in range(len(big_dataset)): for district in big_dataset["districts"].values[i]: if country in district: if district not in districts_dict: districts_dict[district] = 0 districts_dict[district] += 1 if district not in districts_dict_interv: districts_dict_interv[district] = {"technology intervention": 0, "socioeconomic intervention": 0, "ecosystem intervention": 0} for column in ["technology intervention", "socioeconomic intervention", "ecosystem intervention"]: if len(big_dataset[column].values[i]) > 0: districts_dict_interv[district][column] += 1 if with_sorted: result = sorted([(name, (interv_val["technology intervention"], interv_val["socioeconomic intervention"], interv_val["ecosystem intervention"]),\ sum(interv_val.values())) for name,interv_val in districts_dict_interv.items()],key=lambda x: x[2], reverse = True) else: result = sorted([(name, (districts_dict_interv[name]["technology intervention"], districts_dict_interv[name]["socioeconomic intervention"], districts_dict_interv[name]["ecosystem intervention"]),\ cnt) for name, cnt in districts_dict.items()], key = lambda x: x[2], reverse= True) for ind in range(math.ceil(len(districts_dict)/30)): plt.figure(figsize=(15, 6), dpi=150) topic_year_df = pd.DataFrame([val[1] for val in result[ind*30:(ind+1)*30]]) topic_year_df.index = [val[0] for val in result[ind*30:(ind+1)*30]] topic_year_df.columns = ["Technology intervention", "Socioeconomic intervention", "Ecosystem intervention"] ax = sns.heatmap(topic_year_df, linewidth=0.5, cmap="YlGnBu", vmin = 0, vmax = 50, annot=True, fmt = "d") plt.tight_layout() plt.savefig(os.path.join(country_folder,'%d-%dinterventions.%s'%(ind*30+1, (ind+1)*30, image_format)), format=image_format) def save_plots_districts_unique(folder, big_dataset,countries = ["Nigeria/", "Malawi/", "Kenya/", "Tanzania/", "Mali/", "Zambia/", "Burkina Faso/", "Philippines/", "Bangladesh/"], with_sorted = False): for country in countries: country_folder = os.path.join(folder, country) if not os.path.exists(country_folder): os.makedirs(country_folder) districts_dict = {} districts_dict_interv = {} for i in range(len(big_dataset)): for district in big_dataset["districts"].values[i]: if country in district: if district not in districts_dict: districts_dict[district] = 0 districts_dict[district] += 1 if district not in districts_dict_interv: districts_dict_interv[district] = {"technology intervention": set(), "socioeconomic intervention":set(), "ecosystem intervention": set()} for column in ["technology intervention", "socioeconomic intervention", "ecosystem intervention"]: for val in big_dataset[column].values[i]: districts_dict_interv[district][column].add(val) if with_sorted: result = sorted([(name, (len(interv_val["technology intervention"]), len(interv_val["socioeconomic intervention"]), len(interv_val["ecosystem intervention"])),\ sum([len(interv_val[v]) for v in interv_val])) for name,interv_val in districts_dict_interv.items()],key=lambda x: x[2], reverse = True) else: result = sorted([(name, (len(districts_dict_interv[name]["technology intervention"]), len(districts_dict_interv[name]["socioeconomic intervention"]), len(districts_dict_interv[name]["ecosystem intervention"])),\ cnt) for name, cnt in districts_dict.items()], key = lambda x: x[2], reverse= True) for ind in range(math.ceil(len(districts_dict)/30)): plt.figure(figsize=(15, 6), dpi=150) topic_year_df = pd.DataFrame([val[1] for val in result[ind*30:(ind+1)*30]]) topic_year_df.index = [val[0] for val in result[ind*30:(ind+1)*30]] topic_year_df.columns = ["Technology intervention", "Socioeconomic intervention", "Ecosystem intervention"] ax = sns.heatmap(topic_year_df, linewidth=0.5, cmap="YlGnBu", vmin = 0, vmax = 50, annot=True, fmt = "d") plt.tight_layout() plt.savefig(os.path.join(country_folder,'%d-%dinterventions.png'%(ind*30+1, (ind+1)*30))) def code_sequence(values): return 4*int("Technology intervention" in values) + 2*int("Socioeconomic intervention" in values) + int("Ecosystem intervention" in values) def decode_sequence(num): values = [] for idx, col in enumerate(["Eco", "Socio", "Tech"]): if num & 2**idx: values.append(col) return list(sorted(values)) def save_plots_districts_with_overlapping(folder, big_dataset, countries = ["Nigeria/", "Malawi/", "Kenya/", "Tanzania/", "Mali/", "Zambia/", "Burkina Faso/", "Philippines/", "Bangladesh/"], with_sorted = False, image_format="eps"): for country in countries: country_folder = os.path.join(folder, country) if not os.path.exists(country_folder): os.makedirs(country_folder) districts_dict = {} districts_dict_interv = {} for i in range(len(big_dataset)): for district in big_dataset["districts"].values[i]: if country in district: if district not in districts_dict: districts_dict[district] = 0 districts_dict[district] += 1 if district not in districts_dict_interv: districts_dict_interv[district] = {} for i in range(1,8): districts_dict_interv[district][i] = 0 if code_sequence(big_dataset["intervention_labels"].values[i]) > 0: districts_dict_interv[district][code_sequence(big_dataset["intervention_labels"].values[i])] += 1 if with_sorted: result = sorted([(name, tuple([interv_val[w] for w in [4,2,1,6,3,5,7] ]),\ sum(interv_val.values())) for name,interv_val in districts_dict_interv.items()],key=lambda x: x[2], reverse = True) else: result = sorted([(name, tuple([interv_val[w] for w in [4,2,1,6,3,5,7] ]),\ cnt) for name, cnt in districts_dict.items()], key = lambda x: x[2], reverse= True) for ind in range(math.ceil(len(districts_dict)/30)): plt.figure(figsize=(15, 6), dpi=150) topic_year_df = pd.DataFrame([val[1] for val in result[ind*30:(ind+1)*30]]) topic_year_df.index = [val[0] for val in result[ind*30:(ind+1)*30]] topic_year_df.columns = ["; ".join(decode_sequence(w))for w in [4,2,1,6,3,5,7]] ax = sns.heatmap(topic_year_df, linewidth=0.5, cmap="YlGnBu", vmin = 0, vmax = 50, annot=True, fmt = "d") plt.tight_layout() plt.savefig(os.path.join(country_folder,'%d-%dinterventions.%s'%(ind*30+1, (ind+1)*30, image_format)), format=image_format) def save_plots_topics_interv(folder, articles_df, column_name, with_sorted = True, topic_numbers=125, image_format="eps"): if not os.path.exists(folder): os.makedirs(folder) topic_year_names = {} topic_year = np.zeros(topic_numbers, dtype = int) topics_per_page = int(topic_numbers/5) for i in range(len(articles_df)): for topic in articles_df[column_name].values[i]: topic_num = int(re.search("#(\d+)", topic).group(1)) -1 topic_year_names[topic_num] = topic topic_year[topic_num] += 1 if with_sorted: result = sorted([(idx, topic_val) for idx,topic_val in enumerate(topic_year)],key=lambda x: x[1], reverse = True) else: result = [(idx, topic_val) for idx,topic_val in enumerate(topic_year)] for ind in range(5): plt.figure(figsize=(6, 6), dpi=150) topic_year_df = pd.DataFrame(topic_year[[i for i,cnt in result[ind*topics_per_page:(ind+1)*topics_per_page]]]) topic_year_df.index = [ topic_year_names[i] for i,cnt in result[ind*topics_per_page:(ind+1)*topics_per_page]] topic_year_df.columns = ["All"] ax = sns.heatmap(topic_year_df, linewidth=0.5, cmap="YlGnBu", annot=True, fmt = "d", vmax = 50) plt.tight_layout() plt.savefig(os.path.join(folder,'%d-%dinterventions.%s'%(ind*topics_per_page+1, (ind+1)*topics_per_page, image_format)), format=image_format) def save_plots_topics_cooccur(folder, articles_df, topic_num, column_name = "topics", with_sorted = True): if not os.path.exists(folder): os.makedirs(folder) topic_year = np.zeros(150, dtype = int) for i in range(len(articles_df)): should_be_used = False for topic in articles_df[column_name].values[i]: _topic_num = int(re.search("#(\d+)", topic).group(1)) if _topic_num == topic_num: should_be_used = True if should_be_used: for topic in articles_df[column_name].values[i]: _topic_num = int(re.search("#(\d+)", topic).group(1)) -1 topic_year[_topic_num] += 1 if with_sorted: result = sorted([(idx, topic_val) for idx,topic_val in enumerate(topic_year)],key=lambda x: x[1], reverse = True) else: result = [(idx, topic_val) for idx,topic_val in enumerate(topic_year)] for ind in range(5): plt.figure(figsize=(6, 6), dpi=150) topic_year_df =
pd.DataFrame(topic_year[[i for i,cnt in result[ind*30:(ind+1)*30]]])
pandas.DataFrame
# @author <NAME> #to merge the 3 different year ED visit files to single file import pandas as pd import os import glob import numpy as np def seriesToTypes(series): try: series=series.astype("Int64") except (TypeError,ValueError): try: series=pd.to_numeric(series,downcast='unsigned') except (TypeError,ValueError): pass #series.loc[pd.isna(series)]=pd.NA # try: # series=series.apply(lambda x: pd.NA if pd.isna(x) else str(x)).astype('string') # series=series.astype('str') # except: # pass return series folder=r'\\vetmed2.vetmed.w2k.vt.edu\Blitzer\NASA project\Balaji\DSHS ED visit data\Dataset 3_13_2020' IP_files = glob.glob(folder+'\\IP_*.{}'.format('txt')) ip_df=pd.DataFrame() for f in IP_files: df=pd.read_csv(f,sep='\t') df.loc[:,'file']=os.path.basename(f).split('.')[0] ip_df=
pd.concat([ip_df,df])
pandas.concat
__author__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Development' import numpy as np import pandas as pd import random import math from scipy.spatial.distance import cdist from sklearn import metrics from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from progress.bar import Bar # read hillslopes computation time def read_data(path): df_HS_runtime = pd.read_csv(path) df_HS_runtime = df_HS_runtime.set_index(['HS_Name']) return df_HS_runtime # apply K-means def apply_kmeans(df_AS, df_Feat_Norm, df_HS_runtime): df_rmse = pd.DataFrame() arr_ctime = np.empty([0]) df_fillnan = df_AS.fillna(method='ffill') nr_itter = df_Feat_Norm.shape[0]+1 bar = Bar('K-Means processing', max=nr_itter-1) for i in range(1, nr_itter): mydata = pd.DataFrame() mydata = df_Feat_Norm.copy() n_clusters = i kmeans = KMeans(init='k-means++', n_clusters=n_clusters, n_init=20, max_iter=600).fit(mydata) pred = kmeans.labels_ ctime = 0.0 # representitive hillslope rmse_ = pd.DataFrame() represent = pd.DataFrame() for j in np.unique(pred): df_dist = pd.DataFrame(metrics.pairwise.euclidean_distances(mydata[pred == j], mydata[pred == j]), index=mydata[pred == j].index.values, columns=mydata[pred == j].index.values) reptiv = df_dist.sum().idxmin() ctime = ctime + float(df_HS_runtime['C_Time'][df_HS_runtime.index.values == reptiv]) represent = represent.append({'representitive':reptiv, 'label':j}, ignore_index=True) # Root Mean Square Error for k in range(mydata[pred == j].shape[0]): rmse = math.sqrt(metrics.mean_squared_error(df_fillnan[mydata[pred == j].iloc[k].name], df_fillnan[reptiv])) rmse_ = rmse_.append({'hname':mydata[pred == j].iloc[k].name, 'rmse':rmse}, ignore_index=True) rmse_ = rmse_.set_index(['hname']) rmse_ = rmse_.sort_index() df_rmse[str(i)] = rmse_['rmse'] arr_ctime = np.append(arr_ctime, ctime) bar.next() df_RmseSum_Kmeans = pd.DataFrame({'rmse_sum':np.sqrt(np.square(df_rmse).sum()), 'ctime':arr_ctime}) bar.finish() return df_RmseSum_Kmeans # apply DBSCAN def apply_DBSCAN(df_AS, df_Feat_Norm, df_HS_runtime): df_fillnan = df_AS.fillna(method='ffill') df_RmseSum_DBSCAN = pd.DataFrame() nr_itter = np.arange(0.1, 2.4, 0.2).shape[0] bar = Bar('DBSCAN processing', max=nr_itter) for e in np.arange(0.1, 2.4, 0.2): df_rmse = pd.DataFrame() arr_ctime = np.empty(shape=[0, 1]) count = 0 for i in range(1, 22, 2): mydata = pd.DataFrame() mydata = df_Feat_Norm.copy() eps = e min_samples = i dbscan = DBSCAN(eps=eps, min_samples=min_samples, metric='euclidean', algorithm='auto').fit(mydata) pred = dbscan.labels_ ctime = 0.0 # representitive hillslope rmse_ = pd.DataFrame() for j in np.unique(pred): if j == -1: for k in range(mydata[pred == j].shape[0]): ctime = ctime + float(df_HS_runtime['C_Time'][df_HS_runtime.index.values == mydata[pred == j].iloc[k].name]) rmse = 0.0 rmse_ = rmse_.append({'hname':mydata[pred == j].iloc[k].name, 'rmse':rmse}, ignore_index=True) else: df_dist = pd.DataFrame(metrics.pairwise.euclidean_distances(mydata[pred == j], mydata[pred == j]), index=mydata[pred == j].index.values, columns=mydata[pred == j].index.values) reptiv = df_dist.sum().idxmin() ctime = ctime + float(df_HS_runtime['C_Time'][df_HS_runtime.index.values == reptiv]) # Root Mean Square Error for k in range(mydata[pred == j].shape[0]): rmse = math.sqrt(metrics.mean_squared_error(df_fillnan[mydata[pred == j].iloc[k].name], df_fillnan[reptiv])) rmse_ = rmse_.append({'hname':mydata[pred == j].iloc[k].name, 'rmse':rmse}, ignore_index=True) rmse_ = rmse_.set_index(['hname']) rmse_ = rmse_.sort_index() df_rmse[str(i)] = rmse_['rmse'] arr_ctime = np.append(arr_ctime, ctime) nr_cls = len(np.unique(pred)) - 1 + mydata[pred == -1].shape[0] df_RmseSum_DBSCAN= df_RmseSum_DBSCAN.append({'rmse_sum':np.sqrt(np.square(df_rmse).sum())[count], 'ctime':arr_ctime[count], 'epsilon':e, 'min_samp':i, 'nr_cls':nr_cls, 'silhouettecoef':metrics.silhouette_score(mydata, pred)}, ignore_index=True) count +=1 bar.next() bar.finish() return df_RmseSum_DBSCAN # K-medoids clustering def cluster(distances, k=3): # number of points m = distances.shape[0] # Pick k random medoids. # curr_medoids = np.array([-1]*k) # while not len(np.unique(curr_medoids)) == k: # curr_medoids = np.array([random.randint(0, m - 1) for _ in range(k)]) curr_medoids = np.arange(m) np.random.shuffle(curr_medoids) curr_medoids = curr_medoids[:k] old_medoids = np.array([-1]*k) # Doesn't matter what we initialize these to. new_medoids = np.array([-1]*k) # Until the medoids stop updating, do the following: while not ((old_medoids == curr_medoids).all()): # Assign each point to cluster with closest medoid. clusters = assign_points_to_clusters(curr_medoids, distances) # Update cluster medoids to be lowest cost point. for curr_medoid in curr_medoids: cluster = np.where(clusters == curr_medoid)[0] new_medoids[curr_medoids == curr_medoid] = compute_new_medoid(cluster, distances) old_medoids[:] = curr_medoids[:] curr_medoids[:] = new_medoids[:] return clusters, curr_medoids # K-medoids clustering assign points def assign_points_to_clusters(medoids, distances): distances_to_medoids = distances[:,medoids] clusters = medoids[np.argmin(distances_to_medoids, axis=1)] clusters[medoids] = medoids return clusters # K-medoids clustering compute new medoid def compute_new_medoid(cluster, distances): mask = np.ones(distances.shape) mask[np.ix_(cluster,cluster)] = 0. cluster_distances = np.ma.masked_array(data=distances, mask=mask, fill_value=10e9) costs = cluster_distances.sum(axis=1) return costs.argmin(axis=0, fill_value=10e9) # apply K-medoids def apply_kmedoids(df_AS, df_Feat_Norm, df_HS_runtime): mydata = pd.DataFrame() mydata = df_Feat_Norm.copy() df_dist = pd.DataFrame(metrics.pairwise.euclidean_distances(mydata), index=mydata.index.values, columns=mydata.index.values) dist = np.array(df_dist) df_rmse = pd.DataFrame() arr_ctime = np.empty([0]) df_fillnan = df_AS.fillna(method='ffill') nr_itter = df_Feat_Norm.shape[0]+1 bar = Bar('K-Medoids processing', max=nr_itter-1) for i in range(2, nr_itter): mydata = pd.DataFrame() mydata = df_Feat_Norm.copy() n_clusters = i kclust, kmedoids = cluster(dist, k=n_clusters) ctime = 0.0 # representitive hillslope rmse_ =
pd.DataFrame()
pandas.DataFrame
import quandl mydata = quandl.get("YAHOO/INDEX_DJI", start_date="2005-12-01", end_date="2005-12-05") import pandas as pd authtoken = '<PASSWORD>' def get_data_quandl(symbol, start_date, end_date): data = quandl.get(symbol, start_date=start_date, end_date=end_date, authtoken=authtoken) return data def generate_features(df): """ Generate features for a stock/index based on historical price and performance Args: df (dataframe with columns "Open", "Close", "High", "Low", "Volume", "Adjusted Close") Returns: dataframe, data set with new features """ df_new = pd.DataFrame() # 6 original features df_new['open'] = df['Open'] df_new['open_1'] = df['Open'].shift(1) df_new['close_1'] = df['Close'].shift(1) df_new['high_1'] = df['High'].shift(1) df_new['low_1'] = df['Low'].shift(1) df_new['volume_1'] = df['Volume'].shift(1) # 31 original features # average price df_new['avg_price_5'] = pd.rolling_mean(df['Close'], window=5).shift(1) df_new['avg_price_30'] = pd.rolling_mean(df['Close'], window=21).shift(1) df_new['avg_price_365'] = pd.rolling_mean(df['Close'], window=252).shift(1) df_new['ratio_avg_price_5_30'] = df_new['avg_price_5'] / df_new['avg_price_30'] df_new['ratio_avg_price_5_365'] = df_new['avg_price_5'] / df_new['avg_price_365'] df_new['ratio_avg_price_30_365'] = df_new['avg_price_30'] / df_new['avg_price_365'] # average volume df_new['avg_volume_5'] = pd.rolling_mean(df['Volume'], window=5).shift(1) df_new['avg_volume_30'] = pd.rolling_mean(df['Volume'], window=21).shift(1) df_new['avg_volume_365'] = pd.rolling_mean(df['Volume'], window=252).shift(1) df_new['ratio_avg_volume_5_30'] = df_new['avg_volume_5'] / df_new['avg_volume_30'] df_new['ratio_avg_volume_5_365'] = df_new['avg_volume_5'] / df_new['avg_volume_365'] df_new['ratio_avg_volume_30_365'] = df_new['avg_volume_30'] / df_new['avg_volume_365'] # standard deviation of prices df_new['std_price_5'] = pd.rolling_std(df['Close'], window=5).shift(1) df_new['std_price_30'] = pd.rolling_std(df['Close'], window=21).shift(1) df_new['std_price_365'] = pd.rolling_std(df['Close'], window=252).shift(1) df_new['ratio_std_price_5_30'] = df_new['std_price_5'] / df_new['std_price_30'] df_new['ratio_std_price_5_365'] = df_new['std_price_5'] / df_new['std_price_365'] df_new['ratio_std_price_30_365'] = df_new['std_price_30'] / df_new['std_price_365'] # standard deviation of volumes df_new['std_volume_5'] =
pd.rolling_std(df['Volume'], window=5)
pandas.rolling_std
import numpy as np import pandas as pd from six import string_types from triage.component.catwalk.exceptions import BaselineFeatureNotInMatrix OPERATOR_METHODS = {">": "gt", ">=": "ge", "<": "lt", "<=": "le", "==": "eq"} REQUIRED_KEYS = frozenset(["feature_name", "operator", "threshold"]) def get_operator_method(operator_string): """ Convert the user-passed operator into the the name of the apprpriate pandas method. """ try: operator_method = OPERATOR_METHODS[operator_string] except KeyError: raise ValueError( ( "Operator '{operator}' extracted from rule is not a " "supported operator ({supported_operators}).".format( operator=operator_string, supported_operators=OPERATOR_METHODS.keys(), ) ) ) return operator_method class SimpleThresholder: """ The simple thresholder applies a set of predetermined logical rules to a test matrix to classify entities. By default, it will classify entities as 1 if they satisfy any of the rules. When 'and' is set as the logical_operator, it will classify entities as 1 only if they pass *all* of the rules. Rules are passed as either strings in the format 'x1 > 5' or dictionaries in the format {feature_name: 'x1', operator: '>', threshold: 5}. The feature_name, operator, and threshold keys are required. Eventually, this class may be abstracted into a BaseThreshold class and more complicated thresholders could be built around new keys in the dictionaries (e.g., by specifying scores that could be applied (and possibly summed) to entities satisfying rules) or by an alternative dictionary format that specifies more complicated structures for applying rules (for example: { or: [ {or: [{}, {}]}, {and: [{}, {}]} ] } where rules and operators that combine them can be nested). """ def __init__(self, rules, logical_operator="or"): self.rules = rules self.logical_operator = logical_operator self.feature_importances_ = None self.rule_combination_method = self.lookup_rule_combination_method( logical_operator ) @property def rules(self): return vars(self)["rules"] @rules.setter def rules(self, rules): """ Validates the rules passed by the user and converts them to the internal representation. Can be used to validate rules before running an experiment. 1. If rules are not a list, make them a list. 2. If rules are strings, convert them to dictionaries. 3. If dictionaries or strings are not in a supported format, raise helpful exceptions. """ if not isinstance(rules, list): rules = [rules] converted_rules = [] for rule in rules: if isinstance(rule, string_types): converted_rules.append(self._convert_string_rule_to_dict(rule)) else: if not isinstance(rule, dict): raise ValueError( ( 'Rule "{rule}" is not of a supported type (string or ' "dict).".format(rule=rule) ) ) if not rule.keys() >= REQUIRED_KEYS: raise ValueError( ( 'Rule "{rule}" missing one or more required keys ' "({required_keys}).".format( rule=rule, required_keys=REQUIRED_KEYS ) ) ) rule["operator"] = get_operator_method(rule["operator"]) converted_rules.append(rule) vars(self)["rules"] = converted_rules @property def all_feature_names(self): return [rule["feature_name"] for rule in self.rules] def lookup_rule_combination_method(self, logical_operator): """ Convert 'and' to 'all' and 'or' to 'any' for interacting with pandas DataFrames. """ rule_combination_method_lookup = {"or": "any", "and": "all"} return rule_combination_method_lookup[logical_operator] def _convert_string_rule_to_dict(self, rule): """ Converts a string rule into a dict, raising helpful exceptions if it cannot be parsed. """ components = rule.rsplit(" ", 2) if len(components) < 3: raise ValueError( ( '{required_keys} could not be parsed from rule "{rule}". Are ' "they all present and separated by spaces?".format( required_keys=REQUIRED_KEYS, rule=rule ) ) ) try: threshold = int(components[2]) except ValueError: raise ValueError( ( 'Threshold "{threshold}" parsed from rule "{rule}" is not an ' "int.".format(threshold=components[2], rule=rule) ) ) operator = get_operator_method(components[1]) return { "feature_name": components[0], "operator": operator, "threshold": threshold, } def _set_feature_importances_(self, x): """ Assigns feature importances following the rule: 1 for the features we are thresholding on, 0 for all other features. """ feature_importances = [0] * len(x.columns) for feature_name in self.all_feature_names: try: position = x.columns.get_loc(feature_name) except KeyError: raise BaselineFeatureNotInMatrix( ( "Rules refer to a feature ({feature_name}) not included in " "the training matrix!".format(feature_name=feature_name) ) ) feature_importances[position] = 1 self.feature_importances_ = np.array(feature_importances) def fit(self, x, y): """ Set feature importances and return self. """ self._set_feature_importances_(x) return self def predict_proba(self, x): """ Assign 1 for entities that meet the rules and 0 for those that do not. """ rule_evaluations_list = [] for rule in self.rules: rule_evaluations_list.append( getattr(x[rule["feature_name"]], rule["operator"])(rule["threshold"]) ) rule_evaluations_dataframe =
pd.concat(rule_evaluations_list, axis=1)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt from hash import * class simulation: def __init__(self, length=12096, mu=0, sigma=0.001117728, b_target=10, block_reward=12.5, hash_ubd=55, hash_slope=3, hash_center=1.5, prev_data=pd.DataFrame(), T_BCH=144, T_BTC=2016, init_price=5400, init_winning_rate=0.00003): ''' Parameters ---------- length: time length of simulation length = the number of blocks generated in one simulation. A new block is generated in 10 minutes in expection; 12096 blocks are generated in three months in expectation. mu: average of the brownian motion sigma: standard deviation of the brownian motion b_target: target block time (min) (default: 10 min) \bar{B} block_reward: the amount of cryptocurrency the miner receives when he adds a block. (default: 12.5) hash_ubd: the upper bound of global hash rate. hash_slope, hash_center: the parameters that affects the shape of hash supply function prev_data: a pandas dataframe containing (i) prices, (ii) winning rates, (iii) hash rates, and (iv) block times. The number of rows should coincides with T_BCH. T_BCH: the length of the time window used for DAA of BCH. T_BTC: the length of the time window used for DAA of BTC. init_price: the initial price. init_winning-rate: the inirial winning rate. Attributes ---------- block_times prices winning_rates hash_rates optimal_winning_rates expected_returns Notes ----- * As for BTC and BCH, b_target is set to be 10 minutes. ''' # params self.mu = mu self.sigma = sigma self.b_target = b_target self.length = length self.block_reward = block_reward self.hash_ubd = hash_ubd self.hash_slope = hash_slope self.hash_center = hash_center self.T_BCH = T_BCH self.T_BTC = T_BTC if prev_data.empty == True: self.prev_prices = np.ones(T_BCH) * init_price self.prev_block_times = np.ones(T_BCH) * b_target self.prev_winning_rates = np.ones(T_BCH) * init_winning_rate else: self.prev_prices = prev_data['prices'] self.prev_block_times = prev_data['block_times'] self.prev_winning_rates = prev_data['winning_rates'] def sim_DAA_1(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), init_height=551443, presim_length=2016, ubd_param=3): ''' Conduct a simulation using DAA-1 as its DAA. DAA-1 is based on the DAA used by BTC. Parameters ---------- prices : exogenously given. price[t] is the price at time 10*t exprvs : exogenously given; used for computing block times. opt_w : the oprimal winning rates, computed in advance. init_height : the height of the block that is created first in the simulation. (default: 551443) presim_length : the length of periods contained in prev_data. (Real data used for the pre-simulation period.) See also __init__. ubd_param : determine the maximum number of iterations See also _initialization. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every self.T_BTC periods. In reality, BTC lets T_BTC = 2016. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) # W(t+1) if (init_height + t)%self.T_BTC == 0: self.diff_adjust_BTC(current_period=t) else: break self._postprocessing(period) return None def sim_DAA_2(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), presim_length=2016, ubd_param=3): ''' Conduct a simulation using DAA-2 as its DAA. DAA-2 is based on the DAA used by BCH. Parameters ---------- prices: see sim_BTC. exprvs: see sim_BTC. presim_length: see sim_BTC. ubd_param: see sim_BTC. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every period. At each adjustment, the last T_BCH blocks are taken into account. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) # W(t+1) ## different from that of BTC in that ## difficulty adjustment is conducted every period. self.diff_adjust_BCH(current_period=t) else: break self._postprocessing(period) return None def sim_DAA_asert(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), presim_length=2016, ubd_param=3, half_life=2880): ''' Conduct a simulation using DAA-2 as its DAA. DAA-2 is based on the DAA used by BCH. Parameters ---------- prices: see sim_BTC. exprvs: see sim_BTC. presim_length: see sim_BTC. ubd_param: see sim_BTC. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every period. At each adjustment, the last T_BCH blocks are taken into account. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) # W(t+1) ## different from that of BTC in that ## difficulty adjustment is conducted every period. self.diff_adjust_asert(current_period=t, half_life=half_life) else: break self._postprocessing(period) return None def sim_DAA_0(self, prices=pd.DataFrame(), exprvs=pd.DataFrame(), df_opt_w=pd.DataFrame(), init_height=551443, presim_length=2016, ubd_param=3): ''' Conduct a simulation where the difficulty is always adjusted to the optimal level. (imaginary DAA) Parameters ---------- prices : exogenously given. price[t] is the price at time 10*t exprvs : exogenously given; used for computing block times. opt_w : init_height : the height of the block that is created first in the simulation. (default: 551443) presim_length : the length of periods contained in prev_data. (Real data used for the pre-simulation period.) See also __init__. ubd_param : determine the maximum number of iterations See also _initialization. Returns ------- None Notes ----- Difficulty, or winning_rate W(t), is adjusted every self.T_BTC periods. In reality, BTC lets T_BTC = 2016. ''' if prices.empty == True: prices = self.generate_prices() if exprvs.empty == True: exprvs = self.generate_exprvs() # initialization ## period 0 to period (presim_length - 1): pre-simulation period self._initialization(ubd_param) # main loop ## See what happens within self.length*self.b_target minutes ## default: 12096*10 min = 12 weeks = 3 month time_ubd = self.length * self.b_target time = 0 period = presim_length-1 for t in range(presim_length-1, self.length*ubd_param+presim_length-1): # S(t), W(t) is given # W^*(t) ## W(t) = W^*(t) price_truncated = self.prices[t] price_truncated = (price_truncated//50)*50 # grid size = 50 price_truncated = int(np.max([np.min([price_truncated, 11000]), 100])) # max 11000 self.optimal_winning_rates[t] =\ df_opt_w.loc[price_truncated, 'opt_w'] self.winning_rates[t] = self.optimal_winning_rates[t] # R(t) = S(t) * M * W(t) self.expected_rewards[t] =\ self.winning_rates[t] * self.block_reward * self.prices[t] # hash rate H(t) <- W(t), S(t) self.hash_rates[t] = self.hash_supply(t) # block time B(t) <- H(t), W(t) # multiply 60 to rescale time unit from second to minute self.block_times[t] = \ exprvs[t]/ \ (self.hash_rates[t] * self.winning_rates[t] * 60) time += self.block_times[t] period += 1 if time < time_ubd: # S(t+1) self.compute_price(current_period=t, current_time=time, prices=prices) else: break self._postprocessing(period) return None def compute_price(self, current_period, current_time, prices): ''' Compute the price at the time when the (t+1)-th block is created: compute S(t+1) using price data via linear interpolation. prices contains the price date recorded every 10 minutes. ''' time_left = int(current_time//self.b_target) time_right = time_left + 1 self.prices[current_period+1] = \ prices[time_left] + (prices[time_right] - prices[time_left]) * \ ((current_time - time_left*self.b_target)/self.b_target) return None def diff_adjust_BTC(self, current_period): ''' Used by sim_DAA-1. Modify self.winning_rates in place. ''' multiplier = \ (self.block_times[current_period-self.T_BTC+1:\ current_period+1].sum() / (self.T_BTC * self.b_target)) self.winning_rates[current_period+1:current_period+self.T_BTC+1] = \ self.winning_rates[current_period] * multiplier return None def diff_adjust_BCH(self, current_period): ''' Used by sim_DAA_2. Modify self.winning_rates in place. ''' # the term related to B(t) block_term = \ (self.block_times[current_period-self.T_BCH+1: \ current_period+1].sum() / self.b_target) # the term related to W(t) temp = np.ones(self.T_BCH) w_inverses = temp / (self.winning_rates[current_period-self.T_BCH+1: \ current_period+1]) winning_prob_term = 1 / w_inverses.sum() # update W(t) self.winning_rates[current_period+1] = \ block_term * winning_prob_term return None def diff_adjust_asert(self, current_period, half_life=2880): ''' Used by sim_DAA_asert. Modify self.winning_rates in place. ''' temp = (self.block_times[current_period] - self.b_target)/half_life # update W(t) self.winning_rates[current_period+1] = \ self.winning_rates[current_period] * np.exp(temp) return None def hash_supply(self, current_period): ''' Compute hash supply in current period (EH) ''' current_exp_reward = \ (self.prices[current_period] * self.winning_rates[current_period] * self.block_reward) return self.hash_ubd * \ self._sigmoid(self.hash_slope * (current_exp_reward - self.hash_center)) def _sigmoid(self, x): sigmoid_range = 34.538776394910684 if x <= -sigmoid_range: return 1e-15 if x >= sigmoid_range: return 1.0 - 1e-15 return 1.0 / (1.0 + np.exp(-x)) def _initialization(self, ubd_param, presim_length=2016): # the number of iteration cannot exceeds self.length * self.ubd_param sim_length_ubd = self.length * ubd_param self.prices = np.zeros((sim_length_ubd,)) # S(t) self.winning_rates = np.zeros((sim_length_ubd,)) # W(t) self.block_times = np.zeros((sim_length_ubd,)) # B(t) self.hash_rates = np.zeros((sim_length_ubd,)) #H(t) self.optimal_winning_rates = np.zeros((sim_length_ubd,)) #W^*(t) self.expected_rewards = np.zeros((sim_length_ubd,)) #R(t) # add pre-simulation periods self.prices = np.hstack([self.prev_prices, self.prices]) self.block_times = \ np.hstack([self.prev_block_times, self.block_times]) self.winning_rates = \ np.hstack([self.prev_winning_rates, self.winning_rates]) ## for BTC, set the winning rates self.winning_rates[presim_length:presim_length+self.T_BTC] = \ self.winning_rates[presim_length-1] ## hash rates in pre-simulation periods will not be used ## The same is true of opt_win_rate and exp_returns _ = np.zeros(presim_length) + self.hash_supply(presim_length-1) # may be redundant self.hash_rates = np.hstack([_, self.hash_rates]) _ = np.zeros(presim_length) self.optimal_winning_rates = np.hstack([_, self.optimal_winning_rates]) self.expected_rewards = np.hstack([_, self.expected_rewards]) return None def _postprocessing(self, period, presim_length=2016): self.block_times = self.block_times[presim_length:period] self.prices = self.prices[presim_length:period] self.winning_rates = self.winning_rates[presim_length:period] self.hash_rates = self.hash_rates[presim_length:period] self.optimal_winning_rates =\ self.optimal_winning_rates[presim_length:period] self.expected_rewards = self.expected_rewards[presim_length:period] return None # Functions def generate_simulation_data(num_iter=3, price_shock=0, T=None, opt_w=pd.DataFrame(), prev_data=pd.DataFrame(), dir_sim='/Volumes/Data/research/BDA/simulation/'): ''' Notes ----- num_iter is a number of observations. The price data 'sim_prices_ps={}_5000obs.csv'.format(price_shock) should be created in advance. If T is specified, T_BTC <- T and T_BCH <- T. ''' df_exprvs = pd.read_csv(dir_sim+'sim_exprvs_5000obs.csv') df_price = pd.read_csv(dir_sim+'sim_prices_ps={}_5000obs.csv'\ .format(price_shock)) df_opt_w = pd.read_csv(dir_sim + 'opt_w.csv', index_col=0) path = '../data/BTCdata_presim.csv' prev_data = pd.read_csv(path) prev_data['time'] = pd.to_datetime(prev_data['time']) prev_data = prev_data.rename(columns={'blocktime': 'block_times', 'price': 'prices', 'probability of success /Eh': 'winning_rates'}) df_DAA_1_blocktime = pd.DataFrame() df_DAA_1_hashrate = pd.DataFrame() df_DAA_1_winrate = pd.DataFrame() df_DAA_1_optwinrate = pd.DataFrame() df_DAA_1_expreward = pd.DataFrame() df_DAA_2_blocktime = pd.DataFrame() df_DAA_2_hashrate = pd.DataFrame() df_DAA_2_winrate = pd.DataFrame() df_DAA_2_optwinrate = pd.DataFrame() df_DAA_2_expreward = pd.DataFrame() df_DAA_0_blocktime =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd import torch from detectron2.data import MetadataCatalog from detectron2.evaluation.evaluator import DatasetEvaluator from pycocotools.coco import COCO from dataset_utils import register_polyp_datasets, dataset_annots class GianaEvaulator(DatasetEvaluator): def __init__(self, dataset_name, output_dir, thresholds=None, old_metric=False): self.iou_thresh = 0.0 self.eval_mode = 'new' self.dataset_name = dataset_name self.dataset_folder = os.path.join("datasets", self.dataset_name) coco_annot_file = os.path.join(self.dataset_folder, "annotations", dataset_annots[dataset_name]) self._coco_api = COCO(coco_annot_file) self.output_folder = os.path.join(output_dir, "giana") self.detection_folder = os.path.join(output_dir, "detection") self.localization_folder = os.path.join(output_dir, "localization") self.classification_folder = os.path.join(output_dir, "classification") self.old_metric = old_metric self.debug = False if thresholds is None: self.thresholds = [x / 10 for x in range(10)] else: self.thresholds = thresholds self._partial_results = [] self.make_dirs() self.classes_id = MetadataCatalog.get(dataset_name).get("thing_dataset_id_to_contiguous_id") self.class_id_name = {v: k for k, v in zip(MetadataCatalog.get(dataset_name).get("thing_classes"), self.classes_id.values())} def make_dirs(self): if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if not os.path.exists(self.detection_folder): os.makedirs(self.detection_folder) if not os.path.exists(self.localization_folder): os.makedirs(self.localization_folder) if not os.path.exists(self.classification_folder): os.makedirs(self.classification_folder) def reset(self): self.results = pd.DataFrame(columns=["image", "detected", "localized", "classified", "score", "pred_box"]) self._partial_results = [] def evaluate(self): if not self.debug: self.results = pd.DataFrame(self._partial_results, columns=["image", "detected", "localized", "classified", "score", "pred_box"]) print(len(self._partial_results)) print(self.results.groupby("image")) print(self.results.groupby("image").count()) self.results[['sequence', 'frame']] = self.results.image.str.split("-", expand=True) sequences = pd.unique(self.results.sequence) dets = [] locs = [] classifs = [] avg_df_detection = pd.DataFrame(columns=["threshold", "TP", "FP", "TN", "FN"]) avg_df_localization = pd.DataFrame(columns=["threshold", "TP", "FP", "TN", "FN"]) avg_df_classification = pd.DataFrame(columns=["threshold", "TP", "FP", "TN", "FN"]) for sequence in sequences: df_detection = pd.DataFrame(columns=["threshold", "TP", "FP", "TN", "FN", "RT"]) df_localization =
pd.DataFrame(columns=["threshold", "TP", "FP", "TN", "FN", "RT"])
pandas.DataFrame
import csv import typer import os.path import pandas as pd from datetime import datetime #from core import configmod as cfm #from core import loggermod as lgm file_svr = 'saved_report.csv' def init(pbpath,dtcnt): filepath = pbpath + "/" + file_svr if not(os.path.exists(filepath)): clm = {'date': [], 'user': []} for i in range(dtcnt): clm["data "+(str(i+1))] = [] clm["score"] = [] filedt =
pd.DataFrame(clm)
pandas.DataFrame
import os import pickle import warnings from pathlib import Path import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import StandardScaler, RobustScaler from utils.preprocessing import preprocess from utils.timefeatures import time_features warnings.filterwarnings('ignore') class Dataset_JaneStreet(Dataset): def __init__(self, root_path, flag='train', size=None, features='M', data_name='train.csv', target='action', scale=True, timeenc=0, freq='t'): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'val', 'test'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] # self.features = features self.target = target self.scale = scale self.root_path = root_path self.data_name = data_name self.__read_data__() def __read_data__(self): scaler = StandardScaler() print('loading dataset...') # print(self.root_path) # print(self.data_name) data_path = Path(self.root_path)/self.data_name pickle_path = Path(self.root_path)/f"{self.data_name}.pandas.pickle" # print(data_path) if not pickle_path.exists(): with pickle_path.open('wb') as p_fd: df_raw = pd.read_csv(data_path) features = [c for c in df_raw.columns if 'feature' in c] print('preprocessing data...') df_raw = preprocess(df_raw, self.scale) pickle.dump(df_raw, p_fd) with pickle_path.open('rb') as p_fd: df_pickled = pickle.load(p_fd) # df_pickled.info() df_pickled = df_pickled[df_pickled.weight != 0] # df_pickled = df_pickled[df_pickled.date > 399] df_pickled = df_pickled[df_pickled.date > 85].reset_index(drop=True) print('generate target...') resp_cols = [c for c in df_pickled.columns if 'resp' in c] # df_pickled['action'] = ((df_pickled['resp'] > 0) & # (df_pickled['resp_1'] > 0) & # (df_pickled['resp_2'] > 0) & # (df_pickled['resp_3'] > 0) & # (df_pickled['resp_4'] > 0)).astype('int') # df_pickled['action'] = df_pickled['resp'].copy() df_pickled['action'] = df_pickled[resp_cols].sum(axis=1)/len(resp_cols) # df_pickled['action'] = df_pickled.apply(lambda row: row.weight * row.resp, axis='columns') # df_pickled['action_1'] = df_pickled['resp_1'] # df_pickled['action_2'] = df_pickled['resp_2'] # df_pickled['action_3'] = df_pickled['resp_3'] # df_pickled['action_4'] = df_pickled['resp_4'] # df_pickled.info() print("split train, valid...") split_date = 400 train_df = df_pickled.loc[df_pickled.date <= split_date].reset_index(drop=True) valid_df = df_pickled.loc[df_pickled.date > split_date].reset_index(drop=True) # print(train_df) # valid_df['weighted_resp'] = valid_df.apply(lambda row: row.weight * row.resp, axis='columns') # target_cols = ['action', 'action_1', 'action_2', 'action_3', 'action_4'] # target_cols = ['action', 'action_1', 'action_2', 'action_3'] # target_cols = ['weighted_resp'] target_cols = ['action'] if self.scale: train_df[target_cols] = scaler.fit_transform(train_df[target_cols].values) valid_df[target_cols] = scaler.fit_transform(valid_df[target_cols].values) print('organize values...') features = [c for c in train_df.columns if 'feature' in c] if self.set_type == 0: self.weight = train_df.weight.values self.resp = train_df.resp.values self.data_x = train_df[features+target_cols].values self.data_y = train_df[features+target_cols].values self.data_stamp = train_df.date.values elif self.set_type == 1: self.weight = valid_df.weight.values self.resp = valid_df.resp.values self.data_x = valid_df[features+target_cols].values self.data_y = valid_df[features+target_cols].values self.data_stamp = valid_df.date.values def __getitem__(self, index): # print(index) # s_begin index s_begin = index # s_end index = s_begin + seq_len (4*24) s_end = s_begin + self.seq_len # r_begin index = s_end - label_len (2*24) r_begin = s_end - self.label_len # r_end index = r_begin + label_len (2*24) + pred_len (1*24) r_end = r_begin + self.label_len + self.pred_len # 0 : 0 + 4*24 seq_x = self.data_x[s_begin:s_end] # 0 + 4*24 - 2*24 : 0 + 4*24 - 2*24 + 2*24 + 1*24 seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] # seq_x: (batch_size, enc_in, seq_len) # seq_y: (batch_size, enc_in, label_len + pred_len) return s_begin, s_end, r_begin, r_end, seq_x, seq_y, seq_x_mark, seq_y_mark # return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 class Dataset_ETT_hour(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, timeenc=0, freq='h'): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_name = data_name self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_name)) # 0, # num of hours in a year - num of hours in 4 days, # num of hours in a year + num of hours in 4 months - num of hours in 4 days border1s = [0, 12*30*24 - self.seq_len, 12*30*24+4*30*24 - self.seq_len] # num of hours in a year, # num of hours in a year + num of hours in 4 months, # num of hours in a year + num of hours in 8 months border2s = [12*30*24, 12*30*24+4*30*24, 12*30*24+8*30*24] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] # print(df_data.shape) if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values # retrieve one year's record df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) if self.timeenc == 0: df_stamp['month'] = df_stamp.date.apply(lambda row: (row.month)) df_stamp['day'] = df_stamp.date.apply(lambda row: row.day) df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday()) df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour) data_stamp = df_stamp.drop(['date'], axis=1).values elif self.timeenc == 1: data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) data_stamp = data_stamp.transpose(1,0) # print(df_stamp) # print(data_stamp) # x and y are identical here self.data_x = data[border1:border2] self.data_y = data[border1:border2] self.data_stamp = data_stamp # print(self.data_x) # exit() def __getitem__(self, index): # 0 : 0 + 4*24 # s_begin index s_begin = index # s_end index = s_begin + seq_len (4*24) s_end = s_begin + self.seq_len # 0 + 4*24 - 2*24 : 0 + 4*24 - 2*24 + 2*24 + 1*24 # r_begin index = s_end - label_len (2*24) r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] # seq_x: (batch_size, enc_in, seq_len) # seq_y: (batch_size, enc_in, label_len + pred_len) return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) class Dataset_ETT_minute(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTm1.csv', target='OT', scale=True, timeenc=0, freq='t'): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_name = data_name self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_name)) border1s = [0, 12*30*24*4 - self.seq_len, 12*30*24*4+4*30*24*4 - self.seq_len] border2s = [12*30*24*4, 12*30*24*4+4*30*24*4, 12*30*24*4+8*30*24*4] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) if self.timeenc==0: df_stamp['month'] = df_stamp.date.apply(lambda row:row.month,1) df_stamp['day'] = df_stamp.date.apply(lambda row:row.day,1) df_stamp['weekday'] = df_stamp.date.apply(lambda row:row.weekday(),1) df_stamp['hour'] = df_stamp.date.apply(lambda row:row.hour,1) df_stamp['minute'] = df_stamp.date.apply(lambda row:row.minute,1) df_stamp['minute'] = df_stamp.minute.map(lambda x:x//15) data_stamp = df_stamp.drop(['date'],1).values elif self.timeenc==1: data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq) data_stamp = data_stamp.transpose(1,0) self.data_x = data[border1:border2] self.data_y = data[border1:border2] self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) class Dataset_Custom(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, timeenc=0, freq='h'): # size [seq_len, label_len pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) ''' df_raw.columns: ['date', ...(other features), target feature] ''' cols = list(df_raw.columns); cols.remove(self.target) df_raw = df_raw[cols+[self.target]] num_train = int(len(df_raw)*0.7) num_test = int(len(df_raw)*0.2) num_vali = len(df_raw) - num_train - num_test border1s = [0, num_train-self.seq_len, len(df_raw)-num_test-self.seq_len] border2s = [num_train, num_train+num_vali, len(df_raw)] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) if self.timeenc==0: df_stamp['month'] = df_stamp.date.apply(lambda row:row.month,1) df_stamp['day'] = df_stamp.date.apply(lambda row:row.day,1) df_stamp['weekday'] = df_stamp.date.apply(lambda row:row.weekday(),1) df_stamp['hour'] = df_stamp.date.apply(lambda row:row.hour,1) data_stamp = df_stamp.drop(['date'],1).values elif self.timeenc==1: data_stamp = time_features(
pd.to_datetime(df_stamp['date'].values)
pandas.to_datetime
import sys import logging import arrow import pandas as pd from fintrist import Study from fintrist_lib import ANALYSIS_CATALOG, SCRAPERS_CATALOG from .settings import Config from . import util logger = logging.getLogger(__name__) def backtest(model, strategy, period='1y', end=None): """Run the model Study on previous dates over the period, collecting the alerts. ::parents:: model ::params:: strategy, period, end ::alerts:: complete """ # Define the time period if not end: end = arrow.now(Config.TZ) quant, unit = util.split_alphanum(period) if unit == 'y': start = end.shift(years=-quant) elif unit == 'd': start = end.shift(days=-quant) else: start = end.shift(years=-100) # Set up the fake study to run simulated = [] tempstudy = Study() parent_data = {name: study.data for name, study in model.parents.items()} try: recipe = ANALYSIS_CATALOG[model.recipe] except KeyError: recipe = SCRAPERS_CATALOG[model.recipe] parent_data['mock'] = model.data # At each date, run the model's process on the previous data # TODO: Date range should be based on the model's parents, not the model. full_range = model.data.index for view_date in model.data[start.date():end.date()].index: logger.debug(f"Log: Backtesting at {view_date}") curr_idx = full_range.get_loc(view_date) try: prev_date = full_range[curr_idx - 1] except IndexError: continue trunc_data = {name: data[:prev_date] for name, data in parent_data.items()} _, newalerts = recipe.process(**trunc_data, **model.params) tempstudy.alertslog.record_alerts(newalerts, view_date) actions = strategy.check_actions(tempstudy) simulated.append((view_date, actions)) # Save the data simdata =
pd.DataFrame(simulated, columns=['date', 'signals'])
pandas.DataFrame
import datetime import logging import os.path import random import sys from os import path from typing import List import pandas as pd from tqdm import tqdm from query_formulation.search import ElasticSearch, SibilsElastic random.seed(0) # Gets or creates a logger def get_logger(filename: str, name: str): logger = logging.getLogger(name) # set log level logger.setLevel(logging.INFO) # define file handler and set formatter file_handler = logging.FileHandler(filename) formatter = logging.Formatter("%(asctime)s : %(levelname)s : %(message)s") file_handler.setFormatter(formatter) # add file handler to logger logger.addHandler(file_handler) return logger logger = get_logger("queries.log", __name__) logger.info("logging initiated") current_path = path.abspath(path.dirname(__file__)) data_dir = path.join(current_path, 'data') if len(sys.argv) > 1 and sys.argv[1].lower() == 'sigir': dataset_type = 'SIGIR_' else: dataset_type = '' searcher = ElasticSearch(None) relevance_df: pd.DataFrame = pd.read_csv(f'{data_dir}/{dataset_type}results.csv') topics_df: pd.DataFrame = pd.read_csv(f"{data_dir}/{dataset_type}topics.csv") def evaluate_result(topic_id: str, query_result: List[str], recall_at_count=1000): int_query_result = [] for idx, r in enumerate(query_result): try: int_query_result.append(int(r) )# pubmed ids are returned as string, convert them to integer) except: continue relevant_pids = relevance_df[relevance_df["topic_id"] == topic_id]['pubmed_id'].tolist() assert len(relevant_pids) total_relevant = len(relevant_pids) total_found = len(int_query_result) recall = precision = f_score = recall_at = 0 if not total_found: return recall, precision, f_score, recall_at true_positives = set(relevant_pids).intersection(int_query_result) tp = len(true_positives) recall = round(tp / total_relevant, 4) if len(int_query_result) > recall_at_count: true_positives_at = set(relevant_pids).intersection( int_query_result[:recall_at_count] ) recall_at = round(len(true_positives_at) / total_relevant, 4) else: recall_at = recall precision = round(tp / total_found, 5) if not precision and not recall: f_score = 0 else: f_score = 2 * precision * recall / (precision + recall) return recall, precision, recall_at, f_score def search_and_eval(row): query = row["query"] topic_id = row["topic_id"] end_date, start_date = None, None if 'start_date' in row and row['start_date']: try: start_date = datetime.datetime.strptime(row['start_date'], '%Y-%m-%d') except Exception: start_date = None if 'end_date' in row and row['end_date']: try: end_date = datetime.datetime.strptime(row['end_date'], '%Y-%m-%d') except Exception: end_date = None try: results = searcher.search_pubmed(query, start_date=start_date, end_date=end_date) except Exception as e: logger.warning( f"ERROR: topic_id {topic_id} with query {query} error {e}" ) return pd.DataFrame() row["recall"], row["precision"], row["recall_at"], row["f_score"] = evaluate_result( topic_id, results, recall_at_count=1000 ) row["results_count"] = len(results) if row['recall']: logger.info(f"topic_id {topic_id} with query {query} done, recall was {row['recall']}") else: logger.info(f'topic_id {topic_id}, nah buddy') return row def get_already_searched_data(path: str): if os.path.isfile(path): temp_df = pd.read_csv(path) return temp_df return
pd.DataFrame()
pandas.DataFrame
from config import * import gensim import pandas as pd import os import re import string as st import numpy as np from textblob import TextBlob class DataProcessor: def __init__(self, nrows=None): self.df = None self.w2v_model = None self.label_col = "retweet_count" self.label_max = None self.drop = False self.nrows = nrows def get_glove_model(self): if not glove_path.exists(): os.system(f"wget https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz " f"--directory-prefix={data_folder}") self.w2v_model = gensim.models.KeyedVectors.load_word2vec_format(glove_path, binary=True) def tweet_w2v(self, text): vecs = np.array([self.w2v_model[word] for word in text.split() if word in self.w2v_model]) return np.mean(vecs, axis=0) def clean_df(self): self.df["text"] = self.df["text"].apply(self.clean) if self.drop: self.df = self.df.replace('', np.nan).dropna(subset=["text"]).reset_index(drop=True) def clean(self, string): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) "]+", flags=re.UNICODE) punc = (st.punctuation.replace('@', '').replace('#', '')) + '"' + "'" + '”' + '“' + '‘' translator = str.maketrans('', '', punc) string = str(string).lower() string = string.translate(translator) string = string.split() to_remove = [] for word in string: if word[0] == '#' or word[0] == '@' or word == 'rt' or word[:4] == 'http' or word[0].isnumeric(): to_remove.append(word) for word in to_remove: string.remove(word) text = emoji_pattern.sub(r'', ' '.join(string)) text = re.sub("[^a-zA-Z ]", "", text) return text def norm_label(self, overwrite_max=None): if overwrite_max: self.label_max = overwrite_max else: self.label_max = max(self.df[self.label_col]) self.df[self.label_col] = self.df[self.label_col] / self.label_max def unnorm(self, norm_labels): return norm_labels * self.label_max def get_split_df(self): from verstack.stratified_continuous_split import scsplit return scsplit(self.df["text"], self.df[self.label_col], stratify=self.df[self.label_col], train_size=0.7, test_size=0.3) def get_split_df_with_all_cols(self): from verstack.stratified_continuous_split import scsplit return scsplit(self.df, self.df[self.label_col], stratify=self.df[self.label_col], train_size=0.7, test_size=0.3) def apply_glove(self, normalize=True): print("Loading Glove ...") self.get_glove_model() print("Done") print("Processing data ...") self.clean_df() if normalize: self.norm_label() if self.drop: self.df = self.df.replace('', np.nan).dropna(subset=["text"]).reset_index(drop=True) self.df["text"] = self.df["text"].apply(self.tweet_w2v) print("Done") def save_df(self, path): self.df.to_hdf(path, key='df', mode='w') print(f"Dataframe saved to {path}") def load_csv(self, path=train_path): self.df = pd.read_csv(path, nrows=self.nrows, index_col="id") self.df["user_verified"] = self.df["user_verified"].astype(bool) def replace_timestamp(self): self.df["day_of_week"] =
pd.to_datetime(self.df["timestamp"])
pandas.to_datetime
#!/usr/bin/env python import argparse import json import logging import os import re from datetime import datetime from math import sqrt from pathlib import Path from typing import List, Optional import lightgbm as lgb import numpy as np import pandas as pd from fastcore.utils import store_attr from mlforecast.core import TimeSeries from mlforecast.forecast import Forecast from window_ops.ewm import ewm_mean from window_ops.expanding import expanding_mean from window_ops.rolling import rolling_mean, seasonal_rolling_mean freq2config = { 'D': dict( lags=[7, 28], lag_transforms={ 7: [(rolling_mean, 7), (rolling_mean, 28)], 28: [ (rolling_mean, 7), (rolling_mean, 28), (seasonal_rolling_mean, 7, 4), (seasonal_rolling_mean, 7, 8), ], }, date_features=['year', 'quarter', 'month', 'week', 'day', 'dayofweek'], ), 'W': dict( lags=[1, 2, 3, 4], lag_transforms={ 1: [(expanding_mean), (ewm_mean, 0.1), (ewm_mean, 0.3)], }, date_features=['year', 'quarter', 'month', 'week'] ), } class TSForecast: """Computes forecast at scale.""" def __init__(self, filename: str, filename_static: str, filename_temporal: str, dir_train: str, dir_output: str, freq: str, unique_id_column: str, ds_column: str, y_column: str, horizon: int, naive_forecast: bool, backtest_windows: int, objective: str, metric: str, learning_rate: int, n_estimators: int, num_leaves: int, min_data_in_leaf: int, bagging_freq: int, bagging_fraction: float) -> 'TSForecast': store_attr() self.df: pd.DataFrame self.df_temporal: pd.DataFrame self.fcst: Forecast self.static_features: List[str] self.df, self.df_temporal, self.static_features = self._read_file() def _clean_columns(self, df: pd.DataFrame) -> None: new_columns = [] for column in df.columns: new_column = re.sub(r'[",:{}[\]]', '', column) new_columns.append(new_column) df.columns = new_columns def _read_file(self) -> pd.DataFrame: logger.info('Reading file...') df = pd.read_parquet(f'{self.dir_train}/{self.filename}') logger.info('File read.') renamer = {self.unique_id_column: 'unique_id', self.ds_column: 'ds', self.y_column: 'y'} df.rename(columns=renamer, inplace=True) df.set_index(['unique_id', 'ds'], inplace=True) self._clean_columns(df) cat_dtypes = ['object', 'int64', 'int32'] #assuming these are cats static_features = None if self.filename_static is not None: logger.info('Processing static features') static = pd.read_parquet(f'{self.dir_train}/{self.filename_static}') static.rename(columns=renamer, inplace=True) static.set_index('unique_id', inplace=True) self._clean_columns(static) static_features = static.columns.to_list() obj_features = static.select_dtypes(cat_dtypes).columns.to_list() static[obj_features] = static[obj_features].astype('category') df = df.merge(static, how='left', left_on=['unique_id'], right_index=True) logger.info('Done') df_temporal = None if self.filename_temporal is not None: logger.info('Processing temporal features') df_temporal = pd.read_parquet(f'{self.dir_train}/{self.filename_temporal}') df_temporal.rename(columns=renamer, inplace=True) df_temporal.set_index(['unique_id', 'ds'], inplace=True) self._clean_columns(df_temporal) obj_features = df_temporal.select_dtypes(cat_dtypes).columns.to_list() df_temporal[obj_features] = df_temporal[obj_features].astype('category') df = df.merge(df_temporal, how='left', left_on=['unique_id', 'ds'], right_index=True) df_temporal.reset_index(inplace=True) df_temporal['ds'] =
pd.to_datetime(df_temporal['ds'])
pandas.to_datetime
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from math import sqrt from dramkit.gentools import power from dramkit.gentools import isnull from dramkit.gentools import cal_pct from dramkit.gentools import x_div_y from dramkit.gentools import check_l_allin_l0 from dramkit.gentools import get_update_kwargs from dramkit.gentools import con_count_ignore from dramkit.gentools import replace_repeat_func_iter from dramkit.datetimetools import diff_days_date from dramkit.logtools.utils_logger import logger_show from dramkit.plottools.plot_common import plot_series from dramkit.plottools.plot_common import plot_series_conlabel #%% def signal_merge(data, sig1_col, sig2_col, merge_type=1): ''' 两个信号合并成一个信号 Parameters ---------- data : pandas.DataFrame 待处理数据,必须包含 ``sig1_col`` 和 ``sig2_col`` 指定的列 sig1_col, sig2_col : str 指定信号列,值为-1表示买(做多),1表示卖(做空) merge_type : int 设置信号合并方式: - 1: 两个信号出现任何一个都算有效信号 - 2: 根据两个信号的持仓量叠加计算交易信号(返回信号不适用反向开仓) - 3: 只有两个信号方向相同时才算交易信号(返回信号不适用反向开仓) :returns: `pd.Series` - 合并之后的信号 ''' df = data.reindex(columns=[sig1_col, sig2_col]) df.rename(columns={sig1_col: 'sig1', sig2_col: 'sig2'}, inplace=True) if merge_type == 1: df['sig'] = df['sig1'] + df['sig2'] df['sig'] = df['sig'].apply(lambda x: -1 if x < 0 else \ (1 if x > 0 else 0)) return df['sig'] elif merge_type == 2: df['hold1'] = df['sig1'].replace(0, np.nan) df['hold1'] = df['hold1'].fillna(method='ffill').fillna(0) df['hold2'] = df['sig2'].replace(0, np.nan) df['hold2'] = df['hold2'].fillna(method='ffill').fillna(0) df['hold'] = df['hold1'] + df['hold2'] df['trade'] = df['hold'].diff() df['sig'] = df['trade'].apply(lambda x: -1 if x < 0 else \ (1 if x > 0 else 0)) return df['sig'] elif merge_type == 3: df['hold1'] = df['sig1'].replace(0, np.nan) df['hold1'] = df['hold1'].fillna(method='ffill').fillna(0) df['hold2'] = df['sig2'].replace(0, np.nan) df['hold2'] = df['hold2'].fillna(method='ffill').fillna(0) df['hold'] = df['hold1'] + df['hold2'] df['hold'] = df['hold'].apply(lambda x: 1 if x == 2 else \ (-1 if x == -2 else 0)) df['trade'] = df['hold'].diff() df['sig'] = df['trade'].apply(lambda x: -1 if x < 0 else \ (1 if x > 0 else 0)) return df['sig'] #%% def cal_cost_add(hold_vol, hold_cost, add_vol, add_price): ''' | 计算加仓之后的平均持仓成本 | hold_vol为加仓前持仓量,hold_cost为加仓前平均持仓成本,add_vol为加仓量 ''' holdCost = hold_vol * hold_cost totCost = holdCost + add_vol * add_price return totCost / (hold_vol + add_vol) def get_mean_cost(trade_records, dirt_col, price_col, vol_col): ''' 根据交易记录计算每期持仓成本 Parameters ---------- trade_records : pd.DataFrame 交易记录数据,必须包含 ``dirt_col`` 、 ``price_col`` 和 `vol_col` 指定的列 dirt_col : str 买卖方向列,1为买入(做多),-1为卖出(做空) price_col : str 成交价格列 vol_col : str 为成交量列 :returns: `pd.DataFrame` - 在trade_records上增加了'holdVol', 'holdCost', 'meanCost'三列 ''' df = trade_records.copy() ori_idx = df.index df.index = range(0, df.shape[0]) vol_col_ = vol_col + '_' df[vol_col_] = df[dirt_col] * df[vol_col] df['holdVol'] = df[vol_col_].cumsum().round(4) df.loc[df.index[0], 'holdCost'] = df[price_col].iloc[0] * df[vol_col_].iloc[0] df.loc[df.index[0], 'meanCost'] = df[price_col].iloc[0] for k in range(1, df.shape[0]): holdVol_pre = df['holdVol'].iloc[k-1] holdCost_pre = df['holdCost'].iloc[k-1] holdVol = df['holdVol'].iloc[k] tradeVol = df[vol_col_].iloc[k] if tradeVol == 0: holdCost, meanCost = holdCost_pre, df['meanCost'].iloc[k-1] elif holdVol == 0: # 平仓 holdCost, meanCost = 0, 0 elif holdVol_pre >= 0 and holdVol > holdVol_pre: # 买入开仓或加仓 tradeVal = df[vol_col_].iloc[k] * df[price_col].iloc[k] holdCost = holdCost_pre + tradeVal meanCost = holdCost / holdVol elif holdVol_pre >= 0 and holdVol > 0 and holdVol < holdVol_pre: # 买入减仓 meanCost = df['meanCost'].iloc[k-1] holdCost = meanCost * holdVol elif holdVol_pre >= 0 and holdVol < 0: # 买入平仓反向卖出 meanCost = df[price_col].iloc[k] holdCost = holdVol * meanCost elif holdVol_pre <= 0 and holdVol < holdVol_pre: # 卖出开仓或加仓 tradeVal = df[vol_col_].iloc[k] * df[price_col].iloc[k] holdCost = holdCost_pre + tradeVal meanCost = holdCost / holdVol elif holdVol_pre <= 0 and holdVol < 0 and holdVol > holdVol_pre: # 卖出减仓 meanCost = df['meanCost'].iloc[k-1] holdCost = meanCost * holdVol elif holdVol_pre <= 0 and holdVol > 0: # 卖出平仓反向买入 meanCost = df[price_col].iloc[k] holdCost = holdVol * meanCost df.loc[df.index[k], 'holdCost'] = holdCost df.loc[df.index[k], 'meanCost'] = meanCost df.index = ori_idx return df #%% def cal_gain_con_futures(price_open, price_now, n, player, fee=0.1/100, lever=100, n_future2target=0.001): ''' 永续合约收益计算,如火币BTC合约 Parameters ---------- price_open : float 开仓价格 price_now : float 现价 n : int 数量(张) player : str 做空或做多 fee : float 手续费比例 lever : int 杠杆 n_future2target : float 一份合约对应的标的数量 Returns ------- gain_lever : float 盈亏金额 gain_pct : float 盈亏比例 ''' if n == 0: return 0, 0 b_name = ['buyer', 'Buyer', 'b', 'B', 'buy', 'Buy'] s_name = ['seller', 'Seller', 'seler', 'Seler', 's', 'S', 'sell', 'Sell', 'sel', 'Sel'] price_cost_ = price_open * n_future2target / lever price_now_ = price_now * n_future2target / lever if player in b_name: Cost = price_cost_ * n * (1+fee) Get = price_now_ * n * (1-fee) gain = Get - Cost gain_pct = gain / Cost elif player in s_name: Cost = price_now_ * n * (1+fee) Get = price_cost_ * n * (1-fee) gain = Get - Cost gain_pct = gain / Get gain_lever = gain * lever return gain_lever, gain_pct def cal_gain_con_futures2(price_open, price_now, n, player, fee=0.1/100, lever=100): ''' 永续合约收益计算,如币安ETH合约 Parameters ---------- price_open : float 开仓价格 price_now : float 现价 n : int 数量(标的量) player : str 做空或做多 fee : float 手续费比例 lever : int 杠杆 Returns ------- gain_lever : float 盈亏金额 gain_pct : float 盈亏比例 ''' if n == 0: return 0, 0 b_name = ['buyer', 'Buyer', 'b', 'B', 'buy', 'Buy'] s_name = ['seller', 'Seller', 'seler', 'Seler', 's', 'S', 'sell', 'Sell', 'sel', 'Sel'] price_cost_ = price_open / lever price_now_ = price_now / lever if player in b_name: Cost = price_cost_ * n * (1+fee) Get = price_now_ * n * (1-fee) gain = Get - Cost gain_pct = gain / Cost elif player in s_name: Cost = price_now_ * n * (1+fee) Get = price_cost_ * n * (1-fee) gain = Get - Cost gain_pct = gain / Get gain_lever = gain * lever return gain_lever, gain_pct #%% def cal_expect_return(hit_prob, gain_loss_ratio): '''根据胜率和盈亏比计算期望收益''' return hit_prob*gain_loss_ratio - (1-hit_prob) def cal_gain_pct_log(price_cost, price, pct_cost0=1): ''' | 计算对数收益率 | price_cost为成本 | price为现价 | pct_cost0为成本price_cost为0时的返回值''' if isnull(price_cost) or isnull(price): return np.nan if price_cost == 0: return pct_cost0 elif price_cost > 0: return np.log(price) - np.log(price_cost) else: raise ValueError('price_cost必须大于等于0!') def cal_gain_pct(price_cost, price, pct_cost0=1): ''' | 计算百分比收益率 | price_cost为成本 | price为现价 | pct_cost0为成本price_cost为0时的返回值 Note ---- 默认以权利方成本price_cost为正(eg. 买入价为100,则price_cost=100)、 义务方成本price_cost为负进行计算(eg. 卖出价为100,则price_cost=-100) ''' if isnull(price_cost) or isnull(price): return np.nan if price_cost > 0: return price / price_cost - 1 elif price_cost < 0: return 1 - price / price_cost else: return pct_cost0 def cal_gain_pcts(price_series, gain_type='pct', pct_cost0=1, logger=None): ''' | 计算资产价值序列price_series(`pd.Series`)每个时间的收益率 | gain_type: | 为'pct',使用普通百分比收益 | 为'log',使用对数收益率(当price_series存在小于等于0时不能使用) | 为'dif',收益率为前后差值(适用于累加净值情况) | pct_cost0为当成本为0时收益率的指定值 ''' if (price_series <= 0).sum() > 0: gain_type = 'pct' logger_show('存在小于等于0的值,将用百分比收益率代替对数收益率!', logger, 'warning') if gain_type == 'pct': df = pd.DataFrame({'price_now': price_series}) df['price_cost'] = df['price_now'].shift(1) df['pct'] = df[['price_cost', 'price_now']].apply(lambda x: cal_gain_pct(x['price_cost'], x['price_now'], pct_cost0=pct_cost0), axis=1) return df['pct'] elif gain_type == 'log': return price_series.apply(np.log).diff() elif gain_type == 'dif': return price_series.diff() else: raise ValueError('未识别的`gain_type`,请检查!') #%% def cal_beta(values_target, values_base, gain_type='pct', pct_cost0=1): ''' | 计算贝塔系数 | values_target, values_base分别为目标价值序列和基准价值序列 | gain_type和pct_cost0同 :func:`dramkit.fintools.utils_gains.cal_gain_pcts` 中的参数 | 参考: | https://www.joinquant.com/help/api/help#api:风险指标 | https://blog.csdn.net/thfyshz/article/details/83443783 ''' values_target = pd.Series(values_target) values_base = pd.Series(values_base) pcts_target = cal_gain_pcts(values_target, gain_type=gain_type, pct_cost0=pct_cost0) pcts_base = cal_gain_pcts(values_base, gain_type=gain_type, pct_cost0=pct_cost0) pcts_target = pcts_target.iloc[1:] pcts_base = pcts_base.iloc[1:] return np.cov(pcts_target, pcts_base)[0][1] / np.var(pcts_base, ddof=1) def cal_alpha_beta(values_target, values_base, r0=3.0/100, nn=252, gain_type='pct', rtype='exp', pct_cost0=1, logger=None): ''' | 计算alpha和beta系数 | 参数参考 :func:`cal_beta` 和 :func:`cal_returns_period` 函数 ''' r = cal_returns_period(values_target, gain_type=gain_type, rtype=rtype, nn=nn, pct_cost0=pct_cost0, logger=logger) r_base = cal_returns_period(values_base, gain_type=gain_type, rtype=rtype, nn=nn, pct_cost0=pct_cost0, logger=logger) beta = cal_beta(values_target, values_base, gain_type=gain_type, pct_cost0=pct_cost0) return r - (r0 + beta*(r_base-r0)), beta def cal_alpha_by_beta_and_r(r, r_base, beta, r0=3.0/100): ''' | 根据年化收益以及beta计算alpha | r为策略年化收益,r_base为基准年化收益,r0为无风险收益率,beta为策略beta值 ''' return r - (r0 + beta*(r_base-r0)) #%% def cal_return_period_by_gain_pct(gain_pct, n, nn=250, rtype='exp', gain_pct_type='pct'): ''' 给定最终收益率gain_pct,计算周期化收益率 Parameters ---------- gain_pct : float 给定的最终收益率 n : int 期数 nn : int | 一个完整周期包含的期数,eg. | 若price_series周期为日,求年化收益率时nn一般为252(一年的交易日数) | 若price_series周期为日,求月度收益率时nn一般为21(一个月的交易日数) | 若price_series周期为分钟,求年化收益率时nn一般为252*240(一年的交易分钟数) rtype : str 周期化时采用指数方式'exp'或平均方式'mean' gain_pct_type : str | 设置最终收益率gain_pct得来的计算方式,可选'pct', 'log' | 默认为百分比收益,若为对数收益,则计算周期化收益率时只能采用平均法,不能用指数法 .. hint:: | 百分比收益率: | 复利(指数)公式:1 + R = (1 + r) ^ (n / nn) ——> r = (1 + R) ^ (nn / n) - 1 | 单利(平均)公式:1 + R = 1 + r * (n / nn) ——> r = R * nn / n | 对数收益率: | R = r * (n / nn) ——> r = R * nn / n(采用对数收益率计算年化收益只能用平均法) Returns ------- r : float 周期化收益率,其周期由nn确定 References ---------- https://zhuanlan.zhihu.com/p/112211063 ''' if gain_pct_type in ['log', 'ln', 'lg']: rtype = 'mean' # 对数收益率只能采用平均法进行周期化 if rtype == 'exp': r = power(1 + gain_pct, nn / n) - 1 elif rtype == 'mean': r = nn * gain_pct / n return r def cal_ext_return_period_by_gain_pct(gain_pct, gain_pct_base, n, nn=250, rtype='exp', gain_pct_type='pct', ext_type=1): ''' | 给定收益率和基准收益率,计算周期化超额收益率 | rtype周期化收益率方法,可选'exp'或'mean'或'log' | ext_type设置超额收益率计算方式: | 若为1,先算各自周期化收益率,再相减 | 若为2,先相减,再周期化算超额 | 若为3,先还原两者实际净值,再以相对于基准净值的收益计算周期化超额 | 其他参数意义同 :func:`cal_return_period_by_gain_pct` 函数 | 参考: | https://xueqiu.com/1930958059/167803003?page=1 ''' if rtype == 'log': ext_type = 3 if ext_type == 1: p1 = cal_return_period_by_gain_pct(gain_pct, n, nn=nn, rtype=rtype, gain_pct_type=gain_pct_type) p2 = cal_return_period_by_gain_pct(gain_pct_base, n, nn=nn, rtype=rtype, gain_pct_type=gain_pct_type) return p1 - p2 elif ext_type == 2: p = cal_return_period_by_gain_pct(gain_pct-gain_pct_base, n, nn=nn, rtype=rtype, gain_pct_type=gain_pct_type) return p if ext_type == 3: if gain_pct_type in ['log', 'ln', 'lg']: p = np.exp(gain_pct) p_base = np.exp(gain_pct_base) elif gain_pct_type == 'pct': p = 1 + gain_pct p_base = 1 + gain_pct_base if rtype == 'exp': return power(p / p_base, nn / n) - 1 elif rtype == 'mean': return (p / p_base - 1) * nn / n elif rtype == 'log': return (np.log(p) - np.log(p_base)) * nn / n else: raise ValueError('未识别的ext_type参数,请检查!') def cal_ext_return_period(values, values_base, gain_type='pct', rtype='exp', nn=250, pct_cost0=1, ext_type=1, logger=None): ''' | 根据给定价格或价值序列计values和基准序列values_base,算超额收益 | pct_cost0参考 :func:`cal_gain_pct` 和 :func:`cal_gain_pct_log` 函数 | 其它参数参考 :func:`cal_ext_return_period_by_gain_pct` 函数 ''' values, values_base = np.array(values), np.array(values_base) n1, n0 = len(values), len(values_base) if n1 != n0: raise ValueError('两个序列长度不相等,请检查!') if gain_type == 'log': if (values[0] <= 0 or values_base[-1] <= 0) or \ (values_base[0] <= 0 or values_base[-1] <= 0): logger_show('发现开始值或结束值为负,用百分比收益率代替对数收益率!', logger, 'warning') p1 = cal_gain_pct(values[0], values[-1], pct_cost0=pct_cost0) p0 = cal_gain_pct(values_base[0], values_base[-1], pct_cost0=pct_cost0) gain_pct_type = 'pct' else: p1 = cal_gain_pct_log(values[0], values[-1], pct_cost0=pct_cost0) p0 = cal_gain_pct_log(values_base[0], values_base[-1], pct_cost0=pct_cost0) rtype = 'mean' # 采用对数收益率计算年化收益只能用平均法 gain_pct_type = 'log' elif gain_type == 'pct': p1 = cal_gain_pct(values[0], values[-1], pct_cost0=pct_cost0) p0 = cal_gain_pct(values_base[0], values_base[-1], pct_cost0=pct_cost0) gain_pct_type = 'pct' elif gain_type == 'dif': p1 = values[-1] - values[0] p1 = values_base[-1] - values_base[0] rtype = 'mean' gain_pct_type = 'pct' else: raise ValueError('未识别的`gain_gype`,请检查!') extr = cal_ext_return_period_by_gain_pct(p1, p0, n1, nn=nn, rtype=rtype, gain_pct_type=gain_pct_type, ext_type=ext_type) return extr def cal_returns_period(price_series, gain_type='pct', rtype='exp', nn=252, pct_cost0=1, logger=None): ''' 计算周期化收益率 Parameters ---------- price_series : pd.Series, np.array, list 资产价值序列(有负值时不能使用对数收益率) gain_type : str | 收益率计算方式设置 | 为'pct',使用普通百分比收益 | 为'log',使用对数收益率(当price_series存在小于等于0时不能使用) | 为'dif',收益率为前后差值(适用于累加净值情况) rtype : str | 收益率周期化时采用指数方式'exp'或平均方式'mean' | (采用对数收益率计算年化收益只能用平均法) nn : int | 一个完整周期包含的期数,eg. | 若price_series周期为日,求年化收益率时nn一般为252(一年的交易日数) | 若price_series周期为日,求月度收益率时nn一般为21(一个月的交易日数) | 若price_series周期为分钟,求年化收益率时nn一般为252*240(一年的交易分钟数) pct_cost0 : float 成本为0时收益率的指定值,参见 :func:`cal_gain_pct` 和 :func:`cal_gain_pct_log` 函数 Returns ------- r : float 周期化收益率,其周期由nn确定 See Also -------- :func:`cal_return_period_by_gain_pct` ''' price_series = np.array(price_series) n_ = len(price_series) if gain_type == 'log': if price_series[0] <= 0 or price_series[-1] <= 0: logger_show('发现开始值或结束值为负,用百分比收益率代替对数收益率!', logger, 'warning') gain_pct = cal_gain_pct(price_series[0], price_series[-1], pct_cost0=pct_cost0) gain_pct_type = 'pct' else: gain_pct = cal_gain_pct_log(price_series[0], price_series[-1], pct_cost0=pct_cost0) rtype = 'mean' # 采用对数收益率计算年化收益只能用平均法 gain_pct_type = 'log' elif gain_type == 'pct': gain_pct = cal_gain_pct(price_series[0], price_series[-1], pct_cost0=pct_cost0) gain_pct_type = 'pct' elif gain_type == 'dif': gain_pct = price_series[-1] - price_series[0] gain_pct_type = 'pct' rtype = 'mean' else: raise ValueError('未识别的`gain_type`,请检查!') r = cal_return_period_by_gain_pct(gain_pct, n_, nn=nn, rtype=rtype, gain_pct_type=gain_pct_type) return r def cal_returns_period_mean(price_series, gain_type='pct', nn=252, pct_cost0=1, logger=None): ''' | 计算周期化收益率,采用收益率直接平均的方法 | price_series为资产价值序列,pd.Series或list或np.array(有负值时不能使用对数收益率) | gain_type和pct_cost0参数参见 :func:`cal_gain_pcts` | nn为一个完整周期包含的期数,eg. | 若price_series周期为日,求年化收益率时nn一般为252(一年的交易日数) | 若price_series周期为日,求月度收益率时nn一般为21(一个月的交易日数) | 若price_series周期为分钟,求年化收益率时nn一般为252*240(一年的交易分钟数) ''' price_series = pd.Series(price_series) price_series.name = 'series' df =
pd.DataFrame(price_series)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 1 22:13:05 2018 @author: tauro """ import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') from sklearn.preprocessing import StandardScaler, PowerTransformer, MinMaxScaler, LabelEncoder from sklearn.metrics import accuracy_score, roc_auc_score, cohen_kappa_score, confusion_matrix from sklearn.model_selection import train_test_split from sklearn.utils import resample from sklearn.impute import SimpleImputer from sklearn.decomposition import PCA from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from datetime import datetime import os import pickle #Progress bar from tqdm import tqdm tqdm.pandas(desc="progress-bar") #Garbage collection import gc from scipy.stats import mode import xgboost as xgb from lightgbm import LGBMClassifier from keras.models import Sequential from keras.layers import Dense, Dropout #Custom file for data loading and preprocessing from data_preprocessing import process_data, data_split start_time = datetime.now() owd = os.getcwd() # ============================================================================= # Load required data train, response, test, test_ids = process_data("data_train.csv", "data_test.csv", pca=False, scale=True) X_train, X_test, y_train, y_test = data_split(train, response) del train, response, test, test_ids # ============================================================================= # Model 1 - Gaussian Naive Bayes classifier gc.collect() print("\nTraining Gaussian Naive Bayes classifier - Model 1 of 8\n") list_gnb = [] gnb = GaussianNB() gnb.fit(X_train, y_train) gnb_pred_prob = gnb.predict_proba(X_test)[:,1] threshold_gnb = 0.3 gnb_pred = gnb_pred_prob > threshold_gnb metrics_gnb = {} metrics_gnb['threshold'] = threshold_gnb accuracy = accuracy_score(y_test, gnb_pred) metrics_gnb['accuracy'] = accuracy roc = roc_auc_score(y_test, gnb_pred) metrics_gnb['auc_roc'] = roc kappa = cohen_kappa_score(y_test, gnb_pred) metrics_gnb['kappa'] = kappa conf_matrix = confusion_matrix(y_test, gnb_pred) metrics_gnb['conf_matrix'] = conf_matrix metrics_gnb['sensitivity'] = conf_matrix[1,1] / (conf_matrix[1,1] + conf_matrix[1,0]) metrics_gnb['specificity'] = conf_matrix[0,0] / (conf_matrix[0,1] + conf_matrix[0,0]) list_gnb.append(metrics_gnb) # ============================================================================= # Model 2 - XGBoost classifier gc.collect() print("\nTraining XG Boost classifier - Model 2 of 8\n") list_xgb = [] dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) params = {'max_depth': 2, 'eta': 0.5, 'silent': 0, 'objective': 'binary:logistic', 'nthread': 4, 'eval_metric': 'auc', 'colsample_bytree': 0.8, 'subsample': 0.8, 'scale_pos_weight': 1, 'gamma': 200, 'learning_rate': 0.02} evallist = [(dtest, 'eval'), (dtrain, 'train')] num_rounds = 500 bst = xgb.train(params, dtrain, num_rounds, evallist) xgb_pred_prob = bst.predict(dtest) threshold_xgb = 0.5 xgb_pred = xgb_pred_prob > threshold_xgb xgb_pred = np.multiply(xgb_pred, 1) xgb_pred =
pd.Series(xgb_pred)
pandas.Series
import pandas as pd from inci_db.db_utils import DatabaseConnector class Abbreviation(DatabaseConnector): def __init__(self, name): self.name = name @classmethod def create_table(cls, filepath): """ Create a table in the database from csv file with abbreviations of cosmetic ingredients. """ my_db = super().db_connect() cursor = my_db.cursor() table_name = cls.__name__.lower() data =
pd.read_csv(filepath, encoding="utf-8")
pandas.read_csv
"""Wrapped xgboost for tabular datasets.""" from time import perf_counter import logging from copy import copy from copy import deepcopy from typing import Optional from typing import Callable from typing import Tuple from typing import Dict import xgboost as xgb from xgboost import dask as dxgb import numpy as np import pandas as pd import cupy as cp from lightautoml.dataset.gpu.gpu_dataset import DaskCudfDataset from lightautoml.dataset.gpu.gpu_dataset import CudfDataset from .base_gpu import TabularMLAlgo_gpu from .base_gpu import TabularDatasetGpu from lightautoml.pipelines.selection.base import ImportanceEstimator from lightautoml.validation.base import TrainValidIterator from lightautoml.ml_algo.tuning.base import Distribution from lightautoml.ml_algo.tuning.base import SearchSpace logger = logging.getLogger(__name__) class BoostXGB(TabularMLAlgo_gpu, ImportanceEstimator): """Gradient boosting on decision trees from LightGBM library. default_params: All available parameters listed in lightgbm documentation: - https://lightgbm.readthedocs.io/en/latest/Parameters.html freeze_defaults: - ``True`` : params may be rewritten depending on dataset. - ``False``: params may be changed only manually or with tuning. timer: :class:`~lightautoml.utils.timer.Timer` instance or ``None``. """ _name: str = 'XGB' _default_params = { 'tree_method':'gpu_hist', 'predictor':'gpu_predictor', 'task': 'train', "learning_rate": 0.05, "max_leaves": 128, "max_depth": 0, "verbosity": 0, "reg_alpha": 1, "reg_lambda": 0.0, "gamma": 0.0, 'max_bin': 255, 'n_estimators': 3000, 'early_stopping_rounds': 100, 'random_state': 42 } def _infer_params(self) -> Tuple[dict, int, int, int, Optional[Callable], Optional[Callable]]: """Infer all parameters in lightgbm format. Returns: Tuple (params, num_trees, early_stopping_rounds, verbose_eval, fobj, feval). About parameters: https://lightgbm.readthedocs.io/en/latest/_modules/lightgbm/engine.html """ params = copy(self.params) early_stopping_rounds = params.pop('early_stopping_rounds') num_trees = params.pop('n_estimators') root_logger = logging.getLogger() level = root_logger.getEffectiveLevel() if level in (logging.CRITICAL, logging.ERROR, logging.WARNING): verbose_eval = False elif level == logging.INFO: verbose_eval = 100 else: verbose_eval = 10 # get objective params loss = self.task.losses['xgb'] params['objective'] = loss.fobj_name fobj = loss.fobj # get metric params params['metric'] = loss.metric_name feval = loss.feval params['num_class'] = self.n_classes # add loss and tasks params if defined params = {**params, **loss.fobj_params, **loss.metric_params} return params, num_trees, early_stopping_rounds, verbose_eval, fobj, feval def init_params_on_input(self, train_valid_iterator: TrainValidIterator) -> dict: """Get model parameters depending on dataset parameters. Args: train_valid_iterator: Classic cv-iterator. Returns: Parameters of model. """ rows_num = len(train_valid_iterator.train) task = train_valid_iterator.train.task.name suggested_params = copy(self.default_params) if self.freeze_defaults: # if user change defaults manually - keep it return suggested_params if task == 'reg': suggested_params = { "learning_rate": 0.05, "max_leaves": 32 } if rows_num <= 10000: init_lr = 0.01 ntrees = 3000 es = 200 elif rows_num <= 20000: init_lr = 0.02 ntrees = 3000 es = 200 elif rows_num <= 100000: init_lr = 0.03 ntrees = 1200 es = 200 elif rows_num <= 300000: init_lr = 0.04 ntrees = 2000 es = 100 else: init_lr = 0.05 ntrees = 2000 es = 100 if rows_num > 300000: suggested_params['max_leaves'] = 128 if task == 'reg' else 244 elif rows_num > 100000: suggested_params['max_leaves'] = 64 if task == 'reg' else 128 elif rows_num > 50000: suggested_params['max_leaves'] = 32 if task == 'reg' else 64 # params['reg_alpha'] = 1 if task == 'reg' else 0.5 elif rows_num > 20000: suggested_params['max_leaves'] = 32 if task == 'reg' else 32 suggested_params['reg_alpha'] = 0.5 if task == 'reg' else 0.0 elif rows_num > 10000: suggested_params['max_leaves'] = 32 if task == 'reg' else 64 suggested_params['reg_alpha'] = 0.5 if task == 'reg' else 0.2 elif rows_num > 5000: suggested_params['max_leaves'] = 24 if task == 'reg' else 32 suggested_params['reg_alpha'] = 0.5 if task == 'reg' else 0.5 else: suggested_params['max_leaves'] = 16 if task == 'reg' else 16 suggested_params['reg_alpha'] = 1 if task == 'reg' else 1 suggested_params['learning_rate'] = init_lr suggested_params['n_estimators'] = ntrees suggested_params['early_stopping_rounds'] = es return suggested_params def _get_default_search_spaces(self, suggested_params: Dict, estimated_n_trials: int) -> Dict: """Sample hyperparameters from suggested. Args: suggested_params: Dict with parameters. estimated_n_trials: Maximum number of hyperparameter estimations. Returns: dict with sampled hyperparameters. """ optimization_search_space = {} optimization_search_space['max_depth'] = SearchSpace( Distribution.INTUNIFORM, low=3, high=7 ) optimization_search_space['max_leaves'] = SearchSpace( Distribution.INTUNIFORM, low=16, high=255, ) if estimated_n_trials > 30: optimization_search_space['min_child_weight'] = SearchSpace( Distribution.LOGUNIFORM, low=1e-3, high=10.0, ) if estimated_n_trials > 100: optimization_search_space['reg_alpha'] = SearchSpace( Distribution.LOGUNIFORM, low=1e-8, high=10.0, ) optimization_search_space['reg_lambda'] = SearchSpace( Distribution.LOGUNIFORM, low=1e-8, high=10.0, ) return optimization_search_space def fit_predict_single_fold(self, train: TabularDatasetGpu, valid: TabularDatasetGpu, dev_id: int = 0) -> Tuple[xgb.Booster, np.ndarray]: """Implements training and prediction on single fold. Args: train: Train Dataset. valid: Validation Dataset. Returns: Tuple (model, predicted_values) """ st = perf_counter() train_target = train.target train_weights = train.weights valid_target = valid.target valid_weights = valid.weights train_data = train.data valid_data = valid.data with cp.cuda.Device(dev_id): if type(train) == DaskCudfDataset: train_target = train_target.compute() if train_weights is not None: train_weights = train_weights.compute() valid_target = valid_target.compute() if valid_weights is not None: valid_weights = valid_weights.compute() train_data = train_data.compute() valid_data = valid_data.compute() elif type(train) == CudfDataset: train_target = train_target.copy() if train_weights is not None: train_weights = train_weights.copy() valid_target = valid_target.copy() if valid_weights is not None: valid_weights = valid_weights.copy() train_data = train_data.copy() valid_data = valid_data.copy() elif type(train_target) == cp.ndarray: train_target = cp.copy(train_target) if train_weights is not None: train_weights = cp.copy(train_weights) valid_target = cp.copy(valid_target) if valid_weights is not None: valid_weights = cp.copy(valid_weights) train_data = cp.copy(train_data) valid_data = cp.copy(valid_data) else: raise NotImplementedError("given type of input is not implemented:" + str(type(train_target)) + "class:" + str(self._name)) params, num_trees, early_stopping_rounds, verbose_eval, fobj, feval = self._infer_params() train_target, train_weight = self.task.losses['xgb'].fw_func(train_target, train_weights) valid_target, valid_weight = self.task.losses['xgb'].fw_func(valid_target, valid_weights) xgb_train = xgb.DMatrix(train_data, label=train_target, weight=train_weight) xgb_valid = xgb.DMatrix(valid_data, label=valid_target, weight=valid_weight) params['gpu_id'] = dev_id model = xgb.train(params, xgb_train, num_boost_round=num_trees, evals=[(xgb_train, 'train'), (xgb_valid, 'valid')], obj=fobj, feval=feval, early_stopping_rounds=early_stopping_rounds, verbose_eval=verbose_eval ) val_pred = model.inplace_predict(valid_data) val_pred = self.task.losses['xgb'].bw_func(val_pred) print(perf_counter() - st, "xgb single fold time") with cp.cuda.Device(0): val_pred = cp.copy(val_pred) return model, val_pred def predict_single_fold(self, model: xgb.Booster, dataset: TabularDatasetGpu) -> np.ndarray: """Predict target values for dataset. Args: model: Lightgbm object. dataset: Test Dataset. Return: Predicted target values. """ dataset_data = dataset.data if type(dataset) == DaskCudfDataset: dataset_data = dataset_data.compute() pred = self.task.losses['xgb'].bw_func(model.inplace_predict(dataset_data)) return pred def get_features_score(self) -> pd.Series: """Computes feature importance as mean values of feature importance provided by lightgbm per all models. Returns: Series with feature importances. """ #FIRST SORT TO FEATURES AND THEN SORT BACK TO IMPORTANCES - BAD imp = 0 for model in self.models: val = model.get_score(importance_type='gain') sorted_list = [0.0 if val.get(i) is None else val.get(i) for i in self.features] scores = np.array(sorted_list) imp = imp + scores imp = imp / len(self.models) return
pd.Series(imp, index=self.features)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # MOJO Scoring: Two Approaches # # Now we will use the model we built on the Lending Club data to score the test cases we pickled. To mimick the scoring performance we would experience if the model were implemented in a real-time environment, we will score the records one at a time. We will use the MOJO we downloaded from H2O to score these records in two different ways: # # 1. Use the `mojo_predict_pandas` method from the `h2o.utils.shared_utils` to score one record at a time # # 2. Use the java application we just built to score one record at a time. To do so, we will first initialize a java virtual machine using python's `subprocess` package. This JVM will instantiate an instance of our scoring class, which loads the model just once at initialization. As we will see, loading the model once is far more efficient than repeatedly calling `mojo_predict_pandas`, which reloads the model for each call. We will then establish a gateway to our JVM using `JavaGateway` from `py4j` and score our test cases one at a time. # # Timing of these two approaches will show that the second approach is far faster than the first approach. On my machine, the first approach takes more than 300 *milliseconds* per record whereas the second approach takes less than 100 *microseconds* per record. For many real-time production applications, the difference between the second approach and the first approach is the difference between easily hitting an SLA and almost always failing to hit the SLA. # ### Imports # In[1]: import os, sys, json, pickle import pandas as pd import subprocess from ast import literal_eval from py4j.java_gateway import JavaGateway from h2o.utils import shared_utils as su # ### Read in our pickled test cases and feature engineering pipeline # In[2]: test_data = pd.read_pickle('test_cases.pkl') # In[3]: with open('pipeline.pkl','rb') as f: p = pickle.load(f) # In[4]: test_data.head() # ### Apply feature engineering # # In real-time production scoring, these transformations would constribute to the end-to-end runtime of the application and therefore influence whether scoring achieves its SLA. Here we are primarily interested in the time it takes to score with the MOJO itself under the two approaches outlined above. Therefore, we do not include this in the timing. # In[5]: test_data_prepped = ( p.transform(test_data) .reset_index(drop=True) .drop(labels = 'loan_status',axis=1)) # In[6]: test_data_prepped.head() # In[7]: predictors = test_data_prepped.columns.to_list() # ### Scoring Approach 1: `h2o`'s `mojo_predict_pandas` method # In[8]: mojo_zip_path = 'lendingclub-app/src/main/resources/final_gbm.zip' genmodel_jar_path = 'h2o-genmodel.jar' records = [test_data_prepped.iloc[[i]] for i in range(test_data_prepped.shape[0])] # In[9]: get_ipython().run_cell_magic('timeit', '', '\nresults = []\n\nfor record in records:\n pred = su.mojo_predict_pandas(\n record,\n mojo_zip_path,\n genmodel_jar_path)\n results.append(pred)') # In[10]: results = [] for record in records: pred = su.mojo_predict_pandas( record, mojo_zip_path, genmodel_jar_path) results.append(pred) # In[11]: # Predictions: pd.concat(results) # ### Scoring Approach 2: Our Java Application # In[12]: ## Start JVM using subprocess cmd = "java -cp " + "lendingclub-app/target/" + "lendingclub-app-1.0-SNAPSHOT-jar-with-dependencies.jar " + "com.lendingclub.app.MojoScoringEntryPoint" jvm = subprocess.Popen(cmd) # In[13]: ## Establish gateway with the JVM gateway = JavaGateway() mojoscorer = gateway.entry_point.getScorer() # In[14]: ## Construct cases as list of JSON objects cases = test_data_prepped[predictors].to_dict(orient='records') cases = [json.dumps(case) for case in cases] # In[15]: get_ipython().run_cell_magic('timeit', '', 'results = []\n\nfor case in cases:\n results.append(literal_eval(mojoscorer.predict(case)))') # In[16]: results = [] for case in cases: results.append(literal_eval(mojoscorer.predict(case)))
pd.DataFrame(results)
pandas.DataFrame
import pandas as pd import glob import matplotlib.pyplot as plt import seaborn as sns plt.rcParams["figure.dpi"] = 150 # MP2.5 df_mp25 = pd.DataFrame() for i, file_name in enumerate(sorted(list(glob.glob('../data/*_mp25.csv')), reverse=True)): temp = pd.read_csv(file_name, usecols=['date', 'name', 'val']) temp = temp.set_index('date') temp.index =
pd.to_datetime(temp.index)
pandas.to_datetime
""" Tests for Timestamp timezone-related methods """ from datetime import ( date, datetime, timedelta, ) import dateutil from dateutil.tz import ( gettz, tzoffset, ) import pytest import pytz from pytz.exceptions import ( AmbiguousTimeError, NonExistentTimeError, ) from pandas._libs.tslibs import timezones from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td from pandas import ( NaT, Timestamp, ) class TestTimestampTZOperations: # -------------------------------------------------------------- # Timestamp.tz_localize def test_tz_localize_pushes_out_of_bounds(self): # GH#12677 # tz_localize that pushes away from the boundary is OK msg = ( f"Converting {Timestamp.min.strftime('%Y-%m-%d %H:%M:%S')} " f"underflows past {Timestamp.min}" ) pac = Timestamp.min.tz_localize("US/Pacific") assert pac.value > Timestamp.min.value pac.tz_convert("Asia/Tokyo") # tz_convert doesn't change value with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp.min.tz_localize("Asia/Tokyo") # tz_localize that pushes away from the boundary is OK msg = ( f"Converting {Timestamp.max.strftime('%Y-%m-%d %H:%M:%S')} " f"overflows past {Timestamp.max}" ) tokyo = Timestamp.max.tz_localize("Asia/Tokyo") assert tokyo.value < Timestamp.max.value tokyo.tz_convert("US/Pacific") # tz_convert doesn't change value with pytest.raises(OutOfBoundsDatetime, match=msg):
Timestamp.max.tz_localize("US/Pacific")
pandas.Timestamp.max.tz_localize
#importing required modules import pandas as pd import numpy as np #function to create or check required files def create_file(): try: exp = pd.read_csv('dom_expense.csv') except FileNotFoundError: exp = pd.DataFrame({'Housing': np.NaN,'Electricity': np.NaN,'Telecom': np.NaN,'Groceries': np.NaN,'Entertainment': np.NaN,'Healthcare': np.NaN,'Insurance': np.NaN,'Tax': np.NaN,'Other': np.NaN}, index=["Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec", "Jan","Feb","Mar"]) exp.to_csv('dom_expense.csv') try: inc =
pd.read_csv('dom_income.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 25 21:16:23 2021 @author: earnestt1234 """ from collections.abc import Iterable from copy import deepcopy from difflib import SequenceMatcher import os import numpy as np import pandas as pd fixed_cols = ['Device_Number', 'Battery_Voltage', 'Motor_Turns', 'Session_Type', 'Event', 'Active_Poke', 'Left_Poke_Count', 'Right_Poke_Count', 'Pellet_Count', 'Retrieval_Time',] needed_cols = ['Pellet_Count', 'Left_Poke_Count', 'Right_Poke_Count',] data_dict = {'pellets': 'Pellet_Count', 'left_pokes': 'Left_Poke_Count', 'right_pokes': 'Right_Poke_Count'} zero_date = pd.Timestamp(year=1980, month=1, day=1) class FEDFrame(pd.DataFrame): _metadata = ('name', 'path', 'foreign_columns', 'missing_columns', '_alignment', '_current_offset') @property def _constructor(self): return FEDFrame @property def mode(self): return self.determine_mode() @property def events(self): return len(self.data) @property def start_time(self): return pd.Timestamp(self.index.values[0]) @property def end_time(self): return pd.Timestamp(self.index.values[-1]) @property def duration(self): return self.end_time-self.start_time def _load_init(self, name=None, path=None): self.name = name self.path = path self.fix_column_names() self._handle_retrieval_time() self._alignment = 'datetime' self._current_offset = pd.Timedelta(0) def fix_column_names(self): self.foreign_columns = [] for col in self.columns: for fix in fixed_cols: likeness = SequenceMatcher(a=col, b=fix).ratio() if likeness > 0.85: self.rename(columns={col:fix}, inplace=True) break self.foreign_columns.append(col) self.missing_columns = [col for col in needed_cols if col not in self.columns] def determine_mode(self): mode = 'Unknown' column =
pd.Series(dtype=object)
pandas.Series
""" Analysis of the PSID for PS 1 in Gianluca Violante's quantitative macro course @author : <NAME> <<EMAIL>> @date : 2015-02-04 16:57:38 """ import numpy as np import pandas as pd import statsmodels.formula.api as sm
pd.set_option("use_inf_as_null", True, "display.width", 180)
pandas.set_option
import argparse import os from os import listdir import pandas as pd import numpy as np import torch import torch.nn as nn import yaml from constants.dataset_tables import ModelsTableHeader, DatasetTableHeader from file_actions.readers.tomograms import load_tomogram from file_actions.writers.csv import build_tom_motive_list from file_actions.writers.tomogram import write_tomogram from networks.utils import build_prediction_output_dir from tomogram_utils.coordinates_toolbox.clustering import get_cluster_centroids parser = argparse.ArgumentParser() parser.add_argument("-config", "--config", help="yaml_file", type=str) parser.add_argument("-set", "--set", help="tomos set name to be used for training", type=int) args = parser.parse_args() yaml_file = args.config config = yaml.safe_load(open(yaml_file)) tomos_set = args.set tomo_list = config['tomos_sets'][tomos_set]['test_list'] class_number = config['prediction']['class_number'] model_name = config["model_path"][:-4] output_dir = config["pred_output_dir"] models_table = os.path.join(output_dir, "models") models_table = os.path.join(models_table, "models.csv") label_name = model_name motl_parameters = config['clustering_parameters'] min_cluster_size = motl_parameters['min_cluster_size'] max_cluster_size = motl_parameters['max_cluster_size'] threshold = motl_parameters['threshold'] ModelsHeader = ModelsTableHeader() models_df =
pd.read_csv(models_table, dtype=ModelsHeader.dtype_dict)
pandas.read_csv
#%% import os from pyteomics import mzid, mzml import pandas as pd import numpy as np import glob """ Files are downloaded and manually randomly divided into different folders the following code is repeated but has the same effect, it is applied to various folders to generate pandas data frames and to store all the data in a single hdf5 file """ #%% os.chdir('./files/train') mzid_files=glob.glob('*.mzid') indexed_mzid = mzid.chain.from_iterable(mzid_files, use_index=True) def _parse_mzid_entry(entry): spectrum_id = str(entry['spectrumID']) seq = str(entry['SpectrumIdentificationItem'][0]['PeptideSequence']) try: mods = entry['SpectrumIdentificationItem'][0]['Modification'] except: mods = None rank = int(entry['SpectrumIdentificationItem'][0]['rank']) file_location = str(entry['name']) return file_location,spectrum_id,seq,mods,rank all_mzid = [] for entry in(indexed_mzid): all_mzid.append(_parse_mzid_entry(entry)) file_location,spectrum_ids,seq,mods,rank = zip(*all_mzid) mzid_df = pd.DataFrame({'file':file_location,'id':spectrum_ids,'seq':seq}) def _parse_mzml_entry(entry): ID = str(entry['id']) mz = np.array(entry['m/z array']) intensities = np.array(entry['intensity array']) return ID, mz, intensities all_spectra = [] for file in np.unique(file_location): print(file) indexed = mzml.MzML(file) for i,entry in enumerate(indexed.map(_parse_mzml_entry)): tupl = (file,)+entry all_spectra.append(tupl) mzml_location, ids, mz, intensities = zip(*all_spectra) spectra_df = pd.DataFrame({'file':mzml_location,'id':ids,'mz':mz,'intensities':intensities}) #### MERGE: mzid + mzml merged_df =
pd.merge(mzid_df,spectra_df,how='left',on=['file','id'])
pandas.merge
import pandas as pd import numpy as np import datetime import sys import time import xgboost as xgb from add_feture import * FEATURE_EXTRACTION_SLOT = 10 LabelDay = datetime.datetime(2014,12,18,0,0,0) Data = pd.read_csv("../../../../data/fresh_comp_offline/drop1112_sub_item.csv") Data['daystime'] = Data['days'].map(lambda x: time.strptime(x, "%Y-%m-%d")).map(lambda x: datetime.datetime(*x[:6])) def get_train(train_user,end_time): # 取出label day 前一天的记录作为打标记录 data_train = train_user[(train_user['daystime'] == (end_time-datetime.timedelta(days=1)))]#&((train_user.behavior_type==3)|(train_user.behavior_type==2)) # 训练样本中,删除重复的样本 data_train = data_train.drop_duplicates(['user_id', 'item_id']) data_train_ui = data_train['user_id'] / data_train['item_id'] # print(len(data_train)) # 使用label day 的实际购买情况进行打标 data_label = train_user[train_user['daystime'] == end_time] data_label_buy = data_label[data_label['behavior_type'] == 4] data_label_buy_ui = data_label_buy['user_id'] / data_label_buy['item_id'] # 对前一天的交互记录进行打标 data_train_labeled = data_train_ui.isin(data_label_buy_ui) dict = {True: 1, False: 0} data_train_labeled = data_train_labeled.map(dict) data_train['label'] = data_train_labeled return data_train[['user_id', 'item_id','item_category', 'label']] def get_label_testset(train_user,LabelDay): # 测试集选为上一天所有的交互数据 data_test = train_user[(train_user['daystime'] == LabelDay)]#&((train_user.behavior_type==3)|(train_user.behavior_type==2)) data_test = data_test.drop_duplicates(['user_id', 'item_id']) return data_test[['user_id', 'item_id','item_category']] def item_category_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] item_count = pd.crosstab(data.item_category,data.behavior_type) item_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] item_count_before5 = pd.crosstab(beforefiveday.item_category,beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] item_count_before5 = pd.crosstab(beforefiveday.item_category,beforefiveday.behavior_type) item_count_before_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] item_count_before_3 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] item_count_before_3 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) item_count_before_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] item_count_before_2 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] item_count_before_2 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] beforeonedayitem_count = pd.crosstab(beforeoneday.item_category,beforeoneday.behavior_type) countAverage = item_count/FEATURE_EXTRACTION_SLOT buyRate = pd.DataFrame() buyRate['click'] = item_count[1]/item_count[4] buyRate['skim'] = item_count[2]/item_count[4] buyRate['collect'] = item_count[3]/item_count[4] buyRate.index = item_count.index buyRate_2 = pd.DataFrame() buyRate_2['click'] = item_count_before5[1]/item_count_before5[4] buyRate_2['skim'] = item_count_before5[2]/item_count_before5[4] buyRate_2['collect'] = item_count_before5[3]/item_count_before5[4] buyRate_2.index = item_count_before5.index buyRate_3 = pd.DataFrame() buyRate_3['click'] = item_count_before_3[1]/item_count_before_3[4] buyRate_3['skim'] = item_count_before_3[2]/item_count_before_3[4] buyRate_3['collect'] = item_count_before_3[3]/item_count_before_3[4] buyRate_3.index = item_count_before_3.index buyRate = buyRate.replace([np.inf, -np.inf], 0) buyRate_2 = buyRate_2.replace([np.inf, -np.inf], 0) buyRate_3 = buyRate_3.replace([np.inf, -np.inf], 0) item_category_feture = pd.merge(item_count,beforeonedayitem_count,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,countAverage,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,buyRate,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,item_count_before5,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,item_count_before_3,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,item_count_before_2,how='left',right_index=True,left_index=True) # item_category_feture = pd.merge(item_category_feture,buyRate_2,how='left',right_index=True,left_index=True) # item_category_feture = pd.merge(item_category_feture,buyRate_3,how='left',right_index=True,left_index=True) item_category_feture.fillna(0,inplace=True) return item_category_feture def item_id_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] item_count = pd.crosstab(data.item_id,data.behavior_type) item_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] item_count_before5 = pd.crosstab(beforefiveday.item_id,beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] item_count_before5 = pd.crosstab(beforefiveday.item_id,beforefiveday.behavior_type) item_count_before_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] item_count_before_3 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] item_count_before_3 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) item_count_before_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] item_count_before_2 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] item_count_before_2 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) item_count_unq = data.groupby(by = ['item_id','behavior_type']).agg({"user_id":lambda x:x.nunique()});item_count_unq = item_count_unq.unstack() # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] beforeonedayitem_count = pd.crosstab(beforeoneday.item_id,beforeoneday.behavior_type) countAverage = item_count/FEATURE_EXTRACTION_SLOT buyRate = pd.DataFrame() buyRate['click'] = item_count[1]/item_count[4] buyRate['skim'] = item_count[2]/item_count[4] buyRate['collect'] = item_count[3]/item_count[4] buyRate.index = item_count.index buyRate_2 = pd.DataFrame() buyRate_2['click'] = item_count_before5[1]/item_count_before5[4] buyRate_2['skim'] = item_count_before5[2]/item_count_before5[4] buyRate_2['collect'] = item_count_before5[3]/item_count_before5[4] buyRate_2.index = item_count_before5.index buyRate_3 = pd.DataFrame() buyRate_3['click'] = item_count_before_3[1]/item_count_before_3[4] buyRate_3['skim'] = item_count_before_3[2]/item_count_before_3[4] buyRate_3['collect'] = item_count_before_3[3]/item_count_before_3[4] buyRate_3.index = item_count_before_3.index buyRate = buyRate.replace([np.inf, -np.inf], 0) buyRate_2 = buyRate_2.replace([np.inf, -np.inf], 0) buyRate_3 = buyRate_3.replace([np.inf, -np.inf], 0) item_id_feture = pd.merge(item_count,beforeonedayitem_count,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,countAverage,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,buyRate,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_unq,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_before5,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_before_3,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_before_2,how='left',right_index=True,left_index=True) # item_id_feture = pd.merge(item_id_feture,buyRate_2,how='left',right_index=True,left_index=True) # item_id_feture = pd.merge(item_id_feture,buyRate_3,how='left',right_index=True,left_index=True) item_id_feture.fillna(0,inplace=True) return item_id_feture def user_id_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] user_count = pd.crosstab(data.user_id,data.behavior_type) user_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] user_count_before5 = pd.crosstab(beforefiveday.user_id,beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] user_count_before5 = pd.crosstab(beforefiveday.user_id,beforefiveday.behavior_type) user_count_before_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] user_count_before_3 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] user_count_before_3 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) user_count_before_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] user_count_before_2 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] user_count_before_2 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] beforeonedayuser_count = pd.crosstab(beforeoneday.user_id,beforeoneday.behavior_type) countAverage = user_count/FEATURE_EXTRACTION_SLOT buyRate = pd.DataFrame() buyRate['click'] = user_count[1]/user_count[4] buyRate['skim'] = user_count[2]/user_count[4] buyRate['collect'] = user_count[3]/user_count[4] buyRate.index = user_count.index buyRate_2 = pd.DataFrame() buyRate_2['click'] = user_count_before5[1]/user_count_before5[4] buyRate_2['skim'] = user_count_before5[2]/user_count_before5[4] buyRate_2['collect'] = user_count_before5[3]/user_count_before5[4] buyRate_2.index = user_count_before5.index buyRate_3 = pd.DataFrame() buyRate_3['click'] = user_count_before_3[1]/user_count_before_3[4] buyRate_3['skim'] = user_count_before_3[2]/user_count_before_3[4] buyRate_3['collect'] = user_count_before_3[3]/user_count_before_3[4] buyRate_3.index = user_count_before_3.index buyRate = buyRate.replace([np.inf, -np.inf], 0) buyRate_2 = buyRate_2.replace([np.inf, -np.inf], 0) buyRate_3 = buyRate_3.replace([np.inf, -np.inf], 0) long_online = pd.pivot_table(beforeoneday,index=['user_id'],values=['hours'],aggfunc=[np.min,np.max,np.ptp]) user_id_feture = pd.merge(user_count,beforeonedayuser_count,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,countAverage,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,buyRate,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,user_count_before5,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,user_count_before_3,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,user_count_before_2,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,long_online,how='left',right_index=True,left_index=True) # user_id_feture = pd.merge(user_id_feture,buyRate_2,how='left',right_index=True,left_index=True) # user_id_feture = pd.merge(user_id_feture,buyRate_3,how='left',right_index=True,left_index=True) user_id_feture.fillna(0,inplace=True) return user_id_feture def user_item_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] user_item_count = pd.crosstab([data.user_id,data.item_id],data.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] user_item_count_5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] user_item_count_5 =
pd.crosstab([beforefiveday.user_id,beforefiveday.item_id],beforefiveday.behavior_type)
pandas.crosstab
import pandas as pd series = pd.Series([21, 23, 56, 54]) print(series) print(series.index) print(series.values) print(series.dtype) brands = ['BMW', 'Jaguar', 'Ford', 'Kia'] quantities = [20, 10, 50, 75] series2 =
pd.Series(quantities, index=brands)
pandas.Series
from albumentations.augmentations.transforms import Normalize import torch.nn as nn import torchvision.models as models from torch.utils.data import Dataset import torch import albumentations as A from albumentations.pytorch import ToTensorV2 from pathlib import Path import numpy as np import re import umap import pandas as pd from PIL import Image from sklearn.preprocessing import StandardScaler import seaborn as sns import matplotlib.pyplot as plt """ Programm to evaluate if there is a significant domain gap between two datasets To see if there is a domain gap, a pretrained Resnet50 is used to extract features from both datasets and UMAP is used for unsupervised clustering. When distinct clusters for both datasets are formed, there is a domain gap present. The domain gap can be evaluated for native Tharun and Thompson and upscaled Nikiforov as well as native Nikiforov and downscaled Tharun and Thompson. Furthermore, it can be evaluated on the native version on both datasets. """ native_dataset = "N" # T, N or both N_folder_20x = Path(__file__).parent.joinpath("..", "datasets", "Nikiforov").resolve() N_folder_40x = Path(__file__).parent.joinpath("..", "datasets", "Nikiforov_upscale2x").resolve() T_folder_40x = Path(__file__).parent.joinpath("..", "datasets", "TharunThompson").resolve() T_folder_20x = Path(__file__).parent.joinpath("..", "datasets", "TharunThompson_downscale2x").resolve() IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tiff', '.TIFF', '.tif', '.TIF'] def get_image_paths(folder, substring=None): image_paths = [] for file in folder.iterdir(): if any(file.suffix == extension for extension in IMG_EXTENSIONS): if substring==None: image_paths.append(file) else: if substring in file.name: image_paths.append(file) return np.asarray(image_paths) def merge_path_gt(image_paths, ground_truth, dataset): patient_numbers = np.zeros(len(image_paths)) diagnose_grouped = [] T_paths = np.asarray(image_paths) for i, image_path in enumerate(image_paths): # if patient has multiple images e.g. 1a, 1b, ... a,b, ... is removed patient_numbers[i] = re.sub('[^0-9]', '', image_path.stem.split("_")[0]) diagnose_grouped.append(ground_truth[ground_truth["sample"]==patient_numbers[i]]["diagnose_grouped"].values[0]) unique_patient_numbers = np.unique(patient_numbers) merged_info = pd.DataFrame(np.array([image_paths, patient_numbers, diagnose_grouped]).transpose(), columns=["path", "patient_number", "diagnose_grouped"]) merged_info["dataset"]= dataset return merged_info def draw_scatter(data, scatter_path, target): umap_plt = sns.scatterplot(data=data, x="UMAP 1", y="UMAP 2", hue=target) #umap_plt.set(title="Umap thyroid tumor") umap_fig = umap_plt.get_figure() umap_fig.savefig(scatter_path, bbox_inches="tight") plt.close(umap_fig) def apply_umap(measures, features, native_dataset, target="target", hparams={}): # only keep patient, feature selection, diagnose measures_umap = measures.copy() scaler = StandardScaler() measures_umap.reset_index(inplace=True) measures_umap[features] = pd.DataFrame(scaler.fit_transform(measures_umap[features]), columns=features) reducer = umap.UMAP(**hparams) embedding = reducer.fit_transform(measures_umap[features].values) embedding = pd.DataFrame(list(zip(embedding[:,0], embedding[:,1], measures_umap[target], measures_umap["path"])), columns=["UMAP 1", "UMAP 2", target, "path"]) draw_scatter(embedding, Path(__file__).parent.joinpath("domain_gap_"+target+"_native"+native_dataset+"_umap.png"), target) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class DomainGapDataset(Dataset): def __init__(self, dataset_info, transform=None): self.dataset_info = dataset_info self.transform = transform def __len__(self): return len(self.dataset_info) def __getitem__(self, index): img = Image.open(self.dataset_info["path"][index]) target = self.dataset_info["diagnose_grouped"][index] if self.transform is not None: data = self.transform(image=np.array(img), target= target) return data def extract_dl_features(image_info, features_path): trans = A.Compose([ A.Normalize(), ToTensorV2() ]) dataset = DomainGapDataset(image_info, transform=trans) loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0) net = models.resnet50(pretrained=True) net.fc = Identity() net.to(torch.device("cuda")) net.eval() dl_features = np.zeros([len(loader), 2048]) with torch.no_grad(): for step, item in enumerate(loader): item["image"]= item["image"].to(torch.device("cuda")) features = net(item["image"]).cpu().numpy() dl_features[step,:] = features.squeeze() columns = ["feature_"+str(i) for i in range(dl_features.shape[1])] dl_features_pd = pd.DataFrame(data=dl_features, columns=columns) dl_features = pd.concat([image_info, dl_features_pd], axis=1) dl_features.to_hdf(features_path, key="dl_features", mode="w") return dl_features if native_dataset == "T": # get original resolution of the Tharun and Thompson dataset (40x) T_paths = get_image_paths(T_folder_40x) T_ground_truth = pd.read_excel(T_folder_40x.joinpath("ground_truth.xlsx"), engine="openpyxl") T_data = merge_path_gt(T_paths, T_ground_truth, dataset="Tharun and Thompson") # get upscaled Nikiforov dataset (matching the T&T dataset) N_paths = get_image_paths(N_folder_40x) N_ground_truth = pd.read_excel(N_folder_40x.joinpath("ground_truth.xlsx"), engine="openpyxl") N_data = merge_path_gt(N_paths, N_ground_truth, dataset="Nikiforov") image_info = pd.concat([T_data, N_data], ignore_index=True) features_path = Path(__file__).parent.joinpath("dl_features_nativeT.h5") elif native_dataset == "N": # get original Nikiforov dataset (20x) N_paths = get_image_paths(N_folder_20x) N_ground_truth = pd.read_excel(N_folder_20x.joinpath("ground_truth.xlsx"), engine="openpyxl") N_data = merge_path_gt(N_paths, N_ground_truth, dataset="Nikiforov") # get downscaled Tharun and Thompson dataset (matching the Nikiforv dataset) T_paths = get_image_paths(T_folder_20x) T_ground_truth = pd.read_excel(T_folder_20x.joinpath("ground_truth.xlsx"), engine="openpyxl") T_data = merge_path_gt(T_paths, T_ground_truth, dataset="Tharun and Thompson") image_info =
pd.concat([T_data, N_data], ignore_index=True)
pandas.concat
import contextlib from dateutil.tz import tzlocal import numpy as np import os import pandas as pd import sys import warnings from datetime import date, datetime from scipy import stats def date_range(df, begin, end): """Extract out a certain date range from a DataFrame. Extract out a certain data range from a dataframe. The index must be the dates, and the index must be sorted. """ # TODO: is this needed? Do normal pandas operation, timestamp # checking is not really needed (and limits the formats that can # be used, pandas can take more than pd.Timestamp) # Move this function to utils # Deal with pandas timestamp compatibility if(begin!=None): assert isinstance(begin,pd.Timestamp),"begin not given in timestamp format" else: begin = df.index[0] if(end!= None): assert isinstance(end,pd.Timestamp),"end not given in timestamp format" else: end = df.index[-1] df_new = df.loc[begin:end] return df_new #SYSTEM_TZ = tzlocal() # the operating system timezone - for sqlite output compat SYSTEM_TZ = 'Europe/Helsinki' TZ = tzlocal() TZ = 'Europe/Helsinki' def set_tz(tz): """Globally set the preferred local timezone""" global TZ TZ = tz @contextlib.contextmanager def tmp_timezone(new_tz): """Temporarily override the global timezone for a black. This is used as a context manager:: with tmp_timezone('Europe/Berlin'): .... Note: this overrides the global timezone. In the future, there will be a way to handle timezones as non-global variables, which should be preferred. """ global TZ old_tz = TZ TZ = new_tz yield TZ = old_tz SQLITE3_EXTENSIONS_BASENAME = os.path.join(os.path.dirname(__file__), 'sqlite-extension-functions.c') SQLITE3_EXTENSIONS_FILENAME = os.path.join(os.path.dirname(__file__), 'sqlite-extension-functions.so') def install_extensions(): """Automatically install sqlite extension functions. Only works on Linux for now, improvements welcome.""" import hashlib if not os.path.exists(SQLITE3_EXTENSIONS_BASENAME): import urllib.request extension_url = 'https://sqlite.org/contrib/download/extension-functions.c?get=25' urllib.request.urlretrieve(extension_url, SQLITE3_EXTENSIONS_BASENAME) expected_digest = '991b40fe8b2799edc215f7260b890f14a833512c9d9896aa080891330ffe4052' if hashlib.sha256(open(SQLITE3_EXTENSIONS_BASENAME, 'rb').read()).hexdigest() != expected_digest: print("sqlite-extension-functions.c has wrong sha256 hash", file=sys.stderr) os.system('cd %s; gcc -lm -shared -fPIC sqlite-extension-functions.c -o sqlite-extension-functions.so'% os.path.dirname(__file__)) print("Sqlite extension successfully compiled.") def uninstall_extensions(): """Uninstall any installed extensions""" def unlink_if_exists(x): if os.path.exists(x): os.unlink(x) unlink_if_exists(SQLITE3_EXTENSIONS_FILENAME) #TODO: reanme to data.py def df_normalize(df, tz=None, old_tz=None): """Normalize a df (from sql) before presenting it to the user. This sets the dataframe index to the time values, and converts times to pandas.TimeStamp:s. Modifies the data frame inplace. """ if tz is None: warnings.warn(DeprecationWarning("From now on, you should explicitely specify timezone with e.g. tz='Europe/Helsinki'. Specify as part of the reading function.")) tz = TZ if 'time' in df: df.index = to_datetime(df['time']) df.index.name = None df['datetime'] = df.index elif 'day' in df and 'hour' in df: index = df[['day', 'hour']].apply(lambda row: pd.Timestamp('%s %s:00'%(row['day'], row['hour'])), axis=1) if old_tz is not None: # old_tz is given - e.g. sqlite already converts it to localtime index = index.dt.tz_localize(old_tz).dt.tz_convert(tz) else: index = index.dt.tz_localize(tz) df.index = index df.index.name = None def to_datetime(value): times =
pd.to_datetime(value, unit='s', utc=True)
pandas.to_datetime
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(
Timedelta(days=10, seconds=10)
pandas.Timedelta
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 23 19:46:26 2021 @author: KristinaSig """ import unittest import pandas as pd from code.feature_extraction.mentions_count import MentionsCountFeature from code.util import COLUMN_MENTIONS class HashtagFeatureTest(unittest.TestCase): def setUp(self): self.COLUMN_MENTIONS = COLUMN_MENTIONS self.mentions_feature = MentionsCountFeature() self.df =
pd.DataFrame()
pandas.DataFrame