prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import json import os import pandas as pd from ..version import __version__ from .description import describe_label_times from .plots import LabelPlots SCHEMA_VERSION = "0.1.0" class LabelTimes(pd.DataFrame): """The data frame that contains labels and cutoff times for the target entity.""" def __init__( self, data=None, target_entity=None, target_types=None, target_columns=None, search_settings=None, transforms=None, *args, **kwargs, ): super().__init__(data=data, *args, **kwargs) self.target_entity = target_entity self.target_columns = target_columns or [] self.target_types = target_types or {} self.search_settings = search_settings or {} self.transforms = transforms or [] self.plot = LabelPlots(self) if not self.empty: self._check_label_times() def _assert_single_target(self): """Asserts that the label times object contains a single target.""" info = "must first select an individual target" assert self._is_single_target, info def _check_target_columns(self): """Validates the target columns.""" if not self.target_columns: self.target_columns = self._infer_target_columns() else: for target in self.target_columns: info = 'target "%s" not found in data frame' assert target in self.columns, info % target def _check_target_types(self): """Validates the target types.""" if isinstance(self.target_types, dict): self.target_types = pd.Series(self.target_types) if self.target_types.empty: self.target_types = self._infer_target_types() else: target_names = self.target_types.index.tolist() match = target_names == self.target_columns assert match, "target names in types must match target columns" def _check_label_times(self): """Validates the lables times object.""" self._check_target_columns() self._check_target_types() def _infer_target_columns(self): """Infers the names of the targets in the data frame. Returns: value (list): A list of the target names. """ not_targets = [self.target_entity, "time"] target_columns = self.columns.difference(not_targets) assert not target_columns.empty, "target columns not found" value = target_columns.tolist() return value @property def _is_single_target(self): return len(self.target_columns) == 1 def _get_target_type(self, dtype): is_discrete = pd.api.types.is_bool_dtype(dtype) is_discrete |= pd.api.types.is_categorical_dtype(dtype) is_discrete |= pd.api.types.is_object_dtype(dtype) value = "discrete" if is_discrete else "continuous" return value def _infer_target_types(self): """Infers the target type from the data type. Returns: types (Series): Inferred label type. Either "continuous" or "discrete". """ dtypes = self.dtypes[self.target_columns] types = dtypes.apply(self._get_target_type) return types def select(self, target): """Selects one of the target variables. Args: target (str): The name of the target column. Returns: lt (LabelTimes): A label times object that contains a single target. Examples: Create a label times object that contains multiple target variables. >>> entity = [0, 0, 1, 1] >>> labels = [True, False, True, False] >>> time = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04'] >>> data = {'entity': entity, 'time': time, 'A': labels, 'B': labels} >>> lt = LabelTimes(data=data, target_entity='entity', target_columns=['A', 'B']) >>> lt entity time A B 0 0 2020-01-01 True True 1 0 2020-01-02 False False 2 1 2020-01-03 True True 3 1 2020-01-04 False False Select a single target from the label times. >>> lt.select('B') entity time B 0 0 2020-01-01 True 1 0 2020-01-02 False 2 1 2020-01-03 True 3 1 2020-01-04 False """ assert not self._is_single_target, "only one target exists" if not isinstance(target, str): raise TypeError("target name must be string") assert target in self.target_columns, 'target "%s" not found' % target lt = self.copy() lt.target_columns = [target] lt.target_types = lt.target_types[[target]] lt = lt[[self.target_entity, "time", target]] return lt @property def settings(self): """Returns metadata about the label times.""" return { "compose_version": __version__, "schema_version": SCHEMA_VERSION, "label_times": { "target_entity": self.target_entity, "target_columns": self.target_columns, "target_types": self.target_types.to_dict(), "search_settings": self.search_settings, "transforms": self.transforms, }, } @property def is_discrete(self): """Whether labels are discrete.""" return self.target_types.eq("discrete") @property def distribution(self): """Returns label distribution if labels are discrete.""" self._assert_single_target() target_column = self.target_columns[0] if self.is_discrete[target_column]: labels = self.assign(count=1) labels = labels.groupby(target_column) distribution = labels["count"].count() return distribution else: return self[target_column].describe() @property def count(self): """Returns label count per instance.""" self._assert_single_target() count = self.groupby(self.target_entity) count = count[self.target_columns[0]].count() count = count.to_frame("count") return count @property def count_by_time(self): """Returns label count across cutoff times.""" self._assert_single_target() target_column = self.target_columns[0] if self.is_discrete[target_column]: keys = ["time", target_column] value = self.groupby(keys).time.count() value = value.unstack(target_column).fillna(0) else: value = self.groupby("time") value = value[target_column].count() value = ( value.cumsum() ) # In Python 3.5, these values automatically convert to float. value = value.astype("int") return value def describe(self): """Prints out the settings used to make the label times.""" if not self.empty: self._assert_single_target() describe_label_times(self) def copy(self, deep=True): """Make a copy of this object's indices and data. Args: deep (bool): Make a deep copy, including a copy of the data and the indices. With ``deep=False`` neither the indices nor the data are copied. Default is True. Returns: lt (LabelTimes): A copy of the label times object. """ lt = super().copy(deep=deep) lt.target_entity = self.target_entity lt.target_columns = self.target_columns lt.target_types = self.target_types.copy() lt.search_settings = self.search_settings.copy() lt.transforms = self.transforms.copy() return lt def threshold(self, value, inplace=False): """Creates binary labels by testing if labels are above threshold. Args: value (float) : Value of threshold. inplace (bool) : Modify labels in place. Returns: labels (LabelTimes) : Instance of labels. """ self._assert_single_target() target_column = self.target_columns[0] labels = self if inplace else self.copy() labels[target_column] = labels[target_column].gt(value) labels.target_types[target_column] = "discrete" transform = {"transform": "threshold", "value": value} labels.transforms.append(transform) if not inplace: return labels def apply_lead(self, value, inplace=False): """Shifts the label times earlier for predicting in advance. Args: value (str) : Time to shift earlier. inplace (bool) : Modify labels in place. Returns: labels (LabelTimes) : Instance of labels. """ labels = self if inplace else self.copy() labels["time"] = labels["time"].sub(pd.Timedelta(value)) transform = {"transform": "apply_lead", "value": value} labels.transforms.append(transform) if not inplace: return labels def bin(self, bins, quantiles=False, labels=None, right=True, precision=3): """Bin labels into discrete intervals. Args: bins (int or array): The criteria to bin by. As an integer, the value can be the number of equal-width or quantile-based bins. If :code:`quantiles` is False, the value is defined as the number of equal-width bins. The range is extended by .1% on each side to include the minimum and maximum values. If :code:`quantiles` is True, the value is defined as the number of quantiles (e.g. 10 for deciles, 4 for quartiles, etc.) As an array, the value can be custom or quantile-based edges. If :code:`quantiles` is False, the value is defined as bin edges allowing for non-uniform width. No extension is done. If :code:`quantiles` is True, the value is defined as bin edges usings an array of quantiles (e.g. [0, .25, .5, .75, 1.] for quartiles) quantiles (bool): Determines whether to use a quantile-based discretization function. labels (array): Specifies the labels for the returned bins. Must be the same length as the resulting bins. right (bool) : Indicates whether bins includes the rightmost edge or not. Does not apply to quantile-based bins. precision (int): The precision at which to store and display the bins labels. Default value is 3. Returns: LabelTimes : Instance of labels. Examples: These are the target values for the examples. >>> data = [226.93, 47.95, 283.46, 31.54] >>> lt = LabelTimes({'target': data}) >>> lt target 0 226.93 1 47.95 2 283.46 3 31.54 Bin values using equal-widths. >>> lt.bin(2) target 0 (157.5, 283.46] 1 (31.288, 157.5] 2 (157.5, 283.46] 3 (31.288, 157.5] Bin values using custom-widths. >>> lt.bin([0, 200, 400]) target 0 (200, 400] 1 (0, 200] 2 (200, 400] 3 (0, 200] Bin values using infinite edges. >>> lt.bin(['-inf', 100, 'inf']) target 0 (100.0, inf] 1 (-inf, 100.0] 2 (100.0, inf] 3 (-inf, 100.0] Bin values using quartiles. >>> lt.bin(4, quantiles=True) target 0 (137.44, 241.062] 1 (43.848, 137.44] 2 (241.062, 283.46] 3 (31.538999999999998, 43.848] Bin values using custom quantiles with precision. >>> lt.bin([0, .5, 1], quantiles=True, precision=1) target 0 (137.4, 283.5] 1 (31.4, 137.4] 2 (137.4, 283.5] 3 (31.4, 137.4] Assign labels to bins. >>> lt.bin(2, labels=['low', 'high']) target 0 high 1 low 2 high 3 low """ # noqa self._assert_single_target() target_column = self.target_columns[0] values = self[target_column].values if quantiles: values = pd.qcut(values, q=bins, labels=labels, precision=precision) else: if isinstance(bins, list): for i, edge in enumerate(bins): if edge in ["-inf", "inf"]: bins[i] = float(edge) values = pd.cut( values, bins=bins, labels=labels, right=right, precision=precision ) transform = { "transform": "bin", "bins": bins, "quantiles": quantiles, "labels": labels, "right": right, "precision": precision, } lt = self.copy() lt[target_column] = values lt.transforms.append(transform) lt.target_types[target_column] = "discrete" return lt def _sample(self, key, value, settings, random_state=None, replace=False): """Returns a random sample of labels. Args: key (str) : Determines the sampling method. Can either be 'n' or 'frac'. value (int or float) : Quantity to sample. settings (dict) : Transform settings used for sampling. random_state (int) : Seed for the random number generator. replace (bool) : Sample with or without replacement. Default value is False. Returns: LabelTimes : Random sample of labels. """ sample = super().sample( random_state=random_state, replace=replace, **{key: value} ) return sample def _sample_per_label(self, key, value, settings, random_state=None, replace=False): """Returns a random sample per label. Args: key (str) : Determines the sampling method. Can either be 'n' or 'frac'. value (dict) : Quantity to sample per label. settings (dict) : Transform settings used for sampling. random_state (int) : Seed for the random number generator. replace (bool) : Sample with or without replacement. Default value is False. Returns: LabelTimes : Random sample per label. """ sample_per_label = [] target_column = self.target_columns[0] for ( label, value, ) in value.items(): label = self[self[target_column] == label] sample = label._sample( key, value, settings, random_state=random_state, replace=replace ) sample_per_label.append(sample) sample =
pd.concat(sample_per_label, axis=0, sort=False)
pandas.concat
import numpy as np import pandas as pd from .util import cartesian class Namespace: """Holds all Variables that are defined """ def __init__(self): pass def _add(self, name, obj): setattr(self, name, obj) NS = Namespace() class Variable: """A discrete variable, with a distribution over N states. """ def __init__(self, name, n_states): """Name the variable, and say how many states it has. Variables start off as unassigned. """ global NS assert isinstance(name, str) assert name.isalnum() self.name = name self.n_states = n_states # Generate the actual states; this makes it easy to work with. self.states = range(n_states) NS._add(name, self) def uniform(self): """Return a uniform distribution for this variable.""" return np.ones(self.n_states) / float(self.n_states) def with_state(self, state): """Return a distribution with just this state set.""" assert state in self.states dist = np.zeros(self.n_states) dist[state] = 1.0 return dist def make_valid_distribution(self, distn): """Convert distribution and check it.""" valid_dist = np.array(distn, dtype=float) assert valid_dist.shape == (self.n_states,) assert np.isclose(valid_dist.sum(), 1.0) return valid_dist def __repr__(self): return "({})".format(self.name) def expand_variables(vs): """Make sure we have a list of Variables This will return a flattened list of variables, no matter what you send into it. """ try: # This won't work if it ain't iterable vsi = iter(vs) list_of = [] for v in vsi: list_of.extend(expand_variables(v)) return list_of except TypeError: # Okay, it must be a single Variable. Return it in a list. assert isinstance(vs, Variable) return [vs] def make_variables(strings, n_states): """Just a shortcut for making lots of variables""" var_names = strings.split() return [Variable(v, n_states) for v in var_names] class Distribution: """Base class for a distribution over one or more variables """ P_LABEL = "Pr" def __init__(self, variables, pr=None): # Everything should be a variable for v in variables: assert isinstance(v, Variable) # No duplicates! assert len(set(variables)) == len(variables) self.variables = list(variables) self.names = [v.name for v in self.variables] self.probabilities = pr @staticmethod def generate_from_func(variables, func): names = [v.name for v in variables] recs = [] for vals in func: assert len(vals) == len(variables) + 1 for var, val in zip(variables, vals[:-1]): assert val in var.states recs.append(vals) cols = names + [Distribution.P_LABEL] df =
pd.DataFrame.from_records(recs, columns=cols)
pandas.DataFrame.from_records
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ts.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_date_unit(self, unit): df = self.tsframe.copy() df["date"] = Timestamp("20130101 20:43:42") dl = df.columns.get_loc("date") df.iloc[1, dl] = Timestamp("19710101 20:43:42") df.iloc[2, dl] = Timestamp("21460101 20:43:42") df.iloc[4, dl] = pd.NaT json = df.to_json(date_format="epoch", date_unit=unit) # force date unit result = read_json(json, date_unit=unit) tm.assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) tm.assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r"""{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }""" read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB")) dfj2["date"] = Timestamp("20130101") dfj2["ints"] = range(5) dfj2["bools"] = True dfj2.index = pd.date_range("20130101", periods=5) json = dfj2.to_json() result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_}) tm.assert_frame_equal(result, result) def test_misc_example(self): # parsing unordered input fails result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) error_msg = """DataFrame\\.index are different DataFrame\\.index values are different \\(100\\.0 %\\) \\[left\\]: Index\\(\\['a', 'b'\\], dtype='object'\\) \\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)""" with pytest.raises(AssertionError, match=error_msg): tm.assert_frame_equal(result, expected, check_index_type=False) result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]') expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @tm.network @pytest.mark.single def test_round_trip_exception_(self): # GH 3867 csv = "https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv" df = pd.read_csv(csv) s = df.to_json() result = pd.read_json(s) tm.assert_frame_equal(result.reindex(index=df.index, columns=df.columns), df) @tm.network @pytest.mark.single @pytest.mark.parametrize( "field,dtype", [ ["created_at", pd.DatetimeTZDtype(tz="UTC")], ["closed_at", "datetime64[ns]"], ["updated_at", pd.DatetimeTZDtype(tz="UTC")], ], ) def test_url(self, field, dtype): url = "https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5" # noqa result = read_json(url, convert_dates=True) assert result[field].dtype == dtype def test_timedelta(self): converter = lambda x: pd.to_timedelta(x, unit="ms") s = Series([timedelta(23), timedelta(seconds=5)]) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) s = Series([timedelta(23), timedelta(seconds=5)], index=pd.Index([0, 1])) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) frame = DataFrame([timedelta(23), timedelta(seconds=5)]) assert frame[0].dtype == "timedelta64[ns]" tm.assert_frame_equal(frame, pd.read_json(frame.to_json()).apply(converter)) frame = DataFrame( { "a": [timedelta(days=23), timedelta(seconds=5)], "b": [1, 2], "c": pd.date_range(start="20130101", periods=2), } ) result = pd.read_json(frame.to_json(date_unit="ns")) result["a"] = pd.to_timedelta(result.a, unit="ns") result["c"] = pd.to_datetime(result.c) tm.assert_frame_equal(frame, result) def test_mixed_timedelta_datetime(self): frame = DataFrame( {"a": [timedelta(23), pd.Timestamp("20130101")]}, dtype=object ) expected = DataFrame( {"a": [pd.Timedelta(frame.a[0]).value, pd.Timestamp(frame.a[1]).value]} ) result = pd.read_json(frame.to_json(date_unit="ns"), dtype={"a": "int64"}) tm.assert_frame_equal(result, expected, check_index_type=False) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize("date_format", ["iso", "epoch"]) @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta]) def test_timedelta_to_json(self, as_object, date_format, timedelta_typ): # GH28156: to_json not correctly formatting Timedelta data = [timedelta_typ(days=1), timedelta_typ(days=2), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) if date_format == "iso": expected = ( '{"P1DT0H0M0S":"P1DT0H0M0S","P2DT0H0M0S":"P2DT0H0M0S","null":null}' ) else: expected = '{"86400000":86400000,"172800000":172800000,"null":null}' if as_object: expected = expected.replace("}", ',"a":"a"}') result = ser.to_json(date_format=date_format) assert result == expected def test_default_handler(self): value = object() frame = DataFrame({"a": [7, value]}) expected = DataFrame({"a": [7, str(value)]}) result = pd.read_json(frame.to_json(default_handler=str)) tm.assert_frame_equal(expected, result, check_index_type=False) def test_default_handler_indirect(self): from pandas.io.json import dumps def default(obj): if isinstance(obj, complex): return [("mathjs", "Complex"), ("re", obj.real), ("im", obj.imag)] return str(obj) df_list = [ 9, DataFrame( {"a": [1, "STR", complex(4, -5)], "b": [float("nan"), None, "N/A"]}, columns=["a", "b"], ), ] expected = ( '[9,[[1,null],["STR",null],[[["mathjs","Complex"],' '["re",4.0],["im",-5.0]],"N\\/A"]]]' ) assert dumps(df_list, default_handler=default, orient="values") == expected def test_default_handler_numpy_unsupported_dtype(self): # GH12554 to_json raises 'Unhandled numpy dtype 15' df = DataFrame( {"a": [1, 2.3, complex(4, -5)], "b": [float("nan"), None, complex(1.2, 0)]}, columns=["a", "b"], ) expected = ( '[["(1+0j)","(nan+0j)"],' '["(2.3+0j)","(nan+0j)"],' '["(4-5j)","(1.2+0j)"]]' ) assert df.to_json(default_handler=str, orient="values") == expected def test_default_handler_raises(self): msg = "raisin" def my_handler_raises(obj): raise TypeError(msg) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, object()]}).to_json( default_handler=my_handler_raises ) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, complex(4, -5)]}).to_json( default_handler=my_handler_raises ) def test_categorical(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]}) df["B"] = df["A"] expected = df.to_json() df["B"] = df["A"].astype("category") assert expected == df.to_json() s = df["A"] sc = df["B"] assert s.to_json() == sc.to_json() def test_datetime_tz(self): # GH4377 df.to_json segfaults with non-ndarray blocks tz_range = pd.date_range("20130101", periods=3, tz="US/Eastern") tz_naive = tz_range.tz_convert("utc").tz_localize(None) df = DataFrame({"A": tz_range, "B": pd.date_range("20130101", periods=3)}) df_naive = df.copy() df_naive["A"] = tz_naive expected = df_naive.to_json() assert expected == df.to_json() stz = Series(tz_range) s_naive = Series(tz_naive) assert stz.to_json() == s_naive.to_json() def test_sparse(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = pd.DataFrame(np.random.randn(10, 4)) df.loc[:8] = np.nan sdf = df.astype("Sparse") expected = df.to_json() assert expected == sdf.to_json() s = pd.Series(np.random.randn(10)) s.loc[:8] = np.nan ss = s.astype("Sparse") expected = s.to_json() assert expected == ss.to_json() @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-10 05:00:00Z"), Timestamp("2013-01-10 00:00:00", tz="US/Eastern"), Timestamp("2013-01-10 00:00:00-0500"), ], ) def test_tz_is_utc(self, ts): from pandas.io.json import dumps exp = '"2013-01-10T05:00:00.000Z"' assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp @pytest.mark.parametrize( "tz_range", [ pd.date_range("2013-01-01 05:00:00Z", periods=2), pd.date_range("2013-01-01 00:00:00", periods=2, tz="US/Eastern"), pd.date_range("2013-01-01 00:00:00-0500", periods=2), ], ) def test_tz_range_is_utc(self, tz_range): from pandas.io.json import dumps exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]' dfexp = ( '{"DT":{' '"0":"2013-01-01T05:00:00.000Z",' '"1":"2013-01-02T05:00:00.000Z"}}' ) assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({"DT": dti}) result = dumps(df, iso_dates=True) assert result == dfexp def test_read_inline_jsonl(self): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @td.skip_if_not_us_locale def test_read_s3_jsonl(self, s3_resource): # GH17200 result = read_json("s3n://pandas-test/items.jsonl", lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_local_jsonl(self): # GH17200 with tm.ensure_clean("tmp_items.json") as path: with open(path, "w") as infile: infile.write('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n') result = read_json(path, lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(self): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import pandas as pd import numpy as np import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from scipy import stats import plotly.graph_objs as go import cufflinks cufflinks.go_offline() def make_hist(df, x, category=None): """ Make an interactive histogram, optionally segmented by `category` :param df: dataframe of data :param x: string of column to use for plotting :param category: string representing column to segment by :return figure: a plotly histogram to show with iplot or plot """ if category is not None: data = [] for name, group in df.groupby(category): data.append(go.Histogram(dict(x=group[x], name=name))) else: data = [go.Histogram(dict(x=df[x]))] layout = go.Layout( yaxis=dict(title="Count"), xaxis=dict(title=x.replace("_", " ").title()), title=f"{x.replace('_', ' ').title()} Distribution by {category.replace('_', ' ').title()}" if category else f"{x.replace('_', ' ').title()} Distribution", ) figure = go.Figure(data=data, layout=layout) return figure def make_cum_plot(df, y, category=None, ranges=False): """ Make an interactive cumulative plot, optionally segmented by `category` :param df: dataframe of data, must have a `published_date` column :param y: string of column to use for plotting or list of two strings for double y axis :param category: string representing column to segment by :param ranges: boolean for whether to add range slider and range selector :return figure: a plotly plot to show with iplot or plot """ if category is not None: data = [] for i, (name, group) in enumerate(df.groupby(category)): group.sort_values("published_date", inplace=True) data.append( go.Scatter( x=group["published_date"], y=group[y].cumsum(), mode="lines+markers", text=group["title"], name=name, marker=dict(size=10, opacity=0.8, symbol=i + 2), ) ) else: df.sort_values("published_date", inplace=True) if len(y) == 2: data = [ go.Scatter( x=df["published_date"], y=df[y[0]].cumsum(), name=y[0].title(), mode="lines+markers", text=df["title"], marker=dict( size=10, color="blue", opacity=0.6, line=dict(color="black"), ), ), go.Scatter( x=df["published_date"], y=df[y[1]].cumsum(), yaxis="y2", name=y[1].title(), mode="lines+markers", text=df["title"], marker=dict( size=10, color="red", opacity=0.6, line=dict(color="black"), ), ), ] else: data = [ go.Scatter( x=df["published_date"], y=df[y].cumsum(), mode="lines+markers", text=df["title"], marker=dict( size=12, color="blue", opacity=0.6, line=dict(color="black"), ), ) ] if len(y) == 2: layout = go.Layout( xaxis=dict(title="Published Date", type="date"), yaxis=dict(title=y[0].replace("_", " ").title(), color="blue"), yaxis2=dict( title=y[1].replace("_", " ").title(), color="red", overlaying="y", side="right", ), font=dict(size=14), title=f"Cumulative {y[0].title()} and {y[1].title()}", ) else: layout = go.Layout( xaxis=dict(title="Published Date", type="date"), yaxis=dict(title=y.replace("_", " ").title()), font=dict(size=14), title=f"Cumulative {y.replace('_', ' ').title()} by {category.replace('_', ' ').title()}" if category is not None else f"Cumulative {y.replace('_', ' ').title()}", ) # Add a rangeselector and rangeslider for a data xaxis if ranges: rangeselector = dict( buttons=list( [ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all"), ] ) ) rangeslider = dict(visible=True) layout["xaxis"]["rangeselector"] = rangeselector layout["xaxis"]["rangeslider"] = rangeslider layout["width"] = 1000 layout["height"] = 600 figure = go.Figure(data=data, layout=layout) return figure def make_scatter_plot( df, x, y, fits=None, xlog=False, ylog=False, category=None, scale=None, sizeref=2, annotations=None, ranges=False, title_override=None, ): """ Make an interactive scatterplot, optionally segmented by `category` :param df: dataframe of data :param x: string of column to use for xaxis :param y: string of column to use for yaxis :param fits: list of strings of fits :param xlog: boolean for making a log xaxis :param ylog boolean for making a log yaxis :param category: string representing categorical column to segment by, this must be a categorical :param scale: string representing numerical column to size and color markers by, this must be numerical data :param sizeref: float or integer for setting the size of markers according to the scale, only used if scale is set :param annotations: text to display on the plot (dictionary) :param ranges: boolean for whether to add a range slider and selector :param title_override: String to override the title :return figure: a plotly plot to show with iplot or plot """ if category is not None: title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()} by {category.replace('_', ' ').title()}" data = [] for i, (name, group) in enumerate(df.groupby(category)): data.append( go.Scatter( x=group[x], y=group[y], mode="markers", text=group["title"], name=name, marker=dict(size=8, symbol=i + 2), ) ) else: if scale is not None: title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()} Scaled by {scale.title()}" data = [ go.Scatter( x=df[x], y=df[y], mode="markers", text=df["title"], marker=dict( size=df[scale], line=dict(color="black", width=0.5), sizemode="area", sizeref=sizeref, opacity=0.8, colorscale="Viridis", color=df[scale], showscale=True, sizemin=2, ), ) ] else: df.sort_values(x, inplace=True) title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()}" data = [ go.Scatter( x=df[x], y=df[y], mode="markers", text=df["title"], marker=dict( size=12, color="blue", opacity=0.8, line=dict(color="black") ), name="observations", ) ] if fits is not None: for fit in fits: data.append( go.Scatter( x=df[x], y=df[fit], text=df["title"], mode="lines+markers", marker=dict(size=8, opacity=0.6), line=dict(dash="dash"), name=fit, ) ) title += " with Fit" layout = go.Layout( annotations=annotations, xaxis=dict( title=x.replace("_", " ").title() + (" (log scale)" if xlog else ""), type="log" if xlog else None, ), yaxis=dict( title=y.replace("_", " ").title() + (" (log scale)" if ylog else ""), type="log" if ylog else None, ), font=dict(size=14), title=title if title_override is None else title_override, ) # Add a rangeselector and rangeslider for a data xaxis if ranges: rangeselector = dict( buttons=list( [ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all"), ] ) ) rangeslider = dict(visible=True) layout["xaxis"]["rangeselector"] = rangeselector layout["xaxis"]["rangeslider"] = rangeslider layout["width"] = 1000 layout["height"] = 600 figure = go.Figure(data=data, layout=layout) return figure def make_linear_regression(df, x, y, intercept_0): """ Create a linear regression, either with the intercept set to 0 or the intercept allowed to be fitted :param df: dataframe with data :param x: string or list of stringsfor the name of the column with x data :param y: string for the name of the column with y data :param intercept_0: boolean indicating whether to set the intercept to 0 """ if isinstance(x, list): lin_model = LinearRegression() lin_model.fit(df[x], df[y]) slopes, intercept, = ( lin_model.coef_, lin_model.intercept_, ) df["predicted"] = lin_model.predict(df[x]) r2 = lin_model.score(df[x], df[y]) rmse = np.sqrt(mean_squared_error(y_true=df[y], y_pred=df["predicted"])) equation = f'{y.replace("_", " ")} =' names = ["r2", "rmse", "intercept"] values = [r2, rmse, intercept] for i, (p, s) in enumerate(zip(x, slopes)): if (i + 1) % 3 == 0: equation += f'<br>{s:.2f} * {p.replace("_", " ")} +' else: equation += f' {s:.2f} * {p.replace("_", " ")} +' names.append(p) values.append(s) equation += f" {intercept:.2f}" annotations = [ dict( x=0.4 * df.index.max(), y=0.9 * df[y].max(), showarrow=False, text=equation, font=dict(size=10), ) ] df["index"] = list(df.index) figure = make_scatter_plot( df, x="index", y=y, fits=["predicted"], annotations=annotations ) summary = pd.DataFrame({"name": names, "value": values}) else: if intercept_0: lin_reg = sm.OLS(df[y], df[x]).fit() df["fit_values"] = lin_reg.fittedvalues summary = lin_reg.summary() slope = float(lin_reg.params) equation = f"${y.replace('_', ' ')} = {slope:.2f} * {x.replace('_', ' ')}$" else: lin_reg = stats.linregress(df[x], df[y]) intercept, slope = lin_reg.intercept, lin_reg.slope params = ["pvalue", "rvalue", "slope", "intercept"] values = [] for p in params: values.append(getattr(lin_reg, p)) summary =
pd.DataFrame({"param": params, "value": values})
pandas.DataFrame
import duckdb import pandas as pd import numpy import pytest from datetime import date, timedelta class TestMap(object): def test_map(self, duckdb_cursor): testrel = duckdb.values([1, 2]) conn = duckdb.connect() conn.execute('CREATE TABLE t (a integer)') empty_rel = conn.table('t') newdf1 = testrel.map(lambda df : df['col0'].add(42).to_frame()) newdf2 = testrel.map(lambda df : df['col0'].astype('string').to_frame()) newdf3 = testrel.map(lambda df : df) # column count differs from bind def evil1(df): if len(df) == 0: return df['col0'].to_frame() else: return df # column type differs from bind def evil2(df): if len(df) == 0: df['col0'] = df['col0'].astype('string') return df # column name differs from bind def evil3(df): if len(df) == 0: df = df.rename(columns={"col0" : "col42"}) return df # does not return a df def evil4(df): return 42 # straight up throws exception def evil5(df): this_makes_no_sense() def return_dataframe(df): return pd.DataFrame({'A' : [1]}) def return_big_dataframe(df): return pd.DataFrame({'A' : [1]*5000}) def return_none(df): return None def return_empty_df(df): return pd.DataFrame() with pytest.raises(RuntimeError): print(testrel.map(evil1).df()) with pytest.raises(RuntimeError): print(testrel.map(evil2).df()) with pytest.raises(RuntimeError): print(testrel.map(evil3).df()) with pytest.raises(AttributeError): print(testrel.map(evil4).df()) with pytest.raises(RuntimeError): print(testrel.map(evil5).df()) # not a function with pytest.raises(TypeError): print(testrel.map(42).df()) # nothing passed to map with pytest.raises(TypeError): print(testrel.map().df()) testrel.map(return_dataframe).df().equals(pd.DataFrame({'A' : [1]})) with pytest.raises(Exception): testrel.map(return_big_dataframe).df() empty_rel.map(return_dataframe).df().equals(pd.DataFrame({'A' : []})) with pytest.raises(Exception): testrel.map(return_none).df() with pytest.raises(Exception): testrel.map(return_empty_df).df() def test_isse_3237(self, duckdb_cursor): def process(rel): def mapper(x): dates = x['date'].to_numpy("datetime64[us]") days = x['days_to_add'].to_numpy("int") x["result1"] = pd.Series([
pd.to_datetime(y[0])
pandas.to_datetime
import streamlit as st import pandas as pd import requests import os from dotenv import load_dotenv from nomics import Nomics import json import plotly import yfinance as yf import matplotlib.pyplot as plt from PIL import Image from fbprophet import Prophet import hvplot as hv import hvplot.pandas import datetime as dt from babel.numbers import format_currency import tensorflow as tf from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import svm from pandas.tseries.offsets import DateOffset from sklearn.metrics import classification_report from sklearn.ensemble import AdaBoostClassifier import numpy as np from tensorflow import keras import plotly.express as px from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression # 2 PERFORM EXPLORATORY DATA ANALYSIS AND VISUALIZATION # Function to normalize stock prices based on their initial price def normalize(df): x = df.copy() for i in x.columns[1:]: x[i] = x[i]/x[i][0] return x # Function to plot interactive plots using Plotly Express print("Function to plot interactive plots using Plotly Express") def interactive_plot(df, title): fig = px.line(title = title) for i in df.columns[1:]: fig.add_scatter(x = df['Date'], y = df[i], name = i) fig.show() # Function to concatenate the date, stock price, and volume in one dataframe def individual_stock(price_df, vol_df, name): return pd.DataFrame({'Date': price_df['Date'], 'Close': price_df[name], 'Volume': vol_df[name]}) # Load .env environment variables load_dotenv() ## Page expands to full width st.set_page_config(layout='wide') image = Image.open('images/crypto_image.jpg') st.image(image,width = 600) # Header for main and sidebar st.title( "Crypto Signal Provider Web App") st.markdown("""This app displays top 10 cryptocurrencies by market cap.""") st.caption("NOTE: USDT & USDC are stablecoins pegged to the Dollar.") st.sidebar.title("Crypto Signal Settings") # Get nomics api key nomics_api_key = os.getenv("NOMICS_API_KEY") nomics_url = "https://api.nomics.com/v1/prices?key=" + nomics_api_key nomics_currency_url = ("https://api.nomics.com/v1/currencies/ticker?key=" + nomics_api_key + "&interval=1d,30d&per-page=10&page=1") # Read API in json nomics_df =
pd.read_json(nomics_currency_url)
pandas.read_json
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values =
Series(['fooBAD__barBAD', NA])
pandas.Series
# feature generation & selection # sample # full # kaggle 0.14481 # minimize score import os import json import sys # pylint: disable=unused-import from time import time import csv from pprint import pprint # pylint: disable=unused-import from timeit import default_timer as timer import lightgbm as lgb import numpy as np from hyperopt import STATUS_OK, fmin, hp, tpe, Trials import pandas as pd from pandas.io.json import json_normalize from sklearn.feature_selection import VarianceThreshold from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold, train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import PolynomialFeatures pd.options.display.float_format = '{:.4f}'.format pd.set_option('display.max_columns', None) is_kaggle = os.environ['HOME'] == '/tmp' use_sample = False if is_kaggle else True # hyperopt optimize = False max_evals = 200 if is_kaggle else 100 results_file = 'optimize.csv' iteration = 0 best_score = sys.float_info.max trials = Trials() optimized_params = { 'class_weight': None, 'colsample_bytree': 1.0, 'learning_rate': 0.1, 'min_child_samples': 20, 'num_leaves': 31, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'subsample_for_bin': 20000 } zipext = '' if is_kaggle else '.zip' # params n_folds = 10 stop_rounds = 100 verbose_eval = -1 # 500 # https://www.kaggle.com/julian3833/1-quick-start-read-csv-and-flatten-json-fields def evaluate(params): # defaults # LGBMRegressor(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, # learning_rate=0.1, max_depth=-1, min_child_samples=20, # min_child_weight=0.001, min_split_gain=0.0, n_estimators=100, # n_jobs=-1, nthread=4, num_leaves=31, objective=None, # random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True, # subsample=1.0, subsample_for_bin=200000, subsample_freq=0) params['num_leaves'] = int(params['num_leaves']) params['min_child_samples'] = int(params['min_child_samples']) params['subsample_for_bin'] = int(params['subsample_for_bin']) if params['class_weight'] == 0: params['class_weight'] = None lgb_model = lgb.LGBMRegressor(nthread=4, n_jobs=-1, verbose=-1) lgb_model.set_params(**params) lr_model = LinearRegression() test_predictions = np.zeros(test.shape[0]) best_score = 0 do_ensemble = False ensemble_count = 2 if do_ensemble else 1 for fold_n, (train_index, test_index) in enumerate(folds.split(x_train)): X_train, X_valid = x_train.iloc[train_index], x_train.iloc[test_index] Y_train, Y_valid = y_train.iloc[train_index], y_train.iloc[test_index] # lgb lgb_model.fit(X_train, Y_train, eval_set=[(X_train, Y_train), (X_valid, Y_valid)], eval_metric='rmse', verbose=False, early_stopping_rounds=stop_rounds) # pprint(dir(lgb_model)) best_score += lgb_model.best_score_['valid_1']['rmse'] lgb_test_prediction = lgb_model.predict(x_test, num_iteration=lgb_model.best_iteration_) test_predictions += lgb_test_prediction if do_ensemble: # linear regression lr_model.fit(X_train, Y_train) train_prediction = lr_model.predict(X_train) best_score += np.sqrt(mean_squared_error(train_prediction, Y_train)) lr_test_prediction = lr_model.predict(x_test) test_predictions += lr_test_prediction test_predictions /= (n_folds * ensemble_count) best_score /= (n_folds * ensemble_count) return test_predictions, best_score def objective(params): global iteration, best_score iteration += 1 start = timer() _, score = evaluate(params) run_time = timer() - start # save results of_connection = open(results_file, 'a') writer = csv.writer(of_connection) writer.writerow([iteration, score, run_time, params]) of_connection.close() # save trials for resumption # with open('trials.json', 'w') as f: # # might be trials_dict to be saved # f.write(json.dumps(trials)) best_score = min(best_score, score) print(f'iteration {iteration}, score {score}, best {best_score}, timer {run_time}') # score must be to minimize return {'loss': score, 'params': params, 'iteration': iteration, 'train_time': run_time, 'status': STATUS_OK} # polynomial features def get_polynomial_features(train, test, target): # Make a new dataframe for polynomial features numeric_cols = [col for col in train.columns if (col != target) & (col != unique_id) & ((train[col].dtype == 'int64') | (train[col].dtype == 'float64'))] poly_features = train[numeric_cols] poly_features_test = test[numeric_cols] poly_target = train_targets # Create the polynomial object with specified degree poly_transformer = PolynomialFeatures(degree=2) # Train the polynomial features poly_transformer.fit(poly_features) # Transform the features poly_features = poly_transformer.transform(poly_features) poly_features_test = poly_transformer.transform(poly_features_test) # print('\nPolynomial Features shape: ', poly_features.shape) # print(poly_transformer.get_feature_names(input_features=numeric_cols)) # Create a dataframe of the features poly_features = pd.DataFrame(poly_features, columns=poly_transformer.get_feature_names(numeric_cols)) # Add in the target poly_features[target] = poly_target # Find the correlations with the target poly_corrs = poly_features.corr()[target].sort_values() # Display most negative and most positive # print(poly_corrs.head(10)) # print(poly_corrs.tail(5)) # Put test features into dataframe poly_features_test = pd.DataFrame(poly_features_test, columns=poly_transformer.get_feature_names(numeric_cols)) # Merge polynomial features into training dataframe poly_features[unique_id] = train[unique_id] train_poly = train.merge(poly_features, on=unique_id, how='left') # print('\nPolynomial Features shape: ', poly_features.shape, train.shape, train_poly.shape, ) # print('\nPolynomial Features shape: ', poly_features.describe(), train_poly.describe(), train.describe()) # Merge polynomial features into testing dataframe poly_features_test[unique_id] = test[unique_id] test_poly = test.merge(poly_features_test, on=unique_id, how='left') # Align the dataframes train_poly, test_poly = train_poly.align(test_poly, join='inner', axis=1) # Print out the new shapes # print('Training data with polynomial features shape: ', train_poly.shape) # print('Testing data with polynomial features shape: ', test_poly.shape) # train_poly, test_poly = get_collinear_features(train_poly, test_poly, target) return train_poly, test_poly # arithmetic features def get_arithmetic_features(train, test, target): numeric_cols = [col for col in train.columns if (train[col].dtype == 'int64') | (train[col].dtype == 'float64')] numeric_cols.remove(unique_id) for i1 in range(0, len(numeric_cols)): col1 = numeric_cols[i1] for i2 in range(i1 + 1, len(numeric_cols)): col2 = numeric_cols[i2] # train[f'{col1} by {col2}'] = train[col1] * train[col2] # test[f'{col1} by {col2}'] = test[col1] * test[col2] # train[f'{col1} plus {col2}'] = train[col1] + train[col2] # test[f'{col1} plus {col2}'] = test[col1] + test[col2] train[f'{col1} minus {col2}'] = train[col1] - train[col2] test[f'{col1} minus {col2}'] = test[col1] - test[col2] # if not (train[col2] == 0).any(): # train[f'{col1} on {col2}'] = train[col1] / train[col2] # test[f'{col1} on {col2}'] = test[col1] / test[col2] # elif not (train[col1] == 0).any(): # train[f'{col2} on {col1}'] = train[col2] / train[col1] # test[f'{col2} on {col1}'] = test[col2] / test[col1] train, test = get_collinear_features(train, test, target) return train, test def get_collinear_features(train, test, target): corrs = train.corr() upper = corrs.where(np.triu(np.ones(corrs.shape), k=1).astype(np.bool)) threshold = 0.8 # Select columns with correlations above threshold to_drop = [column for column in upper.columns if any(upper[column] > threshold)] train = train.drop(columns=to_drop) test = test.drop(columns=to_drop) return train, test def get_missing_values(train, test, target): threshold = 0.75 train_missing = (train.isnull().sum() / len(train)).sort_values(ascending=False) test_missing = (test.isnull().sum() / len(test)).sort_values(ascending=False) # print(train_missing.head()) # print(test_missing.head()) # Identify missing values above threshold train_missing = train_missing.index[train_missing > threshold] test_missing = test_missing.index[test_missing > threshold] all_missing = list(set(set(train_missing) | set(test_missing))) # print(f'There are {len(all_missing)} columns with more than {threshold}%% missing values') train = train.drop(columns=all_missing) test = test.drop(columns=all_missing) train, test = train.align(test, join='inner', axis=1) return train, test def get_feature_importance(train, test, target): model = lgb.LGBMRegressor(nthread=4, n_jobs=-1, verbose=-1) model.set_params(**optimized_params) x_train = train.drop(target_key, axis=1) if unique_id in x_train.columns: x_train = train.drop(target_key, axis=1) # Initialize an empty array to hold feature importances feature_importances = np.zeros(x_train.shape[1]) # Fit the model twice to avoid overfitting for i in range(2): # Split into training and validation set train_features, valid_features, train_y, valid_y = train_test_split(x_train, train_targets, test_size=0.25, random_state=i) # Train using early stopping model.fit(train_features, train_y, early_stopping_rounds=100, eval_set=[(valid_features, valid_y)], eval_metric='rmse', verbose=False) # Record the feature importances feature_importances += model.feature_importances_ # Make sure to average feature importances! feature_importances = feature_importances / 2 feature_importances = pd.DataFrame( {'feature': list(x_train.columns), 'importance': feature_importances}).sort_values('importance', ascending=False) # Sort features according to importance feature_importances = feature_importances.sort_values('importance', ascending=False).reset_index() # Normalize the feature importances to add up to one feature_importances['importance_normalized'] = feature_importances['importance'] / feature_importances['importance'].sum() feature_importances['cumulative_importance'] = np.cumsum(feature_importances['importance_normalized']) # print(feature_importances) # Find the features with minimal importance # unimportant_features = list(feature_importances[feature_importances['importance'] == 0.0]['feature']) # Threshold for cumulative importance threshold = 0.99 # Extract the features to drop features_to_drop = list(feature_importances[feature_importances[ 'cumulative_importance'] > threshold]['feature']) # print(f'There are {len(features_to_drop)} features under {threshold} importance') # print(features_to_drop) train = train.drop(features_to_drop, axis=1) test = test.drop(features_to_drop, axis=1) return train, test def get_feature_selection(train, test, target): # remove collinear variables train, test = get_collinear_features(train, test, target) print(f'collinear, cols {len(train.columns)}, {((time() - start_time) / 60):.0f} mins') all_numeric_cols = [col for col in train.columns if (col != unique_id) & (train[col].dtype == 'int64') | (train[col].dtype == 'float64')] # feature selection via variance train_numeric = train[all_numeric_cols].fillna(0) select_features = VarianceThreshold(threshold=0.2) select_features.fit(train_numeric) numeric_cols = train_numeric.columns[select_features.get_support(indices=True)].tolist() # remove cols without variance for col in all_numeric_cols: if col not in numeric_cols: train.drop(col, axis=1, inplace=True) if col in test.columns: test.drop(col, axis=1, inplace=True) print(f'variance, cols {len(train.columns)}, {((time() - start_time) / 60):.0f} mins') # determine important featuers train, test = get_feature_importance(train, test, target) print(f'importance, cols {len(train.columns)}, {((time() - start_time) / 60):.0f} mins') return train, test # -------- main start_time = time() unique_id = 'unique_id' target_key = 'Id' target = 'SalePrice' # load data if use_sample: train = pd.read_csv('../input/train.csv') test =
pd.read_csv('../input/test.csv')
pandas.read_csv
import pandas as pd import warnings warnings.filterwarnings('ignore') # data = pd.read_csv('data_subset.csv') # # # data formatted to be able to use surprise package # data_surprise = data[['customer_id', 'product_id','star_rating']].\ # rename(columns={'customer_id': 'userID', 'product_id': 'itemID', 'star_rating': 'rating'}) # # data_surprise.to_csv('data_surprise.csv', index=False) def get_data(_file_path, _save_path): """ Method to generate a clean pandas dataframe given file path :param _file_path: input raw data file path :param _save_path: output data_subset file path :return: data_subset dataframe """ # reading the data from tsv cols =
pd.read_csv(_file_path, sep='\t', nrows=1)
pandas.read_csv
import sys sys.path.append('.') # stdlib import os from glob import glob from tqdm.auto import tqdm import json import pickle from collections import defaultdict import time import argparse # numlib import numpy as np import pandas as pd from ensemble_boxes import nms, weighted_boxes_fusion #from include import * from utils.file import Logger from utils.him import downsize_boxes, upsize_boxes def am_mean(data, ws): return np.sum([d*w for d, w in zip(data, ws)])/np.sum(ws) def gm_mean(data, ws): return np.prod([d**w for d, w in zip(data, ws)])**(1./np.sum(ws)) def am_gm_mean(data, ws): return 0.5*(am_mean(data, ws) + gm_mean(data, ws)) def str2boxes_image(s, with_none=False): """ ouput: [prob x_min y_min x_max y_max] range x,y: [0, +inf] """ s = s.strip().split() s = np.array([s[6*idx+1:6*idx+6] for idx in range(len(s)//6) \ if s[6*idx] == 'opacity' or with_none]).astype(np.float32) if len(s) == 0: print('Warning: image without box!') return s def str2boxes_df(df, with_none=False): return [str2boxes_image(row['PredictionString'], with_none=with_none) \ for _, row in df.iterrows()] def boxes2str_image(boxes): if len(boxes) == 0: return '' return ' '.join(np.concatenate([[['opacity']]*len(boxes), boxes], \ axis=1).reshape(-1).astype('str')) def boxes2str_df(boxes, image_ids=None): strs = [boxes2str_image(bs) for bs in boxes] if image_ids is None: return strs return pd.DataFrame({'id': image_ids, 'PredictionString': strs}) def check_num_boxes_per_image(df=None, csv_path=None, filter_rows=True): assert df is not None or csv_path is not None if df is None: df = pd.read_csv(csv_path) if filter_rows: df_image = df[df['id'].apply(lambda x: x.endswith('image'))].reset_index(drop=True) else: df_image = df all_boxes = str2boxes_df(df_image, with_none=False) all_boxes = [boxes for boxes in all_boxes if len(boxes) > 0 ] return np.concatenate(all_boxes).shape[0] / len(df_image) def extract_none_probs(opacity_probs): none_probs = [] for image_probs in opacity_probs: none_prob = np.prod(1 - np.array(image_probs)) none_probs.append(none_prob) return none_probs def filter_rows(df, mode): assert mode in ['study', 'image'] df = df.copy() df = df[df['id'].apply(lambda x: x.endswith(mode))].reset_index(drop=True) return df def ensemble_image(dfs, df_meta, mode='wbf', \ iou_thr=0.5, skip_box_thr=0.001, weights=None, filter_rows=True): if filter_rows: df_meta = filter_rows(df_meta, mode='image') dfs = [filter_rows(df, mode='image') for df in dfs] image_ids, prediction_strings, all_scores = [], [], [] num_boxes = 0 for i, row in tqdm(df_meta.iterrows(), total=len(df_meta)): image_id = row['id'] s = [] for df in dfs: if np.sum(df['id']==image_id) > 0: ss = df.loc[df['id']==image_id, 'PredictionString'].values[0] if type(ss) == str: s.append(ss) else: s.append('') else: s.append('') boxes, scores, labels = [], [], [] for ss in s: boxes_, scores_, labels_ = [], [], [] ss = str2boxes_image(ss, with_none=False) if len(ss) > 0: labels_ = [0]*len(ss) scores_ = ss[:, 0].tolist() boxes_ = downsize_boxes(ss[:, 1:], row['w'], row['h']) labels.append(labels_) boxes.append(boxes_) scores.append(scores_) if mode == 'wbf': boxes, scores, labels = weighted_boxes_fusion(boxes, scores, labels, iou_thr=iou_thr, weights=weights, skip_box_thr=skip_box_thr) elif mode == 'nms': boxes_, scores_, labels_, weights_ = [], [], [], [] for j, b in enumerate(boxes): if len(b) > 0: boxes_.append(b) scores_.append(scores[j]) labels_.append(labels[j]) if weights is not None: weights_.append(weights[j]) if weights is None: weights_ = None boxes, scores, labels = nms(boxes_, scores_, labels_, iou_thr=iou_thr, weights=weights_) if len(boxes) == 0: image_ids.append(image_id) prediction_strings.append('') print('Warning: no box found after boxes fusion!') continue num_boxes += len(boxes) all_scores.append(scores) boxes = upsize_boxes(boxes, row['w'], row['h']) s = [] for box, score, label in zip(boxes, scores, labels): s.append(' '.join(['opacity', str(score), ' '.join(box.astype(str))])) image_ids.append(image_id) prediction_strings.append(' '.join(s)) df_pred = pd.DataFrame({'id': image_ids, 'PredictionString': prediction_strings}) return df_pred, num_boxes, np.concatenate(all_scores).tolist() def ensemble_study(dfs, weights=None, mean='am'): dfs = [filter_rows(df, mode='study') for df in dfs] study_ids = dfs[0]['id'].values if weights is None: weights = [1.] * len(dfs) weights = np.array(weights) / np.sum(weights) ens_probs_am = np.zeros((len(study_ids), 4), dtype=np.float32) ens_probs_gm = np.ones((len(study_ids), 4), dtype=np.float32) for df, w in zip(dfs, weights): df = df[df['id'].apply(lambda x: x.endswith('study'))].reset_index(drop=False) for i, id_ in enumerate(study_ids): s = df.loc[df['id']==id_, 'PredictionString'].values[0] preds = s.strip().split() for idx in range(len(preds)//6): ens_probs_am[i, cls_map[preds[6*idx]]] += float(preds[6*idx + 1]) * w ens_probs_gm[i, cls_map[preds[6*idx]]] *= float(preds[6*idx + 1]) ** w # apply different ensemble methods if mean == 'am': ens_probs = ens_probs_am elif mean == 'gm': ens_probs = ens_probs_gm elif mean == 'am_gm': ens_probs = 0.5*(ens_probs_am + ens_probs_gm) df = pd.DataFrame({'id': study_ids}) df[class_names] = ens_probs df['PredictionString'] = df.apply(lambda row: \ f'negative {row["negative"]} 0 0 1 1 typical {row["typical"]} 0 0 1 1 \ indeterminate {row["indeterminate"]} 0 0 1 1 atypical {row["atypical"]} 0 0 1 1', \ axis=1) df = df[['id', 'PredictionString']] return df def extract_negative_prob(df, std2img): """ Args: df: study-level df std2img: dict maps from study_id to image_id Returns: df with image-level ids and mapped negative probabilities """ df = filter_rows(df, mode='study') image_ids, negative_probs = [], [] for study_id, img_ids in std2img.items(): s = df.loc[df['id']==study_id + '_study', 'PredictionString'].values[0] s = s.strip().split() for idx in range(len(s)//6): if s[6*idx] == 'negative': neg_prob = float(s[6*idx + 1]) break image_ids.extend([img_id + '_image' for img_id in img_ids]) negative_probs.extend([neg_prob]*len(img_ids)) return pd.DataFrame({'id': image_ids, 'negative': negative_probs}) def postprocess_image(df_image, df_study, std2img, df_none=None, \ none_cls_w=0., none_dec_w=0.5, neg_w=0.5, \ detect_w=0.84, clsf_w=0.84): df_image = filter_rows(df_image, mode='image') df_study = filter_rows(df_study, mode='study') if df_none is None: none_cls_w = 0. none_cls_w, none_dec_w, neg_w = \ none_cls_w/(none_cls_w + none_dec_w + neg_w), \ none_dec_w/(none_cls_w + none_dec_w + neg_w), \ neg_w/(none_cls_w + none_dec_w + neg_w) detect_w, clsf_w = \ detect_w/(detect_w + clsf_w), \ clsf_w/(detect_w + clsf_w) df_negative = extract_negative_prob(df_study, std2img) df_image = df_image.merge(df_negative, on='id', how='left') if none_cls_w > 0.: df_image = df_image.merge(df_none, on='id', how='left') new_nones = [] for i, row in df_image.iterrows(): if row['PredictionString'] == 'none 1 0 0 1 1' \ or row['PredictionString'] == '' \ or type(row['PredictionString']) != str: df_image.loc[i, 'PredictionString'] = f'none {row["none"]} 0 0 1 1' #df_image.loc[i, 'new_none'] = row["none"] new_nones.append(row["none"]) print('no opacity founded!') continue else: # extract none probabilities none_dec_prob = 1. bboxes = row['PredictionString'].strip().split() for idx in range(len(bboxes)//6): if bboxes[6*idx] == 'opacity': none_dec_prob *= 1 - float(bboxes[6*idx + 1]) # modify opacity boxes if none_cls_w > 0.: post_none_prob = none_cls_w*row["none"] + none_dec_w*none_dec_prob + neg_w*row["negative"] else: post_none_prob = none_dec_w*none_dec_prob + neg_w*row["negative"] for idx in range(len(bboxes)//6): if bboxes[6*idx] == 'opacity': bboxes[6*idx + 1] = str(float(bboxes[6*idx + 1])**detect_w * (1 - post_none_prob)**clsf_w) df_image.loc[i, 'PredictionString'] = ' '.join(bboxes) # add none boxes df_image.loc[i, 'PredictionString'] += f' none {post_none_prob} 0 0 1 1' # act none probability for ensemble with negative in study-level if none_cls_w > 0.: new_nones.append(none_cls_w/(none_cls_w + none_dec_w))*row["none"] + \ (none_dec_w/(none_cls_w + none_dec_w))*none_dec_prob else: new_nones.append(none_dec_prob) df_none = pd.DataFrame({'id': df_image['id'].values, 'none': new_nones}) return df_image, df_none def postprocess_study(df, df_none, std2img, neg_w=0.7, none_w=0.3): """ Args: df: study-level prediction df_none: image-level none probability std2img: dict maps from study_id to image_id """ df = filter_rows(df, mode='study') df_none = filter_rows(df_none, mode='image') neg_w, none_w = \ neg_w/(neg_w + none_w), \ none_w/(neg_w + none_w) # extract none probability for each study study_ids, none_probs = [], [] for study_id, image_ids in std2img.items(): image_ids_ = [img_id + '_image' for img_id in image_ids] study_none_prob = df_none.loc[df_none['id'].isin(image_ids_), 'none'].mean() study_ids.append(study_id + '_study') none_probs.append(study_none_prob) df_study_none = pd.DataFrame({'id': study_ids, 'none': none_probs}) df =
pd.merge(df, df_study_none, on='id', how='left')
pandas.merge
import os import pandas from c3x.data_loaders import configfileparser, nextgen_loaders from c3x.data_statistics import statistics as stats # Reads a config file to produce a dictionary that can be handed over to functions config = configfileparser.ConfigFileParser("config/config_nextGen_stats.ini") data_paths = config.read_data_path() batch_info = config.read_batches() measurement_types = config.read_data_usage() # Create a nextGen data object that has working paths and can be sliced using batches # it might be appropriate for the example to make the batches smaller, however that may # increase computing time, # the next row can be commented if data was processed prior to running this script nextgen = nextgen_loaders.NextGenData(data_name='NextGen', source=data_paths["source"], batteries=data_paths["batteries"], solar=data_paths["solar"], node=data_paths["node"], loads=data_paths["loads"], results=data_paths["results"], stats = data_paths["stats"], number_of_batches=batch_info["number_of_batches"], files_per_batch=batch_info["files_per_batch"], concat_batches_start=batch_info["concat_batches_start"], concat_batches_end=batch_info["concat_batches_end"]) # now we have a folder structure with lots of files with batch numbers print("ALL BATCHES ANALYSIS") node_count, batch_list = stats.batch_with_highest_node_count(data_dir=data_paths, batch_info=batch_info, measurement_types=measurement_types) print("max number of nodes: ", node_count) print("batches with max node count: ", batch_list) print("number of batches with that node count: ", len(batch_list)) data_path_list = [] data_files = [] sorted_dict = {} node_list = [] # here a dictionary is generate that holds a list of nodes per batch (batch:[node_ids]) for batch in range(batch_info["number_of_batches"]): node_list = stats.nodes_per_batch(data_paths, batch, measurement_types) sorted_dict[batch] = node_list # a list of all files is created for data_type in measurement_types: path = data_paths[data_type] for file in os.listdir(data_paths[data_type]): data_files.append(os.path.join(path, file)) # some Data Frames and Labels for saving results nicely result_data_frame = pandas.DataFrame() batch_data_results = pandas.DataFrame() index = ['Battery - PLG', 'Battery - QLG', 'Battery - RC', 'Solar - PLG', 'Load - PLG', 'Load - QLG'] columns = pandas.MultiIndex.from_product([['Samples', 'Duplicates'], index], names=['Type', 'Measurement']) # iterate through batches for batch in range(batch_info["number_of_batches"]): batch_data = pandas.DataFrame() # iterate through nodes result_data_frame = pandas.DataFrame() for node in sorted_dict[batch]: node_data = pandas.DataFrame() search = str(node) + "_" + str(batch) + ".npy" batch_node_subset = [val for i, val in enumerate(data_files) if val.endswith(search)] # build a data frame with all measurement data first_run = True for path in batch_node_subset: tmp_data_frame = pandas.read_pickle(path) if first_run is True: node_data = pandas.DataFrame(tmp_data_frame) first_run = False else: node_data = pandas.concat([node_data, tmp_data_frame], axis=1) # get the node ID node_df = pandas.DataFrame(pandas.Series(node)) node_df.columns = ["node"] # count samples and convert to data frame samples = pandas.Series(stats.count_samples(node_data)) samples =
pandas.DataFrame(samples)
pandas.DataFrame
import json import pandas as pd from collections import OrderedDict from datetime import datetime from contextlib import closing import os import errno import logging from airflow.hooks.http_hook import HttpHook from airflow.hooks.postgres_hook import PostgresHook def upsert_rows(hook, table, rows, on_conflict, change_field, target_fields=None, commit_every=1000): """ A generic way to insert a set of tuples into a table, a new transaction is created every commit_every rows :param table: Name of the target table :type table: str :param rows: The rows to insert into the table :type rows: iterable of tuples :param target_fields: The names of the columns to fill in the table :type target_fields: iterable of strings :param on_conflict: The names of the columns triggering the conflict :type on_conflict: iterable of strings :param change_field: The names of the columns to update on conflict :type target_fields: iterable of strings :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :type commit_every: int """ if target_fields: target_fields = ", ".join(target_fields) target_fields = "({})".format(target_fields) else: target_fields = '' on_conflict = ", ".join(on_conflict) on_conflict = "({})".format(on_conflict) change_field = ["{0}=EXCLUDED.{0}".format(e) for e in change_field] change_field = ", ".join(change_field) with closing(hook.get_conn()) as conn: if hook.supports_autocommit: hook.set_autocommit(conn, False) conn.commit() with closing(conn.cursor()) as cur: for i, row in enumerate(rows, 1): L = [] for cell in row: L.append(hook._serialize_cell(cell, conn)) values = tuple(L) placeholders = ["%s",]*len(row) sql = "INSERT INTO {0} {1} VALUES ({2}) ON CONFLICT {3} DO UPDATE SET {4};".format( table, target_fields, ",".join(placeholders), on_conflict, change_field) cur.execute(sql, values) if commit_every and i % commit_every == 0: conn.commit() conn.commit() def get_taxi_data(conn_id, endpoint, **kwargs): api_hook = HttpHook(http_conn_id=conn_id, method='GET') headers = {'X-API-KEY': 'fcf1c741-e5b5-4c5e-a965-2598461b4836'} response = api_hook.run(endpoint, headers=headers) # df_taxis = pd.read_json(response.content) data = response.json() with open('dags/{}.json'.format(endpoint), 'w') as outfile: json.dump(data, outfile) def get_position_taxi(conn_id, **kwargs): try: os.makedirs('taxi-positions') except OSError as e: if e.errno != errno.EEXIST: raise endpoint = 'taxi-positions/{ts}.000Z'.format(**kwargs) # endpoint = 'taxi-positions/2018-03-21T20:20:00.000Z' get_taxi_data(conn_id, endpoint) def get_last_connexions(conn_id, **kwargs): pg_hook = PostgresHook(postgres_conn_id=conn_id) sql = """SELECT taxi, "timestampUTC", status, operator FROM public.last_connexions""" df = pg_hook.get_pandas_df(sql) df.to_pickle('dags/last_connexions.pickle') def update_last_connexions(conn_id, **kwargs): pg_hook = PostgresHook(postgres_conn_id=conn_id) attributes = ['taxi', '"timestampUTC"', 'status', 'operator'] df_last_connexions = pd.read_pickle('dags/last_connexions.pickle') tuples = [tuple(x) for x in df_last_connexions.values] # rows = [('9876543', 'occupied', '2018-03-21T22:00:00.000Z'), ('1234567', 'occupied', '2018-03-21T22:00:00.000Z')] on_conflict = ['taxi', 'operator'] change_field = ['status', '"timestampUTC"'] upsert_rows(pg_hook, 'last_connexions', tuples, on_conflict, change_field, attributes) # df.to_pickle('dags/last_connexions.pickle') def transform_taxi_data(**kwargs): logging.info('{ts}'.format(**kwargs)) attributes = ['taxi', 'timestampUTC', 'status', 'operator'] df_last_connexions = pd.read_pickle('dags/last_connexions.pickle') with open('dags/taxi-positions/{ts}.000Z.json'.format(**kwargs)) as data_file: positions = json.load(data_file) taxis_connexions = OrderedDict() for attribute in attributes: taxis_connexions[attribute] = [] taxis_connexions['time'] = [] for items in positions['items']: for item in items['items']: for attribute in attributes: taxis_connexions[attribute].append(item[attribute]) taxis_connexions['time'].append(items['receivedAt']) df_taxis_connexions = pd.DataFrame.from_dict(taxis_connexions) df_taxis_connexions.time = pd.to_datetime(df_taxis_connexions.time, format='%Y-%m-%dT%H:%M:%S.%fZ') df_taxis_connexions.timestampUTC =
pd.to_datetime(df_taxis_connexions.timestampUTC, format='%Y-%m-%dT%H:%M:%S.%fZ')
pandas.to_datetime
import requests as re import pandas as pd from datetime import datetime, timedelta from typing import Callable import time def format_url(coin: str="DOGE") -> str: url = "https://production.api.coindesk.com/v2/price/values/" start_time = (datetime.now() - timedelta(minutes=10)).isoformat(timespec="minutes") end_time = datetime.now().isoformat(timespec="minutes") params = f"?start_date={start_time}&end_date={end_time}&ohlc=false" return url + coin + params def get_data(coin: str="DOGE") -> pd.DataFrame: prices = re.get(format_url(coin)) prices = prices.json()['data']['entries'] data =
pd.DataFrame(prices, columns=["time", "price"])
pandas.DataFrame
from itertools import compress import pandas as pd import numpy as np from abc import ABCMeta, abstractmethod from surveyhelper.scale import QuestionScale, LikertScale, NominalScale, OrdinalScale from scipy.stats import ttest_ind, f_oneway, chisquare class MatrixQuestion: __metaclass__ = ABCMeta def __init__(self, text, label, questions): self.text = text self.questions = questions self.label = label self.assert_questions_same_type() self.assert_choices_same() self.assign_children_to_matrix() def exclude_choices_from_analysis(self, choices): for q in self.questions: q.exclude_choices_from_analysis(choices) def reverse_choices(self): for q in self.questions: q.reverse_choices() def change_scale(self, newtype, values = None, midpoint = None): for q in self.questions: q.change_scale(newtype, values, midpoint) def change_midpoint(self, midpoint): for q in self.questions: q.scale.midpoint = midpoint def get_scale(self): if len(self.questions) > 0: return(self.questions[0].scale) else: None def assert_questions_same_type(self): if all(type(x) == type(self.questions[0]) for x in self.questions): return(True) else: raise(Exception("Questions in a matrix must all have the same type")) def assert_choices_same(self): if all([x.scale == self.questions[0].scale for x in self.questions]): return(True) else: raise(Exception("Questions in a matrix must all have the same choices")) def assign_children_to_matrix(self): for q in self.questions: q.matrix = self return def get_variable_names(self): names = [] for q in self.questions: names += q.get_variable_names() return(names) def get_children_text(self): return([q.text for q in self.questions]) def pretty_print(self, show_choices=True): print("{} ({})".format(self.text, self.label)) if show_choices: self.questions[0].pretty_print_choices() for q in self.questions: print(q.text) @abstractmethod def get_choices(self): pass @abstractmethod def frequency_table(self): pass def freq_table_to_json(self, df): return('') def questions_to_json(self): return('') class SelectOneMatrixQuestion(MatrixQuestion): def get_choices(self, remove_exclusions=True, show_values=False): self.assert_choices_same() if len(self.questions) > 0: return(self.questions[0].scale.choices_to_str(remove_exclusions, show_values)) else: return([]) def frequency_table(self, df, show="ct", pct_format=".0%", remove_exclusions = True, show_totals=True, show_mean=True, mean_format=".1f"): if len(self.questions) == 0: return(pd.DataFrame()) data = [] if show == "ct": for q in self.questions: data.append(q.frequency_table(df, False, True, False, pct_format, remove_exclusions, show_totals, show_mean, ).iloc[:,0].tolist()) elif show == "pct": for q in self.questions: data.append(q.frequency_table(df, False, False, True, pct_format, remove_exclusions, show_totals, show_mean ).iloc[:,0].tolist()) else: raise(Exception("Invalid 'show' parameter: {}".format(show))) tbl = pd.DataFrame(data) tmpcols = self.get_choices(remove_exclusions) if show_totals: tmpcols.append("Total") if show_mean: tmpcols.append("Mean") tbl.columns = tmpcols tbl["Question"] = self.get_children_text() cols = tbl.columns.tolist() cols = cols[-1:] + cols[:-1] tbl = tbl[cols] return(tbl) def cut_by_question(self, other_question, response_set, cut_var_label=None, question_labels=None, pct_format=".0%", remove_exclusions=True, show_mean=True, mean_format=".1f"): if type(other_question) != SelectOneQuestion: raise(Exception("Can only call cut_by_question on a SelectOneQuestion type")) groups = response_set.groupby(other_question.label) group_mapping = dict(zip(other_question.values, other_question.choices)) oth_text = cut_var_label if not oth_text: oth_text = other_question.text return(self.cut_by(groups, group_mapping, oth_text, question_labels, pct_format, remove_exclusions, show_mean, mean_format)) def cut_by(self, groups, group_label_mapping, cut_var_label, question_labels=None, pct_format=".0%", remove_exclusions=True, show_mean=True, mean_format=".1f"): results = [] labels = question_labels if not labels: labels = [q.text for q in self.questions] for q, l in zip(self.questions, labels): r = q.cut_by(groups, group_label_mapping, cut_var_label, l, pct_format, remove_exclusions, show_mean, mean_format) # r.columns = pd.MultiIndex.from_tuples([(q.text, b) for a, b in # r.columns.tolist()]) results.append(r.T) return(pd.concat(results)) def freq_table_to_json(self, df): t = self.frequency_table(df, "ct", "", True, False, False, "") return(t.iloc[:, 1:].to_json(orient="records")) def questions_to_json(self): df = pd.DataFrame({"Question": self.get_children_text()}) return(df.to_json(orient="records")) def graph_type(self): if len(self.questions) > 0: if type(self.questions[0].scale) == LikertScale: return('diverging_bar') else: return('horizontal_stacked_bar') else: return('') class SelectMultipleMatrixQuestion(MatrixQuestion): def get_choices(self, remove_exclusions=True): self.assert_choices_same() if len(self.questions > 0): return(self.questions[0].get_choices(remove_exclusions)) else: [] def frequency_table(self, df, show="ct", pct_format=".0%", remove_exclusions = True, show_totals=True): data = [] if show == "ct": for q in self.questions: data.append(q.frequency_table(df, False, True, False, False, pct_format, remove_exclusions, False).iloc[:,0].tolist()) elif show == "pct_respondents": for q in self.responses: data.append(q.frequency_table(df, False, False, True, False, pct_format, remove_exclusions, False).iloc[:,0].tolist()) elif show == "pct_responses": for q in self.responses: data.append(q.frequency_table(df, False, False, False, True, pct_format, remove_exclusions, False).iloc[:,0].tolist()) else: raise(Exception("Invalid 'show' parameter: {}".format(show))) tbl = pd.DataFrame(data) tbl.columns = self.get_choices(remove_exclusions) tbl["Question"] = self.get_children_text() cols = tbl.columns.tolist() cols = cols[-1:] + cols[:-1] tbl = tbl[cols] if show_totals: tots = [] for q in self.questions: tots.append(q.get_total_respondents(df)) tbl["Total Respondents"] = tots return(tbl) class SelectQuestion: __metaclass__ = ABCMeta def get_total_respondents(self, df): freqs, resp, nonresp = self.tally(df) return(resp) def get_scale(self): return(self.scale) def change_scale(self, newtype, values = None, midpoint = None): self.scale = QuestionScale.change_scale(self.scale, newtype) def change_midpoint(self, midpoint): self.scale.midpoint = midpoint def exclude_choices_from_analysis(self, choices): self.scale.exclude_choices_from_analysis(choices) @abstractmethod def get_variable_names(self): pass @abstractmethod def pretty_print(self): pass @abstractmethod def pretty_print_choices(self): pass @abstractmethod def tally(self): pass @abstractmethod def frequency_table(self): pass def questions_to_json(self): return('') class SelectOneQuestion(SelectQuestion): def __init__(self, text, var, choices, label, values, exclude_from_analysis, matrix=None, scale_type='likert'): self.text = text self.label = label self.variable = var self.matrix = matrix self.scale = QuestionScale.create_scale(scale_type, choices, exclude_from_analysis, values) def get_variable_names(self): return([self.variable]) def pretty_print(self, show_choices=True): print("{} ({})".format(self.text, self.label)) if show_choices: self.pretty_print_choices() def pretty_print_choices(self): print(", ".join(self.scale.choices_to_str(False))) def reverse_choices(self): self.scale.reverse_choices() def mean(self, df, remove_exclusions=True): values = self.scale.get_values(remove_exclusions) freq, n, x = self.tally(df, remove_exclusions) num = sum([ct * v for ct, v in zip(freq, values)]) if n > 0: return(num/n) else: return(np.nan) def tally(self, df, remove_exclusions=True): """ Returns ([response frequencies], respondents, nonrespondents) tuple where response frequencies is a count of responses for each answer choice in order. """ unit_record = df[self.variable] freqs = dict(unit_record.value_counts()) cts = [] values = self.scale.get_values(remove_exclusions) for k in values: if k in freqs: cts.append(freqs[k]) else: cts.append(0) return((cts, sum(cts), len(unit_record)-sum(cts))) def frequency_table(self, df, show_question=True, ct=True, pct=True, pct_format=".0%", remove_exclusions=True, show_totals=True, show_mean=True, mean_format=".1f", show_values=True): cts, resp, nonresp = self.tally(df, remove_exclusions) data = [] cols = [] tots = [] mean = [] if show_question: data.append(self.scale.choices_to_str(remove_exclusions, show_values)) cols.append("Answer") tots.append("Total") mean.append("Mean") if ct: data.append(cts) cols.append("Count") tots.append(resp) mean.append(format(self.mean(df, remove_exclusions), mean_format)) if pct: l = [] for x in cts: if resp > 0: l.append(format(x/resp, pct_format)) else: l.append("-") data.append(l) cols.append("%") tots.append(format(1, pct_format)) if not ct: mean.append(format(self.mean(df, remove_exclusions), mean_format)) else: mean.append("") tbl =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler, PolynomialFeatures, OneHotEncoder from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso, LassoCV, Ridge, RidgeCV from sklearn.metrics import r2_score, mean_squared_error """ 1. get_Xy(df): Separate features and target variable 2. get_score(X_train,X_val,y_train,y_val) 3. categorical(X_train,X_val,X_test,cat_variable) """ def get_Xy(df): df = df.dropna() target = 'opening_weekend_usa' all_column = df.columns.values.tolist() all_column.remove(target) y = df[target] X = df[all_column] return X, y def get_score(X_train,X_val,y_train,y_val): # fit linear regression to training data lr_model = LinearRegression() lr_model.fit(X_train, y_train) y_pred = lr_model.predict(X_val) # score fit model on validation data train_score = lr_model.score(X_train, y_train) val_score = lr_model.score(X_val, y_val) rmse = np.sqrt(mean_squared_error(y_val, y_pred)) # report results print('\nTrain R^2 score was:', train_score) print('Validation R^2 score was:', val_score) print(f'RMSE: {rmse:.2f} \n') # print('Feature coefficient results:') # for feature, coef in zip(X.columns, lr_model.coef_): # print(feature, ':', f'{coef:.2f}') # Visualization fig, ax = plt.subplots(1, 1) plt.scatter(y_val, y_pred, alpha=0.4) ax.set_xlabel('Opening weekend revenue ($ in millions)',fontsize=20) ax.set_ylabel('Prediction ($ in millions)',fontsize=20) ax.set_title('R$^2$: %0.2f' % val_score, fontsize=20) plt.xticks(fontsize=16) plt.yticks(fontsize=16) x=np.linspace(0,0.7e2,50) # x=np.linspace(4,9,50) y=x plt.plot(x,y,color='firebrick',linewidth=3,alpha=0.6) plt.ylim(0,) plt.xlim(0,) return fig, lr_model, y_pred def categorical_multilabel(X_train,X_val,X_test,cat_variable): """ Input: X_train,X_val,X_test,categorical_variable Processing: preprocessing the three sets separately: 1. Separate continuous and categorical variable 2. Scaling + polynomial fit the conitnuous variables and get_dummies on the categorical variable 3. Combine back the continuous and categorical data Return: tranformed X_train, X_val, X_test """ scaler = StandardScaler() poly = PolynomialFeatures(degree=2,interaction_only = False) # Train set # Convert genre to dummies X_train_genre = X_train[cat_variable].str.join(sep='*').str.get_dummies(sep='*') known_columns = X_train_genre.columns # Scaling continuous variables X_train_con = X_train[con_feature] X_train_con_scaled = scaler.fit_transform(X_train_con) X_train_con_scaled_df = pd.DataFrame(X_train_con_scaled, columns=X_train_con.columns, index=X_train_con.index) X_train_poly = poly.fit_transform(X_train_con_scaled) X_train_poly_df = pd.DataFrame(X_train_poly, columns=poly.get_feature_names(X_train_con.columns), index=X_train_con.index) #Combine # X_train = pd.concat([X_train_genre,X_train_con_scaled_df],axis=1) X_train = pd.concat([X_train_genre,X_train_poly_df],axis=1) # Val set # Convert genre to dummies X_val_genre = X_val[cat_variable].str.join(sep='*').str.get_dummies(sep='*') val_columns = X_val_genre.columns X_val_genre = X_val_genre[[x for x in val_columns if x in known_columns]] fill_dict = { c : 0 for c in [x for x in known_columns if x not in val_columns] } X_val_genre = X_val_genre.assign(**fill_dict) # Scaling continuous variables X_val_con = X_val[con_feature] X_val_con_scaled = scaler.transform(X_val_con) X_val_con_scaled_df = pd.DataFrame(X_val_con_scaled, columns=X_val_con.columns, index=X_val_con.index) X_val_poly = poly.transform(X_val_con_scaled) X_val_poly_df = pd.DataFrame(X_val_poly, columns=poly.get_feature_names(X_val_con.columns), index=X_val_con.index) #Combine # X_val = pd.concat([X_val_genre,X_val_con_scaled_df],axis=1) X_val = pd.concat([X_val_genre,X_val_poly_df],axis=1) # Test set # Convert genre to dummies X_test_genre = X_test[cat_variable].str.join(sep='*').str.get_dummies(sep='*') test_columns = X_test.columns X_test_genre = X_test_genre[[x for x in test_columns if x in known_columns]] fill_dict = { c : 0 for c in [x for x in known_columns if x not in test_columns] } X_test_genre = X_test_genre.assign(**fill_dict) # Scaling continuous variables X_test_con = X_test[con_feature] X_test_con_scaled = scaler.transform(X_test_con) X_test_con_scaled_df = pd.DataFrame(X_test_con_scaled, columns=X_test_con.columns, index=X_test_con.index) X_test_poly = poly.transform(X_test_con_scaled) X_test_poly_df = pd.DataFrame(X_test_poly, columns=poly.get_feature_names(X_test_con.columns), index=X_test_con.index) #Combine # X_test = pd.concat([X_test_genre,X_test_con_scaled_df],axis=1) X_test = pd.concat([X_test_genre,X_test_poly_df],axis=1) return X_train,X_val,X_test def categorical_singlelabel(X_train,X_val,X_test,cat_variable): """ Input: X_train,X_val,X_test,categorical_variable Processing: preprocessing the three sets separately: 1. Separate continuous and categorical variable 2. Scaling + polynomial fit the conitnuous variables and get_dummies on the categorical variable 3. Combine back the continuous and categorical data Return: tranformed X_train, X_val, X_test """ scaler = StandardScaler() poly = PolynomialFeatures(degree=2,interaction_only = False) # Train set # Convert genre to dummies X_train_genre = pd.get_dummies(X_train[cat_variable]) known_columns = X_train_genre.columns # Scaling continuous variables X_train_con = X_train[con_feature] X_train_con_scaled = scaler.fit_transform(X_train_con) X_train_con_scaled_df = pd.DataFrame(X_train_con_scaled, columns=X_train_con.columns, index=X_train_con.index) X_train_poly = poly.fit_transform(X_train_con_scaled) X_train_poly_df = pd.DataFrame(X_train_poly, columns=poly.get_feature_names(X_train_con.columns), index=X_train_con.index) #Combine X_train = pd.concat([X_train_genre,X_train_con_scaled_df],axis=1) # X_train = pd.concat([X_train_genre,X_train_poly_df],axis=1) # Val set # Convert genre to dummies X_val_genre = pd.get_dummies(X_val[cat_variable]) val_columns = X_val_genre.columns X_val_genre = X_val_genre[[x for x in val_columns if x in known_columns]] fill_dict = { c : 0 for c in [x for x in known_columns if x not in val_columns] } X_val_genre = X_val_genre.assign(**fill_dict) # Scaling continuous variables X_val_con = X_val[con_feature] X_val_con_scaled = scaler.transform(X_val_con) X_val_con_scaled_df = pd.DataFrame(X_val_con_scaled, columns=X_val_con.columns, index=X_val_con.index) X_val_poly = poly.transform(X_val_con_scaled) X_val_poly_df = pd.DataFrame(X_val_poly, columns=poly.get_feature_names(X_val_con.columns), index=X_val_con.index) #Combine X_val =
pd.concat([X_val_genre,X_val_con_scaled_df],axis=1)
pandas.concat
from datetime import timedelta from functools import partial from itertools import permutations import dask.bag as db import numpy as np import pandas as pd import pandas.testing as pdt import pytest from hypothesis import given, settings from hypothesis import strategies as st from kartothek.core.cube.conditions import ( C, Conjunction, EqualityCondition, GreaterEqualCondition, GreaterThanCondition, InequalityCondition, InIntervalCondition, IsInCondition, LessEqualCondition, LessThanCondition, ) from kartothek.core.cube.cube import Cube from kartothek.io.dask.bag_cube import build_cube_from_bag from kartothek.io.eager import build_dataset_indices from kartothek.io.eager_cube import append_to_cube, build_cube, remove_partitions __all__ = ( "apply_condition_unsafe", "data_no_part", "fullrange_cube", "fullrange_data", "fullrange_df", "massive_partitions_cube", "massive_partitions_data", "massive_partitions_df", "multipartition_cube", "multipartition_df", "no_part_cube", "no_part_df", "other_part_cube", "sparse_outer_cube", "sparse_outer_data", "sparse_outer_df", "sparse_outer_opt_cube", "sparse_outer_opt_df", "test_complete", "test_condition", "test_condition_on_null", "test_cube", "test_delayed_index_build_correction_restriction", "test_delayed_index_build_partition_by", "test_df", "test_fail_blocksize_negative", "test_fail_blocksize_wrong_type", "test_fail_blocksize_zero", "test_fail_empty_dimension_columns", "test_fail_missing_condition_columns", "test_fail_missing_dimension_columns", "test_fail_missing_partition_by", "test_fail_missing_payload_columns", "test_fail_no_store_factory", "test_fail_projection", "test_fail_unindexed_partition_by", "test_fail_unstable_dimension_columns", "test_fail_unstable_partition_by", "test_filter_select", "test_hypothesis", "test_overlay_tricky", "test_partition_by", "test_projection", "test_select", "test_simple_roundtrip", "test_sort", "test_stresstest_index_select_row", "test_wrong_condition_type", "testset", "updated_cube", "updated_df", ) @pytest.fixture(scope="module") def fullrange_data(): return { "seed": pd.DataFrame( { "x": [0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3], "y": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "z": 0, "p": [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1], "q": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], "v1": np.arange(16), "i1": np.arange(16), } ), "enrich_dense": pd.DataFrame( { "x": [0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3], "y": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "z": 0, "p": [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1], "q": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], "v2": np.arange(16), "i2": np.arange(16), } ), "enrich_sparse": pd.DataFrame( { "y": [0, 1, 2, 3, 0, 1, 2, 3], "z": 0, "p": [0, 0, 1, 1, 0, 0, 1, 1], "q": [0, 0, 0, 0, 1, 1, 1, 1], "v3": np.arange(8), "i3": np.arange(8), } ), } @pytest.fixture(scope="module") def fullrange_cube(module_store, fullrange_data): cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p", "q"], uuid_prefix="fullrange_cube", index_columns=["i1", "i2", "i3"], ) build_cube(data=fullrange_data, store=module_store, cube=cube) return cube @pytest.fixture(scope="module") def multipartition_cube(module_store, fullrange_data, fullrange_cube): def _gen(part): result = {} for dataset_id, df in fullrange_data.items(): df = df.copy() df["z"] = part result[dataset_id] = df return result cube = fullrange_cube.copy(uuid_prefix="multipartition_cube") build_cube_from_bag( data=db.from_sequence([0, 1], partition_size=1).map(_gen), store=module_store, cube=cube, ktk_cube_dataset_ids=["seed", "enrich_dense", "enrich_sparse"], ).compute() return cube @pytest.fixture(scope="module") def sparse_outer_data(): return { "seed": pd.DataFrame( { "x": [0, 1, 0], "y": [0, 0, 1], "z": 0, "p": [0, 1, 2], "q": 0, "v1": [0, 3, 7], "i1": [0, 3, 7], } ), "enrich_dense": pd.DataFrame( { "x": [0, 0], "y": [0, 1], "z": 0, "p": [0, 2], "q": 0, "v2": [0, 7], "i2": [0, 7], } ), "enrich_sparse": pd.DataFrame( {"y": [0, 0], "z": 0, "p": [0, 1], "q": 0, "v3": [0, 3], "i3": [0, 3]} ), } @pytest.fixture(scope="module") def sparse_outer_cube(module_store, sparse_outer_data): cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p", "q"], uuid_prefix="sparse_outer_cube", index_columns=["i1", "i2", "i3"], ) build_cube(data=sparse_outer_data, store=module_store, cube=cube) return cube @pytest.fixture(scope="module") def sparse_outer_opt_cube( module_store, sparse_outer_data, sparse_outer_cube, sparse_outer_df, sparse_outer_opt_df, ): data = {} for dataset_id in sparse_outer_data.keys(): df = sparse_outer_data[dataset_id].copy() for col in sparse_outer_opt_df.columns: if col in df.columns: dtype = sparse_outer_opt_df[col].dtype if dtype == np.float64: dtype = np.int64 elif dtype == np.float32: dtype = np.int32 elif dtype == np.float16: dtype = np.int16 df[col] = df[col].astype(dtype) data[dataset_id] = df cube = sparse_outer_cube.copy(uuid_prefix="sparse_outer_opt_cube") build_cube(data=data, store=module_store, cube=cube) return cube @pytest.fixture(scope="module") def massive_partitions_data(): n = 17 return { "seed": pd.DataFrame( { "x": np.arange(n), "y": np.arange(n), "z": np.arange(n), "p": np.arange(n), "q": np.arange(n), "v1": np.arange(n), "i1": np.arange(n), } ), "enrich_1": pd.DataFrame( { "x": np.arange(n), "y": np.arange(n), "z": np.arange(n), "p": np.arange(n), "q": np.arange(n), "v2": np.arange(n), "i2": np.arange(n), } ), "enrich_2": pd.DataFrame( { "y": np.arange(n), "z": np.arange(n), "p": np.arange(n), "q": np.arange(n), "v3": np.arange(n), "i3": np.arange(n), } ), } @pytest.fixture(scope="module") def massive_partitions_cube(module_store, massive_partitions_data): cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p", "q"], uuid_prefix="massive_partitions_cube", index_columns=["i1", "i2", "i3"], ) build_cube(data=massive_partitions_data, store=module_store, cube=cube) return cube @pytest.fixture(scope="module") def fullrange_df(): return ( pd.DataFrame( data={ "x": [0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3], "y": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "z": 0, "p": [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1], "q": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], "v1": np.arange(16), "v2": np.arange(16), "v3": [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7], "i1": np.arange(16), "i2": np.arange(16), "i3": [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7], }, columns=["i1", "i2", "i3", "p", "q", "v1", "v2", "v3", "x", "y", "z"], ) .sort_values(["x", "y", "z", "p", "q"]) .reset_index(drop=True) ) @pytest.fixture(scope="module") def multipartition_df(fullrange_df): dfs = [] for z in (0, 1): df = fullrange_df.copy() df["z"] = z dfs.append(df) return ( pd.concat(dfs, ignore_index=True) .sort_values(["x", "y", "z", "p", "q"]) .reset_index(drop=True) ) @pytest.fixture(scope="module") def sparse_outer_df(): return ( pd.DataFrame( data={ "x": [0, 1, 0], "y": [0, 0, 1], "z": 0, "p": [0, 1, 2], "q": 0, "v1": [0, 3, 7], "v2": [0, np.nan, 7], "v3": [0, 3, np.nan], "i1": [0, 3, 7], "i2": [0, np.nan, 7], "i3": [0, 3, np.nan], }, columns=["i1", "i2", "i3", "p", "q", "v1", "v2", "v3", "x", "y", "z"], ) .sort_values(["x", "y", "z", "p", "q"]) .reset_index(drop=True) ) @pytest.fixture(scope="module") def sparse_outer_opt_df(sparse_outer_df): df = sparse_outer_df.copy() df["x"] = df["x"].astype(np.int16) df["y"] = df["y"].astype(np.int32) df["z"] = df["z"].astype(np.int8) df["v1"] = df["v1"].astype(np.int8) df["i1"] = df["i1"].astype(np.int8) return df @pytest.fixture(scope="module") def massive_partitions_df(): n = 17 return ( pd.DataFrame( data={ "x": np.arange(n), "y": np.arange(n), "z": np.arange(n), "p": np.arange(n), "q": np.arange(n), "v1": np.arange(n), "v2": np.arange(n), "v3": np.arange(n), "i1": np.arange(n), "i2": np.arange(n), "i3": np.arange(n), }, columns=["i1", "i2", "i3", "p", "q", "v1", "v2", "v3", "x", "y", "z"], ) .sort_values(["x", "y", "z", "p", "q"]) .reset_index(drop=True) ) @pytest.fixture(scope="module") def updated_cube(module_store, fullrange_data): cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p", "q"], uuid_prefix="updated_cube", index_columns=["i1", "i2", "i3"], ) build_cube( data={ cube.seed_dataset: pd.DataFrame( { "x": [0, 0, 1, 1, 2, 2], "y": [0, 1, 0, 1, 0, 1], "z": 0, "p": [0, 0, 1, 1, 2, 2], "q": 0, "v1": np.arange(6), "i1": np.arange(6), } ), "enrich": pd.DataFrame( { "x": [0, 0, 1, 1, 2, 2], "y": [0, 1, 0, 1, 0, 1], "z": 0, "p": [0, 0, 1, 1, 2, 2], "q": 0, "v2": np.arange(6), "i2": np.arange(6), } ), "extra": pd.DataFrame( { "y": [0, 1, 0, 1, 0, 1], "z": 0, "p": [0, 0, 1, 1, 2, 2], "q": 0, "v3": np.arange(6), "i3": np.arange(6), } ), }, store=module_store, cube=cube, ) remove_partitions( cube=cube, store=module_store, ktk_cube_dataset_ids=["enrich"], conditions=C("p") >= 1, ) append_to_cube( data={ "enrich": pd.DataFrame( { "x": [1, 1], "y": [0, 1], "z": 0, "p": [1, 1], "q": 0, "v2": [7, 8], "i2": [7, 8], } ) }, store=module_store, cube=cube, ) return cube @pytest.fixture(scope="module") def updated_df(): return ( pd.DataFrame( data={ "x": [0, 0, 1, 1, 2, 2], "y": [0, 1, 0, 1, 0, 1], "z": 0, "p": [0, 0, 1, 1, 2, 2], "q": 0, "v1": np.arange(6), "v2": [0, 1, 7, 8, np.nan, np.nan], "v3": np.arange(6), "i1": np.arange(6), "i2": [0, 1, 7, 8, np.nan, np.nan], "i3": np.arange(6), }, columns=["i1", "i2", "i3", "p", "q", "v1", "v2", "v3", "x", "y", "z"], ) .sort_values(["x", "y", "z", "p", "q"]) .reset_index(drop=True) ) @pytest.fixture(scope="module") def data_no_part(): return { "seed": pd.DataFrame( { "x": [0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3], "y": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "z": 0, "p": [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1], "q": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], "v1": np.arange(16), "i1": np.arange(16), } ), "enrich_dense": pd.DataFrame( { "x": [0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3], "y": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "z": 0, "v2": np.arange(16), "i2": np.arange(16), } ), "enrich_sparse": pd.DataFrame( {"y": [0, 1, 2, 3], "z": 0, "v3": np.arange(4), "i3": np.arange(4)} ), } @pytest.fixture(scope="module") def no_part_cube(module_store, data_no_part): cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p", "q"], uuid_prefix="data_no_part", index_columns=["i1", "i2", "i3"], ) build_cube( data=data_no_part, store=module_store, cube=cube, partition_on={"enrich_dense": [], "enrich_sparse": []}, ) return cube @pytest.fixture(scope="module") def other_part_cube(module_store, data_no_part): cube = Cube( dimension_columns=["x", "y", "z"], partition_columns=["p", "q"], uuid_prefix="other_part_cube", index_columns=["i1", "i2", "i3"], ) build_cube( data=data_no_part, store=module_store, cube=cube, partition_on={"enrich_dense": ["i2"], "enrich_sparse": ["i3"]}, ) return cube @pytest.fixture(scope="module") def no_part_df(): return ( pd.DataFrame( data={ "x": [0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3], "y": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "z": 0, "p": [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1], "q": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], "v1": np.arange(16), "v2": np.arange(16), "v3": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], "i1": np.arange(16), "i2": np.arange(16), "i3": [0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 3, 3], }, columns=["i1", "i2", "i3", "p", "q", "v1", "v2", "v3", "x", "y", "z"], ) .sort_values(["x", "y", "z", "p", "q"]) .reset_index(drop=True) ) @pytest.fixture( params=[ "fullrange", "multipartition", "sparse_outer", "sparse_outer_opt", "massive_partitions", "updated", "no_part", "other_part", ], scope="module", ) def testset(request): return request.param @pytest.fixture(scope="module") def test_cube( testset, fullrange_cube, multipartition_cube, sparse_outer_cube, sparse_outer_opt_cube, massive_partitions_cube, updated_cube, no_part_cube, other_part_cube, ): if testset == "fullrange": return fullrange_cube elif testset == "multipartition": return multipartition_cube elif testset == "sparse_outer": return sparse_outer_cube elif testset == "sparse_outer_opt": return sparse_outer_opt_cube elif testset == "massive_partitions": return massive_partitions_cube elif testset == "updated": return updated_cube elif testset == "no_part": return no_part_cube elif testset == "other_part": return other_part_cube else: raise ValueError("Unknown param {}".format(testset)) @pytest.fixture(scope="module") def test_df( testset, fullrange_df, multipartition_df, sparse_outer_df, sparse_outer_opt_df, massive_partitions_df, updated_df, no_part_df, ): if testset == "fullrange": return fullrange_df elif testset == "multipartition": return multipartition_df elif testset == "sparse_outer": return sparse_outer_df elif testset == "sparse_outer_opt": return sparse_outer_opt_df elif testset == "massive_partitions": return massive_partitions_df elif testset == "updated": return updated_df elif testset in ("no_part", "other_part"): return no_part_df else: raise ValueError("Unknown param {}".format(testset)) def test_simple_roundtrip(driver, function_store, function_store_rwro): df = pd.DataFrame({"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v": [10, 11, 12, 13]}) cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube") build_cube(data=df, cube=cube, store=function_store) result = driver(cube=cube, store=function_store_rwro) assert len(result) == 1 df_actual = result[0] df_expected = df.reindex(columns=["p", "v", "x"]) pdt.assert_frame_equal(df_actual, df_expected) def test_complete(driver, module_store, test_cube, test_df): result = driver(cube=test_cube, store=module_store) assert len(result) == 1 df_actual = result[0] pdt.assert_frame_equal(df_actual, test_df) def apply_condition_unsafe(df, cond): # For the sparse_outer testset, the test_df has the wrong datatype because we cannot encode missing integer data in # pandas. # # The condition will not be applicable to the DF because the DF has floats while conditions have ints. We fix that # by modifying the the condition. # # In case there is no missing data because of the right conditions, kartothek will return integer data. # assert_frame_equal will then complain about this. So in case there is no missing data, let's recover the correct # dtype here. if not isinstance(cond, Conjunction): cond = Conjunction(cond) float_cols = {col for col in df.columns if df[col].dtype == float} # convert int to float conditions cond2 = Conjunction([]) for col, conj in cond.split_by_column().items(): if col in float_cols: parts = [] for part in conj.conditions: if isinstance(part, IsInCondition): part = IsInCondition( column=part.column, value=tuple((float(v) for v in part.value)) ) elif isinstance(part, InIntervalCondition): part = InIntervalCondition( column=part.column, start=float(part.start), stop=float(part.stop), ) else: part = part.__class__(column=part.column, value=float(part.value)) parts.append(part) conj = Conjunction(parts) cond2 &= conj # apply conditions df = cond2.filter_df(df).reset_index(drop=True) # convert float columns to int columns for col in df.columns: if df[col].notnull().all(): dtype = df[col].dtype if dtype == np.float64: dtype = np.int64 elif dtype == np.float32: dtype = np.int32 elif dtype == np.float16: dtype = np.int16 df[col] = df[col].astype(dtype) return df @pytest.mark.parametrize( "cond", [ C("v1") >= 7, C("v1") >= 10000, C("v2") >= 7, C("v3") >= 3, C("i1") >= 7, C("i1") >= 10000, C("i2") >= 7, C("i2") != 0, C("i3") >= 3, C("p") >= 1, C("q") >= 1, C("x") >= 1, C("y") >= 1, (C("x") == 3) & (C("y") == 3), (C("i1") > 0) & (C("i2") > 0), Conjunction([]), ], ) def test_condition(driver, module_store, test_cube, test_df, cond): result = driver(cube=test_cube, store=module_store, conditions=cond) df_expected = apply_condition_unsafe(test_df, cond) if df_expected.empty: assert len(result) == 0 else: assert len(result) == 1 df_actual = result[0] pdt.assert_frame_equal(df_actual, df_expected) @pytest.mark.parametrize("payload_columns", [["v1", "v2"], ["v2", "v3"], ["v3"]]) def test_select(driver, module_store, test_cube, test_df, payload_columns): result = driver(cube=test_cube, store=module_store, payload_columns=payload_columns) assert len(result) == 1 df_actual = result[0] df_expected = test_df.loc[ :, sorted(set(payload_columns) | {"x", "y", "z", "p", "q"}) ] pdt.assert_frame_equal(df_actual, df_expected) def test_filter_select(driver, module_store, test_cube, test_df): result = driver( cube=test_cube, store=module_store, payload_columns=["v1", "v2"], conditions=(C("i3") >= 3), # completely unrelated to the payload ) assert len(result) == 1 df_actual = result[0] df_expected = test_df.loc[ test_df["i3"] >= 3, ["p", "q", "v1", "v2", "x", "y", "z"] ].reset_index(drop=True) pdt.assert_frame_equal(df_actual, df_expected) @pytest.mark.parametrize( "partition_by", [["i1"], ["i2"], ["i3"], ["x"], ["y"], ["p"], ["q"], ["i1", "i2"], ["x", "y"]], ) def test_partition_by(driver, module_store, test_cube, test_df, partition_by): dfs_actual = driver(cube=test_cube, store=module_store, partition_by=partition_by) dfs_expected = [ df_g.reset_index(drop=True) for g, df_g in test_df.groupby(partition_by, sort=True) ] for df_expected in dfs_expected: for col in df_expected.columns: if df_expected[col].dtype == float: try: df_expected[col] = df_expected[col].astype(int) except Exception: pass assert len(dfs_actual) == len(dfs_expected) for df_actual, df_expected in zip(dfs_actual, dfs_expected): pdt.assert_frame_equal(df_actual, df_expected) @pytest.mark.parametrize("dimension_columns", list(permutations(["x", "y", "z"]))) def test_sort(driver, module_store, test_cube, test_df, dimension_columns): result = driver( cube=test_cube, store=module_store, dimension_columns=dimension_columns ) assert len(result) == 1 df_actual = result[0] df_expected = test_df.sort_values( list(dimension_columns) + list(test_cube.partition_columns) ).reset_index(drop=True) pdt.assert_frame_equal(df_actual, df_expected) @pytest.mark.parametrize("payload_columns", [["y", "z"], ["y", "z", "v3"]]) def test_projection(driver, module_store, test_cube, test_df, payload_columns): result = driver( cube=test_cube, store=module_store, dimension_columns=["y", "z"], payload_columns=payload_columns, ) assert len(result) == 1 df_actual = result[0] df_expected = ( test_df.loc[:, sorted(set(payload_columns) | {"y", "z", "p", "q"})] .drop_duplicates() .sort_values(["y", "z", "p", "q"]) .reset_index(drop=True) ) pdt.assert_frame_equal(df_actual, df_expected) def test_stresstest_index_select_row(driver, function_store): n_indices = 100 n_rows = 1000 data = {"x": np.arange(n_rows), "p": 0} for i in range(n_indices): data["i{}".format(i)] = np.arange(n_rows) df = pd.DataFrame(data) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube", index_columns=["i{}".format(i) for i in range(n_indices)], ) build_cube(data=df, cube=cube, store=function_store) conditions = Conjunction([(C("i{}".format(i)) == 0) for i in range(n_indices)]) result = driver( cube=cube, store=function_store, conditions=conditions, payload_columns=["p", "x"], ) assert len(result) == 1 df_actual = result[0] df_expected = df.loc[df["x"] == 0].reindex(columns=["p", "x"]) pdt.assert_frame_equal(df_actual, df_expected) def test_fail_missing_dimension_columns(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver(cube=test_cube, store=module_store, dimension_columns=["x", "a", "b"]) assert ( "Following dimension columns were requested but are missing from the cube: a, b" in str(exc.value) ) def test_fail_empty_dimension_columns(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver(cube=test_cube, store=module_store, dimension_columns=[]) assert "Dimension columns cannot be empty." in str(exc.value) def test_fail_missing_partition_by(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver(cube=test_cube, store=module_store, partition_by=["foo"]) assert ( "Following partition-by columns were requested but are missing from the cube: foo" in str(exc.value) ) def test_fail_unindexed_partition_by(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver(cube=test_cube, store=module_store, partition_by=["v1", "v2"]) assert ( "Following partition-by columns are not indexed and cannot be used: v1, v2" in str(exc.value) ) def test_fail_missing_condition_columns(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver( cube=test_cube, store=module_store, conditions=(C("foo") == 1) & (C("bar") == 2), ) assert ( "Following condition columns are required but are missing from the cube: bar, foo" in str(exc.value) ) def test_fail_missing_payload_columns(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver(cube=test_cube, store=module_store, payload_columns=["foo", "bar"]) assert "Cannot find the following requested payload columns: bar, foo" in str( exc.value ) def test_fail_projection(driver, module_store, test_cube, test_df): with pytest.raises(ValueError) as exc: driver( cube=test_cube, store=module_store, dimension_columns=["y", "z"], payload_columns=["v1"], ) assert ( 'Cannot project dataset "seed" with dimensionality [x, y, z] to [y, z] ' "while keeping the following payload intact: v1" in str(exc.value) ) def test_fail_unstable_dimension_columns(driver, module_store, test_cube, test_df): with pytest.raises(TypeError) as exc: driver(cube=test_cube, store=module_store, dimension_columns={"x", "y"}) assert "which has type set has an unstable iteration order" in str(exc.value) def test_fail_unstable_partition_by(driver, module_store, test_cube, test_df): with pytest.raises(TypeError) as exc: driver(cube=test_cube, store=module_store, partition_by={"x", "y"}) assert "which has type set has an unstable iteration order" in str(exc.value) def test_wrong_condition_type(driver, function_store, driver_name): types = { "int": pd.Series([-1], dtype=np.int64), "uint": pd.Series([1], dtype=np.uint64), "float": pd.Series([1.3], dtype=np.float64), "bool": pd.Series([True], dtype=np.bool_), "str": pd.Series(["foo"], dtype=object), } cube = Cube( dimension_columns=["d_{}".format(t) for t in sorted(types.keys())], partition_columns=["p_{}".format(t) for t in sorted(types.keys())], uuid_prefix="typed_cube", index_columns=["i_{}".format(t) for t in sorted(types.keys())], ) data = { "seed": pd.DataFrame( { "{}_{}".format(prefix, t): types[t] for t in sorted(types.keys()) for prefix in ["d", "p", "v1"] } ), "enrich": pd.DataFrame( { "{}_{}".format(prefix, t): types[t] for t in sorted(types.keys()) for prefix in ["d", "p", "i", "v2"] } ), } build_cube(data=data, store=function_store, cube=cube) df = pd.DataFrame( { "{}_{}".format(prefix, t): types[t] for t in sorted(types.keys()) for prefix in ["d", "p", "i", "v1", "v2"] } ) for col in df.columns: t1 = col.split("_")[1] for t2 in sorted(types.keys()): cond = C(col) == types[t2].values[0] if t1 == t2: result = driver(cube=cube, store=function_store, conditions=cond) assert len(result) == 1 df_actual = result[0] df_expected = cond.filter_df(df).reset_index(drop=True) pdt.assert_frame_equal(df_actual, df_expected, check_like=True) else: with pytest.raises(TypeError) as exc: driver(cube=cube, store=function_store, conditions=cond) assert "has wrong type" in str(exc.value) def test_condition_on_null(driver, function_store): df = pd.DataFrame( { "x": pd.Series([0, 1, 2], dtype=np.int64), "p": pd.Series([0, 0, 1], dtype=np.int64), "v_f1": pd.Series([0, np.nan, 2], dtype=np.float64), "v_f2": pd.Series([0, 1, np.nan], dtype=np.float64), "v_f3": pd.Series([np.nan, np.nan, np.nan], dtype=np.float64), "v_s1": pd.Series(["a", None, "c"], dtype=object), "v_s2": pd.Series(["a", "b", None], dtype=object), "v_s3": pd.Series([None, None, None], dtype=object), } ) cube = Cube( dimension_columns=["x"], partition_columns=["p"], uuid_prefix="nulled_cube", index_columns=[], ) build_cube(data=df, store=function_store, cube=cube) for col in df.columns: # only iterate over the value columns (not the dimension / partition column): if not col.startswith("v"): continue # col_type will be either 'f' for float or 's' for string; see column # names above col_type = col.split("_")[1][0] if col_type == "f": value = 1.2 elif col_type == "s": value = "foo" else: raise RuntimeError("unknown type") cond = C(col) == value df_expected = cond.filter_df(df).reset_index(drop=True) result = driver(cube=cube, store=function_store, conditions=cond) if df_expected.empty: assert len(result) == 0 else: assert len(result) == 1 df_actual = result[0]
pdt.assert_frame_equal(df_actual, df_expected, check_like=True)
pandas.testing.assert_frame_equal
########################################## # Share issuance as factor # December 2018 # <NAME> ########################################## import pandas as pd import numpy as np import os from pandas.tseries.offsets import * # Note that ccm, comp and crsp_m are WRDS datasets. However, the code is useful for # other datasets as long they are panel datasets in conformity to those from WRDS. # There are some methodology idiosyncrasies of the US dataset, acc. Fama-French (1993), # but once understood, the adaptation to other country dataset is totally feasible. ################### # CRSP Block # ################### ## permco is a unique permanent identifier assigned by CRSP to all companies with issues on a CRSP file ## permno identifies a firm's security through all its history, and companies may have several stocks at one time ## shrcd is a two-digit code describing the type of shares traded. The first digit describes the type of security traded. ## exchcd is a code indicating the exchange on which a security is listed ## change variable format to int crsp_m[['permco','permno','shrcd','exchcd']]=crsp_m[['permco','permno', 'shrcd','exchcd']].astype(int) ## Line up date to be end of month day, no adjustment on time, but on pattern crsp_m['date']=pd.to_datetime(crsp_m['date']) crsp_m['jdate']=crsp_m['date']+MonthEnd(0) crsp_m = crsp_m[(crsp_m['date'].dt.year > 1993)] # This increases velocity of the algorithm, # but pay attention on this, as it limits the dataset. ## adjusting for delisting return dlret.permno=dlret.permno.astype(int) dlret['dlstdt']=pd.to_datetime(dlret['dlstdt']) dlret['jdate']=dlret['dlstdt']+MonthEnd(0) ## pick the delist date and put into the EoP ## merge the crsp dataset with the dlret on the left indexes crsp = pd.merge(crsp_m, dlret, how='left',on=['permno','jdate']) crsp['dlret']=crsp['dlret'].fillna(0) crsp['ret']=crsp['ret'].fillna(0) crsp['retadj']=(1+crsp['ret'])*(1+crsp['dlret'])-1 ## adjusting for delisting return crsp['me']=crsp['prc'].abs()*crsp['shrout'] # calculate market equity crsp=crsp.drop(['dlret','dlstdt','prc','shrout'], axis=1) ## axis = 0 is the row, and is default, and axis = 1 is the column to drop crsp=crsp.sort_values(by=['jdate','permco','me']) ## sorting columns ascending = TRUE as default, by the variables: jdate is the adj date by the EoP and ## permco is the CRSP number for stocks, and me is the market equity. ### Aggregate Market Cap ### ## sum of me across different permno belonging to same permco a given date crsp_summe = crsp.groupby(['jdate','permco'])['me'].sum().reset_index() ## reset the index to the prior numbers as default in pandas, ## and with the changed index still there drop = False as default # largest mktcap within a permco/date crsp_maxme = crsp.groupby(['jdate','permco'])['me'].max().reset_index() # join by jdate/maxme to find the permno crsp1=pd.merge(crsp, crsp_maxme, how='inner', on=['jdate','permco','me']) ## join : {‘inner’, ‘outer’}, default ‘outer’. Outer for union and inner for intersection. ## drop me column and replace with the sum me crsp1=crsp1.drop(['me'], axis=1) ## join with sum of me to get the correct market cap info crsp2=pd.merge(crsp1, crsp_summe, how='inner', on=['jdate','permco']) ## sort by permno and date and also drop duplicates crsp2=crsp2.sort_values(by=['permno','jdate']).drop_duplicates() ## keep December market cap crsp2['year']=crsp2['jdate'].dt.year crsp2['month']=crsp2['jdate'].dt.month decme=crsp2[crsp2['month']==12] decme=decme[['permno','date','jdate','me','year']].rename(columns={'me':'dec_me'}) ### July to June dates crsp2['ffdate']=crsp2['jdate']+MonthEnd(-6) ## MonthEnd(-6) is to go six months in the EoM backwards crsp2['ffyear']=crsp2['ffdate'].dt.year crsp2['ffmonth']=crsp2['ffdate'].dt.month crsp2['1+retx']=1+crsp2['retx'] ## retx is the holding period return w/o dividends for a month crsp2=crsp2.sort_values(by=['permno','date']) # cumret by stock ## pick the before year crsp2['cumretx']=crsp2.groupby(['permno','ffyear'])['1+retx'].cumprod() ## compute the cumulative return ## of a year measured by ffyear, the data date backwards six months. # lag cumret crsp2['lcumretx']=crsp2.groupby(['permno'])['cumretx'].shift(1) ## shift one row (as default, axis = 0), this leads to the next period. # lag market cap by one month crsp2['lme']=crsp2.groupby(['permno'])['me'].shift(1) ## if first permno then use me/(1+retx) to replace the missing value crsp2['count']=crsp2.groupby(['permno']).cumcount() crsp2['lme']=np.where(crsp2['count']==0, crsp2['me']/crsp2['1+retx'], crsp2['lme']) ## insert a 'nan' if the count is zero, or pick the lag one market cap. # baseline me ## pick the first month of this backwards year, and say it is the base. mebase=crsp2[crsp2['ffmonth']==1][['permno','ffyear', 'lme']].rename(columns={'lme':'mebase'}) ## merge result back together crsp3=pd.merge(crsp2, mebase, how='left', on=['permno','ffyear']) crsp3['wt']=np.where(crsp3['ffmonth']==1, crsp3['lme'], crsp3['mebase']*crsp3['lcumretx']) ## and really use the returns to take out the dividends distributed (but what about them?) ## wt is the adjusted lag me without dividends basically, by constructing a cum ret measure. ## the weight should have a criterium, and lagged me seems to be it. Not the current ## me, but six months behind one. ####################### # CCM Block # ####################### ## Compustat and CRSP merged data ccm['linkdt']=pd.to_datetime(ccm['linkdt']) ## linkdt is a calendar date marking the first effective ## date of the current link. If the link was valid before CRSP's earliest record, LINKDT is set to be ## SAS missing code ".B". ccm['linkenddt']=pd.to_datetime(ccm['linkenddt']) ## LINKENDDT is the last effective date of the link record. ## It uses the SAS missing code ".E" if a link is still valid. # if linkenddt is missing then set to today date ccm['linkenddt']=ccm['linkenddt'].fillna(pd.to_datetime('today')) ########################### ### Net issuance Block ### ########################### # The previous part is default for the CRSP dataset, but the following is # the adaptive part to construct other type of portfolios. # load share issuance original data # ============================================================================= # os.chdir('C:\\Users\\n3o_A\\Google Drive (<EMAIL>)\\Doutorado Insper\\Finlab\\Finhub project ') # share_issuance = pd.read_stata('Share_issuance.dta') # share_issuance = share_issuance[share_issuance['exchcd'] != 0] # share_issuance = share_issuance[['permno','date','vol','shrout','cfacshr']] # share_issuance.to_stata('Share_issuance2.dta') # ============================================================================= # load share issuance simplified data os.chdir('C:\\Users\\n3o_A\\Google Drive (<EMAIL>)\\Doutorado Insper\\Finlab\\Finhub project') share_issuance = pd.read_stata('Share_issuance2.dta') # adjust for nan and zero values share_issuance = share_issuance[pd.notnull(share_issuance['cfacshr'])] share_issuance = share_issuance[share_issuance['cfacshr'] != 0] # generate the adjustment factor for shares outstanding df = share_issuance.set_index(['permno','date']) firsts = (df.groupby(level=['permno']).transform('first')) result = df['cfacshr'] / firsts['cfacshr'] result = result.reset_index() result=result.rename(columns={'cfacshr':'adj_cfac'}) # adjust the shares outstanding by the adjustment factor above share_issuance = pd.merge(share_issuance, result, how='inner', on=['permno','date']) share_issuance['adj_out_shs'] = share_issuance['shrout']*share_issuance['adj_cfac'] share_issuance['adj_out_shs'].tail() # just a test to see if the last ones have values. share_issuance = share_issuance.sort_values(by=['permno','date']).drop_duplicates() share_issuance['jdate']=share_issuance['date']+MonthEnd(0) # number months observations share_issuance['count']=share_issuance.groupby(['permno']).cumcount() # make the cumulative share issuance for -17 to -6 months share_issuance['adj_out_shs'] = share_issuance['adj_out_shs'].astype(float) share_issuance['ln_adj_out_shs'] = np.log(share_issuance['adj_out_shs']) share_issuance['ln_shs_6'] = share_issuance.groupby(['permno'])['ln_adj_out_shs'].shift(6) share_issuance['ln_shs_17'] = share_issuance.groupby(['permno'])['ln_adj_out_shs'].shift(17) share_issuance['shs_iss'] = share_issuance['ln_shs_6'] - share_issuance['ln_shs_17'] ########################### #### Portfolios Block #### ########################### # make the usual portfolio schemes to make the asset pricing factor ccm1=pd.merge(share_issuance[['permno','jdate','shs_iss', 'count']],ccm,how='left',on=['permno']) # set link date bounds ccm2=ccm1[(ccm1['jdate']>=ccm1['linkdt'])&(ccm1['jdate']<=ccm1['linkenddt'])] ccm2=ccm2[['gvkey','permno','jdate','shs_iss', 'count']] # create a market cap variable crsp_m['me']=crsp_m['prc'].abs()*crsp_m['shrout'] # calculate market equity # link comp and crsp ccm5=pd.merge(crsp_m, ccm2, how='inner', on=['permno', 'jdate']) ## select NYSE stocks for bucket breakdown ## exchcd = 1 (NYSE) and positive beme and positive me and at least 2 years in comp and shrcd in (10,11), resp. nyse=ccm5[(ccm5['exchcd']==1) & (ccm5['count']>1) & ((ccm5['shrcd']==10) | (ccm5['shrcd']==11))] nyse =
pd.merge(ccm5[['gvkey', 'jdate', 'shs_iss']], nyse, how='inner', on=['gvkey', 'jdate', 'shs_iss'])
pandas.merge
from datetime import datetime from typing import Dict import pandas as pd import abc import threading from loguru import logger as log from pathlib import Path class Writer(object): # TODO: get chunksize from config def __init__(self): self.schema = [ 'source', 'created_at', 'lang', 'reply_settings', 'referenced_tweets', 'possibly_sensitive', 'author_id', 'id', 'text', 'conversation_id', 'public_metrics.retweet_count', 'public_metrics.reply_count', 'public_metrics.like_count', 'public_metrics.quote_count', 'entities.mentions', 'in_reply_to_user_id', 'entities.urls', 'entities.hashtags', 'attachments.media_keys', 'context_annotations' ] self.buffer = pd.DataFrame(columns=self.schema) # if (self.mp == True): self.lock = threading.Lock() self.path = Path(f'{datetime.strftime(datetime.now(), "%Y%m%d_%H%M")}_twacapic.csv') # create output file with self.path.open('w') as file: file.writelines(f'{",".join(self.schema)}\n') self.chunkSize = 100 def __del__(self): # flush buffer before destruction self.persist(len(self.buffer)) def write(self, df: pd.DataFrame): # if (self.mp == True): with self.lock: self.buffer =
pd.concat([self.buffer, df], ignore_index=True, sort=False)
pandas.concat
# #-- -- -- -- Merging DataFrames with pandas # # Used for Data Scientist Training Path # #FYI it's a compilation of how to work # #with different commands. # ### -------------------------------------------------------- # # # # ------>>>> Reading DataFrames from multiple files # Import pandas import pandas as pd # Read 'Bronze.csv' into a DataFrame: bronze bronze = pd.read_csv('Bronze.csv') # Read 'Silver.csv' into a DataFrame: silver silver = pd.read_csv('Silver.csv') # Read 'Gold.csv' into a DataFrame: gold gold = pd.read_csv('Gold.csv') # Print the first five rows of gold print(gold.head()) # ### -------------------------------------------------------- # # # # ------>>>> Reading DataFrames from multiple files in a loop # Import pandas import pandas as pd # Create the list of file names: filenames filenames = ['Gold.csv', 'Silver.csv', 'Bronze.csv'] # Create the list of three DataFrames: dataframes dataframes = [] for filename in filenames: dataframes.append(pd.read_csv(filename)) # Print top 5 rows of 1st DataFrame in dataframes print(dataframes[0].head()) # ### -------------------------------------------------------- # # # # ------>>>> Combining DataFrames from multiple data files # Import pandas import pandas as pd # Make a copy of gold: medals medals = gold.copy() # Create list of new column labels: new_labels new_labels = ['NOC', 'Country', 'Gold'] # Rename the columns of medals using new_labels medals.columns = new_labels # Add columns 'Silver' & 'Bronze' to medals medals['Silver'] = silver['Total'] medals['Bronze'] = bronze['Total'] # Print the head of medals print(medals.head()) # ### -------------------------------------------------------- # # # # ------>>>> Sorting DataFrame with the Index & columns # Import pandas import pandas as pd # Read 'monthly_max_temp.csv' into a DataFrame: weather1 weather1 = pd.read_csv('monthly_max_temp.csv', index_col='Month') # Print the head of weather1 print(weather1.head()) # Sort the index of weather1 in alphabetical order: weather2 weather2 = weather1.sort_index() # Print the head of weather2 print(weather2.head()) # Sort the index of weather1 in reverse alphabetical order: weather3 weather3 = weather1.sort_index(ascending=False) # Print the head of weather3 print(weather3.head()) # Sort weather1 numerically using the values of 'Max TemperatureF': weather4 weather4 = weather1.sort_values('Max TemperatureF') # Print the head of weather4 print(weather4.head()) # ### -------------------------------------------------------- # # # # ------>>>> Reindexing DataFrame from a list # Import pandas import pandas as pd # Reindex weather1 using the list year: weather2 weather2 = weather1.reindex(year) # Print weather2 print(weather2) # Reindex weather1 using the list year with forward-fill: weather3 weather3 = weather1.reindex(year).ffill() # Print weather3 print(weather3) # ### -------------------------------------------------------- # # # # ------>>>> Reindexing using another DataFrame Index # Import pandas import pandas as pd # Reindex names_1981 with index of names_1881: common_names common_names = names_1981.reindex(names_1881.index) # Print shape of common_names print(common_names.shape) # Drop rows with null counts: common_names common_names = common_names.dropna() # Print shape of new common_names print(common_names.shape) # ### -------------------------------------------------------- # # # # ------>>>>Adding unaligned DataFrames # The DataFrames january and february, which have # been printed in the IPython Shell, represent the # sales a company made in the corresponding months. # The Indexes in both DataFrames are called Company, # identifying which company bought that quantity of # units. The column Units is the number of units sold. # If you were to add these two DataFrames by # executing the command total = january + february, # how many rows would the resulting DataFrame have? # Try this in the IPython Shell and find out for yourself. total = january + february total # R/ 6 rows. # ### -------------------------------------------------------- # # # # ------>>>> Broadcasting in arithmetic formulas # Extract selected columns from weather as new DataFrame: temps_f temps_f = weather[['Min TemperatureF', 'Mean TemperatureF', 'Max TemperatureF']] # Convert temps_f to celsius: temps_c temps_c = (temps_f - 32) * 5/9 # Rename 'F' in column names with 'C': temps_c.columns temps_c.columns = temps_c.columns.str.replace('F', 'C') # Print first 5 rows of temps_c print(temps_c.head()) # ### -------------------------------------------------------- # # # # ------>>>> Computing percentage growth of GDP import pandas as pd # Read 'GDP.csv' into a DataFrame: gdp gdp =
pd.read_csv('GDP.csv', parse_dates=True, index_col='DATE')
pandas.read_csv
import logging import time import traceback from collections import Counter import discord import matplotlib.dates as mdates import matplotlib.pyplot as plt import matplotlib.ticker as mticker import numpy as np import pandas as pd from bot import SentdeBot from discord.ext import commands, tasks from discord.ext.commands import Cog, command from discord.ext.commands.context import Context from discord.ext.commands.errors import CommandError from .utils import community_report, in_channels def df_match(c1, c2): if c1 == c2: return np.nan else: return c1 class Community(Cog): logger = logging.getLogger(f"<Cog 'Community' at {__name__}>") def __init__(self, bot) -> None: self.bot = bot # add attributes here so that we dont have to access bot repeatedly self.guild = None self.path = self.bot.path self.DAYS_BACK = self.bot.DAYS_BACK self.RESAMPLE = self.bot.RESAMPLE self.MOST_COMMON_INT = self.bot.MOST_COMMON_INT self.COMMUNITY_BASED_CHANNELS = self.bot.COMMUNITY_BASED_CHANNELS self.DISCORD_BG_COLOR = str(discord.Colour.dark_theme()) @command() async def member_count(self, ctx: Context): await ctx.send(f"```py\n{ctx.bot.guild.member_count}```") @command() @in_channels(SentdeBot.image_channels) async def community_report(self, ctx: Context): online, idle, offline = community_report(self.guild) file = discord.File(self.path / "online.png", filename=f"online.png") await ctx.send("", file=file) await ctx.send(f'```py\n{{\n\t"Online": {online},\n\t"Idle/busy/dnd": {idle},\n\t"Offline": {offline}\n}}```') @command() @in_channels(SentdeBot.image_channels) async def user_activity(self, ctx: Context): file = discord.File(self.bot.path / "activity.png", filename=f"activity.png") await ctx.send("", file=file) @community_report.error @user_activity.error async def error_handler(self, ctx: Context, error: CommandError): if isinstance(error, commands.CheckFailure): await ctx.send(f"Cannot use `{ctx.command.qualified_name}` in this channel!", delete_after=5.0) else: self.logger.error(f"In {ctx.command.qualified_name}:") traceback.print_tb(error.original.__traceback__) self.logger.error( f"{error.original.__class__.__name__}: {error.original}") # The try-catch blocks are removed because # the default error handler for a :class:`discord.ext.task.Loop` # prints to sys.sterr by default. # <https://discordpy.readthedocs.io/en/latest/ext/tasks/index.html#discord.ext.tasks.Loop.error> @tasks.loop(seconds=300) async def user_metrics(self): online, idle, offline = community_report(self.guild) # self.path: pathlib.Path with open(self.path / "usermetrics.csv", "a") as f: f.write(f"{int(time.time())},{online},{idle},{offline}\n") df_msgs = pd.read_csv(str(self.path / "msgs.csv"), names=['time', 'uid', 'channel']) df_msgs = df_msgs[(df_msgs['time'] > time.time()-(86400*self.DAYS_BACK))] df_msgs['count'] = 1 df_msgs['date'] =
pd.to_datetime(df_msgs['time'], unit='s')
pandas.to_datetime
"""Query DB for analyses.""" import csv import pandas as pd from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy import func, and_ from sqlalchemy.sql.expression import distinct from ideotype.sql_declarative import (IdeotypeBase, WeaData, Sims, SiteInfo, Params) def query_weadata(fpath_db): """ Weathere data query. - Average meteorology at each site. - Variance of meteorology at each site. """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(WeaData.site.label('site'), func.avg(WeaData.temp).label('mean_temp'), func.avg(WeaData.vpd).label('mean_vpd'), func.sum(WeaData.precip).label('total_precip'), func.count(WeaData.precip).label('precip_count') ).group_by(WeaData.site) results = query.all() # query output as csv columns = [] for item in query.column_descriptions: columns.append(item['name']) with open('testoutput.csv', 'w') as outfile: outcsv = csv.writer(outfile) outcsv.writerow(columns) for row in results: outcsv.writerow(row) def query_gseason_climate(fpath_db, phenos): """ Query in-season climate. Climate data queried from maizsim output, which means there could be slight differences between the climate conditions each phenotype experiences due to difference in pdate & phenology. Parameters ---------- fpath_db : str phenos : list List of top phenotype numbers. Returns ------- query : sqlalchemy query results : list List of query results. df : pd.DataFrame DataFrame of queried results. """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.year.label('year'), Sims.site.label('site'), Sims.pheno.label('pheno'), func.avg(Sims.temp_air).label('temp_air'), func.avg(Sims.temp_canopy).label('temp_can'), func.avg(Sims.temp_soil).label('temp_soil'), func.avg(Sims.VPD).label('vpd'), func.avg(Sims.PFD_sun).label('pfd_sun'), func.avg(Sims.PFD_shade).label('pfd_shade'), ).group_by(Sims.cvar, Sims.year, Sims.site, Sims.pheno).filter( and_(Sims.cvar.in_(phenos), )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df = pd.DataFrame(results, columns=columns) return(query, results, df) def query_yield(fpath_db, phenos): """ Sims query. - Final yield for each site-year-cvar combination. - Yield variation across cvars. - Yield variation across sites. - Yield variation across years. """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.year.label('year'), Sims.site.label('site'), Sims.pheno.label('pheno'), func.avg(Sims.DM_ear).label('yield'), SiteInfo.lat.label('lat'), SiteInfo.lon.label('lon'), SiteInfo.texture.label('soil_texture'), ).group_by(Sims.cvar, Sims.year, Sims.site, Sims.pheno, SiteInfo.site).filter( and_(Sims.pheno == '"Matured"', Sims.cvar.in_(phenos), Sims.site == SiteInfo.site, Sims.cvar == Params.cvar )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df = pd.DataFrame(results, columns=columns) return(query, results, df) def query_phys(fpath_db, phenos): """ Query phhysiological model outputs during sunlit hours. Parameters ---------- fpath_db : str phenos : list """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.site.label('site'), Sims.year.label('year'), Sims.pheno.label('pheno'), func.avg(Sims.av_gs).label('gs'), func.avg(Sims.Pn).label('pn'), func.avg(Sims.Pg).label('pg'), func.max(Sims.LAI_sun).label('LAI_sun'), func.max(Sims.LAI_shade).label('LAI_shade'), func.avg(Sims.Ag_sun).label('Ag_sun'), func.avg(Sims.Ag_shade).label('Ag_shade'), func.avg(Sims.An_sun).label('An_sun'), func.avg(Sims.An_shade).label('An_shade') ).group_by(Sims.cvar, Sims.year, Sims.site, Sims.pheno).filter( and_(Sims.cvar.in_(phenos), Sims.PFD_sun > 0 )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df = pd.DataFrame(results, columns=columns) # Scale photosynthesis to canopy df['sun_perct'] = df.LAI_sun/(df.LAI_sun + df.LAI_shade) df['shade_perct'] = df.LAI_shade/(df.LAI_sun + df.LAI_shade) df['Ag'] = (df.Ag_sun * df.sun_perct) + (df.Ag_shade * df.shade_perct) df['An'] = (df.An_sun * df.sun_perct) + (df.An_shade * df.shade_perct) return(query, results, df) def query_carbon(fpath_db, phenos): """ Query mean and total carbon accumulation across phenostage. Parameters ---------- fpath_db : str phenos : list """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.site.label('site'), Sims.year.label('year'), Sims.pheno.label('pheno'), func.sum(Sims.Pn).label('pn_sum'), func.sum(Sims.Pg).label('pg_sum'), func.avg(Sims.Pn).label('pn_mean'), func.avg(Sims.Pg).label('pg_mean') ).group_by(Sims.cvar, Sims.year, Sims.site, Sims.pheno).filter( and_(Sims.cvar.in_(phenos), )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df = pd.DataFrame(results, columns=columns) return(query, results, df) def query_mass(fpath_db, phenos): """ Query mass. Parameters ---------- fpath_db : str phenos : list """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.site.label('site'), Sims.year.label('year'), Sims.pheno.label('pheno'), func.max(Sims.DM_total).label('dm_total'), func.max(Sims.DM_root).label('dm_root'), func.max(Sims.DM_shoot).label('dm_shoot'), func.max(Sims.DM_stem).label('dm_stem'), func.max(Sims.DM_leaf).label('dm_leaf'), func.max(Sims.DM_ear).label('dm_ear'), ).group_by(Sims.cvar, Sims.year, Sims.site, Sims.pheno).filter( and_(Sims.cvar.in_(phenos) )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df = pd.DataFrame(results, columns=columns) return(query, results, df) def query_pheno(fpath_db, phenos): """ Query pheno info. Parameters ---------- fpath_db : str phenos : list List of top phenotype numbers. Returns ------- query : sqlalchemy query results : list List of query results. """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.site.label('site'), Sims.year.label('year'), Sims.pheno.label('pheno'), func.count(distinct(Sims.jday)).label('pheno_days'), func.min(Sims.jday).label('jday_start'), func.min(Sims.date).label('date_start') ).group_by(Sims.cvar, Sims.site, Sims.year, Sims.pheno).filter( and_(Sims.cvar.in_(phenos) )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df = pd.DataFrame(results, columns=columns) return(query, results, df) def query_leaves(fpath_db, phenos): """ Query physiological model outputs. Parameters ---------- fpath_db : str phenos : list """ engine = create_engine('sqlite:///' + fpath_db) IdeotypeBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query = session.query(Sims.cvar.label('cvar'), Sims.site.label('site'), Sims.year.label('year'), Sims.pheno.label('pheno'), func.max(Sims.LAI).label('LAI'), func.max(Sims.LA_perplant).label('LA'), func.max(Sims.leaves).label('leaves'), func.max(Sims.leaves_mature).label('leaves_mature'), func.max(Sims.leaves_dropped).label('leaves_dropped') ).group_by(Sims.cvar, Sims.year, Sims.site, Sims.pheno).filter( and_(Sims.cvar.in_(phenos) )) results = query.all() # Construct dataframe from database query columns = [] for item in query.column_descriptions: columns.append(item['name']) df =
pd.DataFrame(results, columns=columns)
pandas.DataFrame
"""Postprocesses data across dates and simulation runs before aggregating at geographic levels (ADM0, ADM1, or ADM2).""" import concurrent.futures import gc import queue import shutil import threading import numpy as np import pandas as pd import tqdm from fastparquet import ParquetFile from loguru import logger from .numerical_libs import enable_cupy, reimport_numerical_libs, xp from .util.util import _banner # TODO switch to cupy.quantile instead of percentile (they didn't have that when we first wrote this) # also double check but the api might be consistant by now so we dont have to handle numpy/cupy differently def main(cfg): """Main method for postprocessing the raw outputs from an MC run.""" _banner("Postprocessing Quantiles") # verbose = cfg["runtime.verbose"] # use_gpu = cfg["runtime.use_cupy"] run_dir = cfg["postprocessing.run_dir"] data_dir = run_dir / "data" metadata_dir = run_dir / "metadata" # if verbose: # logger.info(cfg) output_dir = cfg["postprocessing.output_dir"] if not output_dir.exists(): output_dir.mkdir(parents=True) # Copy metadata output_metadata_dir = output_dir / "metadata" output_metadata_dir.mkdir(exist_ok=True) # TODO this should probably recurse directories too... for md_file in metadata_dir.iterdir(): shutil.copy2(md_file, output_metadata_dir / md_file.name) adm_mapping = pd.read_csv(metadata_dir / "adm_mapping.csv") dates = pd.read_csv(metadata_dir / "dates.csv") dates = dates["date"].to_numpy() if cfg["runtime.use_cupy"]: enable_cupy(optimize=True) reimport_numerical_libs("postprocess") # TODO switch to using the async_thread/buckyoutputwriter util write_queue = queue.Queue() def _writer(): """Write thread that will pull from a queue.""" # Call to_write.get() until it returns None file_tables = {} for fname, q_dict in iter(write_queue.get, None): df =
pd.DataFrame(q_dict)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import time as time import pickle from astropy.table import Table from astropy import coordinates as coords import astropy.units as u from astroquery.sdss import SDSS def download_spectra(coord_list_url, from_sp, to_sp, save=False): """ download_spectra() Downloads SDSS spectra in a specified range based on a list of coordinates Parameters ---------- coord_list_url: string The path for the CSV file that contains the list of coordinates that was downloaded using SQL, which provides coordinates for spectra to download. Contains 500,000 rows from_sp : int The index from which to download spectra. This enables us to download in batches and save the spectral data in batches to_sp : int The index which specifies the upper limit until which to download spectra. save : boolean When True, save the resulting DataFrame into a pickle When False, don't save Returns ------- df: pandas.DataFrame The DataFrame that contains all downloaded spectral data. columns: 'flux_list', 'wavelength', 'z', 'ra', 'dec', 'objid' """ t_start = time.clock() coord_list = pd.read_csv(filepath_or_buffer=coord_list_url) print(f'coord_list = {coord_list}') ra_list = coord_list["ra"].tolist() dec_list = coord_list["dec"].tolist() ra = ra_list[from_sp:to_sp] dec = dec_list[from_sp:to_sp] n_errors = 0 df = {} df['flux_list'] = [] df['wavelength'] = [] df['z'] = [] df['ra'] = [] df['dec'] = [] df['objid'] = [] n_coordinates = len(ra) number_none = 0 for i in range(n_coordinates): try: pos = coords.SkyCoord((ra[i]) * u.deg, (dec[i]) * u.deg, frame='icrs') xid = SDSS.query_region(pos, spectro=True) # radius=5 * u.arcsec) if xid == None: number_none = number_none + 1 print('xid is None at:', i) continue elif xid != None and len(xid) > 1: xid = Table(xid[0]) sp = SDSS.get_spectra(matches=xid) df['flux_list'].append(sp[0][1].data['flux']) df['wavelength'].append(10. ** sp[0][1].data['loglam']) df['z'].append(xid['z']) df['ra'].append(xid['ra']) df['dec'].append(xid['dec']) df['objid'].append(xid['objid']) print(f'Downloaded: {i}') except: print('Failed to download at:', i) n_errors = n_errors + 1 df =
pd.DataFrame(df)
pandas.DataFrame
import pandas as pd import numpy as np from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * import sys class temsilci(QItemDelegate): def __init__(self, parent=None): super().__init__() def olustur(self, parent, option, index): olustur = QLineEdit(parent) olustur.setValidator(QDoubleValidator()) return olustur class bakkalBorcDefteri(QTableWidget): def __init__(self, df): super().__init__() self.df = df self.setStyleSheet('font-size: 25px;') Satirlar, Sütünlar = self.df.shape self.setColumnCount(Sütünlar) self.setRowCount(Satirlar) self.setHorizontalHeaderLabels(("Müşteri Adı-Soyad","Borç Tutarı","Son Ödeme tarihi","Ödendi/Ödenmedi","Ödeme Tipi")) self.verticalHeader().setSectionResizeMode(QHeaderView.Stretch) self.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.setItemDelegateForColumn(1, temsilci()) for x in range(self.rowCount()): for y in range(self.columnCount()): self.setItem(x, y, QTableWidgetItem(str(self.df.iloc[x, y]))) self.cellChanged[int, int].connect(self.guncellemeDF) def guncellemeDF(self, satir, sütün): metin = self.item(satir, sütün).text() self.df.iloc[satir, sütün] = metin class DF(QWidget): veri = np.array([["Müşteri Bilgisi Giriniz",0,"Tarih Belirt"], ["Müşteri Bilgisi Giriniz",0,"Tarih Belirt"],["Müşteri Bilgisi Giriniz",0,"Tarih Belirt"]]) df = pd.DataFrame(data=veri, index=[1,2,3], columns =["Müşteri Adı-Soyad","Borç Tutarı","Son Ödeme tarihi"]) df["Ödendi/Ödenmedi"] = pd.Series(data=["Durum Ne", "Durum Ne","Durum Ne"], index=[1,2,3]) df["Ödeme Tipi"] = pd.Series(data=["Kredi", "Nakit","Kredi"], index=[1,2,3]) df.loc[4] = pd.Series(data=["Müşteri Bilgisi Giriniz",0,"Tarih Belirt","Durum Ne","Kredi"], index=["Müşteri Adı-Soyad","Borç Tutarı","Son Ödeme tarihi","Ödendi/Ödenmedi","Ödeme Tipi"]) df.loc[5] =
pd.Series(data=["Müşteri Bilgisi Giriniz",0,"Tarih Belirt","Durum Ne","Nakit"], index=["Müşteri Adı-Soyad","Borç Tutarı","Son Ödeme tarihi","Ödendi/Ödenmedi","Ödeme Tipi"])
pandas.Series
from __future__ import division from textwrap import dedent import numpy.testing as npt import pandas.util.testing as pdtest import numpy from numpy.testing import assert_equal import pandas import pytest from statsmodels.imputation import ros from statsmodels.compat.python import StringIO if
pandas.__version__.split('.')
pandas.__version__.split
import pandas as pd import numpy as np import os from sklearn.linear_model import LogisticRegression from math import exp import pickle def logistic_regression(data_set_path): X,y = prepare_data(data_set_path) retain_reg = LogisticRegression(penalty='l1', solver='liblinear', fit_intercept=True) retain_reg.fit(X, y) save_regression_summary(data_set_path,retain_reg) save_regression_model(data_set_path,retain_reg) save_dataset_predictions(data_set_path,retain_reg,X) def prepare_data(data_set_path,ext='_groupscore',as_retention=True): score_save_path = data_set_path.replace('.csv', '{}.csv'.format(ext)) assert os.path.isfile(score_save_path), 'You must run listing 6.3 to save grouped metric scores first' grouped_data = pd.read_csv(score_save_path,index_col=[0,1]) y = grouped_data['is_churn'].astype(np.bool) if as_retention: y=~y X = grouped_data.drop(['is_churn'],axis=1) return X,y def calculate_impacts(retain_reg): average_retain=s_curve(-retain_reg.intercept_) one_stdev_retain=np.array( [ s_curve(-retain_reg.intercept_-c) for c in retain_reg.coef_[0]]) one_stdev_impact=one_stdev_retain-average_retain return one_stdev_impact, average_retain def s_curve(x): return 1.0 - (1.0/(1.0+exp(-x))) def save_regression_summary(data_set_path,retain_reg,ext=''): one_stdev_impact,average_retain = calculate_impacts(retain_reg) group_lists = pd.read_csv(data_set_path.replace('.csv', '_groupmets.csv'),index_col=0) coef_df = pd.DataFrame.from_dict( {'group_metric_offset': np.append(group_lists.index,'offset'), 'weight': np.append(retain_reg.coef_[0],retain_reg.intercept_), 'retain_impact' : np.append(one_stdev_impact,average_retain), 'group_metrics' : np.append(group_lists['metrics'],'(baseline)')}) save_path = data_set_path.replace('.csv', '_logreg_summary{}.csv'.format(ext)) coef_df.to_csv(save_path, index=False) print('Saved coefficients to ' + save_path) def save_regression_model(data_set_path,retain_reg,ext=''): pickle_path = data_set_path.replace('.csv', '_logreg_model{}.pkl'.format(ext)) with open(pickle_path, 'wb') as fid: pickle.dump(retain_reg, fid) print('Saved model pickle to ' + pickle_path) def save_dataset_predictions(data_set_path, retain_reg, X,ext=''): predictions = retain_reg.predict_proba(X) predict_df =
pd.DataFrame(predictions,index=X.index,columns=['churn_prob','retain_prob'])
pandas.DataFrame
import pandas as pd import os import glob from pathlib import Path import json from mlsriracha.interfaces.process import ProcessInterface from mlsriracha.plugins.kubernetes.common.helper import s3_download, s3_upload, azblob_download class KubernetesProcess(ProcessInterface): def __init__(self): print('Selected Kubernetes profile') Path('/opt/ml/processing/input/data').mkdir(parents=True, exist_ok=True) Path('/opt/ml/processing/output/data').mkdir(parents=True, exist_ok=True) channel_var = 'input_' + channel if channel_var in self.get_env_vars(): print(f'Found channel request: {channel_var}' ) # create local path to save this # if S3 if 's3' in self.get_env_vars()[channel_var]: s3_download(self.get_env_vars()[channel_var], f'/opt/ml/processing/input/data/{channel}/') # if Azure if 'blob.core.windows' in self.get_env_vars()[channel_var]: azblob_download(self.get_env_vars()[channel_var], f'/opt/ml/processing/input/data/{channel}/') def get_env_vars(self): envs = {} for k, v in os.environ.items(): if k.startswith('sriracha_'): try: value = float(v) # Type-casting the string to `float`. if value.is_integer(): value = int(value) except ValueError: value = v envs[k.replace('sriracha_', '')] = value return envs def input_as_dataframe(self, filename): """ The function returns a panda dataframe for the input channel artifacts. AWS SageMaker passes all values in FileMode from the S3 bucket into the input processing data "channels" when starting your container. This function takes in the channel and merges all CSV files per channel into a dataframe for reading. Arguments: channel (str): The name of the channel which contains the given filename """ if filename: csv_files = glob.glob(os.path.join(f'/opt/ml/processing/inputs/{filename}')) else: csv_files = glob.glob(os.path.join(f'/opt/ml/processing/inputs/*.csv')) print(f'Files in input directory: {csv_files}') # loop over the list of csv files fileBytes = [] for f in csv_files: # read the csv file df =
pd.read_csv(f)
pandas.read_csv
#----------------------------------------------------------------------- NEEDED PACKAGES --------------------------------------------------------------------- import pandas as pd from glob import glob from PIL import Image import matplotlib.pyplot as plt import numpy as np import re import seaborn as sn import tensorflow as tf #-------------------------------------------------------------------- PREPROCESSING ------------------------------------------------------------------------ def emoticon_replacer(sentence): """ replace emoticons in a text with words with similiar semantic value """ sentence=re.sub(r'😍|🥰|😘|😻|❤️|🧡|💛|💚|💙|💜|🖤|🤍|🤎|💕|💞|💓|💗|💖|💘|💝', 'adoro ', sentence) sentence=re.sub(r'😀|😃|😄|😁|😆|😂|🤣|😹|😸', 'ahah ', sentence) sentence=re.sub(r'😡|🤬|👿|🤡', 'infame ', sentence) sentence=re.sub(r'✈️|🔥|💫|⭐️|🌟|✨|💥|🛫|🛬|🛩|🚀', 'wow ', sentence) sentence=re.sub(r'😢|😭|😿', 'piango ', sentence) sentence=re.sub(r'🤢|🤮', 'schifo ', sentence) return sentence def tokenize(sentence, tokenizer, SEQ_LEN=50, emotic=False): """ tokenizes a sentence preparing it for bert model """ sentence=re.sub(r'(http\S+)|(\s)#\w+', '', sentence) if emotic==True: sentence=emoticon_replacer(sentence) tokens = tokenizer.encode_plus(sentence, max_length=SEQ_LEN, truncation=True, padding='max_length', add_special_tokens=True, return_attention_mask=True, return_token_type_ids=False, return_tensors='tf') return tokens['input_ids'], tokens['attention_mask'] def preprocess_txt(input_ids, masks, labels): """ format for tf model """ return {'input_ids': input_ids, 'attention_mask': masks}, labels def preprocess_txt_imtxt(input_ids, masks, input_ids2, masks2, labels): """ format for tf model """ return {'input_ids': input_ids, 'attention_mask': masks, 'input_ids2': input_ids2, 'attention_mask2': masks2}, labels def aug(image, label): """ perform data augumentation """ IMG_SIZE=224 image = tf.image.random_brightness(image, 0.15) image = tf.image.random_contrast(image, upper=1.5, lower=0.5) image = tf.image.random_saturation(image,upper=1.5, lower=0.5) image = tf.image.random_hue(image, 0.15) #if tf.random.uniform([])>0.5: #image= tf.image.flip_left_right(image) if tf.random.uniform([])>0: image = tf.image.resize_with_crop_or_pad(image, IMG_SIZE + 6, IMG_SIZE + 6) # Random crop back to the original size image = tf.image.random_crop(image, size=[IMG_SIZE, IMG_SIZE, 3]) image = tf.clip_by_value(image, 0, 1) return image, label def preprocess_image(image, labels, prediction=False): """ format for tf model + open image and prepare it for resnet """ if prediction==False: image = tf.io.read_file(image) image = tf.io.decode_image(image, channels=3,expand_animations = False) image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, size=(224, 224)) if prediction==True: image= tf.expand_dims(image, axis=0) return image return image, labels def preprocess_txt_image(input_ids, masks, path, labels): """ format for tf model + open image and prepare it for resnet """ image = tf.io.read_file(path) image = tf.io.decode_image(image, channels=3,expand_animations = False) image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, size=(224, 224)) return {'input_ids': input_ids, 'attention_mask': masks, 'images': image}, labels def preprocess_txt_imtxt_image(input_ids, masks, input_ids2, masks2, path, labels): """ format for tf model + open image and prepare it for resnet """ image = tf.io.read_file(path) image = tf.io.decode_image(image, channels=3,expand_animations = False) image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, size=(224, 224)) return {'input_ids': input_ids, 'attention_mask': masks, 'input_ids2': input_ids2, 'attention_mask2': masks2, 'images': image}, labels #------------------------------------------------------ DATA IMPORTER --------------------------------------------------------------------- def df_to_tf_data(df, tokenizer, txt=True, image=False, imtxt=False, SEQ_LEN=50, SEQ_LEN2=10, shuffle=True, emotic=False, augmentation=False): """ from dataframe to tensorflow Dataset object SEQ_LEN: max number of tokens from text before truncation SEQ_LEN2: max number of tokens from in image text before truncation emoticon: wheater or not translate emoticons augumentation: wheater or not to augment images """ df=df.replace({'negative': 0,'neutral':1, 'positive': 2}) arr = df['sentiment'].values # take sentiment column in df as array labels = np.zeros((arr.size, arr.max()+1)) # initialize empty (all zero) label array labels[np.arange(arr.size), arr] = 1 # add ones in indices where we have a value if txt == True: Xids = np.zeros((len(df), SEQ_LEN)) Xmask = np.zeros((len(df), SEQ_LEN)) for i, sentence in enumerate(df['text']): Xids[i, :], Xmask[i, :] = tokenize(sentence, tokenizer, SEQ_LEN, emotic=emotic) if imtxt == True: Xids2 = np.zeros((len(df), SEQ_LEN2)) Xmask2 = np.zeros((len(df), SEQ_LEN2)) for i, sentence in enumerate(df['inimagetext']): Xids2[i, :], Xmask2[i, :] = tokenize(sentence, tokenizer, SEQ_LEN2, emotic=False) if image == True: paths = [] for i, img in enumerate(df['path']): paths.append(img) if txt==True: if imtxt == True: if image == True: dataset = tf.data.Dataset.from_tensor_slices((Xids, Xmask, Xids2, Xmask2, paths, labels)) preprocess=preprocess_txt_imtxt_image else: dataset = tf.data.Dataset.from_tensor_slices((Xids, Xmask, Xids2, Xmask2, labels)) preprocess=preprocess_txt_imtxt else: if image == True: dataset = tf.data.Dataset.from_tensor_slices((Xids, Xmask, paths, labels)) preprocess=preprocess_txt_image else: dataset = tf.data.Dataset.from_tensor_slices((Xids, Xmask, labels)) preprocess=preprocess_txt else: if image == True: dataset = tf.data.Dataset.from_tensor_slices((paths, labels)) preprocess=preprocess_image # shuffle and batch the dataset if shuffle==True: if augmentation==True: dataset = dataset.shuffle(5000).map(preprocess).map(aug).batch(4) else: dataset = dataset.shuffle(5000).map(preprocess).batch(4) else: dataset = dataset.map(preprocess).batch(4) return(dataset) #------------------------------------------------------ PLOTS -------------------------------------------------------------------------- def plot_history(history, title, save=False): f = plt.figure(figsize=(15,4)) plt.suptitle(title) f.add_subplot(1,2, 1) plt.plot(history['loss']) plt.plot(history['val_loss']) plt.legend(['Train loss', 'Val loss']) plt.xlabel('Epochs') plt.ylabel('Loss') f.add_subplot(1,2, 2) plt.plot(history['accuracy']) plt.plot(history['val_accuracy']) plt.legend(['Train Accuracy', 'Val accuracy']) plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.show() if save!=False: f.savefig('C:\\Users\\Egon\\Desktop\\tesi\\immagini tesi\\modelli\\'+title+'.png') def confusion_matrix_plotter(true,pred, title='confusion_matrix', normalize='true', save=False): lab=['negative', 'neutral', 'positive'] mat=np.array(tf.math.confusion_matrix(predictions=pred, labels=true)) if normalize=='true': mat=mat/mat.sum(axis=1) fig, ax= plt.subplots(figsize = (15,8)) sn.heatmap(
pd.DataFrame(mat, index=lab, columns=lab)
pandas.DataFrame
import os, sys import numpy as np import pandas as pd import time import pydicom from glob import glob def computeSliceSpacing(alldcm): try: if len(alldcm)>1: ds0 = pydicom.dcmread(alldcm[0], force = False, defer_size = 256, specific_tags = ['SliceLocation'], stop_before_pixels = True) value0 = float(ds0.data_element('SliceLocation').value) ds1 = pydicom.dcmread(alldcm[1], force = False, defer_size = 256, specific_tags = ['SliceLocation'], stop_before_pixels = True) value1 = float(ds1.data_element('SliceLocation').value) SliceSpacing = abs(value1-value0) else: SliceSpacing = -1.0 except Exception as why: SliceSpacing = -1.0 return SliceSpacing def countSeriesInstanceUIDs(settings, NumSamples=None): root = settings['folderpath_discharge'] study_uids = os.listdir(root) if NumSamples is None: NumSamples = len(study_uids) study_uids = study_uids[0:NumSamples] NumSeriesInstanceUIDs = 0 for istudy, study_uid in enumerate(study_uids): print(istudy, study_uid) series_uids = os.listdir(os.path.join(root, study_uid)) NumSeriesInstanceUIDs = NumSeriesInstanceUIDs + len(series_uids) return NumSeriesInstanceUIDs def extractDICOMTags(settings, NumSamples=None): root = settings['folderpath_discharge'] fout = settings['filepath_dicom'] specific_tags = settings['dicom_tags'] cols_first=[] study_uids = os.listdir(root) df =
pd.DataFrame(columns=specific_tags)
pandas.DataFrame
from datetime import datetime, timedelta import numpy as np import pytest from pandas._libs.tslibs import period as libperiod import pandas as pd from pandas import DatetimeIndex, Period, PeriodIndex, Series, notna, period_range import pandas._testing as tm class TestGetItem: def test_ellipsis(self): # GH#21282 idx = period_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx[...] assert result.equals(idx) assert result is not idx def test_getitem(self): idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") for idx in [idx1]: result = idx[0] assert result == pd.Period("2011-01-01", freq="D") result = idx[-1] assert result == pd.Period("2011-01-31", freq="D") result = idx[0:5] expected = pd.period_range("2011-01-01", "2011-01-05", freq="D", name="idx") tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[0:10:2] expected = pd.PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-07", "2011-01-09"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[-20:-5:3] expected = pd.PeriodIndex( ["2011-01-12", "2011-01-15", "2011-01-18", "2011-01-21", "2011-01-24"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[4::-1] expected = PeriodIndex( ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" def test_getitem_index(self): idx = period_range("2007-01", periods=10, freq="M", name="x") result = idx[[1, 3, 5]] exp = pd.PeriodIndex(["2007-02", "2007-04", "2007-06"], freq="M", name="x") tm.assert_index_equal(result, exp) result = idx[[True, True, False, False, False, True, True, False, False, False]] exp = pd.PeriodIndex( ["2007-01", "2007-02", "2007-06", "2007-07"], freq="M", name="x" ) tm.assert_index_equal(result, exp) def test_getitem_partial(self): rng = period_range("2007-01", periods=50, freq="M") ts = Series(np.random.randn(len(rng)), rng) with pytest.raises(KeyError, match=r"^'2006'$"): ts["2006"] result = ts["2008"] assert (result.index.year == 2008).all() result = ts["2008":"2009"] assert len(result) == 24 result = ts["2008-1":"2009-12"] assert len(result) == 24 result = ts["2008Q1":"2009Q4"] assert len(result) == 24 result = ts[:"2009"] assert len(result) == 36 result = ts["2009":] assert len(result) == 50 - 24 exp = result result = ts[24:] tm.assert_series_equal(exp, result) ts = ts[10:].append(ts[10:]) msg = "left slice bound for non-unique label: '2008'" with pytest.raises(KeyError, match=msg): ts[slice("2008", "2009")] def test_getitem_datetime(self): rng = period_range(start="2012-01-01", periods=10, freq="W-MON") ts = Series(range(len(rng)), index=rng) dt1 = datetime(2011, 10, 2) dt4 = datetime(2012, 4, 20) rs = ts[dt1:dt4] tm.assert_series_equal(rs, ts) def test_getitem_nat(self): idx = pd.PeriodIndex(["2011-01", "NaT", "2011-02"], freq="M") assert idx[0] == pd.Period("2011-01", freq="M") assert idx[1] is pd.NaT s = pd.Series([0, 1, 2], index=idx) assert s[pd.NaT] == 1 s = pd.Series(idx, index=idx) assert s[pd.Period("2011-01", freq="M")] == pd.Period("2011-01", freq="M") assert s[pd.NaT] is pd.NaT def test_getitem_list_periods(self): # GH 7710 rng = period_range(start="2012-01-01", periods=10, freq="D") ts = Series(range(len(rng)), index=rng) exp = ts.iloc[[1]] tm.assert_series_equal(ts[[Period("2012-01-02", freq="D")]], exp) def test_getitem_seconds(self): # GH#6716 didx = pd.date_range(start="2013/01/01 09:00:00", freq="S", periods=4000) pidx = period_range(start="2013/01/01 09:00:00", freq="S", periods=4000) for idx in [didx, pidx]: # getitem against index should raise ValueError values = [ "2014", "2013/02", "2013/01/02", "2013/02/01 9H", "2013/02/01 09:00", ] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s["2013/01/01 10:00"], s[3600:3660]) tm.assert_series_equal(s["2013/01/01 9H"], s[:3600]) for d in ["2013/01/01", "2013/01", "2013"]: tm.assert_series_equal(s[d], s) def test_getitem_day(self): # GH#6716 # Confirm DatetimeIndex and PeriodIndex works identically didx = pd.date_range(start="2013/01/01", freq="D", periods=400) pidx = period_range(start="2013/01/01", freq="D", periods=400) for idx in [didx, pidx]: # getitem against index should raise ValueError values = [ "2014", "2013/02", "2013/01/02", "2013/02/01 9H", "2013/02/01 09:00", ] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s["2013/01"], s[0:31]) tm.assert_series_equal(s["2013/02"], s[31:59]) tm.assert_series_equal(s["2014"], s[365:]) invalid = ["2013/02/01 9H", "2013/02/01 09:00"] for v in invalid: with pytest.raises(KeyError, match=v): s[v] class TestWhere: @pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) def test_where(self, klass): i = period_range("20130101", periods=5, freq="D") cond = [True] * len(i) expected = i result = i.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * (len(i) - 1) expected = PeriodIndex([pd.NaT] + i[1:].tolist(), freq="D") result = i.where(klass(cond)) tm.assert_index_equal(result, expected) def test_where_other(self): i = period_range("20130101", periods=5, freq="D") for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D") result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D") result = i.where(notna(i2), i2.values) tm.assert_index_equal(result, i2) def test_where_invalid_dtypes(self): pi = period_range("20130101", periods=5, freq="D") i2 = pi.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + pi[2:].tolist(), freq="D") with pytest.raises(TypeError, match="Where requires matching dtype"): pi.where(notna(i2), i2.asi8) with pytest.raises(TypeError, match="Where requires matching dtype"): pi.where(notna(i2), i2.asi8.view("timedelta64[ns]")) with pytest.raises(TypeError, match="Where requires matching dtype"): pi.where(notna(i2), i2.to_timestamp("S")) class TestTake: def test_take(self): # GH#10295 idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") for idx in [idx1]: result = idx.take([0]) assert result == pd.Period("2011-01-01", freq="D") result = idx.take([5]) assert result == pd.Period("2011-01-06", freq="D") result = idx.take([0, 1, 2]) expected = pd.period_range("2011-01-01", "2011-01-03", freq="D", name="idx") tm.assert_index_equal(result, expected) assert result.freq == "D" assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx.take([7, 4, 1]) expected = pd.PeriodIndex( ["2011-01-08", "2011-01-05", "2011-01-02"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx.take([3, 2, 5]) expected = PeriodIndex( ["2011-01-04", "2011-01-03", "2011-01-06"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx.take([-3, 2, 5]) expected = PeriodIndex( ["2011-01-29", "2011-01-03", "2011-01-06"], freq="D", name="idx" ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" def test_take_misc(self): index = period_range(start="1/1/10", end="12/31/12", freq="D", name="idx") expected = PeriodIndex( [ datetime(2010, 1, 6), datetime(2010, 1, 7), datetime(2010, 1, 9), datetime(2010, 1, 13), ], freq="D", name="idx", ) taken1 = index.take([5, 6, 8, 12]) taken2 = index[[5, 6, 8, 12]] for taken in [taken1, taken2]: tm.assert_index_equal(taken, expected) assert isinstance(taken, PeriodIndex) assert taken.freq == index.freq assert taken.name == expected.name def test_take_fill_value(self): # GH#12631 idx = pd.PeriodIndex( ["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx", freq="D" ) result = idx.take(np.array([1, 0, -1])) expected = pd.PeriodIndex( ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", freq="D" ) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.PeriodIndex( ["2011-02-01", "2011-01-01", "NaT"], name="xxx", freq="D" ) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.PeriodIndex( ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", freq="D" ) tm.assert_index_equal(result, expected) msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) msg = "index -5 is out of bounds for( axis 0 with)? size 3" with pytest.raises(IndexError, match=msg): idx.take(np.array([1, -5])) class TestIndexing: def test_get_loc_msg(self): idx = period_range("2000-1-1", freq="A", periods=10) bad_period = Period("2012", "A") with pytest.raises(KeyError, match=r"^Period\('2012', 'A-DEC'\)$"): idx.get_loc(bad_period) try: idx.get_loc(bad_period) except KeyError as inst: assert inst.args[0] == bad_period def test_get_loc_nat(self): didx = DatetimeIndex(["2011-01-01", "NaT", "2011-01-03"]) pidx = PeriodIndex(["2011-01-01", "NaT", "2011-01-03"], freq="M") # check DatetimeIndex compat for idx in [didx, pidx]: assert idx.get_loc(pd.NaT) == 1 assert idx.get_loc(None) == 1 assert idx.get_loc(float("nan")) == 1 assert idx.get_loc(np.nan) == 1 def test_get_loc(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") # get the location of p1/p2 from # monotonic increasing PeriodIndex with non-duplicate idx0 = pd.PeriodIndex([p0, p1, p2]) expected_idx1_p1 = 1 expected_idx1_p2 = 2 assert idx0.get_loc(p1) == expected_idx1_p1 assert idx0.get_loc(str(p1)) == expected_idx1_p1 assert idx0.get_loc(p2) == expected_idx1_p2 assert idx0.get_loc(str(p2)) == expected_idx1_p2 msg = "Cannot interpret 'foo' as period" with pytest.raises(KeyError, match=msg): idx0.get_loc("foo") with pytest.raises(KeyError, match=r"^1\.1$"): idx0.get_loc(1.1) msg = ( r"'PeriodIndex\(\['2017-09-01', '2017-09-02', '2017-09-03'\]," r" dtype='period\[D\]', freq='D'\)' is an invalid key" ) with pytest.raises(TypeError, match=msg): idx0.get_loc(idx0) # get the location of p1/p2 from # monotonic increasing PeriodIndex with duplicate idx1 = pd.PeriodIndex([p1, p1, p2]) expected_idx1_p1 = slice(0, 2) expected_idx1_p2 = 2 assert idx1.get_loc(p1) == expected_idx1_p1 assert idx1.get_loc(str(p1)) == expected_idx1_p1 assert idx1.get_loc(p2) == expected_idx1_p2 assert idx1.get_loc(str(p2)) == expected_idx1_p2 msg = "Cannot interpret 'foo' as period" with pytest.raises(KeyError, match=msg): idx1.get_loc("foo") with pytest.raises(KeyError, match=r"^1\.1$"): idx1.get_loc(1.1) msg = ( r"'PeriodIndex\(\['2017-09-02', '2017-09-02', '2017-09-03'\]," r" dtype='period\[D\]', freq='D'\)' is an invalid key" ) with pytest.raises(TypeError, match=msg): idx1.get_loc(idx1) # get the location of p1/p2 from # non-monotonic increasing/decreasing PeriodIndex with duplicate idx2 = pd.PeriodIndex([p2, p1, p2]) expected_idx2_p1 = 1 expected_idx2_p2 = np.array([True, False, True]) assert idx2.get_loc(p1) == expected_idx2_p1 assert idx2.get_loc(str(p1)) == expected_idx2_p1 tm.assert_numpy_array_equal(idx2.get_loc(p2), expected_idx2_p2) tm.assert_numpy_array_equal(idx2.get_loc(str(p2)), expected_idx2_p2) def test_is_monotonic_increasing(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") idx_inc0 = pd.PeriodIndex([p0, p1, p2]) idx_inc1 = pd.PeriodIndex([p0, p1, p1]) idx_dec0 = pd.PeriodIndex([p2, p1, p0]) idx_dec1 = pd.PeriodIndex([p2, p1, p1]) idx = pd.PeriodIndex([p1, p2, p0]) assert idx_inc0.is_monotonic_increasing is True assert idx_inc1.is_monotonic_increasing is True assert idx_dec0.is_monotonic_increasing is False assert idx_dec1.is_monotonic_increasing is False assert idx.is_monotonic_increasing is False def test_is_monotonic_decreasing(self): # GH 17717 p0 = pd.Period("2017-09-01") p1 = pd.Period("2017-09-02") p2 = pd.Period("2017-09-03") idx_inc0 =
pd.PeriodIndex([p0, p1, p2])
pandas.PeriodIndex
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import Index, MultiIndex, Series, date_range, isna import pandas._testing as tm @pytest.fixture( params=[ "linear", "index", "values", "nearest", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def nontemporal_method(request): """Fixture that returns an (method name, required kwargs) pair. This fixture does not include method 'time' as a parameterization; that method requires a Series with a DatetimeIndex, and is generally tested separately from these non-temporal methods. """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs @pytest.fixture( params=[ "linear", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def interp_methods_ind(request): """Fixture that returns a (method name, required kwargs) pair to be tested for various Index types. This fixture does not include methods - 'time', 'index', 'nearest', 'values' as a parameterization """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs class TestSeriesInterpolateData: def test_interpolate(self, datetime_series, string_series): ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method="linear") tm.assert_series_equal(linear_interp, ts) ord_ts = Series( [d.toordinal() for d in datetime_series.index], index=datetime_series.index ).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method="time") tm.assert_series_equal(time_interp, ord_ts) def test_interpolate_time_raises_for_non_timeseries(self): # When method='time' is used on a non-TimeSeries that contains a null # value, a ValueError should be raised. non_ts = Series([0, 1, 2, np.NaN]) msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex" with pytest.raises(ValueError, match=msg): non_ts.interpolate(method="time") @td.skip_if_no_scipy def test_interpolate_cubicspline(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) result = ser.reindex(new_index).interpolate(method="cubicspline")[1:3] tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interpolate_pchip(self): ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union( Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) ).astype(float) interp_s = ser.reindex(new_index).interpolate(method="pchip") # does not blow up, GH5977 interp_s[49:51] @td.skip_if_no_scipy def test_interpolate_akima(self): ser = Series([10, 11, 12, 13]) # interpolate at new_index where `der` is zero expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima") tm.assert_series_equal(interp_s[1:3], expected) # interpolate at new_index where `der` is a non-zero int expected = Series( [11.0, 1.0, 1.0, 1.0, 12.0, 1.0, 1.0, 1.0, 13.0], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima", der=1) tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_piecewise_polynomial(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial") tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_from_derivatives(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="from_derivatives") tm.assert_series_equal(interp_s[1:3], expected) @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_interpolate_corners(self, kwargs): s = Series([np.nan, np.nan]) tm.assert_series_equal(s.interpolate(**kwargs), s) s = Series([], dtype=object).interpolate() tm.assert_series_equal(s.interpolate(**kwargs), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method="index") expected = s.copy() bad = isna(expected.values) good = ~bad expected = Series( np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad] ) tm.assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method="values") tm.assert_series_equal(other_result, result) tm.assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) msg = ( "time-weighted interpolation only works on Series or DataFrames " "with a DatetimeIndex" ) with pytest.raises(ValueError, match=msg): s.interpolate(method="time") @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_nan_interpolate(self, kwargs): s = Series([0, 1, np.nan, 3]) result = s.interpolate(**kwargs) expected = Series([0.0, 1.0, 2.0, 3.0]) tm.assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9]) tm.assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list("abcd")) result = s.interpolate() expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd")) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interp_quad(self): sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method="quadratic") expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interp_scipy_basic(self): s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0]) result = s.interpolate(method="slinear") tm.assert_series_equal(result, expected) result = s.interpolate(method="slinear", downcast="infer")
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import os, sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.optimize from pyddem.volint_tools import neff_circ, std_err import functools import matplotlib.ticker as mtick from mpl_toolkits.axes_grid.inset_locator import inset_axes plt.rcParams.update({'font.size': 5}) plt.rcParams.update({'lines.linewidth':0.35}) plt.rcParams.update({'axes.linewidth':0.35}) plt.rcParams.update({'lines.markersize':2.5}) plt.rcParams.update({'axes.labelpad':1.5}) all_csv = '/home/atom/ongoing/work_worldwide/validation/tcorr/tinterp_corr_deseas_agg_all.csv' # all_csv = '/home/atom/ongoing/work_worldwide/validation/tinterp_corr_agg_all.csv' df = pd.read_csv(all_csv) # df = df[df.reg==5] cutoffs = list(set(list(df.cutoff))) dts = sorted(list(set(list(df.nb_dt)))) col = ['tab:orange','tab:blue','tab:olive','tab:red','tab:cyan','tab:brown','tab:gray','tab:pink','tab:purple'] #plot covar by lag # for dt in dts: # # df_dt = df[df.nb_dt == dt] # # for cutoff in cutoffs: # df_c = df_dt[df_dt.cutoff == cutoff] # # if cutoff == 10000: # plt.scatter(df_c.bins.values[1],df_c.exp.values[1],color=col[dts.index(dt)],label=str(dt)) # plt.scatter(df_c.bins.values[20],df_c.exp.values[20],color=col[dts.index(dt)]) # plt.scatter(df_c.bins.values[50],df_c.exp.values[50],color=col[dts.index(dt)]) # elif cutoff == 100000: # plt.scatter(df_c.bins.values[20],df_c.exp.values[20],color=col[dts.index(dt)]) # plt.scatter(df_c.bins.values[50],df_c.exp.values[50],color=col[dts.index(dt)]) # else: # plt.scatter(df_c.bins.values[20],df_c.exp.values[20],color=col[dts.index(dt)]) # plt.scatter(df_c.bins.values[50],df_c.exp.values[50],color=col[dts.index(dt)]) # # plt.ylim([0,50]) # plt.xscale('log') # plt.legend() #plot covar by dt dts = sorted(dts) dts.remove(540.) dts.remove(900.) dts.remove(1750.) dts.remove(2250.) arr_res = np.zeros((len(dts),7)) arr_count = np.zeros((len(dts),7)) for dt in dts: df_dt = df[df.nb_dt == dt] for cutoff in cutoffs: df_c = df_dt[df_dt.cutoff == cutoff] if cutoff == 10000: arr_res[dts.index(dt),0]=np.nanmean(df_c.exp.values[1:2]) arr_count[dts.index(dt),0]=np.nanmean(df_c['count'].values[1:2]) arr_res[dts.index(dt), 1] = np.nanmean(df_c.exp.values[20 - 10:20 + 10]) arr_count[dts.index(dt), 1] = np.nanmean(df_c['count'].values[20 - 10:20 + 10]) arr_res[dts.index(dt), 2] = np.nanmean(df_c.exp.values[50 - 10:50 + 10]) arr_count[dts.index(dt), 2] = np.nanmean(df_c['count'].values[50 - 10:50 + 10]) elif cutoff == 100000: arr_res[dts.index(dt),3]=np.nanmean(df_c.exp.values[20-5:20+20]) arr_count[dts.index(dt),3]=np.nanmean(df_c['count'].values[20-10:20+10]) arr_res[dts.index(dt),4]=np.nanmean(df_c.exp.values[50-10:50+10]) arr_count[dts.index(dt),4]=np.nanmean(df_c['count'].values[50-10:50+10]) elif cutoff == 1000000: arr_res[dts.index(dt),5]=np.nanmean(df_c.exp.values[20-10:20+30]) arr_count[dts.index(dt),5]=np.nanmean(df_c['count'].values[20-10:20+30]) arr_res[dts.index(dt),6]=np.nanmean(df_c.exp.values[50-40:50+40]) arr_count[dts.index(dt),6]=np.nanmean(df_c['count'].values[50-40:50+40]) arr_res[arr_count<100]=np.nan # for dt in dts: # # df_dt = df[df.nb_dt == dt] # # for cutoff in cutoffs: # df_c = df_dt[df_dt.cutoff == cutoff] # # if cutoff == 10000: # plt.scatter(dt,df_c.exp.values[1],color=col[0]) # plt.scatter(dt,np.nanmean(df_c.exp.values[20-10:20+10]),color=col[1]) # plt.scatter(dt,np.nanmean(df_c.exp.values[50-10:50+10]),color=col[2]) # elif cutoff == 100000: # plt.scatter(dt,np.nanmean(df_c.exp.values[20-10:20+10]),color=col[3]) # plt.scatter(dt,np.nanmean(df_c.exp.values[50-10:50+10]),color=col[4]) # else: # plt.scatter(dt,np.nanmean(df_c.exp.values[20-10:20+10]),color=col[5]) # plt.scatter(dt,np.nanmean(df_c.exp.values[50-10:50+10]),color=col[6]) fig = plt.figure(figsize=(7.2,9.3)) # plt.subplots_adjust(hspace=0.3) grid = plt.GridSpec(8, 13, wspace=0.05, hspace=0.5) ax = fig.add_subplot(grid[:2,:2]) # ax = fig.add_subplot(2, 1, 1) vario = df[df.nb_dt == 720.] vec_bins = [] vec_exp = [] vgm1 = vario[vario.cutoff == 10000] vgm1 = vgm1[vgm1.bins<3000] for i in range(6): vec_bins += [np.nanmean(vgm1.bins.values[0+i*5:5+i*5])] vec_exp += [np.nanmean(vgm1.exp.values[0+i*5:5+i*5])] # vec_bins += vgm1.bins.tolist() # vec_exp += vgm1.exp.tolist() vgm1 = vario[vario.cutoff == 100000] vgm1 = vgm1[np.logical_and(vgm1.bins>3000,vgm1.bins<30000)] vec_bins += vgm1.bins.tolist() vec_exp += vgm1.exp.tolist() vgm1 = vario[vario.cutoff == 1000000] vgm1 = vgm1[vgm1.bins>30000] for i in range(18): vec_bins += [np.nanmean(vgm1.bins.values[0+i*5:5+i*5])] vec_exp += [np.nanmean(vgm1.exp.values[0+i*5:5+i*5])] vec_bins = np.array(vec_bins) vec_exp=np.array(vec_exp) def sph_var(c0,c1,a1,h): if h < a1: vgm = c0 + c1 * (3 / 2 * h / a1-1 / 2 * (h / a1) ** 3) else: vgm = c0 + c1 return vgm vect = np.array(list(np.arange(0,3000,1)) + list(np.arange(3000,30000,10)) + list(np.arange(30000,3000000,100))) mod = [] c1s = [0] + list(arr_res[dts.index(720.),:]) a1s = [0.2,2,5,20,50,200] #find unbiased sills list_c = [] for j in range(len(a1s)): print('Range:' + str(a1s[-1 - j])) c = c1s[-2 - j] - c1s[-3 - j] print(c) for k in range(j): # c -= sph_var(0, list_c[k], a1s[-1 - k] * 1000, a1s[-1 - j] * 1000) if j>5: c -= (sph_var(0, list_c[k], a1s[-1 - k] * 1000, a1s[-1 - j] * 1000) - sph_var(0,list_c[k], a1s[-1-k]*1000,a1s[-2-j]*1000)) elif j==5: c -= sph_var(0, list_c[k], a1s[-1 - k] * 1000, a1s[-1 - j] * 1000) c = max(0, c) list_c.append(c) list_c.reverse() #compute variogram for i in range(len(vect)): val = 0 for j in range(len(a1s)): val += sph_var(0,list_c[j],a1s[j]*1000,vect[i]) mod.append(val) mod = np.array(mod) ax.scatter(vec_bins/1000,vec_exp,color='black',marker='x') ax.set_xlim((0,3)) ax.set_ylim((0,50)) ax.set_xticks([0,1,2]) ax.text(0.075, 0.975, 'a', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') ax.vlines(0.15,0,60,color=col[0],linewidth=0.5) ax.text(0.4,c1s[1]-5,'$s_0$',color=col[0],ha='left',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.vlines(2,0,60,color=col[1],linewidth=0.5) ax.text(2.2,c1s[2]-5,'$s_1$',color=col[1],ha='left',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.plot(vect/1000,mod,color='dimgrey',linestyle='dashed') # ax.hlines(25,0,500,colors='black',linestyles='dotted') ax.set_ylabel('Variance of elevation differences (m$^2$)') ax.tick_params(width=0.35,length=2.5) ax = fig.add_subplot(grid[:2,2:4]) ax.scatter(vec_bins/1000,vec_exp,color='black',marker='x') ax.set_xlim((0,30)) ax.set_ylim((0,50)) ax.set_xticks([0,10,20]) # ax.text(0.075, 0.975, 'B', transform=ax.transAxes, # fontsize=14, fontweight='bold', va='top', ha='left') ax.vlines(5,0,60,color=col[2],linewidth=0.5) ax.text(6,c1s[3]-5,'$s_2$',color=col[2],ha='left',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.vlines(20,0,60,color=col[3],linewidth=0.5) ax.text(21,c1s[4]-5,'$s_3$',color=col[3],ha='left',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.plot(vect/1000,mod,color='dimgrey',linestyle='dashed') # ax.hlines(25,0,500,colors='black',linestyles='dotted',label='Global mean variance') ax.set_yticks([]) ax.set_xlabel('Spatial lag (km)') ax.tick_params(width=0.35,length=2.5) ax = fig.add_subplot(grid[:2,4:6]) ax.scatter(vec_bins/1000,vec_exp,color='black',marker='x') ax.set_xlim((0,550)) ax.set_ylim((0,50)) ax.set_xticks([0,100,200,300,400,500]) # ax.text(0.075, 0.975, 'C', transform=ax.transAxes, # fontsize=14, fontweight='bold', va='top', ha='left') ax.vlines(50,0,60,colors=[col[4]],linewidth=0.5) ax.text(70,c1s[5]-5,'$s_4$',color=col[4],ha='left',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.vlines(200,0,60,colors=[col[5]],linewidth=0.5) ax.text(220,c1s[6]-7,'$s_5$',color=col[5],ha='left',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.vlines(500,0,60,colors=[col[6]],linewidth=0.5) ax.text(480,c1s[6]-7,'$s_6$',color=col[6],ha='right',va='bottom',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) ax.plot(vect/1000,mod,color='dimgrey',linestyle='dashed') # ax.hlines(25,0,500,colors='black',linestyles='dotted') ax.tick_params(width=0.35,length=2.5) ax.plot([],[],color='grey',linestyle='dashed',label='Sum of spherical models') ax.scatter([],[],color='black',marker='x',label='Empirical variance') ax.vlines([],[],[],color=col[0],label='0.15 km',linewidth=0.5) ax.vlines([],[],[],color=col[1],label='2 km',linewidth=0.5) ax.vlines([],[],[],color=col[2],label='5 km',linewidth=0.5) ax.vlines([],[],[],color=col[3],label='20 km',linewidth=0.5) ax.vlines([],[],[],color=col[4],label='50 km',linewidth=0.5) ax.vlines([],[],[],color=col[5],label='200 km',linewidth=0.5) ax.vlines([],[],[],color=col[6],label='500 km',linewidth=0.5) ax.legend(loc='lower right',ncol=3,title='Spatial correlations of GP elevation at $\Delta t$ = 720 days',title_fontsize=6,columnspacing=0.5) ax.set_yticks([]) ax = fig.add_subplot(grid[2:4,:6]) coefs_list = [] y = None # arr_res[0:1,4]=25 # arr_res[arr_res>25] = 25. # arr_res[4,2]=np.nan # arr_res[3:,3]=np.nan # arr_res[0,3]=25. # arr_res[0,3:] = np.nan for i in [0,1,2,3,4,5,6]: # i=0 # arr_res[-1,0]=np.nan coefs , _ = scipy.optimize.curve_fit(lambda t,a,b:a*t+b, np.array(dts)[~np.isnan(arr_res[:,i])], np.sqrt(arr_res[:,i][~np.isnan(arr_res[:,i])])) coefs_list.append(coefs) x = np.arange(0, 3000, 1) if y is not None: y0 = y else: y0 = x*0 y = coefs[0]*x+coefs[1] #- 2*np.sin(x/365.2224*np.pi)**2 # y[y>25]=25. # y[y<y0]=y0[y<y0] y = y ax.plot(x,y**2 -2*np.sin(x/365.2224*2*np.pi)**2,color=col[i]) ax.fill_between(x,y0**2 -2*np.sin(x/365.2224*2*np.pi)**2,y**2 -2*np.sin(x/365.2224*2*np.pi)**2,color = col[i],alpha=0.2) # ax.fill_between(x,40*np.ones(len(x)),y,color='tab:gray') # arr_res[0,3:]=25. for i in [0,1,2,3,4,5,6]: ax.scatter(dts,arr_res[:,i],color=col[i]) # ax.hlines(25,0,3000,linestyles='dashed',color='tab:gray') ax.plot([],[],color='black',label='Model fit') ax.fill_between([],[],color=col[0],label='0.15 km') ax.fill_between([],[],color=col[1],label='2 km') ax.fill_between([],[],color=col[2],label='5 km') ax.fill_between([],[],color=col[3],label='20 km') ax.scatter([],[],color='black',label='Empirical\nvariance') ax.fill_between([],[],color=col[4],label='50 km') ax.fill_between([],[],color=col[5],label='200 km') ax.fill_between([],[],color=col[6],label='500 km') ax.set_xlim([0,1370]) ax.set_ylim([0,78]) ax.set_ylabel('Variance of elevation differences (m$^{2}$)') ax.set_xlabel('Days to closest observation $\Delta t$') ax.vlines(720,0,100,colors='black',linestyles='dashed') ax.text(740,5,'$\overline{s_{0}(\Delta t)}$: correlated until 0.15 km',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35),color='tab:orange') ax.text(800,22,'$s_{1}(\Delta t)$: correlated until 2 km',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35),color='tab:blue') ax.text(1150,35,'$s_{3}(\Delta t)$',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35),color='tab:red') ax.text(1250,48,'$s_{5}(\Delta t)$',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35),color='tab:brown') # ax.text(1000,22,'Fully correlated = Systematic',bbox= dict(boxstyle='round', facecolor='white', alpha=0.5),color='dimgrey') # plt.xscale('log') ax.legend(loc='upper left',bbox_to_anchor=(0.0625,0,0.9375,1),title='Spatial correlations of\nGP elevation with\ntime lag to observation',title_fontsize=6,ncol=2,columnspacing=0.5) ax.text(0.025, 0.975, 'b', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') ax.text(740,45,'panel (a)',fontweight='bold',va='bottom',ha='left') # plt.savefig('/home/atom/ongoing/work_worldwide/figures/Figure_S12.png',dpi=360) ax.tick_params(width=0.35,length=2.5) ax = fig.add_subplot(grid[4:6,:6]) corr_ranges = [150, 2000, 5000, 20000, 50000] coefs = [np.array([1.26694247e-03, 3.03486839e+00]), np.array([1.35708936e-03, 4.05065698e+00]), np.array([1.42572733e-03, 4.20851582e+00]), np.array([1.82537137e-03, 4.28515920e+00]), np.array([1.87250755e-03, 4.31311254e+00]), np.array([2.06249620e-03, 4.33582812e+00])] thresh = [0, 0, 0, 180, 180] ind = [1, 1, 1, 2, 1] def sill_frac(t, a, b, c, d): if t >= c: return (coefs[-1][0] * t + coefs[-1][1]) ** 2 - (a * t + b) ** 2 - ( (coefs[-1][1] + c * coefs[-1][0]) ** 2 - (coefs[-1 - d][1] + c * coefs[-1 - d][0]) ** 2) else: return 0 corr_std_dt = [functools.partial(sill_frac,a=coefs[i][0],b=coefs[i][1],c=thresh[i],d=ind[i]) for i in range(len(corr_ranges))] list_areas = [100*2**i for i in np.arange(3,31)] list_df=[] for area in list_areas: dt = [180,540,900,1260] perc_area = [0.5,0.2,0.2,0.1] dx=100. nsamp_dt = np.zeros(len(dt)) * np.nan err_corr = np.zeros((len(dt), len(corr_ranges) + 1)) * np.nan for j in np.arange(len(dt)): final_num_err_dt = 10. nsamp_dt[j] = perc_area[j]*area sum_var = 0 for k in range(len(corr_ranges)+1): if k != len(corr_ranges): err_corr[j,k] = np.sqrt(max(0,corr_std_dt[len(corr_ranges)-1-k](dt[j]) - sum_var)) sum_var += err_corr[j,k] ** 2 else: err_corr[j, k]=np.sqrt(max(0,final_num_err_dt**2-sum_var)) final_num_err_corr, int_err_corr = (np.zeros( len(corr_ranges) + 1) * np.nan for i in range(2)) for k in range(len(corr_ranges) + 1): final_num_err_corr[k] = np.sqrt(np.nansum(err_corr[:, k] * nsamp_dt) / np.nansum(nsamp_dt)) if k == 0: tmp_length = 200000 else: tmp_length = corr_ranges[len(corr_ranges) - k] if final_num_err_corr[k] == 0: int_err_corr[k] = 0 else: int_err_corr[k] = std_err(final_num_err_corr[k], neff_circ(area, [(tmp_length, 'Sph', final_num_err_corr[k] ** 2)])) df_int = pd.DataFrame() for i in range(len(corr_ranges)): df_int['err_corr_'+str(corr_ranges[i])] =[int_err_corr[len(corr_ranges)-i]] df_int['err_corr_200000'] =[int_err_corr[0]] df_int['area']=area list_df.append(df_int) df = pd.concat(list_df) #First panel: sources for volume change col = ['tab:orange','tab:blue','tab:olive','tab:red','tab:cyan','tab:brown','tab:gray','tab:pink','tab:purple'] tmp_y = np.zeros(len(list_areas)) tmp_y_next = np.zeros(len(list_areas)) for i in range(6): tmp_y = tmp_y_next tmp_y_next = tmp_y + (2*df.iloc[:len(list_areas),i])**2 ax.fill_between(x=np.array(list_areas)/1000000,y1=tmp_y,y2=tmp_y_next,interpolate=True,color=col[i],alpha=0.5,edgecolor=None) if i == 0: ax.plot(np.array(list_areas)/1000000,tmp_y_next,color='black',linestyle='--') ax.fill_between([],[],color=col[0],label='0.15 km',alpha=0.5) ax.fill_between([],[],color=col[1],label='2 km',alpha=0.5) ax.fill_between([],[],color=col[2],label='5 km',alpha=0.5) ax.fill_between([],[],color=col[3],label='20 km',alpha=0.5) ax.fill_between([],[],color=col[4],label='50 km',alpha=0.5) ax.fill_between([],[],color=col[5],label='200 km',alpha=0.5) ax.plot([],[],color='black',linestyle='--',label='Limit GP/spatial\ncorrelation sources') ax.set_xscale('log') ax.set_xlabel('Glacier area (km²)') ax.set_ylabel('Squared uncertainties of\nspecific volume change (m²)') ax.set_ylim((0,30)) ax.set_xlim((0.005,7.5*10**10/1000000)) handles, labels = ax.get_legend_handles_labels() # sort both labels and handles by labels labels, handles = zip(*sorted(zip(labels, handles), key=lambda t: t[0])) print(labels[0:2]) ax.legend(handles[0:2]+(handles[-1],)+handles[2:-1], labels[0:2]+(labels[-1],)+labels[2:-1],title='Uncertainty sources for specific volume change\n(i.e. mean elevation change)',title_fontsize=6,ncol=3,columnspacing=0.5) ax.text(0.023,4*1.2,'Uncertainty \nsources from\npixel-wise\nGP regression\n(0.15 km)',color=plt.cm.Greys(0.8),va='center',ha='center') ax.text(5,4*2,'Uncertainty sources from \nshort- to long-\nrange correlations\n(2 km - 200 km)',color=plt.cm.Greys(0.8),va='center',ha='center') ax.text(0.025, 0.95, 'c', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') ax.tick_params(width=0.35,length=2.5) import os, sys import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats from pybob.ddem_tools import nmad df_gp = pd.read_csv('/home/atom/data/other/Hugonnet_2020/dhdt_int_GP.csv') df_hr = pd.read_csv('/home/atom/data/other/Hugonnet_2020/dhdt_int_HR.csv') # ind = np.logical_and(df_hr.perc_meas>0.70,df_hr.category.values=='matthias') # ind = np.logical_and(df_hr.perc_meas>0.70,df_hr.area.values<1000000.) ind = df_hr.perc_meas>0.70 list_rgiid = list(df_hr[ind].rgiid) list_area = list(df_hr[df_hr.rgiid.isin(list_rgiid)].area) list_rgiid = [rgiid for _, rgiid in sorted(zip(list_area,list_rgiid),reverse=True)] list_area = sorted(list_area,reverse=True) ax = fig.add_subplot(grid[:2, 7:]) kval = 3.5 # sites=np.unique(data['Site']) # colors=['b','g','r','c','m','y','k','grey'] colors = ['tab:blue','tab:orange','tab:red','tab:grey'] # sites=sites.tolist() ax.plot([-3, 0.5], [-3, 0.5], color='k', linestyle='-', linewidth=0.75) label_list=[] diff2 = [] list_area2 = [] for rgiid in list_rgiid: df_gp_rgiid = df_gp[df_gp.rgiid==rgiid] df_hr_rgiid = df_hr[df_hr.rgiid==rgiid] if df_hr_rgiid.category.values[0]=='matthias': col = colors[0] elif df_hr_rgiid.category.values[0]=='brian': col = colors[1] else: if df_hr_rgiid.site.values[0] in ['Chhota','Gangotri','Abramov','Mera']: col = colors[2] elif df_hr_rgiid.site.values[0] == 'Yukon': col=colors[3] elif df_hr_rgiid.site.values[0] == 'MontBlanc': col=colors[0] ax.errorbar(df_hr_rgiid.dhdt.values[0], df_gp_rgiid.dhdt.values[0], xerr=df_hr_rgiid.err_dhdt.values[0], yerr=df_gp_rgiid.err_dhdt.values[0],marker='o',mec='k', ms=kval*(df_hr_rgiid.area.values[0]/1000000)**0.5/3, mew=0.25,elinewidth=0.25,ecolor=col,mfc=col,alpha=0.9) #,ecolor=colors[sites.index(data['Site'][value])]mfc=colors[sites.index(data['Site'][value])],alpha=0.5) diff2.append(df_hr_rgiid.dhdt.values[0]-df_gp_rgiid.dhdt.values[0]) list_area2.append(df_hr_rgiid.area.values[0]) ax.text(-1.9,0,'Mean bias:\n'+str(np.round(np.nanmean(diff2),2))+'$\pm$'+str(np.round(2*nmad(diff2)/np.sqrt(len(diff2)),2))+' m yr$^{-1}$',ha='center',va='center',bbox= dict(boxstyle='round', facecolor='white', alpha=0.7,linewidth=0.35)) print(np.nanmean(diff2)) print(np.nansum(np.array(diff2)*np.array(list_area2))/np.nansum(np.array(list_area2))) ax.set_ylabel('Specific volume change (m yr$^{-1}$)') ax.set_xlabel('High-resolution specific volume change (m yr$^{-1}$)') #plt.legend(loc='upper left') ax.set_xlim([-2.95, 0.5]) ax.set_ylim([-2.95, 0.5]) #mask = ~np.isnan(b_dot_anomaly) & ~np.isnan(dP) # slope, intercept, r_value, p_value, std_err = stats.linregress(data['MB GEOD'], data['MB ASTER']) # print(slope) # print("r-squared:", r_value**2) # print('std err:', std_err) # plt.text(-320, -1250, 'Slope:' + str(np.round(slope, 2))) # plt.text(-320, -1300, 'r$^{2}$:' + str(np.round(r_value**2, 2))) ## add symbols to show relative size of glaciers ax.errorbar(-2500/1000,-150/1000,ms = kval*(5.0**0.5)/3, xerr=0.0001, yerr=0.0001, color='k',marker='o') ax.errorbar(-2500/1000,-500/1000,ms = kval*(50.0**0.5)/3, xerr=0.0001, yerr=0.0001,color='k',marker='o') ax.errorbar(-2500/1000,-1250/1000,ms = kval*(500.0**0.5)/3, xerr=0.0001, yerr=0.0001, color='k', marker='o') ax.text(-2500/1000, -220/1000,'5 km$^2$',va='top',ha='center') ax.text(-2500/1000, -650/1000,'50 km$^2$',va='top',ha='center') ax.text(-2500/1000, -1730/1000,'500 km$^2$',va='top',ha='center') ax.text(0.025,0.966,'d',transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') ax.plot([],[],color=colors[0],label='Alps',lw=1) ax.plot([],[],color=colors[1],label='Western NA',lw=1) ax.plot([],[],color=colors[2],label='High Mountain Asia',lw=1) ax.plot([],[],color=colors[3],label='Alaska',lw=1) ax.plot([],[],color='k',label='1:1 line',lw=0.5) ax.legend(loc='lower right',title='Validation of volume changes with high-resolution DEMs',title_fontsize=6,ncol=3) ax.tick_params(width=0.35,length=2.5) ax = fig.add_subplot(grid[4:6, 7:]) ax.text(0.025,0.966,'f',transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') vec_err_dhdt=[0.1,0.2,0.4,0.6,0.8,1,1.5,2] list_err_emp = [] list_err_the = [] bin_err = [] nb_95ci = [] nb_gla = [] for i in range(len(vec_err_dhdt)-1): ind = np.logical_and(df_gp.err_dhdt < vec_err_dhdt[i+1],df_gp.err_dhdt>=vec_err_dhdt[i]) list_rgiid = list(df_gp[ind].rgiid) diff_dhdt = [] err_dhdt = [] ci_size = [] for rgiid in list_rgiid: diff = df_hr[df_hr.rgiid==rgiid].dhdt.values[0] - df_gp[df_gp.rgiid==rgiid].dhdt.values[0] err = np.sqrt(df_hr[df_hr.rgiid==rgiid].err_dhdt.values[0]**2+df_gp[df_gp.rgiid==rgiid].err_dhdt.values[0]**2) err_dhdt.append(err) diff_dhdt.append(diff) if np.abs(diff) - 2 * np.abs(df_hr[df_hr.rgiid == rgiid].err_dhdt.values[0]) - 2 * np.abs( df_gp[df_gp.rgiid == rgiid].err_dhdt.values[0]) > 0: ci_too_small = 0 elif ~np.isnan(diff): ci_too_small = 1 else: ci_too_small = np.nan ci_size.append(ci_too_small) list_err_emp.append(nmad(diff_dhdt)) list_err_the.append(np.nanmedian(err_dhdt)) bin_err.append(np.mean((vec_err_dhdt[i+1],vec_err_dhdt[i]))) nb_95ci.append(np.nansum(ci_size)/np.count_nonzero(~np.isnan(ci_size))) nb_gla.append(np.count_nonzero(~np.isnan(ci_size))) if i < 2: va_text = 'bottom' y_off = 0.1 if i == 0: x_off = -0.05 else: x_off = 0 else: va_text = 'top' y_off = -0.1 ax.text(bin_err[i]+x_off, list_err_emp[i] + y_off, str(nb_gla[i]) + ' gla.\n' + str(np.round(nb_95ci[i] * 100, 0)) + '%', va=va_text, ha='center') ax.plot([0,2],[0,2],color='k',label='1:1 line',lw=0.5) ax.plot(bin_err,list_err_emp,color='tab:blue',label='Error (1$\sigma$) comparison to HR elevation differences\n(printed: glacier number and $\%$ of intersecting 95% CIs)',linestyle='dashed',marker='x') ax.set_xlabel('Theoretical specific volume change uncertainty (m yr$^{-1}$)') ax.set_ylabel('Empirical specific volume\nchange uncertainty (m yr$^{-1}$)') ax.set_ylim((0,1.4)) ax.legend(loc='upper right',title='Validation of volume change uncertainties\nwith varying uncertainty size',title_fontsize=6) ax.tick_params(width=0.35,length=2.5) ax = fig.add_subplot(grid[2:4, 7:]) ax.text(0.025,0.966,'e',transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') vec_area=[0.01,0.05,0.2,1,5,20,200,1500] list_err_emp = [] list_err_the = [] bin_err = [] nb_95ci = [] nb_gla = [] for i in range(len(vec_area)-1): ind = np.logical_and(df_gp.area.values/1000000 < vec_area[i+1],df_gp.area.values/1000000>=vec_area[i]) list_rgiid = list(df_gp[ind].rgiid) diff_dhdt = [] err_dhdt = [] ci_size = [] for rgiid in list_rgiid: diff = df_hr[df_hr.rgiid==rgiid].dhdt.values[0] - df_gp[df_gp.rgiid==rgiid].dhdt.values[0] err = np.sqrt(df_hr[df_hr.rgiid==rgiid].err_dhdt.values[0]**2+df_gp[df_gp.rgiid==rgiid].err_dhdt.values[0]**2) diff_dhdt.append(diff) err_dhdt.append(err) if np.abs(diff) - 2 * np.abs(df_hr[df_hr.rgiid == rgiid].err_dhdt.values[0]) - 2 * np.abs( df_gp[df_gp.rgiid == rgiid].err_dhdt.values[0]) > 0: ci_too_small = 0 elif ~np.isnan(diff): ci_too_small = 1 else: ci_too_small = np.nan ci_size.append(ci_too_small) list_err_emp.append(nmad(diff_dhdt)) list_err_the.append(np.nanmedian(err_dhdt)) bin_err.append(np.mean((vec_area[i+1],vec_area[i]))) nb_95ci.append(np.nansum(ci_size)/np.count_nonzero(~np.isnan(ci_size))) nb_gla.append(np.count_nonzero(~np.isnan(ci_size))) if i <2: va_text = 'top' y_off = -0.1 else: va_text = 'bottom' y_off = 0.1 ax.text(bin_err[i],list_err_emp[i]+y_off,str(nb_gla[i])+' gla.\n'+str(np.round(nb_95ci[i]*100,0))+'%',va=va_text,ha='center') ax.plot(bin_err,list_err_the,color='black',label='Theoretical uncertainty (1$\sigma$):\nspatially integrated variograms',marker='x') ax.plot(bin_err,list_err_emp,color='tab:blue',label='Empirical uncertainty (1$\sigma$):\ncomparison to HR elevation differences\n(printed: glacier number and\n$\%$ of intersecting 95% CIs)',linestyle='dashed',marker='x') ax.set_xscale('log') ax.set_xlabel('Glacier area (km$^{2}$)') ax.set_ylabel('Specific volume\nchange uncertainty (m yr$^{-1}$)') ax.set_ylim([0,1.4]) ax.legend(loc='upper right',title='Validation of volume change uncertainties\nwith varying glaciers area',title_fontsize=6) ax.tick_params(width=0.35,length=2.5) ax2 = fig.add_subplot(grid[6:,:]) reg_dir = '/home/atom/ongoing/work_worldwide/vol/final' list_fn_reg = [os.path.join(reg_dir,'dh_'+str(i).zfill(2)+'_rgi60_int_base_reg.csv') for i in np.arange(1,20)] list_df_out = [] for fn_reg in list_fn_reg: df = pd.read_csv(fn_reg) mult_ann = 20 area = df.area.values[0] dvol = (df[df.time == '2000-01-01'].dvol.values - df[df.time == '2020-01-01'].dvol.values)[0] dh = dvol / area err_dh = np.sqrt( df[df.time == '2000-01-01'].err_dh.values[0] ** 2 + df[df.time == '2020-01-01'].err_dh.values[0] ** 2) err_dvol = np.sqrt((err_dh * area) ** 2 + (dh * df.perc_err_cont.values[0] / 100. * area) ** 2) dvoldt = dvol / mult_ann err_dvoldt = err_dvol / mult_ann dmdt = dvol * 0.85 / 10 ** 9 / mult_ann err_dmdt = np.sqrt((err_dvol * 0.85 / 10 ** 9) ** 2 + ( dvol * 0.06 / 10 ** 9) ** 2) / mult_ann sq_err_dmdt_fromdh = (err_dh*area)**2 * (0.85 / mult_ann)**2 /area**2 sq_err_dmdt_fromarea = (dh * df.perc_err_cont.values[0] / 100. * area) ** 2 * (0.85 / mult_ann)**2 /area**2 sq_err_dmdt_fromdensity = (dvol * 0.06) ** 2 / mult_ann**2 / area**2 dmdtda = dmdt/area*10**9 df_out = pd.DataFrame() df_out['region']=[df.reg.values[0]] df_out['dmdtda'] = [dmdtda] df_out['sq_err_fromdh'] = [sq_err_dmdt_fromdh] df_out['sq_err_fromarea'] = [sq_err_dmdt_fromarea] df_out['sq_err_fromdensity'] = [sq_err_dmdt_fromdensity] df_out['area'] = [area] list_df_out.append(df_out) df_all = pd.concat(list_df_out) df_g = pd.DataFrame() df_g['region']=[21] df_g['dmdtda'] = [np.nansum(df_all.dmdtda.values*df_all.area.values)/np.nansum(df_all.area.values)] df_g['sq_err_fromdh'] = [np.nansum(df_all.sq_err_fromdh.values * df_all.area.values **2)/np.nansum(df_all.area.values)**2] df_g['sq_err_fromarea'] = [np.nansum(df_all.sq_err_fromarea.values * df_all.area.values **2)/np.nansum(df_all.area.values)**2] df_g['sq_err_fromdensity'] = [np.nansum(df_all.sq_err_fromdensity.values * df_all.area.values **2)/np.nansum(df_all.area.values)**2] df_g['area'] = [np.nansum(df_all.area.values)] df_noper =
pd.DataFrame()
pandas.DataFrame
import keras import tensorflow as tf import math import logging import numpy as np import pandas as pd from keras.callbacks import EarlyStopping from sacred import Ingredient from sklearn import preprocessing from sklearn.cross_validation import KFold from pypagai.util.class_loader import ClassLoader tb_callback = keras.callbacks.TensorBoard(log_dir='.log/', histogram_freq=0, write_graph=True, write_images=True) LOG = logging.getLogger('pypagai-logger') model_ingredient = Ingredient('model_default_cfg') @model_ingredient.config def default_model_configuration(): """ Model configuration """ model = 'pypagai.models.model_lstm.SimpleLSTM' # Path to the ML model verbose = False # True to print info about train class BaseModel: """ Base model is the class used by all model classes in the experiment framework It encapsulate common functions and properties used in models. In this same file we have implementations provided by the framework to atend specific implementations for: Keras, Scikit, Tensorflow models It receives as parameters configurations of how to test and validate models. The main functions of this class is: - evaluate: evaluate models to helping in choosing which is the best parameters - train: train model without cross-validation - predict: user trained model to predict new instances """ def __init__(self, model_cfg): self._model = None # Number of k-folds in validation samples self._splits = model_cfg['kfold_splits'] if 'kfold_splits' in model_cfg else 2 # Verbose mode on models. self._verbose = model_cfg['verbose'] if 'verbose' in model_cfg else False # Skip experiment with kfolds. When it is False skip kfold validation and go thought train all dataset directly self._experiment = model_cfg['experiment'] if 'experiment' in model_cfg else False # TODO: I don't remeber why to use this configuration self._maximum_acc = model_cfg['maximum_acc'] if 'maximum_acc' in model_cfg else 1 self._vocab_size = model_cfg['vocab_size'] self._story_maxlen = model_cfg['story_maxlen'] self._query_maxlen = model_cfg['query_maxlen'] self._sentences_maxlen = model_cfg['sentences_maxlen'] @staticmethod def default_config(): return { 'maximum_acc': 1, } def name(self): return self.__class__.__name__ def print(self): LOG.info(self.name()) def train(self, data): fold = 0 final_report = pd.DataFrame() fold_list = KFold(len(data.answer), self._splits) if self._experiment else [(range(len(data.answer)), [])] for train_index, valid_index in fold_list: report =
pd.DataFrame()
pandas.DataFrame
""" Parallel HTTP transport IMPORT from multiple independent processes running in parallel """ import pyexasol import _config as config import multiprocessing import pyexasol.callback as cb import pandas import pprint printer = pprint.PrettyPrinter(indent=4, width=140) class ImportProc(multiprocessing.Process): def __init__(self, node): self.node = node self.read_pipe, self.write_pipe = multiprocessing.Pipe(False) super().__init__() def start(self): super().start() self.write_pipe.close() @property def exa_address(self): return self.read_pipe.recv() def run(self): self.read_pipe.close() # Init HTTP transport connection http = pyexasol.http_transport(self.node['ipaddr'], self.node['port']) # Send internal Exasol address to parent process self.write_pipe.send(http.exa_address) self.write_pipe.close() data = [ {'user_id': 1, 'user_name': 'John', 'shard_id': self.node['idx']}, {'user_id': 2, 'user_name': 'Foo', 'shard_id': self.node['idx']}, {'user_id': 3, 'user_name': 'Bar', 'shard_id': self.node['idx']}, ] pd =
pandas.DataFrame(data, columns=['user_id', 'user_name', 'shard_id'])
pandas.DataFrame
from utils import mol2fp import os import pandas as pd import numpy as np from rdkit import Chem import configparser import argparse if __name__ == '__main__': # argments parser = argparse.ArgumentParser() parser.add_argument('conf') args = parser.parse_args() # load config file conf_file = args.conf section = 'morgan_fp' config = configparser.ConfigParser() config.read(conf_file) csv_path = config.get(section, 'csv_path') radius = int(config.get(section, 'radius')) nBits = int(config.get(section, 'nBits')) col_smiles = config.get(section, 'col_smiles') col_property = config.get(section, 'col_property') df =
pd.read_csv(csv_path)
pandas.read_csv
from bittrex import Bittrex import requests import pandas as pd import os import bittrex_test as btt import quandl_api_test as qat from scrape_coinmarketcap import scrape_data API_K = os.environ.get('bittrex_api') API_S = os.environ.get('bittrex_sec') if API_K is None: API_K = os.environ.get('btx_key') API_S = os.environ.get('btx_sec') bt = Bittrex(API_K, API_S) HOME_DIR = btt.get_home_dir() MARKETS = btt.get_all_currency_pairs() def get_balances(): bals = bt.get_balances() if bals['success'] == True: return pd.io.json.json_normalize(bals['result']) else: print('error!', bals['message']) return None def get_total_dollar_balance(bals): btc_amts = [] dollar_amts = [] for i, r in bals.iterrows(): if 'BTC-' + r['Currency'] in MARKETS: print('getting price for', r['Currency']) t = btt.get_ticker('BTC-' + r['Currency']) btc_amts.append(t['Last'] * r['Balance']) else: # have to find which market we have, the convert to BTC if r['Currency'] == 'BTC': btc_amts.append(r['Balance']) else: print('no BTC market for', r['Currency']) bals_copy = bals.copy() bals_copy['BTC_equivalent'] = btc_amts usdt = btt.get_ticker('USDT-BTC')['Last'] bals_copy['USD_equivalent'] = bals_copy['BTC_equivalent'] * usdt return bals_copy def get_deposit_history(): dh = bt.get_deposit_history() if dh['success'] == True: df = pd.io.json.json_normalize(dh['result']) df['LastUpdated'] = pd.to_datetime(df['LastUpdated']) return df else: print('error!', dh['message']) return None def get_deposit_amts(df): # market_data = qat.load_save_data() # bt_df = qat.get_bitstamp_full_df(market_data) eth = scrape_data() btc = scrape_data('bitcoin') aeon = scrape_data('aeon') xmr = scrape_data('monero') dep_dollars = [] for i, r in df.iterrows(): date = r['LastUpdated'] d = str(date.day).zfill(2) m = str(date.month).zfill(2) y = str(date.year) if r['Currency'] == 'BTC': price = btc.loc[y + m + d, 'usd_price'][0] dep_dollars.append(price * r['Amount']) elif r['Currency'] == 'ETH': price = eth.loc[y + m + d, 'usd_price'][0] dep_dollars.append(price * r['Amount']) elif r['Currency'] == 'AEON': price = aeon.loc[y + m + d, 'usd_price'][0] dep_dollars.append(price * r['Amount']) elif r['Currency'] == 'XMR': price = xmr.loc[y + m + d, 'usd_price'][0] dep_dollars.append(price * r['Amount']) df['usd'] = dep_dollars return df def get_order_history(): hist = bt.get_order_history() if hist['success']: df =
pd.io.json.json_normalize(hist['result'])
pandas.io.json.json_normalize
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp =
tm.box_expected(exp, xbox)
pandas.util.testing.box_expected
import wf_core_data import pandas as pd from collections import OrderedDict import datetime import logging logger = logging.getLogger(__name__) class FamilySurveyAirtableClient(wf_core_data.AirtableClient): def fetch_school_inputs( self, pull_datetime=None, params=None, base_id=wf_core_data.SCHOOLS_BASE_ID, format='dataframe', delay=wf_core_data.DEFAULT_DELAY, max_requests=wf_core_data.DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching family survey school inputs from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Family survey - school inputs', params=params ) school_inputs=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('school_input_id_at', record.get('id')), ('school_input_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('school_id_at', fields.get('Schools')), ('include_school_in_data', fields.get('Include in data')), ('include_school_in_reporting', fields.get('Include in reporting')), ('school_data_pending', fields.get('Data pending')), ('school_report_language', fields.get('Report language')), ('num_students', fields.get('Number of students')), ('num_forms_sent', fields.get('Number of forms sent')) ]) school_inputs.append(datum) if format == 'dataframe': school_inputs = convert_school_inputs_to_df(school_inputs) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return school_inputs def fetch_hub_inputs( self, pull_datetime=None, params=None, base_id=wf_core_data.SCHOOLS_BASE_ID, format='dataframe', delay=wf_core_data.DEFAULT_DELAY, max_requests=wf_core_data.DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching family survey hub inputs from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Family survey - hub inputs', params=params ) hub_inputs=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('hub_input_id_at', record.get('id')), ('hub_input_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('hub_id_at', fields.get('Hubs')), ('include_hub_in_reporting', fields.get('Include in reporting')), ('hub_data_pending', fields.get('Data pending')) ]) hub_inputs.append(datum) if format == 'dataframe': hub_inputs = convert_hub_inputs_to_df(hub_inputs) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return hub_inputs def fetch_excluded_classroom_inputs( self, pull_datetime=None, params=None, base_id=wf_core_data.SCHOOLS_BASE_ID, format='dataframe', delay=wf_core_data.DEFAULT_DELAY, max_requests=wf_core_data.DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching family survey excluded classroom inputs from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Family survey - excluded classroom inputs', params=params ) excluded_classroom_inputs = list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('excluded_classroom_input_id_at', record.get('id')), ('excluded_classroom_input_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('school_id_tc', fields.get('TC school ID')), ('classroom_id_tc', fields.get('TC classroom ID')) ]) excluded_classroom_inputs.append(datum) if format == 'dataframe': excluded_classroom_inputs = convert_excluded_classroom_inputs_to_df(excluded_classroom_inputs) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return excluded_classroom_inputs def fetch_excluded_student_inputs( self, pull_datetime=None, params=None, base_id=wf_core_data.SCHOOLS_BASE_ID, format='dataframe', delay=wf_core_data.DEFAULT_DELAY, max_requests=wf_core_data.DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching family survey excluded student inputs from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Family survey - excluded student inputs', params=params ) excluded_student_inputs = list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('excluded_student_input_id_at', record.get('id')), ('excluded_student_input_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('school_id_tc', fields.get('TC school ID')), ('student_id_tc', fields.get('TC student ID')) ]) excluded_student_inputs.append(datum) if format == 'dataframe': excluded_student_inputs = convert_excluded_student_inputs_to_df(excluded_student_inputs) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return excluded_student_inputs def fetch_field_name_inputs( self, pull_datetime=None, params=None, base_id=wf_core_data.SCHOOLS_BASE_ID, format='dataframe', delay=wf_core_data.DEFAULT_DELAY, max_requests=wf_core_data.DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching family survey field name inputs from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Family survey - field name inputs', params=params ) field_name_inputs = list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('field_name_input_id_at', record.get('id')), ('field_name_input_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('source_field_name', fields.get('Source field name')), ('target_field_name', fields.get('Target field name')) ]) field_name_inputs.append(datum) if format == 'dataframe': field_name_inputs = convert_field_name_inputs_to_df(field_name_inputs) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return field_name_inputs def fetch_non_tc_form_data( self, pull_datetime=None, params=None, base_id=wf_core_data.SCHOOLS_BASE_ID, format='dataframe', delay=wf_core_data.DEFAULT_DELAY, max_requests=wf_core_data.DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching family survey paper form data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Family survey non-TC data 2021-22', params=params ) non_tc_form_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('non_tc_form_id_at', record.get('id')), ('non_tc_form_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('school_id_at', fields.get('school_id_at')), ('student_id_at_auto', wf_core_data.utils.extract_int(fields.get('student_id_at_auto'))), ('student_first_name_at', fields.get('student_first_name_at')), ('student_last_name_at', fields.get('student_last_name_at')), ('ethnicity_category_id_at_list', fields.get('ethnicity_list')), ('language_response', fields.get('language_response')), ('household_income_category_id_at', fields.get('household_income')), ('frl_boolean_category_id_at', fields.get('frl')), ('nps_response', wf_core_data.utils.extract_int(fields.get('nps_response'))), ('marketing_opt_out_boolean_category_id_at', fields.get('marketing_opt_out')), ('feedback_response', fields.get('feedback_response')) ]) non_tc_form_data.append(datum) if format == 'dataframe': non_tc_form_data = convert_non_tc_form_data_to_df(non_tc_form_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return non_tc_form_data def convert_school_inputs_to_df(school_inputs): if len(school_inputs) == 0: return pd.DataFrame() school_inputs_df = pd.DataFrame( school_inputs, dtype='object' ) school_inputs_df['pull_datetime'] = pd.to_datetime(school_inputs_df['pull_datetime']) school_inputs_df['school_input_created_datetime_at'] = pd.to_datetime(school_inputs_df['school_input_created_datetime_at']) school_inputs_df['school_id_at'] = school_inputs_df['school_id_at'].apply(wf_core_data.utils.to_singleton) school_inputs_df = school_inputs_df.astype({ 'school_input_id_at': 'string', 'school_id_at': 'string', 'include_school_in_data': 'bool', 'include_school_in_reporting': 'bool', 'school_data_pending': 'bool', 'num_students': 'Int64', 'num_forms_sent': 'Int64' }) school_inputs_df.set_index('school_input_id_at', inplace=True) return school_inputs_df def convert_hub_inputs_to_df(hub_inputs): if len(hub_inputs) == 0: return pd.DataFrame() hub_inputs_df = pd.DataFrame( hub_inputs, dtype='object' ) hub_inputs_df['pull_datetime'] = pd.to_datetime(hub_inputs_df['pull_datetime']) hub_inputs_df['hub_input_created_datetime_at'] = pd.to_datetime(hub_inputs_df['hub_input_created_datetime_at']) hub_inputs_df['hub_id_at'] = hub_inputs_df['hub_id_at'].apply(wf_core_data.utils.to_singleton) hub_inputs_df = hub_inputs_df.astype({ 'hub_input_id_at': 'string', 'hub_id_at': 'string', 'include_hub_in_reporting': 'bool', 'hub_data_pending': 'bool' }) hub_inputs_df.set_index('hub_input_id_at', inplace=True) return hub_inputs_df def convert_excluded_classroom_inputs_to_df(excluded_classroom_inputs): if len(excluded_classroom_inputs) == 0: return pd.DataFrame() excluded_classroom_inputs_df = pd.DataFrame( excluded_classroom_inputs, dtype='object' ) excluded_classroom_inputs_df['pull_datetime'] = pd.to_datetime(excluded_classroom_inputs_df['pull_datetime']) excluded_classroom_inputs_df['excluded_classroom_input_created_datetime_at'] = pd.to_datetime(excluded_classroom_inputs_df['excluded_classroom_input_created_datetime_at']) excluded_classroom_inputs_df = excluded_classroom_inputs_df.astype({ 'excluded_classroom_input_id_at': 'string', 'school_id_tc': 'int', 'classroom_id_tc': 'int' }) excluded_classroom_inputs_df.set_index('excluded_classroom_input_id_at', inplace=True) return excluded_classroom_inputs_df def convert_excluded_student_inputs_to_df(excluded_student_inputs): if len(excluded_student_inputs) == 0: return pd.DataFrame() excluded_student_inputs_df = pd.DataFrame( excluded_student_inputs, dtype='object' ) excluded_student_inputs_df['pull_datetime'] = pd.to_datetime(excluded_student_inputs_df['pull_datetime']) excluded_student_inputs_df['excluded_student_input_created_datetime_at'] = pd.to_datetime(excluded_student_inputs_df['excluded_student_input_created_datetime_at']) excluded_student_inputs_df = excluded_student_inputs_df.astype({ 'excluded_student_input_id_at': 'string', 'school_id_tc': 'int', 'student_id_tc': 'int' }) excluded_student_inputs_df.set_index('excluded_student_input_id_at', inplace=True) return excluded_student_inputs_df def convert_field_name_inputs_to_df(field_name_inputs): if len(field_name_inputs) == 0: return pd.DataFrame() field_name_inputs_df = pd.DataFrame( field_name_inputs, dtype='object' ) field_name_inputs_df['pull_datetime'] = pd.to_datetime(field_name_inputs_df['pull_datetime']) field_name_inputs_df['field_name_input_created_datetime_at'] =
pd.to_datetime(field_name_inputs_df['field_name_input_created_datetime_at'])
pandas.to_datetime
# (C) Copyright 2021 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import pandas as pd import numpy as np from itertools import permutations, combinations from collections import namedtuple, Counter from sklearn.covariance import EmpiricalCovariance from sklearn.neighbors import NearestNeighbors from sklearn.exceptions import NotFittedError from sklearn.base import clone as sk_clone from .base_estimator import IndividualOutcomeEstimator from scipy.optimize import linear_sum_assignment from scipy.spatial import distance KNN = namedtuple("KNN", "learner index") # scipy distance routine requires matrix of valid numerical distances # we use `VERY_LARGE_NUMBER` to represent an infinite distance VERY_LARGE_NUMBER = np.finfo('d').max def majority_rule(x): return Counter(x).most_common(1)[0][0] class Matching(IndividualOutcomeEstimator): def __init__( self, propensity_transform=None, caliper=None, with_replacement=True, n_neighbors=1, matching_mode="both", metric="mahalanobis", knn_backend="sklearn", estimate_observed_outcome=False, ): """Match treatment and control samples with similar covariates. Args: propensity_transform (causallib.transformers.PropensityTransformer): an object for data preprocessing which adds the propensity score as a feature (default: None) caliper (float) : maximal distance for a match to be accepted. If not defined, all matches will be accepted. If defined, some samples may not be matched and their outcomes will not be estimated. (default: None) with_replacement (bool): whether samples can be used multiple times for matching. If set to False, the matching process will optimize the linear sum of distances between pairs of treatment and control samples and only `min(N_treatment, N_control)` samples will be estimated. Matching with no replacement does not make use of the `fit` data and is therefore not implemented for out-of-sample data (default: True) n_neighbors (int) : number of nearest neighbors to include in match. Must be 1 if `with_replacement` is `False.` If larger than 1, the estimate is calculated using the `regress_agg_function` or `classify_agg_function` across the `n_neighbors`. Note that when the `caliper` variable is set, some samples will have fewer than `n_neighbors` matches. (default: 1). matching_mode (str) : Direction of matching: `treatment_to_control`, `control_to_treatment` or `both` to indicate which set should be matched to which. All sets are cross-matched in `match` and when `with_replacement` is `False` all matching modes coincide. With replacement there is a difference. metric (str) : Distance metric string for calculating distance between samples. Note: if an external built `knn_backend` object with a different metric is supplied, `metric` needs to be changed to reflect that, because `Matching` will set its inverse covariance matrix if "mahalanobis" is set. (default: "mahalanobis", also supported: "euclidean") knn_backend (str or callable) : Backend to use for nearest neighbor search. Options are "sklearn" or a callable which returns an object implementing `fit`, `kneighbors` and `set_params` like the sklearn `NearestNeighbors` object. (default: "sklearn"). estimate_observed_outcome (bool) : Whether to allow a match of a sample to a sample other than itself when looking within its own treatment value. If True, the estimated potential outcome for the observed outcome may differ from the true observed outcome. (default: False) Attributes: classify_agg_function (callable) : Aggregating function for outcome estimation when classifying. (default: majority_rule) Usage is determined by type of `y` during `fit` regress_agg_function (callable) : Aggregating function for outcome estimation when regressing or predicting prob_a. (default: np.mean) Usage is determined by type of `y` during `fit` treatments_ (pd.DataFrame) : DataFrame of treatments (created after `fit`) outcomes_ (pd.DataFrame) : DataFrame of outcomes (created after `fit`) match_df_ (pd.DataFrame) : Dataframe of most recently calculated matches. For details, see `match`. (created after `match`) samples_used_ (pd.Series) : Series with count of samples used during most recent match. Series includes a count for each treatment value. (created after `match`) """ self.propensity_transform = propensity_transform self.covariance_conditioner = EmpiricalCovariance() self.caliper = caliper self.with_replacement = with_replacement self.n_neighbors = n_neighbors self.matching_mode = matching_mode self.metric = metric # if classify task, default aggregation function is majority self.classify_agg_function = majority_rule # if regress task, default aggregation function is mean self.regress_agg_function = np.mean self.knn_backend = knn_backend self.estimate_observed_outcome = estimate_observed_outcome def fit(self, X, a, y, sample_weight=None): """Load the treatments and outcomes and fit search trees. Applies transform to covariates X, initializes search trees for each treatment value for performing nearest neighbor searches. Note: Running `fit` a second time overwrites any information from previous `fit or `match` and re-fits the propensity_transform object. Args: X (pd.DataFrame): DataFrame of shape (n,m) containing m covariates for n samples. a (pd.Series): Series of shape (n,) containing discrete treatment values for the n samples. y (pd.Series): Series of shape (n,) containing outcomes for the n samples. sample_weight: IGNORED In signature for compatibility with other estimators. Note: `X`, `a` and `y` must share the same index. Returns: self (Matching) the fitted object """ self._clear_post_fit_variables() self.outcome_ = y.copy() self.treatments_ = a.copy() if self.propensity_transform: self.propensity_transform.fit(X, a) X = self.propensity_transform.transform(X) self.conditioned_covariance_ = self._calculate_covariance(X) self.treatment_knns_ = {} for a in self.treatments_.unique(): haystack = X[self.treatments_ == a] self.treatment_knns_[a] = self._fit_sknn(haystack) return self def _execute_matching(self, X, a): """Execute matching of samples in X according to the treatment values in a. Returns a DataFrame including all the results, which is also set as the attribute `self.match_df_`. The arguments `X` and `a` define the "needle" where the "haystack" is the data that was previously passed to fit, for matching with replacement. As such, treatment and control samples from within `X` will not be matched with each other, unless the same `X` and `a` were passed to `fit`. For matching without replacement, the `X` and `a` passed to `match` provide the "needle" and the "haystack". If the attribute `caliper` is set, the matches are limited to those with a distance less than `caliper`. This function ignores the existing `match_df_` and will overwrite it. It is thus useful for if you have changed the settings and need to rematch the samples. For most applications, the `match` function is more convenient. Args: X (pd.DataFrame): DataFrame of shape (n,m) containing m covariates for n samples. a (pd.Series): Series of shape (n,) containing discrete treatment values for the n samples. Note: The args are assumed to share the same index. Returns: match_df: The resulting matches DataFrame is indexed so that ` match_df.loc[treatment_value, sample_id]` has columns `matches` and `distances` containing lists of indices to samples and the respective distances for the matches discovered for `sample_id` from within the fitted samples with the given `treatment_value`. The indices in the `matches` column are from the fitted data, not the X argument in `match`. If `sample_id` had no match, `match_df.loc[treatment_value, sample_id].matches = []`. The DataFrame has shape (n* len(a.unique()), 2 ). Raises: NotImplementedError: Raised when with_replacement is False and n_neighbors is not 1. """ if self.n_neighbors != 1 and not self.with_replacement: raise NotImplementedError( "Matching more than one neighbor is only implemented for" "no-replacement" ) if self.propensity_transform: X = self.propensity_transform.transform(X) if self.with_replacement: self.match_df_ = self._withreplacement_match(X, a) else: self.match_df_ = self._noreplacement_match(X, a) sample_id_name = X.index.name if X.index.name is not None else "sample_id" self.match_df_.index.set_names( ["match_to_treatment", sample_id_name], inplace=True ) # we record the number of samples that were successfully matched of # each treatment value self.samples_used_ = self._count_samples_used_by_treatment_value(a) return self.match_df_ def estimate_individual_outcome( self, X, a, y=None, treatment_values=None, predict_proba=True, dropna=True ): """ Calculate the potential outcome for each sample and treatment value. Execute match and calculate, for each treatment value and each sample, the expected outcome. Note: Out of sample estimation for matching without replacement requires passing a `y` vector here. If no 'y' is passed here, the values received by `fit` are used, and if the estimation indices are not a subset of the fitted indices, the estimation will fail. If the attribute `estimate_observed_outcome` is `True`, estimates will be calculated for the observed outcomes as well. If not, then the observed outcome will be passed through from the corresponding element of `y` passed to `fit`. Args: X (pd.DataFrame): DataFrame of shape (n,m) containing m covariates for n samples. a (pd.Series): Series of shape (n,) containing discrete treatment values for the n samples. y (pd.Series): Series of shape (n,) containing outcome values for n samples. This is only used when `with_replacemnt=False`. Otherwise, the outcome values passed to `fit` are used. predict_proba (bool) : whether to output classifications or probabilties for a classification task. If set to False and data is non-integer, a warning is issued. (default True) dropna (bool) : For samples that were unmatched due to caliper restrictions, drop from outcome_df leading to a potentially smaller sized output, or include them as NaN. (default: True) treatment_values : IGNORED Note: The args are assumed to share the same index. Returns: outcome_df (pd.DataFrame) """ match_df = self.match(X, a, use_cached_result=True) outcome_df = self._aggregate_match_df_to_generate_outcome_df( match_df, a, predict_proba) outcome_df = self._filter_outcome_df_by_matching_mode(outcome_df, a) if outcome_df.isna().all(axis=None): raise ValueError("Matching was not successful and no outcomes can" "be estimated. Check caliper value.") if dropna: outcome_df = outcome_df.dropna() return outcome_df def match(self, X, a, use_cached_result=True, successful_matches_only=False): """Matching the samples in X according to the treatment values in a. Returns a DataFrame including all the results, which is also set as the attribute `self.match_df_`. The arguments `X` and `a` define the "needle" where the "haystack" is the data that was previously passed to fit, for matching with replacement. As such, treatment and control samp les from within `X` will not be matched with each other, unless the same `X` and `a` were passed to `fit`. For matching without replacement, the `X` and `a` passed to `match` provide the "needle" and the "haystack". If the attribute `caliper` is set, the matches are limited to those with a distance less than `caliper`. Args: X (pd.DataFrame): DataFrame of shape (n,m) containing m covariates for n samples. a (pd.Series): Series of shape (n,) containing discrete treatment values for the n samples. use_cached_result (bool): Whether or not to return the `match_df` from the most recent matching operation. The cached result will only be used if the sample indices of `X` and those of `match_df` are identical, otherwise it will rematch. successful_matches_only (bool): Whether or not to filter the matches to those which matched successfully. If set to `False`, the resulting DataFrame will have shape (n* len(a.unique()), 2 ), otherwise it may have a smaller shape due to unsuccessful matches. Note: The args are assumed to share the same index. Returns: match_df: The resulting matches DataFrame is indexed so that ` match_df.loc[treatment_value, sample_id]` has columns `matches` and `distances` containing lists of indices to samples and the respective distances for the matches discovered for `sample_id` from within the fitted samples with the given `treatment_value`. The indices in the `matches` column are from the fitted data, not the X argument in `match`. If `sample_id` had no match, `match_df.loc[treatment_value, sample_id].matches = []`. The DataFrame has shape (n* len(a.unique()), 2 ), if `successful_matches_only` is set to `False. Raises: NotImplementedError: Raised when with_replacement is False and n_neighbors is not 1. """ cached_result_available = (hasattr(self, "match_df_") and X.index.equals(self.match_df_.loc[0].index)) if not (use_cached_result and cached_result_available): self._execute_matching(X, a) return self._get_match_df(successful_matches_only=successful_matches_only) def matches_to_weights(self, match_df=None): """Calculate weights based on a given set of matches. For each matching from one treatment value to another, a weight vector is generated. The weights are calculated as the number of times a sample was selected in a matching, with each occurrence weighted according to the number of other samples in that matching. The weights can be used to estimate outcomes or to check covariate balancing. The function can only be called after `match` has been run. Args: match_df (pd.DataFrame) : a DataFrame of matches returned from `match`. If not supplied, will use the `match_df_` attribute if available, else raises ValueError. Will not execute `match` to generate a `match_df`. Returns: weights_df (pd.DataFrame): DataFrame of shape (n,M) where M is the number of permutations of `a.unique()`. """ if match_df is None: match_df = self._get_match_df(successful_matches_only=False) match_permutations = sorted(permutations(self.treatments_.unique())) weights_df = pd.DataFrame([ self._matches_to_weights_single_matching(s, t, match_df) for s, t in match_permutations],).T return weights_df def get_covariates_of_matches(self, s, t, covariates): """ Look up covariates of closest matches for a given matching. Using `self.match_df_` and the supplied `covariates`, look up the covariates of the last match. The function can only be called after `match` has been run. Args: s (int) : source treatment value t (int) : target treatment value covariates (pd.DataFrame) : The same covariates which were passed to `fit`. Returns: covariate_df (pd.DataFrame) : a DataFrame of size (n_matched_samples, n_covariates * 3 + 2) with the covariate values of the sample, covariates of its match, calculated distance and number of neighbors found within the given caliper (with no caliper this will equal self.n_neighbors ) """ match_df = self._get_match_df() subdf = match_df.loc[s][self.treatments_ == t] sample_id_name = subdf.index.name def get_covariate_difference_from_nearest_match(source_row_index): j = subdf.loc[source_row_index].matches[0] delta_series = pd.Series( covariates.loc[source_row_index] - covariates.loc[j]) source_row = covariates.loc[j].copy() source_row.at[sample_id_name] = j target_row = covariates.loc[source_row_index].copy() target_row = target_row covariate_differences = pd.concat( { t: target_row, s: source_row, "delta": delta_series, "outcomes": pd.Series( {t: self.outcome_.loc[source_row_index], s: self.outcome_.loc[j]} ), "match": pd.Series( dict( n_neighbors=len( subdf.loc[source_row_index].matches), distance=subdf.loc[source_row_index].distances[0], ) ), } ) return covariate_differences covdf = pd.DataFrame( data=[get_covariate_difference_from_nearest_match(i) for i in subdf.index], index=subdf.index ) covdf = covdf.reset_index() cols = covdf.columns covdf.columns = pd.MultiIndex.from_tuples( [(t, sample_id_name)] + list(cols[1:])) return covdf def _clear_post_fit_variables(self): for var in list(vars(self)): if var[-1] == "_": self.__delattr__(var) def _calculate_covariance(self, X): if len(X.shape) > 1 and X.shape[1] > 1: V_list = [] for a in self.treatments_.unique(): X_at_a = X[self.treatments_ == a].copy() current_V = self.covariance_conditioner.fit(X_at_a).covariance_ V_list.append(current_V) # following Imbens&Rubin, we average across treatment groups V = np.mean(V_list, axis=0) else: # for 1d data revert to euclidean metric V = np.array(1).reshape(1, 1) return V def _aggregate_match_df_to_generate_outcome_df(self, match_df, a, predict_proba): agg_function = self._get_agg_function(predict_proba) def outcome_from_matches_by_idx(x): return agg_function(self.outcome_.loc[x]) outcomes = {} for i in sorted(a.unique()): outcomes[i] = match_df.loc[i].matches.apply( outcome_from_matches_by_idx) outcome_df = pd.DataFrame(outcomes) return outcome_df def _get_match_df(self, successful_matches_only=True): if not hasattr(self, "match_df_") or self.match_df_ is None: raise NotFittedError("You need to run `match` first") match_df = self.match_df_.copy() if successful_matches_only: match_df = match_df[match_df.matches.apply(bool)] if match_df.empty: raise ValueError( "Matching was not successful and no outcomes can be " "estimated. Check caliper value." ) return match_df def _filter_outcome_df_by_matching_mode(self, outcome_df, a): if self.matching_mode == "treatment_to_control": outcome_df = outcome_df[a == 1] elif self.matching_mode == "control_to_treatment": outcome_df = outcome_df[a == 0] elif self.matching_mode == "both": pass else: raise NotImplementedError( "Matching mode {} is not implemented. Please select one of " "'treatment_to_control', 'control_to_treatment, " "or 'both'.".format(self.matching_mode) ) return outcome_df def _get_agg_function(self, predict_proba): if predict_proba: agg_function = self.regress_agg_function else: agg_function = self.classify_agg_function try: isoutputinteger = np.allclose( self.outcome_.apply(int), self.outcome_) if not isoutputinteger: warnings.warn( "Classifying non-categorical outcomes. " "This is probably a mistake." ) except: warnings.warn( "Unable to detect whether outcome is integer-like. ") return agg_function def _instantiate_nearest_neighbors_object(self): backend = self.knn_backend if backend == "sklearn": backend_instance = NearestNeighbors(algorithm="auto") elif callable(backend): backend_instance = backend() self.metric = backend_instance.metric elif hasattr(backend, "fit") and hasattr(backend, "kneighbors"): backend_instance = sk_clone(backend) self.metric = backend_instance.metric else: raise NotImplementedError( "`knn_backend` must be either an NearestNeighbors-like object," " a callable returning such an object, or the string \"sklearn\"") backend_instance.set_params(**self._get_metric_dict()) return backend_instance def _fit_sknn(self, target_df): """ Fit scikit-learn NearestNeighbors object with samples in target_df. Fits object, adds metric parameters and returns namedtuple which also includes DataFrame indices so that identities can looked up. Args: target_df (pd.DataFrame) : DataFrame of covariates to fit Returns: KNN (namedtuple) : Namedtuple with members `learner` and `index` containing the fitted sklearn object and an index lookup vector, respectively. """ target_array = target_df.values sknn = self._instantiate_nearest_neighbors_object() target_array = self._ensure_array_columnlike(target_array) sknn.fit(target_array) return KNN(sknn, target_df.index) @staticmethod def _ensure_array_columnlike(target_array): if len(target_array.shape) < 2 or target_array.shape[1] == 1: target_array = target_array.reshape(-1, 1) return target_array def _get_metric_dict( self, VI_in_metric_params=True, ): metric_dict = dict(metric=self.metric) if self.metric == "mahalanobis": VI = np.linalg.inv(self.conditioned_covariance_) if VI_in_metric_params: metric_dict["metric_params"] = {"VI": VI} else: metric_dict["VI"] = VI return metric_dict def _kneighbors(self, knn, source_df): """Lookup neighbors in knn object. Args: knn (namedtuple) : knn named tuple to look for neighbors in. The object has `learner` and `index` attributes to reference the original df index. source_df (pd.DataFrame) : a DataFrame of source data points to use as "needles" for the knn "haystack." Returns: match_df (pd.DataFrame) : a DataFrame of matches """ source_array = source_df.values # 1d data must be in shape (-1, 1) for sklearn.knn source_array = self._ensure_array_columnlike(source_array) distances, neighbor_array_indices = knn.learner.kneighbors( source_array, n_neighbors=self.n_neighbors ) return self._generate_match_df( source_df, knn.index, distances, neighbor_array_indices ) def _generate_match_df( self, source_df, target_df_index, distances, neighbor_array_indices ): """ Take results of matching and build into match_df DataFrame. For clarity we'll call the samples that are being matched "needles" and the set of samples that they looked for matches in the "haystack". Args: source_df (pd.DataFrame) : Covariate dataframe of N "needles" target_df_index (np.array) : An array of M indices of the haystack samples in their original dataframe. distances (np.array) : An array of N arrays of floats of length K where K is `self.n_neighbors`. neighbor_array_indices (np.array) : An array of N arrays of ints of length K where K is `self.n_neighbors`. """ # target is the haystack, source is the needle(s) # translate array indices back to original indices matches_dict = {} for source_idx, distance_row, neighbor_array_index_row in zip( source_df.index, distances, neighbor_array_indices ): neighbor_df_indices = \ target_df_index[neighbor_array_index_row.flatten()] if self.caliper is not None: neighbor_df_indices = [ n for i, n in enumerate(neighbor_df_indices) if distance_row[i] < self.caliper ] distance_row = [d for d in distance_row if d < self.caliper] matches_dict[source_idx] = dict( matches=list(neighbor_df_indices), distances=list(distance_row) ) # convert dict of dicts like { 1: {'matches':[], 'distances':[]}} to df return
pd.DataFrame(matches_dict)
pandas.DataFrame
from clean2 import* import pandas as pd import matplotlib.pyplot as plt import math import datetime import time def main(): loop_set=[3,5] set3=[] #labels scaled at different window sizes set4=[] #labels without scaling for i in range(0,len(loop_set)): set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'0']) set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'1']) set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'2']) set4.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])]) data_window=pd.DataFrame() data_window_labels=pd.DataFrame() final_data=pd.DataFrame() predictors_1=pd.DataFrame() predictors=pd.DataFrame() predictors_final=pd.DataFrame() data_copy_labels=pd.DataFrame() data_predict=pd.DataFrame() close_win=pd.DataFrame() data=pd.DataFrame() data_copy=pd.DataFrame() labe_train=pd.DataFrame() labe_test=pd.DataFrame() data_la=pd.DataFrame() data_confr=pd.DataFrame() final_data.loc[0,'predicted_close']=0 final_data.loc[0,'predicted_close_high']=0 final_data.loc[0,'predicted_close_low']=0 now=datetime.datetime.now() day=now.strftime('%d') hour=now.strftime('%H') now=now.strftime('%M') size0=1999 #a too small size0 can lead to insufficient data to be elaborated now1=int(day)*1440+int(hour)*60+int(now)+size0 now=int(day)*1440+int(hour)*60+int(now) set_windows=[7,8,8.5] starters=[] size_=size0-15*loop_set[len(loop_set)-1] for i in set_windows: starters.extend([size_-int(i*size_/9)]) delay_max_window=20 count=0 count1=0 lab_tra=0 x=[] y=[] yy=[] ya=[] yb=[] yc=[] x.extend([count1]) plt.ion() fig=plt.figure() ax1=fig.add_subplot(1,1,1) from sklearn.externals import joblib gbrt_fin=joblib.load('gbrt_final_close') from sklearn.preprocessing import StandardScaler scaler=StandardScaler() while now1-now>0: size=now1-int(now) now=datetime.datetime.now() d=now.strftime('%d') h=now.strftime('%H') now=now.strftime('%M') now=int(d)*1440+int(h)*60+int(now) data_cycle=data_creator('BTC','EUR',size,1) data=data.shift(-(size)) data.drop(data.tail(size+1).index,inplace=True) frame_cycle=[data,data_cycle] data=pd.concat(frame_cycle) data=data.reset_index() data=data.drop(['index'],axis=1) data_feat=pd.DataFrame() data_feat=data.copy() data_feat=data_feat.iloc[len(data_feat)-size0-1:,:] data_feat=data_feat.reset_index() data_feat=data_feat.drop(['index'],axis=1) last_data=size+1 seconds=datetime.datetime.now() seconds=seconds.strftime('%S') for i in range(0,len(loop_set)): short_window=loop_set[i] window1=2*loop_set[i] window2=4*loop_set[i] window3=6*loop_set[i] window4=10*loop_set[i] window5=15*loop_set[i] local_variance_window=int(round(1+short_window/2)) slope_window=int(round(1+(short_window/2))) #Labels if last_data == len(data_feat): movavfun=total_movavg_predict(data_feat,'close',short_window,window1,window2,window3,window4,window5) avg_close1=total_movavg(data_feat,'close',short_window,window1,window2,window3,window4,window5) #Features short_window=int(round(1+short_window/2)) window1=int(round(1+window1/2)) window2=int(round(1+window2/2)) window3=int(round(1+window3/2)) window4=int(round(1+window4/2)) window5=int(round(1+window5/2)) local_variance_window=int(round(1+local_variance_window/2)) slope_window=int(round(1+slope_window/2)) avg_close=total_movavg(data_feat,'close',short_window,window1,window2,window3,window4,window5) avg_close_root=movavg(data_feat,'close',short_window) local_variance_close=local_msq(data_feat,'close',avg_close,local_variance_window) msroot_close=msroot(data_feat,'close',avg_close_root,short_window) entropy_close=entropy(data_feat,'close',msroot_close,short_window,size) local_entropy_close=entropy(data_feat,'close',local_variance_close,short_window,size) avg_entropy_close=movavg(data_feat,entropy_close[1],short_window) slope_close=slope(data_feat,'close',slope_window) avg_slope=total_movavg(data_feat,slope_close,short_window,window1,window2,window3,window4,window5) avg_slope_root=movavg(data_feat,slope_close,short_window) local_variance_slope=local_msq(data_feat,slope_close,avg_slope,local_variance_window) msroot_slope=msroot(data_feat,slope_close,avg_slope_root,short_window) entropy_slope=entropy(data_feat,slope_close,msroot_slope,short_window,size) local_entropy_slope=entropy(data_feat,slope_close,local_variance_slope,short_window,size) avg_entropy_slope=movavg(data_feat,entropy_slope[1],short_window) data_feat['high_close'+str(loop_set[i])]=data_feat[avg_close]+data_feat[local_variance_close] avg_high=total_movavg(data_feat,'high_close'+str(loop_set[i]),short_window,window1,window2,window3,window4,window5) avg_high_root=movavg(data_feat,'high_close'+str(loop_set[i]),short_window) local_variance_high=local_msq(data_feat,'high_close'+str(loop_set[i]),avg_high,local_variance_window) msroot_high=msroot(data_feat,'high_close'+str(loop_set[i]),avg_high_root,short_window) entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),msroot_high,short_window,size) local_entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),local_variance_high,short_window,size) avg_entropy_high=movavg(data_feat,entropy_high[1],short_window) data_feat['low_close'+str(loop_set[i])]=data_feat[avg_close]-data_feat[local_variance_close] avg_low=total_movavg(data_feat,'low_close'+str(loop_set[i]),short_window,window1,window2,window3,window4,window5) avg_low_root=movavg(data_feat,'low_close'+str(loop_set[i]),short_window) local_variance_low=local_msq(data_feat,'low_close'+str(loop_set[i]),avg_high,local_variance_window) msroot_low=msroot(data_feat,'low_close'+str(loop_set[i]),avg_low_root,short_window) entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),msroot_low,short_window,size) local_entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),local_variance_low,short_window,size) avg_entropy_low=movavg(data_feat,entropy_low[1],short_window) else: #Labels movavfun=total_movavg_predict_cycle(data_feat,'close',last_data,short_window,window1,window2,window3,window4,window5) avg_close1=total_movavg_cycle(data_feat,'close',last_data,short_window,window1,window2,window3,window4,window5) #Features short_window=int(round(1+short_window/2)) window1=int(round(1+window1/2)) window2=int(round(1+window2/2)) window3=int(round(1+window3/2)) window4=int(round(1+window4/2)) window5=int(round(1+window5/2)) local_variance_window=int(round(1+local_variance_window/2)) slope_window=int(round(1+slope_window/2)) avg_close=total_movavg_cycle(data_feat,'close',last_data,short_window,window1,window2,window3,window4,window5) avg_close_root=movavg_cycle(data_feat,'close',short_window,last_data) local_variance_close=local_msq_cycle(data_feat,'close',avg_close,local_variance_window,last_data) msroot_close=msroot(data_feat,'close',avg_close_root,short_window) entropy_close=entropy(data_feat,'close',msroot_close,short_window,size) local_entropy_close=entropy(data_feat,'close',local_variance_close,short_window,size) avg_entropy_close=movavg_cycle(data_feat,entropy_close[1],short_window,last_data) slope_close=slope_cycle(data_feat,'close',slope_window,last_data) avg_slope=total_movavg_cycle(data_feat,slope_close,last_data,short_window,window1,window2,window3,window4,window5) avg_slope_root=movavg_cycle(data_feat,slope_close,short_window,last_data) local_variance_slope=local_msq_cycle(data_feat,slope_close,avg_slope,local_variance_window,last_data) msroot_slope=msroot(data_feat,slope_close,avg_slope_root,short_window) entropy_slope=entropy(data_feat,slope_close,msroot_slope,short_window,size) local_entropy_slope=entropy(data_feat,slope_close,local_variance_slope,short_window,size) avg_entropy_slope=movavg_cycle(data_feat,entropy_slope[1],short_window,last_data) data_feat['high_close'+str(loop_set[i])]=data_feat[avg_close]+data_feat[local_variance_close] avg_high=total_movavg_cycle(data_feat,'high_close'+str(loop_set[i]),last_data,short_window,window1,window2,window3,window4,window5) avg_high_root=movavg_cycle(data_feat,'high_close'+str(loop_set[i]),short_window,last_data) local_variance_high=local_msq_cycle(data_feat,'high_close'+str(loop_set[i]),avg_high,local_variance_window,last_data) msroot_high=msroot(data_feat,'high_close'+str(loop_set[i]),avg_high_root,short_window) entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),msroot_high,short_window,size) local_entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),local_variance_high,short_window,size) avg_entropy_high=movavg_cycle(data_feat,entropy_high[1],short_window,last_data) data_feat['low_close'+str(loop_set[i])]=data_feat[avg_close]-data_feat[local_variance_close] avg_low=total_movavg_cycle(data_feat,'low_close'+str(loop_set[i]),last_data,short_window,window1,window2,window3,window4,window5) avg_low_root=movavg_cycle(data_feat,'low_close'+str(loop_set[i]),short_window,last_data) local_variance_low=local_msq_cycle(data_feat,'low_close'+str(loop_set[i]),avg_high,local_variance_window,last_data) msroot_low=msroot(data_feat,'low_close'+str(loop_set[i]),avg_low_root,short_window) entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),msroot_low,short_window,size) local_entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),local_variance_low,short_window,size) avg_entropy_low=movavg_cycle(data_feat,entropy_low[1],short_window,last_data) if last_data == len(data_feat): data_labels=pd.DataFrame() labels(data_labels,data_feat,'close',loop_set) lista=list(data_labels.columns.values) quantity=int(round((loop_set[len(loop_set)-1]/2)+1)) if last_data != len(data_feat): data_final=data_feat.iloc[len(data_feat)-(size+quantity+1):,:] data.drop(data.tail(quantity+size+1).index,inplace=True) else: data_final=data_feat.iloc[len(data_feat)-(size+1):,:] data.drop(data.tail(size+1).index,inplace=True) frame0=[data,data_final] data=pd.concat(frame0) now1=datetime.datetime.now() d1=now1.strftime('%d') h1=now1.strftime('%H') m1=now1.strftime('%M') seconds1=now1.strftime('%S') now1=int(d1)*1440+int(h1)*60+int(m1) size1=now1-int(now) difsec=int(seconds1)+60*size1-int(seconds) if size1==1 and 60-int(seconds1)<int(difsec/size): time.sleep(60-int(seconds1)+1) now1=datetime.datetime.now() d1=now1.strftime('%d') h1=now1.strftime('%H') m1=now1.strftime('%M') now1=int(d1)*1440+int(h1)*60+int(m1) print(now1) print('i waited a little') print(int(difsec/size)) data_work=data.copy() data_copy_labels=pd.DataFrame() labels(data_copy_labels,data_work,'close',loop_set) clean_labels(data_work,'close',loop_set) lista=list(data_labels.columns.values) data_work=data_work.dropna() data_work=data_work.reset_index() data_work=data_work.drop(['index'],axis=1) len1=starters[0]+21+150 data_work=data_work.iloc[len(data_work)-starters[0]-21-150:,:] data_copy_labels=data_copy_labels.iloc[len(data_copy_labels)-starters[0]-21-150:,:] data_work=data_work.reset_index() data_work=data_work.drop(['index'],axis=1) data_copy_labels=data_copy_labels.reset_index() data_copy_labels=data_copy_labels.drop(['index'],axis=1) len2=len(data_work) if len1 != len2: print('Warning, data_work length is varying!') data_confr['totalmovavgclose'+str(loop_set[0])+'_'+str(15*loop_set[0])]=data_work['totalmovavgclose'+str(loop_set[0])+'_'+str(15*loop_set[0])] data_work=data_work.drop(['totalmovavgclose'+str(loop_set[0])+'_'+str(15*loop_set[0])],axis=1) data_work=data_work.drop(['totalmovavgclose'+str(loop_set[1])+'_'+str(15*loop_set[1])],axis=1) data_work=data_work.drop(['date'],axis=1) data_work=data_work.drop(['time'],axis=1) data_iterator=pd.DataFrame() for q in starters: for h in range(0,len(lista)): name=lista[h] data_iterator.loc[0,'variance_pred'+str(starters.index(q))+name]=0 data_iterator.loc[0,'variance_gbrt'+str(starters.index(q))+name]=0 data_iterator.loc[0,'variance_ada'+str(starters.index(q))+name]=0 data_iterator.loc[0,'counter'+str(starters.index(q))+name]=0 if close_win.empty: true_features =
pd.read_csv('folder address'+'true_features.txt')
pandas.read_csv
from pathlib import Path from typing import Dict, List, Optional, Sequence, Tuple, Union import numpy as np import pandas as pd import pytorch_lightning as pl import torch import torch.nn.functional as F from omegaconf.dictconfig import DictConfig from sklearn.model_selection import train_test_split from torch.nn import CrossEntropyLoss, Module from torch.optim import AdamW, Optimizer from torch.optim.lr_scheduler import ReduceLROnPlateau, OneCycleLR from torch.tensor import Tensor from torch.utils.data import DataLoader, Dataset from torchsampler import ImbalancedDatasetSampler from zindi_keyword_spotter.dataset import ZindiAudioDataset from zindi_keyword_spotter.focal_loss import FocalLoss class PLClassifier(pl.LightningModule): def __init__( self, model: Module, loss_name: str, lr: float, wd: float, scheduler: Optional[str], total_steps: int, weights: Optional[Tensor] = None, val_weights: Optional[Tensor] = None, loss_params: Optional[Dict[str, float]] = None, ) -> None: super().__init__() self.model = model self.lr = lr self.wd = wd self.scheduler = scheduler self.total_steps = total_steps self.probs: Optional[np.ndarray] = None # lb metric is log loss self.val_criterion = CrossEntropyLoss(weight=val_weights) if loss_name == 'ce': self.criterion = CrossEntropyLoss(weight=weights) elif loss_name == 'focal': gamma = loss_params['focal_gamma'] self.criterion = FocalLoss(alpha=weights, gamma=gamma) def forward(self, x: Tensor) -> Tensor: return self.model(x) def training_step(self, batch, batch_idx: int) -> Tensor: x, y = batch y_hat = self(x) loss = self.criterion(y_hat, y) self.log('train_loss', loss) return loss def validation_step(self, batch, batch_idx: int) -> Tensor: x, y = batch y_hat = self(x) loss = self.val_criterion(y_hat, y) self.log('val_loss', loss, prog_bar=True) return loss def test_step(self, batch, batch_idx: int) -> Tensor: return self(batch).cpu() def test_epoch_end(self, outputs: List[np.ndarray]) -> None: logits = torch.vstack(outputs) self.probs = F.softmax(logits, dim=1).numpy() def configure_optimizers(self) -> Optional[Union[Optimizer, Sequence[Optimizer], Dict, Sequence[Dict], Tuple[List, List]]]: optimizer = AdamW(self.parameters(), lr=self.lr, weight_decay=self.wd) if self.scheduler is None: return optimizer elif self.scheduler == 'plateau': return { 'optimizer': optimizer, 'lr_scheduler': ReduceLROnPlateau(optimizer, factor=0.1, patience=25, eps=1e-4, cooldown=0, min_lr=2e-7, verbose=True), 'monitor': 'val_loss', } elif self.scheduler == '1cycle': return { 'optimizer': optimizer, 'lr_scheduler': OneCycleLR(optimizer, max_lr=10**2 * self.lr, total_steps=self.total_steps) } def callback_get_label(dataset: ZindiAudioDataset, idx: int) -> int: label2idx = dataset.label2idx return label2idx[dataset.labels[idx]] class ZindiDataModule(pl.LightningDataModule): def __init__( self, cfg: DictConfig, data_dir: Path, log_dir: Path, label2idx: Optional[Dict[str, int]] = None, train_df: Optional[pd.DataFrame] = None, test_df: Optional[pd.DataFrame] = None, ) -> None: super().__init__() self.pad_length = cfg.pad_length self.batch_size = cfg.batch_size self.data_dir = data_dir self.log_dir = log_dir self.val_type = cfg.val_type self.train_utts = cfg.train_utts self.val_utts = cfg.val_utts self.transforms_config = { 'time_shift': cfg.time_shift, 'speed_tune': cfg.speed_tune, 'volume_tune': cfg.volume_tune, 'noise_vol': cfg.noise_vol, 'standartize_peaks': cfg.standartize_peaks, } self.label2idx = label2idx self.train_df = train_df self.test_df = test_df self.val_df = None self.balance_sampler = cfg.balance_sampler self.n_workers = cfg.n_workers self.train: Optional[Dataset] = None self.val: Optional[Dataset] = None self.test: Optional[Dataset] = None def create_sized_split(self) -> Tuple[pd.DataFrame, pd.DataFrame]: utt_counts = self.train_df['utt_id'].value_counts() # get utt_ids that occure only once in dataset unique_utts = utt_counts[utt_counts == 1].index.values # unique part will be divided by usual train_test_split # nonuqnie will be splitted by utt_id unique_utt_samples = self.train_df[self.train_df['utt_id'].isin(unique_utts)] nonunique_utt_sample = self.train_df[~self.train_df['utt_id'].isin(unique_utts)] train_df1, val_df1 = train_test_split(unique_utt_samples, stratify=unique_utt_samples['label'], test_size=self.val_type) train_df2 = nonunique_utt_sample[nonunique_utt_sample['utt_id'].isin(self.train_utts)] val_df2 = nonunique_utt_sample[nonunique_utt_sample['utt_id'].isin(self.val_utts)] train_df = pd.concat((train_df1, train_df2), axis=0) val_df = pd.concat((val_df1, val_df2), axis=0) return train_df, val_df def create_chess_split(self) -> Tuple[pd.DataFrame, pd.DataFrame]: # split across utts in chess order all_labels = sorted(self.train_df['label'].unique()) train_parts = [] val_parts = [] for label in all_labels: label_samples = self.train_df[self.train_df['label'] == label] label_utts = label_samples['utt_id'].value_counts().index.values for idx, utt_id in enumerate(label_utts): utt_samples = label_samples[label_samples['utt_id'] == utt_id].copy() if idx % 2 == 0: train_parts.append(utt_samples) else: val_parts.append(utt_samples) train_df = pd.concat(train_parts, axis=0, ignore_index=True) val_df =
pd.concat(val_parts, axis=0, ignore_index=True)
pandas.concat
import copy from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna import pandas._testing as tm from pandas.core.window.common import _flex_binary_moment from pandas.tests.window.common import ( Base, check_pairwise_moment, moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) import pandas.tseries.offsets as offsets @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestMoments(Base): def setup_method(self, method): self._create_data() def test_centered_axis_validation(self): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis with pytest.raises(ValueError): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis with pytest.raises(ValueError): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) def test_rolling_sum(self, raw): self._check_moment_func( np.nansum, name="sum", zero_min_periods_equal=False, raw=raw ) def test_rolling_count(self, raw): counter = lambda x: np.isfinite(x).astype(float).sum() self._check_moment_func( counter, name="count", has_min_periods=False, fill_value=0, raw=raw ) def test_rolling_mean(self, raw): self._check_moment_func(np.mean, name="mean", raw=raw) @td.skip_if_no_scipy def test_cmov_mean(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(self): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(self, f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)() tm.assert_frame_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_na_min_periods(self): # min_periods vals = Series(np.random.randn(10)) vals[4] = np.nan vals[8] = np.nan xp = vals.rolling(5, min_periods=4, center=True).mean() rs = vals.rolling(5, win_type="boxcar", min_periods=4, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "hamming": [ np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687, 13.8567, 11.81473, np.nan, np.nan, ], "triang": [ np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889, 13.38, 12.33667, np.nan, np.nan, ], "barthann": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], "bohman": [ np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267, 14.65923, 11.10401, np.nan, np.nan, ], "blackmanharris": [ np.nan, np.nan, 6.97691, 9.16438, 13.05052, 14.02156, 15.10512, 10.74574, np.nan, np.nan, ], "nuttall": [ np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559, 15.05657, 10.78514, np.nan, np.nan, ], "blackman": [ np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036, 14.57726, 11.16988, np.nan, np.nan, ], "bartlett": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_linear_range(self, win_types): # GH 8238 vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_missing_data(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, np.nan, 10.63, 14.48] ) xps = { "bartlett": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "blackman": [ np.nan, np.nan, 9.04582, 11.41536, 7.73345, 9.17869, 12.79607, 14.20036, 15.8706, 13.655, ], "barthann": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "bohman": [ np.nan, np.nan, 8.9444, 11.56327, 7.61599, 9.1764, 12.83559, 14.17267, 15.90976, 13.655, ], "hamming": [ np.nan, np.nan, 9.59321, 10.29694, 8.71384, 9.56348, 12.38009, 14.20565, 15.24694, 13.69758, ], "nuttall": [ np.nan, np.nan, 8.47693, 12.2821, 7.04618, 9.16786, 13.02671, 14.03673, 16.08759, 13.65553, ], "triang": [ np.nan, np.nan, 9.33167, 9.76125, 9.28667, 10.34667, 12.00556, 13.82125, 14.49429, 13.765, ], "blackmanharris": [ np.nan, np.nan, 8.42526, 12.36824, 6.97691, 9.16438, 13.05052, 14.02175, 16.1098, 13.65509, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, min_periods=3).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "exponential": {"tau": 10}, } vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "gaussian": [ np.nan, np.nan, 8.97297, 9.76077, 12.24763, 13.89053, 13.65671, 12.01002, np.nan, np.nan, ], "general_gaussian": [ np.nan, np.nan, 9.85011, 10.71589, 11.73161, 13.08516, 12.95111, 12.74577, np.nan, np.nan, ], "kaiser": [ np.nan, np.nan, 9.86851, 11.02969, 11.65161, 12.75129, 12.90702, 12.83757, np.nan, np.nan, ], "exponential": [ np.nan, np.nan, 9.83364, 11.10472, 11.64551, 12.66138, 12.92379, 12.83770, np.nan, np.nan, ], } xp = Series(xps[win_types_special]) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special_linear_range(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "slepian": {"width": 0.5}, "exponential": {"tau": 10}, } vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) def test_rolling_median(self, raw): self._check_moment_func(np.median, name="median", raw=raw) def test_rolling_min(self, raw): self._check_moment_func(np.min, name="min", raw=raw) a = pd.Series([1, 2, 3, 4, 5]) result = a.rolling(window=100, min_periods=1).min() expected = pd.Series(np.ones(len(a))) tm.assert_series_equal(result, expected) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).min() def test_rolling_max(self, raw): self._check_moment_func(np.max, name="max", raw=raw) a = pd.Series([1, 2, 3, 4, 5], dtype=np.float64) b = a.rolling(window=100, min_periods=1).max() tm.assert_almost_equal(a, b) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).max() @pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0]) def test_rolling_quantile(self, q, raw): def scoreatpercentile(a, per): values = np.sort(a, axis=0) idx = int(per / 1.0 * (values.shape[0] - 1)) if idx == values.shape[0] - 1: retval = values[-1] else: qlow = float(idx) / float(values.shape[0] - 1) qhig = float(idx + 1) / float(values.shape[0] - 1) vlow = values[idx] vhig = values[idx + 1] retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow) return retval def quantile_func(x): return scoreatpercentile(x, q) self._check_moment_func(quantile_func, name="quantile", quantile=q, raw=raw) def test_rolling_quantile_np_percentile(self): # #9413: Tests that rolling window's quantile default behavior # is analogous to Numpy's percentile row = 10 col = 5 idx = pd.date_range("20100101", periods=row, freq="B") df = DataFrame(np.random.rand(row * col).reshape((row, -1)), index=idx) df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) np_percentile = np.percentile(df, [25, 50, 75], axis=0) tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) @pytest.mark.parametrize("quantile", [0.0, 0.1, 0.45, 0.5, 1]) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize( "data", [ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [8.0, 1.0, 3.0, 4.0, 5.0, 2.0, 6.0, 7.0], [0.0, np.nan, 0.2, np.nan, 0.4], [np.nan, np.nan, np.nan, np.nan], [np.nan, 0.1, np.nan, 0.3, 0.4, 0.5], [0.5], [np.nan, 0.7, 0.6], ], ) def test_rolling_quantile_interpolation_options( self, quantile, interpolation, data ): # Tests that rolling window's quantile behavior is analogous to # Series' quantile for each interpolation option s = Series(data) q1 = s.quantile(quantile, interpolation) q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] if np.isnan(q1): assert np.isnan(q2) else: assert q1 == q2 def test_invalid_quantile_value(self): data = np.arange(5) s = Series(data) msg = "Interpolation 'invalid' is not supported" with pytest.raises(ValueError, match=msg): s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") def test_rolling_quantile_param(self): ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) with pytest.raises(ValueError): ser.rolling(3).quantile(-0.1) with pytest.raises(ValueError): ser.rolling(3).quantile(10.0) with pytest.raises(TypeError): ser.rolling(3).quantile("foo") def test_rolling_apply(self, raw): # suppress warnings about empty slices, as we are deliberately testing # with a 0-length Series def f(x): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) return x[np.isfinite(x)].mean() self._check_moment_func(np.mean, name="apply", func=f, raw=raw) def test_rolling_std(self, raw): self._check_moment_func(lambda x: np.std(x, ddof=1), name="std", raw=raw) self._check_moment_func( lambda x: np.std(x, ddof=0), name="std", ddof=0, raw=raw ) def test_rolling_std_1obs(self): vals = pd.Series([1.0, 2.0, 3.0, 4.0, 5.0]) result = vals.rolling(1, min_periods=1).std() expected = pd.Series([np.nan] * 5) tm.assert_series_equal(result, expected) result = vals.rolling(1, min_periods=1).std(ddof=0) expected = pd.Series([0.0] * 5) tm.assert_series_equal(result, expected) result = pd.Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() assert np.isnan(result[2]) def test_rolling_std_neg_sqrt(self): # unit test from Bottleneck # Test move_nanstd for neg sqrt. a = pd.Series( [ 0.0011448196318903589, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, ] ) b = a.rolling(window=3).std() assert np.isfinite(b[2:]).all() b = a.ewm(span=3).std() assert np.isfinite(b[2:]).all() def test_rolling_var(self, raw): self._check_moment_func(lambda x: np.var(x, ddof=1), name="var", raw=raw) self._check_moment_func( lambda x: np.var(x, ddof=0), name="var", ddof=0, raw=raw ) @td.skip_if_no_scipy def test_rolling_skew(self, raw): from scipy.stats import skew self._check_moment_func(lambda x: skew(x, bias=False), name="skew", raw=raw) @td.skip_if_no_scipy def test_rolling_kurt(self, raw): from scipy.stats import kurtosis self._check_moment_func(lambda x: kurtosis(x, bias=False), name="kurt", raw=raw) def _check_moment_func( self, static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, **kwargs, ): # inject raw if name == "apply": kwargs = copy.copy(kwargs) kwargs["raw"] = raw def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(self.series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(self.series[-50:])) frame_result = get_result(self.frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], self.frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 series = self.series[::2].resample("B").mean() frame = self.frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(series, window=win, min_periods=minp) frame_result = get_result(frame, window=win, min_periods=minp) else: series_result = get_result(series, window=win, min_periods=0) frame_result = get_result(frame, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = self.series[::2].truncate(prev_date, last_date) trunc_frame = self.frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(self.series) - 1, len(self.series)): result = get_result(self.series, len(self.series) + 1, min_periods=minp) expected = get_result(self.series, len(self.series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(self.series, len(self.series) + 1, min_periods=0) expected = get_result(self.series, len(self.series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=minp, center=True ) frame_rs = get_result( self.frame, window=25, min_periods=minp, center=True ) else: series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=0, center=True ) frame_rs = get_result(self.frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) tm.assert_frame_equal(frame_xp, frame_rs) def _rolling_consistency_cases(): for window in [1, 2, 3, 10, 20]: for min_periods in {0, 1, 2, 3, 4, window}: if min_periods and (min_periods > window): continue for center in [False, True]: yield window, min_periods, center class TestRollingMomentsConsistency(Base): def setup_method(self, method): self._create_data() # binary moments def test_rolling_cov(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(self, func): check_pairwise_moment(self.frame, "rolling", func, window=10, min_periods=5) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(self, method): series = self.frame[1] res = getattr(series.rolling(window=10), method)(self.frame) res2 = getattr(self.frame.rolling(window=10), method)(series) exp = self.frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = self.frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(self.frame.rolling(window=10), method)(frame2) exp = DataFrame( { k: getattr(self.frame[k].rolling(window=10), method)(frame2[k]) for k in self.frame } ) tm.assert_frame_equal(res3, exp) @pytest.mark.slow @pytest.mark.parametrize( "window,min_periods,center", list(_rolling_consistency_cases()) ) def test_rolling_apply_consistency( consistency_data, base_functions, no_nan_functions, window, min_periods, center ): x, is_constant, no_nans = consistency_data with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) # test consistency between rolling_xyz() and either (a) # rolling_apply of Series.xyz(), or (b) rolling_apply of # np.nanxyz() functions = base_functions # GH 8269 if no_nans: functions = no_nan_functions + base_functions for (f, require_min_periods, name) in functions: rolling_f = getattr( x.rolling(window=window, center=center, min_periods=min_periods), name, ) if ( require_min_periods and (min_periods is not None) and (min_periods < require_min_periods) ): continue if name == "count": rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) else: if name in ["cov", "corr"]: rolling_f_result = rolling_f(pairwise=False) else: rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) # GH 9422 if name in ["sum", "prod"]: tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = pd.Series(np.zeros(20)) other = pd.Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_flex_binary_moment(): # GH3155 # don't blow the stack msg = "arguments to moment function must be of type np.ndarray/Series/DataFrame" with pytest.raises(TypeError, match=msg): _flex_binary_moment(5, 6, None) def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) # and some fuzzing for _ in range(10): df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) try: assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) except AssertionError: print(res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected = Series([None, None, 1.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2a) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(quantile=0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), ], ) @td.skip_if_no_scipy def test_rolling_functions_window_non_shrinkage(f): # GH 7764 s = Series(range(4)) s_expected = Series(np.nan, index=s.index) df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=["A", "B"]) df_expected = DataFrame(np.nan, index=df.index, columns=df.columns) s_result = f(s) tm.assert_series_equal(s_result, s_expected) df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_functions_window_non_shrinkage_binary(): # corr/cov return a MI DataFrame df = DataFrame( [[1, 5], [3, 2], [3, 9], [-1, 0]], columns=Index(["A", "B"], name="foo"), index=Index(range(4), name="bar"), ) df_expected = DataFrame( columns=Index(["A", "B"], name="foo"), index=pd.MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]), dtype="float64", ) functions = [ lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), ] for f in functions: df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_skew_edge_cases(): all_nan = Series([np.NaN] * 5) # yields all NaN (0 variance) d = Series([1] * 5) x = d.rolling(window=5).skew() tm.assert_series_equal(all_nan, x) # yields all NaN (window too small) d = Series(np.random.randn(5)) x = d.rolling(window=2).skew() tm.assert_series_equal(all_nan, x) # yields [NaN, NaN, NaN, 0.177994, 1.548824] d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401]) expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824]) x = d.rolling(window=4).skew() tm.assert_series_equal(expected, x) def test_rolling_kurt_edge_cases(): all_nan = Series([np.NaN] * 5) # yields all NaN (0 variance) d = Series([1] * 5) x = d.rolling(window=5).kurt() tm.assert_series_equal(all_nan, x) # yields all NaN (window too small) d = Series(np.random.randn(5)) x = d.rolling(window=3).kurt() tm.assert_series_equal(all_nan, x) # yields [NaN, NaN, NaN, 1.224307, 2.671499] d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401]) expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499]) x = d.rolling(window=4).kurt() tm.assert_series_equal(expected, x) def test_rolling_skew_eq_value_fperr(): # #18804 all rolling skew for all equal values should return Nan a = Series([1.1] * 15).rolling(window=10).skew() assert np.isnan(a).all() def test_rolling_kurt_eq_value_fperr(): # #18804 all rolling kurt for all equal values should return Nan a = Series([1.1] * 15).rolling(window=10).kurt() assert np.isnan(a).all() def test_rolling_max_gh6297(): """Replicate result expected in GH #6297""" indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 2 datapoints on one of the days indices.append(datetime(1975, 1, 3, 6, 0)) series = Series(range(1, 7), index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() expected = Series( [1.0, 2.0, 6.0, 4.0, 5.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_max_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be max expected = Series( [0.0, 1.0, 2.0, 3.0, 20.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify median (10.0) expected = Series( [0.0, 1.0, 2.0, 3.0, 10.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).max()
tm.assert_series_equal(expected, x)
pandas._testing.assert_series_equal
# import des librairies et des datasets import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import RendererAgg import seaborn as sns import os # import et fusion des datasets ptbdb_normal = pd.read_csv("data/ptbdb_normal.csv", header=None) ptbdb_abnormal = pd.read_csv("data/ptbdb_abnormal.csv", header=None) ptbdb = pd.concat([ptbdb_normal, ptbdb_abnormal]) mitbih_train = pd.read_csv("data/mitbih_test.csv", header = None) mitbih_test = pd.read_csv("data/mitbih_test.csv", header = None) mitbih =
pd.concat([mitbih_test, mitbih_train])
pandas.concat
""" Utilities for time series preprocessing """ import numpy as np import pandas as pd def get_timeseries_at_node(node_ind, node2feature, ts_code): """ Return ts_code time series at node_ind output shape : (T, ) """ return node2feature[node_ind][ts_code] def merge_timeseries(node_indices, node2feature, ts_code): """ Return merged ts_code time series of node_indices Input: node_indices : a list of N nodes we want to consider. node2feature : node to features dictionary ts_code : a code of time series Output: ret : a merged time series (pd.DataFrame). shape=(T,N) """ ret, cols = [], [] for nid in node_indices: cols.append(node2feature[nid]['ij_loc']) ret.append(get_timeseries_at_node(nid, node2feature, ts_code)) ret = pd.DataFrame(np.array(ret).transpose()) # (T,N) ret.columns = cols return ret def add_timestamp(df, start_time="2012-06-28 21:00:00", timedelta=None): """ Return a dataframe having time stamps as indices. Input: df : (T,N) dataframe. It is an output of merge_timeseries() function. start_time : str, or pd.datetime timedelta : a list of time delta. Read 'XTIME' in the dataset. Output: ret : a dataframe with time stamps as an index column """ df['Time'] = pd.to_datetime(start_time) df['Time'] = df['Time'] +
pd.to_timedelta(timedelta, unit='m')
pandas.to_timedelta
import numpy as np import pandas as pd import neurokit2 as nk # ============================================================================= # Example 1 # ============================================================================= # Generate synthetic signals ecg = nk.ecg_simulate(duration=10, heart_rate=70) emg = nk.emg_simulate(duration=10, n_bursts=3) # Visualise biosignals
pd.DataFrame({"ECG": ecg, "EMG": emg})
pandas.DataFrame
#!/usr/bin/env python # inst: university of bristol # auth: <NAME> # mail: <EMAIL> / <EMAIL> import os import shutil from glob import glob import zipfile import numpy as np import pandas as pd import gdalutils from osgeo import osr def _secs_to_time(df, date1): df = df.copy() conversion = 86400 # 86400s = 1day df['time'] = pd.to_datetime( df['Time']/conversion, unit='D', origin=pd.Timestamp(date1)) df.set_index(df['time'], inplace=True) del df['Time'] del df['time'] return df def _hours_to_time(df, date1): df = df.copy() conversion = 24 # 24h = 1day df['time'] = pd.to_datetime( df['Time']/conversion, unit='D', origin=pd.Timestamp(date1)) df.set_index(df['time'], inplace=True) del df['Time'] del df['time'] return df def _get_lineno(filename, phrase): with open(filename, 'r') as f: for num, line in enumerate(f): if phrase in line: return num def read_mass(filename, date1='1990-01-01'): df =
pd.read_csv(filename, delim_whitespace=True)
pandas.read_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172:
pd.Timestamp("2012-10-21 00:00:00")
pandas.Timestamp
import numpy as np import pandas as pd import matplotlib.cm as cm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import seaborn as sns from scipy import stats import warnings import os from itertools import combinations import multiprocessing from multiprocessing import Pool from tqdm import tqdm from IPython.display import Markdown, display from scipy.spatial import distance from sklearn.metrics.pairwise import cosine_similarity def printmd(string): display(Markdown(string)) def pandas_df_to_markdown_table(df): fmt = ['---' for i in range(len(df.columns))] df_fmt = pd.DataFrame([fmt], columns=df.columns) df_formatted = pd.concat([df_fmt, df]) display(Markdown(df_formatted.to_csv(sep="|", index=False))) #use:df.style.applymap(color_code(1), subset=['col1','col2']) def color_code(thresh): def color_code_by_val(val): color = None if val <= thresh: color = 'red' return 'background-color: %s' % color return color_code_by_val def doInitialSettings(figsize=(5,3)): try: warnings.simplefilter("always") from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' plt.rcParams["figure.figsize"] = figsize plt.rc('axes', labelsize=14) plt.rc('xtick', labelsize=12) plt.rc('ytick', labelsize=12) pd.set_option('display.max_rows',20) pd.set_option("io.excel.xlsx.reader", "openpyxl") pd.set_option("io.excel.xlsm.reader", "openpyxl") pd.set_option("io.excel.xlsb.reader", "openpyxl") pd.set_option("io.excel.xlsx.writer", "openpyxl") pd.set_option("io.excel.xlsm.writer", "openpyxl") except: pass def printUniques(datafr,i=10): """ prints unique values in a dataframe whose nunique value <= 10 """ try: dict_=dict(datafr.nunique()) for k,v in dict_.items(): if int(v)<=i: #we don't want to see the unique items that are greater than i print("Unique items in column",k) print(datafr[k].unique(),end="\n\n") print("You may want to convert the numerics with low cardinality to categorical") except Exception as e: print(e) def printValueCount(datafr,i=10): """ prints value counts for columns whose # of unique value is less than i """ try: dict_=dict(datafr.nunique()) for k,v in dict_.items(): if int(v)<=i: print("Unique items in column",k) print(datafr[k].value_counts(dropna=False),end="\n\n") except Exception as e: print(e) def getColumnsInLowCardinality(df,i=10): #buna gerek var mı ? printUniques fakrı ne? try: dict_=dict(df.nunique()) list_=[] for k,v in dict_.items(): if int(v)<=i: list_.append(k) return list_ except Exception as e: print(e) def multicountplot(datafr,i=5,fig=(4,5),r=45, colsize=2,hue=None): """countplots for columns whose # of unique value is less than i """ try: dict_=dict(datafr.nunique()) target=[k for k,v in dict_.items() if v<=i] lng=0 if len(target)<=2: print("plot manually due to <=2 target feature") return if len(target)//colsize==len(target)/colsize: lng=len(target)//colsize else: lng=len(target)//colsize+1 fig, axes= plt.subplots(lng,colsize,figsize=fig) k=0 for i in range(lng): for j in range(colsize): if k==len(target): break elif target[k]==hue: pass else: sns.countplot(x=datafr[target[k]].fillna("Null"), ax=axes[i,j], data=datafr, hue=hue) plt.tight_layout() axes[i,j].set_xticklabels(axes[i,j].get_xticklabels(), rotation=r,ha='right') k=k+1 except Exception as e: print(e) print("You may want to increase the size of i") def ShowTopN(df,n=5): """ Works for numeric features. Even if you pass categorical features they will be disregarded """ try: for d in df.select_dtypes("number").columns: print(f"Top {n} in {d}:") print(df[d].sort_values(ascending=False).head(n)) print("---------------------------") except Exception as e: print(e) def sortAndPrintMaxMinNValues(df,columns,n=1,removeNull=True): #if n=1 returns some unusual values, we can increase n try: for c in columns: sorted_=df[c].sort_values() if removeNull==True: sorted_=sorted_.dropna() print((c,sorted_[:n].values,sorted_[-n:].values)) except Exception as e: print(e) def addStdMeanMedian(df): warnings.warn("Warning...addStdMeanMedian is depreciated. Use addCoefOfVarianceToDescribe") def addCoefOfVarianceToDescribe(df): df=df.describe().T df["mean/median"]=df["mean"]/df["50%"] df["std/mean"]=df["std"]/df["mean"] return df def outlierinfo(df,featurelist,imputestrategy="None",thresh=0.25): """ Gives Q1,Q3,IQR, outlier beginning points, mean in the boxplot, total mean. Args: imputestrategy:median, mean, mode, None """ for f in featurelist: if imputestrategy=='None': Q1 = df[f].quantile(thresh) Q3 = df[f].quantile(1-thresh) IQR = Q3-Q1 top=(Q3 + 1.5 * IQR) bottom=(Q1 - 1.5 * IQR) mbox=df[(df[f] > top) | (df[f] < bottom)][f].mean() m=df[f].mean() outliers=len(df[(df[f]>top) | (df[f]<bottom)]) else: temp=df[f].fillna(df[f].agg(imputestrategy)) Q1 = temp.quantile(thresh) Q3 = temp.quantile(1-thresh) IQR = Q3-Q1 top=(Q3 + 1.5 * IQR) bottom=(Q1 - 1.5 * IQR) mbox=temp[(temp > top) | (temp < bottom)].mean() m=temp.mean() outliers=len(temp[(temp >top) | (temp<bottom)]) print(f"{f}, Min:{df[f].min()}, Max:{df[f].max()}, Q1:{Q1:9.2f}, Q3:{Q3:9.2f}, IQR:{IQR:9.2f}, Q3+1,5*IQR:{top:9.2f}, Q1-1,5*IQR:{bottom:9.2f}, Mean within the box:{mbox:9.2f}, Total Mean:{m:9.2f}, Outliers:{outliers}",end="\n\n") def outliers_IQR(df,featurelist,imputestrategy="None",thresh=0.25,printorreturn='print'): """ This is the approach that boxplot uses, which is IQR approach. sensitive to null. the more null, the narrower box from both end. boxplot just shrinks, thus number of outliers increases. so it would be sensible to impute the nulls first. we, here, impute them temporarily just in case. Args: imputestrategy:median, mean, mode, None printorreturn:(print,return,both). if print, it prints the results, if return, it returns the list of results as a list of tuple,if both, it prints an returns """ retlist=[] for f in featurelist: if imputestrategy=='None': Q1 = df[f].quantile(thresh) Q3 = df[f].quantile(1-thresh) else: Q1 = df[f].fillna(df[f].agg(imputestrategy)).quantile(thresh) Q3 = df[f].fillna(df[f].agg(imputestrategy)).quantile(1-thresh) IQR = Q3-Q1 top=(Q3 + 1.5 * IQR) bottom=(Q1 - 1.5 * IQR) adet=len(df[(df[f] > top) | (df[f] < bottom)]) if adet>0: if printorreturn=='print': print(f"{adet} outliers exists in feature '{f}'") elif printorreturn=='return': retlist.append((f,adet)) elif printorreturn=='both': retlist.append((f,adet)) print(f"{adet} outliers exists in feature '{f}'") else: print("wrong value for printorreturn") raise if printorreturn=='return': return retlist def outliers_std(df,featurelist,n=3,imputestrategy="None",printorreturn='print'): """ if the std is higher than mean it may go negative at the bottom edge, so you cannot catch bottom outliers Args: imputestrategy:median, mean, mode, None printorreturn:(print,return,both). if print, it prints the results, if return, it returns the list of results as a list of tuple,if both, it prints an returns """ for f in featurelist: if imputestrategy=='None': top=df[f].mean()+n*df[f].std() bottom=df[f].mean()-n*df[f].std() else: top=df[f].fillna(df[f].agg(imputestrategy)).mean()+n*df[f].fillna(df[f].agg(imputestrategy)).std() bottom=df[f].fillna(df[f].agg(imputestrategy)).mean()-n*df[f].fillna(df[f].agg(imputestrategy)).std() adet=len(df[(df[f] > top) | (df[f] < bottom)]) if adet>0: if printorreturn=='print': print(f"{adet} outliers exists in feature '{f}'") elif printorreturn=='return': retlist.append((f,adet)) elif printorreturn=='both': retlist.append((f,adet)) print(f"{adet} outliers exists in feature '{f}'") else: print("wrong value for printorreturn") raise if printorreturn=='return': return retlist def outliers_zs(df,featurelist,thresh_z=3,imputestrategy="None",printorreturn='print'): """ finds the outliers to the z score. Args: imputestrategy:median, mean, mode, None printorreturn:(print,return,both). if print, it prints the results, if return, it returns the list of results as a list of tuple,if both, it prints an returns """ for f in featurelist: if imputestrategy=='None': z= np.abs(stats.zscore(df[f])) else: z= np.abs(stats.zscore(df[f].fillna(df[f].agg(imputestrategy)))) adet=len(df[np.abs(df[f])>df.iloc[np.where(z>thresh_z)][f].min()]) if adet>0: if printorreturn=='print': print(f"{adet} outliers exists in feature '{f}'") elif printorreturn=='return': retlist.append((f,adet)) elif printorreturn=='both': retlist.append((f,adet)) print(f"{adet} outliers exists in feature '{f}'") else: print("wrong value for printorreturn") raise if printorreturn=='return': return retlist def plotHistWithoutOutliers(df,fig=(12,8),thresh=0.25,imputestrategy="median",outliertreat="remove"): """this function does not change the dataframe permanently args: outliertreat: remove or cap """ df=df.select_dtypes("number") col=4 row=int(len(df.columns)/col)+1 _, axes = plt.subplots(row,col,figsize=fig) delete=row*col-len(df.columns) for d in range(delete): plt.delaxes(axes[row-1,col-d-1]) plt.suptitle("Histograms without outliers") r=0;c=0;fc=0; for f in sorted(df.columns): Q1 = df[f].fillna(df[f].agg(imputestrategy)).quantile(thresh) Q3 = df[f].fillna(df[f].agg(imputestrategy)).quantile(1-thresh) IQR = Q3-Q1 t1=(Q3 + 1.5 * IQR) t2=(Q1 - 1.5 * IQR) cond=((df[f] > t1) | (df[f] < t2)) r=int(fc/4) c=fc % 4 if outliertreat=="remove": df[~cond][f].hist(ax=axes[r,c]) elif outliertreat=="cap": s=df[f].copy() s.where(s>t2,t2,inplace=True) s.where(s<t1,t1,inplace=True) s.hist(ax=axes[r,c]) else: print("wrong value for outliertreat") raise #axes[r,c].set_xticklabels(axes[r,c].get_xticklabels(), rotation=r,ha='right') axes[r,c].set_title(f) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) fc=fc+1 def numpyValuecounts(dizi): unique, counts = np.unique(dizi, return_counts=True) return np.asarray((unique, counts)).T def findNullLikeValues(df,listofvalues=[[-1,-999],["na","yok","tanımsız","bilinmiyor","?"]]): """ df:dataframe, listofvalues: turkish words that might mean null. put your own language equivalents. first item in this list are the numeric ones, second one contains strings, default values:[[-1,-999],["na","yok","tanımsız","bilinmiyor","?"] """ t=0 for f in df.select_dtypes("number").columns: x=0 for i in listofvalues[0]: x+=len(df[df[f]==i]) t+=1 if x>0: print("{} null-like values in {}".format(x,f)) for f in df.select_dtypes("object"): x=0 for i in listofvalues[1]: try: #in case of nulls x+=len(df[df[f].str.lower()==i]) t+=1 except: pass if x>0: print("{} null-like values in {}".format(x,f)) if t==0: print("There are no null-like values") def parse_col_json(column, key): """ Args: column: string name of the column to be processed. key: string name of the dictionary key which needs to be extracted """ for index,i in zip(movies_df.index,movies_df[column].apply(json.loads)): list1=[] for j in range(len(i)): list1.append((i[j][key]))# the key 'name' contains the name of the genre movies_df.loc[index,column]=str(list1) def plotNumericsBasedOnCategorical(df,cats,nums,fig=(15,15),r=45,aggf='mean',sort=False,hueCol=None): """ <NAME>; CATPLOT YAPIYOR BU İŞİ, HW1'den kontrol et - cast and nums must be array-like. - plots will be displayed such that that each numeric feature could be tracked in the rows and categories in the columns """ cols=len(cats) rows=len(nums) c=0 f, axes = plt.subplots(rows,cols,figsize=fig) for cat in cats: r=0 for num in nums: ix=axes[r,c] if rows>1 else axes[c] if hueCol is None or hueCol==cat: if sort==True: gruplu=df.groupby(cat)[num].agg(aggf).sort_values(ascending=False) else: gruplu=df.groupby(cat)[num].agg(aggf) sns.barplot(x=gruplu.index, y=gruplu.values,ax=ix) else: if sort==True: gruplu=df.groupby([cat,hueCol])[num].agg(aggf).sort_values(ascending=False) else: gruplu=df.groupby([cat,hueCol])[num].agg(aggf) temp=gruplu.to_frame() grupludf=temp.swaplevel(0,1).reset_index() sns.barplot(x=cat, y=num,ax=ix, data=grupludf, hue=hueCol) #plt.xticks(rotation= 45) #isimler uzun olursa horizontalalignment='right' da ekle ix.set_xticklabels(ix.get_xticklabels(), rotation=r,ha='right') ix.set_title(f"{aggf.upper()} for {num}") plt.tight_layout() r=r+1 c=c+1 def countifwithConditon(df,feature,condition): print(df[df[feature].isin(df[condition][feature])].groupby(feature).size().value_counts()) def nullPlot(df): sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='viridis') def SuperInfo(df, dropna=False): """ Returns a dataframe consisting of datatypes, nuniques, #s of nulls head(1), most frequent item and its frequncy, where the column names are indices. """ dt=pd.DataFrame(df.dtypes, columns=["Type"]) dn=pd.DataFrame(df.nunique(), columns=["Nunique"]) nonnull=pd.DataFrame(df.isnull().sum(), columns=["#of Missing"]) firstT=df.head(1).T.rename(columns={0:"First"}) MostFreqI=pd.DataFrame([df[x].value_counts().head(1).index[0] for x in df.columns], columns=["MostFreqItem"],index=df.columns) MostFreqC=pd.DataFrame([df[x].value_counts().head(1).values[0] for x in df.columns], columns=["MostFreqCount"],index=df.columns) return pd.concat([dt,dn,nonnull,MostFreqI,MostFreqC,firstT],axis=1) def prepareListOfCombinationsForRelationFinder(df,i=5): dict_=dict(df.nunique()) target=[k for k,v in dict_.items() if v<=i] if len(target)>50: c=3 elif len(target)>20: c=4 else: c=5 comb=[list(combinations(target,x)) for x in range(2,c)] flat_list = [item for sublist in comb for item in sublist] return flat_list def findRelationsAmongFeatures(tpl): """ Must be used with multiprocessing module. args tpl:tuple consisting of a dataframe and a inner tuple of features of some combinations returning from 'prepareListOfCombinationsForRelationFinder' method. These tuples must be provieded as parallel in a multiprocess-based procedure. """ df,item=tpl list_=list(item) dist=df.drop_duplicates(list_)[list_] for i in list_: uns = dist[i].unique() for u in uns: if len(dist[dist[i]==u])==1: return (list_,i,uns,u) def getListOfRelationsParallel(df): if __name__ == "__main__":#windows-jupyter olayı nedeniyle if main cpu=multiprocessing.cpu_count() flat_list=prepareListOfCombinationsForRelationFinder(df) tpl=[(df,i) for i in flat_list] with Pool(cpu) as p: list_= p.map(findRelationsAmongFeatures, tqdm(tpl)) return list_ def pandas_df_to_markdown_table(df): fmt = ['---' for i in range(len(df.columns))] df_fmt = pd.DataFrame([fmt], columns=df.columns) df_formatted =
pd.concat([df_fmt, df])
pandas.concat
from collections import deque from datetime import datetime import operator import numpy as np import pytest import pytz import pandas as pd import pandas._testing as tm from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) with pytest.raises(TypeError): x >= y with pytest.raises(TypeError): x > y with pytest.raises(TypeError): x < y with pytest.raises(TypeError): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: with pytest.raises(TypeError): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.slow @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(10 ** 6).reshape(100, -1) df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) if opname in ["__rmod__", "__rfloordiv__"]: # exvals will have dtypes [f8, i8, i8] so expected will be # all-f8, but the DataFrame operation will return mixed dtypes # use exvals[-1].dtype instead of "i8" for compat with 32-bit # systems/pythons expected[False] = expected[False].astype(exvals[-1].dtype) result = getattr(df, opname)(rowlike)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2020/3/24 15:00 Desc: 生意社网站采集大宗商品现货价格及相应基差数据, 数据时间段从 20110104-至今 备注:现期差 = 现货价格 - 期货价格(这里的期货价格为结算价) 黄金为 元/克, 白银为 元/千克, 玻璃现货为 元/平方米, 鸡蛋现货为 元/公斤, 鸡蛋期货为 元/500千克, 其余为 元/吨. 焦炭现货规格是: 一级冶金焦; 焦炭期货规格: 介于一级和二级之间, 焦炭现期差仅供参考. 铁矿石现货价格是: 湿吨, 铁矿石期货价格是: 干吨 网页地址: http://www.100ppi.com/sf/ 历史数据可以通过修改 url 地址来获取, 比如: http://www.100ppi.com/sf/day-2017-09-12.html 发现生意社的 bugs: 1. 2018-09-12 周三 数据缺失是因为生意社源数据在该交易日缺失: http://www.100ppi.com/sf/day-2018-09-12.html """ import datetime import re import time import warnings import pandas as pd from akshare.futures import cons from akshare.futures.requests_fun import pandas_read_html_link from akshare.futures.symbol_var import chinese_to_english calendar = cons.get_calendar() def futures_spot_price_daily(start_day=None, end_day=None, vars_list=cons.contract_symbols): """ 获取某段时间大宗商品现货价格及相应基差 :param start_day: str 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param end_day: str 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 默认为当天 :param vars_list: list 合约品种如 [RB, AL]; 默认参数为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD """ start_day = ( cons.convert_date(start_day) if start_day is not None else datetime.date.today() ) end_day = ( cons.convert_date(end_day) if end_day is not None else cons.convert_date(cons.get_latest_data_date(datetime.datetime.now())) ) df_list = [] while start_day <= end_day: print(start_day) temp_df = futures_spot_price(start_day, vars_list) if temp_df is False: return pd.concat(df_list).reset_index(drop=True) elif temp_df is not None: df_list.append(temp_df) start_day += datetime.timedelta(days=1) if len(df_list) > 0: temp_df = pd.concat(df_list) temp_df.reset_index(drop=True, inplace=True) return temp_df def futures_spot_price(date="20200401", vars_list=cons.contract_symbols): """ 获取某个交易日大宗商品现货价格及相应基差 :param date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pandas.DataFrame 展期收益率数据: var 商品品种 string sp 现货价格 float near_symbol 临近交割合约 string near_price 临近交割合约结算价 float dom_symbol 主力合约 string dom_price 主力合约结算价 float near_basis 临近交割合约相对现货的基差 float dom_basis 主力合约相对现货的基差 float near_basis_rate 临近交割合约相对现货的基差率 float dom_basis_rate 主力合约相对现货的基差率 float date 日期 string YYYYMMDD """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2011, 1, 4): raise Exception("数据源开始日期为 20110104, 请将获取数据时间点设置在 20110104 后") if date.strftime("%Y%m%d") not in calendar: warnings.warn(f"{date.strftime('%Y%m%d')}非交易日") return None u1 = cons.SYS_SPOT_PRICE_LATEST_URL u2 = cons.SYS_SPOT_PRICE_URL.format(date.strftime("%Y-%m-%d")) i = 1 while True: for url in [u2, u1]: try: # url = u2 r = pandas_read_html_link(url) string = r[0].loc[1, 1] news = "".join(re.findall(r"[0-9]", string)) if news[3:11] == date.strftime("%Y%m%d"): records = _check_information(r[1], date) records.index = records["symbol"] var_list_in_market = [i for i in vars_list if i in records.index] temp_df = records.loc[var_list_in_market, :] temp_df.reset_index(drop=True, inplace=True) return temp_df else: time.sleep(3) except: print(f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败,第{str(i)}次尝试,最多5次") i += 1 if i > 5: print( f"{date.strftime('%Y-%m-%d')}日生意社数据连接失败, 如果当前交易日是 2018-09-12, 由于生意社源数据缺失, 无法访问, 否则为重复访问已超过5次,您的地址被网站墙了,请保存好返回数据,稍后从该日期起重试" ) return False def _check_information(df_data, date): """ 进行数据验证和计算模块 :param df_data: pandas.DataFrame 采集的数据 :param date: datetime.date 具体某一天 YYYYMMDD :return: pandas.DataFrame 中间数据 symbol spot_price near_contract ... near_basis_rate dom_basis_rate date CU 49620.00 cu1811 ... -0.002418 -0.003426 20181108 RB 4551.54 rb1811 ... -0.013521 -0.134359 20181108 ZN 22420.00 zn1811 ... -0.032114 -0.076271 20181108 AL 13900.00 al1812 ... 0.005396 0.003957 20181108 AU 274.10 au1811 ... 0.005655 0.020430 20181108 WR 4806.25 wr1903 ... -0.180026 -0.237035 20181108 RU 10438.89 ru1811 ... -0.020969 0.084406 20181108 PB 18600.00 pb1811 ... -0.001344 -0.010215 20181108 AG 3542.67 ag1811 ... -0.000754 0.009408 20181108 BU 4045.53 bu1811 ... -0.129904 -0.149679 20181108 HC 4043.33 hc1811 ... -0.035449 -0.088128 20... """ df_data = df_data.loc[:, [0, 1, 2, 3, 5, 6]] df_data.columns = [ "symbol", "spot_price", "near_contract", "near_contract_price", "dominant_contract", "dominant_contract_price", ] records = pd.DataFrame() for string in df_data["symbol"].tolist(): if string == "PTA": news = "PTA" else: news = "".join(re.findall(r"[\u4e00-\u9fa5]", string)) if news != "" and news not in ["商品", "价格", "上海期货交易所", "郑州商品交易所", "大连商品交易所"]: symbol = chinese_to_english(news) record =
pd.DataFrame(df_data[df_data["symbol"] == string])
pandas.DataFrame
from scipy.optimize import leastsq, curve_fit, minimize, OptimizeResult import matplotlib from matplotlib import axes import matplotlib.pyplot as plt import numpy as np import math from typing import Callable import datetime import pandas as pd from io import StringIO from numpy import mean, std, median def f_logistic(x:np.ndarray, A, B, C, D) -> np.ndarray: return (A - D)/(1 + (x/C)**B) + D def loss_logistic(p, y, x): A, B, C, D = p return np.sum((y - f_logistic(x, A, B, C, D))**2) def f_gompertz(x:np.ndarray, A, B, C, D) -> np.ndarray: # return D + A * (np.exp(np.exp(B * (C * x)))) return D + C * np.exp(-B * np.exp(-x / A)) def loss_gompertz(p, y, x): A, B, C, D = p return np.sum((y - f_gompertz(x, A, B, C, D))**2) def fit(x:np.ndarray, y:np.ndarray, lossFunc:Callable) -> OptimizeResult: """Tries to fit x and y data to using given loss function. loss function itself contains the function to be fit Args: x (np.ndarray): x data y (np.ndarray): y data lossFunc (function): loss function Returns: OptimizeResult: scipy OptimizeResult object. Member x is numpy.ndarray which contains the optimization solution. """ idx = (~np.isnan(x+y)) # eliminate missing data points x = x[idx] y = y[idx] A0 = y.max() * 2 D0 = y.min() / 2 C0 = x.mean() * 2 B0 = 1 p0 = [A0, B0, C0, D0] # starting values to begin optimization. r = minimize(lossFunc, x0=p0, args=(y, x), method='CG') return r def plotfunc(xrange:tuple, f:Callable, r:OptimizeResult, axs:matplotlib.axes) -> tuple: xp = np.linspace(xrange[0], xrange[1], 100) yp = f(xp, *r.x) axs.plot(xp, yp) return xp, yp def plotdata(x:np.ndarray, y:np.ndarray, axs:matplotlib.axes, xrange=(-1,-1)) -> tuple: idx = (~np.isnan(x+y)) # eliminate missing data points x = x[idx] y = y[idx] xmin = xrange[0] xmax = xrange[1] if xmin == -1: xmin = x.min() if xmax == -1: xmax = x.max() x, y = x[x >= xmin], y[x >= xmin] x, y = x[x <= xmax], y[x <= xmax] axs.scatter(x, y) return np.array(x), np.array(y) def doublingt(xrange:tuple, f:Callable, r:OptimizeResult, axs:matplotlib.axes) -> tuple: """Plots doubling time chart in semi-log scale (log y - linear x axis). Returns x and y lists in a tuple. Time point for minimum doubling time can be retrieved by: dx[dy.argmin()] Args: xrange (tuple): (xmin, xmax) f (Callable): fit function r (OptimizeResult): optimization results axs (matplotlib.axes): the axis for the plot Returns: tuple: x and y as lists """ xp = np.linspace(xrange[0], xrange[1], 100) yp = f(xp, *r.x) dy = [] for i in range(0, len(xp)-1): dx = xp[i+1] - xp[i] _dy = math.log(2) * dx / (math.log(yp[i+1]) - math.log(yp[i])) dy.append(_dy) axs.set_yscale('log') axs.minorticks_on() axs.yaxis.set_minor_locator(plt.MaxNLocator(4)) axs.grid(b=True, which='major', color='#666666', linestyle='-') axs.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2) axs.plot(xp[:-1], dy, c='g') return np.array(xp[:-1]), np.array(dy) def timestr(s:str, century='20') -> datetime: """Converts YYMMDD-hhmm to datetime.datetime object. century is set to 20 as default Args: s (str): date signature string YYMMDDhhmm century (str): 2-digit century string. 20 as default Returns: datetime: datetime.datetime object """ return datetime.datetime( int('{0}{1}'.format(century, s[0:2])), # year int(s[2:4]), # month int(s[4:6]), # day int(s[7:9]), # hr int(s[9:11]) # min ) def dt(t0:str, t1:str) -> int: """Delta t as minutes between t0 and t1 date-time strings Args: t0 (str): date-time string in YYMMDD-hhmm format t1 (str): date-time string in YYMMDD-hhmm format Returns: int: delta t in minutes """ return (timestr(t1).timestamp() - timestr(t0).timestamp()) / 60 def readPlates(fn:str) -> (pd.DataFrame, dict): f = open(fn, 'r') layout = [] plates = [] plateNames = [] tempFile = StringIO('') line = f.readline() header = '' while line: if '#' in line: if header != '': tempFile.flush() tempFile.seek(0) #print(header) if header == 'layout': df = pd.read_csv(tempFile, sep='\t', header=None) layout = df.values.flatten().tolist() else: df = pd.read_csv(tempFile, sep='\t', header=None) plates.append(df.values.flatten().tolist()) plateNames.append(header) tempFile = StringIO('') header = line[1:].strip() else: tempFile.write(line) line = f.readline() if header != '': tempFile.flush() tempFile.seek(0) #print(header) if header == 'layout': df =
pd.read_csv(tempFile, sep='\t', header=None)
pandas.read_csv
""" Methods used by Block.replace and related methods. """ import operator import re from typing import Optional, Pattern, Union import numpy as np from pandas._typing import ArrayLike, Scalar from pandas.core.dtypes.common import ( is_datetimelike_v_numeric, is_numeric_v_string_like, is_re, is_scalar, ) from pandas.core.dtypes.missing import isna def compare_or_regex_search( a: ArrayLike, b: Union[Scalar, Pattern], regex: bool, mask: ArrayLike ) -> Union[ArrayLike, bool]: """ Compare two array_like inputs of the same shape or two scalar values Calls operator.eq or re.search, depending on regex argument. If regex is True, perform an element-wise regex matching. Parameters ---------- a : array_like b : scalar or regex pattern regex : bool mask : array_like Returns ------- mask : array_like of bool """ def _check_comparison_types( result: Union[ArrayLike, bool], a: ArrayLike, b: Union[Scalar, Pattern] ): """ Raises an error if the two arrays (a,b) cannot be compared. Otherwise, returns the comparison result as expected. """ if is_scalar(result) and isinstance(a, np.ndarray): type_names = [type(a).__name__, type(b).__name__] if isinstance(a, np.ndarray): type_names[0] = f"ndarray(dtype={a.dtype})" raise TypeError( f"Cannot compare types {repr(type_names[0])} and {repr(type_names[1])}" ) if not regex: op = lambda x: operator.eq(x, b) else: op = np.vectorize( lambda x: bool(re.search(b, x)) if isinstance(x, str) and isinstance(b, (str, Pattern)) else False ) # GH#32621 use mask to avoid comparing to NAs if isinstance(a, np.ndarray): a = a[mask] if is_numeric_v_string_like(a, b): # GH#29553 avoid deprecation warnings from numpy return np.zeros(a.shape, dtype=bool) elif is_datetimelike_v_numeric(a, b): # GH#29553 avoid deprecation warnings from numpy _check_comparison_types(False, a, b) return False result = op(a) if isinstance(result, np.ndarray) and mask is not None: # The shape of the mask can differ to that of the result # since we may compare only a subset of a's or b's elements tmp = np.zeros(mask.shape, dtype=np.bool_) tmp[mask] = result result = tmp _check_comparison_types(result, a, b) return result def replace_regex(values: ArrayLike, rx: re.Pattern, value, mask: Optional[np.ndarray]): """ Parameters ---------- values : ArrayLike Object dtype. rx : re.Pattern value : Any mask : np.ndarray[bool], optional Notes ----- Alters values in-place. """ # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if
isna(value)
pandas.core.dtypes.missing.isna
import matplotlib.pyplot as plt import pandas as pd import numpy as np class BaseStrategy: def __init__(self, df, mv_type): self.df = df self.mvType = mv_type # calculates profit for the specific algorithm def calculate_profit(self): # daily profit self.df["daily_profit"] = np.log( self.df['close'] / self.df['close'].shift(1)).round(3) # calculate strategy profit # each signal =1 is our strategy buy or hold if we bought previously self.df['strategy_profit'] = self.df['signal'].shift( 1) * self.df['daily_profit'] # We need to get rid of the NaN generated in the first row: self.df.dropna(inplace=True) return self.df # function to generate buy and sell signals def _generate_signal_position(self, long_period, short_period): mva_short = f'{self.mvType}_{short_period}'.lower() mva_long = f'{self.mvType}_{long_period}'.lower() df =
pd.DataFrame(index=self.df.index)
pandas.DataFrame
import numpy as np import pytest from pandas._libs import join as _join from pandas import Categorical, DataFrame, Index, merge import pandas._testing as tm class TestIndexer: @pytest.mark.parametrize( "dtype", ["int32", "int64", "float32", "float64", "object"] ) def test_outer_join_indexer(self, dtype): indexer = _join.outer_join_indexer left = np.arange(3, dtype=dtype) right = np.arange(2, 5, dtype=dtype) empty = np.array([], dtype=dtype) result, lindexer, rindexer = indexer(left, right) assert isinstance(result, np.ndarray) assert isinstance(lindexer, np.ndarray) assert isinstance(rindexer, np.ndarray) tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype)) exp = np.array([0, 1, 2, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(empty, right) tm.assert_numpy_array_equal(result, right) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(left, empty) tm.assert_numpy_array_equal(result, left) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) def test_left_join_indexer_unique(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = _join.left_join_indexer_unique(b, a) expected = np.array([1, 1, 2, 3, 3], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_left_outer_join_bug(): left = np.array( [ 0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3, 2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1, 3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0, 3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0, 3, 1, 2, 0, 2, ], dtype=np.int64, ) right = np.array([3, 1], dtype=np.int64) max_groups = 4 lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False) exp_lidx = np.arange(len(left), dtype=np.int64) exp_ridx = -np.ones(len(left), dtype=np.int64) exp_ridx[left == 1] = 1 exp_ridx[left == 3] = 0 tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) index_exp = np.array([3, 5], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([2, 4], dtype=np.int64) bexp = np.array([1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_almost_equal(index, a) aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64) bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.left_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) tm.assert_almost_equal(ridx, exp_ridx) def test_outer_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.outer_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) tm.assert_almost_equal(ridx, exp_ridx) def test_inner_join_indexer2(): idx =
Index([1, 1, 2, 5])
pandas.Index
""" Various processing utility functions Usage: import only """ import os import pandas as pd from pycytominer.cyto_utils import infer_cp_features def get_recode_cols(): return_dict = {} return_dict["recode_cols"] = { "Metadata_CellLine": "Metadata_clone_number", "Metadata_Dosage": "Metadata_treatment", } return_dict["recode_sample"] = { "Clone A": "CloneA", "Clone E": "CloneE", "Clone E ": "CloneE", "WT": "WT_parental", "WT parental": "WT_parental", } return_dict["recode_treatment"] = { "0.0": "0.1% DMSO", "DMSO": "0.1% DMSO", "0.7": "2.1 nM bortezomib", "7.0": "21 nM bortezomib", "70.0": "210 nM bortezomib", "bortezomib": "21 nM bortezomib", } return return_dict def load_data( batch, plates="all", profile_dir="profiles", suffix="normalized_feature_selected.csv.gz", combine_dfs=False, add_cell_count=False, harmonize_cols=False, cell_count_dir="cell_counts", ): batch_dir = os.path.join(profile_dir, batch) plate_folders = [x for x in os.listdir(batch_dir) if ".DS_Store" not in x] plate_files = [ os.path.join(batch_dir, x, f"{x}_{suffix}") for x in plate_folders if ".DS_Store" not in x ] plate_data = {} for plate_idx in range(0, len(plate_files)): plate = plate_folders[plate_idx] if plates != "all": if plate not in plates: continue df = pd.read_csv(plate_files[plate_idx]).assign(Metadata_batch=batch) if add_cell_count: df = merge_cell_count(df, batch, cell_count_dir=cell_count_dir) if harmonize_cols: recode_cols = get_recode_cols() # Update columns and specific entries if batch == "2019_06_25_Batch3": df = df.assign(Metadata_treatment="Untreated") df = df.rename(recode_cols["recode_cols"], axis="columns") df.Metadata_clone_number = df.Metadata_clone_number.astype(str) df.Metadata_treatment = df.Metadata_treatment.astype(str) df.Metadata_clone_number = df.Metadata_clone_number.replace( recode_cols["recode_sample"] ) df.Metadata_treatment = df.Metadata_treatment.replace( recode_cols["recode_treatment"] ) plate_data[plate] = df if combine_dfs: plate_data = convert_data(plate_data) return plate_data def merge_cell_count(df, batch, cell_count_dir="cell_counts"): # Load cell counts for the specific plates count_files = [ os.path.join(cell_count_dir, x) for x in os.listdir(cell_count_dir) if batch in x ] all_plate_dfs = [] for count_file in count_files: plate = os.path.basename(count_file) plate = plate.replace(batch, "").replace("cell_count.tsv", "").strip("_") plate_df =
pd.read_csv(count_file, sep="\t")
pandas.read_csv
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Modifications copyright (C) 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import, division, print_function import argparse import logging import os import sys import random import torch import numpy as np import pandas as pd from tqdm import tqdm, trange from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.nn import CrossEntropyLoss from tensorboardX import SummaryWriter from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME from pytorch_pretrained_bert.modeling import BertForSequenceClassification from pytorch_pretrained_bert.tokenization import BertTokenizer from pytorch_pretrained_bert.optimization import BertAdam from run_classifier_dataset_utils import processors, convert_examples_to_features, compute_metrics if sys.version_info[0] == 2: import cPickle as pickle else: import pickle logger = logging.getLogger(__name__) def main(): """Fine-tune BERT for a given task with given parameters.""" # Define all parameters, using argparse/Command Line Interface. parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) def add_args(): """Add all possible options and defaults to the parser.""" # Hyperparameters of BERT # Parameters often changed parser.add_argument("--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, " "bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--train_batch_size", default=16, type=int, help="Total batch size for training.") parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") # Parameters usually unchanged parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") # Parameters of the task parser.add_argument("--task_name", default="node", type=str, help="The name of the task to train. One of node, political-as, " "political-ru, political-asu, agreement, node-ext, political-as-topics," "political-ru-topics, political-asu-topics, agreement-topics") parser.add_argument("--input_to_use", type=str, default="both", help="Which input to use. One of both, org, response, response-org.") # Parameters for reproduction parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") # Parameters for where to save/load data parser.add_argument("--data_dir", default="../data", type=str, help="The input data dir. Should contain the .tsv file (or other data files) for the task.") parser.add_argument("--output_dir", default="run", type=str, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") # Parameters to decide what to do (train, test, crossval, save the model) parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_train_eval", action='store_true', help="Whether to run training and eval.") parser.add_argument('--n_times', type=int, default=10, help="Number of restarts for every parameter setting in train&eval mode") parser.add_argument("--do_cross_val", action='store_true', help="Whether to run cross-validation.") parser.add_argument("--do_save", action='store_true', help="Whether to save the resulting model.") parser.add_argument("--do_visualization", action='store_true', help="Whether to run visualization.") # Additional parameters parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--log_level', type=str, default="info", help="Verbosity of logging output. One of info or warn.") # Add all parameters to the parser and parse them. add_args() args = parser.parse_args() # Set up all parameters given the CLI arguments. device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() args.device = device task_name = args.task_name.lower() processor = processors[task_name](args.input_to_use) label_list = processor.get_labels() num_labels = len(label_list) global_step = 0 tr_loss = 0 tb_writer = SummaryWriter() # Prepare the logging. logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.log_level == "info" else logging.WARN) logger.info("device: {} n_gpu: {}".format( device, n_gpu)) # Check the arguments and fail if the arguments are invalid. if not args.do_train and not args.do_eval and not args.do_cross_val and not args.do_visualization \ and not args.do_train_eval: raise ValueError("At least one of `do_train`, `do_eval` `do_cross_val` " "or `do_visualization` or 'do_train_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. " "Use the --overwrite_output_dir option.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) # Calculate the train_batch_size if gradient accumulation is used args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps # Set all seeds for reproducibility random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def get_features_examples(mode): """Returns the features and examples of train or test mode.""" def convert(split, modus, exs): """Converts the examples or load them from cache.""" cached_features_file = os.path.join(args.data_dir, 'cache', '{0}_{1}_{2}_{3}_{4}_{5}'.format(modus, list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(task_name), str(args.input_to_use), split)) # Try to load the cached features. try: with open(cached_features_file, "rb") as reader: fs = pickle.load(reader) # Creates and cache the features. except FileNotFoundError: if not os.path.exists(os.path.join(args.data_dir, 'cache')): os.makedirs(os.path.join(args.data_dir, 'cache')) fs = convert_examples_to_features( exs, label_list, args.max_seq_length, tokenizer) logger.info('Saving {0} features into cached file {1}'.format(mode, cached_features_file)) with open(cached_features_file, "wb") as writer: pickle.dump(fs, writer) return fs # Return the features, examples and dataframes depending on the mode. if mode == "train": train_ex, df = processor.get_train_examples(args.data_dir) return convert("X", mode, train_ex), train_ex, df elif mode == "dev": dev_ex, df = processor.get_dev_examples(args.data_dir) return convert("X", mode, dev_ex), dev_ex, df elif mode == "cross_val": data = processor.get_splits(args.data_dir) train_f_list, train_e_list, train_df_list, test_f_list, test_e_list, test_df_list = ([] for _ in range(6)) for i, (train_ex, train_df, test_ex, test_df) in enumerate(data): train_e_list.append(train_ex) train_df_list.append(train_df) test_e_list.append(test_ex) test_df_list.append(test_df) # Create features from the examples train_f_list.append(convert(i, "train", train_ex)) test_f_list.append(convert(i, "dev", test_ex)) return train_f_list, train_e_list, train_df_list, test_f_list, test_e_list, test_df_list else: raise ValueError("Invalid feature mode.") def create_tensor_dataset(exfeatures): """Creates a TensoDataset out of the features.""" all_input_ids = torch.tensor([f.input_ids for f in exfeatures], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in exfeatures], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in exfeatures], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in exfeatures], dtype=torch.long) return TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) def do_training(train_fs, train_exs): """Runs BERT fine-tuning.""" # Allows to write to enclosed variables global_step nonlocal global_step # Create the batched training data out of the features. train_data = create_tensor_dataset(train_fs) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) # Calculate the number of optimization steps. num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer. param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) # Log some information about the training. logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_exs)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) # Set the model to training mode and train for X epochs. model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 # Iterate over all batches. for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch # Get the Logits and calculate the loss. logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) loss = CrossEntropyLoss()(logits.view(-1, num_labels), label_ids.view(-1)) # Scale the loss in gradient accumulation mode. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps # Calculate the gradients. loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 # Update the weights every gradient_accumulation_steps steps. if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() global_step += 1 tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step) tb_writer.add_scalar('loss', loss.item(), global_step) def do_save(): """Saves the current model, tokenizer and arguments.""" nonlocal model nonlocal tokenizer model_to_save = model.module if hasattr(model, 'module') else model # Using the predefined names, we can load using `from_pretrained`. output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) # Save the trained model, configuration and tokenizer torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Save the training arguments together with the trained model. output_args_file = os.path.join(args.output_dir, 'training_args.bin') torch.save(args, output_args_file) def do_eval(eval_features, eval_examples): """Do evaluation on the current model.""" # Logg some information. logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) # Get the eval data and create a sequential dataloader. eval_data = create_tensor_dataset(eval_features) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) # Set the model to eval mode (disable dropout) model.eval() eval_loss = 0 nb_eval_steps = 0 preds = [] out_label_ids = None # Iterate over the evaluation data. for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) # Forward pass with deactivated autograd engine. with torch.no_grad(): logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) # Calculate eval loss. tmp_eval_loss = CrossEntropyLoss()(logits.view(-1, num_labels), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) out_label_ids = label_ids.detach().cpu().numpy() else: preds[0] = np.append( preds[0], logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append( out_label_ids, label_ids.detach().cpu().numpy(), axis=0) # Calculate the mean loss and get all predictions. eval_loss = eval_loss / nb_eval_steps loss = tr_loss/global_step if args.do_train else None preds = preds[0] preds = np.argmax(preds, axis=1) # Compute the metrics for the given task result = compute_metrics(task_name, preds, out_label_ids) # Save additional information in the result dict. result['eval_loss'] = eval_loss result['global_step'] = global_step result['loss'] = loss # Save all settings for external evaluation result['_task'] = task_name result['_input_mode'] = args.input_to_use result['_learning_rate'] = args.learning_rate result['_bert-model'] = args.bert_model result['_batch_size'] = args.train_batch_size result['_warmup'] = args.warmup_proportion result['_num_epochs'] = args.num_train_epochs result['_seq_len'] = args.max_seq_length result['_seed'] = args.seed result['_gradient_acc'] = args.gradient_accumulation_steps return result, preds def save_results(result_list, pred_list): """Saves the results and the predictions.""" # Save the results in a text file. output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: logger.info("***** Eval results *****") for i, result_dict in enumerate(result_list): logger.info("Run %i", i) writer.write("Run %i\n" % i) for key in sorted(result_dict.keys()): if not key.startswith("_"): logger.info(" %s = %s", key, str(result_dict[key])) writer.write("%s = %s\n" % (key, str(result_dict[key]))) # Save the results and predictions in csv and tsv files. output_csv_file = os.path.join(args.output_dir, "../eval_results.tsv") output_preds_file = os.path.join(args.output_dir, "../eval_preds.csv") df_res =
pd.DataFrame(result_list)
pandas.DataFrame
#%% from pymaid_creds import url, name, password, token import pymaid rm = pymaid.CatmaidInstance(url, token, name, password) import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import numpy.random as random import gzip import csv import connectome_tools.celltype as ct import connectome_tools.process_matrix as pm import connectome_tools.process_graph as pg from tqdm import tqdm from joblib import Parallel, delayed import networkx as nx # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 # font settings plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' # load pairs pairs = pm.Promat.get_pairs() ipsi_pair_ids = pm.Promat.load_pairs_from_annotation('mw ipsilateral axon', pairs, return_type='all_pair_ids') bilateral_pair_ids = pm.Promat.load_pairs_from_annotation('mw bilateral axon', pairs, return_type='all_pair_ids') contra_pair_ids = pm.Promat.load_pairs_from_annotation('mw contralateral axon', pairs, return_type='all_pair_ids') dVNC_pair_ids = pm.Promat.load_pairs_from_annotation('mw dVNC', pairs, return_type='all_pair_ids') dSEZ_pair_ids = pm.Promat.load_pairs_from_annotation('mw dSEZ', pairs, return_type='all_pair_ids') RGN_pair_ids = pm.Promat.load_pairs_from_annotation('mw RGN', pairs, return_type='all_pair_ids') sensories_pair_ids = [pm.Promat.load_pairs_from_annotation(x, pairs, return_type='all_pair_ids') for x in pymaid.get_annotated('mw brain inputs').name] all_sensories = [x for sublist in sensories_pair_ids for x in sublist] # %% # EXPERIMENT 1: removing edges from contralateral and bilateral neurons -> effect on path length? # load previously generated paths all_edges_combined = pd.read_csv('data/edges_threshold/ad_all-paired-edges.csv', index_col=0) # iterations for random edge removal as control n_init = 40 # excise edges and generate graphs e_contra_contra, e_contra_contra_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(contra_pair_ids, all_sensories), 'contralateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) e_bi_contra, e_bi_contra_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(bilateral_pair_ids, all_sensories), 'contralateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) e_bi_ipsi, e_bi_ipsi_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(bilateral_pair_ids, all_sensories), 'ipsilateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) e_all_contra, e_all_contra_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(bilateral_pair_ids + contra_pair_ids, all_sensories), 'contralateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) # %% # this chunk is incomplete # write all graphs to graphml # read all graph from graphml graph = pg.Analyze_Nx_G(all_edges_combined, graph_type='directed') shuffled_graphs = Parallel(n_jobs=-1)(delayed(nx.readwrite.graphml.read_graphml)(f'interhemisphere/csv/shuffled_graphs/iteration-{i}.graphml', node_type=int, edge_key_type=str) for i in tqdm(range(n_init))) shuffled_graphs = [pg.Analyze_Nx_G(edges=x.edges, graph=x) for x in shuffled_graphs] # %% # generate and save paths cutoff=5 # generate and save paths for experimental save_path = [f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra', f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra', f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi', f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra'] experimental = [e_contra_contra, e_bi_contra, e_bi_ipsi, e_all_contra] Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(experimental[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=save_path[i]) for i in tqdm((range(len(experimental))))) # generate and save paths for controls save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_contra_contra_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_bi_contra_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_bi_ipsi_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_all_contra_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) # %% # analyze paths: total and count per # hops def process_paths(excise_paths, control_paths, edges_removed): excise_count = len(excise_paths) control_counts = [len(x) for x in control_paths] path_counts_data = [] for row in zip(control_counts, [f'control-{edges_removed}']*len(control_counts)): path_counts_data.append(row) path_counts_data.append([excise_count, f'excised-{edges_removed}']) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition']) path_counts_data.to_csv(f'interhemisphere/csv/paths/processed/excised_graph_{edges_removed}.csv') # count per # hops excise_path_counts = [len(x) for x in excise_paths] control_path_counts = [[len(x) for x in path] for path in control_paths] path_counts_length_data = [] for i, path_length in enumerate(control_path_counts): for row in zip(path_length, [f'control-{edges_removed}']*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for row in zip(excise_path_counts, [f'excised-{edges_removed}']*len(excise_path_counts), [0]*len(excise_path_counts)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/processed/excised_graph_{edges_removed}_path_lengths.csv') cutoff=5 n_init = 40 excise_Cc_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra.csv.gz') control_Cc_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Cc_paths, control_Cc_paths, edges_removed='Contra-contra') excise_Bc_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra.csv.gz') control_Bc_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Bc_paths, control_Bc_paths, edges_removed='Bilateral-contra') excise_Bi_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi.csv.gz') control_Bi_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Bi_paths, control_Bi_paths, edges_removed='Bilateral-ipsi') excise_Ac_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra.csv.gz') control_Ac_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Ac_paths, control_Ac_paths, edges_removed='All-contra') # wildtype paths graph_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/all_paths_sens-to-dVNC_cutoff{cutoff}.csv.gz') excise_count = len(graph_paths) path_counts_data = [] path_counts_data.append([excise_count, f'wildtype']) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition']) path_counts_data.to_csv(f'interhemisphere/csv/paths/processed/wildtype.csv') path_counts_length_data = [] excise_path_counts = [len(x) for x in graph_paths] for row in zip(excise_path_counts, [f'wildtype']*len(excise_path_counts), [0]*len(excise_path_counts)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/processed/wildtype_path_lengths.csv') # %% ########## # EXPERIMENT 2: removing random number of ipsi vs contra edges, effect on paths # # load previously generated paths all_edges_combined = pd.read_csv('data/edges_threshold/ad_all-paired-edges.csv', index_col=0) # iterations for random edge removal as control n_init = 8 # excise edges and generate graphs random_ipsi500, random_contra500 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 500, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) random_ipsi1000, random_contra1000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 1000, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) random_ipsi2000, random_contra2000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 2000, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) random_ipsi4000, random_contra4000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 4000, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) # %% # generate and save paths cutoff=5 # generate and save paths for controls save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-500-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi500[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-500-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra500[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-1000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi1000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-1000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra1000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-2000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi2000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-2000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra2000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-4000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi4000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-4000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra4000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) # %% # analyze paths: total and count per # hops def process_paths_ipsi_contra(ipsi_paths, contra_paths, count_removed): ipsi_counts = [len(x) for x in ipsi_paths] contra_counts = [len(x) for x in contra_paths] path_counts_data = [] for row in zip(ipsi_counts, [f'ipsi-{count_removed}']*len(ipsi_counts)): path_counts_data.append(row) for row in zip(contra_counts, [f'contra-{count_removed}']*len(contra_counts)): path_counts_data.append(row) path_counts_data =
pd.DataFrame(path_counts_data, columns=['count', 'condition'])
pandas.DataFrame
"""Construct the clean data set""" import pandas as pd from pathlib import PurePath import numpy as np import datetime as dt from pandas.tseries.holiday import USFederalHolidayCalendar from scipy.interpolate import interp1d from sklearn.svm import SVR #========================================================================# # interpolation functions # #========================================================================# def det_interp(x, kind='linear'): """ A helper function for deterministic time seres interpolation Args ---- x -- a dummy variable for the dataframe's columns kwargs ------ kind -- one of scipy.interpolate.inter1d kwargs return ------ interpolated values of the whole time series """ index = pd.Series(np.arange(x.shape[0]), index=x.index) notnull =
pd.notnull(x)
pandas.notnull
import sys import timeit import warnings import numpy as np import pandas as pd from abc import abstractmethod from math import ceil from dask import dataframe as dd from tqdm.auto import tqdm from .tqdm_dask_progressbar import TQDMDaskProgressBar from .base import ( _SwifterBaseObject, suppress_stdout_stderr_logging, ERRORS_TO_HANDLE, SAMPLE_SIZE, N_REPEATS, ) class _SwifterObject(_SwifterBaseObject): def __init__( self, pandas_obj, npartitions=None, dask_threshold=1, scheduler="processes", progress_bar=True, progress_bar_desc=None, allow_dask_on_strings=False, ): super().__init__(base_obj=pandas_obj, npartitions=npartitions) if self._obj.index.duplicated().any(): warnings.warn( "This pandas object has duplicate indices, and swifter may not be able to improve performance. Consider resetting the indices with `df.reset_index(drop=True)`." ) self._SAMPLE_SIZE = SAMPLE_SIZE if self._nrows > (25 * SAMPLE_SIZE) else int(ceil(self._nrows / 25)) self._dask_threshold = dask_threshold self._scheduler = scheduler self._progress_bar = progress_bar self._progress_bar_desc = progress_bar_desc self._allow_dask_on_strings = allow_dask_on_strings def set_dask_threshold(self, dask_threshold=1): """ Set the threshold (seconds) for maximum allowed estimated duration of pandas apply before switching to dask """ self._dask_threshold = dask_threshold return self def set_dask_scheduler(self, scheduler="processes"): """ Set the dask scheduler :param scheduler: String, ["threads", "processes"] """ self._scheduler = scheduler return self def progress_bar(self, enable=True, desc=None): """ Turn on/off the progress bar, and optionally add a custom description """ self._progress_bar = enable self._progress_bar_desc = desc return self def allow_dask_on_strings(self, enable=True): """ Override the string processing default, which is to not use dask if a string is contained in the pandas object """ self._allow_dask_on_strings = enable return self def rolling(self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None): """ Create a swifter rolling object """ kwds = { "window": window, "min_periods": min_periods, "center": center, "win_type": win_type, "on": on, "axis": axis, "closed": closed, } return Rolling( self._obj, npartitions=self._npartitions, dask_threshold=self._dask_threshold, scheduler=self._scheduler, progress_bar=self._progress_bar, progress_bar_desc=self._progress_bar_desc, allow_dask_on_strings=self._allow_dask_on_strings, **kwds, ) def resample( self, rule, axis=0, closed=None, label=None, convention="start", kind=None, loffset=None, base=0, on=None, level=None, origin=None, offset=None, ): """ Create a swifter resampler object """ kwds = { "rule": rule, "axis": axis, "closed": closed, "label": label, "convention": convention, "kind": kind, "loffset": loffset, "base": base, "on": on, "level": level, "origin": origin, "offset": offset, } if not base: kwds.pop("base") return Resampler( self._obj, npartitions=self._npartitions, dask_threshold=self._dask_threshold, scheduler=self._scheduler, progress_bar=self._progress_bar, progress_bar_desc=self._progress_bar_desc, allow_dask_on_strings=self._allow_dask_on_strings, **kwds, ) @pd.api.extensions.register_series_accessor("swifter") class SeriesAccessor(_SwifterObject): def _wrapped_apply(self, func, convert_dtype=True, args=(), **kwds): def wrapped(): with suppress_stdout_stderr_logging(): self._obj.iloc[: self._SAMPLE_SIZE].apply(func, convert_dtype=convert_dtype, args=args, **kwds) return wrapped def _dask_apply(self, func, convert_dtype, *args, **kwds): sample = self._obj.iloc[: self._npartitions * 2] with suppress_stdout_stderr_logging(): meta = sample.apply(func, convert_dtype=convert_dtype, args=args, **kwds) try: # check that the dask map partitions matches the pandas apply with suppress_stdout_stderr_logging(): tmp_df = ( dd.from_pandas(sample, npartitions=self._npartitions) .map_partitions(func, *args, meta=meta, **kwds) .compute(scheduler=self._scheduler) ) self._validate_apply( tmp_df.equals(meta), error_message="Dask map-partitions sample does not match pandas apply sample." ) if self._progress_bar: with TQDMDaskProgressBar(desc=self._progress_bar_desc or "Dask Apply"): return ( dd.from_pandas(self._obj, npartitions=self._npartitions) .map_partitions(func, *args, meta=meta, **kwds) .compute(scheduler=self._scheduler) ) else: return ( dd.from_pandas(self._obj, npartitions=self._npartitions) .map_partitions(func, *args, meta=meta, **kwds) .compute(scheduler=self._scheduler) ) except ERRORS_TO_HANDLE: # if map partitions doesn't match pandas apply, we can use dask apply, but it will be a bit slower if self._progress_bar: with TQDMDaskProgressBar(desc=self._progress_bar_desc or "Dask Apply"): return ( dd.from_pandas(self._obj, npartitions=self._npartitions) .apply(lambda x: func(x, *args, **kwds), convert_dtype=convert_dtype, meta=meta) .compute(scheduler=self._scheduler) ) else: return ( dd.from_pandas(self._obj, npartitions=self._npartitions) .apply(lambda x: func(x, *args, **kwds), convert_dtype=convert_dtype, meta=meta) .compute(scheduler=self._scheduler) ) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Apply the function to the Series using swifter """ # if the series is empty, return early using Pandas if not self._nrows: return self._obj.apply(func, convert_dtype=convert_dtype, args=args, **kwds) sample = self._obj.iloc[: self._npartitions * 2] # check if input is string or if the user is overriding the string processing default allow_dask_processing = True if self._allow_dask_on_strings else (sample.dtype != "object") if "axis" in kwds.keys(): kwds.pop("axis") warnings.warn("Axis keyword not necessary because applying on a Series.") try: # try to vectorize with suppress_stdout_stderr_logging(): tmp_df = func(sample, *args, **kwds) sample_df = sample.apply(func, convert_dtype=convert_dtype, args=args, **kwds) self._validate_apply( np.array_equal(sample_df, tmp_df) & (sample_df.shape == tmp_df.shape), error_message="Vectorized function sample doesn't match pandas apply sample.", ) return func(self._obj, *args, **kwds) except ERRORS_TO_HANDLE: # if can't vectorize, estimate time to pandas apply wrapped = self._wrapped_apply(func, convert_dtype=convert_dtype, args=args, **kwds) timed = timeit.timeit(wrapped, number=N_REPEATS) sample_proc_est = timed / N_REPEATS est_apply_duration = sample_proc_est / self._SAMPLE_SIZE * self._obj.shape[0] # if pandas sample apply takes too long and not performing str processing, use dask if (est_apply_duration > self._dask_threshold) and allow_dask_processing: return self._dask_apply(func, convert_dtype, *args, **kwds) else: # use pandas if self._progress_bar: tqdm.pandas(desc=self._progress_bar_desc or "Pandas Apply") return self._obj.progress_apply(func, convert_dtype=convert_dtype, args=args, **kwds) else: return self._obj.apply(func, convert_dtype=convert_dtype, args=args, **kwds) @pd.api.extensions.register_dataframe_accessor("swifter") class DataFrameAccessor(_SwifterObject): def _wrapped_apply(self, func, axis=0, raw=None, result_type=None, args=(), **kwds): def wrapped(): with suppress_stdout_stderr_logging(): self._obj.iloc[: self._SAMPLE_SIZE, :].apply( func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds ) return wrapped def _modin_apply(self, func, axis=0, raw=None, result_type=None, *args, **kwds): sample = self._obj.iloc[: self._npartitions * 2, :] try: series = False with suppress_stdout_stderr_logging(): import modin.pandas as md sample_df = sample.apply(func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds) # check that the modin apply matches the pandas APPLY tmp_df = ( md.DataFrame(sample) .apply(func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds) ._to_pandas() ) if isinstance(sample_df, pd.Series) and isinstance(tmp_df, pd.DataFrame): tmp_df =
pd.Series(tmp_df.values[:, 0])
pandas.Series
import pandas as pd import pytest from rdtools.normalization import normalize_with_expected_power from pandas import Timestamp import numpy as np @pytest.fixture() def times_15(): return pd.date_range(start='20200101 12:00', end='20200101 13:00', freq='15T') @pytest.fixture() def times_30(): return pd.date_range(start='20200101 12:00', end='20200101 13:00', freq='30T') @pytest.fixture() def pv_15(times_15): return pd.Series([1.0, 2.5, 3.0, 2.2, 2.1], index=times_15) @pytest.fixture() def expected_15(times_15): return pd.Series([1.2, 2.3, 2.8, 2.1, 2.0], index=times_15) @pytest.fixture() def irradiance_15(times_15): return pd.Series([1000.0, 850.0, 950.0, 975.0, 890.0], index=times_15) @pytest.fixture() def pv_30(times_30): return pd.Series([1.0, 3.0, 2.1], index=times_30) @pytest.fixture() def expected_30(times_30): return pd.Series([1.2, 2.8, 2.0], index=times_30) @pytest.fixture() def irradiance_30(times_30): return pd.Series([1000.0, 950.0, 890.0], index=times_30) def test_normalize_with_expected_power_uniform_frequency(pv_15, expected_15, irradiance_15): norm, insol = normalize_with_expected_power( pv_15, expected_15, irradiance_15) expected_norm = pd.Series( {Timestamp('2020-01-01 12:15:00', freq='15T'): 1.0, Timestamp('2020-01-01 12:30:00', freq='15T'): 1.0784313725490198, Timestamp('2020-01-01 12:45:00', freq='15T'): 1.0612244897959184, Timestamp('2020-01-01 13:00:00', freq='15T'): 1.0487804878048783} ) expected_norm.name = 'energy_Wh' expected_norm.index.freq = '15T' expected_insol = pd.Series( {Timestamp('2020-01-01 12:15:00', freq='15T'): 231.25, Timestamp('2020-01-01 12:30:00', freq='15T'): 225.0, Timestamp('2020-01-01 12:45:00', freq='15T'): 240.625, Timestamp('2020-01-01 13:00:00', freq='15T'): 233.125} ) expected_insol.name = 'energy_Wh' expected_insol.index.freq = '15T' pd.testing.assert_series_equal(norm, expected_norm) pd.testing.assert_series_equal(insol, expected_insol) def test_normalize_with_expected_power_energy_option(pv_15, expected_15, irradiance_15): norm, insol = normalize_with_expected_power( pv_15, expected_15, irradiance_15, pv_input='energy') expected_norm = pd.Series( {Timestamp('2020-01-01 12:00:00', freq='15T'): np.nan, Timestamp('2020-01-01 12:15:00', freq='15T'): 5.714285714285714, Timestamp('2020-01-01 12:30:00', freq='15T'): 4.705882352941177, Timestamp('2020-01-01 12:45:00', freq='15T'): 3.5918367346938775, Timestamp('2020-01-01 13:00:00', freq='15T'): 4.097560975609756} ) expected_norm.name = 'energy_Wh' expected_norm.index.freq = '15T' expected_insol = pd.Series( {Timestamp('2020-01-01 12:00:00', freq='15T'): np.nan, Timestamp('2020-01-01 12:15:00', freq='15T'): 231.25, Timestamp('2020-01-01 12:30:00', freq='15T'): 225.0, Timestamp('2020-01-01 12:45:00', freq='15T'): 240.625, Timestamp('2020-01-01 13:00:00', freq='15T'): 233.125} ) expected_insol.name = 'energy_Wh' expected_insol.index.freq = '15T' pd.testing.assert_series_equal(norm, expected_norm) pd.testing.assert_series_equal(insol, expected_insol) def test_normalize_with_expected_power_low_freq_pv(pv_30, expected_15, irradiance_15): norm, insol = normalize_with_expected_power( pv_30, expected_15, irradiance_15) expected_norm = pd.Series( {Timestamp('2020-01-01 12:30:00', freq='30T'): 0.9302325581395349, Timestamp('2020-01-01 13:00:00', freq='30T'): 1.1333333333333333} ) expected_norm.name = 'energy_Wh' expected_norm.index.freq = '30T' expected_insol = pd.Series( {Timestamp('2020-01-01 12:30:00', freq='30T'): 456.25, Timestamp('2020-01-01 13:00:00', freq='30T'): 473.75} ) expected_insol.name = 'energy_Wh' expected_insol.index.freq = '30T' pd.testing.assert_series_equal(norm, expected_norm) pd.testing.assert_series_equal(insol, expected_insol) def test_normalized_with_expected_power_low_freq_expected(pv_15, expected_30, irradiance_30): norm, insol = normalize_with_expected_power( pv_15, expected_30, irradiance_30) expected_norm = pd.Series( {Timestamp('2020-01-01 12:15:00', freq='15T'): 1.09375, Timestamp('2020-01-01 12:30:00', freq='15T'): 1.1458333333333335,
Timestamp('2020-01-01 12:45:00', freq='15T')
pandas.Timestamp
from datetime import datetime import numpy as np import pytest from pandas.core.dtypes.cast import find_common_type, is_dtype_equal import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas._testing as tm class TestDataFrameCombineFirst: def test_combine_first_mixed(self): a = Series(["a", "b"], index=range(2)) b = Series(range(2), index=range(2)) f = DataFrame({"A": a, "B": b}) a = Series(["a", "b"], index=range(5, 7)) b = Series(range(2), index=range(5, 7)) g = DataFrame({"A": a, "B": b}) exp = DataFrame({"A": list("abab"), "B": [0, 1, 0, 1]}, index=[0, 1, 5, 6]) combined = f.combine_first(g) tm.assert_frame_equal(combined, exp) def test_combine_first(self, float_frame): # disjoint head, tail = float_frame[:5], float_frame[5:] combined = head.combine_first(tail) reordered_frame = float_frame.reindex(combined.index) tm.assert_frame_equal(combined, reordered_frame) assert tm.equalContents(combined.columns, float_frame.columns) tm.assert_series_equal(combined["A"], reordered_frame["A"]) # same index fcopy = float_frame.copy() fcopy["A"] = 1 del fcopy["C"] fcopy2 = float_frame.copy() fcopy2["B"] = 0 del fcopy2["D"] combined = fcopy.combine_first(fcopy2) assert (combined["A"] == 1).all() tm.assert_series_equal(combined["B"], fcopy["B"]) tm.assert_series_equal(combined["C"], fcopy2["C"]) tm.assert_series_equal(combined["D"], fcopy["D"]) # overlap head, tail = reordered_frame[:10].copy(), reordered_frame head["A"] = 1 combined = head.combine_first(tail) assert (combined["A"][:10] == 1).all() # reverse overlap tail["A"][:10] = 0 combined = tail.combine_first(head) assert (combined["A"][:10] == 0).all() # no overlap f = float_frame[:10] g = float_frame[10:] combined = f.combine_first(g) tm.assert_series_equal(combined["A"].reindex(f.index), f["A"]) tm.assert_series_equal(combined["A"].reindex(g.index), g["A"]) # corner cases comb = float_frame.combine_first(DataFrame()) tm.assert_frame_equal(comb, float_frame) comb = DataFrame().combine_first(float_frame) tm.assert_frame_equal(comb, float_frame) comb = float_frame.combine_first(DataFrame(index=["faz", "boo"])) assert "faz" in comb.index # #2525 df = DataFrame({"a": [1]}, index=[datetime(2012, 1, 1)]) df2 = DataFrame(columns=["b"]) result = df.combine_first(df2) assert "b" in result def test_combine_first_mixed_bug(self): idx = Index(["a", "b", "c", "e"]) ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx) ser2 = Series(["a", "b", "c", "e"], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3}) idx = Index(["a", "b", "c", "f"]) ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx) ser2 = Series(["a", "b", "c", "f"], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3}) combined = frame1.combine_first(frame2) assert len(combined.columns) == 5 def test_combine_first_same_as_in_update(self): # gh 3016 (same as in update) df = DataFrame( [[1.0, 2.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) other = DataFrame([[45, 45]], index=[0], columns=["A", "B"]) result = df.combine_first(other) tm.assert_frame_equal(result, df) df.loc[0, "A"] = np.nan result = df.combine_first(other) df.loc[0, "A"] = 45 tm.assert_frame_equal(result, df) def test_combine_first_doc_example(self): # doc example df1 = DataFrame( {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]} ) df2 = DataFrame( { "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0], "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0], } ) result = df1.combine_first(df2) expected = DataFrame({"A": [1, 2, 3, 5, 3, 7.0], "B": [np.nan, 2, 3, 4, 6, 8]}) tm.assert_frame_equal(result, expected) def test_combine_first_return_obj_type_with_bools(self): # GH3552 df1 = DataFrame( [[np.nan, 3.0, True], [-4.6, np.nan, True], [np.nan, 7.0, False]] ) df2 = DataFrame([[-42.6, np.nan, True], [-5.0, 1.6, False]], index=[1, 2]) expected = Series([True, True, False], name=2, dtype=bool) result_12 = df1.combine_first(df2)[2] tm.assert_series_equal(result_12, expected) result_21 = df2.combine_first(df1)[2] tm.assert_series_equal(result_21, expected) @pytest.mark.parametrize( "data1, data2, data_expected", ( ( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [pd.NaT, pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [pd.NaT, pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [datetime(2000, 1, 2), pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 2), pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ), ) def test_combine_first_convert_datatime_correctly( self, data1, data2, data_expected ): # GH 3593 df1, df2 = DataFrame({"a": data1}), DataFrame({"a": data2}) result = df1.combine_first(df2) expected = DataFrame({"a": data_expected}) tm.assert_frame_equal(result, expected) def test_combine_first_align_nan(self): # GH 7509 (not fixed) dfa = DataFrame([[pd.Timestamp("2011-01-01"), 2]], columns=["a", "b"]) dfb = DataFrame([[4], [5]], columns=["b"]) assert dfa["a"].dtype == "datetime64[ns]" assert dfa["b"].dtype == "int64" res = dfa.combine_first(dfb) exp = DataFrame( {"a": [pd.Timestamp("2011-01-01"), pd.NaT], "b": [2, 5]}, columns=["a", "b"], ) tm.assert_frame_equal(res, exp) assert res["a"].dtype == "datetime64[ns]" # ToDo: this must be int64 assert res["b"].dtype == "int64" res = dfa.iloc[:0].combine_first(dfb) exp = DataFrame({"a": [np.nan, np.nan], "b": [4, 5]}, columns=["a", "b"]) tm.assert_frame_equal(res, exp) # ToDo: this must be datetime64 assert res["a"].dtype == "float64" # ToDo: this must be int64 assert res["b"].dtype == "int64" def test_combine_first_timezone(self): # see gh-7630 data1 = pd.to_datetime("20100101 01:01").tz_localize("UTC") df1 = DataFrame( columns=["UTCdatetime", "abc"], data=data1, index=pd.date_range("20140627", periods=1), ) data2 = pd.to_datetime("20121212 12:12").tz_localize("UTC") df2 = DataFrame( columns=["UTCdatetime", "xyz"], data=data2, index=pd.date_range("20140628", periods=1), ) res = df2[["UTCdatetime"]].combine_first(df1) exp = DataFrame( { "UTCdatetime": [ pd.Timestamp("2010-01-01 01:01", tz="UTC"), pd.Timestamp("2012-12-12 12:12", tz="UTC"), ], "abc": [pd.Timestamp("2010-01-01 01:01:00", tz="UTC"), pd.NaT], }, columns=["UTCdatetime", "abc"], index=pd.date_range("20140627", periods=2, freq="D"), ) assert res["UTCdatetime"].dtype == "datetime64[ns, UTC]" assert res["abc"].dtype == "datetime64[ns, UTC]" tm.assert_frame_equal(res, exp) # see gh-10567 dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="UTC") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-03", "2015-01-05", tz="UTC") df2 = DataFrame({"DATE": dts2}) res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res["DATE"].dtype == "datetime64[ns, UTC]" dts1 = pd.DatetimeIndex( ["2011-01-01", "NaT", "2011-01-03", "2011-01-04"], tz="US/Eastern" ) df1 = DataFrame({"DATE": dts1}, index=[1, 3, 5, 7]) dts2 = pd.DatetimeIndex( ["2012-01-01", "2012-01-02", "2012-01-03"], tz="US/Eastern" ) df2 = DataFrame({"DATE": dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.DatetimeIndex( [ "2011-01-01", "2012-01-01", "NaT", "2012-01-02", "2011-01-03", "2011-01-04", ], tz="US/Eastern", ) exp = DataFrame({"DATE": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) # different tz dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="US/Eastern") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-03", "2015-01-05") df2 = DataFrame({"DATE": dts2}) # if df1 doesn't have NaN, keep its dtype res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res["DATE"].dtype == "datetime64[ns, US/Eastern]" dts1 = pd.date_range("2015-01-01", "2015-01-02", tz="US/Eastern") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-01", "2015-01-03") df2 = DataFrame({"DATE": dts2}) res = df1.combine_first(df2) exp_dts = [ pd.Timestamp("2015-01-01", tz="US/Eastern"), pd.Timestamp("2015-01-02", tz="US/Eastern"), pd.Timestamp("2015-01-03"), ] exp = DataFrame({"DATE": exp_dts}) tm.assert_frame_equal(res, exp) assert res["DATE"].dtype == "object" def test_combine_first_timedelta(self): data1 = pd.TimedeltaIndex(["1 day", "NaT", "3 day", "4day"]) df1 = DataFrame({"TD": data1}, index=[1, 3, 5, 7]) data2 = pd.TimedeltaIndex(["10 day", "11 day", "12 day"]) df2 = DataFrame({"TD": data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.TimedeltaIndex( ["1 day", "10 day", "NaT", "11 day", "3 day", "4 day"] ) exp = DataFrame({"TD": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["TD"].dtype == "timedelta64[ns]" def test_combine_first_period(self): data1 = pd.PeriodIndex(["2011-01", "NaT", "2011-03", "2011-04"], freq="M") df1 = DataFrame({"P": data1}, index=[1, 3, 5, 7]) data2 = pd.PeriodIndex(["2012-01-01", "2012-02", "2012-03"], freq="M") df2 = DataFrame({"P": data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.PeriodIndex( ["2011-01", "2012-01", "NaT", "2012-02", "2011-03", "2011-04"], freq="M" ) exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["P"].dtype == data1.dtype # different freq dts2 =
pd.PeriodIndex(["2012-01-01", "2012-01-02", "2012-01-03"], freq="D")
pandas.PeriodIndex
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME:
pd.Timestamp("2015-01-20")
pandas.Timestamp
""" Test cases for DataFrame.plot """ import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase, _check_plot_works @td.skip_if_no_mpl class TestDataFrameColor(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform(size=20), } ) def test_mpl2_color_cycle_str(self): # GH 15516 df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"]) colors = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"] with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", "MatplotlibDeprecationWarning") for color in colors: _check_plot_works(df.plot, color=color) # if warning is raised, check that it is the exact problematic one # GH 36972 if w: match = "Support for uppercase single-letter colors is deprecated" warning_message = str(w[0].message) msg = "MatplotlibDeprecationWarning related to CN colors was raised" assert match not in warning_message, msg def test_color_single_series_list(self): # GH 3486 df = DataFrame({"A": [1, 2, 3]}) _check_plot_works(df.plot, color=["red"]) @pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)]) def test_rgb_tuple_color(self, color): # GH 16695 df = DataFrame({"x": [1, 2], "y": [3, 4]}) _check_plot_works(df.plot, x="x", y="y", color=color) def test_color_empty_string(self): df = DataFrame(np.random.randn(10, 2)) with pytest.raises(ValueError): df.plot(color="") def test_color_and_style_arguments(self): df = DataFrame({"x": [1, 2], "y": [3, 4]}) # passing both 'color' and 'style' arguments should be allowed # if there is no color symbol in the style strings: ax = df.plot(color=["red", "black"], style=["-", "--"]) # check that the linestyles are correctly set: linestyle = [line.get_linestyle() for line in ax.lines] assert linestyle == ["-", "--"] # check that the colors are correctly set: color = [line.get_color() for line in ax.lines] assert color == ["red", "black"] # passing both 'color' and 'style' arguments should not be allowed # if there is a color symbol in the style strings: with pytest.raises(ValueError): df.plot(color=["red", "black"], style=["k-", "r--"]) @pytest.mark.parametrize( "color, expected", [ ("green", ["green"] * 4), (["yellow", "red", "green", "blue"], ["yellow", "red", "green", "blue"]), ], ) def test_color_and_marker(self, color, expected): # GH 21003 df = DataFrame(np.random.random((7, 4))) ax = df.plot(color=color, style="d--") # check colors result = [i.get_color() for i in ax.lines] assert result == expected # check markers and linestyles assert all(i.get_linestyle() == "--" for i in ax.lines) assert all(i.get_marker() == "d" for i in ax.lines) @pytest.mark.slow def test_bar_colors(self): import matplotlib.pyplot as plt default_colors = self._unpack_cycler(plt.rcParams) df = DataFrame(np.random.randn(5, 5)) ax = df.plot.bar() self._check_colors(ax.patches[::5], facecolors=default_colors[:5]) tm.close() custom_colors = "rgcby" ax = df.plot.bar(color=custom_colors) self._check_colors(ax.patches[::5], facecolors=custom_colors) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot.bar(colormap="jet") rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() # Test colormap functionality ax = df.plot.bar(colormap=cm.jet) rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] self._check_colors(ax.patches[::5], facecolors=rgba_colors) tm.close() ax = df.loc[:, [0]].plot.bar(color="DodgerBlue") self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) tm.close() ax = df.plot(kind="bar", color="green") self._check_colors(ax.patches[::5], facecolors=["green"] * 5) tm.close() def test_bar_user_colors(self): df = DataFrame( {"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]} ) # This should *only* work when `y` is specified, else # we use one color per column ax = df.plot.bar(y="A", color=df["color"]) result = [p.get_facecolor() for p in ax.patches] expected = [ (1.0, 0.0, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.0, 1.0, 1.0), (1.0, 0.0, 0.0, 1.0), ] assert result == expected @pytest.mark.slow def test_if_scatterplot_colorbar_affects_xaxis_visibility(self): # addressing issue #10611, to ensure colobar does not # interfere with x-axis label and ticklabels with # ipython inline backend. random_array = np.random.random((1000, 3)) df = DataFrame(random_array, columns=["A label", "B label", "C label"]) ax1 = df.plot.scatter(x="A label", y="B label") ax2 = df.plot.scatter(x="A label", y="B label", c="C label") vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()] vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()] assert vis1 == vis2 vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()] vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()] assert vis1 == vis2 assert ( ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible() ) @pytest.mark.slow def test_if_hexbin_xaxis_label_is_visible(self): # addressing issue #10678, to ensure colobar does not # interfere with x-axis label and ticklabels with # ipython inline backend. random_array = np.random.random((1000, 3)) df =
DataFrame(random_array, columns=["A label", "B label", "C label"])
pandas.DataFrame
import logging import os import numpy as np import pandas as pd from opencell.database import utils, constants logger = logging.getLogger(__name__) def parseFloat(val): try: val = float(val) except ValueError: val = float(str(val).replace(',', '')) return val def load_library_snapshot(filename): ''' Load and format a CSV 'snapshot' of a library spreadsheet These 'snapshots' are of the google sheet created/maintained by Manu that contains the crispr designs for all plates ''' # define maps from the column names in the google sheets # to the column names in the models.metadata.CrisprDesign table # (all required columns are included, even if their name is unchanged) # column names in the original 'library' google sheet (containing plates 1-22) library_columns = { 'plate_id': 'plate_id', 'well_id': 'well_id', 'gene_name': 'target_name', 'family': 'target_family', 'enst_id': 'enst_id', 'terminus_to_tag': 'target_terminus', 'protospacer_name': 'protospacer_name', 'protospacer_note': 'protospacer_notes', 'protospacer_sequence': 'protospacer_sequence', 'ultramer_name': 'template_name', 'ultramer_note': 'template_notes', 'ultramer_sequence': 'template_sequence', } # alternative column names for some columns, specific to the 'library v1.1' spreadsheet # (this sheet starts with plate23 in Jan 2022) library_columns_2022 = { 'tagged_terminus': 'target_terminus', 'ensembl_transcript_id': 'enst_id', 'gRNA_sequence': 'protospacer_sequence', 'donor_sequence': 'template_sequence', } library_columns.update(library_columns_2022) library = pd.read_csv(filename) library.rename(columns=library_columns, inplace=True) # for clarity, format the plate_ids here library['plate_id'] = library.plate_id.apply(utils.format_plate_design_id) # drop any extraneous columns dropped_columns = list(set(library.columns).difference(library_columns.values())) library = library.drop(labels=dropped_columns, axis=1) return library def load_electroporation_history(filename): ''' Load and format a 'snapshot' of the list of electroporations (this is a google sheet from Manu) Expected columns: ('plate_id', 'date', 'notes') ''' electroporation_columns = { 'plate_id': 'plate_id', 'electroporation_date': 'date', 'comment': 'notes', } electroporations =
pd.read_csv(filename)
pandas.read_csv
# # bow_module.py # # Copyright (c) 2017 <NAME> # # This software is released under the MIT License. # http://opensource.org/licenses/mit-license.php # # # Includes pandas #----------------------------------------------------------------------------- # Copyright (c) 2012, PyData Development Team # All rights reserved. # # Distributed under the terms of the BSD Simplified License. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- import pandas as pd def read_BOW_file(BOW_filename): f = open(BOW_filename, 'r') full_string = f.read() f.close() BOW = [] for line in full_string.split('\n'): document = [] for word in line.split(','): if word != '': document.append(word) if document != []: BOW.append(document) return BOW def write_BOW_file(BOW, BOW_filename): f = open(BOW_filename, 'w') for d, line in enumerate(BOW): for i, word in enumerate(line): f.write(word) if i != (len(line)-1): f.write(',') f.write('\n') def make_bag_of_words_num(input_filename): frequency_matrix = pd.read_csv(input_filename) frequency_matrix.index = frequency_matrix.iloc[:,0] del frequency_matrix[frequency_matrix.columns[0]] word_list = frequency_matrix.columns.tolist() BOW = [] for d, document in enumerate(frequency_matrix.index.tolist()): bufList = [] for v, word in enumerate(frequency_matrix.columns.tolist()): for i in range(frequency_matrix.loc[document, word]): bufList.append(v) BOW.append(bufList) return BOW, word_list def make_frequency_matrix(BOW, word_list, output_filename): frequency_matrix = [] for document in BOW: frequency_list = [] for i, word in enumerate(word_list): frequency = document.count(i) frequency_list.append(frequency) frequency_matrix.append(frequency_list) fm_df =
pd.DataFrame(frequency_matrix, columns=word_list)
pandas.DataFrame
# Adapted from https://github.com/BinPro/CONCOCT/blob/develop/scripts/fasta_to_features.py from itertools import product from collections import OrderedDict from .fasta import fasta_iter def generate_feature_mapping(kmer_len): BASE_COMPLEMENT = {"A": "T", "T": "A", "G": "C", "C": "G"} kmer_hash = {} counter = 0 for kmer in product("ATGC", repeat=kmer_len): kmer = ''.join(kmer) if kmer not in kmer_hash: kmer_hash[kmer] = counter rev_compl = tuple([BASE_COMPLEMENT[x] for x in reversed(kmer)]) kmer_hash[''.join(rev_compl)] = counter counter += 1 return kmer_hash, counter def generate_kmer_features_from_fasta( fasta_file, length_threshold, kmer_len, split=False, split_threshold=0): import numpy as np import pandas as pd def seq_list(): for h, seq in fasta_iter(fasta_file): if not split: yield h, seq elif len(seq) >= split_threshold: half = len(seq) // 2 yield (h + '_1', seq[:half]) yield (h + '_2', seq[half:]) kmer_dict, nr_features = generate_feature_mapping(kmer_len) composition = OrderedDict() for h, seq in seq_list(): if len(seq) < length_threshold: continue norm_seq = str(seq).upper() kmers = [kmer_dict[norm_seq[i:i+kmer_len]] for i in range(len(norm_seq) - kmer_len + 1) if norm_seq[i:i+kmer_len] in kmer_dict] # ignore kmers with non-canonical bases composition[h] = np.bincount(np.array(kmers, dtype=np.int64), minlength=nr_features) df =
pd.DataFrame.from_dict(composition, orient='index', dtype=float)
pandas.DataFrame.from_dict
""" Provide the groupby split-apply-combine paradigm. Define the GroupBy class providing the base-class of operations. The SeriesGroupBy and DataFrameGroupBy sub-class (defined in pandas.core.groupby.generic) expose these user-facing objects to provide specific functionality. """ from contextlib import contextmanager import datetime from functools import partial, wraps import inspect import re import types from typing import ( Callable, Dict, FrozenSet, Generic, Hashable, Iterable, List, Mapping, Optional, Tuple, Type, TypeVar, Union, ) import numpy as np from pandas._config.config import option_context from pandas._libs import Timestamp import pandas._libs.groupby as libgroupby from pandas._typing import FrameOrSeries, Scalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution, cache_readonly, doc from pandas.core.dtypes.cast import maybe_cast_result from pandas.core.dtypes.common import ( ensure_float, is_bool_dtype, is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import nanops import pandas.core.algorithms as algorithms from pandas.core.arrays import Categorical, DatetimeArray from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base, ops from pandas.core.indexes.api import CategoricalIndex, Index, MultiIndex from pandas.core.series import Series from pandas.core.sorting import get_group_index_sorter _common_see_also = """ See Also -------- Series.%(name)s DataFrame.%(name)s """ _apply_docs = dict( template=""" Apply function `func` group-wise and combine the results together. The function passed to `apply` must take a {input} as its first argument and return a DataFrame, Series or scalar. `apply` will then take care of combining the results back together into a single dataframe or series. `apply` is therefore a highly flexible grouping method. While `apply` is a very flexible method, its downside is that using it can be quite a bit slower than using more specific methods like `agg` or `transform`. Pandas offers a wide range of method that will be much faster than using `apply` for their specific purposes, so try to use them before reaching for `apply`. Parameters ---------- func : callable A callable that takes a {input} as its first argument, and returns a dataframe, a series or a scalar. In addition the callable may take positional and keyword arguments. args, kwargs : tuple and dict Optional positional and keyword arguments to pass to `func`. Returns ------- applied : Series or DataFrame See Also -------- pipe : Apply function to the full GroupBy object instead of to each group. aggregate : Apply aggregate function to the GroupBy object. transform : Apply function column-by-column to the GroupBy object. Series.apply : Apply a function to a Series. DataFrame.apply : Apply a function to each row or column of a DataFrame. """, dataframe_examples=""" >>> df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1,2,3], 'C': [4,6, 5]}) >>> g = df.groupby('A') Notice that ``g`` has two groups, ``a`` and ``b``. Calling `apply` in various ways, we can get different grouping results: Example 1: below the function passed to `apply` takes a DataFrame as its argument and returns a DataFrame. `apply` combines the result for each group together into a new DataFrame: >>> g[['B', 'C']].apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 Example 2: The function passed to `apply` takes a DataFrame as its argument and returns a Series. `apply` combines the result for each group together into a new DataFrame: >>> g[['B', 'C']].apply(lambda x: x.max() - x.min()) B C A a 1 2 b 0 0 Example 3: The function passed to `apply` takes a DataFrame as its argument and returns a scalar. `apply` combines the result for each group together into a Series, including setting the index as appropriate: >>> g.apply(lambda x: x.C.max() - x.B.min()) A a 5 b 2 dtype: int64 """, series_examples=""" >>> s = pd.Series([0, 1, 2], index='a a b'.split()) >>> g = s.groupby(s.index) From ``s`` above we can see that ``g`` has two groups, ``a`` and ``b``. Calling `apply` in various ways, we can get different grouping results: Example 1: The function passed to `apply` takes a Series as its argument and returns a Series. `apply` combines the result for each group together into a new Series: >>> g.apply(lambda x: x*2 if x.name == 'b' else x/2) 0 0.0 1 0.5 2 4.0 dtype: float64 Example 2: The function passed to `apply` takes a Series as its argument and returns a scalar. `apply` combines the result for each group together into a Series, including setting the index as appropriate: >>> g.apply(lambda x: x.max() - x.min()) a 1 b 0 dtype: int64 Notes ----- In the current implementation `apply` calls `func` twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first group. Examples -------- {examples} """, ) _pipe_template = """ Apply a function `func` with arguments to this %(klass)s object and return the function's result. %(versionadded)s Use `.pipe` when you want to improve readability by chaining together functions that expect Series, DataFrames, GroupBy or Resampler objects. Instead of writing >>> h(g(f(df.groupby('group')), arg1=a), arg2=b, arg3=c) # doctest: +SKIP You can write >>> (df.groupby('group') ... .pipe(f) ... .pipe(g, arg1=a) ... .pipe(h, arg2=b, arg3=c)) # doctest: +SKIP which is much more readable. Parameters ---------- func : callable or tuple of (callable, str) Function to apply to this %(klass)s object or, alternatively, a `(callable, data_keyword)` tuple where `data_keyword` is a string indicating the keyword of `callable` that expects the %(klass)s object. args : iterable, optional Positional arguments passed into `func`. kwargs : dict, optional A dictionary of keyword arguments passed into `func`. Returns ------- object : the return type of `func`. See Also -------- Series.pipe : Apply a function with arguments to a series. DataFrame.pipe: Apply a function with arguments to a dataframe. apply : Apply function to each group instead of to the full %(klass)s object. Notes ----- See more `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#piping-function-calls>`_ Examples -------- %(examples)s """ _transform_template = """ Call function producing a like-indexed %(klass)s on each group and return a %(klass)s having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each group. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optionally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.groupby.apply %(klass)s.groupby.aggregate %(klass)s.transform Notes ----- Each group is endowed the attribute 'name' in case you need to know which group you are working on. The current implementation imposes three requirements on f: * f must return a value that either has the same shape as the input subframe or can be broadcast to the shape of the input subframe. For example, if `f` returns a scalar it will be broadcast to have the same shape as the input subframe. * if this is a DataFrame, f must support application column-by-column in the subframe. If f also supports application to the entire subframe, then a fast path is used starting from the second chunk. * f must not mutate groups. Mutation is not supported and may produce unexpected results. When using ``engine='numba'``, there will be no "fall back" behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : ['one', 'one', 'two', 'three', ... 'two', 'two'], ... 'C' : [1, 5, 5, 2, 5, 5], ... 'D' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) C D 0 -1.154701 -0.577350 1 0.577350 0.000000 2 0.577350 1.154701 3 -1.154701 -1.000000 4 0.577350 -0.577350 5 0.577350 1.000000 Broadcast result of the transformation >>> grouped.transform(lambda x: x.max() - x.min()) C D 0 4 6.0 1 3 8.0 2 4 6.0 3 3 8.0 4 4 6.0 5 3 8.0 """ _agg_template = """ Aggregate using one or more operations over the specified axis. Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of axis labels -> functions, function names or list of such. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optionally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.groupby.apply %(klass)s.groupby.transform %(klass)s.aggregate Notes ----- When using ``engine='numba'``, there will be no "fall back" behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. %(examples)s """ class GroupByPlot(PandasObject): """ Class implementing the .plot attribute for groupby objects. """ def __init__(self, groupby): self._groupby = groupby def __call__(self, *args, **kwargs): def f(self): return self.plot(*args, **kwargs) f.__name__ = "plot" return self._groupby.apply(f) def __getattr__(self, name: str): def attr(*args, **kwargs): def f(self): return getattr(self.plot, name)(*args, **kwargs) return self._groupby.apply(f) return attr @contextmanager def _group_selection_context(groupby): """ Set / reset the _group_selection_context. """ groupby._set_group_selection() yield groupby groupby._reset_group_selection() _KeysArgType = Union[ Hashable, List[Hashable], Callable[[Hashable], Hashable], List[Callable[[Hashable], Hashable]], Mapping[Hashable, Hashable], ] class _GroupBy(PandasObject, SelectionMixin, Generic[FrameOrSeries]): _group_selection = None _apply_whitelist: FrozenSet[str] = frozenset() def __init__( self, obj: FrameOrSeries, keys: Optional[_KeysArgType] = None, axis: int = 0, level=None, grouper: "Optional[ops.BaseGrouper]" = None, exclusions=None, selection=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, mutated: bool = False, dropna: bool = True, ): self._selection = selection assert isinstance(obj, NDFrame), type(obj) obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError("as_index=False only valid with DataFrame") if axis != 0: raise ValueError("as_index=False only valid for axis=0") self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze self.observed = observed self.mutated = mutated self.dropna = dropna if grouper is None: from pandas.core.groupby.grouper import get_grouper grouper, exclusions, obj = get_grouper( obj, keys, axis=axis, level=level, sort=sort, observed=observed, mutated=self.mutated, dropna=self.dropna, ) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self) -> int: return len(self.groups) def __repr__(self) -> str: # TODO: Better repr for GroupBy object return object.__repr__(self) def _assure_grouper(self): """ We create the grouper on instantiation sub-classes may have a different policy. """ pass @property def groups(self): """ Dict {group name -> group labels}. """ self._assure_grouper() return self.grouper.groups @property def ngroups(self): self._assure_grouper() return self.grouper.ngroups @property def indices(self): """ Dict {group name -> group indices}. """ self._assure_grouper() return self.grouper.indices def _get_indices(self, names): """ Safe get multiple indices, translate keys for datelike to underlying repr. """ def get_converter(s): # possibly convert to the actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, datetime.datetime): return lambda key: Timestamp(key) elif isinstance(s, np.datetime64): return lambda key: Timestamp(key).asm8 else: return lambda key: key if len(names) == 0: return [] if len(self.indices) > 0: index_sample = next(iter(self.indices)) else: index_sample = None # Dummy sample name_sample = names[0] if isinstance(index_sample, tuple): if not isinstance(name_sample, tuple): msg = "must supply a tuple to get_group with multiple grouping keys" raise ValueError(msg) if not len(name_sample) == len(index_sample): try: # If the original grouper was a tuple return [self.indices[name] for name in names] except KeyError as err: # turns out it wasn't a tuple msg = ( "must supply a same-length tuple to get_group " "with multiple grouping keys" ) raise ValueError(msg) from err converters = [get_converter(s) for s in index_sample] names = (tuple(f(n) for f, n in zip(converters, name)) for name in names) else: converter = get_converter(index_sample) names = (converter(name) for name in names) return [self.indices.get(name, []) for name in names] def _get_index(self, name): """ Safe get index, translate keys for datelike to underlying repr. """ return self._get_indices([name])[0] @cache_readonly def _selected_obj(self): # Note: _selected_obj is always just `self.obj` for SeriesGroupBy if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _reset_group_selection(self): """ Clear group based selection. Used for methods needing to return info on each group regardless of whether a group selection was previously set. """ if self._group_selection is not None: # GH12839 clear cached selection too when changing group selection self._group_selection = None self._reset_cache("_selected_obj") def _set_group_selection(self): """ Create group based selection. Used when selection is not passed directly but instead via a grouper. NOTE: this should be paired with a call to _reset_group_selection """ grp = self.grouper if not ( self.as_index and getattr(grp, "groupings", None) is not None and self.obj.ndim > 1 and self._group_selection is None ): return ax = self.obj._info_axis groupers = [g.name for g in grp.groupings if g.level is None and g.in_axis] if len(groupers): # GH12839 clear selected obj cache when group selection changes self._group_selection = ax.difference(Index(groupers), sort=False).tolist() self._reset_cache("_selected_obj") def _set_result_index_ordered(self, result): # set the result index on the passed values object and # return the new object, xref 8046 # the values/counts are repeated according to the group index # shortcut if we have an already ordered grouper if not self.grouper.is_monotonic: index = Index(np.concatenate(self._get_indices(self.grouper.result_index))) result.set_axis(index, axis=self.axis, inplace=True) result = result.sort_index(axis=self.axis) result.set_axis(self.obj._get_axis(self.axis), axis=self.axis, inplace=True) return result def _dir_additions(self): return self.obj._dir_additions() | self._apply_whitelist def __getattr__(self, attr: str): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( f"'{type(self).__name__}' object has no attribute '{attr}'" ) @Substitution( klass="GroupBy", versionadded=".. versionadded:: 0.21.0", examples="""\ >>> df = pd.DataFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]}) >>> df A B 0 a 1 1 b 2 2 a 3 3 b 4 To get the difference between each groups maximum and minimum value in one pass, you can do >>> df.groupby('A').pipe(lambda x: x.max() - x.min()) B A a 2 b 2""", ) @Appender(_pipe_template) def pipe(self, func, *args, **kwargs): return com.pipe(self, func, *args, **kwargs) plot = property(GroupByPlot) def _make_wrapper(self, name): assert name in self._apply_whitelist self._set_group_selection() # need to setup the selection # as are not passed directly but in the grouper f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) sig = inspect.signature(f) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument if "axis" in sig.parameters: if kwargs.get("axis", None) is None: kwargs["axis"] = self.axis def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in base.plotting_methods: return self.apply(curried) try: return self.apply(curried) except TypeError as err: if not re.search( "reduction operation '.*' not allowed for this dtype", str(err) ): # We don't have a cython implementation # TODO: is the above comment accurate? raise if self.obj.ndim == 1: # this can be called recursively, so need to raise ValueError raise ValueError # GH#3688 try to operate item-by-item result = self._aggregate_item_by_item(name, *args, **kwargs) return result wrapper.__name__ = name return wrapper def get_group(self, name, obj=None): """ Construct DataFrame from group with provided name. Parameters ---------- name : object The name of the group to get as a DataFrame. obj : DataFrame, default None The DataFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used. Returns ------- group : same type as obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) if not len(inds): raise KeyError(name) return obj._take_with_is_copy(inds, axis=self.axis) def __iter__(self): """ Groupby iterator. Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) @Appender( _apply_docs["template"].format( input="dataframe", examples=_apply_docs["dataframe_examples"] ) ) def apply(self, func, *args, **kwargs): func = self._is_builtin_func(func) # this is needed so we don't try and wrap strings. If we could # resolve functions to their callable functions prior, this # wouldn't be needed if args or kwargs: if callable(func): @wraps(func) def f(g): with np.errstate(all="ignore"): return func(g, *args, **kwargs) elif hasattr(nanops, "nan" + func): # TODO: should we wrap this in to e.g. _is_builtin_func? f = getattr(nanops, "nan" + func) else: raise ValueError( "func must be a callable if args or kwargs are supplied" ) else: f = func # ignore SettingWithCopy here in case the user mutates with option_context("mode.chained_assignment", None): try: result = self._python_apply_general(f) except TypeError: # gh-20949 # try again, with .apply acting as a filtering # operation, by excluding the grouping column # This would normally not be triggered # except if the udf is trying an operation that # fails on *some* columns, e.g. a numeric operation # on a string grouper column with _group_selection_context(self): return self._python_apply_general(f) return result def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output( keys, values, not_indexed_same=mutated or self.mutated ) def _iterate_slices(self) -> Iterable[Series]: raise AbstractMethodError(self) def transform(self, func, *args, **kwargs): raise AbstractMethodError(self) def _cumcount_array(self, ascending: bool = True): """ Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Notes ----- this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ids, _, ngroups = self.grouper.group_info sorter = get_group_index_sorter(ids, ngroups) ids, count = ids[sorter], len(ids) if count == 0: return np.empty(0, dtype=np.int64) run = np.r_[True, ids[:-1] != ids[1:]] rep = np.diff(np.r_[np.nonzero(run)[0], count]) out = (~run).cumsum() if ascending: out -= np.repeat(out[run], rep) else: out = np.repeat(out[np.r_[run[1:], True]], rep) - out rev = np.empty(count, dtype=np.intp) rev[sorter] = np.arange(count, dtype=np.intp) return out[rev].astype(np.int64, copy=False) def _transform_should_cast(self, func_nm: str) -> bool: """ Parameters ---------- func_nm: str The name of the aggregation function being performed Returns ------- bool Whether transform should attempt to cast the result of aggregation """ return (self.size().fillna(0) > 0).any() and ( func_nm not in base.cython_cast_blacklist ) def _cython_transform(self, how: str, numeric_only: bool = True, **kwargs): output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, _ = self.grouper.transform(obj.values, how, **kwargs) except NotImplementedError: continue if self._transform_should_cast(how): result = maybe_cast_result(result, obj, how=how) key = base.OutputKey(label=name, position=idx) output[key] = result if len(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_transformed_output(output) def _wrap_aggregated_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_transformed_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_applied_output(self, keys, values, not_indexed_same: bool = False): raise AbstractMethodError(self) def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ): output: Dict[base.OutputKey, Union[np.ndarray, DatetimeArray]] = {} # Ideally we would be able to enumerate self._iterate_slices and use # the index from enumeration as the key of output, but ohlc in particular # returns a (n x 4) array. Output requires 1D ndarrays as values, so we # need to slice that up into 1D arrays idx = 0 for obj in self._iterate_slices(): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue result, agg_names = self.grouper.aggregate( obj._values, how, min_count=min_count ) if agg_names: # e.g. ohlc assert len(agg_names) == result.shape[1] for result_column, result_name in zip(result.T, agg_names): key = base.OutputKey(label=result_name, position=idx) output[key] = maybe_cast_result(result_column, obj, how=how) idx += 1 else: assert result.ndim == 1 key = base.OutputKey(label=name, position=idx) output[key] = maybe_cast_result(result, obj, how=how) idx += 1 if len(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_aggregated_output(output) def _python_agg_general( self, func, *args, engine="cython", engine_kwargs=None, **kwargs ): func = self._is_builtin_func(func) if engine != "numba": f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name if self.grouper.ngroups == 0: # agg_series below assumes ngroups > 0 continue if engine == "numba": result, counts = self.grouper.agg_series( obj, func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs, ) else: try: # if this function is invalid for this dtype, we will ignore it. result, counts = self.grouper.agg_series(obj, f) except TypeError: continue assert result is not None key = base.OutputKey(label=name, position=idx) output[key] = maybe_cast_result(result, obj, numeric_only=True) if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for key, result in output.items(): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = ensure_float(values) output[key] = maybe_cast_result(values[mask], result) return self._wrap_aggregated_output(output) def _concat_objects(self, keys, values, not_indexed_same: bool = False): from pandas.core.reshape.concat import concat def reset_identity(values): # reset the identities of the components # of the values to prevent aliasing for v in com.not_none(*values): ax = v._get_axis(self.axis) ax._reset_identity() return values if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) # this is a very unfortunate situation # we can't use reindex to restore the original order # when the ax has duplicates # so we resort to this # GH 14776, 30667 if ax.has_duplicates: indexer, _ = result.index.get_indexer_non_unique(ax.values) indexer = algorithms.unique1d(indexer) result = result.take(indexer, axis=self.axis) else: result = result.reindex(ax, axis=self.axis) elif self.group_keys: values = reset_identity(values) if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat( values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names, sort=False, ) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: values = reset_identity(values) result = concat(values, axis=self.axis) if isinstance(result, Series) and self._selection_name is not None: result.name = self._selection_name return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = np.array([], dtype="int64") else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices, axis=self.axis) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered # To track operations that expand dimensions, like ohlc OutputFrameOrSeries = TypeVar("OutputFrameOrSeries", bound=NDFrame) class GroupBy(_GroupBy[FrameOrSeries]): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : str Most users should ignore this Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more """ @property def _obj_1d_constructor(self) -> Type["Series"]: # GH28330 preserve subclassed Series/DataFrames if isinstance(self.obj, DataFrame): return self.obj._constructor_sliced assert isinstance(self.obj, Series) return self.obj._constructor def _bool_agg(self, val_test, skipna): """ Shared func to call any / all Cython GroupBy implementations. """ def objs_to_bool(vals: np.ndarray) -> Tuple[np.ndarray, Type]: if is_object_dtype(vals): vals = np.array([bool(x) for x in vals]) else: vals = vals.astype(np.bool) return vals.view(np.uint8), np.bool def result_to_bool(result: np.ndarray, inference: Type) -> np.ndarray: return result.astype(inference, copy=False) return self._get_cythonized_result( "group_any_all", aggregate=True, cython_dtype=np.dtype(np.uint8), needs_values=True, needs_mask=True, pre_processing=objs_to_bool, post_processing=result_to_bool, val_test=val_test, skipna=skipna, ) @Substitution(name="groupby") @Appender(_common_see_also) def any(self, skipna: bool = True): """ Return True if any value in the group is truthful, else False. Parameters ---------- skipna : bool, default True Flag to ignore nan values during truth testing. Returns ------- bool """ return self._bool_agg("any", skipna) @Substitution(name="groupby") @Appender(_common_see_also) def all(self, skipna: bool = True): """ Return True if all values in the group are truthful, else False. Parameters ---------- skipna : bool, default True Flag to ignore nan values during truth testing. Returns ------- bool """ return self._bool_agg("all", skipna) @Substitution(name="groupby") @Appender(_common_see_also) def count(self): """ Compute count of group, excluding missing values. Returns ------- Series or DataFrame Count of values within each group. """ # defined here for API doc raise NotImplementedError @Substitution(name="groupby") @Substitution(see_also=_common_see_also) def mean(self, numeric_only: bool = True): """ Compute mean of groups, excluding missing values. Parameters ---------- numeric_only : bool, default True Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Returns ------- pandas.Series or pandas.DataFrame %(see_also)s Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) Groupby one column and return the mean of the remaining columns in each group. >>> df.groupby('A').mean() B C A 1 3.0 1.333333 2 4.0 1.500000 Groupby two columns and return the mean of the remaining column. >>> df.groupby(['A', 'B']).mean() C A B 1 2.0 2 4.0 1 2 3.0 1 5.0 2 Groupby one column and return the mean of only particular column in the group. >>> df.groupby('A')['B'].mean() A 1 3.0 2 4.0 Name: B, dtype: float64 """ return self._cython_agg_general( "mean", alt=lambda x, axis: Series(x).mean(numeric_only=numeric_only), numeric_only=numeric_only, ) @Substitution(name="groupby") @Appender(_common_see_also) def median(self, numeric_only=True): """ Compute median of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex Parameters ---------- numeric_only : bool, default True Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Returns ------- Series or DataFrame Median of values within each group. """ return self._cython_agg_general( "median", alt=lambda x, axis: Series(x).median(axis=axis, numeric_only=numeric_only), numeric_only=numeric_only, ) @Substitution(name="groupby") @Appender(_common_see_also) def std(self, ddof: int = 1): """ Compute standard deviation of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ---------- ddof : int, default 1 Degrees of freedom. Returns ------- Series or DataFrame Standard deviation of values within each group. """ # TODO: implement at Cython level? return np.sqrt(self.var(ddof=ddof)) @Substitution(name="groupby") @Appender(_common_see_also) def var(self, ddof: int = 1): """ Compute variance of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ---------- ddof : int, default 1 Degrees of freedom. Returns ------- Series or DataFrame Variance of values within each group. """ if ddof == 1: return self._cython_agg_general( "var", alt=lambda x, axis: Series(x).var(ddof=ddof) ) else: func = lambda x: x.var(ddof=ddof) with _group_selection_context(self): return self._python_agg_general(func) @Substitution(name="groupby") @Appender(_common_see_also) def sem(self, ddof: int = 1): """ Compute standard error of the mean of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ---------- ddof : int, default 1 Degrees of freedom. Returns ------- Series or DataFrame Standard error of the mean of values within each group. """ return self.std(ddof=ddof) / np.sqrt(self.count()) @Substitution(name="groupby") @Appender(_common_see_also) def size(self): """ Compute group sizes. Returns ------- Series Number of rows in each group. """ result = self.grouper.size() # GH28330 preserve subclassed Series/DataFrames through calls if issubclass(self.obj._constructor, Series): result = self._obj_1d_constructor(result, name=self.obj.name) else: result = self._obj_1d_constructor(result) return self._reindex_output(result, fill_value=0) @classmethod def _add_numeric_operations(cls): """ Add numeric operations to the GroupBy generically. """ def groupby_function( name: str, alias: str, npfunc, numeric_only: bool = True, min_count: int = -1, ): _local_template = """ Compute %(f)s of group values. Parameters ---------- numeric_only : bool, default %(no)s Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. min_count : int, default %(mc)s The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. Returns ------- Series or DataFrame Computed %(f)s of values within each group. """ @Substitution(name="groupby", f=name, no=numeric_only, mc=min_count) @Appender(_common_see_also) @Appender(_local_template) def func(self, numeric_only=numeric_only, min_count=min_count): self._set_group_selection() # try a cython aggregation if we can try: return self._cython_agg_general( how=alias, alt=npfunc, numeric_only=numeric_only, min_count=min_count, ) except DataError: pass except NotImplementedError as err: if "function is not implemented for this dtype" in str( err ) or "category dtype not supported" in str(err): # raised in _get_cython_function, in some cases can # be trimmed by implementing cython funcs for more dtypes pass else: raise # apply a non-cython aggregation result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) return result set_function_name(func, name, cls) return func def first_compat(obj: FrameOrSeries, axis: int = 0): def first(x: Series): x = x.array[notna(x.array)] if len(x) == 0: return np.nan return x[0] if isinstance(obj, DataFrame): return obj.apply(first, axis=axis) elif isinstance(obj, Series): return first(obj) else: raise TypeError(type(obj)) def last_compat(obj: FrameOrSeries, axis: int = 0): def last(x: Series): x = x.array[notna(x.array)] if len(x) == 0: return np.nan return x[-1] if isinstance(obj, DataFrame): return obj.apply(last, axis=axis) elif isinstance(obj, Series): return last(obj) else: raise TypeError(type(obj)) cls.sum = groupby_function("sum", "add", np.sum, min_count=0) cls.prod = groupby_function("prod", "prod", np.prod, min_count=0) cls.min = groupby_function("min", "min", np.min, numeric_only=False) cls.max = groupby_function("max", "max", np.max, numeric_only=False) cls.first = groupby_function("first", "first", first_compat, numeric_only=False) cls.last = groupby_function("last", "last", last_compat, numeric_only=False) @Substitution(name="groupby") @Appender(_common_see_also) def ohlc(self) -> DataFrame: """ Compute open, high, low and close values of a group, excluding missing values. For multiple groupings, the result index will be a MultiIndex Returns ------- DataFrame Open, high, low and close values within each group. """ return self._apply_to_column_groupbys(lambda x: x._cython_agg_general("ohlc")) @doc(DataFrame.describe) def describe(self, **kwargs): with _group_selection_context(self): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def resample(self, rule, *args, **kwargs): """ Provide resampling when using a TimeGrouper. Given a grouper, the function resamples it according to a string "string" -> "frequency". See the :ref:`frequency aliases <timeseries.offset_aliases>` documentation for more details. Parameters ---------- rule : str or DateOffset The offset string or object representing target grouper conversion. *args, **kwargs Possible arguments are `how`, `fill_method`, `limit`, `kind` and `on`, and other arguments of `TimeGrouper`. Returns ------- Grouper Return a new grouper with our resampler appended. See Also -------- Grouper : Specify a frequency to resample with when grouping by a key. DatetimeIndex.resample : Frequency conversion and resampling of time series. Examples -------- >>> idx = pd.date_range('1/1/2000', periods=4, freq='T') >>> df = pd.DataFrame(data=4 * [range(2)], ... index=idx, ... columns=['a', 'b']) >>> df.iloc[2, 0] = 5 >>> df a b 2000-01-01 00:00:00 0 1 2000-01-01 00:01:00 0 1 2000-01-01 00:02:00 5 1 2000-01-01 00:03:00 0 1 Downsample the DataFrame into 3 minute bins and sum the values of the timestamps falling into a bin. >>> df.groupby('a').resample('3T').sum() a b a 0 2000-01-01 00:00:00 0 2 2000-01-01 00:03:00 0 1 5 2000-01-01 00:00:00 5 1 Upsample the series into 30 second bins. >>> df.groupby('a').resample('30S').sum() a b a 0 2000-01-01 00:00:00 0 1 2000-01-01 00:00:30 0 0 2000-01-01 00:01:00 0 1 2000-01-01 00:01:30 0 0 2000-01-01 00:02:00 0 0 2000-01-01 00:02:30 0 0 2000-01-01 00:03:00 0 1 5 2000-01-01 00:02:00 5 1 Resample by month. Values are assigned to the month of the period. >>> df.groupby('a').resample('M').sum() a b a 0 2000-01-31 0 3 5 2000-01-31 5 1 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> df.groupby('a').resample('3T', closed='right').sum() a b a 0 1999-12-31 23:57:00 0 1 2000-01-01 00:00:00 0 2 5 2000-01-01 00:00:00 5 1 Downsample the series into 3 minute bins and close the right side of the bin interval, but label each bin using the right edge instead of the left. >>> df.groupby('a').resample('3T', closed='right', label='right').sum() a b a 0 2000-01-01 00:00:00 0 1 2000-01-01 00:03:00 0 2 5 2000-01-01 00:03:00 5 1 """ from pandas.core.resample import get_resampler_for_grouping return get_resampler_for_grouping(self, rule, *args, **kwargs) @Substitution(name="groupby") @Appender(_common_see_also) def rolling(self, *args, **kwargs): """ Return a rolling grouper, providing rolling functionality per group. """ from pandas.core.window import RollingGroupby return RollingGroupby(self, *args, **kwargs) @Substitution(name="groupby") @Appender(_common_see_also) def expanding(self, *args, **kwargs): """ Return an expanding grouper, providing expanding functionality per group. """ from pandas.core.window import ExpandingGroupby return ExpandingGroupby(self, *args, **kwargs) def _fill(self, direction, limit=None): """ Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill """ # Need int value for Cython if limit is None: limit = -1 return self._get_cythonized_result( "group_fillna_indexer", needs_mask=True, cython_dtype=np.dtype(np.int64), result_is_index=True, direction=direction, limit=limit, ) @Substitution(name="groupby") def pad(self, limit=None): """ Forward fill the values. Parameters ---------- limit : int, optional Limit of how many values to fill. Returns ------- Series or DataFrame Object with missing values filled. See Also -------- Series.pad DataFrame.pad Series.fillna DataFrame.fillna """ return self._fill("ffill", limit=limit) ffill = pad @Substitution(name="groupby") def backfill(self, limit=None): """ Backward fill the values. Parameters ---------- limit : int, optional Limit of how many values to fill. Returns ------- Series or DataFrame Object with missing values filled. See Also -------- Series.backfill DataFrame.backfill Series.fillna DataFrame.fillna """ return self._fill("bfill", limit=limit) bfill = backfill @Substitution(name="groupby") @Substitution(see_also=_common_see_also) def nth(self, n: Union[int, List[int]], dropna: Optional[str] = None) -> DataFrame: """ Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints. If dropna, will take the nth non-null row, dropna is either 'all' or 'any'; this is equivalent to calling dropna(how=dropna) before the groupby. Parameters ---------- n : int or list of ints A single nth value for the row or a list of nth values. dropna : None or str, optional Apply the specified dropna operation before counting which row is the nth row. Needs to be None, 'any' or 'all'. Returns ------- Series or DataFrame N-th value within each group. %(see_also)s Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5]}, columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) B A 1 NaN 2 3.0 >>> g.nth(1) B A 1 2.0 2 5.0 >>> g.nth(-1) B A 1 4.0 2 5.0 >>> g.nth([0, 1]) B A 1 NaN 1 2.0 2 3.0 2 5.0 Specifying `dropna` allows count ignoring ``NaN`` >>> g.nth(0, dropna='any') B A 1 2.0 2 3.0 NaNs denote group exhausted when using dropna >>> g.nth(3, dropna='any') B A 1 NaN 2 NaN Specifying `as_index=False` in `groupby` keeps the original index. >>> df.groupby('A', as_index=False).nth(1) A B 1 1 2.0 4 2 5.0 """ valid_containers = (set, list, tuple) if not isinstance(n, (valid_containers, int)): raise TypeError("n needs to be an int or a list/set/tuple of ints") if not dropna: if isinstance(n, int): nth_values = [n] elif isinstance(n, valid_containers): nth_values = list(set(n)) nth_array = np.array(nth_values, dtype=np.intp) self._set_group_selection() mask_left = np.in1d(self._cumcount_array(), nth_array) mask_right = np.in1d(self._cumcount_array(ascending=False) + 1, -nth_array) mask = mask_left | mask_right ids, _, _ = self.grouper.group_info # Drop NA values in grouping mask = mask & (ids != -1) out = self._selected_obj[mask] if not self.as_index: return out result_index = self.grouper.result_index out.index = result_index[ids[mask]] if not self.observed and isinstance(result_index, CategoricalIndex): out = out.reindex(result_index) out = self._reindex_output(out) return out.sort_index() if self.sort else out # dropna is truthy if isinstance(n, valid_containers): raise ValueError("dropna option with a list of nth values is not supported") if dropna not in ["any", "all"]: # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError( "For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " f"(was passed {dropna})." ) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else -1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available # (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] else: # create a grouper with the original parameters, but on dropped # object from pandas.core.groupby.grouper import get_grouper grouper, _, _ = get_grouper( dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort, mutated=self.mutated, ) grb = dropped.groupby(grouper, as_index=self.as_index, sort=self.sort) sizes, result = grb.size(), grb.nth(n) mask = (sizes < max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len( self.grouper.result_index ): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def quantile(self, q=0.5, interpolation: str = "linear"): """ Return group values at the given quantile, a la numpy.percentile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value(s) between 0 and 1 providing the quantile(s) to compute. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} Method to use when the desired quantile falls between two points. Returns ------- Series or DataFrame Return type determined by caller of GroupBy object. See Also -------- Series.quantile : Similar method for Series. DataFrame.quantile : Similar method for DataFrame. numpy.percentile : NumPy method to compute qth percentile. Examples -------- >>> df = pd.DataFrame([ ... ['a', 1], ['a', 2], ['a', 3], ... ['b', 1], ['b', 3], ['b', 5] ... ], columns=['key', 'val']) >>> df.groupby('key').quantile() val key a 2.0 b 3.0 """ from pandas import concat def pre_processor(vals: np.ndarray) -> Tuple[np.ndarray, Optional[Type]]: if is_object_dtype(vals): raise TypeError( "'quantile' cannot be performed against 'object' dtypes!" ) inference = None if is_integer_dtype(vals.dtype): if is_extension_array_dtype(vals.dtype): vals = vals.to_numpy(dtype=float, na_value=np.nan) inference = np.int64 elif is_bool_dtype(vals.dtype) and is_extension_array_dtype(vals.dtype): vals = vals.to_numpy(dtype=float, na_value=np.nan) elif is_datetime64_dtype(vals.dtype): inference = "datetime64[ns]" vals = np.asarray(vals).astype(np.float) return vals, inference def post_processor(vals: np.ndarray, inference: Optional[Type]) -> np.ndarray: if inference: # Check for edge case if not ( is_integer_dtype(inference) and interpolation in {"linear", "midpoint"} ): vals = vals.astype(inference) return vals if is_scalar(q): return self._get_cythonized_result( "group_quantile", aggregate=True, needs_values=True, needs_mask=True, cython_dtype=np.dtype(np.float64), pre_processing=pre_processor, post_processing=post_processor, q=q, interpolation=interpolation, ) else: results = [ self._get_cythonized_result( "group_quantile", aggregate=True, needs_values=True, needs_mask=True, cython_dtype=np.dtype(np.float64), pre_processing=pre_processor, post_processing=post_processor, q=qi, interpolation=interpolation, ) for qi in q ] result = concat(results, axis=0, keys=q) # fix levels to place quantiles on the inside # TODO(GH-10710): Ideally, we could write this as # >>> result.stack(0).loc[pd.IndexSlice[:, ..., q], :] # but this hits https://github.com/pandas-dev/pandas/issues/10710 # which doesn't reorder the list-like `q` on the inner level. order = list(range(1, result.index.nlevels)) + [0] # temporarily saves the index names index_names = np.array(result.index.names) # set index names to positions to avoid confusion result.index.names = np.arange(len(index_names)) # place quantiles on the inside result = result.reorder_levels(order) # restore the index names in order result.index.names = index_names[order] # reorder rows to keep things sorted indices = np.arange(len(result)).reshape([len(q), self.ngroups]).T.flatten() return result.take(indices) @Substitution(name="groupby") def ngroup(self, ascending: bool = True): """ Number each group from 0 to the number of groups - 1. This is the enumerative complement of cumcount. Note that the numbers given to the groups match the order in which the groups would be seen when iterating over the groupby object, not the order they are first observed. Parameters ---------- ascending : bool, default True If False, number in reverse, from number of group - 1 to 0. Returns ------- Series Unique numbers for each group. See Also -------- .cumcount : Number the rows in each group. Examples -------- >>> df = pd.DataFrame({"A": list("aaabba")}) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').ngroup() 0 0 1 0 2 0 3 1 4 1 5 0 dtype: int64 >>> df.groupby('A').ngroup(ascending=False) 0 1 1 1 2 1 3 0 4 0 5 1 dtype: int64 >>> df.groupby(["A", [1,1,2,3,2,1]]).ngroup() 0 0 1 0 2 1 3 3 4 2 5 0 dtype: int64 """ with _group_selection_context(self): index = self._selected_obj.index result = self._obj_1d_constructor(self.grouper.group_info[0], index) if not ascending: result = self.ngroups - 1 - result return result @
Substitution(name="groupby")
pandas.util._decorators.Substitution
#!/usr/bin/env python # coding: utf-8 # # Create datasets # ## Scalling, Reduction and Feature Selection # The original dataset and/or the ballanced ones will be first splitted into separated files as training and test subsets using a **seed**. All the scalling and feature selection will be apply **only on training set**: # - *Dataset split*: train, test sets; the train set will be divided into train and validation in future Machine Learning hyperparameter search for the best model with a ML method; # - *Scalling* of train set using centering, standardization, etc.; # - *Reduction* of train set dimension (after scalling): decrease the number of features using less dimensions/derived features; # - *Feature selection* using train set (after scalling): decrease the number of features by keeping only the most important for the classification. # # Two CSV files will be create for each type of scalling, reduction or feature selection: *tr* - trainin and *ts* - test. # In[ ]: import numpy as np import pandas as pd import os from sklearn.model_selection import train_test_split # for dataset split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import PowerTransformer # Let's define the name of the original dataset, the folder and the prefix characters for each scalling, dimension reduction or feature selection. Each transformation will add a prefix to the previous name of the file. # # **You can used the original dataset that could be unballanced or the ballanced datasets obtained with previous scripts (one file only)!** # In[ ]: # Create scalled datasets using normalized MA dataset # Two CSV files will be create for each type of scalling, reduction or feature selection WorkingFolder = './datasets/' # change this with ballanced datasets such as upsampl.ds_MA.csv or downsampl.ds_MA.csv # if you want to run all files, you should modify the entire script by looping all # transformation using a list of input files [original, undersampled, upsampled] sOrigDataSet = 'ds_MA.csv' # Split details seed = 44 # for reproductibility test_size = 0.25 # train size = 1 - test_size outVar = 'Lij' # output variable # Scalers: the files as prefix + original name # ================================================= # Original (no scaling!), StandardScaler, MinMaxScaler, RobustScaler, # QuantileTransformer (normal), QuantileTransformer(uniform) # scaler prefix for file name #scalerPrefix = ['o', 's', 'm', 'r', 'pyj', 'qn', 'qu'] # scalerPrefix = ['o', 's', 'm', 'r'] scalerPrefix = ['s'] # sklearn scalers #scalerList = [None, StandardScaler(), MinMaxScaler(), # RobustScaler(quantile_range=(25, 75)), # PowerTransformer(method='yeo-johnson'), # QuantileTransformer(output_distribution='normal'), # QuantileTransformer(output_distribution='uniform')] # sklearn scalers # scalerList = [None, StandardScaler(), MinMaxScaler(), RobustScaler()] scalerList = [StandardScaler()] # Dimension Reductions # =================== # PCA reductionPrefix = 'pca' # Feature selection # ================= # RF feature selection, Univariate feature selection using chi-squared test, # Univariate feature selection with mutual information # prefix to add to the processed files for each FS method #FSprefix = ['fs.rf.', # 'fs.univchi.', # 'fs.univmi.'] FSprefix = ['fs-rf.'] # number of total features for reduction and selection noSelFeatures = 50 # Start by reading the original dataset: # In[ ]: print('-> Reading source dataset:',sOrigDataSet,'...') df = pd.read_csv(os.path.join(WorkingFolder, sOrigDataSet)) print('Columns:',len(df.columns),'Rows:',len(df)) print('Done') # ## Dataset split # # First, split the dataset using stratification for non-ballanced datasets: the ratio between the classes is the same in training and test sets. # In[ ]: # Get features and ouput as dataframes print('--> Split of dataset in training and test ...') X = df.drop(outVar, axis = 1) # remove output variable from input features y = df[outVar] # get only the output variable # get only the values for features and output (as arrays) Xdata = X.values # get values of features Ydata = y.values # get output values # split data in training and test sets (X = input features, y = output variable) # using a seed, test size (defined above) and stratification for un-ballanced classes X_train, X_test, y_train, y_test = train_test_split(Xdata, Ydata, test_size=test_size, random_state=seed, stratify=Ydata) print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_test:', X_test.shape) print('y_test:', y_test.shape) print('Done!') # ## Dataset scaling # # Two files will be saved for training and test sets for each scaling including non-scalling dataset. # In[ ]: # Scale dataset print('-> Scaling dataset train and test:') for scaler in scalerList: # or scalerPrefix # new file name; we will add tr and ts + csv newFile = scalerPrefix[scalerList.index(scaler)]+'.'+sOrigDataSet[:-4] # decide to scale or not if scaler == None: # if it is the original dataset, do not scale! print('--> Original (no scaler!) ...') X_train_transf = X_train # do not modify train set X_test_transf = X_test # do not modify test set else: # if it is not the original dataset, apply scalers print('--> Scaler:', str(scaler), '...') X_train_transf = scaler.fit_transform(X_train) # use a scaler to modify only train set X_test_transf = scaler.transform(X_test) # use the same transformation for test set # Save the training scaled dataset df_tr_scaler = pd.DataFrame(X_train_transf, columns=X.columns) df_tr_scaler[outVar]= y_train newFile_tr = newFile +'_tr.csv' print('---> Saving training:', newFile_tr, ' ...') df_tr_scaler.to_csv(os.path.join(WorkingFolder, newFile_tr), index=False) # Save the test scaled dataset df_ts_scaler =
pd.DataFrame(X_test_transf, columns=X.columns)
pandas.DataFrame
import matplotlib.pyplot as plt import pandas as pd df =
pd.DataFrame([[1,2,3],[7,0,3],[1,2,2]],columns=['col1','col2','col3']) df.plot()
pandas.DataFrame
# Implementation of Multiplicative Marketing Mix Model, Adstock and Diminishing Return # Author: <NAME> # Pystan Installation Tips (mac, anaconda3) # 1. In bash: # (create a stan environment, install pystan, current version is 2.19) # conda create -n stan_env python=3.7 -c conda-forge # conda activate stan_env # conda install pystan -c conda-forge # (install gcc5, pystan 2.19 requires gcc4.9.3 and above) # brew install gcc@5 # (look for 'gcc-10', 'g++-10') # ls /usr/local/bin | grep gcc # ls /usr/local/bin | grep g++ # # 2. Open Anaconda Navigator > Home > Applications on: select stan_env as environment, launch Notebook # # 3. In python: # import os # os.environ['CC'] = 'gcc-10' # os.environ['CXX'] = 'g++-10' import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import sys import time from datetime import datetime from datetime import timedelta import matplotlib.pyplot as plt import seaborn as sns get_ipython().run_line_magic('matplotlib', 'inline') sns.color_palette("husl") sns.set_style('darkgrid') # Data # Four years' (209 weeks) records of sales, media impression and media spending at weekly level. df = pd.read_csv('data.csv') # 1. media variables # media impression mdip_cols=[col for col in df.columns if 'mdip_' in col] # media spending mdsp_cols=[col for col in df.columns if 'mdsp_' in col] # 2. control variables # macro economics variables me_cols = [col for col in df.columns if 'me_' in col] # store count variables st_cols = ['st_ct'] # markdown/discount variables mrkdn_cols = [col for col in df.columns if 'mrkdn_' in col] # holiday variables hldy_cols = [col for col in df.columns if 'hldy_' in col] # seasonality variables seas_cols = [col for col in df.columns if 'seas_' in col] base_vars = me_cols+st_cols+mrkdn_cols+hldy_cols+seas_cols # 3. sales variables sales_cols =['sales'] df[['wk_strt_dt']+mdip_cols+['sales']].head() # EDA - correlation, distribution plots plt.figure(figsize=(24,20)) sns.heatmap(df[mdip_cols+['sales']].corr(), square=True, annot=True, vmax=1, vmin=-1, cmap='RdBu') plt.figure(figsize=(50,50)) sns.pairplot(df[mdip_cols+['sales']], vars=mdip_cols+['sales']) # 1.1 Adstock def apply_adstock(x, L, P, D): ''' params: x: original media variable, array L: length P: peak, delay in effect D: decay, retain rate returns: array, adstocked media variable ''' x = np.append(np.zeros(L-1), x) weights = np.zeros(L) for l in range(L): weight = D**((l-P)**2) weights[L-1-l] = weight adstocked_x = [] for i in range(L-1, len(x)): x_array = x[i-L+1:i+1] xi = sum(x_array * weights)/sum(weights) adstocked_x.append(xi) adstocked_x = np.array(adstocked_x) return adstocked_x def adstock_transform(df, md_cols, adstock_params): ''' params: df: original data md_cols: list, media variables to be transformed adstock_params: dict, e.g., {'sem': {'L': 8, 'P': 0, 'D': 0.1}, 'dm': {'L': 4, 'P': 1, 'D': 0.7}} returns: adstocked df ''' md_df = pd.DataFrame() for md_col in md_cols: md = md_col.split('_')[-1] L, P, D = adstock_params[md]['L'], adstock_params[md]['P'], adstock_params[md]['D'] xa = apply_adstock(df[md_col].values, L, P, D) md_df[md_col] = xa return md_df # # plot adstock with varying decay # fig, ax = plt.subplots(figsize=(15,5)) # psets = [ # [8, 1, 0.1], # [8, 1, 0.9] # ] # xm = df['mdip_vidtr'].values # sns.lineplot(x=range(52), y=xm[-52:], ax=ax, label='original') # for i in range(len(psets)): # p = psets[i] # L, P, D = p[0], p[1], p[2] # xm_adstocked = apply_adstock(xm, L, P, D) # sns.lineplot(x=range(52), y=xm_adstocked[-52:], ax=ax, # label='L=%d, P=%d, D=%.1f'%(L, P, D)) # ax.lines[i+1].set_linestyle("--") # ax.set_title('Adstock Parameter: Decay', fontsize=16) # # plot adstock with varying length # fig, ax = plt.subplots(figsize=(15,5)) # psets = [ # [4, 1, 0.9], # [12, 1, 0.9] # ] # xm = df['mdip_vidtr'].values # sns.lineplot(x=range(52), y=xm[-52:], ax=ax, label='original') # for i in range(len(psets)): # p = psets[i] # L, P, D = p[0], p[1], p[2] # xm_adstocked = apply_adstock(xm, L, P, D) # sns.lineplot(x=range(52), y=xm_adstocked[-52:], ax=ax, # label='L=%d, P=%d, D=%.1f'%(L, P, D)) # ax.lines[i+1].set_linestyle("--") # ax.set_title('Adstock Parameter: Length', fontsize=16) # 1.2 Diminishing Return def hill_transform(x, ec, slope): return 1 / (1 + (x / ec)**(-slope)) # # plot hill function with varying K and S # fig, ax = plt.subplots(figsize=(9,6)) # psets = [ # [0.5, 0.5], # [0.5, 1.0], # [0.95, 1.0], # [0.95, 3.0] # ] # xm = np.arange(0,2,0.05) # for i in range(len(psets)): # p = psets[i] # ec, slope = p[0], p[1] # sns.lineplot(x=xm, y=hill_transform(xm, ec, slope), ax=ax, # label='K=%.2f, S=%.1f'%(ec, slope)) # #ax.lines[i+1].set_linestyle("--") # ax.set_title('Hill Function', fontsize=16) # 2. Model Implementation # The model is built in a stacked way. Three models are trained: # - Control Model # - Marketing Mix Model # - Diminishing Return Model # 2.1 Control Model / Base Sales Model import pystan import os os.environ['CC'] = 'gcc-10' os.environ['CXX'] = 'g++-10' # helper functions from sklearn.metrics import mean_squared_error def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 def apply_mean_center(x): mu = np.mean(x) xm = x/mu return xm, mu def mean_center_trandform(df, cols): ''' returns: mean-centered df scaler, dict ''' df_new = pd.DataFrame() sc = {} for col in cols: x = df[col].values df_new[col], mu = apply_mean_center(x) sc[col] = mu return df_new, sc def mean_log1p_trandform(df, cols): ''' returns: mean-centered, log1p transformed df scaler, dict ''' df_new = pd.DataFrame() sc = {} for col in cols: x = df[col].values xm, mu = apply_mean_center(x) sc[col] = mu df_new[col] = np.log1p(xm) return df_new, sc import json def save_json(data, file_name): with open(file_name, 'w') as fp: json.dump(data, fp) def load_json(file_name): with open(file_name, 'r') as fp: data = json.load(fp) return data # mean-centralize: sales, numeric base_vars df_ctrl, sc_ctrl = mean_center_trandform(df, ['sales']+me_cols+st_cols+mrkdn_cols) df_ctrl = pd.concat([df_ctrl, df[hldy_cols+seas_cols]], axis=1) # variables positively related to sales: macro economy, store count, markdown, holiday pos_vars = [col for col in base_vars if col not in seas_cols] X1 = df_ctrl[pos_vars].values # variables may have either positive or negtive impact on sales: seasonality pn_vars = seas_cols X2 = df_ctrl[pn_vars].values ctrl_data = { 'N': len(df_ctrl), 'K1': len(pos_vars), 'K2': len(pn_vars), 'X1': X1, 'X2': X2, 'y': df_ctrl['sales'].values, 'max_intercept': min(df_ctrl['sales']) } ctrl_code1 = ''' data { int N; // number of observations int K1; // number of positive predictors int K2; // number of positive/negative predictors real max_intercept; // restrict the intercept to be less than the minimum y matrix[N, K1] X1; matrix[N, K2] X2; vector[N] y; } parameters { vector<lower=0>[K1] beta1; // regression coefficients for X1 (positive) vector[K2] beta2; // regression coefficients for X2 real<lower=0, upper=max_intercept> alpha; // intercept real<lower=0> noise_var; // residual variance } model { // Define the priors beta1 ~ normal(0, 1); beta2 ~ normal(0, 1); noise_var ~ inv_gamma(0.05, 0.05 * 0.01); // The likelihood y ~ normal(X1*beta1 + X2*beta2 + alpha, sqrt(noise_var)); } ''' sm1 = pystan.StanModel(model_code=ctrl_code1, verbose=True) fit1 = sm1.sampling(data=ctrl_data, iter=2000, chains=4) fit1_result = fit1.extract() # extract control model parameters and predict base sales -> df['base_sales'] def extract_ctrl_model(fit_result, pos_vars=pos_vars, pn_vars=pn_vars, extract_param_list=False): ctrl_model = {} ctrl_model['pos_vars'] = pos_vars ctrl_model['pn_vars'] = pn_vars ctrl_model['beta1'] = fit_result['beta1'].mean(axis=0).tolist() ctrl_model['beta2'] = fit_result['beta2'].mean(axis=0).tolist() ctrl_model['alpha'] = fit_result['alpha'].mean() if extract_param_list: ctrl_model['beta1_list'] = fit_result['beta1'].tolist() ctrl_model['beta2_list'] = fit_result['beta2'].tolist() ctrl_model['alpha_list'] = fit_result['alpha'].tolist() return ctrl_model def ctrl_model_predict(ctrl_model, df): pos_vars, pn_vars = ctrl_model['pos_vars'], ctrl_model['pn_vars'] X1, X2 = df[pos_vars], df[pn_vars] beta1, beta2 = np.array(ctrl_model['beta1']), np.array(ctrl_model['beta2']) alpha = ctrl_model['alpha'] y_pred = np.dot(X1, beta1) + np.dot(X2, beta2) + alpha return y_pred base_sales_model = extract_ctrl_model(fit1_result, pos_vars=pos_vars, pn_vars=pn_vars) base_sales = ctrl_model_predict(base_sales_model, df_ctrl) df['base_sales'] = base_sales*sc_ctrl['sales'] # evaluate control model print('mape: ', mean_absolute_percentage_error(df['sales'], df['base_sales'])) # np.savetxt("base_sales_pred.csv", df['base_sales'].values, delimiter=",") # save_json(base_sales_model, 'ctrl_model.json') # df['base_sales'] = pd.read_csv('base_sales_pred.csv', header=None).values # 2.2 Marketing Mix Model df_mmm, sc_mmm = mean_log1p_trandform(df, ['sales', 'base_sales']) mu_mdip = df[mdip_cols].apply(np.mean, axis=0).values max_lag = 8 num_media = len(mdip_cols) # padding zero * (max_lag-1) rows X_media = np.concatenate((np.zeros((max_lag-1, num_media)), df[mdip_cols].values), axis=0) X_ctrl = df_mmm['base_sales'].values.reshape(len(df),1) model_data2 = { 'N': len(df), 'max_lag': max_lag, 'num_media': num_media, 'X_media': X_media, 'mu_mdip': mu_mdip, 'num_ctrl': X_ctrl.shape[1], 'X_ctrl': X_ctrl, 'y': df_mmm['sales'].values } model_code2 = ''' functions { // the adstock transformation with a vector of weights real Adstock(vector t, row_vector weights) { return dot_product(t, weights) / sum(weights); } } data { // the total number of observations int<lower=1> N; // the vector of sales real y[N]; // the maximum duration of lag effect, in weeks int<lower=1> max_lag; // the number of media channels int<lower=1> num_media; // matrix of media variables matrix[N+max_lag-1, num_media] X_media; // vector of media variables' mean real mu_mdip[num_media]; // the number of other control variables int<lower=1> num_ctrl; // a matrix of control variables matrix[N, num_ctrl] X_ctrl; } parameters { // residual variance real<lower=0> noise_var; // the intercept real tau; // the coefficients for media variables and base sales vector<lower=0>[num_media+num_ctrl] beta; // the decay and peak parameter for the adstock transformation of // each media vector<lower=0,upper=1>[num_media] decay; vector<lower=0,upper=ceil(max_lag/2)>[num_media] peak; } transformed parameters { // the cumulative media effect after adstock real cum_effect; // matrix of media variables after adstock matrix[N, num_media] X_media_adstocked; // matrix of all predictors matrix[N, num_media+num_ctrl] X; // adstock, mean-center, log1p transformation row_vector[max_lag] lag_weights; for (nn in 1:N) { for (media in 1 : num_media) { for (lag in 1 : max_lag) { lag_weights[max_lag-lag+1] <- pow(decay[media], (lag - 1 - peak[media]) ^ 2); } cum_effect <- Adstock(sub_col(X_media, nn, media, max_lag), lag_weights); X_media_adstocked[nn, media] <- log1p(cum_effect/mu_mdip[media]); } X <- append_col(X_media_adstocked, X_ctrl); } } model { decay ~ beta(3,3); peak ~ uniform(0, ceil(max_lag/2)); tau ~ normal(0, 5); for (i in 1 : num_media+num_ctrl) { beta[i] ~ normal(0, 1); } noise_var ~ inv_gamma(0.05, 0.05 * 0.01); y ~ normal(tau + X * beta, sqrt(noise_var)); } ''' sm2 = pystan.StanModel(model_code=model_code2, verbose=True) fit2 = sm2.sampling(data=model_data2, iter=1000, chains=3) fit2_result = fit2.extract() # extract mmm parameters def extract_mmm(fit_result, max_lag=max_lag, media_vars=mdip_cols, ctrl_vars=['base_sales'], extract_param_list=True): mmm = {} mmm['max_lag'] = max_lag mmm['media_vars'], mmm['ctrl_vars'] = media_vars, ctrl_vars mmm['decay'] = decay = fit_result['decay'].mean(axis=0).tolist() mmm['peak'] = peak = fit_result['peak'].mean(axis=0).tolist() mmm['beta'] = fit_result['beta'].mean(axis=0).tolist() mmm['tau'] = fit_result['tau'].mean() if extract_param_list: mmm['decay_list'] = fit_result['decay'].tolist() mmm['peak_list'] = fit_result['peak'].tolist() mmm['beta_list'] = fit_result['beta'].tolist() mmm['tau_list'] = fit_result['tau'].tolist() adstock_params = {} media_names = [col.replace('mdip_', '') for col in media_vars] for i in range(len(media_names)): adstock_params[media_names[i]] = { 'L': max_lag, 'P': peak[i], 'D': decay[i] } mmm['adstock_params'] = adstock_params return mmm mmm = extract_mmm(fit2, max_lag=max_lag, media_vars=mdip_cols, ctrl_vars=['base_sales']) # save_json(mmm, 'mmm1.json') # plot media coefficients' distributions # red line: mean, green line: median beta_media = {} for i in range(len(mmm['media_vars'])): md = mmm['media_vars'][i] betas = [] for j in range(len(mmm['beta_list'])): betas.append(mmm['beta_list'][j][i]) beta_media[md] = np.array(betas) f = plt.figure(figsize=(18,15)) for i in range(len(mmm['media_vars'])): ax = f.add_subplot(5,3,i+1) md = mmm['media_vars'][i] x = beta_media[md] mean_x = x.mean() median_x = np.median(x) ax = sns.distplot(x) ax.axvline(mean_x, color='r', linestyle='-') ax.axvline(median_x, color='g', linestyle='-') ax.set_title(md) # Decompose sales to media channels' contribution # Each media channel's contribution = total sales - sales upon removal the channel # decompose sales to media contribution def mmm_decompose_contrib(mmm, df, original_sales=df['sales']): # adstock params adstock_params = mmm['adstock_params'] # coefficients, intercept beta, tau = mmm['beta'], mmm['tau'] # variables media_vars, ctrl_vars = mmm['media_vars'], mmm['ctrl_vars'] num_media, num_ctrl = len(media_vars), len(ctrl_vars) # X_media2: adstocked, mean-centered media variables + 1 X_media2 = adstock_transform(df, media_vars, adstock_params) X_media2, sc_mmm2 = mean_center_trandform(X_media2, media_vars) X_media2 = X_media2 + 1 # X_ctrl2, mean-centered control variables + 1 X_ctrl2, sc_mmm2_1 = mean_center_trandform(df[ctrl_vars], ctrl_vars) X_ctrl2 = X_ctrl2 + 1 # y_true2, mean-centered sales variable + 1 y_true2, sc_mmm2_2 = mean_center_trandform(df, ['sales']) y_true2 = y_true2 + 1 sc_mmm2.update(sc_mmm2_1) sc_mmm2.update(sc_mmm2_2) # X2 <- media variables + ctrl variable X2 =
pd.concat([X_media2, X_ctrl2], axis=1)
pandas.concat
from pandas import DataFrame import pandas as pd import numpy as np import numpy def method(arr): index = 0; ag = arr for r in arr: if not (str(r).replace(" ","")== ""): temp = "$" + str(ag[index]) ag[index] = temp if r is None: ag[index] = " " index+=1 return ag def has(string,arr): for x in arr: if (str(x).lower() in str(string).lower()): return True return False def getNum(string,arr): i = 0 for x in arr: if (str(x).lower() in str(string).lower()): return i i += 1 return 0 def repl(arr): hhh = 0 for g in arr: if g is None or g == "-" or g=="nan": arr[hhh] = " " hhh += 1 return arr def appen(arr,num): light = arr for i in range(0,num): numpy.append(light, [" "]) return light writer1 = pd.ExcelFile("publicColleges+tuitions.xlsx") df = writer1.parse("Sheet1") arr = df.as_matrix() index = 0 A = arr[:, 0] puCOST_IN = arr[:, 1] puCOST_OUT = arr[:, 2] puLIVE = repl(arr[:, 3]) for s in A: A[index] = A[index].replace("-"," ") index += 1 reader1 = pd.ExcelFile("collegeGridLoans.xlsx") df2 = reader1.parse("Sheet1") arr2 = df2.as_matrix() index = 0 B = arr2[:, 0] #big grid college names writer2 = pd.ExcelFile("privateColleges+tuitions.xlsx") df3 = writer2.parse("Sheet1") arr3 = df3.as_matrix() index = 0 G = arr3[:, 0] prCOST_IN = arr3[:, 1] prCOST_OUT = arr3[:, 2] prLIVE = repl(arr[:, 3]) #Big grid college names: B #public college names: A #private college names: G privateCostsIN = [None] * len(B) publicCostsIN = [None] * len(B) privateCostsOUT = [None] * len(B) publicCostsOUT = [None] * len(B) privateLive = [None] * len(B) publicLive = [None] * len(B) both_live = [None] * len(B) both_costIN = [None] * len(B) both_costOUT = [None] * len(B) pubPriv = [None] * len(B) print(prLIVE) for streamline in A: if has(streamline,B): e = getNum(streamline,B) r = getNum(streamline,A) pubPriv[e] = "Public" publicCostsIN[e] = puCOST_IN[r] publicCostsOUT[e] = puCOST_OUT[r] both_costOUT[e] = puCOST_OUT[r] both_costIN[e] = puCOST_IN[r] if r < 701: publicLive[e] = puLIVE[r] both_live[e] = puLIVE[r] for streamline in G: if has(streamline, B): e = getNum(streamline, B) r = getNum(streamline, G) if 0 <= e and e < len(B) and 0 <= r and r < len(B): pubPriv[e] = "Private" privateCostsIN[e] = prCOST_IN[r] privateCostsOUT[e] = prCOST_OUT[r] both_costOUT[e] = prCOST_OUT[r] both_costIN[e] = prCOST_IN[r] if r < 701: privateLive[e] = prLIVE[r] both_live[e] = prLIVE[r] pubPriv = repl(pubPriv) both_costIN = repl(both_costIN) both_costOUT = repl(both_costOUT) both_costIN = method(both_costIN) both_live = method(both_live) both_costOUT = method(both_costOUT) df2['On-Campus Tuition'] = both_costIN df2['Off-Campus Tuition'] = both_costOUT df2['Housing'] = both_live df2.loc[:, 10] =
pd.Series(pubPriv, index=df2.index)
pandas.Series
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import itertools import statsmodels.api as sm import sklearn import sklearn.ensemble from sklearn.model_selection import StratifiedKFold, cross_val_score, LeaveOneOut, LeavePOut, GridSearchCV import sklearn.linear_model import warnings sns.set(style='darkgrid', palette='muted', font_scale=1.5) __all__ = ['plotROC', 'plotROCObj', 'plotProb', 'plotLogisticL1Paths', 'plotLogisticL1Vars', 'logisticL1NestedCV', 'plotLogisticL1NestedTuning', 'nestedCVClassifier', 'computeROC', 'computeCVROC', 'captureStandardization', 'smLogisticRegression', 'rocStats', 'compute2x2', 'plotNestedCVParams', 'plotNestedCVScores'] def plotROCObj(**objD): fprL = [o['fpr'] for o in objD.values()] tprL = [o['tpr'] for o in objD.values()] aucL = [o['AUC'].mean() for o in objD.values()] accL = [o['ACC'].mean() for o in objD.values()] labelL = objD.keys() outcomeVar = [o['Yvar'] for o in objD.values()][0] plotROC(fprL, tprL, aucL, accL, labelL, outcomeVar) def plotROC(fprL, tprL, aucL=None, accL=None, labelL=None, outcomeVar=''): if labelL is None and aucL is None and accL is None: labelL = ['Model %d' % i for i in range(len(fprL))] else: if not accL is None: labelL = ['%s (AUC = %0.2f; ACC = %0.2f)' % (label, auc, acc) for label, auc, acc in zip(labelL, aucL, accL)] else: labelL = ['%s (AUC = %0.2f)' % (label, auc) for label, auc in zip(labelL, aucL)] colors = sns.color_palette('Set1', n_colors=len(fprL)) plt.clf() plt.gca().set_aspect('equal') for i, (fpr, tpr, label) in enumerate(zip(fprL, tprL, labelL)): plt.plot(fpr, tpr, color=colors[i], lw=2, label=label) plt.plot([0, 1], [0, 1], '--', color='gray', label='Chance') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') if outcomeVar == '': plt.title('ROC') else: plt.title('ROC for %s' % outcomeVar) plt.legend(loc="lower right", fontsize=10) plt.show() def plotProb(outcome, prob, **kwargs): """Scatter plot of probabilities for one outcome. Parameters ---------- outcome : pd.Series prob : pd.Series Predicted probabilities returned from computeROC or computeCVROC""" colors = sns.color_palette('Set1', n_colors=2) tmp = pd.concat((outcome, prob), join='inner', axis=1) tmp = tmp.sort_values(by=[outcome.name, 'Prob']) tmp['x'] = np.arange(tmp.shape[0]) plt.clf() for color, val in zip(colors, tmp[outcome.name].unique()): ind = tmp[outcome.name] == val lab = '%s = %1.0f (%d)' % (outcome.name, val, ind.sum()) plt.scatter(tmp.x.loc[ind], tmp.Prob.loc[ind], label=lab, color=color, **kwargs) plt.plot([0, tmp.shape[0]], [0.5, 0.5], 'k--', lw=1) plt.legend(loc='upper left') plt.ylabel('Predicted Pr(%s)' % outcome.name) plt.ylim((-0.05, 1.05)) plt.xlim(-1, tmp.shape[0]) plt.show() def plotLogisticL1Paths(lo): tmp = lo['paths'].mean(axis=0) if len(lo['Xvars']) == (tmp.shape[1] - 1): predVars = np.concatenate((np.array(lo['Xvars']), ['Intercept'])) else: predVars = np.array(lo['Xvars']) plt.clf() plt.plot(np.log10(lo['Cs']), tmp, '-') yl = plt.ylim() xl = plt.xlim() plt.plot(np.log10([lo['optimalCs'].mean()]*2), yl, '--k') plt.ylabel('Coefficient') plt.xlabel('Regularization parameter ($log_{10} C$)\n(lower is more regularized)') topi = np.nonzero(lo['finalResult'].coef_.ravel() != 0)[0] plt.annotate(s='$N_{vars}=%d$' % len(topi), xy=(np.log10(lo['finalResult'].C), yl[1]), ha='left', va='top', size=10) for i in topi: a = predVars[i] cInd = np.where(tmp[:, i] != 0)[0][0] y = tmp[cInd+2, i] x = np.log10(lo['Cs'][cInd+2]) plt.annotate(a, xy=(x, y), ha='left', va='center', size=7) y = tmp[-1, i] x = np.log10(lo['Cs'][-1]) plt.annotate(a, xy=(x, y), ha='left', va='center', size=7) plt.show() def plotLogisticL1NestedTuning(lo): plt.clf() colors = sns.color_palette('Set1', n_colors=10) for outi in range(lo['scores'].shape[0]): sc = lo['scores'][outi, :, :].mean(axis=0) plt.plot(np.log10(lo['Cs']), sc, '-', color=colors[outi]) mnmx = sc.min(), sc.max() plt.plot(np.log10([lo['optimalCs'][outi]]*2), mnmx, '--', color=colors[outi]) plt.xlim(np.log10(lo['Cs'][[0, -1]])) plt.ylabel('Score (log-likelihood)') plt.xlabel('Regularization parameter ($log_{10} C$)\n(lower is more regularized)') plt.title('Regularization tuning in nested CV') plt.show() def plotLogisticL1Vars(lo): pctSelection = 100 * (lo['coefs'] != 0).mean(axis=0) finalInd = (lo['finalResult'].coef_ != 0).ravel() x = np.arange(len(pctSelection)) plt.clf() plt.barh(width=pctSelection[finalInd], bottom=x[finalInd], align='center', color='red', label='Yes') plt.barh(width=pctSelection[~finalInd], bottom=x[~finalInd], align='center', color='blue', label='No') plt.yticks(range(len(pctSelection)), lo['Xvars'], size=8) plt.ylabel('Predictors') plt.xlabel('% times selected in 10-fold CV') plt.legend(loc=0, title='Final model?') def logisticL1NestedCV(df, outcomeVar, predVars, nFolds=10, LPO=None, Cs=10, n_jobs=1): """Apply logistic regression with L1-regularization (LASSO) to df. Uses nested cross-validation framework with inner folds to optimize C and outer test folds to evaluate performance. Parameters ---------- df : pd.DataFrame Must contain outcome and predictor variables. outcomeVar : str predVars : ndarray or list Predictor variables in the model. nFolds : int N-fold stratified cross-validation LPO : int or None Use Leave-P-Out cross-validation instead of StratifiedNFoldCV Cs : int or list Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Smaller values specify stronger regularization. Returns ------- results : dict Contains results as keys below: fpr: (100, ) average FPR for ROC tpr: (100, ) average TPR for ROC AUC: (outerFolds, ) AUC of ROC for each outer test fold meanAUC: (1, ) AUC of the average ROC ACC: (outerFolds, ) accuracy across outer test folds scores: (outerFolds, innerFolds, Cs) log-likelihood for each C across inner and outer CV folds optimalCs: (outerFolds, ) optimal C from each set of inner CV finalResult: final fitted model with predict() exposed prob: (N,) pd.Series of predicted probabilities avg over outer folds varList: (Nvars, ) list of vars with non-zero coef in final model Cs: (Cs, ) pre-specified grid of Cs coefs: (outerFolds, predVars) refit with optimalC in each fold paths: (outerFolds, Cs, predVars + intercept) avg across inner folds XVars: list of all vars in X yVar: name of outcome variable N: total number of rows/instances in the model""" if not isinstance(predVars, list): predVars = list(predVars) tmp = df[[outcomeVar] + predVars].dropna() X,y = tmp[predVars].astype(float), tmp[outcomeVar].astype(float) if LPO is None: innerCV = StratifiedKFold(n_splits=nFolds, shuffle=True) outerCV = StratifiedKFold(n_splits=nFolds, shuffle=True) else: innerCV = LeavePOut(LPO) outerCV = LeavePOut(LPO) scorerFunc = sklearn.metrics.make_scorer(sklearn.metrics.log_loss, greater_is_better=False, needs_proba=True, needs_threshold=False, labels=[0, 1]) fpr = np.linspace(0, 1, 100) tpr = np.nan * np.zeros((fpr.shape[0], nFolds)) acc = np.nan * np.zeros(nFolds) auc = np.nan * np.zeros(nFolds) paths = [] coefs = [] probs = [] optimalCs = np.nan * np.zeros(nFolds) scores = [] for outi, (trainInd, testInd) in enumerate(outerCV.split(X=X, y=y)): Xtrain, Xtest = X.iloc[trainInd], X.iloc[testInd] ytrain, ytest = y.iloc[trainInd], y.iloc[testInd] model = sklearn.linear_model.LogisticRegressionCV(Cs=Cs, cv=innerCV, penalty='l1', solver='liblinear', scoring=scorerFunc, refit=True, n_jobs=n_jobs) """With refit = True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters.""" results = model.fit(X=Xtrain, y=ytrain) prob = results.predict_proba(Xtest) class1Ind = np.nonzero(results.classes_ == 1)[0][0] fprTest, tprTest, _ = sklearn.metrics.roc_curve(ytest, prob[:, class1Ind]) tpr[:, outi] = np.interp(fpr, fprTest, tprTest) auc[outi] = sklearn.metrics.auc(fprTest, tprTest) acc[outi] = sklearn.metrics.accuracy_score(ytest, np.round(prob[:, class1Ind]), normalize=True) optimalCs[outi] = results.C_[0] scores.append(results.scores_[1]) paths.append(results.coefs_paths_[1]) coefs.append(results.coef_) probs.append(pd.Series(prob[:, class1Ind], index=Xtest.index)) meanTPR = np.mean(tpr, axis=1) meanTPR[0], meanTPR[-1] = 0, 1 meanACC = np.mean(acc) meanAUC = sklearn.metrics.auc(fpr, meanTPR) meanC = 10**np.mean(np.log10(optimalCs)) paths = np.concatenate([p.mean(axis=0, keepdims=True) for p in paths], axis=0) scores = np.concatenate([s[None, :, :] for s in scores], axis=0) """Compute mean probability over test predictions in CV""" probS =
pd.concat(probs)
pandas.concat
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import skimage.io import functools from skimage import measure from scipy.spatial import distance from sklearn.metrics import pairwise_distances_argmin_min from loguru import logger import numpy as np import matplotlib.pyplot as plt logger.info('Import OK') # define location parameters input_folder = f'ImmunoEM-vesicle-detection/python_results/ImmunoEM-vesicle-detection_Analyzed/feature_validation/' output_folder = f'ImmunoEM-vesicle-detection/python_results/ImmunoEM-vesicle-detection_Analyzed/feature_properties/' if not os.path.exists(output_folder): os.mkdir(output_folder) def find_edge(feature_coords): edge = pd.DataFrame() # for (roi_type), roi_type_df in feature_coords.groupby(['roi_key']): for (roi), roi_type_df in feature_coords.groupby(['roi_key']): roi_type_df # explode df roi_type_df = roi_type_df.explode('coords') roi_type_df = roi_type_df.reset_index() # assign x and y roi_type_df['x'] = roi_type_df['coords'].str[0] roi_type_df['y'] = roi_type_df['coords'].str[1] scanX = roi_type_df.groupby(['roi_key', 'x']).agg(y_min=pd.NamedAgg( column='y', aggfunc='min'), y_max=pd.NamedAgg(column='y', aggfunc='max')) scanX = scanX.reset_index() #GET TO USE MELT :)))))) scanX = pd.melt(scanX, id_vars=['roi_key', 'x'], value_vars=['y_min', 'y_max'], value_name='y') scanX = scanX.drop(['variable'], axis=1) edge = edge.append(scanX) logger.info('Edges prepared') return edge #stackoverflow: https://stackoverflow.com/questions/48887912/find-minimum-distance-between-points-of-two-lists-in-python/48888321 def get_closest_pair_of_points(point_list_1, point_list_2): """ Determine the two points from two disjoint lists of points that are closest to each other and the distance between them. Args: point_list_1: First list of points. point_list_2: Second list of points. Returns: Two points that make the closest distance and the distance between them. """ indeces_of_closest_point_in_list_2, distances = pairwise_distances_argmin_min( point_list_1, point_list_2) # Get index of a point pair that makes the smallest distance. min_distance_pair_index = np.argmin(distances) # Get the two points that make this smallest distance. min_distance_pair_point_1 = point_list_1[min_distance_pair_index] min_distance_pair_point_2 = point_list_2[indeces_of_closest_point_in_list_2[min_distance_pair_index]] min_distance = distances[min_distance_pair_index] return min_distance_pair_point_1, min_distance_pair_point_2, min_distance def measure_edge_dist(df_1, df_2): # measuring euclid distance b/w coordinate pairs df_1coord = [(coord1, coord2) for coord1, coord2 in df_1[['x', 'y']].values] df_2coord = [(coord1, coord2) for coord1, coord2 in df_2[['x', 'y']].values] return get_closest_pair_of_points(df_1coord, df_2coord) def compare_edges(scanX): # start with roi_key, x, y of out lines # make dfs of each image # res = dict(tuple(scanX.groupby('roi_key'))) scanX['image_name'] = scanX['roi_key'].str.split('_').str[0] edge_distances = [] for image, image_df in scanX.groupby('image_name'): logger.info(f'processing {image}') image_df['roi_type'] = image_df['roi_key'].str.split('_').str[1] vesicles_only = image_df[image_df['roi_type'] == 'vesicle'] clefts_only = image_df[image_df['roi_type'] == 'cleft'] membranes_only = image_df[image_df['roi_type'] == 'membrane'] for vesicle, vesicle_df in vesicles_only.groupby('roi_key'): #logger.info(f'processing {vesicle}') for cleft, cleft_df in clefts_only.groupby('roi_key'): measure_distance = measure_edge_dist(vesicle_df, cleft_df) #unpack the tuple edge_distances.append( [vesicle, cleft, measure_distance[0], measure_distance[1], measure_distance[2]]) #logger.info(f'measuring {vesicle} distance to next membrane') for membrane, membrane_df in membranes_only.groupby('roi_key'): measure_distance = measure_edge_dist(vesicle_df, membrane_df) edge_distances.append( [vesicle, membrane, measure_distance[0], measure_distance[1], measure_distance[2]]) # turn edge_distances into df edge_distances = pd.DataFrame(edge_distances, columns=[ 'vesicle_key', 'otherRoi_key', 'vesicle_coord', 'otherRoi_coord', 'measure_distance']) # turn edge_distances into df return edge_distances # --------------Scale variable-------------- # 540 pixes per 200 nm (measured in FIJI) scale = 540/200 # --------------Initialise file lists-------------- image_list_ext = [folder for folder in os.listdir(input_folder)] do_not_quantitate = [] image_list = [filename.replace('.npy', '') for filename in image_list_ext if not any( word in filename for word in do_not_quantitate)] valid_narrays = {filename.replace('.npy', ''): np.load(f'{input_folder}{filename}.npy') for filename in image_list} logger.info('valid numpy arrays loaded') features =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Aug 5 13:24:18 2020 @author: earne """ from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import stats import seaborn as sns from sipperplots import ( get_any_idi, get_side_idi, get_content_idi, get_chronogram_vals, preproc_averaging ) def format_avg_output(output, averaging): if averaging == 'datetime': output.index.name = 'Date' elif averaging == 'time': first = output.index[0] output.index = [i - first for i in output.index] output.index = (output.index.total_seconds()/3600).astype(int) output.index.name = 'Hours Since {}:00'.format(str(first.hour)) elif averaging == 'elapsed': output.index = output.index.astype(int) output.index.name = 'Elapsed Hours' return output def drinkcount_cumulative(sipper, show_left=True, show_right=True, show_content=[], **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() if show_left: l = pd.DataFrame({'LeftCount' : df['LeftCount']}, index=df.index) output = output.join(l, how='outer') if show_right: r = pd.DataFrame({'RightCount' : df['RightCount']}, index=df.index) output = output.join(r, how='outer') if show_content: for c in show_content: count = sipper.get_content_values(c, out='Count', df=df) if not count.empty: temp = pd.DataFrame({c +'Count' : count}, index=count.index) output = output.join(temp, how='outer') return output def drinkcount_binned(sipper, binsize='1H', show_left=True, show_right=True, show_content=[], **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() base = df.index[0].hour if show_left: binned = df['LeftCount'].diff().resample(binsize, base=base).sum() l = pd.DataFrame({'LeftCount' : binned}, index=binned.index) output = output.join(l, how='outer') if show_right: binned = df['RightCount'].diff().resample(binsize, base=base).sum() r = pd.DataFrame({'RightCount' : binned}, index=binned.index) output = output.join(r, how='outer') if show_content: for c in show_content: count = sipper.get_content_values(c, out='Count', df=df) binned = count.diff().resample(binsize, base=base).sum() if not count.empty: temp = pd.DataFrame({c+'Count' : binned}, index=binned.index) output = output.join(temp, how='outer') return output def drinkduration_cumulative(sipper, show_left=True, show_right=True, show_content=[], **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() if show_left: l = pd.DataFrame({'LeftDuration' : df['LeftDuration']}, index=df.index) output = output.join(l, how='outer') if show_right: r = pd.DataFrame({'RightDuration' : df['RightDuration']}, index=df.index) output = output.join(r, how='outer') if show_content: for c in show_content: count = sipper.get_content_values(c, out='Count', df=df) if not count.empty: temp = pd.DataFrame({c+'Duration' : count}, index=count.index) output = output.join(temp, how='outer') return output def drinkduration_binned(sipper, binsize='1H', show_left=True, show_right=True, show_content=[], **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() base = df.index[0].hour if show_left: binned = df['LeftDuration'].diff().resample(binsize, base=base).sum() l = pd.DataFrame({'LeftDuration' : binned}, index=binned.index) output = output.join(l, how='outer') if show_right: binned = df['RightDuration'].diff().resample(binsize, base=base).sum() r = pd.DataFrame({'RightDuration' : binned}, index=binned.index) output = output.join(r, how='outer') if show_content: for c in show_content: count = sipper.get_content_values(c, out='Count', df=df) binned = count.diff().resample(binsize, base=base).sum() if not count.empty: temp = pd.DataFrame({c+'Duration' : binned}, index=binned.index) output = output.join(temp, how='outer') return output def interdrink_intervals(sippers, kde=True, logx=True, combine=False, **kwargs): if combine: output = idi_onecurve(sippers, kde, logx, **kwargs) else: output = idi_multicurve(sippers, kde, logx, **kwargs) return output def idi_onecurve(sippers, kde, logx, **kwargs): bar_df = pd.DataFrame() kde_df = pd.DataFrame() combined = [] for sipper in sippers: fig = plt.figure() plt.clf() df = sipper.data.copy() if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() y = get_any_idi(sipper) if logx: y = [np.log10(val) for val in y if not pd.isna(val) if val != 0] bins = np.round(np.arange(-2, 5, .1), 2) else: bins = np.linspace(0, 900, 50) combined += list(y) plot = sns.distplot(combined, bins=bins, norm_hist=False, kde=kde) if kde: if plot.get_lines(): line = plot.get_lines()[0] x, y = line.get_data() kde_df = kde_df.reindex(x) kde_df['Values'] = y bar_x = [v.get_x() for v in plot.patches] bar_h = [v.get_height() for v in plot.patches] bar_df = bar_df.reindex(bar_x) bar_df['Values'] = bar_h bar_df.index.name = 'log10(minutes)' if logx else 'minutes' kde_df.index.name = 'log10(minutes)' if logx else 'minutes' plt.close() return bar_df, kde_df def idi_multicurve(sippers, kde, logx, **kwargs): bar_df = pd.DataFrame() kde_df = pd.DataFrame() for sipper in sippers: fig = plt.figure() plt.clf() df = sipper.data.copy() if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() y = get_any_idi(sipper) if logx: y = [np.log10(val) for val in y if not pd.isna(val) if val != 0] bins = np.round(np.arange(-2, 5, .1), 2) else: bins = np.linspace(0, 900, 50) plot = sns.distplot(y, bins=bins, norm_hist=False, kde=kde) bar_x = [v.get_x() for v in plot.patches] bar_h = [v.get_height() for v in plot.patches] btemp = pd.DataFrame({sipper.filename : bar_h}, index=bar_x) bar_df = bar_df.join(btemp, how='outer') if kde: if plot.get_lines(): line = plot.get_lines()[0] x, y = line.get_data() ktemp = pd.DataFrame({sipper.filename : y}, index=x) kde_df = kde_df.join(ktemp, how='outer') plt.close() bar_df.index.name = 'log10(minutes)' if logx else 'minutes' kde_df.index.name = 'log10(minutes)' if logx else 'minutes' return bar_df, kde_df def interdrink_intervals_byside(sippers, kde=True, logx=True, **kwargs): bar_df = pd.DataFrame() kde_df = pd.DataFrame() for side in ['Left', 'Right']: combined = [] fig = plt.figure() plt.clf() for sipper in sippers: df = sipper.data.copy() if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() y = get_side_idi(sipper, side) if logx: y = [np.log10(val) for val in y if not pd.isna(val) if val != 0] bins = np.round(np.arange(-2, 5, .1), 2) else: bins = np.linspace(0, 900, 50) combined += list(y) plot = sns.distplot(combined, bins=bins, norm_hist=False, kde=kde) if kde: if plot.get_lines(): line = plot.get_lines()[0] x, y = line.get_data() ktemp = pd.DataFrame({side:y}, index=x) kde_df = kde_df.join(ktemp, how='outer') bar_x = [v.get_x() for v in plot.patches] bar_h = [v.get_height() for v in plot.patches] btemp = pd.DataFrame({side:bar_h}, index=bar_x) bar_df = bar_df.join(btemp, how='outer') plt.close() bar_df.index.name = 'log10(minutes)' if logx else 'minutes' kde_df.index.name = 'log10(minutes)' if logx else 'minutes' return bar_df, kde_df def interdrink_intervals_bycontent(sippers, idi_content, kde=True, logx=True, **kwargs): bar_df = pd.DataFrame() kde_df = pd.DataFrame() for c in idi_content: combined = [] fig = plt.figure() plt.clf() for sipper in sippers: df = sipper.data.copy() if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() y = get_content_idi(sipper, c, df=df) if logx: y = [np.log10(val) for val in y if not pd.isna(val) if val != 0] bins = np.round(np.arange(-2, 5, .1), 2) else: bins = np.linspace(0, 900, 50) combined += list(y) plot = sns.distplot(combined, bins=bins, norm_hist=False, kde=kde) if kde: if plot.get_lines(): line = plot.get_lines()[0] x, y = line.get_data() ktemp = pd.DataFrame({c:y}, index=x) kde_df = kde_df.join(ktemp, how='outer') bar_x = [v.get_x() for v in plot.patches] bar_h = [v.get_height() for v in plot.patches] btemp = pd.DataFrame({c:bar_h}, index=bar_x) bar_df = bar_df.join(btemp, how='outer') plt.close() bar_df.index.name = 'log10(minutes)' if logx else 'minutes' kde_df.index.name = 'log10(minutes)' if logx else 'minutes' return bar_df, kde_df def drinkcount_chronogram(sipper, circ_left=True, circ_right=True, circ_content=None, lights_on=7, lights_off=19, **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() to_plot = [] labels = [] if circ_left: to_plot.append(df['LeftCount']) labels.append('Left') if circ_right: to_plot.append(df['RightCount']) labels.append('Right') if circ_content: for c in circ_content: vals = sipper.get_content_values(c, 'Count', df=df) if not vals.empty: to_plot.append() labels.append(c) for i, series in enumerate(to_plot): reindexed = get_chronogram_vals(series, lights_on, lights_off) if reindexed.empty: continue label = labels[i] temp = pd.DataFrame({label:reindexed}, index=reindexed.index) output = output.join(temp, how='outer') output.index.name = 'Hours Into Light Cycle' return output def drinkcount_chronogram_grouped(sippers, groups, circ_left=True, circ_right=True, circ_content=None, circ_var='SEM', lights_on=7, lights_off=19, **kwargs): output = pd.DataFrame(index=range(0,24)) output.index.name = 'Hours Into Light Cycle' to_plot = defaultdict(list) for group in groups: for sipper in sippers: if group in sipper.groups: df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() if circ_left: key = group + ' - Left' vals = get_chronogram_vals(df['LeftCount'], lights_on, lights_off) vals.name = sipper.basename to_plot[key].append(vals) if circ_right: key = group + ' - Right' vals = get_chronogram_vals(df['RightCount'], lights_on, lights_off) vals.name = sipper.basename to_plot[key].append(vals) if circ_content: for c in circ_content: key = group + ' - ' + c content_vals = sipper.get_content_values(c, 'Count', df) if not content_vals.empty: vals = get_chronogram_vals(content_vals, lights_on, lights_off) vals.name = sipper.basename to_plot[key].append(vals) for i, (label, data) in enumerate(to_plot.items()): y = np.nanmean(data, axis=0) for d in data: output[label + ' - ' + d.name] = d output[label + ' MEAN'] = y if circ_var == 'SEM': sem = stats.sem(data, axis=0, nan_policy='omit') output[label + ' SEM'] = sem elif circ_var == 'STD': std = np.nanstd(data, axis=0) output[label + ' STD'] = std return output def drinkduration_chronogram(sipper, circ_left=True, circ_right=True, circ_content=None, lights_on=7, lights_off=19, **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() to_plot = [] labels = [] if circ_left: to_plot.append(df['LeftDuration']) labels.append('Left') if circ_right: to_plot.append(df['RightDuration']) labels.append('Right') if circ_content: for c in circ_content: vals = sipper.get_content_values(c, 'Duration', df=df) if not vals.empty: to_plot.append() labels.append(c) for i, series in enumerate(to_plot): reindexed = get_chronogram_vals(series, lights_on, lights_off) if reindexed.empty: continue label = labels[i] temp = pd.DataFrame({label:reindexed}, index=reindexed.index) output = output.join(temp, how='outer') output.index.name = 'Hours Into Light Cycle' return output def drinkduration_chronogram_grouped(sippers, groups, circ_left=True, circ_right=True, circ_content=None, circ_var='SEM', lights_on=7, lights_off=19, **kwargs): output = pd.DataFrame(index=range(0,24)) output.index.name = 'Hours Into Light Cycle' to_plot = defaultdict(list) for group in groups: for sipper in sippers: if group in sipper.groups: df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() if circ_left: key = group + ' - Left' vals = get_chronogram_vals(df['LeftDuration'], lights_on, lights_off) vals.name = sipper.basename to_plot[key].append(vals) if circ_right: key = group + ' - Right' vals = get_chronogram_vals(df['RightDuration'], lights_on, lights_off) vals.name = sipper.basename to_plot[key].append(vals) if circ_content: for c in circ_content: key = group + ' - ' + c content_vals = sipper.get_content_values(c, 'Duration', df) if not content_vals.empty: vals = get_chronogram_vals(content_vals, lights_on, lights_off) vals.name = sipper.basename to_plot[key].append(vals) for i, (label, data) in enumerate(to_plot.items()): y = np.nanmean(data, axis=0) for d in data: output[label + ' - ' + d.name] = d output[label + ' MEAN'] = y if circ_var == 'SEM': sem = stats.sem(data, axis=0, nan_policy='omit') output[label + ' SEM'] = sem elif circ_var == 'STD': std = np.nanstd(data, axis=0) output[label + ' STD'] = std return output def side_preference(sipper, pref_side='Left', pref_metric='Count', pref_bins='1H', **kwargs): df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() base = df.index[0].hour lcol = 'Left' + pref_metric rcol = 'Right' + pref_metric l_data = df[lcol].diff().resample(pref_bins, base=base).sum() r_data = df[rcol].diff().resample(pref_bins, base=base).sum() total = l_data + r_data if pref_side == 'Left': preference = l_data/total else: preference = r_data/total preference *= 100 output = pd.DataFrame(preference) output.columns = ['{} Preference (% Drink {})'.format(pref_side, pref_metric)] return output def content_preference(sipper, pref_content=[], pref_metric='Count', pref_bins='1H', lights_on=7, lights_off=19, shade_dark=True, **kwargs): output = pd.DataFrame() df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() base = df.index[0].hour for i, c in enumerate(pref_content): target = sipper.get_content_values(c, out=pref_metric, df=df) if target.empty: continue target = target.diff().resample(pref_bins, base=base).sum() other = sipper.get_content_values(c, out=pref_metric, df=df, opposite=True) other = other.diff().resample(pref_bins, base=base).sum() if not target.empty and not other.empty: preference = target / (target + other) * 100 temp = pd.DataFrame({c : preference}, index=preference.index) output = output.join(temp, how='outer') return output def averaged_drinkcount(sippers, groups, averaging='datetime', avg_bins='1H', avg_var='SEM', show_left=True, show_right=True, show_content=[], **kwargs): output = pd.DataFrame() to_plot = defaultdict(list) for group in groups: for sipper in sippers: if group in sipper.groups: df = sipper.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() if show_left: key = '{} - Left'.format(group) vals = df['LeftCount'].diff().rename(sipper.basename) to_plot[key].append(vals) if show_right: key = '{} - Right'.format(group) vals = df['RightCount'].diff().rename(sipper.basename) to_plot[key].append(vals) if show_content: for c in show_content: key = '{} - {}'.format(group, c) vals = sipper.get_content_values(c, out='Count', df=df).diff() if not vals.empty: to_plot[key].append(vals.rename(sipper.basename)) for i, (label, data) in enumerate(to_plot.items()): temp =
pd.DataFrame()
pandas.DataFrame
# flake8: noqa: F841 import tempfile from typing import Any, Dict, List, Union from pandas.io.parsers import TextFileReader import numpy as np import pandas as pd from . import check_series_result, check_dataframe_result def test_types_to_datetime() -> None: df = pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) r1: pd.Series = pd.to_datetime(df) r2: pd.Series = pd.to_datetime(df, unit="s", origin="unix", infer_datetime_format=True) r3: pd.Series = pd.to_datetime(df, unit="ns", dayfirst=True, utc=None, format="%M:%D", exact=False) r4: pd.DatetimeIndex = pd.to_datetime([1, 2], unit="D", origin=pd.Timestamp("01/01/2000")) r5: pd.DatetimeIndex = pd.to_datetime([1, 2], unit="D", origin=3) r6: pd.DatetimeIndex = pd.to_datetime(["2022-01-03", "2022-02-22"]) r7: pd.DatetimeIndex = pd.to_datetime(pd.Index(["2022-01-03", "2022-02-22"])) r8: pd.Series = pd.to_datetime({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) def test_types_concat() -> None: s = pd.Series([0, 1, -10]) s2 = pd.Series([7, -5, 10]) check_series_result(pd.concat([s, s2])) check_dataframe_result(pd.concat([s, s2], axis=1)) check_series_result(pd.concat([s, s2], keys=["first", "second"], sort=True)) check_series_result(pd.concat([s, s2], keys=["first", "second"], names=["source", "row"])) # Depends on the axis rs1: Union[pd.Series, pd.DataFrame] = pd.concat({"a": s, "b": s2}) rs1a: Union[pd.Series, pd.DataFrame] = pd.concat({"a": s, "b": s2}, axis=1) rs2: Union[pd.Series, pd.DataFrame] = pd.concat({1: s, 2: s2}) rs2a: Union[pd.Series, pd.DataFrame] =
pd.concat({1: s, 2: s2}, axis=1)
pandas.concat
# -*- coding: utf-8 -*- import pandas as pd import pandas.types.concat as _concat import pandas.util.testing as tm class TestConcatCompat(tm.TestCase): def check_concat(self, to_concat, exp): for klass in [pd.Index, pd.Series]: to_concat_klass = [klass(c) for c in to_concat] res = _concat.get_dtype_kinds(to_concat_klass) self.assertEqual(res, set(exp)) def test_get_dtype_kinds(self): to_concat = [['a'], [1, 2]] self.check_concat(to_concat, ['i', 'object']) to_concat = [[3, 4], [1, 2]] self.check_concat(to_concat, ['i']) to_concat = [[3, 4], [1, 2.1]] self.check_concat(to_concat, ['i', 'f']) def test_get_dtype_kinds_datetimelike(self): to_concat = [pd.DatetimeIndex(['2011-01-01']), pd.DatetimeIndex(['2011-01-02'])] self.check_concat(to_concat, ['datetime']) to_concat = [pd.TimedeltaIndex(['1 days']), pd.TimedeltaIndex(['2 days'])] self.check_concat(to_concat, ['timedelta']) def test_get_dtype_kinds_datetimelike_object(self): to_concat = [pd.DatetimeIndex(['2011-01-01']), pd.DatetimeIndex(['2011-01-02'], tz='US/Eastern')] self.check_concat(to_concat, ['datetime', 'datetime64[ns, US/Eastern]']) to_concat = [
pd.DatetimeIndex(['2011-01-01'], tz='Asia/Tokyo')
pandas.DatetimeIndex
import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.tseries.period as period from pandas import period_range, PeriodIndex, Index, date_range def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestPeriodIndex(tm.TestCase): def setUp(self): pass def test_joins(self): index = period_range('1/1/2000', '1/20/2000', freq='D') for kind in ['inner', 'outer', 'left', 'right']: joined = index.join(index[:-5], how=kind) tm.assertIsInstance(joined, PeriodIndex) self.assertEqual(joined.freq, index.freq) def test_join_self(self): index = period_range('1/1/2000', '1/20/2000', freq='D') for kind in ['inner', 'outer', 'left', 'right']: res = index.join(index, how=kind) self.assertIs(index, res) def test_join_does_not_recur(self): df = tm.makeCustomDataframe( 3, 2, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:2, 0] res = s.index.join(df.columns, how='outer') expected = Index([s.index[0], s.index[1], df.columns[0], df.columns[1]], object) tm.assert_index_equal(res, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_union_misc(self): index = period_range('1/1/2000', '1/20/2000', freq='D') result = index[:-5].union(index[10:]) tm.assert_index_equal(result, index) # not in order result = _permute(index[:-5]).union(_permute(index[10:])) tm.assert_index_equal(result, index) # raise if different frequencies index = period_range('1/1/2000', '1/20/2000', freq='D') index2 = period_range('1/1/2000', '1/20/2000', freq='W-WED') with tm.assertRaises(period.IncompatibleFrequency): index.union(index2) msg = 'can only call with other PeriodIndex-ed objects' with tm.assertRaisesRegexp(ValueError, msg): index.join(index.to_timestamp()) index3 = period_range('1/1/2000', '1/20/2000', freq='2D') with tm.assertRaises(period.IncompatibleFrequency): index.join(index3) def test_union_dataframe_index(self): rng1 = pd.period_range('1/1/1999', '1/1/2012', freq='M') s1 = pd.Series(np.random.randn(len(rng1)), rng1) rng2 = pd.period_range('1/1/1980', '12/1/2001', freq='M') s2 = pd.Series(np.random.randn(len(rng2)), rng2) df = pd.DataFrame({'s1': s1, 's2': s2}) exp = pd.period_range('1/1/1980', '1/1/2012', freq='M') self.assert_index_equal(df.index, exp) def test_intersection(self): index = period_range('1/1/2000', '1/20/2000', freq='D') result = index[:-5].intersection(index[10:]) tm.assert_index_equal(result, index[10:-5]) # not in order left = _permute(index[:-5]) right = _permute(index[10:]) result = left.intersection(right).sort_values() tm.assert_index_equal(result, index[10:-5]) # raise if different frequencies index = period_range('1/1/2000', '1/20/2000', freq='D') index2 = period_range('1/1/2000', '1/20/2000', freq='W-WED') with tm.assertRaises(period.IncompatibleFrequency): index.intersection(index2) index3 = period_range('1/1/2000', '1/20/2000', freq='2D') with tm.assertRaises(period.IncompatibleFrequency): index.intersection(index3) def test_intersection_cases(self): base = period_range('6/1/2000', '6/30/2000', freq='D', name='idx') # if target has the same name, it is preserved rng2 = period_range('5/15/2000', '6/20/2000', freq='D', name='idx') expected2 = period_range('6/1/2000', '6/20/2000', freq='D', name='idx') # if target name is different, it will be reset rng3 = period_range('5/15/2000', '6/20/2000', freq='D', name='other') expected3 = period_range('6/1/2000', '6/20/2000', freq='D', name=None) rng4 = period_range('7/1/2000', '7/31/2000', freq='D', name='idx') expected4 = PeriodIndex([], name='idx', freq='D') for (rng, expected) in [(rng2, expected2), (rng3, expected3), (rng4, expected4)]: result = base.intersection(rng) tm.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) # non-monotonic base = PeriodIndex(['2011-01-05', '2011-01-04', '2011-01-02', '2011-01-03'], freq='D', name='idx') rng2 = PeriodIndex(['2011-01-04', '2011-01-02', '2011-02-02', '2011-02-03'], freq='D', name='idx') expected2 = PeriodIndex(['2011-01-04', '2011-01-02'], freq='D', name='idx') rng3 = PeriodIndex(['2011-01-04', '2011-01-02', '2011-02-02', '2011-02-03'], freq='D', name='other') expected3 = PeriodIndex(['2011-01-04', '2011-01-02'], freq='D', name=None) rng4 =
period_range('7/1/2000', '7/31/2000', freq='D', name='idx')
pandas.period_range
# -*- coding: utf-8 -*- """ Librairie personnelle pour manipulation les modèles de machine learning """ # ==================================================================== # Outils ML - projet 4 Openclassrooms # Version : 0.0.0 - CRE LR 23/03/2021 # ==================================================================== import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from IPython.display import display import time import pickle import shap import outils_data from math import sqrt from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, \ explained_variance_score, median_absolute_error from sklearn.model_selection import cross_validate, RandomizedSearchCV, \ GridSearchCV, learning_curve # , cross_val_score from sklearn.dummy import DummyRegressor from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, \ BayesianRidge, HuberRegressor, \ OrthogonalMatchingPursuit, Lars, SGDRegressor from sklearn.svm import SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor, RandomForestRegressor, \ ExtraTreesRegressor, GradientBoostingRegressor, BaggingRegressor from sklearn.inspection import permutation_importance from sklearn.feature_selection import RFECV from xgboost import XGBRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor import eli5 from eli5.sklearn import PermutationImportance from pprint import pprint # -------------------------------------------------------------------- # -- VERSION # -------------------------------------------------------------------- __version__ = '0.0.0' # -------------------------------------------------------------------- # -- Entrainer/predire modele de regression de base avec cross-validation # -------------------------------------------------------------------- def process_regression( model_reg, X_train, X_test, y_train, y_test, df_resultats, titre, affiche_tableau=True, affiche_comp=True, affiche_erreur=True, xlim_sup=130000000): """ Lance un modele de régression, effectue cross-validation et sauvegarde les performances Parameters ---------- model_reg : modèle de régression initialisé, obligatoire. X_train : train set matrice X, obligatoire. X_test : test set matrice X, obligatoire. y_train : train set vecteur y, obligatoire. y_test : test set, vecteur y, obligatoire. df_resultats : dataframe sauvegardant les traces, obligatoire titre : titre à inscrire dans le tableau de sauvegarde, obligatoire. affiche_tableau : booleen affiche le tableau de résultat, facultatif. affiche_comp : booleen affiche le graphique comparant y_test/y_pres, facultatif. affiche_erreur : booleen affiche le graphique des erreurs, facultatif. xlim_sup : limite supérieure de x, facultatif. Returns ------- df_resultats : Le dataframe de sauvegarde des performances. y_pred : Les prédictions pour le modèle """ # Top début d'exécution time_start = time.time() # Entraînement du modèle model_reg.fit(X_train, y_train) # Sauvegarde du modèle de régression entaîné with open('modeles/modele_' + titre + '.pickle', 'wb') as f: pickle.dump(model_reg, f, pickle.HIGHEST_PROTOCOL) # Prédictions avec le test set y_pred = model_reg.predict(X_test) # Top fin d'exécution time_end = time.time() # Pour que le R2 soit représentatif des valeurs réelles y_test_nt = (10 ** y_test) + 1 y_pred_nt = (10 ** y_pred) + 1 # Calcul des métriques mae = mean_absolute_error(y_test_nt, y_pred_nt) mse = mean_squared_error(y_test_nt, y_pred_nt) rmse = sqrt(mse) r2 = r2_score(y_test_nt, y_pred_nt) errors = abs(y_pred - y_test_nt) mape = 100 * np.mean(errors / y_test_nt) accuracy = 100 - mape # durée d'exécution time_execution = time_end - time_start # cross validation scoring = ['r2', 'neg_mean_squared_error'] scores = cross_validate(model_reg, X_train, y_train, cv=10, scoring=scoring, return_train_score=True) # Sauvegarde des performances df_resultats = df_resultats.append(pd.DataFrame({ 'Modèle': [titre], 'R2': [r2], 'MSE': [mse], 'RMSE': [rmse], 'MAE': [mae], 'Erreur moy': [np.mean(errors)], 'Précision': [accuracy], 'Durée': [time_execution], 'Test R2 CV': [scores['test_r2'].mean()], 'Test R2 +/-': [scores['test_r2'].std()], 'Test MSE CV': [-(scores['test_neg_mean_squared_error'].mean())], 'Train R2 CV': [scores['train_r2'].mean()], 'Train R2 +/-': [scores['train_r2'].std()], 'Train MSE CV': [-(scores['train_neg_mean_squared_error'].mean())] }), ignore_index=True) if affiche_tableau: display(df_resultats.style.hide_index()) if affiche_comp: # retour aux valeurs d'origine test = (10 ** y_test) + 1 predict = (10 ** y_pred) + 1 # Affichage Test vs Predictions sns.jointplot( test, predict, kind='reg') plt.xlabel('y_test') plt.ylabel('y_predicted') plt.suptitle(t='Tests /Predictions pour : ' + str(titre), y=0, fontsize=16, alpha=0.75, weight='bold', ha='center') plt.xlim([0, xlim_sup]) plt.show() if affiche_erreur: # retour aux valeurs d'origine test = (10 ** y_test) + 1 predict = (10 ** y_pred) + 1 # affichage des erreurs df_res =
pd.DataFrame({'true': test, 'pred': predict})
pandas.DataFrame
""" Tests the usecols functionality during parsing for all of the parsers defined in parsers.py """ from io import StringIO import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas import DataFrame, Index import pandas._testing as tm _msg_validate_usecols_arg = ( "'usecols' must either be list-like " "of all strings, all unicode, all " "integers or a callable." ) _msg_validate_usecols_names = ( "Usecols do not match columns, columns expected but not found: {0}" ) def test_raise_on_mixed_dtype_usecols(all_parsers): # See gh-12678 data = """a,b,c 1000,2000,3000 4000,5000,6000 """ usecols = [0, "b", 2] parser = all_parsers with pytest.raises(ValueError, match=_msg_validate_usecols_arg): parser.read_csv(StringIO(data), usecols=usecols) @pytest.mark.parametrize("usecols", [(1, 2), ("b", "c")]) def test_usecols(all_parsers, usecols): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" parser = all_parsers result = parser.read_csv(StringIO(data), usecols=usecols) expected = DataFrame([[2, 3], [5, 6], [8, 9], [11, 12]], columns=["b", "c"]) tm.assert_frame_equal(result, expected) def test_usecols_with_names(all_parsers): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" parser = all_parsers names = ["foo", "bar"] result = parser.read_csv(StringIO(data), names=names, usecols=[1, 2], header=0) expected = DataFrame([[2, 3], [5, 6], [8, 9], [11, 12]], columns=names) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "names,usecols", [(["b", "c"], [1, 2]), (["a", "b", "c"], ["b", "c"])] ) def test_usecols_relative_to_names(all_parsers, names, usecols): data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" parser = all_parsers result = parser.read_csv(StringIO(data), names=names, header=None, usecols=usecols) expected = DataFrame([[2, 3], [5, 6], [8, 9], [11, 12]], columns=["b", "c"]) tm.assert_frame_equal(result, expected) def test_usecols_relative_to_names2(all_parsers): # see gh-5766 data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" parser = all_parsers result = parser.read_csv( StringIO(data), names=["a", "b"], header=None, usecols=[0, 1] ) expected = DataFrame([[1, 2], [4, 5], [7, 8], [10, 11]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_usecols_name_length_conflict(all_parsers): data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" parser = all_parsers msg = "Number of passed names did not match number of header fields in the file" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), names=["a", "b"], header=None, usecols=[1]) def test_usecols_single_string(all_parsers): # see gh-20558 parser = all_parsers data = """foo, bar, baz 1000, 2000, 3000 4000, 5000, 6000""" with pytest.raises(ValueError, match=_msg_validate_usecols_arg): parser.read_csv(StringIO(data), usecols="foo") @pytest.mark.parametrize( "data", ["a,b,c,d\n1,2,3,4\n5,6,7,8", "a,b,c,d\n1,2,3,4,\n5,6,7,8,"] ) def test_usecols_index_col_false(all_parsers, data): # see gh-9082 parser = all_parsers usecols = ["a", "c", "d"] expected = DataFrame({"a": [1, 5], "c": [3, 7], "d": [4, 8]}) result = parser.read_csv(StringIO(data), usecols=usecols, index_col=False) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_col", ["b", 0]) @pytest.mark.parametrize("usecols", [["b", "c"], [1, 2]]) def test_usecols_index_col_conflict(all_parsers, usecols, index_col): # see gh-4201: test that index_col as integer reflects usecols parser = all_parsers data = "a,b,c,d\nA,a,1,one\nB,b,2,two" expected = DataFrame({"c": [1, 2]}, index=Index(["a", "b"], name="b")) result = parser.read_csv(StringIO(data), usecols=usecols, index_col=index_col) tm.assert_frame_equal(result, expected) def test_usecols_index_col_conflict2(all_parsers): # see gh-4201: test that index_col as integer reflects usecols parser = all_parsers data = "a,b,c,d\nA,a,1,one\nB,b,2,two" expected = DataFrame({"b": ["a", "b"], "c": [1, 2], "d": ("one", "two")}) expected = expected.set_index(["b", "c"]) result = parser.read_csv( StringIO(data), usecols=["b", "c", "d"], index_col=["b", "c"] ) tm.assert_frame_equal(result, expected) def test_usecols_implicit_index_col(all_parsers): # see gh-2654 parser = all_parsers data = "a,b,c\n4,apple,bat,5.7\n8,orange,cow,10" result = parser.read_csv(StringIO(data), usecols=["a", "b"]) expected = DataFrame({"a": ["apple", "orange"], "b": ["bat", "cow"]}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_regex_sep(all_parsers): # see gh-2733 parser = all_parsers data = "a b c\n4 apple bat 5.7\n8 orange cow 10" result = parser.read_csv(StringIO(data), sep=r"\s+", usecols=("a", "b")) expected = DataFrame({"a": ["apple", "orange"], "b": ["bat", "cow"]}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_with_whitespace(all_parsers): parser = all_parsers data = "a b c\n4 apple bat 5.7\n8 orange cow 10" result = parser.read_csv(StringIO(data), delim_whitespace=True, usecols=("a", "b")) expected = DataFrame({"a": ["apple", "orange"], "b": ["bat", "cow"]}, index=[4, 8]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "usecols,expected", [ # Column selection by index. ([0, 1], DataFrame(data=[[1000, 2000], [4000, 5000]], columns=["2", "0"])), # Column selection by name. (["0", "1"], DataFrame(data=[[2000, 3000], [5000, 6000]], columns=["0", "1"])), ], ) def test_usecols_with_integer_like_header(all_parsers, usecols, expected): parser = all_parsers data = """2,0,1 1000,2000,3000 4000,5000,6000""" result = parser.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("usecols", [[0, 2, 3], [3, 0, 2]]) def test_usecols_with_parse_dates(all_parsers, usecols): # see gh-9755 data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parser = all_parsers parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected =
DataFrame(cols, columns=["c_d", "a"])
pandas.DataFrame
import math import matplotlib.pyplot as plt import numpy as np from os import listdir import pandas as pd import random import re from scipy.stats import norm as std_norm import seaborn as sns import tqdm # plots a heat map of chromosome interaction intensities def interaction_heat_map(all_files, data_path): biggest_num = max([max(chrm_nums(file)) for file in all_files]) heat_matrix = np.zeros((biggest_num, biggest_num)) # intensity = { (chr_x, chr_y): interaction intensity } intensity = count_intermingling(all_files, data_path) for pair in intensity: chr_x, chr_y = pair heat_matrix[chr_x-1, chr_y-1] = intensity[pair] heat_matrix[chr_y-1, chr_x-1] = intensity[pair] sns.heatmap(heat_matrix, cbar_kws={'label': 'Number of Intermingling Regions'}) plt.title('Heat Map of Inter-Chromosome Interaction Counts') plt.xlabel('Chromosome number') plt.ylabel('Chromosome number') plt.show() # maps a pair of chrms to the intensity of their interaction def count_intermingling(all_files, data_path): n_intermingle = dict() mu, sigma = mean_std(all_files, data_path) print('\nCounting interminglings...') for file in tqdm.tqdm(all_files): x, y = chrm_nums(file) if x != y: # intensity score = sum of the rectangular areas with significant interaction freq n_intermingle[(int(x), int(y))] = sum([w*h for _, w, h in monte_carlo(x, y, mu, sigma, data_path)]) return n_intermingle # returns the chromosome numbers in the file name def chrm_nums(file): chrx = re.search('chr(.+?)_', file).group(1) chry = re.search('_chr(.+?).txt', file).group(1) return int(chrx), int(chry) # runs a greedy search 50 times to find the regions with lowest p-values def monte_carlo(x, y, mu, sigma, data_path): file_name = f'{data_path}chr{x}_chr{y}.txt' Z = t_interaction_matrix(file_name) interacting = [] while True: witnessed = [greedy_search(Z, mu, sigma) for _ in range(50)] # return the trial with the lowest p-value best_M, best_p, best_row, best_col = min(witnessed, key=lambda wit: wit[1]) # the extended matrix is no longer significant if best_p > 0.01: return interacting else: h, w = best_M.shape # sub-matrix is an area with significant interaction interacting.append(((best_col, best_row), w, h)) mean = np.nanmean(best_M) Z[best_row: best_row + h, best_col: best_col + w] -= mean # fills a freq matrix, Z, where Z[i, j] = scaled_freq btwn chrm_i and chrm_j def t_interaction_matrix(file): df = read(file) n_rows, n_cols = df['xloc'].max()+1, df['yloc'].max()+1 freq_matrix = np.zeros((n_rows, n_cols)) freq_matrix[df['xloc'], df['yloc']] = df['freq'] return freq_matrix # finds regions with small p-values # uses adjusted p-value to perform a greedy search--instead of testing every sub-matrix def greedy_search(freq_matrix, mu, sigma): n_rows, n_cols = freq_matrix.shape def adjusted_p_value(M): # returns the number of sub-matrices in an m x n matrix def count_submatrices(m, n): return m * (m + 1) * n * (n + 1) / 4 top = (np.nanmean(M) - mu) * math.sqrt(M.size) n_sub = count_submatrices(n_rows, n_cols) # adjust by the number of possible sub-matrices return std_norm.sf(top / sigma) * n_sub # the region begins as a random position row, col = random.randint(0, n_rows - 1), random.randint(0, n_cols - 1) rand_choice = freq_matrix[row, col] M_0 = np.array([[rand_choice]]) # continue extending the region until the p-value starts increasing while True: p_value = adjusted_p_value(M_0) p_values = [] for sub_m in extend(row, col, M_0, freq_matrix): p_values.append((adjusted_p_value(sub_m[0]), sub_m)) best_p, best_m = min(p_values, key=lambda x: x[0]) if best_p >= p_value: return M_0, p_value, row, col else: M_0, row, col = best_m # extends the sub-matrix M to the right, left, top, and bottom def extend(r, c, M, matrix): h, w = M.shape M_r, rr, cr = matrix[r: r + h, c: c + w + 1].copy(), r, c M_l, rl, cl = matrix[r: r + h, c - 1: c + w].copy(), r, c - 1 M_t, rt, ct = matrix[r - 1: r + h, c: c + w].copy(), r - 1, c M_b, rb, cb = matrix[r: r + h + 1, c: c + w].copy(), r, c return (M_r, rr, cr), (M_l, rl, cl), (M_t, rt, ct), (M_b, rb, cb) # aggregates the interaction frequencies among all files, and computes the mean and std def mean_std(all_files, data_path): all_freqs = pd.Series([]) # files are sparse, so must account for the extra zeros total_size = 0 print('\nCalculating mean and std...') for file in tqdm.tqdm(all_files): chrx, chry = chrm_nums(file) if chrx != chry: chr_df = read(data_path + file) file_freqs = chr_df.freq all_freqs =
pd.concat([all_freqs, file_freqs])
pandas.concat
import pandas as pd import matplotlib.pyplot as plt from graphviz import Digraph from simrd.telemetry import Telemetry TRACE_STATS = [ 'time', 'pinned_memory', 'locked_memory', 'evictable_memory', 'total_memory', 'memory_pressure' ] class State: def __init__(self, telemetry : Telemetry): self.material = set() self.evicted = set() self.locked = set() self.pending = set() self.pinned = set() self.banished = set() self.timesteps = sorted(telemetry.trace.timesteps) self.time_idx = -1 self.time = 0 self.pressure = 0 self.telemetry = telemetry # initialize to be all evicted and uncomputed self.evicted.update(list(self.telemetry.tensor.keys())) self.uncomputed = self.evicted.copy() # group tensors by their parent opcalls self.call_groups = {} for tid in self.evicted: op_id = self.telemetry.get('tensor', tid, 'op_id') if op_id not in self.call_groups: self.call_groups[op_id] = [] self.call_groups[op_id].append(tid) # group tensors by their underlying storages self.storage_groups = {} for tid in self.evicted: storage_id = self.telemetry.get('tensor', tid, 'storage_id') if storage_id not in self.storage_groups: self.storage_groups[storage_id] = [] self.storage_groups[storage_id].append(tid) def _step(self): if self.time_idx + 1 >= len(self.timesteps): return False self.time_idx += 1 self.time = self.timesteps[self.time_idx] # A tensor cannot be evicted *and then* computed on the same timestep, # only computed then evicted. Thus, we can set computed = computed \ evicted. # evicted /\ material = empty # pending subset evicted # banished subset evicted # locked subset material # pinned subset material # locked /\ pinned = empty # add new material tensors compute = self.telemetry.trace.compute.get(self.time, []) self.material.update(compute) self.evicted.difference_update(compute) self.pending.difference_update(compute) self.uncomputed.difference_update(compute) # add new evicted and banished tensors for sid in self.telemetry.trace.evict.get(self.time, []): self.evicted.update(self.storage_groups[sid]) for sid in self.telemetry.trace.banish.get(self.time, []): self.evicted.update(self.storage_groups[sid]) self.banished.update(self.storage_groups[sid]) # add new pending tensors self.pending.update(self.telemetry.trace.pending.get(self.time, [])) # update pinned, locked; a lock can only be locked after being unlocked at # the same timestep, *assuming computations take nonzero time* for sid in self.telemetry.trace.unlock.get(self.time, []): self.locked.difference_update(self.storage_groups[sid]) for sid in self.telemetry.trace.lock.get(self.time, []): self.locked.update(self.storage_groups[sid]) for sid in self.telemetry.trace.pin.get(self.time, []): self.pinned.update(self.storage_groups[sid]) self.material.difference_update(self.evicted) self.locked.difference_update(self.evicted) self.pinned.difference_update(self.evicted) # Track pinned and locked separately for tid in self.pinned: if tid in self.storage_groups: self.locked.difference_update(self.storage_groups[tid]) # Mark any material tensors belonging to a pinned group as pinned for tid in self.material: sid = self.telemetry.get('tensor', tid, 'storage_id') if sid in self.pinned: self.pinned.add(tid) self.pressure = self.telemetry.trace.pressure.get(self.time, 0) assert len(self.material.intersection(self.evicted)) == 0 assert len(self.banished.intersection(self.evicted)) == len(self.banished) assert len(self.locked.intersection(self.pinned)) == 0 assert len(self.locked.intersection(self.evicted)) == 0 assert len(self.locked.intersection(self.material)) == len(self.locked) assert len(self.material) + len(self.evicted) == len(self.telemetry.tensor.keys()) return True def step(self, steps=1): for i in range(steps): if not self._step(): return False return True def tensor_name(self, tid): op_id = self.telemetry.get('tensor', tid, 'op_id') op_name = self.telemetry.get('operator', op_id, 'name') if op_name == None: op_name = self.telemetry.get('tensor', tid, 'name') if self.telemetry.get('operator', op_id, 'outputs') > 1: index = self.telemetry.get('tensor', tid, 'index') name = '{}.{}'.format(op_name, index) else: name = op_name return name def render_dot(self, filename=None, **kwargs): """ Returns the dot graph (of the current state) as a string, and optionally outputs a rendered image to the specified filename (without file extension; the extension and format can be changed by setting format='png', etc. although pdf seems to be the fastest). """ g = Digraph(engine='dot') g.attr('node', shape='box', style='filled') g.attr(compound='true', rankdir='LR') for call_id in self.call_groups: with g.subgraph(name='cluster_{}'.format(call_id)) as gg: gg.attr(style='filled', color='lightgrey') for tid in self.call_groups[call_id]: if tid in self.material: args = {'color': 'white'} if tid in self.pinned: args['color'] = 'orange' elif tid in self.locked: args['color'] = 'pink' elif tid in self.evicted: args = {'color': 'gray'} if tid in self.banished: args['color'] = 'red' elif tid in self.uncomputed: args['color'] = 'white' args['fillcolor'] = 'black' args['fontcolor'] = 'white' args['style'] = 'dashed, filled' if tid in self.pending: args['fillcolor'] = 'darkgreen' args['fontcolor'] = 'white' gg.node(str(tid), self.tensor_name(tid), **args) # edges, only draw one per op output cluster for p in self.telemetry.adj_list: c_op_ids = set() for c in self.telemetry.adj_list[p]: c_op_id = self.telemetry.get('tensor', c, 'op_id') if c_op_id not in c_op_ids: c_op_ids.add(c_op_id) else: continue c_cluster = 'cluster_{}'.format(c_op_id) args = {} if self.telemetry.get('tensor', c, 'is_alias'): args['style'] = 'dashed' g.edge(str(p), str(c), lhead=c_cluster, **args) if filename is not None: g.render(filename, cleanup=True, **kwargs) return g.source def analyze_trace(tel : Telemetry): s = State(tel) data = [] while s.step(): pinned_mem = 0 locked_mem = 0 evictable_mem = 0 total_mem = 0 for tid in s.pinned: pinned_mem += s.telemetry.get('tensor', tid, 'size') for tid in s.locked: locked_mem += s.telemetry.get('tensor', tid, 'size') for tid in s.material.difference(s.pinned).difference(s.locked): evictable_mem += s.telemetry.get('tensor', tid, 'size') total_mem = pinned_mem + locked_mem + evictable_mem mem_pressure = total_mem + s.pressure data.append([s.time, pinned_mem, locked_mem, evictable_mem, total_mem, mem_pressure]) return pd.DataFrame(data, columns=TRACE_STATS) def analyze_max_pinned(tel : Telemetry, filename, render_graph=False): s = State(tel) max_pinned_memory = -1 max_pinned_step = -1 max_pinned_time = -1 while s.step(): pinned_mem = sum(map(lambda tid: s.telemetry.get('tensor', tid, 'size'), s.pinned)) if pinned_mem > max_pinned_memory: max_pinned_memory = pinned_mem max_pinned_step = s.time_idx max_pinned_time = s.time print('maximum amount of pinned memory: {} at step {} (time = {})'.format( max_pinned_memory, max_pinned_step, max_pinned_time )) # now graph s = State(tel) while s.step(): if s.time_idx == max_pinned_step: if render_graph: s.render_dot(filename) pinned_data = [] for tid in s.pinned: pinned_data.append(s.telemetry.tensor[tid]) stats = pd.DataFrame(pinned_data, columns=Telemetry.TENSOR_STATS) return stats def analyze_max_locked(tel : Telemetry, filename, render_graph=False): s = State(tel) max_locked_memory = -1 max_locked_step = -1 max_locked_time = -1 while s.step(): locked_mem = sum(map(lambda tid: s.telemetry.get('tensor', tid, 'size'), s.locked)) if locked_mem > max_locked_memory: max_locked_memory = locked_mem max_locked_step = s.time_idx max_locked_time = s.time print('maximum amount of locked memory: {} at step {} (time = {})'.format( max_locked_memory, max_locked_step, max_locked_time )) # now graph s = State(tel) while s.step(): if s.time_idx == max_locked_step: if render_graph: s.render_dot(filename) pinned_data = [] for tid in s.pinned: pinned_data.append(s.telemetry.tensor[tid]) stats =
pd.DataFrame(pinned_data, columns=Telemetry.TENSOR_STATS)
pandas.DataFrame
import pytest import pandas as pd import numpy as np from numpy import pi, sqrt import matplotlib.pyplot as plt import os from numpy.testing import assert_almost_equal, assert_allclose from rolldecayestimators.ikeda import Ikeda, IkedaR from rolldecayestimators import lambdas import rolldecayestimators import pyscores2.test import pyscores2.indata import pyscores2.output @pytest.fixture def ikeda(): N=10 data = np.zeros(N) w_hat=np.linspace(0.1,1, N) B_W0_hat =
pd.Series(data=data, index=w_hat)
pandas.Series
# -*- coding:utf-8 -*- # /usr/bin/env python """ Author: <NAME> date: 2020/1/23 9:07 contact: <EMAIL> desc: 新增-事件接口 新增-事件接口新型冠状病毒-网易 新增-事件接口新型冠状病毒-丁香园 新增-事件接口新型冠状病毒-百度 """ import json import time from io import BytesIO import demjson import pandas as pd import requests from PIL import Image from bs4 import BeautifulSoup from akshare.event.cons import province_dict, city_dict # pd.set_option('display.max_columns', None) # just for debug def epidemic_163(indicator="实时"): """ 网易网页端-新冠状病毒-实时人数统计情况 国内和海外 https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other&#map_block https://news.163.com/special/epidemic/?spssid=93326430940df93a37229666dfbc4b96&spsw=4&spss=other& :return: 返回国内各地区和海外地区情况 :rtype: pandas.DataFrame """ url = "https://c.m.163.com/ug/api/wuhan/app/data/list-total" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36", } params = { "t": int(time.time() * 1000), } res = requests.get(url, params=params, headers=headers) data_json = res.json() hist_today_df =
pd.DataFrame([item["today"] for item in data_json["data"]["chinaDayList"]], index=[item["date"] for item in data_json["data"]["chinaDayList"]])
pandas.DataFrame
import re import pandas as pd from config import Config class Dataset(Config): """ Attributes ---------- ukbb_vars: list Variable names based on user selections as coded in the Biobank. recoded_vars: list Variable names based on user selections as will be recoded. df: DataFrame Dataset which can be manipulated using the below methods Methods ------- create_binary_variables(voi: str, patterns: dict) Takes as input a variable of interest (e.g., 'medication') and a dictionary with keys representing new variable names mapped onto regular expressions. New binary variables will be created based on whether each individual has a value matching the regular expression in any of the columns related to the variable of interest. Example: >>> myDataset.create_binary_variables("medication", {"taking_painkiller": "(aspirin|tylenol)"}) recode_diagnoses() Creates new variables for groups of diagnoses included or excluded, based on whether one or more of such diagnoses is present. apply_inclusion_criteria(method: str) Apply inclusion criteria based on specified method. Available options are "AND" and "OR". apply_exclusion_criteria() Apply exclusion criteria by removing cases where any of the specified diagnoses are present clean(voi: str) Takes as input a variable of interest (e.g., 'medication'). Removes all columns beginning with this string from the final dataframe. recode_vars() Replace values for each variable as specified in the config class write_csv() Write self.df to the filepath specified in the config class """ ukbb_vars, recoded_vars = ["eid"], ["eid"] for var in Config.variables: if Config.variables[var]["Included"]: array_vars = [] for i in Config.variables[var]['ArrayRange']: array_vars.append(f"{Config.variables[var]['DataField']}-{Config.variables[var]['InstanceNum']}.{i}") ukbb_vars += array_vars if len(Config.variables[var]['ArrayRange']) == 1: recoded_vars.append(f"{var}_t{Config.variables[var]['InstanceNum']}") else: array_vars = [] for i in Config.variables[var]['ArrayRange']: array_vars.append(f"{var}_t{Config.variables[var]['InstanceNum']}_{i}") recoded_vars += array_vars assert len(ukbb_vars) == len(recoded_vars) def __init__(self) -> None: self.df = pd.read_csv(self.filepaths["RawData"], dtype=str, usecols=self.ukbb_vars) self.df.rename({k: v for k, v in zip(self.ukbb_vars, self.recoded_vars)}, axis=1, inplace=True) self.df.dropna(axis=1, how="all", inplace=True) def create_binary_variables(self, voi: str, patterns: dict): cols = [col for col in self.df if col.startswith(voi)] all_vars = list(patterns.keys()) new_vars = {var_name: [] for var_name in ["eid"] + all_vars} for index, row in self.df[cols].iterrows(): new_vars["eid"].append(self.df["eid"][index]) for pat in patterns: for value in row: try: if re.match(patterns[pat], value) is not None: new_vars[pat].append(True) break except TypeError: continue if len(new_vars["eid"]) != len(new_vars[pat]): new_vars[pat].append(False) if not sum([len(x) for x in new_vars.values()]) == len(new_vars["eid"]) * len(new_vars.keys()): raise ValueError(f"{sum([len(x) for x in new_vars.values()])} != {len(new_vars['eid']) * len(new_vars.keys())}") new_df = pd.DataFrame(new_vars) self.df = pd.merge(self.df, new_df, left_on="eid", right_on="eid") def recode_diagnoses(self): dx_cols = [col for col in self.df if col.startswith("diagnoses")] all_dx = list(self.selected_diagnoses.keys()) new_vars = {var_name: [] for var_name in ["eid"] + all_dx} for i in range(len(self.df)): new_vars["eid"].append(self.df["eid"][i]) for col in dx_cols: value = self.df[col][i] if pd.isnull(value): for dx in all_dx: if len(new_vars[dx]) != len(new_vars["eid"]): new_vars[dx].append(False) break for dx in self.selected_diagnoses: if re.match(self.selected_diagnoses[dx], value) is not None: if len(new_vars[dx]) != len(new_vars["eid"]): new_vars[dx].append(True) assert sum([len(x) for x in new_vars.values()]) == len(new_vars["eid"]) * len(new_vars.keys()) new_df = pd.DataFrame(new_vars) self.df = pd.merge(self.df, new_df, left_on="eid", right_on="eid") self.df.drop(dx_cols, axis=1, inplace=True) def apply_inclusion_criteria(self, method: str): if method == "AND": for key in self.included_diagnoses: self.df = self.df[self.df[key] == True] elif method == "OR": list_series = [self.df[key] == True for key in self.included_diagnoses] included =
pd.concat(list_series, axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import pandas as pd import matplotlib.pyplot as plt import geopandas as gpd import requests # For storing png files in memory import io # For generating GIF import imageio ########################################################### ########## Globals.... ########################################################### # Top value to use in scale, 0 = mean + 2 std devs max_value = 0 # Bottom value to use in scale, should be zero min_value = 0 # SANDAG API Link sd_api = "https://opendata.arcgis.com/datasets/854d7e48e3dc451aa93b9daf82789089_0.geojson" # Zipcode shape file link zip_shape_full = "https://github.com/mulroony/State-zip-code-GeoJSON/raw/master/ca_california_zip_codes_geo.min.json" # File to write gif to. Leave blank to just render inline # Probably won't work in this script... gif_path = "/tmp/SD_Covid_cases.gif" #gif_path = "" # Select ColorMap: https://matplotlib.org/3.2.1/tutorials/colors/colormaps.html color_map = 'YlOrRd' ########################################################### ########################################################### r = requests.get(sd_api) rd = [ _r['properties'] for _r in r.json()['features'] ] case_df = pd.DataFrame(rd) # Cleanup, reduce mem del [r, rd] known_zips = list(case_df['ziptext'].unique()) print("Zipcodes in data: %s"%(len(known_zips))) # Got API link from: https://sdgis-sandag.opendata.arcgis.com/datasets/covid-19-statistics-by-zip-code r = requests.get(zip_shape_full) rd = r.json() zip_shape_known = {} zip_shape_known['type'] = rd['type'] zip_shape_known['features'] = [] for i in rd['features']: if i['properties']['ZCTA5CE10'] in known_zips: zip_shape_known['features'].append(i) print("Found %s matching zip codes in shape file"%(len(zip_shape_known['features']))) del [r, rd] gdf = gpd.GeoDataFrame.from_features(zip_shape_known) gdf.rename(columns={'ZCTA5CE10': 'zipcode'}, inplace=True) gdf.set_index('zipcode',inplace=True) # Drop time from date, not useful case_df['date'] = case_df['updatedate'].apply(lambda x: x.split(" ")[0]) # Drop unused fields case_df.drop(inplace=True, columns=['FID', 'zipcode_zip', 'created_date', 'updatedate', 'created_date', 'created_user', 'last_edited_date', 'last_edited_user', 'globalid']) # Missing data becomes zeros case_df.fillna(0, inplace=True) # Rename column case_df.rename(columns={'ziptext': 'zipcode'}, inplace=True) # Drop duplicates, have seen some case_df.drop_duplicates(subset=['zipcode','date'], inplace=True) # Ugly, but creates table I want case_df = case_df.groupby(['zipcode', 'date']).sum().unstack().fillna(0) # End up with nested column name, remove it case_df.columns = case_df.columns.droplevel() # Create super list of all case values so we can get stats if we are going to use it if max_value == 0: _tmp_case_list = [] # Not necessary, but can't hurt dates = sorted(case_df.columns.values) # subtract tomorrow from today, and set that as the value for today. repeat, skipping last day... for i in range(len(dates)-1): today = dates[i] tomorrow = dates[i+1] case_df[today] = case_df[tomorrow] - case_df[today] # #Uncomment to find all negative values. Happens due to adjusting the numbers, we handle it # #Good to do though # _tmp_df = case_df[today].apply(lambda x: x if x < -1 else None).dropna() # if _tmp_df.values.size > 0: # print("%s"%(today)) # print(_tmp_df) if max_value == 0: _tmp_case_list += list(case_df[today].values) if max_value == 0: _tmp_case_df =
pd.DataFrame(_tmp_case_list)
pandas.DataFrame
import numpy as np import pandas as pd from functools import reduce import seaborn as sns from matplotlib import pyplot def hap_load_and_process(url_or_path_to_csv_file, rename_dict,final_list): # Method Chain 1 (Load data and deal with missing data) df1 = ( pd.read_csv(url_or_path_to_csv_file) .rename(columns=rename_dict) #.dropna() # etc... ) # Method Chain 2 (Create new columns, drop others, and do processing) df2 = ( df1 #.assign(status=lambda x: np.where((x.period > 2014), 1, 0)) .sort_values("country", ascending=True) .reset_index(drop=True) .loc[:, final_list] ) # Make sure to return the latest dataframe return df2 def ind_load_and_process(url_or_path_to_csv_file, ind): # Method Chain 1 (Load data and deal with missing data) df1 = (
pd.read_csv(url_or_path_to_csv_file)
pandas.read_csv
import itertools import numpy as np import pandas as pd import pytest import xarray as xr from xarray.core.missing import ( NumpyInterpolator, ScipyInterpolator, SplineInterpolator, _get_nan_block_lengths, get_clean_interp_index, ) from xarray.core.pycompat import dask_array_type from xarray.tests import ( assert_allclose, assert_array_equal, assert_equal, raises_regex, requires_bottleneck, requires_cftime, requires_dask, requires_scipy, ) from xarray.tests.test_cftime_offsets import _CFTIME_CALENDARS @pytest.fixture def da(): return xr.DataArray([0, np.nan, 1, 2, np.nan, 3, 4, 5, np.nan, 6, 7], dims="time") @pytest.fixture def cf_da(): def _cf_da(calendar, freq="1D"): times = xr.cftime_range( start="1970-01-01", freq=freq, periods=10, calendar=calendar ) values = np.arange(10) return xr.DataArray(values, dims=("time",), coords={"time": times}) return _cf_da @pytest.fixture def ds(): ds = xr.Dataset() ds["var1"] = xr.DataArray( [0, np.nan, 1, 2, np.nan, 3, 4, 5, np.nan, 6, 7], dims="time" ) ds["var2"] = xr.DataArray( [10, np.nan, 11, 12, np.nan, 13, 14, 15, np.nan, 16, 17], dims="x" ) return ds def make_interpolate_example_data(shape, frac_nan, seed=12345, non_uniform=False): rs = np.random.RandomState(seed) vals = rs.normal(size=shape) if frac_nan == 1: vals[:] = np.nan elif frac_nan == 0: pass else: n_missing = int(vals.size * frac_nan) ys = np.arange(shape[0]) xs = np.arange(shape[1]) if n_missing: np.random.shuffle(ys) ys = ys[:n_missing] np.random.shuffle(xs) xs = xs[:n_missing] vals[ys, xs] = np.nan if non_uniform: # construct a datetime index that has irregular spacing deltas = pd.TimedeltaIndex(unit="d", data=rs.normal(size=shape[0], scale=10)) coords = {"time": (pd.Timestamp("2000-01-01") + deltas).sort_values()} else: coords = {"time": pd.date_range("2000-01-01", freq="D", periods=shape[0])} da = xr.DataArray(vals, dims=("time", "x"), coords=coords) df = da.to_pandas() return da, df @requires_scipy def test_interpolate_pd_compat(): shapes = [(8, 8), (1, 20), (20, 1), (100, 100)] frac_nans = [0, 0.5, 1] methods = [ "linear", "nearest", "zero", "slinear", "quadratic", "cubic", # "next", # "previous", ] for (shape, frac_nan, method) in itertools.product(shapes, frac_nans, methods): da, df = make_interpolate_example_data(shape, frac_nan) for dim in ["time", "x"]: actual = da.interpolate_na(method=method, dim=dim, fill_value=np.nan) expected = df.interpolate( method=method, axis=da.get_axis_num(dim), fill_value=(np.nan, np.nan) ) # Note, Pandas does some odd things with the left/right fill_value # for the linear methods. This next line inforces the xarray # fill_value convention on the pandas output. Therefore, this test # only checks that interpolated values are the same (not nans) expected.values[pd.isnull(actual.values)] = np.nan np.testing.assert_allclose(actual.values, expected.values) @requires_scipy @pytest.mark.parametrize("method", ["barycentric", "krog", "pchip", "spline", "akima"]) def test_scipy_methods_function(method): # Note: Pandas does some wacky things with these methods and the full # integration tests wont work. da, _ = make_interpolate_example_data((25, 25), 0.4, non_uniform=True) actual = da.interpolate_na(method=method, dim="time") assert (da.count("time") <= actual.count("time")).all() @requires_scipy def test_interpolate_pd_compat_non_uniform_index(): shapes = [(8, 8), (1, 20), (20, 1), (100, 100)] frac_nans = [0, 0.5, 1] methods = ["time", "index", "values"] for (shape, frac_nan, method) in itertools.product(shapes, frac_nans, methods): da, df = make_interpolate_example_data(shape, frac_nan, non_uniform=True) for dim in ["time", "x"]: if method == "time" and dim != "time": continue actual = da.interpolate_na( method="linear", dim=dim, use_coordinate=True, fill_value=np.nan ) expected = df.interpolate( method=method, axis=da.get_axis_num(dim), fill_value=np.nan ) # Note, Pandas does some odd things with the left/right fill_value # for the linear methods. This next line inforces the xarray # fill_value convention on the pandas output. Therefore, this test # only checks that interpolated values are the same (not nans) expected.values[pd.isnull(actual.values)] = np.nan np.testing.assert_allclose(actual.values, expected.values) @requires_scipy def test_interpolate_pd_compat_polynomial(): shapes = [(8, 8), (1, 20), (20, 1), (100, 100)] frac_nans = [0, 0.5, 1] orders = [1, 2, 3] for (shape, frac_nan, order) in itertools.product(shapes, frac_nans, orders): da, df = make_interpolate_example_data(shape, frac_nan) for dim in ["time", "x"]: actual = da.interpolate_na( method="polynomial", order=order, dim=dim, use_coordinate=False ) expected = df.interpolate( method="polynomial", order=order, axis=da.get_axis_num(dim) ) np.testing.assert_allclose(actual.values, expected.values) @requires_scipy def test_interpolate_unsorted_index_raises(): vals = np.array([1, 2, 3], dtype=np.float64) expected = xr.DataArray(vals, dims="x", coords={"x": [2, 1, 3]}) with raises_regex(ValueError, "Index 'x' must be monotonically increasing"): expected.interpolate_na(dim="x", method="index") def test_interpolate_no_dim_raises(): da = xr.DataArray(np.array([1, 2, np.nan, 5], dtype=np.float64), dims="x") with raises_regex(NotImplementedError, "dim is a required argument"): da.interpolate_na(method="linear") def test_interpolate_invalid_interpolator_raises(): da = xr.DataArray(np.array([1, 2, np.nan, 5], dtype=np.float64), dims="x") with raises_regex(ValueError, "not a valid"): da.interpolate_na(dim="x", method="foo") def test_interpolate_duplicate_values_raises(): data = np.random.randn(2, 3) da = xr.DataArray(data, coords=[("x", ["a", "a"]), ("y", [0, 1, 2])]) with raises_regex(ValueError, "Index 'x' has duplicate values"): da.interpolate_na(dim="x", method="foo") def test_interpolate_multiindex_raises(): data = np.random.randn(2, 3) data[1, 1] = np.nan da = xr.DataArray(data, coords=[("x", ["a", "b"]), ("y", [0, 1, 2])]) das = da.stack(z=("x", "y")) with raises_regex(TypeError, "Index 'z' must be castable to float64"): das.interpolate_na(dim="z") def test_interpolate_2d_coord_raises(): coords = { "x": xr.Variable(("a", "b"), np.arange(6).reshape(2, 3)), "y": xr.Variable(("a", "b"), np.arange(6).reshape(2, 3)) * 2, } data = np.random.randn(2, 3) data[1, 1] = np.nan da = xr.DataArray(data, dims=("a", "b"), coords=coords) with raises_regex(ValueError, "interpolation must be 1D"): da.interpolate_na(dim="a", use_coordinate="x") @requires_scipy def test_interpolate_kwargs(): da = xr.DataArray(np.array([4, 5, np.nan], dtype=np.float64), dims="x") expected = xr.DataArray(np.array([4, 5, 6], dtype=np.float64), dims="x") actual = da.interpolate_na(dim="x", fill_value="extrapolate") assert_equal(actual, expected) expected = xr.DataArray(np.array([4, 5, -999], dtype=np.float64), dims="x") actual = da.interpolate_na(dim="x", fill_value=-999) assert_equal(actual, expected) def test_interpolate_keep_attrs(): vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64) mvals = vals.copy() mvals[2] = np.nan missing = xr.DataArray(mvals, dims="x") missing.attrs = {"test": "value"} actual = missing.interpolate_na(dim="x", keep_attrs=True) assert actual.attrs == {"test": "value"} def test_interpolate(): vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64) expected = xr.DataArray(vals, dims="x") mvals = vals.copy() mvals[2] = np.nan missing = xr.DataArray(mvals, dims="x") actual = missing.interpolate_na(dim="x") assert_equal(actual, expected) def test_interpolate_nonans(): vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64) expected = xr.DataArray(vals, dims="x") actual = expected.interpolate_na(dim="x") assert_equal(actual, expected) @requires_scipy def test_interpolate_allnans(): vals = np.full(6, np.nan, dtype=np.float64) expected = xr.DataArray(vals, dims="x") actual = expected.interpolate_na(dim="x") assert_equal(actual, expected) @requires_bottleneck def test_interpolate_limits(): da = xr.DataArray( np.array([1, 2, np.nan, np.nan, np.nan, 6], dtype=np.float64), dims="x" ) actual = da.interpolate_na(dim="x", limit=None) assert actual.isnull().sum() == 0 actual = da.interpolate_na(dim="x", limit=2) expected = xr.DataArray( np.array([1, 2, 3, 4, np.nan, 6], dtype=np.float64), dims="x" ) assert_equal(actual, expected) @requires_scipy def test_interpolate_methods(): for method in [ "linear", "nearest", "zero", "slinear", "quadratic", "cubic", "previous", "next", ]: kwargs = {} da = xr.DataArray( np.array([0, 1, 2, np.nan, np.nan, np.nan, 6, 7, 8], dtype=np.float64), dims="x", ) actual = da.interpolate_na("x", method=method, **kwargs) assert actual.isnull().sum() == 0 actual = da.interpolate_na("x", method=method, limit=2, **kwargs) assert actual.isnull().sum() == 1 @requires_scipy def test_interpolators(): for method, interpolator in [ ("linear", NumpyInterpolator), ("linear", ScipyInterpolator), ("spline", SplineInterpolator), ]: xi = np.array([-1, 0, 1, 2, 5], dtype=np.float64) yi = np.array([-10, 0, 10, 20, 50], dtype=np.float64) x = np.array([3, 4], dtype=np.float64) f = interpolator(xi, yi, method=method) out = f(x) assert pd.isnull(out).sum() == 0 def test_interpolate_use_coordinate(): xc = xr.Variable("x", [100, 200, 300, 400, 500, 600]) da = xr.DataArray( np.array([1, 2, np.nan, np.nan, np.nan, 6], dtype=np.float64), dims="x", coords={"xc": xc}, ) # use_coordinate == False is same as using the default index actual = da.interpolate_na(dim="x", use_coordinate=False) expected = da.interpolate_na(dim="x") assert_equal(actual, expected) # possible to specify non index coordinate actual = da.interpolate_na(dim="x", use_coordinate="xc") expected = da.interpolate_na(dim="x") assert_equal(actual, expected) # possible to specify index coordinate by name actual = da.interpolate_na(dim="x", use_coordinate="x") expected = da.interpolate_na(dim="x") assert_equal(actual, expected) @requires_dask def test_interpolate_dask(): da, _ = make_interpolate_example_data((40, 40), 0.5) da = da.chunk({"x": 5}) actual = da.interpolate_na("time") expected = da.load().interpolate_na("time") assert isinstance(actual.data, dask_array_type) assert_equal(actual.compute(), expected) # with limit da = da.chunk({"x": 5}) actual = da.interpolate_na("time", limit=3) expected = da.load().interpolate_na("time", limit=3) assert isinstance(actual.data, dask_array_type) assert_equal(actual, expected) @requires_dask def test_interpolate_dask_raises_for_invalid_chunk_dim(): da, _ = make_interpolate_example_data((40, 40), 0.5) da = da.chunk({"time": 5}) # this checks for ValueError in dask.array.apply_gufunc with raises_regex(ValueError, "consists of multiple chunks"): da.interpolate_na("time") @requires_dask @requires_scipy @pytest.mark.parametrize("dtype, method", [(int, "linear"), (int, "nearest")]) def test_interpolate_dask_expected_dtype(dtype, method): da = xr.DataArray( data=np.array([0, 1], dtype=dtype), dims=["time"], coords=dict(time=np.array([0, 1])), ).chunk(dict(time=2)) da = da.interp(time=np.array([0, 0.5, 1, 2]), method=method) assert da.dtype == da.compute().dtype @requires_bottleneck def test_ffill(): da = xr.DataArray(np.array([4, 5, np.nan], dtype=np.float64), dims="x") expected = xr.DataArray(np.array([4, 5, 5], dtype=np.float64), dims="x") actual = da.ffill("x") assert_equal(actual, expected) @requires_bottleneck @requires_dask def test_ffill_dask(): da, _ = make_interpolate_example_data((40, 40), 0.5) da = da.chunk({"x": 5}) actual = da.ffill("time") expected = da.load().ffill("time") assert isinstance(actual.data, dask_array_type) assert_equal(actual, expected) # with limit da = da.chunk({"x": 5}) actual = da.ffill("time", limit=3) expected = da.load().ffill("time", limit=3) assert isinstance(actual.data, dask_array_type) assert_equal(actual, expected) @requires_bottleneck @requires_dask def test_bfill_dask(): da, _ = make_interpolate_example_data((40, 40), 0.5) da = da.chunk({"x": 5}) actual = da.bfill("time") expected = da.load().bfill("time") assert isinstance(actual.data, dask_array_type) assert_equal(actual, expected) # with limit da = da.chunk({"x": 5}) actual = da.bfill("time", limit=3) expected = da.load().bfill("time", limit=3) assert isinstance(actual.data, dask_array_type) assert_equal(actual, expected) @requires_bottleneck def test_ffill_bfill_nonans(): vals = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64) expected = xr.DataArray(vals, dims="x") actual = expected.ffill(dim="x") assert_equal(actual, expected) actual = expected.bfill(dim="x") assert_equal(actual, expected) @requires_bottleneck def test_ffill_bfill_allnans(): vals = np.full(6, np.nan, dtype=np.float64) expected = xr.DataArray(vals, dims="x") actual = expected.ffill(dim="x") assert_equal(actual, expected) actual = expected.bfill(dim="x") assert_equal(actual, expected) @requires_bottleneck def test_ffill_functions(da): result = da.ffill("time") assert result.isnull().sum() == 0 @requires_bottleneck def test_ffill_limit(): da = xr.DataArray( [0, np.nan, np.nan, np.nan, np.nan, 3, 4, 5, np.nan, 6, 7], dims="time" ) result = da.ffill("time") expected = xr.DataArray([0, 0, 0, 0, 0, 3, 4, 5, 5, 6, 7], dims="time") assert_array_equal(result, expected) result = da.ffill("time", limit=1) expected = xr.DataArray( [0, 0, np.nan, np.nan, np.nan, 3, 4, 5, 5, 6, 7], dims="time" ) assert_array_equal(result, expected) def test_interpolate_dataset(ds): actual = ds.interpolate_na(dim="time") # no missing values in var1 assert actual["var1"].count("time") == actual.dims["time"] # var2 should be the same as it was assert_array_equal(actual["var2"], ds["var2"]) @requires_bottleneck def test_ffill_dataset(ds): ds.ffill(dim="time") @requires_bottleneck def test_bfill_dataset(ds): ds.ffill(dim="time") @requires_bottleneck @pytest.mark.parametrize( "y, lengths", [ [np.arange(9), [[3, 3, 3, 0, 3, 3, 0, 2, 2]]], [np.arange(9) * 3, [[9, 9, 9, 0, 9, 9, 0, 6, 6]]], [[0, 2, 5, 6, 7, 8, 10, 12, 14], [[6, 6, 6, 0, 4, 4, 0, 4, 4]]], ], ) def test_interpolate_na_nan_block_lengths(y, lengths): arr = [[np.nan, np.nan, np.nan, 1, np.nan, np.nan, 4, np.nan, np.nan]] da = xr.DataArray(arr * 2, dims=["x", "y"], coords={"x": [0, 1], "y": y}) index = get_clean_interp_index(da, dim="y", use_coordinate=True) actual = _get_nan_block_lengths(da, dim="y", index=index) expected = da.copy(data=lengths * 2) assert_equal(actual, expected) @requires_cftime @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) def test_get_clean_interp_index_cf_calendar(cf_da, calendar): """The index for CFTimeIndex is in units of days. This means that if two series using a 360 and 365 days calendar each have a trend of .01C/year, the linear regression coefficients will be different because they have different number of days. Another option would be to have an index in units of years, but this would likely create other difficulties. """ i = get_clean_interp_index(cf_da(calendar), dim="time") np.testing.assert_array_equal(i, np.arange(10) * 1e9 * 86400) @requires_cftime @pytest.mark.parametrize( ("calendar", "freq"), zip(["gregorian", "proleptic_gregorian"], ["1D", "1M", "1Y"]) ) def test_get_clean_interp_index_dt(cf_da, calendar, freq): """In the gregorian case, the index should be proportional to normal datetimes.""" g = cf_da(calendar, freq=freq) g["stime"] = xr.Variable(data=g.time.to_index().to_datetimeindex(), dims=("time",)) gi = get_clean_interp_index(g, "time") si = get_clean_interp_index(g, "time", use_coordinate="stime") np.testing.assert_array_equal(gi, si) def test_get_clean_interp_index_potential_overflow(): da = xr.DataArray( [0, 1, 2], dims=("time",), coords={"time": xr.cftime_range("0000-01-01", periods=3, calendar="360_day")}, ) get_clean_interp_index(da, "time") @pytest.mark.parametrize("index", ([0, 2, 1], [0, 1, 1])) def test_get_clean_interp_index_strict(index): da = xr.DataArray([0, 1, 2], dims=("x",), coords={"x": index}) with pytest.raises(ValueError): get_clean_interp_index(da, "x") clean = get_clean_interp_index(da, "x", strict=False) np.testing.assert_array_equal(index, clean) assert clean.dtype == np.float64 @pytest.fixture def da_time(): return xr.DataArray( [np.nan, 1, 2, np.nan, np.nan, 5, np.nan, np.nan, np.nan, np.nan, 10], dims=["t"], ) def test_interpolate_na_max_gap_errors(da_time): with raises_regex( NotImplementedError, "max_gap not implemented for unlabeled coordinates" ): da_time.interpolate_na("t", max_gap=1) with raises_regex(ValueError, "max_gap must be a scalar."): da_time.interpolate_na("t", max_gap=(1,)) da_time["t"] =
pd.date_range("2001-01-01", freq="H", periods=11)
pandas.date_range
# This script uses OSMnx to generate the road network data for US municipalities # Importing required modules import pandas as pd import osmnx as ox import networkx as nx import matplotlib.cm as cm import matplotlib.colors as colors # Defining username + directories username = '' direc = 'C:/Users/' + username + '/Documents/Data/road_networks/' figs_direc = direc + 'figures2/' # Defining the list of locations to include in this study locations = ['Atlanta, Georgia', 'Austin, Texas', 'Baltimore, Maryland', 'Birmingham, Alabama', 'Boston, Massachusetts', 'Buffalo, New York', 'Charlotte, North Carolina', 'Chicago, Illinois', 'Cincinnati, Ohio', # 'Cleveland, Ohio', 'Columbus, Ohio', 'Dallas, Texas', 'Denver, Colorado', 'Columbus, Ohio', 'Dallas, Texas', 'Denver, Colorado', 'Detroit, Michigan', 'Grand Rapids, Michigan', 'Hartford, Connecticut', 'Houston, Texas', 'Indianapolis, Indiana', 'Jacksonville, Florida', 'Kansas City, Missouri', 'Las Vegas, Nevada', 'Los Angeles, California', 'Louisville, Kentucky', 'Memphis, Tennessee', 'Miami, Florida', 'Milwaukee, Wisconsin', 'Minneapolis, Minnesota', 'Nashville, Tennessee', 'New Orleans, Louisana', 'New York, New York', 'Oklahoma City, Oklahoma', 'Orlando, Florida', 'Philadelphia, Pennsylvania', 'Phoenix, Arizona', 'Pittsburgh, Pennsylvania', 'Portland, Oregon', 'Providence, Rhode Island', 'Raleigh, North Carolina', 'Richmond, Virginia', 'Riverside, California', 'Rochester, New York', 'Sacramento, California', 'Salt Lake City, Utah', 'San Antonio, Texas', 'San Diego, California', 'San Francisco, California', 'San Jose, California', 'Seattle, Washington', 'St. Louis, Missouri', 'Tampa, Florida', 'Tucson, Arizona', 'Virginia Beach, Virginia', 'Washington, DC'] # Initializing a dataframe df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import logging import os import re import shutil from datetime import datetime from itertools import combinations from random import randint import numpy as np import pandas as pd import psutil import pytest from dask import dataframe as dd from distributed.utils_test import cluster from tqdm import tqdm import featuretools as ft from featuretools import EntitySet, Timedelta, calculate_feature_matrix, dfs from featuretools.computational_backends import utils from featuretools.computational_backends.calculate_feature_matrix import ( FEATURE_CALCULATION_PERCENTAGE, _chunk_dataframe_groups, _handle_chunk_size, scatter_warning ) from featuretools.computational_backends.utils import ( bin_cutoff_times, create_client_and_cluster, n_jobs_to_workers ) from featuretools.feature_base import ( AggregationFeature, DirectFeature, IdentityFeature ) from featuretools.primitives import ( Count, Max, Min, Percentile, Sum, TransformPrimitive ) from featuretools.tests.testing_utils import ( backward_path, get_mock_client_cluster, to_pandas ) from featuretools.utils.gen_utils import Library, import_or_none ks = import_or_none('databricks.koalas') def test_scatter_warning(caplog): logger = logging.getLogger('featuretools') match = "EntitySet was only scattered to {} out of {} workers" warning_message = match.format(1, 2) logger.propagate = True scatter_warning(1, 2) logger.propagate = False assert warning_message in caplog.text # TODO: final assert fails w/ Dask def test_calc_feature_matrix(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed dataframe result not ordered') times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) instances = range(17) cutoff_time = pd.DataFrame({'time': times, es['log'].index: instances}) labels = [False] * 3 + [True] * 2 + [False] * 9 + [True] + [False] * 2 property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, verbose=True) assert (feature_matrix[property_feature.get_name()] == labels).values.all() error_text = 'features must be a non-empty list of features' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix('features', es, cutoff_time=cutoff_time) with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([], es, cutoff_time=cutoff_time) with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([1, 2, 3], es, cutoff_time=cutoff_time) error_text = "cutoff_time times must be datetime type: try casting via "\ "pd\\.to_datetime\\(\\)" with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, instance_ids=range(17), cutoff_time=17) error_text = 'cutoff_time must be a single value or DataFrame' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, instance_ids=range(17), cutoff_time=times) cutoff_times_dup = pd.DataFrame({'time': [datetime(2018, 3, 1), datetime(2018, 3, 1)], es['log'].index: [1, 1]}) error_text = 'Duplicated rows in cutoff time dataframe.' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([property_feature], entityset=es, cutoff_time=cutoff_times_dup) cutoff_reordered = cutoff_time.iloc[[-1, 10, 1]] # 3 ids not ordered by cutoff time feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_reordered, verbose=True) assert all(feature_matrix.index == cutoff_reordered["id"].values) # fails with Dask and Koalas entitysets, cutoff time not reordered; cannot verify out of order # - can't tell if wrong/different all are false so can't check positional def test_cfm_warns_dask_cutoff_time(es): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) instances = range(17) cutoff_time = pd.DataFrame({'time': times, es['log'].index: instances}) cutoff_time = dd.from_pandas(cutoff_time, npartitions=4) property_feature = ft.Feature(es['log']['value']) > 10 match = "cutoff_time should be a Pandas DataFrame: " \ "computing cutoff_time, this may take a while" with pytest.warns(UserWarning, match=match): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) def test_cfm_compose(es, lt): property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=lt, verbose=True) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() def test_cfm_compose_approximate(es, lt): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('dask does not support approximate') property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=lt, approximate='1s', verbose=True) assert(type(feature_matrix) == pd.core.frame.DataFrame) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() def test_cfm_dask_compose(dask_es, lt): property_feature = ft.Feature(dask_es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], dask_es, cutoff_time=lt, verbose=True) feature_matrix = feature_matrix.compute() assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() # tests approximate, skip for dask/koalas def test_cfm_approximate_correct_ordering(): trips = { 'trip_id': [i for i in range(1000)], 'flight_time': [datetime(1998, 4, 2) for i in range(350)] + [datetime(1997, 4, 3) for i in range(650)], 'flight_id': [randint(1, 25) for i in range(1000)], 'trip_duration': [randint(1, 999) for i in range(1000)] } df = pd.DataFrame.from_dict(trips) es = EntitySet('flights') es.entity_from_dataframe("trips", dataframe=df, index="trip_id", time_index='flight_time') es.normalize_entity(base_entity_id="trips", new_entity_id="flights", index="flight_id", make_time_index=True) features = dfs(entityset=es, target_entity='trips', features_only=True) flight_features = [feature for feature in features if isinstance(feature, DirectFeature) and isinstance(feature.base_features[0], AggregationFeature)] property_feature = IdentityFeature(es['trips']['trip_id']) cutoff_time = pd.DataFrame.from_dict({'instance_id': df['trip_id'], 'time': df['flight_time']}) time_feature = IdentityFeature(es['trips']['flight_time']) feature_matrix = calculate_feature_matrix(flight_features + [property_feature, time_feature], es, cutoff_time_in_index=True, cutoff_time=cutoff_time) feature_matrix.index.names = ['instance', 'time'] assert(np.all(feature_matrix.reset_index('time').reset_index()[['instance', 'time']].values == feature_matrix[['trip_id', 'flight_time']].values)) feature_matrix_2 = calculate_feature_matrix(flight_features + [property_feature, time_feature], es, cutoff_time=cutoff_time, cutoff_time_in_index=True, approximate=Timedelta(2, 'd')) feature_matrix_2.index.names = ['instance', 'time'] assert(np.all(feature_matrix_2.reset_index('time').reset_index()[['instance', 'time']].values == feature_matrix_2[['trip_id', 'flight_time']].values)) for column in feature_matrix: for x, y in zip(feature_matrix[column], feature_matrix_2[column]): assert ((pd.isnull(x) and pd.isnull(y)) or (x == y)) # uses approximate, skip for dask/koalas entitysets def test_cfm_no_cutoff_time_index(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat4 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat4, pd_es['sessions']) cutoff_time = pd.DataFrame({ 'time': [datetime(2013, 4, 9, 10, 31, 19), datetime(2013, 4, 9, 11, 0, 0)], 'instance_id': [0, 2] }) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, cutoff_time_in_index=False, approximate=Timedelta(12, 's'), cutoff_time=cutoff_time) assert feature_matrix.index.name == 'id' assert feature_matrix.index.values.tolist() == [0, 2] assert feature_matrix[dfeat.get_name()].tolist() == [10, 10] assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] cutoff_time = pd.DataFrame({ 'time': [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)], 'instance_id': [0, 2] }) feature_matrix_2 = calculate_feature_matrix([dfeat, agg_feat], pd_es, cutoff_time_in_index=False, approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix_2.index.name == 'id' assert feature_matrix_2.index.tolist() == [0, 2] assert feature_matrix_2[dfeat.get_name()].tolist() == [7, 10] assert feature_matrix_2[agg_feat.get_name()].tolist() == [5, 1] # TODO: fails with dask entitysets # TODO: fails with koalas entitysets def test_cfm_duplicated_index_in_cutoff_time(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed results not ordered, missing duplicates') times = [datetime(2011, 4, 1), datetime(2011, 5, 1), datetime(2011, 4, 1), datetime(2011, 5, 1)] instances = [1, 1, 2, 2] property_feature = ft.Feature(es['log']['value']) > 10 cutoff_time = pd.DataFrame({'id': instances, 'time': times}, index=[1, 1, 1, 1]) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, chunk_size=1) assert (feature_matrix.shape[0] == cutoff_time.shape[0]) # TODO: fails with Dask, Koalas def test_saveprogress(es, tmpdir): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('saveprogress fails with distributed entitysets') times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) cutoff_time = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = ft.Feature(es['log']['value']) > 10 save_progress = str(tmpdir) fm_save = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, save_progress=save_progress) _, _, files = next(os.walk(save_progress)) files = [os.path.join(save_progress, file) for file in files] # there are 17 datetime files created above assert len(files) == 17 list_df = [] for file_ in files: df = pd.read_csv(file_, index_col="id", header=0) list_df.append(df) merged_df = pd.concat(list_df) merged_df.set_index(pd.DatetimeIndex(times), inplace=True, append=True) fm_no_save = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) assert np.all((merged_df.sort_index().values) == (fm_save.sort_index().values)) assert np.all((fm_no_save.sort_index().values) == (fm_save.sort_index().values)) assert np.all((fm_no_save.sort_index().values) == (merged_df.sort_index().values)) shutil.rmtree(save_progress) def test_cutoff_time_correctly(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 1, 2]}) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) labels = [10, 5, 0] assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_cutoff_time_binning(): cutoff_time = pd.DataFrame({ 'time': [ datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10, 1) ], 'instance_id': [1, 2, 3] }) binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(4, 'h')) labels = [datetime(2011, 4, 9, 12), datetime(2011, 4, 10, 8), datetime(2011, 4, 10, 12)] for i in binned_cutoff_times.index: assert binned_cutoff_times['time'][i] == labels[i] binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(25, 'h')) labels = [datetime(2011, 4, 8, 22), datetime(2011, 4, 9, 23), datetime(2011, 4, 9, 23)] for i in binned_cutoff_times.index: assert binned_cutoff_times['time'][i] == labels[i] error_text = "Unit is relative" with pytest.raises(ValueError, match=error_text): binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(1, 'mo')) def test_training_window_fails_dask(dask_es): property_feature = ft.Feature(dask_es['log']['id'], parent_entity=dask_es['customers'], primitive=Count) error_text = "Using training_window is not supported with Dask Entities" with pytest.raises(ValueError, match=error_text): calculate_feature_matrix([property_feature], dask_es, training_window='2 hours') def test_cutoff_time_columns_order(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] id_col_names = ['instance_id', es['customers'].index] time_col_names = ['time', es['customers'].time_index] for id_col in id_col_names: for time_col in time_col_names: cutoff_time = pd.DataFrame({'dummy_col_1': [1, 2, 3], id_col: [0, 1, 2], 'dummy_col_2': [True, False, False], time_col: times}) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) labels = [10, 5, 0] feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_cutoff_time_df_redundant_column_names(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] cutoff_time = pd.DataFrame({es['customers'].index: [0, 1, 2], 'instance_id': [0, 1, 2], 'dummy_col': [True, False, False], 'time': times}) err_msg = 'Cutoff time DataFrame cannot contain both a column named "instance_id" and a column' \ ' with the same name as the target entity index' with pytest.raises(AttributeError, match=err_msg): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) cutoff_time = pd.DataFrame({es['customers'].time_index: [0, 1, 2], 'instance_id': [0, 1, 2], 'dummy_col': [True, False, False], 'time': times}) err_msg = 'Cutoff time DataFrame cannot contain both a column named "time" and a column' \ ' with the same name as the target entity time index' with pytest.raises(AttributeError, match=err_msg): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) def test_training_window(pd_es): property_feature = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) top_level_agg = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) # make sure features that have a direct to a higher level agg # so we have multiple "filter eids" in get_pandas_data_slice, # and we go through the loop to pull data with a training_window param more than once dagg = DirectFeature(top_level_agg, pd_es['customers']) # for now, warns if last_time_index not present times = [datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 1, 2]}) warn_text = "Using training_window but last_time_index is not set on entity customers" with pytest.warns(UserWarning, match=warn_text): feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours') pd_es.add_last_time_indexes() error_text = 'Training window cannot be in observations' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([property_feature], pd_es, cutoff_time=cutoff_time, training_window=Timedelta(2, 'observations')) # Case1. include_cutoff_time = True feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=True) prop_values = [4, 5, 1] dagg_values = [3, 2, 1] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case2. include_cutoff_time = False feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=False) prop_values = [5, 5, 2] dagg_values = [3, 2, 1] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case3. include_cutoff_time = False with single cutoff time value feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=pd.to_datetime("2011-04-09 10:40:00"), training_window='9 minutes', include_cutoff_time=False) prop_values = [0, 4, 0] dagg_values = [3, 3, 3] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case4. include_cutoff_time = True with single cutoff time value feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=pd.to_datetime("2011-04-10 10:40:00"), training_window='2 days', include_cutoff_time=True) prop_values = [0, 10, 1] dagg_values = [3, 3, 3] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() def test_training_window_overlap(pd_es): pd_es.add_last_time_indexes() count_log = ft.Feature( base=pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count, ) cutoff_time = pd.DataFrame({ 'id': [0, 0], 'time': ['2011-04-09 10:30:00', '2011-04-09 10:40:00'], }).astype({'time': 'datetime64[ns]'}) # Case1. include_cutoff_time = True actual = calculate_feature_matrix( features=[count_log], entityset=pd_es, cutoff_time=cutoff_time, cutoff_time_in_index=True, training_window='10 minutes', include_cutoff_time=True, )['COUNT(log)'] np.testing.assert_array_equal(actual.values, [1, 9]) # Case2. include_cutoff_time = False actual = calculate_feature_matrix( features=[count_log], entityset=pd_es, cutoff_time=cutoff_time, cutoff_time_in_index=True, training_window='10 minutes', include_cutoff_time=False, )['COUNT(log)'] np.testing.assert_array_equal(actual.values, [0, 9]) def test_include_cutoff_time_without_training_window(es): es.add_last_time_indexes() count_log = ft.Feature( base=es['log']['id'], parent_entity=es['customers'], primitive=Count, ) cutoff_time = pd.DataFrame({ 'id': [0, 0], 'time': ['2011-04-09 10:30:00', '2011-04-09 10:31:00'], }).astype({'time': 'datetime64[ns]'}) # Case1. include_cutoff_time = True actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=cutoff_time, cutoff_time_in_index=True, include_cutoff_time=True, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [1, 6]) # Case2. include_cutoff_time = False actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=cutoff_time, cutoff_time_in_index=True, include_cutoff_time=False, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [0, 5]) # Case3. include_cutoff_time = True with single cutoff time value actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=pd.to_datetime("2011-04-09 10:31:00"), instance_ids=[0], cutoff_time_in_index=True, include_cutoff_time=True, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [6]) # Case4. include_cutoff_time = False with single cutoff time value actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=pd.to_datetime("2011-04-09 10:31:00"), instance_ids=[0], cutoff_time_in_index=True, include_cutoff_time=False, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [5]) def test_approximate_dfeat_of_agg_on_target_include_cutoff_time(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) cutoff_time = pd.DataFrame({'time': [datetime(2011, 4, 9, 10, 31, 19)], 'instance_id': [0]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat2, agg_feat], pd_es, approximate=Timedelta(20, 's'), cutoff_time=cutoff_time, include_cutoff_time=False) # binned cutoff_time will be datetime(2011, 4, 9, 10, 31, 0) and # log event 5 at datetime(2011, 4, 9, 10, 31, 0) will be # excluded due to approximate cutoff time point assert feature_matrix[dfeat.get_name()].tolist() == [5] assert feature_matrix[agg_feat.get_name()].tolist() == [5] feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(20, 's'), cutoff_time=cutoff_time, include_cutoff_time=True) # binned cutoff_time will be datetime(2011, 4, 9, 10, 31, 0) and # log event 5 at datetime(2011, 4, 9, 10, 31, 0) will be # included due to approximate cutoff time point assert feature_matrix[dfeat.get_name()].tolist() == [6] assert feature_matrix[agg_feat.get_name()].tolist() == [5] def test_training_window_recent_time_index(pd_es): # customer with no sessions row = { 'id': [3], 'age': [73], u'région_id': ['United States'], 'cohort': [1], 'cancel_reason': ["Lost interest"], 'loves_ice_cream': [True], 'favorite_quote': ["Don't look back. Something might be gaining on you."], 'signup_date': [datetime(2011, 4, 10)], 'upgrade_date': [datetime(2011, 4, 12)], 'cancel_date': [datetime(2011, 5, 13)], 'date_of_birth': [datetime(1938, 2, 1)], 'engagement_level': [2], } to_add_df = pd.DataFrame(row) to_add_df.index = range(3, 4) # have to convert category to int in order to concat old_df = pd_es['customers'].df old_df.index = old_df.index.astype("int") old_df["id"] = old_df["id"].astype(int) df = pd.concat([old_df, to_add_df], sort=True) # convert back after df.index = df.index.astype("category") df["id"] = df["id"].astype("category") pd_es['customers'].update_data(df=df, recalculate_last_time_indexes=False) pd_es.add_last_time_indexes() property_feature = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) top_level_agg = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dagg = DirectFeature(top_level_agg, pd_es['customers']) instance_ids = [0, 1, 2, 3] times = [datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10, 1), datetime(2011, 4, 10, 1, 59, 59)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': instance_ids}) # Case1. include_cutoff_time = True feature_matrix = calculate_feature_matrix( [property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=True, ) prop_values = [4, 5, 1, 0] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() dagg_values = [3, 2, 1, 3] feature_matrix.sort_index(inplace=True) assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case2. include_cutoff_time = False feature_matrix = calculate_feature_matrix( [property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=False, ) prop_values = [5, 5, 1, 0] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() dagg_values = [3, 2, 1, 3] feature_matrix.sort_index(inplace=True) assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # TODO: add test to fail w/ koalas def test_approximate_fails_dask(dask_es): agg_feat = ft.Feature(dask_es['log']['id'], parent_entity=dask_es['sessions'], primitive=Count) error_text = "Using approximate is not supported with Dask Entities" with pytest.raises(ValueError, match=error_text): calculate_feature_matrix([agg_feat], dask_es, approximate=Timedelta(1, 'week')) def test_approximate_multiple_instances_per_cutoff_time(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(1, 'week'), cutoff_time=cutoff_time) assert feature_matrix.shape[0] == 2 assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approximate_with_multiple_paths(pd_diamond_es): pd_es = pd_diamond_es path = backward_path(pd_es, ['regions', 'customers', 'transactions']) agg_feat = ft.AggregationFeature(pd_es['transactions']['id'], parent_entity=pd_es['regions'], relationship_path=path, primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat], pd_es, approximate=Timedelta(1, 'week'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [6, 2] def test_approximate_dfeat_of_agg_on_target(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, instance_ids=[0, 2], approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [7, 10] assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approximate_dfeat_of_need_all_values(pd_es): p = ft.Feature(pd_es['log']['value'], primitive=Percentile) agg_feat = ft.Feature(p, parent_entity=pd_es['sessions'], primitive=Sum) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) log_df = pd_es['log'].df instances = [0, 2] cutoffs = [pd.Timestamp('2011-04-09 10:31:19'),
pd.Timestamp('2011-04-09 11:00:00')
pandas.Timestamp
""" Functions for implementing 'astype' methods according to pandas conventions, particularly ones that differ from numpy. """ from __future__ import annotations import inspect from typing import ( TYPE_CHECKING, cast, overload, ) import warnings import numpy as np from pandas._libs import lib from pandas._typing import ( ArrayLike, DtypeObj, ) from pandas.errors import IntCastingNaNError from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_object_dtype, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import ( DatetimeTZDtype, ExtensionDtype, PandasDtype, ) from pandas.core.dtypes.missing import isna if TYPE_CHECKING: from pandas.core.arrays import ( DatetimeArray, ExtensionArray, ) _dtype_obj = np.dtype(object) @overload def astype_nansafe( arr: np.ndarray, dtype: np.dtype, copy: bool = ..., skipna: bool = ... ) -> np.ndarray: ... @overload def astype_nansafe( arr: np.ndarray, dtype: ExtensionDtype, copy: bool = ..., skipna: bool = ... ) -> ExtensionArray: ... def astype_nansafe( arr: np.ndarray, dtype: DtypeObj, copy: bool = True, skipna: bool = False ) -> ArrayLike: """ Cast the elements of an array to a given dtype a nan-safe manner. Parameters ---------- arr : ndarray dtype : np.dtype or ExtensionDtype copy : bool, default True If False, a view will be attempted but may fail, if e.g. the item sizes don't align. skipna: bool, default False Whether or not we should skip NaN when casting as a string-type. Raises ------ ValueError The dtype was a datetime64/timedelta64 dtype, but it had no unit. """ if arr.ndim > 1: flat = arr.ravel() result = astype_nansafe(flat, dtype, copy=copy, skipna=skipna) # error: Item "ExtensionArray" of "Union[ExtensionArray, ndarray]" has no # attribute "reshape" return result.reshape(arr.shape) # type: ignore[union-attr] # We get here with 0-dim from sparse arr = np.atleast_1d(arr) # dispatch on extension dtype if needed if isinstance(dtype, ExtensionDtype): return dtype.construct_array_type()._from_sequence(arr, dtype=dtype, copy=copy) elif not isinstance(dtype, np.dtype): # pragma: no cover raise ValueError("dtype must be np.dtype or ExtensionDtype") if arr.dtype.kind in ["m", "M"] and ( issubclass(dtype.type, str) or dtype == _dtype_obj ): from pandas.core.construction import ensure_wrapped_if_datetimelike arr = ensure_wrapped_if_datetimelike(arr) return arr.astype(dtype, copy=copy) if issubclass(dtype.type, str): return lib.ensure_string_array(arr, skipna=skipna, convert_na_value=False) elif is_datetime64_dtype(arr.dtype): if dtype == np.int64: if isna(arr).any(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) # allow frequency conversions if dtype.kind == "M": return arr.astype(dtype) raise TypeError(f"cannot astype a datetimelike from [{arr.dtype}] to [{dtype}]") elif is_timedelta64_dtype(arr.dtype): if dtype == np.int64: if isna(arr).any(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) elif dtype.kind == "m": return astype_td64_unit_conversion(arr, dtype, copy=copy) raise TypeError(f"cannot astype a timedelta from [{arr.dtype}] to [{dtype}]") elif np.issubdtype(arr.dtype, np.floating) and np.issubdtype(dtype, np.integer): return _astype_float_to_int_nansafe(arr, dtype, copy) elif is_object_dtype(arr.dtype): # work around NumPy brokenness, #1987 if np.issubdtype(dtype.type, np.integer): return lib.astype_intsafe(arr, dtype) # if we have a datetime/timedelta array of objects # then coerce to a proper dtype and recall astype_nansafe elif is_datetime64_dtype(dtype): from pandas import to_datetime return astype_nansafe( to_datetime(arr).values, dtype, copy=copy, ) elif is_timedelta64_dtype(dtype): from pandas import to_timedelta return astype_nansafe(to_timedelta(arr)._values, dtype, copy=copy) if dtype.name in ("datetime64", "timedelta64"): msg = ( f"The '{dtype.name}' dtype has no unit. Please pass in " f"'{dtype.name}[ns]' instead." ) raise ValueError(msg) if copy or is_object_dtype(arr.dtype) or is_object_dtype(dtype): # Explicit copy, or required since NumPy can't view from / to object. return arr.astype(dtype, copy=True) return arr.astype(dtype, copy=copy) def _astype_float_to_int_nansafe( values: np.ndarray, dtype: np.dtype, copy: bool ) -> np.ndarray: """ astype with a check preventing converting NaN to an meaningless integer value. """ if not np.isfinite(values).all(): raise IntCastingNaNError( "Cannot convert non-finite values (NA or inf) to integer" ) if dtype.kind == "u": # GH#45151 if not (values >= 0).all(): raise ValueError(f"Cannot losslessly cast from {values.dtype} to {dtype}") return values.astype(dtype, copy=copy) def astype_array(values: ArrayLike, dtype: DtypeObj, copy: bool = False) -> ArrayLike: """ Cast array (ndarray or ExtensionArray) to the new dtype. Parameters ---------- values : ndarray or ExtensionArray dtype : dtype object copy : bool, default False copy if indicated Returns ------- ndarray or ExtensionArray """ if ( values.dtype.kind in ["m", "M"] and dtype.kind in ["i", "u"] and isinstance(dtype, np.dtype) and dtype.itemsize != 8 ): # TODO(2.0) remove special case once deprecation on DTA/TDA is enforced msg = rf"cannot astype a datetimelike from [{values.dtype}] to [{dtype}]" raise TypeError(msg) if is_datetime64tz_dtype(dtype) and is_datetime64_dtype(values.dtype): return astype_dt64_to_dt64tz(values, dtype, copy, via_utc=True) if is_dtype_equal(values.dtype, dtype): if copy: return values.copy() return values if not isinstance(values, np.ndarray): # i.e. ExtensionArray values = values.astype(dtype, copy=copy) else: values = astype_nansafe(values, dtype, copy=copy) # in pandas we don't store numpy str dtypes, so convert to object if isinstance(dtype, np.dtype) and issubclass(values.dtype.type, str): values = np.array(values, dtype=object) return values def astype_array_safe( values: ArrayLike, dtype, copy: bool = False, errors: str = "raise" ) -> ArrayLike: """ Cast array (ndarray or ExtensionArray) to the new dtype. This basically is the implementation for DataFrame/Series.astype and includes all custom logic for pandas (NaN-safety, converting str to object, not allowing ) Parameters ---------- values : ndarray or ExtensionArray dtype : str, dtype convertible copy : bool, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- ndarray or ExtensionArray """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of " f"{list(errors_legal_values)}. Supplied value is '{errors}'" ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( f"Expected an instance of {dtype.__name__}, " "but got the class instead. Try instantiating 'dtype'." ) raise TypeError(msg) dtype = pandas_dtype(dtype) if isinstance(dtype, PandasDtype): # Ensure we don't end up with a PandasArray dtype = dtype.numpy_dtype try: new_values = astype_array(values, dtype, copy=copy) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "ignore": new_values = values else: raise return new_values def astype_td64_unit_conversion( values: np.ndarray, dtype: np.dtype, copy: bool ) -> np.ndarray: """ By pandas convention, converting to non-nano timedelta64 returns an int64-dtyped array with ints representing multiples of the desired timedelta unit. This is essentially division. Parameters ---------- values : np.ndarray[timedelta64[ns]] dtype : np.dtype timedelta64 with unit not-necessarily nano copy : bool Returns ------- np.ndarray """ if is_dtype_equal(values.dtype, dtype): if copy: return values.copy() return values # otherwise we are converting to non-nano result = values.astype(dtype, copy=False) # avoid double-copying result = result.astype(np.float64) mask = isna(values) np.putmask(result, mask, np.nan) return result def astype_dt64_to_dt64tz( values: ArrayLike, dtype: DtypeObj, copy: bool, via_utc: bool = False ) -> DatetimeArray: # GH#33401 we have inconsistent behaviors between # Datetimeindex[naive].astype(tzaware) # Series[dt64].astype(tzaware) # This collects them in one place to prevent further fragmentation. from pandas.core.construction import ensure_wrapped_if_datetimelike values = ensure_wrapped_if_datetimelike(values) values = cast("DatetimeArray", values) aware = isinstance(dtype, DatetimeTZDtype) if via_utc: # Series.astype behavior # caller is responsible for checking this assert values.tz is None and aware dtype = cast(DatetimeTZDtype, dtype) if copy: # this should be the only copy values = values.copy() warnings.warn( "Using .astype to convert from timezone-naive dtype to " "timezone-aware dtype is deprecated and will raise in a " "future version. Use ser.dt.tz_localize instead.", FutureWarning, stacklevel=
find_stack_level()
pandas.util._exceptions.find_stack_level
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 5 11:35:21 2021 @author: mariaolaru """ import numpy as np import pandas as pd from preproc.preprocess_funcs import * from plts.plot_funcs import * from proc.process_funcs import * parent_dir = "/Users/mariaolaru/Box/RC-S_Studies_Regulatory_and_Data/Patient In-Clinic Data/RCS10/study_visits/v07_gamma_entrainment/SCBS/RCS10L/" #modify funcs to get and set [msc, gp] = preprocess_settings(parent_dir) md = preprocess_data(parent_dir, msc, gp) #separate fn b/c can take much longer time to process data #Step 1: manually subset data into timechunks > 45s w/ X amp X freq phs_final = pd.DataFrame() psd_final = pd.DataFrame() buffer = 15*1000 #add 15s buffer time to beginning def proc_tsofint(ts_min, ts_max, buffer, md, msc, gp, phs_final, psd_final, out_name_custom): ts_min = ts_min + buffer ts_max = ts_max - 1 ts_range = [ts_min, ts_max] mscs = subset_msc(msc, ts_range) mscs = mscs.head(1).reset_index() fs = int(mscs['ch1_sr'].iloc[0]) [mds, tt] = subset_md(md, mscs, fs, ts_range) #Make file name to save outputs out_name = name_file(mscs, gp) + '_testing' #Create PSD dfs in specified time intervals step_size = 30 mdsm = melt_mds(mds, fs, out_name, step_size) df_psd = convert_psd(mdsm, fs, out_name) #Create PHS dfs freq_thresh = np.array([60, 90]) df_phs = compute_phs(df_psd, fs, freq_thresh, out_name) #Plot phs out_name = 'RCS10L_phs_' + out_name_custom plot_title = make_plot_title(out_name, step_size, mscs, tt) plot_phs(df_psd, df_phs, out_name, plot_title, gp) #add additional info for final table df_phs['stim_amp'] = mscs.loc[0, 'amplitude_ma'] df_phs['stim_freq'] = mscs.loc[0, 'stimfrequency_hz'] df_psd['stim_amp'] = mscs.loc[0, 'amplitude_ma'] df_psd['stim_freq'] = mscs.loc[0, 'stimfrequency_hz'] phs_final =
pd.concat([phs_final, df_phs])
pandas.concat
import pandas as pd from string import punctuation import nltk from IPython.core.display import display nltk.download('tagsets') from nltk.data import load nltk.download('averaged_perceptron_tagger') from nltk import pos_tag from nltk import word_tokenize from collections import Counter def get_tagsets(): tagdict = load('help/tagsets/upenn_tagset.pickle') return list(tagdict.keys()) tag_list = get_tagsets() print(tag_list) # This method will count occurrence of pos tags in each sentence. def get_pos_occurrence_freq(data, tag_list): # Get list of sentences in text_list text_list = data.text # create empty dataframe feature_df = pd.DataFrame(columns=tag_list) for text_line in text_list: # get pos tags of each word. pos_tags = [j for i, j in pos_tag(word_tokenize(text_line))] # create a dict of pos tags and their frequency in given sentence. row = dict(Counter(pos_tags)) feature_df = feature_df.append(row, ignore_index=True) feature_df.fillna(0, inplace=True) return feature_df data = pd.read_csv('../data/data.csv', header=0) feature_df = get_pos_occurrence_freq(data, tag_list) display(feature_df.head()) def add_punctuation_count(feature_df, data): # The below code line will find the intersection of set # of punctuations in text and punctuation set # imported from string module of python and find the length of # intersection set in each row and add it to column `num_of_unique_punctuations` # of data frame. feature_df['num_of_unique_punctuations'] = data['text'].apply(lambda x: len(set(x).intersection(set(punctuation)))) return feature_df feature_df = add_punctuation_count(feature_df, data) display(feature_df['num_of_unique_punctuations'].head()) def get_capitalized_word_count(feature_df, data): # The below code line will tokenize text in every row and # create a set of only capital words, then find the length of # this set and add it to the column `number_of_capital_words` # of dataframe. feature_df['number_of_capital_words'] = data['text'].apply( lambda x: len([word for word in word_tokenize(str(x)) if word[0].isupper()])) return feature_df feature_df = get_capitalized_word_count(feature_df, data) display(feature_df['number_of_capital_words'].head()) def get_small_word_count(feature_df, data): # The below code line will tokenize text in every row and # create a set of only small words, then find the length of # this set and add it to the column `number_of_small_words` # of dataframe. feature_df['number_of_small_words'] = data['text'].apply( lambda x: len([word for word in word_tokenize(str(x)) if word[0].islower()])) return feature_df feature_df = get_small_word_count(feature_df, data) display(feature_df['number_of_small_words'].head()) def get_number_of_alphabets(feature_df, data): # The below code line will break the text line in a list of # characters in each row and add the count of that list into # the columns `number_of_alphabets` feature_df['number_of_alphabets'] = data['text'].apply(lambda x: len([ch for ch in str(x) if ch.isalpha()])) return feature_df feature_df = get_number_of_alphabets(feature_df, data) display(feature_df['number_of_alphabets'].head()) def get_number_of_digit_count(feature_df, data): # The below code line will break the text line in a list of # digits in each row and add the count of that list into # the columns `number_of_digits` feature_df['number_of_digits'] = data['text'].apply(lambda x: len([ch for ch in str(x) if ch.isdigit()])) return feature_df feature_df = get_number_of_digit_count(feature_df, data) display(feature_df['number_of_digits'].head()) def get_number_of_words(feature_df, data): # The below code line will break the text line in a list of # words in each row and add the count of that list into # the columns `number_of_digits` feature_df['number_of_words'] = data['text'].apply(lambda x : len(word_tokenize(str(x)))) return feature_df feature_df = get_number_of_words(feature_df, data) display(feature_df['number_of_words'].head()) def get_number_of_whitespaces(feature_df, data): # The below code line will generate list of white spaces # in each row and add the length of that list into # the columns `number_of_white_spaces` feature_df['number_of_white_spaces'] = data['text'].apply(lambda x: len([ch for ch in str(x) if ch.isspace()])) return feature_df feature_df = get_number_of_whitespaces(feature_df, data) display(feature_df['number_of_white_spaces'].head()) display(feature_df.head()) # Create a test data frame test_df = pd.DataFrame([{"text": "this is a cat"}, {"text": "why are you so happy"}]) tag_list = ['JJR', 'CC', 'VBN', 'CD', 'NNS'] # 1) TEST get_pos_occurrence_freq() test_feature_df = get_pos_occurrence_freq(test_df, tag_list) result_df = pd.DataFrame([{"JJR": 0, "CC": 0, "VBN": 0, "CD": 0, "NNS": 0, "DT": 2.0, "NN": 1.0, "VBZ": 1.0, "JJ": 0.0, "PRP": 0.0, "RB": 0.0, "VBP": 0.0, "WRB": 0.0}, {"JJR": 0, "CC": 0, "VBN": 0, "CD": 0, "NNS": 0, "DT": 0.0, "NN": 0.0, "VBZ": 0.0, "JJ": 1.0, "PRP": 1.0, "RB": 1.0, "VBP": 1.0, "WRB": 1.0}]) # Assert equality of the results and expected data frames
pd.testing.assert_frame_equal(test_feature_df, result_df, check_names=False, check_like=True)
pandas.testing.assert_frame_equal
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import pandas as pd import matplotlib.pyplot as plt import numpy as np # %% DATA_ROOT = '../../data/raw' # %% [markdown] # ## LOADING DATA # %% print('Loading raw datasets...', flush=True) GIT_COMMITS_PATH = f"{DATA_ROOT}/GIT_COMMITS.csv" GIT_COMMITS_CHANGES = f"{DATA_ROOT}/GIT_COMMITS_CHANGES.csv" SONAR_MEASURES_PATH = f"{DATA_ROOT}/SONAR_MEASURES.csv" SZZ_FAULT_INDUCING_COMMITS = f"{DATA_ROOT}/SZZ_FAULT_INDUCING_COMMITS.csv" JIRA_ISSUES = f"{DATA_ROOT}/JIRA_ISSUES.csv" # %% git_commits = pd.read_csv(GIT_COMMITS_PATH) git_commits_changes = pd.read_csv(GIT_COMMITS_CHANGES) sonar_measures = pd.read_csv(SONAR_MEASURES_PATH) szz_fault_inducing_commits = pd.read_csv(SZZ_FAULT_INDUCING_COMMITS) jira_issues = pd.read_csv(JIRA_ISSUES) # %% git_commits_changes[git_commits_changes['linesAdded'].isna()] # %% len(git_commits_changes.commitHash.unique()) # %% [markdown] # ## FILTERING COLUMNS print('Filtering columns...', flush=True) # %% [markdown] # ------------------------------------------------------------------------------------------------------------------------------- # %% git_dates = git_commits[['commitHash','committerDate']] # %% agg = { 'linesAdded': ['sum'], 'linesRemoved': ['sum'], 'projectID': ['count'], } gcg_by_commit = git_commits_changes.groupby(['projectID', 'commitHash']).agg(agg) # %% len(gcg_by_commit) # %% gcg_by_commit = gcg_by_commit.reset_index() # %% gcg_by_commit.columns = ['projectID', 'commitHash', 'lines_added', 'lines_removed', 'entropylike'] # %% gcg_by_commit = pd.merge(gcg_by_commit, git_dates, on='commitHash', how='inner') # %% gcg_by_commit = gcg_by_commit.sort_values(by=['projectID', 'committerDate']) # %% print('Computing metrics...', flush=True) total_lines = [] project = 'accumulo' la_counter = 0 lr_counter = 0 for i, row in gcg_by_commit.iterrows(): if project!=row['projectID']: project=row['projectID'] la_counter = 0 lr_counter = 0 la_counter+=row['lines_added'] lr_counter+=row['lines_removed'] total_lines.append(la_counter-lr_counter) gcg_by_commit['total_lines'] = total_lines # %% gcg_by_commit = gcg_by_commit[gcg_by_commit['total_lines']>=0] #to avoid 2 lines of wrong data in te commons-cli project # %% gcg_by_commit['added/total_lines'] = gcg_by_commit['lines_added']/gcg_by_commit['total_lines'] # %% gcg_by_commit = gcg_by_commit[gcg_by_commit['added/total_lines']<=1] #to avoid 1 line of wrong data in commons-cli project # %% gcg_by_commit = gcg_by_commit[['commitHash', 'entropylike', 'added/total_lines']] # %% jira_bugs = jira_issues[jira_issues['type'] == 'Bug'] jira_bugs = jira_bugs[['key', 'priority']] # %% print('Merging datasets...', flush=True) szz_fault_inducing_commits = szz_fault_inducing_commits[['faultInducingCommitHash', 'key']] szz_fault_inducing_commits = szz_fault_inducing_commits.rename(columns={'faultInducingCommitHash':'commitHash'}) szz_fault_inducing_commits.head() # %% Y = pd.merge(szz_fault_inducing_commits, jira_bugs, on='key') # %% def priorityToCategory(p: str): """ """ if p == 'No bug': return 0 if p == 'Trivial': return 1 if p == 'Minor': return 2 if p == 'Blocker': return 3 if p == 'Major': return 4 if p == 'Critical': return 5 Y['priority'] = Y['priority'].apply(lambda p: priorityToCategory(p)) # %% Y = Y[['commitHash', 'priority']] # %% multitarget = True #in case we are predicting multiple bugs for each commit # %% if not multitarget: Y = Y.sort_values(by='commitHash') Y = Y.groupby('commitHash').max().reset_index() #otherwise, we predict the one with highest priority # %% git_commits = git_commits[['commitHash', 'inMainBranch', 'merge']] # %% sonar_measures.drop(['projectID', 'SQAnalysisDate', 'functionComplexityDistribution', 'fileComplexityDistribution', 'lastCommitDate', 'nclocLanguageDistribution', 'alertStatus', 'qualityGateDetails', 'qualityProfiles', 'files'], axis=1, inplace=True) # %% X =
pd.merge(git_commits, sonar_measures, how='inner', on='commitHash')
pandas.merge
""" .. _twitter: Twitter Data API ================ """ import logging from functools import wraps from twython import Twython import pandas as pd from pandas.io.json import json_normalize TWITTER_LOG_FMT = ('%(asctime)s | %(levelname)s | %(filename)s:%(lineno)d ' '| %(funcName)s | %(message)s') logging.basicConfig(format=TWITTER_LOG_FMT) # Functions that depend on 'previous_cursor' and 'next_cursor' to # navigate requests with a lot of data, request pagination basically. CURSORED_FUNCTIONS = [ 'get_followers_ids', 'get_followers_list', 'get_friends_ids', 'get_friends_list', 'get_list_members', 'get_list_memberships', 'get_list_subscribers', 'get_list_subscriptions', 'get_retweeters_ids', 'show_owned_lists', ] # Responses that contain a special key (and the name of that key) # containing the required data and need to be extracted through # that key, as opposed to other responses where you can easily # call DataFrame on them directly SPECIAL_KEY_FUNCS = { 'search': 'statuses', 'get_followers_list': 'users', 'get_friends_list': 'users', 'get_list_members': 'users', 'get_list_subscribers': 'users', 'get_list_memberships': 'lists', 'get_list_subscriptions': 'lists', 'show_owned_lists': 'lists', } # Functions that contain an embedded ``user`` key, containing # 40+ attributes of the user tweeting, listed, retweeted, etc. USER_DATA_EMBEDDED = { 'get_favorites': 'tweet_', 'get_home_timeline': 'tweet_', 'get_list_memberships': 'list_', 'get_list_statuses': 'tweet_', 'get_list_subscriptions': '', 'get_mentions_timeline': 'tweet_', 'get_retweets': 'tweet_', 'get_user_timeline': 'tweet_', 'lookup_status': 'tweet_', 'retweeted_of_me': 'tweet_', 'search': 'tweet_', 'show_lists': 'list_', 'show_owned_lists': 'list_', } DEFAULT_COUNTS = { 'get_favorites': 200, 'get_followers_ids': 5000, 'get_followers_list': 200, 'get_friends_ids': 5000, 'get_friends_list': 200, 'get_home_timeline': 200, 'get_list_members': 5000, 'get_list_memberships': 1000, 'get_list_statuses': 100, 'get_list_subscribers': 5000, 'get_list_subscriptions': 1000, 'get_mentions_timeline': 200, 'get_retweeters_ids': 100, 'get_retweets': 100, 'get_user_timeline': 200, 'lookup_status': 100, 'lookup_user': 100, 'retweeted_of_me': 100, 'search': 100, 'search_users': 20, 'show_lists': 100, 'show_owned_lists': 1000 } def _expand_entities(df): if 'tweet_entities' in df: colnames = ['tweet_entities_' + x for x in ['mentions', 'hashtags', 'urls', 'symbols', 'media']] entities_df =
json_normalize(df['tweet_entities'])
pandas.io.json.json_normalize
import pandas as pd from rake_nltk import Rake import numpy as np from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer pd.set_option('display.max_columns', 100) df = pd.read_csv('movie_metadata.csv') print(df.head()) print(df.shape) list(df.columns.values) df = df[['director_name', 'actor_1_name', 'actor_2_name', 'actor_3_name', 'plot_keywords', 'genres', 'movie_title']] if not df['actor_1_name'].empty or not df['actor_2_name'].empty or not df['actor_3_name'].empty: df['actors'] = df['actor_1_name'] + "," + df['actor_2_name'] + "," + df['actor_3_name'] df = df[['director_name', 'plot_keywords', 'genres', 'movie_title', 'actors']] df.dropna() print(df.head()) df1 = df.where((pd.notnull(df)), 'REMOVE') print(df1.head()) df.replace(["NaN"], np.nan, inplace=True) df = df.dropna() print(df.head()) for index, row in df.iterrows(): # process actors names app = row['actors'].lower().replace(' ', '') app = app.replace(',', ' ') row['actors'] = app # process director_name app = row['director_name'].lower().replace(' ', '') row['director_name'] = app # process genres app = row['genres'].lower().replace('|', ' ') row['genres'] = app # process plot_keywords app = row['plot_keywords'].lower().replace('|', ' ') row['plot_keywords'] = app print(df.head()) df.set_index('movie_title', inplace=True) print(df.head()) df['bag_of_words'] = '' columns = df.columns for index, row in df.iterrows(): words = '' for col in columns: words = words + row[col] + ' ' row['bag_of_words'] = words df.drop(columns=[col for col in df.columns if col != 'bag_of_words'], inplace=True) print(df.head()) # instantiating and generating the count matrix count = CountVectorizer() count_matrix = count.fit_transform(df['bag_of_words']) # creating a Series for the movie titles so they are associated to an ordered numerical # list I will use later to match the indexes indices = pd.Series(df.index) print(indices[:5]) # generating the cosine similarity matrix cosine_sim = cosine_similarity(count_matrix, count_matrix) print(cosine_sim) # function that takes in movie title as input and returns the top 10 recommended movies def recommendations(title, cosine_sim=cosine_sim): recommended_movies = [] idx = -1 # gettin the index of the movie that matches the title for i in range(0, indices.size): if indices[i] == title: idx = i break # creating a Series with the similarity scores in descending order score_series =
pd.Series(cosine_sim[idx])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import dash import pandas import dash_html_components as html from app import app import cfg tableColors = ['rgb(255, 255 ,255)', 'rgb(220, 220, 220)'] @app.callback( dash.dependencies.Output('detailMainDiv', component_property = 'children'), [dash.dependencies.Input('geneDrop', 'value')] ) def showDetails(name): """ Create tabular view of additional data Positional arguments: name -- Gene name for initialization. """ if cfg.advancedDesc is not None: try: df = cfg.advancedDesc[cfg.advancedDesc['gene_ids'].str.contains(name)] except TypeError: df = pandas.DataFrame() else: df =
pandas.DataFrame()
pandas.DataFrame
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx) expected = IntervalIndex.from_breaks(idx.values) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self): index = self.index assert len(index) == 2 assert index.size == 2 assert index.shape == (2, ) tm.assert_index_equal(index.left, Index([0, 1])) tm.assert_index_equal(index.right,
Index([1, 2])
pandas.Index
import os import pandas import numpy import tensorflow from tensorflow import Tensor from typing import Tuple from src.variants.variant import Variant from src.structs import DistanceStruct class SSIMVariant(Variant): name = "Structural Similarity Index Measure" def __init__(self, fasta_file: str, sequence_type: str, image_folder: str): super().__init__(fasta_file, sequence_type) self._image_folder = image_folder def _call_alg(self, image: Tensor, other: Tensor) -> numpy.ndarray: return tensorflow.image.ssim( image, other, max_val=255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03)[0].numpy() def _read_image(self, img_name: str) -> Tensor: return tensorflow.expand_dims( tensorflow.image.decode_image( tensorflow.io.read_file( os.path.join( self._image_folder, img_name))), axis=0) def _upscale_images(self, image: Tensor, other: Tensor) -> Tuple[Tensor]: max_x = image.shape[1] if image.shape[1] > other.shape[1] else other.shape[1] max_y = image.shape[2] if image.shape[2] > other.shape[2] else other.shape[2] return ( tensorflow.image.resize(image, (max_x, max_y), tensorflow.image.ResizeMethod.BICUBIC), tensorflow.image.resize(other, (max_x, max_y), tensorflow.image.ResizeMethod.BICUBIC) ) def build_matrix(self) -> DistanceStruct: files = os.listdir(self._image_folder) indexes = {".".join(img.split('.')[:-1]): img.split('.')[-1] for img in files} diff = set(self._names).difference(set(indexes.keys())) if diff: raise IOError(f"Sequences without image created: {diff}") files = [] for i in self._names: if indexes.get(i): files.append(f"{i}.{indexes.get(i)}") indexes = self._names df =
pandas.DataFrame(index=indexes, columns=indexes)
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(
lrange(4)
pandas.compat.lrange