prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python # Copyright 2017 Calico LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= from __future__ import print_function from optparse import OptionParser import json import os import pdb import sys import time import h5py import joblib import numpy as np import pandas as pd from scipy.stats import poisson from sklearn.metrics import roc_auc_score, roc_curve from sklearn.metrics import precision_recall_curve, average_precision_score import tensorflow as tf import matplotlib matplotlib.use('PDF') import matplotlib.pyplot as plt import seaborn as sns from basenji import plots from basenji import trainer from basenji import dataset from basenji import rnann if tf.__version__[0] == '1': tf.compat.v1.enable_eager_execution() """ saluki_test.py Test the accuracy of a trained model. """ ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <params_file> <model_file> <data_dir>' parser = OptionParser(usage) parser.add_option('--head', dest='head_i', default=0, type='int', help='Parameters head to test [Default: %default]') # parser.add_option('--mc', dest='mc_n', # default=0, type='int', # help='Monte carlo test iterations [Default: %default]') parser.add_option('-o', dest='out_dir', default='test_out', help='Output directory for test statistics [Default: %default]') parser.add_option('--save', dest='save', default=False, action='store_true', help='Save targets and predictions numpy arrays [Default: %default]') parser.add_option('--shifts', dest='shifts', default='0', help='Ensemble prediction shifts [Default: %default]') # parser.add_option('-t', dest='targets_file', # default=None, type='str', # help='File specifying target indexes and labels in table format') parser.add_option('--split', dest='split_label', default='test', help='Dataset split label for eg TFR pattern [Default: %default]') # parser.add_option('--tfr', dest='tfr_pattern', # default=None, # help='TFR pattern string appended to data_dir/tfrecords for subsetting [Default: %default]') (options, args) = parser.parse_args() if len(args) != 3: parser.error('Must provide parameters, model, and test data HDF5') else: params_file = args[0] model_file = args[1] data_dir = args[2] if not os.path.isdir(options.out_dir): os.mkdir(options.out_dir) # parse shifts to integers options.shifts = [int(shift) for shift in options.shifts.split(',')] ####################################################### # inputs # read targets # if options.targets_file is None: # options.targets_file = '%s/targets.txt' % data_dir # targets_df = pd.read_csv(options.targets_file, index_col=0, sep='\t') # read model parameters with open(params_file) as params_open: params = json.load(params_open) params_model = params['model'] params_train = params['train'] # construct eval data eval_data = dataset.RnaDataset(data_dir, split_label=options.split_label, batch_size=params_train['batch_size'], mode='eval') # initialize model seqnn_model = rnann.RnaNN(params_model) seqnn_model.restore(model_file, options.head_i) seqnn_model.build_ensemble(options.shifts) ####################################################### # evaluation # evaluate test_loss, test_metric1, test_metric2 = seqnn_model.evaluate(eval_data) # print summary statistics print('\nTest Loss: %7.5f' % test_loss) print('Test PearsonR: %7.5f' % test_metric1.mean()) print('Test R2: %7.5f' % test_metric2.mean()) # write target-level statistics # targets_acc_df = pd.DataFrame({ # 'index': targets_df.index, # 'pearsonr': test_metric1, # 'r2': test_metric2, # 'identifier': targets_df.identifier, # 'description': targets_df.description # }) # write target-level statistics targets_acc_df = pd.DataFrame({ 'index': [0], 'pearsonr': test_metric1, 'r2': test_metric2, 'identifier': ['123'], 'description': ['abc'] }) targets_acc_df.to_csv('%s/acc.txt'%options.out_dir, sep='\t', index=False, float_format='%.5f') ####################################################### # predict? if options.save: # compute predictions test_preds = seqnn_model.predict(eval_data).astype('float16') # read targets test_targets = eval_data.numpy(return_inputs=False) if options.save: # read genes genes_df =
pd.read_csv('%s/genes.tsv' % data_dir, sep='\t', index_col=0)
pandas.read_csv
from bs4 import BeautifulSoup import json import os import pandas as pd import re import requests import subprocess def text_from_pdf(pdf_path, temp_path): if os.path.exists(temp_path): os.remove(temp_path) subprocess.call(["pdftotext", pdf_path, temp_path]) f = open(temp_path, encoding="utf8") text = f.read() f.close() os.remove(temp_path) return text base_url = "http://papers.nips.cc" index_urls = {1987: "https://papers.nips.cc/book/neural-information-processing-systems-1987"} for i in range(1, 30): year = i+1987 index_urls[year] = "http://papers.nips.cc/book/advances-in-neural-information-processing-systems-%d-%d" % (i, year) nips_authors = set() papers = list() paper_authors = list() for year in sorted(index_urls.keys()): index_url = index_urls[year] index_html_path = os.path.join("working", "html", str(year)+".html") if not os.path.exists(index_html_path): r = requests.get(index_url) if not os.path.exists(os.path.dirname(index_html_path)): os.makedirs(os.path.dirname(index_html_path)) with open(index_html_path, "wb") as index_html_file: index_html_file.write(r.content) with open(index_html_path, "rb") as f: html_content = f.read() soup = BeautifulSoup(html_content, "lxml") paper_links = [link for link in soup.find_all('a') if link["href"][:7]=="/paper/"] print("%d Papers Found" % len(paper_links)) temp_path = os.path.join("working", "temp.txt") for link in paper_links: paper_title = link.contents[0] info_link = base_url + link["href"] pdf_link = info_link + ".pdf" pdf_name = link["href"][7:] + ".pdf" pdf_path = os.path.join("working", "pdfs", str(year), pdf_name) paper_id = re.findall(r"^(\d+)-", pdf_name)[0] print(year, " ", paper_id) #paper_title.encode('ascii', 'namereplace')) if not os.path.exists(pdf_path): pdf = requests.get(pdf_link) if not os.path.exists(os.path.dirname(pdf_path)): os.makedirs(os.path.dirname(pdf_path)) pdf_file = open(pdf_path, "wb") pdf_file.write(pdf.content) pdf_file.close() paper_info_html_path = os.path.join("working", "html", str(year), str(paper_id)+".html") if not os.path.exists(paper_info_html_path): r = requests.get(info_link) if not os.path.exists(os.path.dirname(paper_info_html_path)): os.makedirs(os.path.dirname(paper_info_html_path)) with open(paper_info_html_path, "wb") as f: f.write(r.content) with open(paper_info_html_path, "rb") as f: html_content = f.read() paper_soup = BeautifulSoup(html_content, "lxml") try: abstract = paper_soup.find('p', attrs={"class": "abstract"}).contents[0] except: print("Abstract not found %s" % paper_title.encode("ascii", "replace")) abstract = "" authors = [(re.findall(r"-(\d+)$", author.contents[0]["href"])[0], author.contents[0].contents[0]) for author in paper_soup.find_all('li', attrs={"class": "author"})] for author in authors: nips_authors.add(author) paper_authors.append([len(paper_authors)+1, paper_id, author[0]]) event_types = [h.contents[0][23:] for h in paper_soup.find_all('h3') if h.contents[0][:22]=="Conference Event Type:"] if len(event_types) != 1: #print(event_types) #print([h.contents for h in paper_soup.find_all('h3')].__str__().encode("ascii", "replace")) #raise Exception("Bad Event Data") event_type = "" else: event_type = event_types[0] with open(pdf_path, "rb") as f: if f.read(15)==b"<!DOCTYPE html>": print("PDF MISSING") continue paper_text = text_from_pdf(pdf_path, temp_path) papers.append([paper_id, year, paper_title, event_type, pdf_name, abstract, paper_text]) pd.DataFrame(list(nips_authors), columns=["id","name"]).sort_values(by="id").to_csv("output/authors.csv", index=False)
pd.DataFrame(papers, columns=["id", "year", "title", "event_type", "pdf_name", "abstract", "paper_text"])
pandas.DataFrame
#!/usr/bin/env python3 #Author: <NAME> #Contact: <EMAIL> from __future__ import print_function from . import SigProfilerMatrixGenerator as matGen import os import SigProfilerMatrixGenerator as sig import re import sys import pandas as pd import datetime from SigProfilerMatrixGenerator.scripts import convert_input_to_simple_files as convertIn import uuid import shutil import time import numpy as np import platform import itertools import statsmodels import matplotlib as plt from pathlib import Path import sigProfilerPlotting as sigPlt import scipy def perm(n, seq): ''' Generates a list of all available permutations of n-mers. Parameters: n -> length of the desired permutation string seq -> list of all possible string values Returns: permus -> list of all available permutations ''' permus = [] for p in itertools.product(seq, repeat=n): permus.append("".join(p)) return(permus) def SigProfilerMatrixGeneratorFunc (project, genome, vcfFiles, exome=False, bed_file=None, chrom_based=False, plot=False, tsb_stat=False, seqInfo=False, cushion=100, gs=False): ''' Allows for the import of the sigProfilerMatrixGenerator.py function. Returns a dictionary with each context serving as the first level of keys. Parameters: project -> unique name given to the current samples genome -> reference genome vcfFiles -> path where the input vcf files are located. exome -> flag to use only the exome or not bed_file -> BED file that contains a list of ranges to be used in generating the matrices chrom_based -> flag to create the matrices on a per chromosome basis plot -> flag to generate the plots for each context tsb_stat -> performs a transcriptional strand bias test for the 24, 384, and 6144 contexts. The output is saved into the output/TSB directory gs -> flag that performs a gene strand bias test Returns: matrices -> dictionary (nested) of the matrices for each context example: matrices = {'96': {'PD1001a':{'A[A>C]A':23, 'A[A>G]A':10,...}, 'PD1202a':{'A[A>C]A':23, 'A[A>G]A':10,...},...}, '192':{'PD1001a':{'T:A[A>C]A':23, 'T:A[A>G]A':10,...}, 'PD1202a':{'T:A[A>C]A':23, 'T:A[A>G]A':10,...},...},...} ''' # Instantiates all of the required variables and references if gs: print("The Gene Strand Bias is not yet supported! Continuing with the matrix generation.") gs = False functionFlag = True bed = False bed_ranges = None limited_indel = True exome = exome plot = plot # Instantiates the final output matrix matrices = {'96':None, '1536':None, '384':None, '6144':None, 'DINUC':None, '6':None, '24':None, 'INDEL':None} # Provides a chromosome conversion from NCBI notation ncbi_chrom = {'NC_000067.6':'1', 'NC_000068.7':'2', 'NC_000069.6':'3', 'NC_000070.6':'4', 'NC_000071.6':'5', 'NC_000072.6':'6', 'NC_000073.6':'7', 'NC_000074.6':'8', 'NC_000075.6':'9', 'NC_000076.6':'10', 'NC_000077.6':'11', 'NC_000078.6':'12', 'NC_000079.6':'13', 'NC_000080.6':'14', 'NC_000081.6':'15', 'NC_000082.6':'16', 'NC_000083.6':'17', 'NC_000084.6':'18', 'NC_000085.6':'19', 'NC_000086.7':'X', 'NC_000087.7':'Y'} # Provides the reference file conversion from binary to base information tsb_ref = {0:['N','A'], 1:['N','C'], 2:['N','G'], 3:['N','T'], 4:['T','A'], 5:['T','C'], 6:['T','G'], 7:['T','T'], 8:['U','A'], 9:['U','C'], 10:['U','G'], 11:['U','T'], 12:['B','A'], 13:['B','C'], 14:['B','G'], 15:['B','T'], 16:['N','N'], 17:['T','N'], 18:['U','N'], 19:['B','N']} bias_sort = {'T':0,'U':1,'N':3,'B':2, 'Q':4} tsb = ['T','U','N','B'] tsb_I = ['T','U','N','B','Q'] bases = ['A','C','G','T'] mutation_types = ['CC>AA','CC>AG','CC>AT','CC>GA','CC>GG','CC>GT','CC>TA','CC>TG','CC>TT', 'CT>AA','CT>AC','CT>AG','CT>GA','CT>GC','CT>GG','CT>TA','CT>TC','CT>TG', 'TC>AA','TC>AG','TC>AT','TC>CA','TC>CG','TC>CT','TC>GA','TC>GG','TC>GT', 'TT>AA','TT>AC','TT>AG','TT>CA','TT>CC','TT>CG','TT>GA','TT>GC','TT>GG'] mutation_types_non_tsb = ['AC>CA','AC>CG','AC>CT','AC>GA','AC>GG','AC>GT','AC>TA','AC>TG','AC>TT', 'AT>CA','AT>CC','AT>CG','AT>GA','AT>GC','AT>TA', 'CG>AT','CG>GC','CG>GT','CG>TA','CG>TC','CG>TT', 'GC>AA','GC>AG','GC>AT','GC>CA','GC>CG','GC>TA', 'TA>AT','TA>CG','TA>CT','TA>GC','TA>GG','TA>GT', 'TG>AA','TG>AC','TG>AT','TG>CA','TG>CC','TG>CT','TG>GA','TG>GC','TG>GT'] indels_seq_types = [ # Single-sequences 'C', 'T', # Di-sequences 'AC','AT','CA','CC','CG','CT','GC','TA','TC','TT', # Tri-sequences 'ACC', 'ACT', 'ATC', 'ATT', 'CAC', 'CAT', 'CCA', 'CCC', 'CCG', 'CCT', 'CGC', 'CGT', 'CTA', 'CTC', 'CTG', 'CTT', 'GCC', 'GCT', 'GTC', 'GTT', 'TAC', 'TAT', 'TCA', 'TCC', 'TCG', 'TCT', 'TGC', 'TGT', 'TTA', 'TTC', 'TTG', 'TTT', # Tetra-sequences 'AACC', 'AACT', 'AATC', 'AATT', 'ACAC', 'ACAT', 'ACCA', 'ACCC', 'ACCG', 'ACCT', 'ACGC', 'ACGT', 'ACTA', 'ACTC', 'ACTG', 'ACTT', 'AGCC', 'AGCT', 'AGTC', 'AGTT', 'ATAC', 'ATAT', 'ATCA', 'ATCC', 'ATCG', 'ATCT', 'ATGC', 'ATGT', 'ATTA', 'ATTC', 'ATTG', 'ATTT', 'CAAC', 'CAAT', 'CACA', 'CACC', 'CACG', 'CACT', 'CAGC', 'CAGT', 'CATA', 'CATC', 'CATG', 'CATT', 'CCAA', 'CCAC', 'CCAG', 'CCAT', 'CCCA', 'CCCC', 'CCCG', 'CCCT', 'CCGA', 'CCGC', 'CCGG', 'CCGT', 'CCTA', 'CCTC', 'CCTG', 'CCTT', 'CGAC', 'CGAT', 'CGCA', 'CGCC', 'CGCG', 'CGCT', 'CGGC', 'CGTA', 'CGTC', 'CGTG', 'CGTT', 'CTAA', 'CTAC', 'CTAG', 'CTAT', 'CTCA', 'CTCC', 'CTCG', 'CTCT', 'CTGA', 'CTGC', 'CTGG', 'CTGT', 'CTTA', 'CTTC', 'CTTG', 'CTTT', 'GACC', 'GATC', 'GCAC', 'GCCA', 'GCCC', 'GCCG', 'GCCT', 'GCGC', 'GCTA', 'GCTC', 'GCTG', 'GCTT', 'GGCC', 'GGTC', 'GTAC', 'GTCA', 'GTCC', 'GTCG', 'GTCT', 'GTGC', 'GTTA', 'GTTC', 'GTTG', 'GTTT', 'TAAC', 'TACA', 'TACC', 'TACG', 'TACT', 'TAGC', 'TATA', 'TATC', 'TATG', 'TATT', 'TCAA', 'TCAC', 'TCAG', 'TCAT', 'TCCA', 'TCCC', 'TCCG', 'TCCT', 'TCGA', 'TCGC', 'TCGG', 'TCGT', 'TCTA', 'TCTC', 'TCTG', 'TCTT', 'TGAC', 'TGCA', 'TGCC', 'TGCG', 'TGCT', 'TGTA', 'TGTC', 'TGTG', 'TGTT', 'TTAA', 'TTAC', 'TTAG', 'TTAT', 'TTCA', 'TTCC', 'TTCG', 'TTCT', 'TTGA', 'TTGC', 'TTGG', 'TTGT', 'TTTA', 'TTTC', 'TTTG', 'TTTT', # Penta-sequences 'AACCC', 'AACCT', 'AACTC', 'AACTT', 'AATCC', 'AATCT', 'AATTC', 'AATTT', 'ACACC', 'ACACT', 'ACATC', 'ACATT', 'ACCAC', 'ACCAT', 'ACCCA', 'ACCCC', 'ACCCG', 'ACCCT', 'ACCGC', 'ACCGT', 'ACCTA', 'ACCTC', 'ACCTG', 'ACCTT', 'ACGCC', 'ACGCT', 'ACGTC', 'ACGTT', 'ACTAC', 'ACTAT', 'ACTCA', 'ACTCC', 'ACTCG', 'ACTCT', 'ACTGC', 'ACTGT', 'ACTTA', 'ACTTC', 'ACTTG', 'ACTTT', 'AGCCC', 'AGCCT', 'AGCTC', 'AGCTT', 'AGTCC', 'AGTCT', 'AGTTC', 'AGTTT', 'ATACC', 'ATACT', 'ATATC', 'ATATT', 'ATCAC', 'ATCAT', 'ATCCA', 'ATCCC', 'ATCCG', 'ATCCT', 'ATCGC', 'ATCGT', 'ATCTA', 'ATCTC', 'ATCTG', 'ATCTT', 'ATGCC', 'ATGCT', 'ATGTC', 'ATGTT', 'ATTAC', 'ATTAT', 'ATTCA', 'ATTCC', 'ATTCG', 'ATTCT', 'ATTGC', 'ATTGT', 'ATTTA', 'ATTTC', 'ATTTG', 'ATTTT', 'CAACC', 'CAACT', 'CAATC', 'CAATT', 'CACAC', 'CACAT', 'CACCA', 'CACCC', 'CACCG', 'CACCT', 'CACGC', 'CACGT', 'CACTA', 'CACTC', 'CACTG', 'CACTT', 'CAGCC', 'CAGCT', 'CAGTC', 'CAGTT', 'CATAC', 'CATAT', 'CATCA', 'CATCC', 'CATCG', 'CATCT', 'CATGC', 'CATGT', 'CATTA', 'CATTC', 'CATTG', 'CATTT', 'CCAAC', 'CCAAT', 'CCACA', 'CCACC', 'CCACG', 'CCACT', 'CCAGC', 'CCAGT', 'CCATA', 'CCATC', 'CCATG', 'CCATT', 'CCCAA', 'CCCAC', 'CCCAG', 'CCCAT', 'CCCCA', 'CCCCC', 'CCCCG', 'CCCCT', 'CCCGA', 'CCCGC', 'CCCGG', 'CCCGT', 'CCCTA', 'CCCTC', 'CCCTG', 'CCCTT', 'CCGAC', 'CCGAT', 'CCGCA', 'CCGCC', 'CCGCG', 'CCGCT', 'CCGGC', 'CCGGT', 'CCGTA', 'CCGTC', 'CCGTG', 'CCGTT', 'CCTAA', 'CCTAC', 'CCTAG', 'CCTAT', 'CCTCA', 'CCTCC', 'CCTCG', 'CCTCT', 'CCTGA', 'CCTGC', 'CCTGG', 'CCTGT', 'CCTTA', 'CCTTC', 'CCTTG', 'CCTTT', 'CGACC', 'CGACT', 'CGATC', 'CGATT', 'CGCAC', 'CGCAT', 'CGCCA', 'CGCCC', 'CGCCG', 'CGCCT', 'CGCGC', 'CGCGT', 'CGCTA', 'CGCTC', 'CGCTG', 'CGCTT', 'CGGCC', 'CGGCT', 'CGGTC', 'CGGTT', 'CGTAC', 'CGTAT', 'CGTCA', 'CGTCC', 'CGTCG', 'CGTCT', 'CGTGC', 'CGTGT', 'CGTTA', 'CGTTC', 'CGTTG', 'CGTTT', 'CTAAC', 'CTAAT', 'CTACA', 'CTACC', 'CTACG', 'CTACT', 'CTAGC', 'CTAGT', 'CTATA', 'CTATC', 'CTATG', 'CTATT', 'CTCAA', 'CTCAC', 'CTCAG', 'CTCAT', 'CTCCA', 'CTCCC', 'CTCCG', 'CTCCT', 'CTCGA', 'CTCGC', 'CTCGG', 'CTCGT', 'CTCTA', 'CTCTC', 'CTCTG', 'CTCTT', 'CTGAC', 'CTGAT', 'CTGCA', 'CTGCC', 'CTGCG', 'CTGCT', 'CTGGC', 'CTGGT', 'CTGTA', 'CTGTC', 'CTGTG', 'CTGTT', 'CTTAA', 'CTTAC', 'CTTAG', 'CTTAT', 'CTTCA', 'CTTCC', 'CTTCG', 'CTTCT', 'CTTGA', 'CTTGC', 'CTTGG', 'CTTGT', 'CTTTA', 'CTTTC', 'CTTTG', 'CTTTT', 'GACCC', 'GACCT', 'GACTC', 'GACTT', 'GATCC', 'GATCT', 'GATTC', 'GATTT', 'GCACC', 'GCACT', 'GCATC', 'GCATT', 'GCCAC', 'GCCAT', 'GCCCA', 'GCCCC', 'GCCCG', 'GCCCT', 'GCCGC', 'GCCGT', 'GCCTA', 'GCCTC', 'GCCTG', 'GCCTT', 'GCGCC', 'GCGCT', 'GCGTC', 'GCGTT', 'GCTAC', 'GCTAT', 'GCTCA', 'GCTCC', 'GCTCG', 'GCTCT', 'GCTGC', 'GCTGT', 'GCTTA', 'GCTTC', 'GCTTG', 'GCTTT', 'GGCCC', 'GGCCT', 'GGCTC', 'GGCTT', 'GGTCC', 'GGTCT', 'GGTTC', 'GGTTT', 'GTACC', 'GTACT', 'GTATC', 'GTATT', 'GTCAC', 'GTCAT', 'GTCCA', 'GTCCC', 'GTCCG', 'GTCCT', 'GTCGC', 'GTCGT', 'GTCTA', 'GTCTC', 'GTCTG', 'GTCTT', 'GTGCC', 'GTGCT', 'GTGTC', 'GTGTT', 'GTTAC', 'GTTAT', 'GTTCA', 'GTTCC', 'GTTCG', 'GTTCT', 'GTTGC', 'GTTGT', 'GTTTA', 'GTTTC', 'GTTTG', 'GTTTT', 'TAACC', 'TAACT', 'TAATC', 'TAATT', 'TACAC', 'TACAT', 'TACCA', 'TACCC', 'TACCG', 'TACCT', 'TACGC', 'TACGT', 'TACTA', 'TACTC', 'TACTG', 'TACTT', 'TAGCC', 'TAGCT', 'TAGTC', 'TAGTT', 'TATAC', 'TATAT', 'TATCA', 'TATCC', 'TATCG', 'TATCT', 'TATGC', 'TATGT', 'TATTA', 'TATTC', 'TATTG', 'TATTT', 'TCAAC', 'TCAAT', 'TCACA', 'TCACC', 'TCACG', 'TCACT', 'TCAGC', 'TCAGT', 'TCATA', 'TCATC', 'TCATG', 'TCATT', 'TCCAA', 'TCCAC', 'TCCAG', 'TCCAT', 'TCCCA', 'TCCCC', 'TCCCG', 'TCCCT', 'TCCGA', 'TCCGC', 'TCCGG', 'TCCGT', 'TCCTA', 'TCCTC', 'TCCTG', 'TCCTT', 'TCGAC', 'TCGAT', 'TCGCA', 'TCGCC', 'TCGCG', 'TCGCT', 'TCGGC', 'TCGGT', 'TCGTA', 'TCGTC', 'TCGTG', 'TCGTT', 'TCTAA', 'TCTAC', 'TCTAG', 'TCTAT', 'TCTCA', 'TCTCC', 'TCTCG', 'TCTCT', 'TCTGA', 'TCTGC', 'TCTGG', 'TCTGT', 'TCTTA', 'TCTTC', 'TCTTG', 'TCTTT', 'TGACC', 'TGACT', 'TGATC', 'TGATT', 'TGCAC', 'TGCAT', 'TGCCA', 'TGCCC', 'TGCCG', 'TGCCT', 'TGCGC', 'TGCGT', 'TGCTA', 'TGCTC', 'TGCTG', 'TGCTT', 'TGGCC', 'TGGCT', 'TGGTC', 'TGGTT', 'TGTAC', 'TGTAT', 'TGTCA', 'TGTCC', 'TGTCG', 'TGTCT', 'TGTGC', 'TGTGT', 'TGTTA', 'TGTTC', 'TGTTG', 'TGTTT', 'TTAAC', 'TTAAT', 'TTACA', 'TTACC', 'TTACG', 'TTACT', 'TTAGC', 'TTAGT', 'TTATA', 'TTATC', 'TTATG', 'TTATT', 'TTCAA', 'TTCAC', 'TTCAG', 'TTCAT', 'TTCCA', 'TTCCC', 'TTCCG', 'TTCCT', 'TTCGA', 'TTCGC', 'TTCGG', 'TTCGT', 'TTCTA', 'TTCTC', 'TTCTG', 'TTCTT', 'TTGAC', 'TTGAT', 'TTGCA', 'TTGCC', 'TTGCG', 'TTGCT', 'TTGGC', 'TTGGT', 'TTGTA', 'TTGTC', 'TTGTG', 'TTGTT', 'TTTAA', 'TTTAC', 'TTTAG', 'TTTAT', 'TTTCA', 'TTTCC', 'TTTCG', 'TTTCT', 'TTTGA', 'TTTGC', 'TTTGG', 'TTTGT', 'TTTTA', 'TTTTC', 'TTTTG', 'TTTTT'] # Pre-fills the mutation types variable size = 5 mut_types_initial = perm(size, "ACGT") mut_types = [] for tsbs in tsb: for mut in mut_types_initial: current_base = mut[int(size/2)] if current_base == 'C' or current_base == 'T': for base in bases: if base != current_base: mut_types.append(tsbs+":"+mut[0:int(size/2)] + "[" + current_base+">"+ base+"]"+mut[int(size/2)+1:]) # Organizes all of the mutation types for DINUCs mutation_types_tsb_context = [] for base in bases: for mut in mutation_types: for base2 in bases: for base3 in tsb: mutation_types_tsb_context.append(''.join([base3,":",base,"[",mut,"]",base2])) for base in bases: for mut in mutation_types_non_tsb: for base2 in bases: mutation_types_tsb_context.append(''.join(['Q:', base, "[", mut, "]", base2])) indel_types_tsb = [] indel_types_simple = [] indel_complete = [] indel_cat = ['Del', 'Ins'] indel_types = ['1:Del:C:0', '1:Del:C:1', '1:Del:C:2', '1:Del:C:3', '1:Del:C:4', '1:Del:C:5', '1:Del:T:0', '1:Del:T:1', '1:Del:T:2', '1:Del:T:3', '1:Del:T:4', '1:Del:T:5', '1:Ins:C:0', '1:Ins:C:1', '1:Ins:C:2', '1:Ins:C:3', '1:Ins:C:4', '1:Ins:C:5', '1:Ins:T:0', '1:Ins:T:1', '1:Ins:T:2', '1:Ins:T:3', '1:Ins:T:4', '1:Ins:T:5', # >1bp INDELS '2:Del:R:0', '2:Del:R:1', '2:Del:R:2', '2:Del:R:3', '2:Del:R:4', '2:Del:R:5', '3:Del:R:0', '3:Del:R:1', '3:Del:R:2', '3:Del:R:3', '3:Del:R:4', '3:Del:R:5', '4:Del:R:0', '4:Del:R:1', '4:Del:R:2', '4:Del:R:3', '4:Del:R:4', '4:Del:R:5', '5:Del:R:0', '5:Del:R:1', '5:Del:R:2', '5:Del:R:3', '5:Del:R:4', '5:Del:R:5', '2:Ins:R:0', '2:Ins:R:1', '2:Ins:R:2', '2:Ins:R:3', '2:Ins:R:4', '2:Ins:R:5', '3:Ins:R:0', '3:Ins:R:1', '3:Ins:R:2', '3:Ins:R:3', '3:Ins:R:4', '3:Ins:R:5', '4:Ins:R:0', '4:Ins:R:1', '4:Ins:R:2', '4:Ins:R:3', '4:Ins:R:4', '4:Ins:R:5', '5:Ins:R:0', '5:Ins:R:1', '5:Ins:R:2', '5:Ins:R:3', '5:Ins:R:4', '5:Ins:R:5', #MicroHomology INDELS '2:Del:M:1', '3:Del:M:1', '3:Del:M:2', '4:Del:M:1', '4:Del:M:2', '4:Del:M:3', '5:Del:M:1', '5:Del:M:2', '5:Del:M:3', '5:Del:M:4', '5:Del:M:5', '2:Ins:M:1', '3:Ins:M:1', '3:Ins:M:2', '4:Ins:M:1', '4:Ins:M:2', '4:Ins:M:3', '5:Ins:M:1', '5:Ins:M:2', '5:Ins:M:3', '5:Ins:M:4', '5:Ins:M:5', 'complex', 'non_matching'] for indels in indel_types[:-13]: for tsbs in tsb_I: indel_types_tsb.append(tsbs + ":" + indels) for indels in indels_seq_types: repeat = str(len(indels)) for id_cat in indel_cat: for l in range(0, 6, 1): indel_complete.append(":".join([repeat, id_cat, indels, str(l)])) for id_cat in indel_cat: for i in range(0, 6, 1): indel_complete.append(":".join(['5',id_cat, '5',str(i)])) indel_types_simple = indel_types[:24] indel_types_simple.append('long_Del') indel_types_simple.append('long_Ins') indel_types_simple.append('MH') indel_types_simple.append('complex') # Instantiates the initial contexts to generate matrices for contexts = ['6144'] # Organizes all of the reference directories for later reference: ref_dir, tail = os.path.split(os.path.dirname(os.path.abspath(__file__))) chrom_path =ref_dir + '/references/chromosomes/tsb/' + genome + "/" transcript_path = ref_dir + '/references/chromosomes/transcripts/' + genome + "/" # Terminates the code if the genome reference files have not been created/installed if not os.path.exists(chrom_path): print("The specified genome: " + genome + " has not been installed\nRun the following command to install the genome:\n\tpython sigProfilerMatrixGenerator/install.py -g " + genome) sys.exit() # Organizes all of the input and output directories: if vcfFiles[-1] != "/": vcfFiles += "/" vcf_path = vcfFiles + "input/" vcf_path_original = vcf_path if not os.path.exists(vcf_path) or len(os.listdir(vcf_path)) < 1: os.makedirs(vcf_path, exist_ok=True) input_files = os.listdir(vcfFiles) if os.path.exists(vcfFiles + "input/"): input_files.remove("input") if os.path.exists(vcfFiles + "logs/"): input_files.remove("logs") if ".DS_Store" in input_files: input_files.remove(".DS_Store") if "__init__.py" in input_files: input_files.remove("__init__.py") if "__pycache__" in input_files: input_files.remove("__pycache__") if os.path.exists(vcfFiles + "output/"): input_files.remove("output") for files in input_files: shutil.copy(vcfFiles + files, vcf_path + files) output_matrix = vcfFiles + "output/" if not os.path.exists(output_matrix): os.makedirs(output_matrix) # Organizes the error and log files time_stamp = datetime.date.today() output_log_path = vcfFiles + "logs/" if not os.path.exists(output_log_path): os.makedirs(output_log_path) error_file = output_log_path + 'SigProfilerMatrixGenerator_' + project + "_" + genome + str(time_stamp) + ".err" log_file = output_log_path + 'SigProfilerMatrixGenerator_' + project + "_" + genome + str(time_stamp) + ".out" if os.path.exists(error_file): os.remove(error_file) if os.path.exists(log_file): os.remove(log_file) sys.stderr = open(error_file, 'w') log_out = open(log_file, 'w') log_out.write("THIS FILE CONTAINS THE METADATA ABOUT SYSTEM AND RUNTIME\n\n\n") log_out.write("-------System Info-------\n") log_out.write("Operating System Name: "+ platform.uname()[0]+"\n"+"Nodename: "+ platform.uname()[1]+"\n"+"Release: "+ platform.uname()[2]+"\n"+"Version: "+ platform.uname()[3]+"\n") log_out.write("\n-------Python and Package Versions------- \n") log_out.write("Python Version: "+str(platform.sys.version_info.major)+"."+str(platform.sys.version_info.minor)+"."+str(platform.sys.version_info.micro)+"\n") log_out.write("SigProfilerMatrixGenerator Version: "+sig.__version__+"\n") log_out.write("SigProfilerPlotting version: "+sigPlt.__version__+"\n") log_out.write("matplotlib version: "+plt.__version__+"\n") log_out.write("statsmodels version: "+statsmodels.__version__+"\n") log_out.write("scipy version: "+scipy.__version__+"\n") log_out.write("pandas version: "+pd.__version__+"\n") log_out.write("numpy version: "+np.__version__+"\n") log_out.write("\n-------Vital Parameters Used for the execution -------\n") log_out.write("Project: {}\nGenome: {}\nInput File Path: {}\nexome: {}\nbed_file: {}\nchrom_based: {}\nplot: {}\ntsb_stat: {}\nseqInfo: {}\n".format(project, genome, vcfFiles, str(exome), str(bed_file), str(chrom_based), str(plot), str(tsb_stat), str(seqInfo))) log_out.write("\n-------Date and Time Data------- \n") tic = datetime.datetime.now() log_out.write("Date and Clock time when the execution started: "+str(tic)+"\n\n\n") log_out.write("-------Runtime Checkpoints------- \n") log_out.close() # Gathers all of the vcf files: vcf_files_temp = os.listdir(vcf_path) vcf_files = [] first_extenstion = True for file in vcf_files_temp: # Skips hidden files if file[0:3] == '.DS' or file[0:2] == '__': pass else: vcf_files.append(file) # Creates a temporary folder for sorting and generating the matrices file_name = vcf_files[0].split(".") file_extension = file_name[-1] unique_folder = project + "_"+ str(uuid.uuid4()) output_path = output_matrix + "temp/" + unique_folder + "/" if os.path.exists(output_path): shutil.rmtree(output_path) os.makedirs(output_path) skipped_muts = 0 # Converts the input files to standard text in the temporary folder if file_extension == 'genome': snv, indel, skipped, samples = convertIn.convertTxt(project, vcf_path, genome, output_path) else: if file_extension == 'txt': snv, indel, skipped, samples = convertIn.convertTxt(project, vcf_path, genome, output_path, ncbi_chrom, log_file) elif file_extension == 'vcf': snv, indel, skipped, samples = convertIn.convertVCF(project, vcf_path, genome, output_path, ncbi_chrom, log_file) elif file_extension == 'maf': snv, indel, skipped, samples = convertIn.convertMAF(project, vcf_path, genome, output_path, ncbi_chrom, log_file) elif file_extension == 'tsv': snv, indel, skipped, samples = convertIn.convertICGC(project, vcf_path, genome, output_path, ncbi_chrom, log_file) else: print("File format not supported") skipped_muts += skipped # Instantiates variables for final output statistics analyzed_muts = [0, 0, 0] sample_count_high = 0 # Begins matrix generation for all possible contexts for i in range(0, 2, 1): if i == 0 and snv: mutation_pd = {} mutation_pd['6144'] = pd.DataFrame(0, index=mut_types, columns=samples) mutation_dinuc_pd_all = pd.DataFrame(0, index=mutation_types_tsb_context, columns=samples) output_path_snv = output_path + "SNV/" vcf_files = os.listdir(output_path_snv) vcf_path = output_path_snv print("Starting matrix generation for SNVs and DINUCs...", end='', flush=True) start = time.time() # Skips SNVs if none are present elif i == 0 and not snv: continue elif i == 1 and indel: mutation_ID = {} mutation_ID['ID'] = pd.DataFrame(0, index=indel_types, columns=samples) mutation_ID['simple'] = pd.DataFrame(0, index=indel_types_simple, columns=samples) mutation_ID['tsb'] = pd.DataFrame(0, index=indel_types_tsb, columns=samples) mutation_ID['complete'] = pd.DataFrame(0, index=indel_complete, columns=samples) contexts = ['INDEL'] output_path_indel = output_path + "INDEL/" vcf_files = os.listdir(output_path_indel) vcf_path = output_path_indel print("Starting matrix generation for INDELs...", end='', flush=True) start = time.time() # Skips INDELs if none are present and deletes the temp folder elif i ==1 and not indel: shutil.rmtree(output_matrix + "temp/") continue # Removes hidden files generated in macos if ".DS_Store" in vcf_files: vcf_files.remove(".DS_Store") # Generates the bed regions if a bed file was provided if bed_file != None: bed = True bed_file_path = bed_file bed_ranges = matGen.BED_filtering(bed_file_path) else: bed_file_path = None # Sorts files based on chromosome, sample, and start position if not chrom_based: chrom_start = None if i != 1: for file in vcf_files: chrom = file.split("_")[0] with open(vcf_path + file) as f: lines = [line.strip().split() for line in f] lines = sorted(lines, key = lambda x: (x[0], int(x[2]))) context = '6144' mutation_pd, skipped_mut, total, total_DINUC, mutation_dinuc_pd_all = matGen.catalogue_generator_single (lines, chrom, mutation_pd, mutation_dinuc_pd_all, mutation_types_tsb_context, vcf_path, vcf_path_original, vcf_files, bed_file_path, chrom_path, project, output_matrix, context, exome, genome, ncbi_chrom, functionFlag, bed, bed_ranges, chrom_based, plot, tsb_ref, transcript_path, tsb_stat, seqInfo, gs, log_file) if chrom_based and not exome and not bed: matrices = matGen.matrix_generator (context, output_matrix, project, samples, bias_sort, mutation_pd, exome, mut_types, bed, chrom, functionFlag, plot, tsb_stat) mutation_pd = {} mutation_pd['6144'] = pd.DataFrame(0, index=mut_types, columns=samples) dinuc_mat = matGen.matrix_generator_DINUC (output_matrix, samples, bias_sort, mutation_dinuc_pd_all, mutation_types_tsb_context, project, exome, bed, chrom, plot) mutation_dinuc_pd_all = pd.DataFrame(0, index=mutation_types_tsb_context, columns=samples) skipped_muts += skipped_mut analyzed_muts[0] += total analyzed_muts[1] += total_DINUC sample_count_high = len(samples) if exome: with open(vcf_path + "exome_temp.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "exome_temp.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_pd = {} mutation_pd['6144'] = pd.DataFrame(0, index=mut_types, columns=samples) # mutation_pd['6144'], samples2 = matGen.exome_check(mutation_pd['6144'], genome, vcf_path + "exome_temp.txt", output_matrix, project, "SNV", cushion) mutation_pd['6144'], samples2 = matGen.exome_check(chrom_based, samples, bias_sort, exome, mut_types, bed, chrom, functionFlag, plot, tsb_stat, mutation_pd['6144'], genome, vcf_path + "exome_temp.txt", output_matrix, project, "SNV", cushion) if bed: with open(vcf_path + "bed_temp.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "bed_temp.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_pd = {} mutation_pd['6144'] = pd.DataFrame(0, index=mut_types, columns=samples) mutation_pd['6144'], samples2 = matGen.panel_check(chrom_based, samples, bias_sort, exome, mut_types, bed, chrom, functionFlag, plot, tsb_stat, mutation_pd['6144'], genome, vcf_path + "bed_temp.txt", output_matrix, bed_file_path, project, "SNV", cushion) if not chrom_based: if not mutation_pd['6144'].empty: matrices = matGen.matrix_generator (context, output_matrix, project, samples, bias_sort, mutation_pd, exome, mut_types, bed, chrom_start, functionFlag, plot, tsb_stat) if analyzed_muts[1] > 0: if exome: with open(vcf_path + "exome_temp_context_tsb_DINUC.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "exome_temp_context_tsb_DINUC.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_dinuc_pd_all = pd.DataFrame(0, index=mutation_types_tsb_context, columns=samples) mutation_dinuc_pd_all, samples2 = matGen.exome_check(chrom_based, samples, bias_sort, exome, mutation_types_tsb_context, bed, chrom, functionFlag, plot, tsb_stat, mutation_dinuc_pd_all, genome, vcf_path + "exome_temp_context_tsb_DINUC.txt", output_matrix, project, "DBS", cushion) if bed: with open(vcf_path + "bed_temp_context_tsb_DINUC.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "bed_temp_context_tsb_DINUC.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_dinuc_pd_all = pd.DataFrame(0, index=mutation_types_tsb_context, columns=samples) mutation_dinuc_pd_all, samples2 = matGen.panel_check(chrom_based, samples, bias_sort, exome, mutation_types_tsb_context, bed, chrom, functionFlag, plot, tsb_stat, mutation_dinuc_pd_all, genome, vcf_path + "bed_temp_context_tsb_DINUC.txt", output_matrix, bed_file_path, project, "DBS", cushion) if not chrom_based: if not mutation_dinuc_pd_all.empty: dinuc_mat = matGen.matrix_generator_DINUC (output_matrix, samples, bias_sort, mutation_dinuc_pd_all, mutation_types_tsb_context, project, exome, bed, chrom_start, plot) matrices['DINUC'] = dinuc_mat else: for file in vcf_files: chrom = file.split("_")[0] with open(vcf_path + file) as f: lines = [line.strip().split() for line in f] lines = sorted(lines, key = lambda x: (x[0], int(x[2]))) mutation_ID, skipped_mut, total = matGen.catalogue_generator_INDEL_single (mutation_ID, lines, chrom, vcf_path, vcf_path_original, vcf_files, bed_file_path, chrom_path, project, output_matrix, exome, genome, ncbi_chrom, limited_indel, functionFlag, bed, bed_ranges, chrom_based, plot, tsb_ref, transcript_path, seqInfo, gs, log_file) if chrom_based and not exome and not bed: matGen.matrix_generator_INDEL(output_matrix, samples, indel_types, indel_types_tsb, indel_types_simple, mutation_ID['ID'], mutation_ID['tsb'], mutation_ID['simple'], mutation_ID['complete'], project, exome, limited_indel, bed, chrom, plot) mutation_ID['ID'] = pd.DataFrame(0, index=indel_types, columns=samples) mutation_ID['simple'] = pd.DataFrame(0, index=indel_types_simple, columns=samples) mutation_ID['tsb'] = pd.DataFrame(0, index=indel_types_tsb, columns=samples) mutation_ID['complete'] = pd.DataFrame(0, index=indel_complete, columns=samples) skipped_muts += skipped_mut analyzed_muts[2] += total # Performs the final filter on the variants base upon the exome if desired if exome: with open(vcf_path + "exome_temp.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "exome_temp.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_ID = {} mutation_ID['ID'] = pd.DataFrame(0, index=indel_types, columns=samples) mutation_ID['ID'], samples2 = matGen.exome_check(chrom_based, samples, bias_sort, exome, indel_types, bed, chrom, functionFlag, plot, tsb_stat, mutation_ID['ID'], genome, vcf_path + "exome_temp.txt", output_matrix, project, "ID", cushion, '83') with open(vcf_path + "exome_temp_simple.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "exome_temp_simple.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_ID['simple'] = pd.DataFrame(0, index=indel_types_simple, columns=samples) mutation_ID['simple'], samples2 = matGen.exome_check(chrom_based, samples, bias_sort, exome, indel_types_simple, bed, chrom, functionFlag, plot, tsb_stat, mutation_ID['simple'], genome, vcf_path + "exome_temp_simple.txt", output_matrix, project, "ID", cushion, 'simple') with open(vcf_path + "exome_temp_tsb.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "exome_temp_tsb.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_ID['tsb'] = pd.DataFrame(0, index=indel_types_tsb, columns=samples) mutation_ID['tsb'], samples2 = matGen.exome_check(chrom_based, samples, bias_sort, exome, indel_types_tsb, bed, chrom, functionFlag, plot, tsb_stat, mutation_ID['tsb'], genome, vcf_path + "exome_temp_tsb.txt", output_matrix, project, "ID", cushion, 'tsb') mutation_ID['complete'] = pd.DataFrame(0, index=indel_complete, columns=samples) if bed: with open(vcf_path + "bed_temp.txt") as f: lines = [line.strip().split() for line in f] output = open(vcf_path + "bed_temp.txt", 'w') for line in sorted(lines, key = lambda x: (['I','II','III','IV','V','chrI','chrII','chrIII','chrIV','chrV','X','Y','1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23','24', '25','26','27','28','29','30','31','32','33','34','35','36','37','38','39', 'MT', 'M', 'MtDNA'].index(x[1]), int(x[2]))): print('\t'.join(line), file=output) output.close() mutation_ID = {} mutation_ID['ID'] =
pd.DataFrame(0, index=indel_types, columns=samples)
pandas.DataFrame
''' Auther: littleherozzzx Date: 2022-01-13 16:48:51 LastEditTime: 2022-03-08 12:42:39 ''' import base64 import json import logging import os.path import sys import threading import time import pandas as pd import requests import rsa import yaml from getpass4 import getpass from bs4 import BeautifulSoup import config logging.basicConfig(level=logging.INFO) class hdu_jwc: def __init__(self) -> None: self.username = "" self.password = "" self.url = "http://newjw.hdu.edu.cn/jwglxt" self.headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8", "Accept-Encoding": "gzip, deflate", "Accept-Language": "en-US,en;q=0.5", "Connection": "keep-alive", "Content-Length": "477", "Content-Type": "application/x-www-form-urlencoded", "Cookie": "", "Host": "newjw.hdu.edu.cn", "Origin": "http://newjw.hdu.edu.cn", "Referer": "http://newjw.hdu.edu.cn/jwglxt/xtgl/login_slogin.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0) Gecko/20100101 Firefox/97.0" } self.cookies = "" self.modulus = "" self.exponent = "" self.pub_key = None self.csrftoken = "" self.session = requests.Session() self.session.headers["User-Agent"] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0) Gecko/20100101 Firefox/97.0" self.session.trust_env = False self.xuanke = "" self.index = "" self.class_list = [] self.dict = { "01": "E0BE1EB065FBFA29E0536264A8C04A31", "10": "E0BDC4C7604BD44BE0536264A8C0B7EC", "05": "E0BE43551AEB415FE0536164A8C06426", } self.cfg = config.Cfg() def load_cfg(self, cfg_file): try: if self.cfg.load_cfg(cfg_file) == 1: logging.info("配置文件加载成功!") return 1 except FileNotFoundError: logging.error(f"配置文件加载失败!文件{cfg_file}不存在!") logging.info("请重新生成配置文件。") return 0 except ValueError as error: logging.error("配置文件加载失败!") logging.error(error) logging.info("请重新生成配置文件。") return 0 except KeyError as error: logging.error("配置文件加载失败!") logging.error(error) logging.info("请重新生成配置文件。") return 0 def init_cfg(self): page_file = input("请输入网页文件路径(网页文件获取方式请查看readme):\n") while (not os.path.exists(page_file)): page_file = input("文件不存在,请重新输入!") try: if self.cfg.init_cfg(page_file) == 1: print("配置文件生成成功!") return 1 except KeyError as error: logging.error("配置文件生成失败!") logging.error(error) logging.info("请按照readme中要求获取网页文件,或手动在config.json中添加缺失项。") def set_pubKey(self): try: response = self.session.get( url=self.url + "/xtgl/login_getPublicKey.html?time={}".format(round(time.time() * 1000))) data = response.json() self.modulus = base64.b64decode(data["modulus"]) self.exponent = base64.b64decode(data["exponent"]) self.pub_key = rsa.PublicKey(int.from_bytes( self.modulus, 'big'), int.from_bytes(self.exponent, 'big')) logging.info("公钥设置成功!") except json.decoder.JSONDecodeError: raise ConnectionError("connect failed") def encoded(self, s): encoded_pwd = rsa.encrypt(s, self.pub_key) return base64.b64encode(encoded_pwd) def set_csrftoken(self): response = self.session.get( url=self.url + "/xtgl/login_slogin.html?language=zh_CN&_t={}".format(round(time.time() * 1000))) self.headers["Cookie"] = "JSESSIONID={}; route={}".format( self.session.cookies["JSESSIONID"], self.session.cookies["route"]) # self.headers["Cookie"]=self.session.cookies page = BeautifulSoup(response.text, features="html.parser") self.cookies = response.cookies self.csrftoken = page.find("input", attrs={"id": "csrftoken"})["value"] logging.info("csrftoken设置成功!") def login(self): encoded_password = self.encoded(self.password).decode("utf-8") params = { "csrftoken": self.csrftoken, "language": "zh_CN", "yhm": self.username, "mm": [encoded_password, encoded_password]} try: response = self.session.post(url=self.url + "/xtgl/login_slogin.html?time={}".format(round( time.time() * 1000)), headers=self.headers, data=params, cookies=self.session.cookies, allow_redirects=False) self.cookies = response.cookies except requests.exceptions.ConnectionError as error: logging.error(error) raise error try: if response.status_code == 302: self.index = self.session.get(url=response.headers["Location"]) if self.username in self.index.text: logging.info("登录成功") else: raise RuntimeError("unknown error!") else: if "不正确" in response.text: raise ValueError("学号或密码错误!") except ValueError as error: logging.error("当前学号为 {}, 当前密码为 {}".format(self.username, self.password)) logging.error(error) raise error except RuntimeError as error: logging.error("当前学号为 {}, 当前密码为 {}".format(self.username, self.password)) logging.error(error) raise error return def login_course_selection(self): page = BeautifulSoup(self.index.text, features="html.parser") link = page.find('a', text="自主选课") link = link["onclick"].split("\'") gndm = link[1] url = self.url + link[3] params = {"gnmkdm": "index", "su": self.username, "layout": "default"} data = {"gndm": gndm} response = self.session.get(url=url, data=data, params=params) return response def logout(self): params = {"t": str(round(time.time() * 1000)), "login_type": ""} self.session.get(url=self.url + "/logout", params=params) pass def query_margin(self, jxb_id, kklxdm, rwlx="2", index=0): data1 = \ { "xkly": "", "bklx_id": "", "sfkkjyxdxnxq": "", "xqh_id": "", "jg_id": "", "njdm_id_1": "", "zyh_id_1": "", "zyh_id": "", "zyfx_id": "", "njdm_id": "", "bh_id": "", "xbm": "", "xslbdm": "", "ccdm": "", "xsbj": "", "sfkknj": "", "sfkkzy": "", "kzybkxy": "", "sfznkx": "", "zdkxms": "", "sfkxq": "", "sfkcfx": "", "kkbk": "", "kkbkdj": "", "sfkgbcx": "", "sfrxtgkcxd": "", "tykczgxdcs": "", "xkxnm": "", "xkxqm": "", "rlkz": "", "xkzgbj": "", "jspage": "", "jxbzb": "", "mzm": "", "bbhzxjxb":"", "xz":"" } data2 = \ { "xkly": "", "bklx_id": "", "sfkkjyxdxnxq": "", "xqh_id": "", "jg_id": "", "zyh_id": "", "zyfx_id": "", "njdm_id": "", "bh_id": "", "xbm": "", "xslbdm": "", "ccdm": "", "xsbj": "", "sfkknj": "", "sfkkzy": "", "kzybkxy": "", "sfznkx": "", "zdkxms": "", "sfkxq": "", "sfkcfx": "", "kkbk": "", "kkbkdj": "", "xkxnm": "", "xkxqm": "", "xkxskcgskg": "", "rlkz": "", "jxbzcxskg": "", "cxbj": "", "fxbj": "", "mzm": "", "bbhzxjxb":"", "xz":"" } self.cfg.get_data(data1) self.cfg.get_data(data2) data1["filter_list"] = [jxb_id] data1["rwlx"] = str(rwlx) data1["kklxdm"] = kklxdm data1["kspage"] = "1" params = {"gnmkdm": "N253512", "su": self.username} res1 = \ self.session.post(url="http://newjw.hdu.edu.cn/jwglxt/xsxk/zzxkyzb_cxZzxkYzbPartDisplay.html", data=data1, params=params).json()["tmpList"] data2["filter_list"] = [jxb_id] data2["rwlx"] = str(rwlx) data2["kklxdm"] = kklxdm data2["kch_id"] = res1[0]["kch_id"] data2["xkkz_id"] = self.dict[kklxdm] res2 = self.session.post(url="http://newjw.hdu.edu.cn/jwglxt/xsxk/zzxkyzbjk_cxJxbWithKchZzxkYzb.html", data=data2, params=params).json() if index > len(res1) or index > len(res2): raise IndexError("不存在该节课") return [res1[index], res2[index]] def query_by_class_id(self, jxb_id, kklxdm, rwlx="2"): data1 = \ { "xkly": "", "bklx_id": "", "sfkkjyxdxnxq": "", "xqh_id": "", "jg_id": "", "njdm_id_1": "", "zyh_id_1": "", "zyh_id": "", "zyfx_id": "", "njdm_id": "", "bh_id": "", "xbm": "", "xslbdm": "", "ccdm": "", "xsbj": "", "sfkknj": "", "sfkkzy": "", "kzybkxy": "", "sfznkx": "", "zdkxms": "", "sfkxq": "", "sfkcfx": "", "kkbk": "", "kkbkdj": "", "sfkgbcx": "", "sfrxtgkcxd": "", "tykczgxdcs": "", "xkxnm": "", "xkxqm": "", "rlkz": "", "xkzgbj": "", "jspage": "", "jxbzb": "", "mzm": "", "bbhzxjxb":"", "xz":"" } data2 = \ { "xkly": "", "bklx_id": "", "sfkkjyxdxnxq": "", "xqh_id": "", "jg_id": "", "zyh_id": "", "zyfx_id": "", "njdm_id": "", "bh_id": "", "xbm": "", "xslbdm": "", "ccdm": "", "xsbj": "", "sfkknj": "", "sfkkzy": "", "kzybkxy": "", "sfznkx": "", "zdkxms": "", "sfkxq": "", "sfkcfx": "", "kkbk": "", "kkbkdj": "", "xkxnm": "", "xkxqm": "", "xkxskcgskg": "", "rlkz": "", "jxbzcxskg": "", "cxbj": "", "fxbj": "", "mzm": "", "bbhzxjxb":"", "xz":"" } self.cfg.get_data(data1) self.cfg.get_data(data2) data1["filter_list"] = [jxb_id] data1["rwlx"] = str(rwlx) data1["kklxdm"] = kklxdm data1["kspage"] = "1" params = {"gnmkdm": "N253512", "su": self.username} res1 = \ self.session.post(url="http://newjw.hdu.edu.cn/jwglxt/xsxk/zzxkyzb_cxZzxkYzbPartDisplay.html", data=data1, params=params).json()["tmpList"] data2["filter_list"] = [jxb_id] data2["rwlx"] = str(rwlx) data2["kklxdm"] = kklxdm data2["kch_id"] = res1[0]["kch_id"] if len(res1)>0 else "" data2["xkkz_id"] = self.dict[kklxdm] res2 = self.session.post(url="http://newjw.hdu.edu.cn/jwglxt/xsxk/zzxkyzbjk_cxJxbWithKchZzxkYzb.html", data=data2, params=params).json() return [res1, res2] def qiangke(self, index, times=1000, interval=1): (res1, res2) = self.class_list[index] data = { "jxb_ids": res2["do_jxb_id"], "kch_id": res1["kch_id"], "kcmc": res1["kcmc"], # not same completely "rwlx": rwlx, "rlkz": "0", "rlzlkz": "1", "sxbj": "1", "xxkbj": res1["xxkbj"], "qz": "0", "cxbj": res1["cxbj"], "xkkz_id": self.dict[kklxdm], "njdm_id": "2020", "zyh_id": "0523", "kklxdm": kklxdm, "xklc" : "2", "xkxnm": "2022", "xkxqm": "3" } # headers = { # "Accept": "application/json, text/javascript, */*; q=0.01" # "Accept-Encoding": "gzip, deflate" # "Accept-Language": "en,zh-CN;q=0.9,zh;q=0.8" # "Connection": "keep-alive" # "Content-Length": "552" # "Content-Type": "application/x-www-form-urlencoded;charset=UTF-8" # "Cookie": "JSESSIONID=76EAADA342699A32AF7748779A92EC38; route=5063706ecbac8c9154cb45c088a91202" # "Host": "newjw.hdu.edu.cn" # "Origin": "http://newjw.hdu.edu.cn" # "Referer": "http://newjw.hdu.edu.cn/jwglxt/xsxk/zzxkyzb_cxZzxkYzbIndex.html?gnmkdm=N253512&layout=default&su=20051336" # "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36" # "X-Requested-With": XMLHttpRequest" # } params = {"gnmkdm": "N253512", "su": self.username} res = {"flag": 0} for cnt in range(times): res = self.session.post(url="http://newjw.hdu.edu.cn/jwglxt/xsxk/zzxkyzbjk_xkBcZyZzxkYzb.html", data=data, params=params).json() if res["flag"] == "-1": logging.info("cnt={}: ".format(cnt) + "人数已满") else: logging.info("cnt={}: ".format(cnt) + str(res)) time.sleep(interval) if res["flag"] == "1": self.class_list.remove((res1, res2)) return 1 return -1 def add_to_list(self, jxb_id, kklxdm, rwlx): [res1, res2] = self.query_by_class_id(jxb_id, rwlx=rwlx, kklxdm=kklxdm) if len(res1) == 0 or len(res2) == 0: print(f"不存在课程代码为{jxb_id}的课程,请核对输入") return False teacher_name = [res["jsxx"] for res in res2] class_time = [res["sksj"] for res in res2] already_picked = [res["yxzrs"] for res in res1] total = [res["jxbrl"] for res in res2] pick_info = [f"{al}/{tltal}" for al, tltal in zip(already_picked, total)] data =
pd.DataFrame()
pandas.DataFrame
#================================================================ # # File name : utils.py # Author : PyLessons # Created date: 2021-01-20 # Website : https://pylessons.com/ # GitHub : https://github.com/pythonlessons/RL-Bitcoin-trading-bot # Description : additional functions # #================================================================ import pandas as pd from collections import deque import matplotlib.pyplot as plt from mplfinance.original_flavor import candlestick_ohlc import matplotlib.dates as mpl_dates from datetime import datetime import os import cv2 import numpy as np def Write_to_file(Date, net_worth, filename='{}.txt'.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))): for i in net_worth: Date += " {}".format(i) #print(Date) if not os.path.exists('logs'): os.makedirs('logs') file = open("logs/"+filename, 'a+') file.write(Date+"\n") file.close() class TradingGraph: # A crypto trading visualization using matplotlib made to render custom prices which come in following way: # Date, Open, High, Low, Close, Volume, net_worth, trades # call render every step def __init__(self, Render_range, Show_reward=False, Show_indicators=False): self.Volume = deque(maxlen=Render_range) self.net_worth = deque(maxlen=Render_range) self.render_data = deque(maxlen=Render_range) self.Render_range = Render_range self.Show_reward = Show_reward self.Show_indicators = Show_indicators # We are using the style ‘ggplot’ plt.style.use('ggplot') # close all plots if there are open plt.close('all') # figsize attribute allows us to specify the width and height of a figure in unit inches self.fig = plt.figure(figsize=(16,8)) # Create top subplot for price axis self.ax1 = plt.subplot2grid((6,1), (0,0), rowspan=5, colspan=1) # Create bottom subplot for volume which shares its x-axis self.ax2 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=self.ax1) # Create a new axis for net worth which shares its x-axis with price self.ax3 = self.ax1.twinx() # Formatting Date self.date_format = mpl_dates.DateFormatter('%d-%m-%Y') # Add paddings to make graph easier to view #plt.subplots_adjust(left=0.07, bottom=-0.1, right=0.93, top=0.97, wspace=0, hspace=0) # define if show indicators if self.Show_indicators: self.Create_indicators_lists() def Create_indicators_lists(self): # Create a new axis for indicatorswhich shares its x-axis with volume self.ax4 = self.ax2.twinx() self.sma7 = deque(maxlen=self.Render_range) self.sma25 = deque(maxlen=self.Render_range) self.sma99 = deque(maxlen=self.Render_range) self.bb_bbm = deque(maxlen=self.Render_range) self.bb_bbh = deque(maxlen=self.Render_range) self.bb_bbl = deque(maxlen=self.Render_range) self.psar = deque(maxlen=self.Render_range) self.MACD = deque(maxlen=self.Render_range) self.RSI = deque(maxlen=self.Render_range) def Plot_indicators(self, df, Date_Render_range): self.sma7.append(df["sma7"]) self.sma25.append(df["sma25"]) self.sma99.append(df["sma99"]) self.bb_bbm.append(df["bb_bbm"]) self.bb_bbh.append(df["bb_bbh"]) self.bb_bbl.append(df["bb_bbl"]) self.psar.append(df["psar"]) self.MACD.append(df["MACD"]) self.RSI.append(df["RSI"]) # Add Simple Moving Average self.ax1.plot(Date_Render_range, self.sma7,'-') self.ax1.plot(Date_Render_range, self.sma25,'-') self.ax1.plot(Date_Render_range, self.sma99,'-') # Add Bollinger Bands self.ax1.plot(Date_Render_range, self.bb_bbm,'-') self.ax1.plot(Date_Render_range, self.bb_bbh,'-') self.ax1.plot(Date_Render_range, self.bb_bbl,'-') # Add Parabolic Stop and Reverse self.ax1.plot(Date_Render_range, self.psar,'.') self.ax4.clear() # # Add Moving Average Convergence Divergence self.ax4.plot(Date_Render_range, self.MACD,'r-') # # Add Relative Strength Index self.ax4.plot(Date_Render_range, self.RSI,'g-') # Render the environment to the screen #def render(self, Date, Open, High, Low, Close, Volume, net_worth, trades): def render(self, df, net_worth, trades): Date = df["Date"] Open = df["Open"] High = df["High"] Low = df["Low"] Close = df["Close"] Volume = df["Volume"] # append volume and net_worth to deque list self.Volume.append(Volume) self.net_worth.append(net_worth) # before appending to deque list, need to convert Date to special format Date = mpl_dates.date2num([pd.to_datetime(Date)])[0] self.render_data.append([Date, Open, High, Low, Close]) # Clear the frame rendered last step self.ax1.clear() candlestick_ohlc(self.ax1, self.render_data, width=0.8/24, colorup='green', colordown='red', alpha=0.8) # Put all dates to one list and fill ax2 sublot with volume Date_Render_range = [i[0] for i in self.render_data] self.ax2.clear() self.ax2.fill_between(Date_Render_range, self.Volume, 0) if self.Show_indicators: self.Plot_indicators(df, Date_Render_range) # draw our net_worth graph on ax3 (shared with ax1) subplot self.ax3.clear() self.ax3.plot(Date_Render_range, self.net_worth, color="blue") # beautify the x-labels (Our Date format) self.ax1.xaxis.set_major_formatter(self.date_format) self.fig.autofmt_xdate() minimum = np.min(np.array(self.render_data)[:,1:]) maximum = np.max(np.array(self.render_data)[:,1:]) RANGE = maximum - minimum # sort sell and buy orders, put arrows in appropiate order positions for trade in trades: trade_date = mpl_dates.date2num([pd.to_datetime(trade['Date'])])[0] if trade_date in Date_Render_range: if trade['type'] == 'buy': high_low = trade['Low'] - RANGE*0.02 ycoords = trade['Low'] - RANGE*0.08 self.ax1.scatter(trade_date, high_low, c='green', label='green', s = 120, edgecolors='none', marker="^") else: high_low = trade['High'] + RANGE*0.02 ycoords = trade['High'] + RANGE*0.06 self.ax1.scatter(trade_date, high_low, c='red', label='red', s = 120, edgecolors='none', marker="v") if self.Show_reward: try: self.ax1.annotate('{0:.2f}'.format(trade['Reward']), (trade_date-0.02, high_low), xytext=(trade_date-0.02, ycoords), bbox=dict(boxstyle='round', fc='w', ec='k', lw=1), fontsize="small") except: pass # we need to set layers every step, because we are clearing subplots every step self.ax2.set_xlabel('Date') self.ax1.set_ylabel('Price') self.ax3.set_ylabel('Balance') # I use tight_layout to replace plt.subplots_adjust self.fig.tight_layout() """Display image with matplotlib - interrupting other tasks""" # Show the graph without blocking the rest of the program #plt.show(block=False) # Necessary to view frames before they are unrendered #plt.pause(0.001) """Display image with OpenCV - no interruption""" # redraw the canvas self.fig.canvas.draw() # convert canvas to image img = np.fromstring(self.fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') img = img.reshape(self.fig.canvas.get_width_height()[::-1] + (3,)) # img is rgb, convert to opencv's default bgr image = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # display image with OpenCV or any operation you like cv2.imshow("Bitcoin trading bot",image) if cv2.waitKey(25) & 0xFF == ord("q"): cv2.destroyAllWindows() return else: return img def Plot_OHCL(df): df_original = df.copy() # necessary convert to datetime df["Date"] =
pd.to_datetime(df.Date)
pandas.to_datetime
import random import pandas as pd import pytest from suda import suda, find_msu @pytest.fixture def data(): persons = [ {'gender': 'female', 'region': 'urban', 'education': 'secondary incomplete', 'labourstatus': 'employed'}, {'gender': 'female', 'region': 'urban', 'education': 'secondary incomplete', 'labourstatus': 'employed'}, {'gender': 'female', 'region': 'urban', 'education': 'primary incomplete', 'labourstatus': 'non-LF'}, {'gender': 'male', 'region': 'urban', 'education': 'secondary complete', 'labourstatus': 'employed'}, {'gender': 'female', 'region': 'rural', 'education': 'secondary complete', 'labourstatus': 'unemployed'}, {'gender': 'male', 'region': 'urban', 'education': 'secondary complete', 'labourstatus': 'employed'}, {'gender': 'female', 'region': 'urban', 'education': 'primary complete', 'labourstatus': 'non-LF'}, {'gender': 'male', 'region': 'urban', 'education': 'post-secondary', 'labourstatus': 'unemployed'}, {'gender': 'female', 'region': 'urban', 'education': 'secondary incomplete', 'labourstatus': 'non-LF'}, {'gender': 'female', 'region': 'urban', 'education': 'secondary incomplete', 'labourstatus': 'non-LF'}, {'gender': 'female', 'region': 'urban', 'education': 'secondary complete', 'labourstatus': 'non-LF'} ] return
pd.DataFrame(persons)
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd import scipy.signal as S import scipy.io.wavfile as wavfile import os from functools import reduce import matrices as M import waveforms as W import tuning as T def get_signal(path): return wavfile.read(path)[1] def signal_to_csv(path): sound = get_signal(path) df =
pd.DataFrame(sound)
pandas.DataFrame
from __future__ import print_function import os import pandas as pd import xgboost as xgb import time import shutil from sklearn import preprocessing from sklearn.cross_validation import train_test_split import numpy as np from sklearn.utils import shuffle from sklearn import metrics import sys def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.localtime()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return ############################################################################################### # support class to redirect stderr class flushfile(): def __init__(self, f): self.f = f def __getattr__(self,name): return object.__getattribute__(self.f, name) def write(self, x): self.f.write(x) self.f.flush() def flush(self): self.f.flush() # Stderr oldstderr = sys.stderr # global def capture_stderr(log): oldstderr = sys.stderr sys.stderr = open(log, 'w') sys.stderr = flushfile(sys.stderr) return log def restore_stderr(): sys.stderr = oldstderr def parse_xgblog(xgblog): import re pattern = re.compile(r'^\[(?P<round>\d+)\]\s*\D+:(?P<validation>\d+.\d+)\s*\D+:(?P<train>\d+.\d+)') xgb_list = [] with open(xgblog, "r") as ins: next(ins) for line in ins: match = pattern.match(line) if match: idx = int(match.group("round")) validation = float(match.group("validation")) training = float(match.group("train")) xgb_list.append([idx, validation, training]) else: pass # raise Exception("Failed to parse!") return xgb_list def preprocess_data(train,test): id_test=test['patient_id'] train=train.drop(['patient_id'],axis=1) test=test.drop(['patient_id'],axis=1) y=train['is_screener'] train=train.drop(['is_screener'],axis=1) for f in train.columns: if train[f].dtype == 'object': print(f) lbl = preprocessing.LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) return id_test,test,train,y os.chdir(os.getcwd()) train_file = '../input/patients_train.csv.gz' test_file = '../input/patients_test.csv.gz' train = pd.read_csv(train_file) test = pd.read_csv(test_file) train.drop( 'patient_gender', axis = 1, inplace = True ) test.drop( 'patient_gender', axis = 1, inplace = True ) ########## last asctivity files activity_file=('../input/activity_selected_last.csv.gz') diagnosis_file=('../input/diagnosis_selected_last.csv.gz') procedure_file=('../input/procedure_selected_last.csv.gz') surgical_file=('../input/surgical_selected_last.csv.gz') prescription_file=('../input/prescription_selected_last.csv.gz') physicians_file=('../input/physicians.csv.gz') drugs_file=('../input/drugs.csv.gz') ############ first activity files activity_file_first=('../input/activity_selected_last.csv.gz') diagnosis_file_first=('../input/diagnosis_selected_last.csv.gz') procedure_file_first=('../input/procedure_selected_last.csv.gz') surgical_file_first=('../input/surgical_selected_last.csv.gz') prescription_file=('../input/prescription_selected_last.csv.gz') activity=pd.read_csv(activity_file ) #Fa=pd.read_csv(activity_file_first,usecols=['activity_year']) #print(Fa) #activity['activity_first_year']=Fa['activity_year'] #activity['delta_time_activity']=activity['activity_year']-activity['activity_first_year'] #print(activity[activity['delta_time_activity']!=0,'delta_time_activity']) train=pd.merge(train,activity, on='patient_id',how='left') test=pd.merge(test,activity, on='patient_id',how='left') print('after merging activity') print(train.shape,test.shape) procedure=pd.read_csv(procedure_file ) diagnosis=pd.read_csv(diagnosis_file) diagnosis=pd.merge(diagnosis,procedure,on=['patient_id','claim_id'],how='left') train=pd.merge(train,diagnosis, on='patient_id',how='left') test=pd.merge(test,diagnosis, on='patient_id',how='left') print('after merging diagnosis ') print(train.shape,test.shape) prescription=pd.read_csv(prescription_file) drugs=pd.read_csv(drugs_file) physicians=pd.read_csv(physicians_file) prescription=pd.merge(prescription,drugs ,on='drug_id',how='left') prescription=pd.merge(prescription,physicians,on='practitioner_id',how='left') train=pd.merge(train,prescription,on='patient_id',how='left') test=pd.merge(test,prescription,on='patient_id',how='left') print('after merging prescription ') print(train.shape,test.shape) surgical=pd.read_csv(surgical_file ) train=pd.merge(train,surgical, on='patient_id',how='left') test=pd.merge(test,surgical, on='patient_id',how='left') print('after merging surgical') print(train.shape,test.shape) test=test.fillna(0) id_test,test,train,y=preprocess_data(train,test) print(train.shape,test.shape) #print(train.columns) X=np.asarray(train) y=np.asarray(y) X_test=np.asarray(test) X,y=shuffle(X,y,random_state=9) X_train,X_val0,y_train,y_val0 = train_test_split(X,y,test_size=0.1,random_state=17) X_train,X_val,y_train,y_val = train_test_split(X_train,y_train,test_size=0.1,random_state=77) dval=xgb.DMatrix(data=X_val,label=y_val) dtrain=xgb.DMatrix(data=X_train,label=y_train) DTest=xgb.DMatrix(data=X_test) Dval0=xgb.DMatrix(data=X_val0) watchlist = [(dval,'eval'), (dtrain,'train')] params = {"objective": "binary:logistic", "eta": 0.1, #"gamma":0.5, "max_depth": 8, #"max_delta_step":1, #"min_child_weight":10, "silent":1, "subsample": 0.95, "colsample_bytree": 0.7, "seed": 777, "booster": "gbtree", "nthread":-1, "eval_metric":'auc' } # # Train an XGBoost model # Train an XGBoost model xgblog = capture_stderr('xgb.log') clf = xgb.train(params, dtrain, num_boost_round=1500, evals=watchlist, early_stopping_rounds=30,verbose_eval=True, maximize= True) restore_stderr() from sklearn import metrics predictions=clf.predict(DTest) score=clf.best_score print('best score:%s'%score) y_pred=clf.predict(Dval0) score=metrics.roc_auc_score(y_val0, y_pred) print('score on extra set:%s' %score) model='XGBOOST_onraw_features' # # predict on test set submission='%s_score_%03f.csv' %(model,score) # create submission file xgb_preds =
pd.DataFrame({"patient_id": id_test, 'predict_screener': predictions})
pandas.DataFrame
import abc import logging from typing import Union, Dict, Tuple, List, Set, Callable import pandas as pd import warnings import numpy as np import scipy.sparse import xarray as xr import patsy try: import anndata except ImportError: anndata = None import batchglm.data as data_utils from batchglm.xarray_sparse import SparseXArrayDataArray, SparseXArrayDataSet from batchglm.models.glm_nb import Model as GeneralizedLinearModel from ..stats import stats from . import correction from ..models.batch_bfgs.optim import Estim_BFGS from diffxpy import pkg_constants logger = logging.getLogger(__name__) def _dmat_unique(dmat, sample_description): dmat, idx = np.unique(dmat, axis=0, return_index=True) sample_description = sample_description.iloc[idx].reset_index(drop=True) return dmat, sample_description class _Estimation(GeneralizedLinearModel, metaclass=abc.ABCMeta): """ Dummy class specifying all needed methods / parameters necessary for a model fitted for DifferentialExpressionTest. Useful for type hinting. """ @property @abc.abstractmethod def X(self) -> np.ndarray: pass @property @abc.abstractmethod def design_loc(self) -> np.ndarray: pass @property @abc.abstractmethod def design_scale(self) -> np.ndarray: pass @property @abc.abstractmethod def constraints_loc(self) -> np.ndarray: pass @property @abc.abstractmethod def constraints_scale(self) -> np.ndarray: pass @property @abc.abstractmethod def num_observations(self) -> int: pass @property @abc.abstractmethod def num_features(self) -> int: pass @property @abc.abstractmethod def features(self) -> np.ndarray: pass @property @abc.abstractmethod def observations(self) -> np.ndarray: pass @property @abc.abstractmethod def log_likelihood(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def loss(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def gradients(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def hessians(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def fisher_inv(self, **kwargs) -> np.ndarray: pass class _DifferentialExpressionTest(metaclass=abc.ABCMeta): """ Dummy class specifying all needed methods / parameters necessary for DifferentialExpressionTest. Useful for type hinting. Structure: Methods which are called by constructor and which compute (corrected) p-values: _test() _correction() Accessor methods for important metrics which have to be extracted from estimated models: log_fold_change() reduced_model_gradient() full_model_gradient() Interface method which provides summary of results: results() plot() """ def __init__(self): self._pval = None self._qval = None self._mean = None self._log_likelihood = None @property @abc.abstractmethod def gene_ids(self) -> np.ndarray: pass @property @abc.abstractmethod def X(self): pass @abc.abstractmethod def log_fold_change(self, base=np.e, **kwargs): pass def log2_fold_change(self, **kwargs): """ Calculates the pairwise log_2 fold change(s) for this DifferentialExpressionTest. """ return self.log_fold_change(base=2, **kwargs) def log10_fold_change(self, **kwargs): """ Calculates the log_10 fold change(s) for this DifferentialExpressionTest. """ return self.log_fold_change(base=10, **kwargs) def _test(self, **kwargs) -> np.ndarray: pass def _correction(self, method) -> np.ndarray: """ Performs multiple testing corrections available in statsmodels.stats.multitest.multipletests() on self.pval. :param method: Multiple testing correction method. Browse available methods in the annotation of statsmodels.stats.multitest.multipletests(). """ if np.all(np.isnan(self.pval)): return self.pval else: return correction.correct(pvals=self.pval, method=method) def _ave(self): """ Returns a xr.DataArray containing the mean expression by gene :return: xr.DataArray """ pass @property def log_likelihood(self): if self._log_likelihood is None: self._log_likelihood = self._ll().compute() return self._log_likelihood @property def mean(self): if self._mean is None: self._mean = self._ave() if isinstance(self._mean, xr.DataArray): # Could also be np.ndarray coming out of XArraySparseDataArray self._mean = self._mean.compute() return self._mean @property def pval(self): if self._pval is None: self._pval = self._test().copy() return self._pval @property def qval(self, method="fdr_bh"): if self._qval is None: self._qval = self._correction(method=method).copy() return self._qval def log10_pval_clean(self, log10_threshold=-30): """ Return log10 transformed and cleaned p-values. NaN p-values are set to one and p-values below log10_threshold in log10 space are set to log10_threshold. :param log10_threshold: minimal log10 p-value to return. :return: Cleaned log10 transformed p-values. """ pvals = np.reshape(self.pval, -1) pvals = np.nextafter(0, 1, out=pvals, where=pvals == 0) log10_pval_clean = np.log(pvals) / np.log(10) log10_pval_clean[np.isnan(log10_pval_clean)] = 1 log10_pval_clean = np.clip(log10_pval_clean, log10_threshold, 0, log10_pval_clean) return log10_pval_clean def log10_qval_clean(self, log10_threshold=-30): """ Return log10 transformed and cleaned q-values. NaN p-values are set to one and q-values below log10_threshold in log10 space are set to log10_threshold. :param log10_threshold: minimal log10 q-value to return. :return: Cleaned log10 transformed q-values. """ qvals = np.reshape(self.qval, -1) qvals = np.nextafter(0, 1, out=qvals, where=qvals == 0) log10_qval_clean = np.log(qvals) / np.log(10) log10_qval_clean[np.isnan(log10_qval_clean)] = 1 log10_qval_clean = np.clip(log10_qval_clean, log10_threshold, 0, log10_qval_clean) return log10_qval_clean @abc.abstractmethod def summary(self, **kwargs) -> pd.DataFrame: pass def _threshold_summary(self, res, qval_thres=None, fc_upper_thres=None, fc_lower_thres=None, mean_thres=None) -> pd.DataFrame: """ Reduce differential expression results into an output table with desired thresholds. """ if qval_thres is not None: res = res.iloc[res['qval'].values <= qval_thres, :] if fc_upper_thres is not None and fc_lower_thres is None: res = res.iloc[res['log2fc'].values >= np.log(fc_upper_thres) / np.log(2), :] elif fc_upper_thres is None and fc_lower_thres is not None: res = res.iloc[res['log2fc'].values <= np.log(fc_lower_thres) / np.log(2), :] elif fc_upper_thres is not None and fc_lower_thres is not None: res = res.iloc[np.logical_or( res['log2fc'].values <= np.log(fc_lower_thres) / np.log(2), res['log2fc'].values >= np.log(fc_upper_thres) / np.log(2)), :] if mean_thres is not None: res = res.iloc[res['mean'].values >= mean_thres, :] return res def plot_volcano( self, corrected_pval=True, log10_p_threshold=-30, log2_fc_threshold=10, alpha=0.05, min_fc=1, size=20, highlight_ids: List = [], highlight_size: float = 30, highlight_col: str = "red", show: bool = True, save: Union[str, None] = None, suffix: str = "_volcano.png" ): """ Returns a volcano plot of p-value vs. log fold change :param corrected_pval: Whether to use multiple testing corrected or raw p-values. :param log10_p_threshold: lower bound of log10 p-values displayed in plot. :param log2_fc_threshold: Negative lower and upper bound of log2 fold change displayed in plot. :param alpha: p/q-value lower bound at which a test is considered non-significant. The corresponding points are colored in grey. :param min_fc: Fold-change lower bound for visualization, the points below the threshold are colored in grey. :param size: Size of points. :param highlight_ids: Genes to highlight in volcano plot. :param highlight_ids: Size of points of genes to highlight in volcano plot. :param highlight_ids: Color of points of genes to highlight in volcano plot. :param show: Whether (if save is not None) and where (save indicates dir and file stem) to display plot. :param save: Path+file name stem to save plots to. File will be save+suffix. Does not save if save is None. :param suffix: Suffix for file name to save plot to. Also use this to set the file type. :return: Tuple of matplotlib (figure, axis) """ import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib import rcParams plt.ioff() if corrected_pval == True: neg_log_pvals = - self.log10_qval_clean(log10_threshold=log10_p_threshold) else: neg_log_pvals = - self.log10_pval_clean(log10_threshold=log10_p_threshold) logfc = np.reshape(self.log2_fold_change(), -1) # Clipping throws errors if not performed in actual data format (ndarray or DataArray): if isinstance(logfc, xr.DataArray): logfc = logfc.clip(-log2_fc_threshold, log2_fc_threshold) else: logfc = np.clip(logfc, -log2_fc_threshold, log2_fc_threshold, logfc) fig, ax = plt.subplots() is_significant = np.logical_and( neg_log_pvals >= - np.log(alpha) / np.log(10), np.abs(logfc) >= np.log(min_fc) / np.log(2) ) sns.scatterplot(y=neg_log_pvals, x=logfc, hue=is_significant, ax=ax, legend=False, s=size, palette={True: "orange", False: "black"}) highlight_ids_found = np.array([x in self.gene_ids for x in highlight_ids]) highlight_ids_clean = [highlight_ids[i] for i in np.where(highlight_ids_found == True)[0]] highlight_ids_not_found = [highlight_ids[i] for i in np.where(highlight_ids_found == False)[0]] if len(highlight_ids_not_found) > 0: logger.warning("not all highlight_ids were found in data set: ", ", ".join(highlight_ids_not_found)) if len(highlight_ids_clean) > 0: neg_log_pvals_highlights = np.zeros([len(highlight_ids_clean)]) logfc_highlights = np.zeros([len(highlight_ids_clean)]) is_highlight = np.zeros([len(highlight_ids_clean)]) for i,id in enumerate(highlight_ids_clean): idx = np.where(self.gene_ids == id)[0] neg_log_pvals_highlights[i] = neg_log_pvals[idx] logfc_highlights[i] = logfc[idx] sns.scatterplot(y=neg_log_pvals_highlights, x=logfc_highlights, hue=is_highlight, ax=ax, legend=False, s=highlight_size, palette={0: highlight_col}) if corrected_pval == True: ax.set(xlabel="log2FC", ylabel='-log10(corrected p-value)') else: ax.set(xlabel="log2FC", ylabel='-log10(p-value)') # Save, show and return figure. if save is not None: plt.savefig(save + suffix) if show: plt.show() plt.close(fig) return ax def plot_ma( self, corrected_pval=True, log2_fc_threshold=10, alpha=0.05, size=20, highlight_ids: List = [], highlight_size: float = 30, highlight_col: str = "red", show: bool = True, save: Union[str, None] = None, suffix: str = "_my_plot.png" ): """ Returns an MA plot of mean expression vs. log fold change with significance super-imposed. :param corrected_pval: Whether to use multiple testing corrected or raw p-values. :param log2_fc_threshold: Negative lower and upper bound of log2 fold change displayed in plot. :param alpha: p/q-value lower bound at which a test is considered non-significant. The corresponding points are colored in grey. :param size: Size of points. :param highlight_ids: Genes to highlight in volcano plot. :param highlight_ids: Size of points of genes to highlight in volcano plot. :param highlight_ids: Color of points of genes to highlight in volcano plot. :param show: Whether (if save is not None) and where (save indicates dir and file stem) to display plot. :param save: Path+file name stem to save plots to. File will be save+suffix. Does not save if save is None. :param suffix: Suffix for file name to save plot to. Also use this to set the file type. :return: Tuple of matplotlib (figure, axis) """ import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib import rcParams plt.ioff() ave = np.log(self.mean + 1e-08) logfc = np.reshape(self.log2_fold_change(), -1) # Clipping throws errors if not performed in actual data format (ndarray or DataArray): if isinstance(logfc, xr.DataArray): logfc = logfc.clip(-log2_fc_threshold, log2_fc_threshold) else: logfc = np.clip(logfc, -log2_fc_threshold, log2_fc_threshold, logfc) fig, ax = plt.subplots() if corrected_pval: is_significant = self.pval < alpha else: is_significant = self.qval < alpha sns.scatterplot(y=logfc, x=ave, hue=is_significant, ax=ax, legend=False, s=size, palette={True: "orange", False: "black"}) highlight_ids_found = np.array([x in self.gene_ids for x in highlight_ids]) highlight_ids_clean = [highlight_ids[i] for i in np.where(highlight_ids_found == True)[0]] highlight_ids_not_found = [highlight_ids[i] for i in np.where(highlight_ids_found == False)[0]] if len(highlight_ids_not_found) > 0: logger.warning("not all highlight_ids were found in data set: ", ", ".join(highlight_ids_not_found)) if len(highlight_ids_clean) > 0: ave_highlights = np.zeros([len(highlight_ids_clean)]) logfc_highlights = np.zeros([len(highlight_ids_clean)]) is_highlight = np.zeros([len(highlight_ids_clean)]) for i,id in enumerate(highlight_ids_clean): idx = np.where(self.gene_ids == id)[0] ave_highlights[i] = ave[idx] logfc_highlights[i] = logfc[idx] sns.scatterplot(y=logfc_highlights, x=ave_highlights, hue=is_highlight, ax=ax, legend=False, s=highlight_size, palette={0: highlight_col}) ax.set(xlabel="log2FC", ylabel='log mean expression') # Save, show and return figure. if save is not None: plt.savefig(save + suffix) if show: plt.show() plt.close(fig) return ax def plot_diagnostics(self): """ Directly plots a set of diagnostic diagrams """ import matplotlib.pyplot as plt volcano = self.plot_volcano() plt.show() class _DifferentialExpressionTestSingle(_DifferentialExpressionTest, metaclass=abc.ABCMeta): """ _DifferentialExpressionTest for unit_test with a single test per gene. The individual test object inherit directly from this class. All implementations of this class should return one p-value and one fold change per gene. """ def summary( self, qval_thres=None, fc_upper_thres=None, fc_lower_thres=None, mean_thres=None, **kwargs ) -> pd.DataFrame: """ Summarize differential expression results into an output table. """ assert self.gene_ids is not None res = pd.DataFrame({ "gene": self.gene_ids, "pval": self.pval, "qval": self.qval, "log2fc": self.log2_fold_change(), "mean": self.mean }) return res class DifferentialExpressionTestLRT(_DifferentialExpressionTestSingle): """ Single log-likelihood ratio test per gene. """ sample_description: pd.DataFrame full_design_loc_info: patsy.design_info full_estim: _Estimation reduced_design_loc_info: patsy.design_info reduced_estim: _Estimation def __init__( self, sample_description: pd.DataFrame, full_design_loc_info: patsy.design_info, full_estim, reduced_design_loc_info: patsy.design_info, reduced_estim ): super().__init__() self.sample_description = sample_description self.full_design_loc_info = full_design_loc_info self.full_estim = full_estim self.reduced_design_loc_info = reduced_design_loc_info self.reduced_estim = reduced_estim @property def gene_ids(self) -> np.ndarray: return np.asarray(self.full_estim.features) @property def X(self): return self.full_estim.X @property def reduced_model_gradient(self): return self.reduced_estim.gradients @property def full_model_gradient(self): return self.full_estim.gradients def _test(self): if np.any(self.full_estim.log_likelihood < self.reduced_estim.log_likelihood): logger.warning("Test assumption failed: full model is (partially) less probable than reduced model") return stats.likelihood_ratio_test( ll_full=self.full_estim.log_likelihood, ll_reduced=self.reduced_estim.log_likelihood, df_full=self.full_estim.constraints_loc.shape[1] + self.full_estim.constraints_scale.shape[1], df_reduced=self.reduced_estim.constraints_loc.shape[1] + self.reduced_estim.constraints_scale.shape[1], ) def _ave(self): """ Returns a xr.DataArray containing the mean expression by gene :return: xr.DataArray """ return np.mean(self.full_estim.X, axis=0) def _log_fold_change(self, factors: Union[Dict, Tuple, Set, List], base=np.e): """ Returns a xr.DataArray containing the locations for the different categories of the factors :param factors: the factors to select. E.g. `condition` or `batch` if formula would be `~ 1 + batch + condition` :param base: the log base to use; default is the natural logarithm :return: xr.DataArray """ if not (isinstance(factors, list) or isinstance(factors, tuple) or isinstance(factors, set)): factors = {factors} if not isinstance(factors, set): factors = set(factors) di = self.full_design_loc_info sample_description = self.sample_description[[f.name() for f in di.subset(factors).factor_infos]] dmat = self.full_estim.design_loc # make rows unique dmat, sample_description = _dmat_unique(dmat, sample_description) # factors = factors.intersection(di.term_names) # select the columns of the factors cols = np.arange(len(di.column_names)) sel = np.concatenate([cols[di.slice(f)] for f in factors], axis=0) neg_sel = np.ones_like(cols).astype(bool) neg_sel[sel] = False # overwrite all columns which are not specified by the factors with 0 dmat[:, neg_sel] = 0 # make the design matrix + sample description unique again dmat, sample_description = _dmat_unique(dmat, sample_description) locations = self.full_estim.inverse_link_loc(dmat.dot(self.full_estim.par_link_loc)) locations = np.log(locations) / np.log(base) dist = np.expand_dims(locations, axis=0) dist = np.transpose(dist, [1, 0, 2]) - dist dist = xr.DataArray(dist, dims=("minuend", "subtrahend", "gene")) # retval = xr.Dataset({"logFC": retval}) dist.coords["gene"] = self.gene_ids for col in sample_description: dist.coords["minuend_" + col] = (("minuend",), sample_description[col]) dist.coords["subtrahend_" + col] = (("subtrahend",), sample_description[col]) # # If this is a pairwise comparison, return only one fold change per gene # if dist.shape[:2] == (2, 2): # dist = dist[1, 0] return dist def log_fold_change(self, base=np.e, return_type="vector"): """ Calculates the pairwise log fold change(s) for this DifferentialExpressionTest. Returns some distance matrix representation of size (groups x groups x genes) where groups corresponds to the unique groups compared in this differential expression test. :param base: the log base to use; default is the natural logarithm :param return_type: Choose the return type. Possible values are: - "dataframe": return a pandas.DataFrame with columns `gene`, `minuend_<group>`, `subtrahend_<group>` and `logFC`. - "xarray": return a xarray.DataArray with dimensions `(minuend, subtrahend, gene)` :return: either pandas.DataFrame or xarray.DataArray """ factors = set(self.full_design_loc_info.term_names) - set(self.reduced_design_loc_info.term_names) if return_type == "dataframe": dists = self._log_fold_change(factors=factors, base=base) df = dists.to_dataframe("logFC") df = df.reset_index().drop(["minuend", "subtrahend"], axis=1, errors="ignore") return df elif return_type == "vector": if len(factors) > 1 or self.sample_description[list(factors)].drop_duplicates().shape[0] != 2: return None else: dists = self._log_fold_change(factors=factors, base=base) return dists[1, 0].values else: dists = self._log_fold_change(factors=factors, base=base) return dists def locations(self): """ Returns a pandas.DataFrame containing the locations for the different categories of the factors :return: pd.DataFrame """ di = self.full_design_loc_info sample_description = self.sample_description[[f.name() for f in di.factor_infos]] dmat = self.full_estim.design_loc dmat, sample_description = _dmat_unique(dmat, sample_description) retval = self.full_estim.inverse_link_loc(dmat.dot(self.full_estim.par_link_loc)) retval =
pd.DataFrame(retval, columns=self.full_estim.features)
pandas.DataFrame
from pathlib import Path import abc import logging import io import importlib import time from _collections import OrderedDict import traceback import pandas as pd import numpy as np import shutil from graphviz import Digraph from ibllib.misc import version import one.params from one.alf.files import add_uuid_string from iblutil.io.parquet import np2str from ibllib.oneibl.registration import register_dataset from ibllib.oneibl.patcher import FTPPatcher, SDSCPatcher, SDSC_ROOT_PATH, SDSC_PATCH_PATH from one.util import filter_datasets _logger = logging.getLogger('ibllib') class Task(abc.ABC): log = "" cpu = 1 gpu = 0 io_charge = 5 # integer percentage priority = 30 # integer percentage, 100 means highest priority ram = 4 # RAM needed to run (Go) one = None # one instance (optional) level = 0 outputs = None time_elapsed_secs = None time_out_secs = None version = version.ibllib() log = '' signature = {'input_files': (), 'output_files': ()} # tuple (filename, collection, required_flag) def __init__(self, session_path, parents=None, taskid=None, one=None, machine=None, clobber=True, aws=None, location='server'): self.taskid = taskid self.one = one self.session_path = session_path self.register_kwargs = {} if parents: self.parents = parents else: self.parents = [] self.machine = machine self.clobber = clobber self.location = location self.aws = aws @property def name(self): return self.__class__.__name__ def run(self, **kwargs): """ --- do not overload, see _run() below--- wraps the _run() method with - error management - logging to variable """ # if taskid of one properties are not available, local run only without alyx use_alyx = self.one is not None and self.taskid is not None if use_alyx: tdict = self.one.alyx.rest('tasks', 'partial_update', id=self.taskid, data={'status': 'Started'}) self.log = ('' if not tdict['log'] else tdict['log'] + '\n\n=============================RERUN=============================\n') # setup self.setUp() # Setup the console handler with a StringIO object log_capture_string = io.StringIO() ch = logging.StreamHandler(log_capture_string) str_format = '%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s' ch.setFormatter(logging.Formatter(str_format)) _logger.addHandler(ch) _logger.info(f"Starting job {self.__class__}") if self.machine: _logger.info(f"Running on machine: {self.machine}") _logger.info(f"running ibllib version {version.ibllib()}") # run start_time = time.time() self.status = 0 try: self.outputs = self._run(**kwargs) _logger.info(f"Job {self.__class__} complete") except BaseException: _logger.error(traceback.format_exc()) _logger.info(f"Job {self.__class__} errored") self.status = -1 self.time_elapsed_secs = time.time() - start_time # log the outputs-+ if isinstance(self.outputs, list): nout = len(self.outputs) elif self.outputs is None: nout = 0 else: nout = 1 _logger.info(f"N outputs: {nout}") _logger.info(f"--- {self.time_elapsed_secs} seconds run-time ---") # after the run, capture the log output, amend to any existing logs if not overwrite new_log = log_capture_string.getvalue() self.log = new_log if self.clobber else self.log + new_log log_capture_string.close() _logger.removeHandler(ch) # tear down self.tearDown() return self.status def register_datasets(self, one=None, **kwargs): """ Register output datasets form the task to Alyx :param one: :param jobid: :param kwargs: directly passed to the register_dataset function :return: """ assert one if self.location == 'server': return self._register_datasets_server(one=one, **kwargs) elif self.location == 'remote': return self._register_datasets_remote(one=one, **kwargs) elif self.location == 'SDSC': return self._register_datasets_SDSC(one=one, **kwargs) elif self.location == 'AWS': return self._register_datasets_AWS(one=one, **kwargs) def _register_datasets_server(self, one=None, **kwargs): if self.outputs: if isinstance(self.outputs, list): versions = [self.version for _ in self.outputs] else: versions = [self.version] return register_dataset(self.outputs, one=one, versions=versions, **kwargs) def _register_datasets_remote(self, one=None, **kwargs): if self.outputs: if isinstance(self.outputs, list): versions = [self.version for _ in self.outputs] else: versions = [self.version] ftp_patcher = FTPPatcher(one=one) return ftp_patcher.create_dataset(path=self.outputs, created_by=self.one.alyx.user, versions=versions, **kwargs) def _register_datasets_SDSC(self, one=None, **kwargs): if self.outputs: if isinstance(self.outputs, list): versions = [self.version for _ in self.outputs] else: versions = [self.version] sdsc_patcher = SDSCPatcher(one=one) return sdsc_patcher.patch_datasets(self.outputs, dry=False, versions=versions, **kwargs) def _register_datasets_AWS(self, one=None, **kwargs): # GO through FTP patcher if self.outputs: if isinstance(self.outputs, list): versions = [self.version for _ in self.outputs] else: versions = [self.version] ftp_patcher = FTPPatcher(one=one) return ftp_patcher.create_dataset(path=self.outputs, created_by=self.one.alyx.user, versions=versions, **kwargs) def rerun(self): self.run(overwrite=True) @abc.abstractmethod def _run(self, overwrite=False): """ This is the method to implement :param overwrite: (bool) if the output already exists, :return: out_files: files to be registered. Could be a list of files (pathlib.Path), a single file (pathlib.Path) an empty list [] or None. Whithin the pipeline, there is a distinction between a job that returns an empty list and a job that returns None. If the function returns None, the job will be labeled as "empty" status in the database, otherwise, the job has an expected behaviour of not returning any dataset. """ def setUp(self): """ Function to optionally overload to check inputs. :return: """ # if on local server don't do anything if self.location == 'server': self._setUp_server() elif self.location == 'remote': self._setUp_remote() elif self.location == 'SDSC': self._setUp_SDSC() elif self.location == 'AWS': self._setUp_AWS() def _setUp_server(self): pass def _setUp_remote(self): assert self.one df = self._getData() self.one._download_datasets(df) def _setUp_SDSC(self): assert self.one df = self._getData() SDSC_TMP = Path(SDSC_PATCH_PATH.joinpath(self.__class__.__name__)) for _, d in df.iterrows(): file_path = Path(d['session_path']).joinpath(d['rel_path']) file_uuid = add_uuid_string(file_path, np2str(np.r_[d.name[0], d.name[1]])) file_link = SDSC_TMP.joinpath(file_path) file_link.parent.mkdir(exist_ok=True, parents=True) file_link.symlink_to( Path(SDSC_ROOT_PATH.joinpath(file_uuid))) self.session_path = SDSC_TMP.joinpath(d['session_path']) def _setUp_AWS(self): assert self.aws assert self.one df = self._getData() self.aws._download_datasets(df) def tearDown(self): """ Function to optionally overload to check results """ pass def _getData(self): """ Funtcion to optionally overload to download/ create links to data Important when running tasks in remote or SDSC locations :return: """ assert self.one session_datasets = self.one.list_datasets(self.one.path2eid(self.session_path), details=True) df =
pd.DataFrame(columns=self.one._cache.datasets.columns)
pandas.DataFrame
import os import sys import pytest from shapely.geometry import Polygon, GeometryCollection from pandas import DataFrame, Timestamp from pandas.testing import assert_frame_equal from tests.fixtures import * from tests.test_core_components_route import self_looping_route, route from tests.test_core_components_service import service from genet.inputs_handler import matsim_reader, gtfs_reader from genet.inputs_handler import read from genet.schedule_elements import Schedule, Service, Route, Stop, read_vehicle_types from genet.utils import plot, spatial from genet.validate import schedule_validation from genet.exceptions import ServiceIndexError, RouteIndexError, StopIndexError, UndefinedCoordinateSystemError, \ ConflictingStopData, InconsistentVehicleModeError sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) pt2matsim_schedule_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "matsim", "schedule.xml")) pt2matsim_vehicles_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "matsim", "vehicles.xml")) @pytest.fixture() def schedule(): route_1 = Route(route_short_name='name', mode='bus', id='1', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) route_2 = Route(route_short_name='name_2', mode='bus', id='2', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700'), Stop(id='6', x=1, y=2, epsg='epsg:27700'), Stop(id='7', x=3, y=3, epsg='epsg:27700'), Stop(id='8', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) service = Service(id='service', routes=[route_1, route_2]) return Schedule(epsg='epsg:27700', services=[service]) @pytest.fixture() def strongly_connected_schedule(): route_1 = Route(route_short_name='name', mode='bus', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700', name='Stop_1'), Stop(id='2', x=1, y=2, epsg='epsg:27700', name='Stop_2'), Stop(id='3', x=3, y=3, epsg='epsg:27700', name='Stop_3'), Stop(id='4', x=7, y=5, epsg='epsg:27700', name='Stop_4'), Stop(id='1', x=4, y=2, epsg='epsg:27700', name='Stop_1')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['1', '2'], departure_offsets=['1', '2'], id='1') route_2 = Route(route_short_name='name_2', mode='bus', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700', name='Stop_5'), Stop(id='2', x=1, y=2, epsg='epsg:27700', name='Stop_2'), Stop(id='7', x=3, y=3, epsg='epsg:27700', name='Stop_7'), Stop(id='8', x=7, y=5, epsg='epsg:27700', name='Stop_8'), Stop(id='5', x=4, y=2, epsg='epsg:27700', name='Stop_5')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, arrival_offsets=['1', '2', '3', '4', '5'], departure_offsets=['1', '2', '3', '4', '5'], id='2') service = Service(id='service', routes=[route_1, route_2]) return Schedule(epsg='epsg:27700', services=[service]) def test_initiating_schedule(schedule): s = schedule assert_semantically_equal(dict(s._graph.nodes(data=True)), { '5': {'services': {'service'}, 'routes': {'2'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '6': {'services': {'service'}, 'routes': {'2'}, 'id': '6', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '7': {'services': {'service'}, 'routes': {'2'}, 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '8': {'services': {'service'}, 'routes': {'2'}, 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}}) assert_semantically_equal(s._graph.edges(data=True)._adjdict, {'5': {'6': {'services': {'service'}, 'routes': {'2'}}}, '6': {'7': {'services': {'service'}, 'routes': {'2'}}}, '7': {'8': {'services': {'service'}, 'routes': {'2'}}}, '8': {}, '4': {}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}, '2': {'3': {'services': {'service'}, 'routes': {'1'}}}}) log = s._graph.graph.pop('change_log') assert log.empty assert_semantically_equal(s._graph.graph, {'name': 'Schedule graph', 'routes': {'2': {'route_short_name': 'name_2', 'mode': 'bus', 'trips': {'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, 'arrival_offsets': ['00:00:00', '00:03:00', '00:07:00', '00:13:00'], 'departure_offsets': ['00:00:00', '00:05:00', '00:09:00', '00:15:00'], 'route_long_name': '', 'id': '2', 'route': [], 'await_departure': [], 'ordered_stops': ['5', '6', '7', '8']}, '1': {'route_short_name': 'name', 'mode': 'bus', 'trips': {'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, 'arrival_offsets': ['00:00:00', '00:03:00', '00:07:00', '00:13:00'], 'departure_offsets': ['00:00:00', '00:05:00', '00:09:00', '00:15:00'], 'route_long_name': '', 'id': '1', 'route': [], 'await_departure': [], 'ordered_stops': ['1', '2', '3', '4']}}, 'services': {'service': {'id': 'service', 'name': 'name'}}, 'route_to_service_map': {'1': 'service', '2': 'service'}, 'service_to_route_map': {'service': ['1', '2']}, 'crs': {'init': 'epsg:27700'}}) def test_initiating_schedule_with_non_uniquely_indexed_objects(): route_1 = Route(route_short_name='name', mode='bus', id='', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) route_2 = Route(route_short_name='name_2', mode='bus', id='', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700'), Stop(id='6', x=1, y=2, epsg='epsg:27700'), Stop(id='7', x=3, y=3, epsg='epsg:27700'), Stop(id='8', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_2_bus', 'veh_3_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) service1 = Service(id='service', routes=[route_1, route_2]) service2 = Service(id='service', routes=[route_1, route_2]) s = Schedule(epsg='epsg:27700', services=[service1, service2]) assert s.number_of_routes() == 4 assert len(s) == 2 def test__getitem__returns_a_service(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert schedule['service'] == services[0] def test_accessing_route(schedule): assert schedule.route('1') == Route(route_short_name='name', mode='bus', id='1', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['1', '2'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) def test__repr__shows_number_of_services(mocker): mocker.patch.object(Schedule, '__len__', return_value=0) schedule = Schedule('epsg:27700') s = schedule.__repr__() assert 'instance at' in s assert 'services' in s Schedule.__len__.assert_called() def test__str__shows_info(): schedule = Schedule('epsg:27700') assert 'Number of services' in schedule.__str__() assert 'Number of routes' in schedule.__str__() def test__len__returns_the_number_of_services(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert len(schedule) == 1 def test_print_shows_info(mocker): mocker.patch.object(Schedule, 'info') schedule = Schedule('epsg:27700') schedule.print() Schedule.info.assert_called_once() def test_info_shows_number_of_services_and_routes(mocker): mocker.patch.object(Schedule, '__len__', return_value=0) mocker.patch.object(Schedule, 'number_of_routes') schedule = Schedule('epsg:27700') schedule.print() Schedule.__len__.assert_called() Schedule.number_of_routes.assert_called_once() def test_plot_delegates_to_util_plot_plot_graph_routes(mocker, schedule): mocker.patch.object(plot, 'plot_graph') schedule.plot() plot.plot_graph.assert_called_once() def test_reproject_changes_projection_for_all_stops_in_route(): correct_x_y = {'x': -0.14967658860132668, 'y': 51.52393050617373} schedule = Schedule( 'epsg:27700', [Service(id='10314', routes=[ Route( route_short_name='12', mode='bus', stops=[Stop(id='26997928P', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700'), Stop(id='26997928P.link:1', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700')], route=['1'], trips={'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_1_bus']}, arrival_offsets=['00:00:00', '00:02:00'], departure_offsets=['00:00:00', '00:02:00'] ) ])]) schedule.reproject('epsg:4326') _stops = list(schedule.stops()) stops = dict(zip([stop.id for stop in _stops], _stops)) assert_semantically_equal({'x': stops['26997928P'].x, 'y': stops['26997928P'].y}, correct_x_y) assert_semantically_equal({'x': stops['26997928P.link:1'].x, 'y': stops['26997928P.link:1'].y}, correct_x_y) def test_adding_merges_separable_schedules(route): schedule = Schedule(epsg='epsg:4326', services=[Service(id='1', routes=[route])]) before_graph_nodes = schedule.reference_nodes() before_graph_edges = schedule.reference_edges() a = Stop(id='10', x=40, y=20, epsg='epsg:27700', linkRefId='1') b = Stop(id='20', x=10, y=20, epsg='epsg:27700', linkRefId='2') c = Stop(id='30', x=30, y=30, epsg='epsg:27700', linkRefId='3') d = Stop(id='40', x=70, y=50, epsg='epsg:27700', linkRefId='4') schedule_to_be_added = Schedule(epsg='epsg:4326', services=[Service(id='2', routes=[ Route( route_short_name='name', mode='bus', stops=[a, b, c, d], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['04:40:00', '05:40:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00'], route=['1', '2', '3', '4'], id='2') ])]) tba_graph_nodes = schedule_to_be_added.reference_nodes() tba_graph_edges = schedule_to_be_added.reference_edges() schedule.add(schedule_to_be_added) assert '1' in list(schedule.service_ids()) assert '2' in list(schedule.service_ids()) assert '1' in list(schedule.route_ids()) assert '2' in list(schedule.route_ids()) assert schedule.epsg == 'epsg:4326' assert schedule.epsg == schedule_to_be_added.epsg assert set(schedule._graph.nodes()) == set(before_graph_nodes) | set(tba_graph_nodes) assert set(schedule._graph.edges()) == set(before_graph_edges) | set(tba_graph_edges) def test_adding_throws_error_when_schedules_not_separable(test_service): schedule = Schedule(epsg='epsg:4326', services=[test_service]) assert 'service' in schedule schedule_to_be_added = Schedule(epsg='epsg:4326', services=[test_service]) with pytest.raises(NotImplementedError) as e: schedule.add(schedule_to_be_added) assert 'This method only supports adding non overlapping services' in str(e.value) def test_adding_calls_on_reproject_when_schedules_dont_have_matching_epsg(test_service, different_test_service, mocker): mocker.patch.object(Schedule, 'reproject') schedule = Schedule(services=[test_service], epsg='epsg:27700') assert schedule.has_service('service') schedule_to_be_added = Schedule(services=[different_test_service], epsg='epsg:4326') schedule.add(schedule_to_be_added) schedule_to_be_added.reproject.assert_called_once_with('epsg:27700') def test_service_ids_returns_keys_of_the_services_dict(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert set(schedule.service_ids()) == {'service'} def test_routes_returns_service_ids_with_unique_routes(route, similar_non_exact_test_route): services = [Service(id='1', routes=[route]), Service(id='2', routes=[similar_non_exact_test_route])] schedule = Schedule(services=services, epsg='epsg:4326') routes = list(schedule.routes()) assert route in routes assert similar_non_exact_test_route in routes assert len(routes) == 2 def test_number_of_routes_counts_routes(test_service, different_test_service): schedule = Schedule(services=[test_service, different_test_service], epsg='epsg:4362') assert schedule.number_of_routes() == 3 def test_service_attribute_data_under_key(schedule): df = schedule.service_attribute_data(keys='name').sort_index() assert_frame_equal(df, DataFrame( {'name': {'service': 'name'}} )) def test_service_attribute_data_under_keys(schedule): df = schedule.service_attribute_data(keys=['name', 'id']).sort_index() assert_frame_equal(df, DataFrame( {'name': {'service': 'name'}, 'id': {'service': 'service'}} )) def test_route_attribute_data_under_key(schedule): df = schedule.route_attribute_data(keys='route_short_name').sort_index() assert_frame_equal(df, DataFrame( {'route_short_name': {'1': 'name', '2': 'name_2'}} )) def test_route_attribute_data_under_keys(schedule): df = schedule.route_attribute_data(keys=['route_short_name', 'mode']).sort_index() assert_frame_equal(df, DataFrame( {'route_short_name': {'1': 'name', '2': 'name_2'}, 'mode': {'1': 'bus', '2': 'bus'}} )) def test_stop_attribute_data_under_key(schedule): df = schedule.stop_attribute_data(keys='x').sort_index() assert_frame_equal(df, DataFrame( {'x': {'1': 4.0, '2': 1.0, '3': 3.0, '4': 7.0, '5': 4.0, '6': 1.0, '7': 3.0, '8': 7.0}})) def test_stop_attribute_data_under_keys(schedule): df = schedule.stop_attribute_data(keys=['x', 'y']).sort_index() assert_frame_equal(df, DataFrame( {'x': {'1': 4.0, '2': 1.0, '3': 3.0, '4': 7.0, '5': 4.0, '6': 1.0, '7': 3.0, '8': 7.0}, 'y': {'1': 2.0, '2': 2.0, '3': 3.0, '4': 5.0, '5': 2.0, '6': 2.0, '7': 3.0, '8': 5.0}})) def test_extracting_services_on_condition(schedule): ids = schedule.extract_service_ids_on_attributes(conditions={'name': 'name'}) assert ids == ['service'] def test_extracting_routes_on_condition(schedule): ids = schedule.extract_route_ids_on_attributes(conditions=[{'mode': 'bus'}, {'route_short_name': 'name_2'}], how=all) assert ids == ['2'] def test_extracting_stops_on_condition(schedule): ids = schedule.extract_stop_ids_on_attributes(conditions=[{'x': (0, 4)}, {'y': (0, 2)}], how=all) assert set(ids) == {'5', '6', '1', '2'} def test_getting_services_on_modal_condition(schedule): service_ids = schedule.services_on_modal_condition(modes='bus') assert service_ids == ['service'] def test_getting_routes_on_modal_condition(schedule): route_ids = schedule.routes_on_modal_condition(modes='bus') assert set(route_ids) == {'1', '2'} def test_getting_stops_on_modal_condition(schedule): stop_ids = schedule.stops_on_modal_condition(modes='bus') assert set(stop_ids) == {'5', '6', '7', '8', '3', '1', '4', '2'} test_geojson = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "test_geojson.geojson")) def test_getting_stops_on_spatial_condition_with_geojson(schedule, mocker): mocker.patch.object(spatial, 'read_geojson_to_shapely', return_value=GeometryCollection( [Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)])])) stops = schedule.stops_on_spatial_condition(test_geojson) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_stops_on_spatial_condition_with_shapely_polygon(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) stops = schedule.stops_on_spatial_condition(p) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_stops_on_spatial_condition_with_s2_hex_region(schedule): s2_region = '4837,4839,483f5,4844,4849' stops = schedule.stops_on_spatial_condition(s2_region) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_routes_intersecting_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.routes_on_spatial_condition(p) assert set(routes) == {'1', '2'} def test_getting_routes_contained_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.routes_on_spatial_condition(p, how='within') assert set(routes) == {'1', '2'} def test_getting_services_intersecting_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.services_on_spatial_condition(p) assert set(routes) == {'service'} def test_getting_services_contained_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.services_on_spatial_condition(p, how='within') assert set(routes) == {'service'} def test_applying_attributes_to_service(schedule): assert schedule._graph.graph['services']['service']['name'] == 'name' assert schedule['service'].name == 'name' schedule.apply_attributes_to_services({'service': {'name': 'new_name'}}) assert schedule._graph.graph['services']['service']['name'] == 'new_name' assert schedule['service'].name == 'new_name' def test_applying_attributes_changing_id_to_service_throws_error(schedule): assert 'service' in schedule._graph.graph['services'] assert schedule._graph.graph['services']['service']['id'] == 'service' assert schedule['service'].id == 'service' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_services({'service': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def test_applying_attributes_to_route(schedule): assert schedule._graph.graph['routes']['1']['route_short_name'] == 'name' assert schedule.route('1').route_short_name == 'name' schedule.apply_attributes_to_routes({'1': {'route_short_name': 'new_name'}}) assert schedule._graph.graph['routes']['1']['route_short_name'] == 'new_name' assert schedule.route('1').route_short_name == 'new_name' def test_applying_mode_attributes_to_route_results_in_correct_mode_methods(schedule): assert schedule.route('1').mode == 'bus' assert schedule.modes() == {'bus'} assert schedule.mode_graph_map() == { 'bus': {('3', '4'), ('2', '3'), ('1', '2'), ('6', '7'), ('5', '6'), ('7', '8')}} schedule.apply_attributes_to_routes({'1': {'mode': 'new_bus'}}) assert schedule.route('1').mode == 'new_bus' assert schedule.modes() == {'bus', 'new_bus'} assert schedule['service'].modes() == {'bus', 'new_bus'} assert schedule.mode_graph_map() == {'bus': {('7', '8'), ('6', '7'), ('5', '6')}, 'new_bus': {('3', '4'), ('1', '2'), ('2', '3')}} assert schedule['service'].mode_graph_map() == {'bus': {('6', '7'), ('7', '8'), ('5', '6')}, 'new_bus': {('3', '4'), ('2', '3'), ('1', '2')}} def test_applying_attributes_changing_id_to_route_throws_error(schedule): assert '1' in schedule._graph.graph['routes'] assert schedule._graph.graph['routes']['1']['id'] == '1' assert schedule.route('1').id == '1' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_routes({'1': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def test_applying_attributes_to_stop(schedule): assert schedule._graph.nodes['5']['name'] == '' assert schedule.stop('5').name == '' schedule.apply_attributes_to_stops({'5': {'name': 'new_name'}}) assert schedule._graph.nodes['5']['name'] == 'new_name' assert schedule.stop('5').name == 'new_name' def test_applying_attributes_changing_id_to_stop_throws_error(schedule): assert '5' in schedule._graph.nodes assert schedule._graph.nodes['5']['id'] == '5' assert schedule.stop('5').id == '5' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_routes({'5': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def change_name(attrib): return 'new_name' def test_applying_function_to_services(schedule): schedule.apply_function_to_services(function=change_name, location='name') assert schedule._graph.graph['services']['service']['name'] == 'new_name' assert schedule['service'].name == 'new_name' def test_applying_function_to_routes(schedule): schedule.apply_function_to_routes(function=change_name, location='route_short_name') for route in schedule.routes(): assert schedule._graph.graph['routes'][route.id]['route_short_name'] == 'new_name' assert route.route_short_name == 'new_name' def test_applying_function_to_stops(schedule): schedule.apply_function_to_stops(function=change_name, location='name') for stop in schedule.stops(): assert stop.name == 'new_name' assert schedule._graph.nodes[stop.id]['name'] == 'new_name' def test_adding_service(schedule, service): service.reindex('different_service') service.route('1').reindex('different_service_1') service.route('2').reindex('different_service_2') schedule.add_service(service) assert set(schedule.route_ids()) == {'1', '2', 'different_service_1', 'different_service_2'} assert set(schedule.service_ids()) == {'service', 'different_service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'different_service_1': 'different_service', 'different_service_2': 'different_service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2'], 'different_service': ['different_service_1', 'different_service_2']}) def test_adding_service_with_clashing_route_ids(schedule, service): service.reindex('different_service') schedule.add_service(service) assert set(schedule.route_ids()) == {'1', '2', 'different_service_1', 'different_service_2'} assert set(schedule.service_ids()) == {'service', 'different_service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'different_service_1': 'different_service', 'different_service_2': 'different_service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2'], 'different_service': ['different_service_1', 'different_service_2']}) def test_adding_service_with_clashing_id_throws_error(schedule, service): with pytest.raises(ServiceIndexError) as e: schedule.add_service(service) assert 'already exists' in str(e.value) def test_adding_service_with_clashing_stops_data_does_not_overwrite_existing_stops(schedule): expected_stops_data = { '5': {'services': {'service', 'some_id'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service', 'some_id'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service', 'some_id'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) assert r.ordered_stops == ['1', '2', '5'] s = Service(id='some_id', routes=[r]) schedule.add_service(s, force=True) assert_semantically_equal(dict(s.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(s.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'some_id', 'service'}}) assert_semantically_equal(s.graph()['2']['5'], {'routes': {'3'}, 'services': {'some_id'}}) def test_adding_service_with_clashing_stops_data_without_force_flag_throws_error(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) with pytest.raises(ConflictingStopData) as e: schedule.add_service(Service(id='some_id', routes=[r])) assert 'The following stops would inherit data' in str(e.value) def test_removing_service(schedule): schedule.remove_service('service') assert not set(schedule.route_ids()) assert not set(schedule.service_ids()) assert not schedule._graph.graph['route_to_service_map'] assert not schedule._graph.graph['service_to_route_map'] def test_adding_route(schedule, route): route.reindex('new_id') schedule.add_route('service', route) assert set(schedule.route_ids()) == {'1', '2', 'new_id'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'new_id': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2', 'new_id']}) def test_adding_route_with_clashing_id(schedule, route): schedule.add_route('service', route) assert set(schedule.route_ids()) == {'1', '2', 'service_3'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'service_3': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2', 'service_3']}) def test_adding_route_to_non_existing_service_throws_error(schedule, route): with pytest.raises(ServiceIndexError) as e: schedule.add_route('service_that_doesnt_exist', route) assert 'does not exist' in str(e.value) def test_creating_a_route_to_add_using_id_references_to_existing_stops_inherits_schedule_stops_data(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=['1', '2', '5'] ) assert r.ordered_stops == ['1', '2', '5'] assert_semantically_equal(dict(r._graph.nodes(data=True)), {'1': {'routes': {'3'}}, '2': {'routes': {'3'}}, '5': {'routes': {'3'}}}) assert_semantically_equal(r._graph.edges(data=True)._adjdict, {'1': {'2': {'routes': {'3'}}}, '2': {'5': {'routes': {'3'}}}, '5': {}}) schedule.add_route('service', r) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_creating_a_route_to_add_giving_existing_schedule_stops(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[schedule.stop('1'), schedule.stop('2'), schedule.stop('5')] ) assert r.ordered_stops == ['1', '2', '5'] assert_semantically_equal(dict(r._graph.nodes(data=True)), {'1': {'routes': {'3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'routes': {'3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '5': {'routes': {'3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}}) assert_semantically_equal(r._graph.edges(data=True)._adjdict, {'1': {'2': {'routes': {'3'}}}, '2': {'5': {'routes': {'3'}}}, '5': {}}) schedule.add_route('service', r) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_adding_route_with_clashing_stops_data_does_not_overwrite_existing_stops(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) assert r.ordered_stops == ['1', '2', '5'] schedule.add_route('service', r, force=True) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_adding_route_with_clashing_stops_data_only_flags_those_that_are_actually_different(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=4, y=2, epsg='epsg:27700', name='')] ) assert r.ordered_stops == ['1', '2', '5'] with pytest.raises(ConflictingStopData) as e: schedule.add_route('service', r) assert "The following stops would inherit data currently stored under those Stop IDs in the Schedule: " \ "['1', '2']" in str(e.value) def test_adding_route_with_clashing_stops_data_without_force_flag_throws_error(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) with pytest.raises(ConflictingStopData) as e: schedule.add_route('service', r) assert 'The following stops would inherit data' in str(e.value) def test_extracting_epsg_from_an_intermediate_route_gives_none(): # intermediate meaning not belonging to a schedule yet but referring to stops in a schedule r = Route( route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=['S1', 'S2', 'S3'] ) assert r.epsg is None def test_removing_route(schedule): schedule.remove_route('2') assert set(schedule.route_ids()) == {'1'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1']}) def test_removing_route_updates_services_on_nodes_and_edges(schedule): schedule.remove_route('2') assert_semantically_equal(dict(schedule.graph().nodes(data=True)), {'5': {'services': set(), 'routes': set(), 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '6': {'services': set(), 'routes': set(), 'id': '6', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '7': {'services': set(), 'routes': set(), 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '8': {'services': set(), 'routes': set(), 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}}) assert_semantically_equal(schedule.graph().edges(data=True)._adjdict, {'5': {'6': {'services': set(), 'routes': set()}}, '6': {'7': {'services': set(), 'routes': set()}}, '7': {'8': {'services': set(), 'routes': set()}}, '8': {}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}, '2': {'3': {'services': {'service'}, 'routes': {'1'}}}, '4': {}}) def test_removing_stop(schedule): schedule.remove_stop('5') assert {stop.id for stop in schedule.stops()} == {'1', '3', '4', '7', '8', '6', '2'} def test_removing_unused_stops(schedule): schedule.remove_route('1') schedule.remove_unsused_stops() assert {stop.id for stop in schedule.stops()} == {'6', '8', '5', '7'} def test_iter_stops_returns_stops_objects(test_service, different_test_service): schedule = Schedule(services=[test_service, different_test_service], epsg='epsg:4326') assert set([stop.id for stop in schedule.stops()]) == {'0', '1', '2', '3', '4'} assert all([isinstance(stop, Stop) for stop in schedule.stops()]) def test_read_matsim_schedule_returns_expected_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, epsg='epsg:27700') correct_services = Service(id='10314', routes=[ Route( route_short_name='12', id='VJbd8660f05fe6f744e58a66ae12bd66acbca88b98', mode='bus', stops=[Stop(id='26997928P', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700'), Stop(id='26997928P.link:1', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700')], route=['1'], trips={'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_0_bus']}, arrival_offsets=['00:00:00', '00:02:00'], departure_offsets=['00:00:00', '00:02:00'] ) ]) for val in schedule.services(): assert val == correct_services assert_semantically_equal(schedule.stop_to_service_ids_map(), {'26997928P.link:1': {'10314'}, '26997928P': {'10314'}}) assert_semantically_equal(schedule.stop_to_route_ids_map(), {'26997928P': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, '26997928P.link:1': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}}) assert_semantically_equal(schedule.route('VJbd8660f05fe6f744e58a66ae12bd66acbca88b98').trips, {'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_0_bus']}) assert_semantically_equal( dict(schedule.graph().nodes(data=True)), {'26997928P': {'services': {'10314'}, 'routes': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, 'id': '26997928P', 'x': 528464.1342843144, 'y': 182179.7435136598, 'epsg': 'epsg:27700', 'name': '<NAME> (Stop P)', 'lat': 51.52393050617373, 'lon': -0.14967658860132668, 's2_id': 5221390302759871369, 'additional_attributes': {'name', 'isBlocking'}, 'isBlocking': 'false'}, '26997928P.link:1': {'services': {'10314'}, 'routes': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, 'id': '26997928P.link:1', 'x': 528464.1342843144, 'y': 182179.7435136598, 'epsg': 'epsg:27700', 'name': 'Brunswick Place (Stop P)', 'lat': 51.52393050617373, 'lon': -0.14967658860132668, 's2_id': 5221390302759871369, 'additional_attributes': {'name', 'linkRefId', 'isBlocking'}, 'linkRefId': '1', 'isBlocking': 'false'}} ) def test_reading_vehicles_with_a_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, path_to_vehicles=pt2matsim_vehicles_file, epsg='epsg:27700') assert_semantically_equal(schedule.vehicles, {'veh_0_bus': {'type': 'bus'}}) assert_semantically_equal(schedule.vehicle_types['bus'], { 'capacity': {'seats': {'persons': '71'}, 'standingRoom': {'persons': '1'}}, 'length': {'meter': '18.0'}, 'width': {'meter': '2.5'}, 'accessTime': {'secondsPerPerson': '0.5'}, 'egressTime': {'secondsPerPerson': '0.5'}, 'doorOperation': {'mode': 'serial'}, 'passengerCarEquivalents': {'pce': '2.8'}}) def test_reading_vehicles_after_reading_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, path_to_vehicles=pt2matsim_vehicles_file, epsg='epsg:27700') assert_semantically_equal(schedule.vehicles, {'veh_0_bus': {'type': 'bus'}}) assert_semantically_equal(schedule.vehicle_types['bus'], { 'capacity': {'seats': {'persons': '71'}, 'standingRoom': {'persons': '1'}}, 'length': {'meter': '18.0'}, 'width': {'meter': '2.5'}, 'accessTime': {'secondsPerPerson': '0.5'}, 'egressTime': {'secondsPerPerson': '0.5'}, 'doorOperation': {'mode': 'serial'}, 'passengerCarEquivalents': {'pce': '2.8'}}) def test_is_strongly_connected_with_strongly_connected_schedule(strongly_connected_schedule): assert strongly_connected_schedule.is_strongly_connected() def test_is_strongly_connected_with_not_strongly_connected_schedule(schedule): assert not schedule.is_strongly_connected() def test_has_self_loops_with_self_has_self_looping_schedule(self_looping_route): s = Schedule('epsg:27700', [Service(id='service', routes=[self_looping_route])]) assert s.has_self_loops() def test_has_self_loops_returns_self_looping_stops(self_looping_route): s = Schedule('epsg:27700', [Service(id='service', routes=[self_looping_route])]) loop_nodes = s.has_self_loops() assert loop_nodes == ['1'] def test_has_self_loops_with_non_looping_routes(schedule): assert not schedule.has_self_loops() def test_validity_of_services(self_looping_route, route): s = Schedule('epsg:27700', [Service(id='1', routes=[self_looping_route]), Service(id='2', routes=[route])]) assert not s['1'].is_valid_service() assert s['2'].is_valid_service() assert set(s.validity_of_services()) == {False, True} def test_has_valid_services(schedule): assert not schedule.has_valid_services() def test_has_valid_services_with_only_valid_services(service): s = Schedule('epsg:27700', [service]) assert s.has_valid_services() def test_invalid_services_shows_invalid_services(service): for route_id in service.route_ids(): service._graph.graph['routes'][route_id]['route'] = ['1'] s = Schedule('epsg:27700', [service]) assert s.invalid_services() == [service] def test_is_valid_with_valid_schedule(service): s = Schedule('epsg:27700', [service]) assert s.is_valid_schedule() def test_generate_validation_report_delegates_to_method_in_schedule_operations(mocker, schedule): mocker.patch.object(schedule_validation, 'generate_validation_report') schedule.generate_validation_report() schedule_validation.generate_validation_report.assert_called_once() def test_build_graph_builds_correct_graph(strongly_connected_schedule): g = strongly_connected_schedule.graph() assert_semantically_equal(dict(g.nodes(data=True)), {'5': {'services': {'service'}, 'routes': {'2'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set(), 'name': 'Stop_5'}, '2': {'services': {'service'}, 'routes': {'1', '2'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set(), 'name': 'Stop_2'}, '7': {'services': {'service'}, 'routes': {'2'}, 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set(), 'name': 'Stop_7'}, '8': {'services': {'service'}, 'routes': {'2'}, 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set(), 'name': 'Stop_8'}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set(), 'name': 'Stop_3'}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set(), 'name': 'Stop_1'}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set(), 'name': 'Stop_4'}}) assert_semantically_equal(g.edges(data=True)._adjdict, {'5': {'2': {'services': {'service'}, 'routes': {'2'}}}, '2': {'7': {'services': {'service'}, 'routes': {'2'}}, '3': {'services': {'service'}, 'routes': {'1'}}}, '7': {'8': {'services': {'service'}, 'routes': {'2'}}}, '8': {'5': {'services': {'service'}, 'routes': {'2'}}}, '4': {'1': {'services': {'service'}, 'routes': {'1'}}}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}}) def test_building_trips_dataframe(schedule): df = schedule.route_trips_with_stops_to_dataframe() correct_df = DataFrame({'departure_time': {0: Timestamp('1970-01-01 13:00:00'), 1: Timestamp('1970-01-01 13:05:00'), 2: Timestamp('1970-01-01 13:09:00'), 3: Timestamp('1970-01-01 13:30:00'), 4: Timestamp('1970-01-01 13:35:00'), 5: Timestamp('1970-01-01 13:39:00'), 6: Timestamp('1970-01-01 11:00:00'), 7: Timestamp('1970-01-01 11:05:00'), 8: Timestamp('1970-01-01 11:09:00'), 9: Timestamp('1970-01-01 13:00:00'), 10: Timestamp('1970-01-01 13:05:00'), 11: Timestamp('1970-01-01 13:09:00')}, 'arrival_time': {0: Timestamp('1970-01-01 13:03:00'), 1: Timestamp('1970-01-01 13:07:00'), 2: Timestamp('1970-01-01 13:13:00'), 3: Timestamp('1970-01-01 13:33:00'), 4: Timestamp('1970-01-01 13:37:00'), 5: Timestamp('1970-01-01 13:43:00'), 6: Timestamp('1970-01-01 11:03:00'), 7: Timestamp('1970-01-01 11:07:00'), 8: Timestamp('1970-01-01 11:13:00'), 9: Timestamp('1970-01-01 13:03:00'), 10:
Timestamp('1970-01-01 13:07:00')
pandas.Timestamp
import datetime from collections import Counter import warnings warnings.filterwarnings('ignore') import pandas as pd from sklearn.model_selection import train_test_split from sklearn import tree import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 这两行需要手动设置 from sklearn.metrics import confusion_matrix, accuracy_score, classification_report from sklearn.ensemble import RandomForestRegressor from sklearn import metrics import seaborn as sns sns.set_style('darkgrid') sns.set_palette('muted') pd.set_option('display.max_rows', None) # 可以填数字,填None表示'行'无限制 pd.set_option('display.max_columns', None) # 可以填数字,填None表示'列'无限制 pd.set_option('display.width', 1000) # 横向不换行 # 参数设定 dead_time = datetime.datetime.strptime(str('2020-10-14'), '%Y-%m-%d') interval_time = datetime.timedelta(days=7) # 模型参数 DATASPLITRATE = 0.2 MAXDEPTH = 4 # MINIMPURITYDECRESASE=val MINSAMPLESSPLIT = 1 # 数据 print('正在加载数据') print('loading...') psn_lv_30 = pd.read_csv('D:/data/A5_30_offline.csv') BH_ = pd.read_csv('D:/data/A5BH_1.csv') CZ_ = pd.read_csv('D:/data/A5CZ_1.csv') DZ_ = pd.read_csv('D:/data/A5DZ_1.csv') KILL_ = pd.read_csv('D:/data/A5KILL_1.csv') LMZ_ = pd.read_csv('D:/data/A5LMZ_1.csv') # LOG_TYPE_LMZ XMSL_ = pd.read_csv('D:/data/A5XMSL_1.csv') # GAME_LOG_XIANMEN_TRAILS LYQ_ = pd.read_csv('D:/data/A5LYQ_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_4 KTT_ = pd.read_csv('D:/data/A5KTT_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_7 XMHJ_ = pd.read_csv('D:/data/A5XMHJ_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_14 SYZC_ = pd.read_csv('D:/data/A5SYZC_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_13 PTY_ = pd.read_csv('D:/data/A5PTY_1.csv') # CHILDLOG_LOG_ACT_START_10 FBJL_ = pd.read_csv('D:/data/A5FBJL_1.csv') # LOG_COPY_ENDINFO FBRH_ = pd.read_csv('D:/data/A5FBRH_1.csv') # LOG_FABAO_FUSION REGION_ = pd.read_csv('D:/data/A5region_1.csv') FML_ = pd.read_csv('D:/data/A5FML_1.csv') # LOG_COPY_FML TJCZ_ = pd.read_csv('D:/data/A5TJCZ_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_23 ZBXM_ = pd.read_csv('D:/data/A5ZBXM_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_86 # GWWJ_ = pd.read_csv('D:/data/A5GWWJ_1.csv')# CHILDLOG_LOG_SKYBOOK_ADD_TIMES_73 CDYH_ = pd.read_csv('D:/data/A5CDYH_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_69 MBMC_ = pd.read_csv('D:/data/A5MBMC_1.csv') # CHILDLOG_LOG_SKYBOOK_ADD_TIMES_5 FBXL_ = pd.read_csv('D:/data/A5FBXL_1.csv') # LOG_FABAO_REFINE GX_ =
pd.read_csv('D:/data/A5GX_1.csv')
pandas.read_csv
# This gets all the census data, can be filted by level and state. # Should play with all the chunk sizes, to see how that affects speed. I'm leaving a message in censusreporter_api.py for now that will alert you if the size gets too big and it does a json_merge. json_merge is slow, we want to avoid those. import pandas as pd from censusreporter_api import * import os from io import BytesIO import io from zipfile import ZipFile import requests import datetime import re import argparse from bs4 import BeautifulSoup def getTractInfo(url, regex=''): page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') return [url + '/' + node.get('href') for node in soup.find_all('a', href=re.compile(regex))] BASE_URL = "http://www2.census.gov/geo/docs/maps-data/data/gazetteer/" YEAR = datetime.datetime.now().year GAZ_YEAR_URL = '{}{}_Gazetteer/'.format(BASE_URL, YEAR) # For easier Windows compatibility OUTPUT_DIR = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.getcwd())))), 'dimensionaldata' ) if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) STATE_LIST = [ 'AL','AK','AZ','AR','CA','CO','CT','DE','DC','FL','GA','HI','ID','IL','IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','OH','OK','OR','PA','RI','SC','SD','TN','TX','UT','VT','VA','WA','WV','WI','WY','PR'] STATE_CODES = {'AL': '01','AK': '02','AZ': '04','AR': '05','CA': '06','CO': '08','CT': '09','DE': '10','DC': '11','FL': '12','GA': '13','HI': '15','ID': '16','IL': '17','IN': '18','IA': '19','KS': '20','KY': '21','LA': '22','ME': '23','MD': '24','MA': '25','MI': '26','MN': '27','MS': '28','MO': '29','MT': '30','NE': '31','NV': '32','NH': '33','NJ': '34','NM': '35','NY': '36','NC': '37','ND': '38','OH': '39','OK': '40','OR':'41','PA': '42','RI': '44','SC': '45','SD': '46','TN': '47','TX': '48','UT': '49','VT': '50','VA': '51','WA': '53','WV': '54','WI': '55','WY': '56','PR':'72'} STATE_ABBREVS = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } DATA_TABLES = ['B01001','B03002','B06008','B23001','B19001','B25009','B25077'] parser = argparse.ArgumentParser() parser.add_argument("-s", "--states", help="State Abbreviation List, space seperated ie NY AK", nargs="*") parser.add_argument("-t", "--type", help="ALL|County|Upper|Lower|Congress|City|State|Tract space separated", nargs="*") def get_combinedData(thePD=None, tables=None): geoids = thePD.index.tolist() try: dFrame = get_dataframe(geoids=geoids, tables=tables) except Exception as e: #This should never happen, it's handled in censusreporter_api but just in case... handledError = "release doesn't include GeoID(s) " errorMsg = str(e) print(errorMsg) if handledError in errorMsg: pattern = re.compile("^\s+|\s*,\s*|\s+$") geoList = pattern.split(errorMsg.partition(handledError)[2].replace(".", "")) thePD = thePD[-thePD.index.isin(geoList)] #If everything was not valid, then we'll just return nothing if len(thePD) == 0: return None return get_combinedData(thePD, tables) else: raise else: return dFrame return None def get_zip(file_url): url = requests.get(file_url) zipfile = ZipFile(BytesIO(url.content), 'r') zip_names = zipfile.namelist() if len(zip_names) == 1: file_name = zip_names.pop() extracted_file = zipfile.open(file_name).read() return extracted_file # Util for cleaning up column names of extra whitespace def strip_colnames(df): all_cols = df.columns.values.tolist() col_dict = {} for col in all_cols: col_dict[col] = col.strip() return df.rename(columns=col_dict) # Gets voter_file_id from different jurisdiction types def parse_voter_file_id(row): if str(row['GEOID']).endswith('ZZ'): return None # If not ZZ, return letter for district (Alaska has lettered districts) if not str(row['GEOID'])[-1:].isdigit(): return str(row['GEOID'])[-1:] # Multiplier is 100 for congress, 1000 for all other types if row['ENTITYTYPE'] == 'congress': state_mult = 100 else: state_mult = 1000 voter_file_id = int(row['GEOID']) - (int(row['STATEFP']) * state_mult) # Some states with 1 district return 0, return 1 for those if voter_file_id > 0: return str(voter_file_id) else: return '1' def get_census_data(geo_type, geo_url, state_list, fips_func, state_idx=(0, 0), census_tables=DATA_TABLES, find_zz=False, delim='\t', chunk_size=250): print("Working " + geo_type) if requests.get(geo_url).status_code != 200: raise ValueError("{} file not found at URL: {}".format(geo_type, geo_url)) # Changing source if city URL if geo_type != 'City' and geo_type != "Tract": csv_file = get_zip(geo_url) file_source = io.StringIO(csv_file.decode('cp1252')) else: file_source = geo_url reader = pd.read_csv(file_source, delimiter=delim, iterator=True, chunksize=chunk_size) context_df_list = [] census_df_list = [] for chunk in reader: if geo_type == "Tract": chunk.rename(columns={'CODE': 'GEOID'}, inplace=True) chunk['USPS'] = state_list[0] #Tracts are passed in one state at a time, but don't have this field else: chunk = chunk.loc[chunk['USPS'].isin(state_list)] if find_zz: chunk['GEOID'] = chunk['GEOID'].astype(str) chunk = chunk.loc[chunk['GEOID'].str.find('ZZ') == -1] if len(chunk) > 0: chunk['FIPS'] = chunk['GEOID'].apply(fips_func) context_df_list.append(chunk) chunk = chunk.set_index('FIPS') data = get_combinedData(chunk, tables=census_tables) census_df_list.append(data) context_df =
pd.concat(context_df_list)
pandas.concat
# Import relevant libraries import pandas as pd # to deal with the dataset import plotly.express as px #to plot with beauty from download_file import download_file import json ## Get around pandas freezing when opening the file url_name = 'https://base-covid19.pt/export3.json' output_file = 'export3.json' download_file('https://base-covid19.pt/export3.json', output_file=output_file) ## Reads the json brute force data =
pd.read_json(output_file)
pandas.read_json
# pylint: disable=W0231 import numpy as np from pandas.core.common import save, load from pandas.core.index import MultiIndex import pandas.core.datetools as datetools #------------------------------------------------------------------------------- # Picklable mixin class Picklable(object): def save(self, path): save(self, path) @classmethod def load(cls, path): return load(path) class PandasError(Exception): pass class PandasObject(Picklable): _AXIS_NUMBERS = { 'index' : 0, 'columns' : 1 } _AXIS_ALIASES = {} _AXIS_NAMES = dict((v, k) for k, v in _AXIS_NUMBERS.iteritems()) #---------------------------------------------------------------------- # Axis name business @classmethod def _get_axis_number(cls, axis): axis = cls._AXIS_ALIASES.get(axis, axis) if isinstance(axis, int): if axis in cls._AXIS_NAMES: return axis else: raise Exception('No %d axis' % axis) else: return cls._AXIS_NUMBERS[axis] @classmethod def _get_axis_name(cls, axis): axis = cls._AXIS_ALIASES.get(axis, axis) if isinstance(axis, basestring): if axis in cls._AXIS_NUMBERS: return axis else: raise Exception('No axis named %s' % axis) else: return cls._AXIS_NAMES[axis] def _get_axis(self, axis): name = self._get_axis_name(axis) return getattr(self, name) def get(self, key, default=None): """ Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found Parameters ---------- key : object Returns ------- value : type of items contained in object """ try: return self[key] except KeyError: return default def groupby(self, by=None, axis=0, level=None, as_index=True): """ Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns Parameters ---------- by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups axis : int, default 0 level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output Examples -------- # DataFrame result >>> data.groupby(func, axis=0).mean() # DataFrame result >>> data.groupby(['col1', 'col2'])['col3'].mean() # DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean() Returns ------- GroupBy object """ from pandas.core.groupby import groupby return groupby(self, by, axis=axis, level=level, as_index=as_index) def select(self, crit, axis=0): """ Return data corresponding to axis labels matching criteria Parameters ---------- crit : function To be called on each index (label). Should return True or False axis : int Returns ------- selection : type of caller """ axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) if len(axis) > 0: new_axis = axis[np.asarray([crit(label) for label in axis])] else: new_axis = axis return self.reindex(**{axis_name : new_axis}) def drop(self, labels, axis=0): """ Return new object with labels in requested axis removed Parameters ---------- labels : array-like axis : int Returns ------- dropped : type of caller """ axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) new_axis = axis.drop(labels) return self.reindex(**{axis_name : new_axis}) def sort_index(self, axis=0, ascending=True): """ Sort object by labels (along an axis) Parameters ---------- axis : {0, 1} Sort index/rows versus columns ascending : boolean, default True Sort ascending vs. descending Returns ------- sorted_obj : type of caller """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) labels = self._get_axis(axis) sort_index = labels.argsort() if not ascending: sort_index = sort_index[::-1] new_axis = labels.take(sort_index) return self.reindex(**{axis_name : new_axis}) @property def ix(self): raise NotImplementedError def reindex(self, *args, **kwds): raise NotImplementedError class NDFrame(PandasObject): """ N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure Parameters ---------- data : BlockManager axes : list copy : boolean, default False """ # kludge _default_stat_axis = 0 def __init__(self, data, axes=None, copy=False, dtype=None): if dtype is not None: data = data.astype(dtype) elif copy: data = data.copy() if axes is not None: for i, ax in enumerate(axes): data = data.reindex_axis(ax, axis=i) self._data = data self._item_cache = {} def astype(self, dtype): """ Cast object to input numpy.dtype Parameters ---------- dtype : numpy.dtype or Python type Returns ------- casted : type of caller """ return self._constructor(self._data, dtype=dtype) @property def _constructor(self): return NDFrame @property def axes(self): return self._data.axes def __repr__(self): return 'NDFrame' @property def values(self): return self._data.as_matrix() @property def ndim(self): return self._data.ndim def _set_axis(self, axis, labels): self._data.set_axis(axis, labels) self._clear_item_cache() def __getitem__(self, item): return self._get_item_cache(item) def _get_item_cache(self, item): cache = self._item_cache try: return cache[item] except Exception: values = self._data.get(item) res = self._box_item_values(item, values) cache[item] = res return res def _box_item_values(self, key, values): raise NotImplementedError def _clear_item_cache(self): self._item_cache.clear() def _set_item(self, key, value): self._data.set(key, value) try: del self._item_cache[key] except KeyError: pass def __delitem__(self, key): """ Delete item """ self._data.delete(key) try: del self._item_cache[key] except KeyError: pass def pop(self, item): """ Return item and drop from frame. Raise KeyError if not found. """ result = self[item] del self[item] return result def _expand_axes(self, key): new_axes = [] for k, ax in zip(key, self.axes): if k not in ax: new_axes.append(np.concatenate([ax, [k]])) else: new_axes.append(ax) return new_axes #---------------------------------------------------------------------- # Consolidation of internals def _consolidate_inplace(self): self._clear_item_cache() self._data = self._data.consolidate() def consolidate(self, inplace=False): """ Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters ---------- inplace : boolean, default False If False return new object, otherwise modify existing object Returns ------- consolidated : type of caller """ if inplace: self._consolidate_inplace() return self else: cons_data = self._data.consolidate() if cons_data is self._data: cons_data = cons_data.copy() return self._constructor(cons_data) @property def _is_mixed_type(self): self._consolidate_inplace() return len(self._data.blocks) > 1 def _reindex_axis(self, new_index, fill_method, axis, copy): new_data = self._data.reindex_axis(new_index, axis=axis, method=fill_method, copy=copy) if new_data is self._data and not copy: return self else: return self._constructor(new_data) def cumsum(self, axis=None, skipna=True): """ Return DataFrame of cumulative sums over requested axis. Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns ------- y : DataFrame """ if axis is None: axis = self._default_stat_axis else: axis = self._get_axis_number(axis) y = self.values.copy() if not issubclass(y.dtype.type, np.integer): mask = np.isnan(self.values) if skipna: np.putmask(y, mask, 0.) result = y.cumsum(axis) if skipna: np.putmask(result, mask, np.nan) else: result = y.cumsum(axis) return self._wrap_array(result, self.axes, copy=False) def _wrap_array(self, array, axes, copy=False): raise NotImplementedError def cumprod(self, axis=None, skipna=True): """ Return cumulative product over requested axis as DataFrame Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns ------- y : DataFrame """ if axis is None: axis = self._default_stat_axis else: axis = self._get_axis_number(axis) y = self.values.copy() if not issubclass(y.dtype.type, np.integer): mask = np.isnan(self.values) if skipna: np.putmask(y, mask, 1.) result = y.cumprod(axis) if skipna: np.putmask(result, mask, np.nan) else: result = y.cumprod(axis) return self._wrap_array(result, self.axes, copy=False) def copy(self, deep=True): """ Make a copy of this object Parameters ---------- deep : boolean, default True Make a deep copy, i.e. also copy data Returns ------- copy : type of caller """ data = self._data if deep: data = data.copy() return self._constructor(data) def swaplevel(self, i, j, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Returns ------- swapped : type of caller (new object) """ axis = self._get_axis_number(axis) result = self.copy() labels = result._data.axes[axis] result._data.set_axis(axis, labels.swaplevel(i, j)) return result def add_prefix(self, prefix): """ Concatenate prefix string with panel items names. Parameters ---------- prefix : string Returns ------- with_prefix : type of caller """ new_data = self._data.add_prefix(prefix) return self._constructor(new_data) def add_suffix(self, suffix): """ Concatenate suffix string with panel items names Parameters ---------- suffix : string Returns ------- with_suffix : type of caller """ new_data = self._data.add_suffix(suffix) return self._constructor(new_data) def rename_axis(self, mapper, axis=0, copy=True): """ Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters ---------- mapper : dict-like or function, optional axis : int, default 0 copy : boolean, default True Also copy underlying data See also -------- DataFrame.rename Returns ------- renamed : type of caller """ # should move this at some point from pandas.core.series import _get_rename_function mapper_f = _get_rename_function(mapper) if axis == 0: new_data = self._data.rename_items(mapper_f, copydata=copy) else: new_data = self._data.rename_axis(mapper_f, axis=axis) if copy: new_data = new_data.copy() return self._constructor(new_data) def take(self, indices, axis=0): """ Analogous to ndarray.take Parameters ---------- indices : list / array of ints axis : int, default 0 Returns ------- taken : type of caller """ if axis == 0: labels = self._get_axis(axis) new_items = labels.take(indices) new_data = self._data.reindex_axis(new_items, axis=0) else: new_data = self._data.take(indices, axis=axis) return self._constructor(new_data) # Good for either Series or DataFrame def truncate(self, before=None, after=None, copy=True): """Function truncate a sorted DataFrame / Series before and/or after some particular dates. Parameters ---------- before : date Truncate before date after : date Truncate after date Returns ------- truncated : type of caller """ before = datetools.to_datetime(before) after =
datetools.to_datetime(after)
pandas.core.datetools.to_datetime
import pandas as pd import os from typing import List, Tuple, Dict from collections import defaultdict from datetime import datetime import json def get_game_data_path() -> str: current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, os.pardir, os.pardir, "data", "kaggle") return data_dir def get_game_data_list(path: str) -> List[str]: data_files = [ x for x in os.listdir(path) if x.endswith("bgg_top2000.csv") or x.endswith("bgg_top5000.csv") ] data_files.sort() return [os.path.join(path, x) for x in data_files] def get_curated_df(data_list: List) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: df_ref = None df_rank_dict = defaultdict(list) df_rank_id_dict = defaultdict(list) column_dtypes = { "AbstractGameRank": float, "BoardGameRank": float, "Children'sGameRank": float, "CustomizableRank": float, "FamilyGameRank": float, "PartyGameRank": float, "StrategyGameRank": float, "ThematicRank": float, "WarGameRank": float, "id": str, "game_id": str, } rankings_list = [ "AbstractGameRank", "BoardGameRank", "ChildrensGameRank", "CustomizableRank", "FamilyGameRank", "PartyGameRank", "StrategyGameRank", "ThematicRank", "WarGameRank", ] for data_fl in data_list: df_init = pd.read_csv(data_fl, dtype=column_dtypes) df_init = df_init.rename( columns={"Children'sGameRank": "ChildrensGameRank", "id": "game_id"} ) df_init = df_init.drop_duplicates(subset="game_id") if df_init.duplicated("BoardGameRank").sum() > 0: df_init.BoardGameRank = list(range(1, df_init.shape[0] + 1)) for col in rankings_list: df_init[col] = df_init[col].astype("Int64").astype("Int32") init_date = get_data_date(data_fl) df_rank_dict = get_game_rank_dict( df_init, init_date, df_rank_dict, rankings_list ) df_rank_id_dict = get_game_id_rank_dict( df_init, init_date, df_rank_id_dict, rankings_list ) if data_fl == data_list[-1]: df_ref = get_game_ref(df_init) df_game_rank = get_game_rank(df_rank_dict["BoardGameRank"]) df_game_id_rank = get_game_id_rank(df_rank_id_dict["BoardGameRank"]) for rank_name, rank_list in df_rank_dict.items(): if rank_name == "BoardGameRank": df_tmp = get_first_date(rank_name, rank_list) df_ref = df_ref.merge(df_tmp, on="name", how="left") df_tmp = get_rank_range(rank_name, rank_list) df_ref = df_ref.merge(df_tmp, on="name", how="left") df_ref["bgg_url"] = "https://boardgamegeek.com/boardgame/" + df_ref.game_id return (df_game_rank, df_game_id_rank, df_ref) def get_first_date(rank_str: str, df_list: list) -> pd.DataFrame: df = pd.concat(df_list, sort=False, ignore_index=True).drop(columns=rank_str) df = df.dropna().sort_values(["rank_date"]) df_first_date = ( df.groupby("name", sort=False, as_index=False) .first() .rename(columns={"rank_date": "first_date_in_ref"}) ) return df_first_date def get_rank_range(rank_str: str, df_list: list) -> pd.DataFrame: df =
pd.concat(df_list, sort=False, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 16 10:37:14 2020 Ferrain and horst Together @author: nikorose """ from DJSFunctions import plot_ankle_DJS, ankle_DJS, Plotting import os import pandas as pd import numpy as np import matplotlib.colors as mcolors from utilities_QS import ttest, hyperparams, best_hyper, change_labels import operator ttest_ = False plot_theory = False optimize_params = False plot_pairs = False plot_sample = False plot_per_group = True # ============================================================================= # Ferrarin execution # ============================================================================= #Excluding not regular intentions exclude_list = ["{} {}".format(i,j) for i in ['Toe', 'Heel', 'Descending', 'Ascending'] for j in ['A','Y']] # exclude_list.extend(['Free A', 'Very Slow A', 'Slow A', 'Medium A', 'Fast A']) Ferrarin_ = ankle_DJS('mmc3.xls', dir_loc = 'Ferrarin', exp_name = 'Ferrarin analysis', exclude_names = exclude_list) all_dfs_ferra = Ferrarin_.extract_DJS_data() #Changing labels # all_dfs_ferra = Ferrarin_.change_labels([ r'$0.363 < v* < 0.500$ Ch$_{2}$', # r"$v/h<0.6$ Ch$_{2}$", # r'$0.6 < v/h < 0.8$ Ch$_{2}$', # r'$0.8 < v/h < 1$ Ch$_{2}$', # r'$v/h > 1.0$ Ch$_{2}$', # r'$0.363 < v* < 0.500$ A', # r'$v/h < 0.6$ A', # # r'$0.6 < v/h < 0.8$ A', # r'$0.8 < v/h < 1$ A', # r'$v/h > 1.0$ A']) # df_turn_ferra = Ferrarin_.get_turning_points(turning_points= 6, # param_1 = 4, cluster_radius= 15) # Ferrarin_.deg_to_rad() Ferrarin_.energy_calculation() #Sensitive results may vary when integrating degrees, the best is to do in radians Ferrarin_.deg_to_rad() total_work_ferra = Ferrarin_.total_work() # ============================================================================= # Obtaining the mechanical work through power instances in regular walking Ferra # ============================================================================= idx= pd.IndexSlice work_df_ferra = Ferrarin_.power_energy.loc[idx[: , 'mean'], :] zero_ro_ferra = Ferrarin_.energy_fun.min_max_power(Ferrarin_.power_ankle) # ============================================================================= # Schwartz execution # ============================================================================= Schwartz_ = ankle_DJS('Schwartz.xls', dir_loc = 'Schwartz', exp_name = 'Schwartz analysis', features= ['Ankle Dorsi/Plantarflexion', 'Vertical', 'Ankle Dorsi/Plantarflexion', 'Ankle']) all_dfs_schwartz = Schwartz_.extract_DJS_data() # all_dfs_schwartz = Schwartz_.change_labels([r'$v* < 0.227$ Ch$_{1}$',r'$0.227 < v* < 0.363$ Ch$_{1}$',r'$0.363 < v* < 0.500$ Ch$_{1}$', # r'$0.500 < v* < 0.636$ Ch$_{1}$','$v* > 0.636$ Ch$_{1}$']) # df_turn_schwartz = Schwartz_.get_turning_points(turning_points= 6, # param_1 = 2, cluster_radius= 8) # Schwartz_.deg_to_rad() Schwartz_.energy_calculation() #Sensitive results may vary when integrating degrees, the best is to do in radians Schwartz_.deg_to_rad() total_work_schwartz = Schwartz_.total_work() # ============================================================================= # Obtaining the mechanical work through power instances in regular walking Ferra # ============================================================================= work_df_schwartz = Schwartz_.power_energy.loc[idx[: , 'mean'], :] zero_ro_schwartz = Schwartz_.energy_fun.min_max_power(Schwartz_.power_ankle) # ============================================================================= # concatenating DFs # ============================================================================= concat_gait = pd.concat([Ferrarin_.all_dfs_ankle, Schwartz_.all_dfs_ankle], axis=1) concat_gait = concat_gait.interpolate(axis=0) concat_gait = concat_gait.reindex(Schwartz_.index_ankle.get_level_values(0).unique(), level=0, axis=0) # ============================================================================= # Obtaining new values for the concatenated df # ============================================================================= concat_ = ankle_DJS(concat_gait, exp_name = 'Concat Ferrarin and Schwartz analysis') all_dfs = concat_.extract_df_DJS_data(idx=[0,1,2,3], units=False) times=3 all_dfs = concat_.interpolate_ankledf(times=times, replace=True) # ============================================================================= # Best params # ============================================================================= if optimize_params: best_df_turn = best_hyper(all_dfs, save='Ferrarin/best_params_all_dfs.csv', smooth_radius=range(4,7), cluster_radius=range(15*times,20*times, times), verbose=False, rows=[0,2]) #Fast A did not do well let us optimize again df_turn_FA = hyperparams(all_dfs.loc[:,idx['Fast A',:]], smooth_radius=range(4,7), c_radius=range(10*times,15*times, times), R2=True, rows=[0,2]) df_turn_FA['TP']['sr_4_cr_42'].to_csv('Ferrarin/FastA_opt_params.csv') best_df_turn.loc['Fast A'] = df_turn_FA['TP']['sr_4_cr_42'] else: best_df_turn = pd.read_csv('Ferrarin/best_params_all_dfs.csv', index_col=[0,1]) df_turn_FA = pd.read_csv('Ferrarin/FastA_opt_params.csv', index_col=[0,1]) #Replacing values on best best_df_turn.loc['Fast A'] = df_turn_FA best_df_turnGC = best_df_turn.apply(lambda x: np.int64(x/times)) #Sensitive results may vary when integrating degrees, the best is to do in radians concat_.deg_to_rad() total_work = concat_.total_work() # ============================================================================= # Plotting ankle Quasi-Stiffness # ============================================================================= Color = [i[1] for i in mcolors.TABLEAU_COLORS.items()]*3 params = {'sharex':False, 'sharey':True, 'color_DJS':['slategray']*20, 'color_reg':['black']*20, 'color_symbols': ['slategray']*20, 'arr_size': 6, 'left_margin': 0.1, 'DJS_linewidth': 0.2, 'reg_linewidth': 1.0, 'grid': False} DJS_all_ch = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=[3,5], alpha=3, fig_size=[9,11], params=params, ext='png') DJS_all_ch.colors = Color #Previuos config for Y, A and CH #All np.r_[10,1,6,11,2,7,12,0,5,13,3,8,14,4,9] # config for more rows np.r_[5,1,6,2,7,0,8,3,9,4] # Only Ferra np.r_[1,2,0,3,4,10:15] fig4 = DJS_all_ch.plot_DJS(concat_.all_dfs_ankle, cols=np.r_[10,1,6,11,2,7,12,0,5,13,3,8,14,4,9], rows= np.r_[0,2], title="Individual ankle DJS Children", legend=True, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True) reg_info_concat_all = DJS_all_ch.reg_info_df.round(3) reg_info_concat_all = reg_info_concat_all #Read the metrics from this metrics_all = reg_info_concat_all.mean(axis=0) concat_dep = best_df_turnGC.loc[idx[:,'mean'], 'point 1':].droplevel(1) #Work data handling work_all = DJS_all_ch.areas work_all['direction'] = work_all['direction'].replace('cw',0) work_all['direction'] = work_all['direction'].replace('ccw',1) work_all = work_all.astype(np.float64).round(3) concat_dep = pd.concat([concat_dep, reg_info_concat_all['stiffness'].unstack().droplevel(1), work_all], axis=1) labels_idx = ['{} {}'.format(i,j) for i in ['Very Slow', 'Slow', 'Free', 'Medium', 'Fast'] for j in ['C', 'Y', 'A']] concat_dep = concat_dep.reindex(labels_idx) concat_dep.index = pd.MultiIndex.from_product([['Very Slow', 'Slow', 'Free', 'Medium', 'Very Fast'], ['C', 'Y', 'A']], names=['Gait Speed','Group']) concat_dep.columns = pd.MultiIndex.from_arrays([[r'Turning Point [$\%GC$]']*5+[r'Stiffness [$\frac{Nm}{kg\times rad}$]']*4+[r'Work $\frac{J}{kg}$']*3, ['ERP','LRP','DP','S','TS','CP','ERP','LRP','DP','Abs.', 'Net.', 'Direction']]) with open("Ferrarin/ferra_DJS.tex", "w+") as pt: concat_dep.to_latex(buf=pt, col_space=10, longtable=False, multirow=True, caption=r'Cuantitative ankle DJS characteristics depicted in Fig. \ref{fig:comp_speed_QS_ferra} for children and adult groups', label='tab:table_ferra') # ============================================================================= # Showing the DJS results for youths and adults # ============================================================================= DJS_all_ad = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=[2,5], alpha=2, fig_size=[3,7], params=params, ext='png') DJS_all_ad.colors = Color #Previuos config for Y, A and CH #np.r_[10,1,6,11,2,7,12,0,5,13,3,8,14,4,9] # config for more rows np.r_[5,1,6,2,7,0,8,3,9,4] fig5 = DJS_all_ad.plot_DJS(concat_.all_dfs_ankle, cols=np.r_[1,2,0,3,4,6,7,5,8,9], rows= np.r_[0,2], title="Individual ankle DJS Y v A", legend=True, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True) reg_info_concat_ad = DJS_all_ad.reg_info_df.round(3) # ============================================================================= # Showing in the regular way, comparing Schwartz and Ferrarin # ============================================================================= if plot_pairs: Color = [i[1] for i in mcolors.TABLEAU_COLORS.items()]*3 params_c = {'sharex':False, 'sharey':True, 'left_margin': 0.2, 'arr_size':15, 'hide_labels':(False, True), 'yticks': np.arange(-0.25, 1.75, 0.25), 'xticks':None, 'alpha_absorb': 0.2, 'alpha_prod': 0.4, 'line_width':1} cols_to_joint ={r'Free': (0,-3, False), r'Very Slow': (1,-5, False), r'Slow': (2,-4, False), r'Fast': (3,-2, False), r'Very Fast': (4,-1, False)} cols_to_joint_a ={r'Free': (0,5, False), r'Very Slow': (1,6, False), r'Slow': (2,7, False), r'Fast': (3,8, False), r'Very Fast': (4,9, False)} for num, key in enumerate(cols_to_joint.keys()): params_c.update({'hide_labels': (False, cols_to_joint[key][-1])}) DJS_all = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=False, alpha=2.0, fig_size=[3,3], params=params_c) fig6 = DJS_all.plot_DJS(concat_.all_dfs_ankle, cols=list(cols_to_joint[key][:2]), rows= np.r_[0,2], title="Ankle DJS Y vs CH comparison {}".format(key), legend=True, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True) if num == 0: reg_info_ch = pd.DataFrame(DJS_all.reg_info_df) work_ch = pd.DataFrame(DJS_all.areas) else: reg_info_ch = pd.concat([reg_info_ch, DJS_all.reg_info_df]) work_ch = pd.concat([work_ch, DJS_all.areas]) reg_info_ch = reg_info_ch.round(3) work_ch = work_ch.round(3) for num, key in enumerate(cols_to_joint_a.keys()): params_c.update({'hide_labels': (False, cols_to_joint_a[key][-1])}) DJS_all = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=False, alpha=2.0, fig_size=[3,3], params=params_c) fig6 = DJS_all.plot_DJS(concat_.all_dfs_ankle, cols=list(cols_to_joint_a[key][:2]), rows= np.r_[0,2], title="Ankle DJS Y vs A comparison {}".format(key), legend=True, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True) if num == 0: reg_info_a = pd.DataFrame(DJS_all.reg_info_df) work_a = pd.DataFrame(DJS_all.areas) else: reg_info_a = pd.concat([reg_info_a, DJS_all.reg_info_df]) work_a = pd.concat([work_a, DJS_all.areas]) reg_info_a = reg_info_a.round(3) work_a = work_a.round(3) # ============================================================================= # Plotting separately per study # ============================================================================= if plot_per_group: params_to = {'sharex':False, 'sharey':True, 'left_margin': 0.05, 'arr_size':15, 'hide_labels':(False, False), 'yticks': np.arange(-0.25, 1.75, 0.25), 'xticks':None, 'alpha_absorb': 0.08, 'alpha_prod': 0.3, 'line_width':0.6} groups = {'Children G2': ([1,0,2,3,4], '<NAME>'), 'Adults' : (np.r_[6,5,7:10], '<NAME>'), 'Children G1': (np.r_[10:15], 'Schwartz')} for key, item in groups.items(): DJS_g = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=[1,5], alpha=3.0, fig_size=[4,20], params=params_to) fig6 = DJS_g.plot_DJS(concat_.all_dfs_ankle, cols=item[0], rows= np.r_[0,2], #[1,0,2,3,4], np.r_[5:10] title="Ankle DJS CH together {}".format(item[1]), legend=True, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True, header= None) # ============================================================================= # Plotting one sample with labels, theoretical # ============================================================================= if plot_sample: params_sample = {'sharex':False, 'sharey':True, 'color_DJS':['slategray']*20, 'color_reg':['black']*20, 'color_symbols': ['slategray']*20, 'arr_size': 13, 'left_margin': 0.15, 'DJS_linewidth': 0.2, 'reg_linewidth': 1.0, 'grid': False, 'alpha_prod': 0.4, 'alpha_absorb': 0.1, 'text':True} DJS_sample = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=False, alpha=3.0, fig_size=[4,4], params=params_sample) fig6 = DJS_sample.plot_DJS(concat_.all_dfs_ankle, cols=[-3], rows= np.r_[0,2], #[1,0,2,3,4], np.r_[5:10] title="Ankle DJS sample", legend=True, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True, header= None) #Only regressions params_simple = {'sharex':False, 'sharey':True, 'color_DJS':['white']*20, 'color_reg':['black']*20, 'color_symbols': ['white']*20, 'arr_size': 13, 'left_margin': 0.15, 'DJS_linewidth': 0.2, 'reg_linewidth': 1.0, 'grid': False, 'alpha_prod': 0.0, 'alpha_absorb': 0.0, 'text':False, 'hide_labels': (True,True)} DJS_simple = plot_ankle_DJS(SD=True, save=True, plt_style='bmh', sep=False, alpha=2.0, fig_size=[2,2], params=params_simple) fig6 = DJS_simple.plot_DJS(concat_.all_dfs_ankle, cols=[-1], rows= np.r_[0,2], #[1,0,2,3,4], np.r_[5:10] title="Ankle DJS sample dir", legend=False, reg=best_df_turn.loc[idx[:,'mean'],:], integration= True, rad = True, header= None) if ttest_: # ============================================================================= # Obtaining the ttest of children (Schwartz) against youth (Ferrarin) # ============================================================================= cols_ch = best_df_turn.index.get_level_values(0).unique() cols_ch = cols_ch[np.r_[1,2,0,3,4,10:15]] etiquete = ['VS','S','C','F','VF'] #Dropping GRF and powers, we are interested in QS only df_QS_ch = all_dfs df_QS_ch = df_QS_ch.drop(['Vertical Force [%BH]', 'Ankle [W/kg]'], axis=0, level=0) #Samples of each experiment n_schwartz = [77, 82, 82, 76, 51] #Very Slow Slow Free Fast Very Fast n_ferra_y = [34, 76, 111, 71, 100, 83, 51, 75, 67] #XS S Natural M L T H A D n_ferra_a = [140, 110, 124, 68, 52, 124, 85, 73, 72] #XS S Natural M L T H A D tt_ch = pd.concat([ttest(df_QS_ch[cols_ch[i]], df_QS_ch[cols_ch[i+5]], samples=[n_schwartz[i], n_ferra_y[i]], name='Ttest_{}'.format(etiquete[i]), method='scipy') for i in range(5)], axis=1) tt_angles_ch = tt_ch.loc['Ankle Dorsi/Plantarflexion Deg [°]'].mean(axis=0) tt_moments_ch = tt_ch.loc['Ankle Dorsi/Plantarflexion [Nm/kg]'].mean(axis=0) # ============================================================================= # Obtaining the ttest of adults vs youth (Ferrarin) # ============================================================================= cols_ad = best_df_turn.index.get_level_values(0).unique() cols_ad = cols_ad[np.r_[1,2,0,3,4,6,7,5,8,9]] etiquete = ['VS','S','C','F','VF'] #Dropping GRF and powers, we are interested in QS only df_QS_ad = all_dfs df_QS_ad = df_QS_ad.drop(['Vertical Force [%BH]', 'Ankle [W/kg]'], axis=0, level=0) tt_ad = pd.concat([ttest(df_QS_ad[cols_ad[i]], df_QS_ad[cols_ad[i+5]], samples= [n_ferra_y[i], n_ferra_a[i]], name='Ttest_{}'.format(etiquete[i]), method='scipy') for i in range(5)], axis=1) tt_angles_ad = tt_ad.loc['Ankle Dorsi/Plantarflexion Deg [°]'].mean(axis=0) tt_moments_ad = tt_ad.loc['Ankle Dorsi/Plantarflexion [Nm/kg]'].mean(axis=0) tt_concat = pd.concat([tt_angles_ch, tt_moments_ch, tt_angles_ad, tt_moments_ad], axis=1) tt_concat = tt_concat.round(3) tt_concat.index = pd.MultiIndex.from_product([['Very Slow', 'Slow', 'Free', 'Medium', 'Very Fast'],['t-value', 'p-value']]) tt_concat.columns =
pd.MultiIndex.from_product([['C vs Y', 'Y vs A'],['Ankle angle', 'Ankle moment']])
pandas.MultiIndex.from_product
import pytest import numpy as np import pandas as pd from pandas._testing import assert_frame_equal from wetterdienst.dwd.util import ( coerce_field_types, build_parameter_set_identifier, ) from wetterdienst.util.enumeration import parse_enumeration_from_template from wetterdienst.dwd.observations import ( DWDObservationPeriod, DWDObservationResolution, DWDObservationParameterSet, ) from wetterdienst.exceptions import InvalidEnumeration def test_parse_enumeration_from_template(): assert ( parse_enumeration_from_template("climate_summary", DWDObservationParameterSet) == DWDObservationParameterSet.CLIMATE_SUMMARY ) assert ( parse_enumeration_from_template("kl", DWDObservationParameterSet) == DWDObservationParameterSet.CLIMATE_SUMMARY ) with pytest.raises(InvalidEnumeration): parse_enumeration_from_template("climate", DWDObservationParameterSet) def test_coerce_field_types(): df = pd.DataFrame( { "QN": ["1"], "RS_IND_01": ["1"], "DATE": ["1970010100"], "END_OF_INTERVAL": ["1970010100:00"], "V_VV_I": ["P"], } ) expected_df = pd.DataFrame( { "QN": pd.Series([1], dtype=
pd.Int64Dtype()
pandas.Int64Dtype
import json import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt import os import collections import nltk.classify import nltk.metrics import numpy as np """ read all business id """ business=[] users=[] scores=[] rates=[] t=0 review=
pd.read_csv('dataset_review_emo_bayes.tsv', sep="\t")
pandas.read_csv
import logging import os import numpy as np import pandas as pd from opencell.database import utils, constants logger = logging.getLogger(__name__) def parseFloat(val): try: val = float(val) except ValueError: val = float(str(val).replace(',', '')) return val def load_library_snapshot(filename): ''' Load and format a CSV 'snapshot' of a library spreadsheet These 'snapshots' are of the google sheet created/maintained by Manu that contains the crispr designs for all plates ''' # define maps from the column names in the google sheets # to the column names in the models.metadata.CrisprDesign table # (all required columns are included, even if their name is unchanged) # column names in the original 'library' google sheet (containing plates 1-22) library_columns = { 'plate_id': 'plate_id', 'well_id': 'well_id', 'gene_name': 'target_name', 'family': 'target_family', 'enst_id': 'enst_id', 'terminus_to_tag': 'target_terminus', 'protospacer_name': 'protospacer_name', 'protospacer_note': 'protospacer_notes', 'protospacer_sequence': 'protospacer_sequence', 'ultramer_name': 'template_name', 'ultramer_note': 'template_notes', 'ultramer_sequence': 'template_sequence', } # alternative column names for some columns, specific to the 'library v1.1' spreadsheet # (this sheet starts with plate23 in Jan 2022) library_columns_2022 = { 'tagged_terminus': 'target_terminus', 'ensembl_transcript_id': 'enst_id', 'gRNA_sequence': 'protospacer_sequence', 'donor_sequence': 'template_sequence', } library_columns.update(library_columns_2022) library = pd.read_csv(filename) library.rename(columns=library_columns, inplace=True) # for clarity, format the plate_ids here library['plate_id'] = library.plate_id.apply(utils.format_plate_design_id) # drop any extraneous columns dropped_columns = list(set(library.columns).difference(library_columns.values())) library = library.drop(labels=dropped_columns, axis=1) return library def load_electroporation_history(filename): ''' Load and format a 'snapshot' of the list of electroporations (this is a google sheet from Manu) Expected columns: ('plate_id', 'date', 'notes') ''' electroporation_columns = { 'plate_id': 'plate_id', 'electroporation_date': 'date', 'comment': 'notes', } electroporations = pd.read_csv(filename) electroporations.rename(columns=electroporation_columns, inplace=True) # format the plate_id electroporations['plate_id'] = electroporations.plate_id.apply( utils.format_plate_design_id) # drop unneeded columns electroporations = electroporations[list(electroporation_columns.values())] return electroporations def load_legacy_microscopy_master_key(filepath): ''' Load and format a snapshot of the 'legacy' tab of the 'Pipeline-microscopy-master-key' google sheet These are all pipeline-related microscopy acquisitions prior to the transition to PML-based IDs (which occurred at ML0196). Note that these acquisitions have IDs of the form 'MLxxxx_YYYYMMDD'. ''' md = pd.read_csv(filepath) md = md.rename(columns={c: c.replace(' ', '_').lower() for c in md.columns}) md = md.rename(columns={ 'id': 'legacy_id', 'automated_acquisition?': 'automation', 'acquisition_notes': 'notes', 'primary_imager': 'imager', }) md = md.drop(labels=[c for c in md.columns if c.startswith('unnamed')], axis=1) # separate the ML ID itself from the date md['ml_id'] = md.legacy_id.apply(lambda s: s.split('_')[0]) # parse the date from the ML-style ID md['date'] = pd.to_datetime(md.legacy_id.apply(lambda s: s.split('_')[1])) # prepend the P to create the PML-style ID md['pml_id'] = [f'P{ml_id}' for ml_id in md.ml_id] # columns to retain md = md[['pml_id', 'date', 'automation', 'imager', 'description', 'notes']] return md def load_pipeline_microscopy_master_key(filepath): ''' Load a CSV snapshot of the 'pipeline-microscopy-master-key' google sheet ''' snapshot = pd.read_csv(filepath) snapshot.rename(columns={'id': 'pml_id'}, inplace=True) snapshot.dropna(how='any', subset=['pml_id', 'date'], axis=0, inplace=True) return snapshot def load_pipeline_microscopy_dataset_metadata(filepath): ''' Load the 'fov-metadata.csv' file from a PML dataset directory (this file is generated by dragonfly_automation.qc.pipeline_plate_qc.construct_fov_metadata) This method drops rows for which the manually_flagged column is set to True and constructs the raw_filepath column. Other than that, it does no data validation. We rely on the implicit validation that occurs when the dataframe returned by this method is used to populate the MicroscopyFOV table in PolyclonalLineOperations.insert_microscopy_fovs ''' metadata =
pd.read_csv(filepath)
pandas.read_csv
from elasticsearch import Elasticsearch from elasticsearch.helpers import scan import seaborn as sns import matplotlib.pylab as plt import numpy as np import pandas as pd load_from_disk = True start_date = '2018-04-01 00:00:00' end_date = '2018-05-01 23:59:59' site = 'MWT2' es = Elasticsearch(['atlas-kibana.mwt2.org:9200'], timeout=60) indices = "traces" print("start:", start_date, "end:", end_date) start = int(pd.Timestamp(start_date).timestamp()) end = int(pd.Timestamp(end_date).timestamp()) my_query = { "_source": ["time_start", "time_end", "site", "event", "scope", "filename", "filesize"], 'query': { 'bool': { 'must': [ {'range': {'time_start': {'gte': start, 'lt': end}}}, {'exists': {"field": "filename"}}, {'wildcard': {'site': site + '*'}}, {'wildcard': {'event': 'get*'}}, # {'term': {'event': 'download'}}, ] } } } # "transfer_start", "transfer_end", if load_from_disk: all_accesses = pd.read_hdf(site + '.h5', key=site, mode='r') else: scroll = scan(client=es, index=indices, query=my_query) count = 0 requests = [] for res in scroll: r = res['_source'] # requests.append([r['scope'] + r['filename'], r['filesize'], r['time_start'], r['time_end']]) requests.append([r['scope'] + r['filename'], r['filesize'], r['time_start']]) # if count < 2: # print(res) if not count % 100000: print(count) # if count > 100000: # break count = count + 1 all_accesses =
pd.DataFrame(requests)
pandas.DataFrame
import math from abc import ABC from typing import Optional, Iterable import pandas as pd from django.db import connection from pandas import DataFrame from recipe_db.analytics import METRIC_PRECISION, POPULARITY_START_MONTH, POPULARITY_CUT_OFF_DATE from recipe_db.analytics.scope import RecipeScope, StyleProjection, YeastProjection, HopProjection, \ FermentableProjection from recipe_db.analytics.utils import remove_outliers, get_style_names_dict, get_hop_names_dict, get_yeast_names_dict, \ get_fermentable_names_dict, RollingAverage, Trending, months_ago from recipe_db.models import Recipe class RecipeLevelAnalysis(ABC): def __init__(self, scope: RecipeScope) -> None: self.scope = scope class RecipesListAnalysis(RecipeLevelAnalysis): def random(self, num_recipes: int) -> Iterable[Recipe]: scope_filter = self.scope.get_filter() query = ''' SELECT r.uid AS recipe_id FROM recipe_db_recipe AS r WHERE r.name IS NOT NULL {} ORDER BY random() LIMIT %s '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters + [num_recipes]) recipe_ids = df['recipe_id'].values.tolist() if len(recipe_ids) == 0: return [] return Recipe.objects.filter(uid__in=recipe_ids).order_by('name') class RecipesCountAnalysis(RecipeLevelAnalysis): def total(self) -> int: scope_filter = self.scope.get_filter() query = ''' SELECT count(r.uid) AS total_recipes FROM recipe_db_recipe AS r WHERE created IS NOT NULL {} '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) if len(df) == 0: return 0 return df['total_recipes'].values.tolist()[0] def per_day(self) -> DataFrame: scope_filter = self.scope.get_filter() query = ''' SELECT date(r.created) AS day, count(r.uid) AS total_recipes FROM recipe_db_recipe AS r WHERE created IS NOT NULL {} GROUP BY date(r.created) '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) df = df.set_index('day') return df def per_month(self) -> DataFrame: scope_filter = self.scope.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, count(r.uid) AS total_recipes FROM recipe_db_recipe AS r WHERE created IS NOT NULL {} GROUP BY date(r.created, 'start of month') ORDER BY month ASC '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) df = df.set_index('month') return df def per_style(self) -> DataFrame: scope_filter = self.scope.get_filter() query = ''' SELECT ras.style_id, count(DISTINCT r.uid) AS total_recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipe_associated_styles ras ON r.uid = ras.recipe_id WHERE 1 {} GROUP BY ras.style_id ORDER BY ras.style_id ASC '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) df = df.set_index('style_id') return df class RecipesPopularityAnalysis(RecipeLevelAnalysis): def popularity_per_style( self, projection: Optional[StyleProjection] = None, num_top: Optional[int] = None, top_months: Optional[int] = None, ) -> DataFrame: projection = projection or StyleProjection() scope_filter = self.scope.get_filter() projection_filter = projection.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, ras.style_id, count(r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipe_associated_styles AS ras ON r.uid = ras.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts {} {} GROUP BY month, ras.style_id '''.format(scope_filter.where, projection_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters + projection_filter.parameters) if len(per_month) == 0: return per_month # Filter top values top_ids = None if num_top is not None: top_scope = per_month if top_months is not None: top_scope = top_scope[top_scope['month'] >= months_ago(top_months).strftime('%Y-%m-%d')] top_ids = top_scope.groupby('style_id')['recipes'].sum().sort_values(ascending=False).index.values[:num_top] per_month = per_month[per_month['style_id'].isin(top_ids)] recipes_per_month = RecipesCountAnalysis(self.scope).per_month() per_month = per_month.merge(recipes_per_month, on="month") per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] # Rolling average smoothened = RollingAverage().rolling_multiple_series(per_month, 'style_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Sort by top styles if top_ids is not None: smoothened['style_id'] = pd.Categorical(smoothened['style_id'], top_ids) smoothened = smoothened.sort_values(['style_id', 'month']) smoothened['beer_style'] = smoothened['style_id'].map(get_style_names_dict()) return smoothened def popularity_per_hop( self, projection: Optional[HopProjection] = None, num_top: Optional[int] = None, top_months: Optional[int] = None, ) -> DataFrame: projection = projection or HopProjection() scope_filter = self.scope.get_filter() projection_filter = projection.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, rh.kind_id, count(DISTINCT r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipehop AS rh ON r.uid = rh.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts {} {} GROUP BY date(r.created, 'start of month'), rh.kind_id '''.format(scope_filter.where, projection_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters + projection_filter.parameters) if len(per_month) == 0: return per_month # Filter top values top_ids = None if num_top is not None: top_scope = per_month if top_months is not None: top_scope = top_scope[top_scope['month'] >= months_ago(top_months).strftime('%Y-%m-%d')] top_ids = top_scope.groupby('kind_id')['recipes'].sum().sort_values(ascending=False).index.values[:num_top] per_month = per_month[per_month['kind_id'].isin(top_ids)] recipes_per_month = RecipesCountAnalysis(self.scope).per_month() per_month = per_month.merge(recipes_per_month, on="month") per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] # Rolling average smoothened = RollingAverage().rolling_multiple_series(per_month, 'kind_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Sort by top kinds if top_ids is not None: smoothened['kind_id'] = pd.Categorical(smoothened['kind_id'], top_ids) smoothened = smoothened.sort_values(['kind_id', 'month']) smoothened['hop'] = smoothened['kind_id'].map(get_hop_names_dict()) return smoothened def popularity_per_fermentable( self, projection: Optional[FermentableProjection] = None, num_top: Optional[int] = None, ) -> DataFrame: projection = projection or FermentableProjection() scope_filter = self.scope.get_filter() projection_filter = projection.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, rf.kind_id, count(DISTINCT r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipefermentable AS rf ON r.uid = rf.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts {} {} GROUP BY date(r.created, 'start of month'), rf.kind_id '''.format(scope_filter.where, projection_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters + projection_filter.parameters) if len(per_month) == 0: return per_month # Filter top values top_ids = None if num_top is not None: top_scope = per_month top_ids = top_scope.groupby('kind_id')['recipes'].sum().sort_values(ascending=False).index.values[:num_top] per_month = per_month[per_month['kind_id'].isin(top_ids)] recipes_per_month = RecipesCountAnalysis(self.scope).per_month() per_month = per_month.merge(recipes_per_month, on="month") per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] # Rolling average smoothened = RollingAverage().rolling_multiple_series(per_month, 'kind_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Sort by top kinds if top_ids is not None: smoothened['kind_id'] = pd.Categorical(smoothened['kind_id'], top_ids) smoothened = smoothened.sort_values(['kind_id', 'month']) smoothened['fermentable'] = smoothened['kind_id'].map(get_fermentable_names_dict()) return smoothened def popularity_per_yeast( self, projection: Optional[YeastProjection] = None, num_top: Optional[int] = None, top_months: Optional[int] = None, ) -> DataFrame: projection = projection or YeastProjection() scope_filter = self.scope.get_filter() projection_filter = projection.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, ry.kind_id, count(DISTINCT r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipeyeast AS ry ON r.uid = ry.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts {} {} GROUP BY date(r.created, 'start of month'), ry.kind_id '''.format(scope_filter.where, projection_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters + projection_filter.parameters) if len(per_month) == 0: return per_month # Filter top values top_ids = None if num_top is not None: top_scope = per_month if top_months is not None: top_scope = top_scope[top_scope['month'] >= months_ago(top_months).strftime('%Y-%m-%d')] top_ids = top_scope.groupby('kind_id')['recipes'].sum().sort_values(ascending=False).index.values[:num_top] per_month = per_month[per_month['kind_id'].isin(top_ids)] recipes_per_month = RecipesCountAnalysis(self.scope).per_month() per_month = per_month.merge(recipes_per_month, on="month") per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] # Rolling average smoothened = RollingAverage().rolling_multiple_series(per_month, 'kind_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Sort by top kinds if top_ids is not None: smoothened['kind_id'] = pd.Categorical(smoothened['kind_id'], top_ids) smoothened = smoothened.sort_values(['kind_id', 'month']) smoothened['yeast'] = smoothened['kind_id'].map(get_yeast_names_dict()) return smoothened class RecipesMetricHistogram(RecipeLevelAnalysis): def metric_histogram(self, metric: str) -> DataFrame: precision = METRIC_PRECISION[metric] if metric in METRIC_PRECISION else METRIC_PRECISION['default'] scope_filter = self.scope.get_filter() query = ''' SELECT round({}, {}) as {} FROM recipe_db_recipe AS r WHERE {} IS NOT NULL {} '''.format(metric, precision, metric, metric, scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) df = remove_outliers(df, metric, 0.02) if len(df) == 0: return df bins = 16 if metric in ['og', 'fg'] and len(df) > 0: abs = df[metric].max() - df[metric].min() bins = max([1, round(abs / 0.002)]) if bins > 18: bins = round(bins / math.ceil(bins / 12)) if metric in ['abv', 'srm'] and len(df) > 0: abs = df[metric].max() - df[metric].min() bins = max([1, round(abs / 0.1)]) if bins > 18: bins = round(bins / math.ceil(bins / 12)) if metric in ['ibu'] and len(df) > 0: abs = df[metric].max() - df[metric].min() bins = max([1, round(abs)]) if bins > 18: bins = round(bins / math.ceil(bins / 12)) histogram = df.groupby([pd.cut(df[metric], bins, precision=precision)])[metric].agg(['count']) histogram = histogram.reset_index() histogram[metric] = histogram[metric].map(str) return histogram class RecipesTrendAnalysis(RecipeLevelAnalysis): def _recipes_per_month_in_scope(self) -> DataFrame: return RecipesCountAnalysis(self.scope).per_month() def trending_styles(self, trend_window_months: int = 24) -> DataFrame: recipes_per_month = self._recipes_per_month_in_scope() scope_filter = self.scope.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, ras.style_id, count(r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipe_associated_styles AS ras ON r.uid = ras.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts {} GROUP BY month, ras.style_id '''.format(scope_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters) if len(per_month) == 0: return per_month per_month = per_month.merge(recipes_per_month, on="month") per_month['month'] = pd.to_datetime(per_month['month']) per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] trend_filter = Trending(RollingAverage(window=trend_window_months + 1), trending_window=trend_window_months) trending_ids = trend_filter.get_trending_series(per_month, 'style_id', 'month', 'recipes_percent', 'recipes') # Filter trending series trending = per_month[per_month['style_id'].isin(trending_ids)] if len(trending) == 0: return trending # Rolling average smoothened = RollingAverage().rolling_multiple_series(trending, 'style_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Order by relevance smoothened['style_id'] = pd.Categorical(smoothened['style_id'], trending_ids) smoothened = smoothened.sort_values(['style_id', 'month']) smoothened['beer_style'] = smoothened['style_id'].map(get_style_names_dict()) return smoothened def trending_hops(self, projection: Optional[HopProjection] = None, trend_window_months: int = 24) -> DataFrame: projection = projection or HopProjection() recipes_per_month = self._recipes_per_month_in_scope() scope_filter = self.scope.get_filter() projection_filter = projection.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, rh.kind_id, count(DISTINCT r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipehop AS rh ON r.uid = rh.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts AND rh.kind_id IS NOT NULL {} {} GROUP BY date(r.created, 'start of month'), rh.kind_id '''.format(scope_filter.where, projection_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters + projection_filter.parameters) if len(per_month) == 0: return per_month per_month = per_month.merge(recipes_per_month, on="month") per_month['month'] = pd.to_datetime(per_month['month']) per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] trend_filter = Trending(RollingAverage(window=trend_window_months+1), trending_window=trend_window_months) trending_ids = trend_filter.get_trending_series(per_month, 'kind_id', 'month', 'recipes_percent', 'recipes') # Filter trending series trending = per_month[per_month['kind_id'].isin(trending_ids)] if len(trending) == 0: return trending # Rolling average smoothened = RollingAverage().rolling_multiple_series(trending, 'kind_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Order by relevance smoothened['kind_id'] = pd.Categorical(smoothened['kind_id'], trending_ids) smoothened = smoothened.sort_values(['kind_id', 'month']) smoothened['hop'] = smoothened['kind_id'].map(get_hop_names_dict()) return smoothened def trending_yeasts(self, projection: Optional[YeastProjection] = None, trend_window_months: int = 24) -> DataFrame: projection = projection or YeastProjection() recipes_per_month = self._recipes_per_month_in_scope() scope_filter = self.scope.get_filter() projection_filter = projection.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, ry.kind_id, count(DISTINCT r.uid) AS recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipeyeast AS ry ON r.uid = ry.recipe_id WHERE r.created >= %s -- Cut-off date for popularity charts AND ry.kind_id IS NOT NULL {} {} GROUP BY date(r.created, 'start of month'), ry.kind_id '''.format(scope_filter.where, projection_filter.where) per_month = pd.read_sql(query, connection, params=[POPULARITY_CUT_OFF_DATE] + scope_filter.parameters + projection_filter.parameters) if len(per_month) == 0: return per_month per_month = per_month.merge(recipes_per_month, on="month") per_month['month'] = pd.to_datetime(per_month['month']) per_month['recipes_percent'] = per_month['recipes'] / per_month['total_recipes'] trend_filter = Trending(RollingAverage(window=trend_window_months+1), trending_window=trend_window_months) trending_ids = trend_filter.get_trending_series(per_month, 'kind_id', 'month', 'recipes_percent', 'recipes') # Filter trending series trending = per_month[per_month['kind_id'].isin(trending_ids)] if len(trending) == 0: return trending # Rolling average smoothened = RollingAverage().rolling_multiple_series(trending, 'kind_id', 'month') smoothened['recipes_percent'] = smoothened['recipes_percent'].apply(lambda x: max([x, 0])) # Start date for popularity charts smoothened = smoothened[smoothened['month'] >= POPULARITY_START_MONTH] # Order by relevance smoothened['kind_id'] =
pd.Categorical(smoothened['kind_id'], trending_ids)
pandas.Categorical
'''Reads data files in input folder(home by default, -Gi is flag for passing new one) then calls GDDcalculator.py, passes lists of maximum and minimum temperatures also base and upper, takes list of GDD from that and concatenates it with associated Data Frame''' from GDDcalculate import * import argparse import pandas as pd import glob print("GDD.py starts") parser = argparse.ArgumentParser(description="Calculating GDD") # Argument parser for command-line friendly script parser.add_argument("-tbase", "-b", type=float, default=10, help="Base temperature") # takes base temperature parser.add_argument("-tupper", "-u", type=float, default=30, help="Upper temperature") # takes upper temperature parser.add_argument("-GDDinfolder", "-Gi", type=str, default="./input/", help="Folder containing GDD input files.") parser.add_argument("-GDDoutfolder", "-Go", type=str, default="./input/", help="Folder that will keep GDD output files.") args = parser.parse_args() for fname in glob.glob(args.GDDinfolder + "*.csv"): # For loop for .csv files in given input folder D = pd.read_csv(fname, header=0) # skipped rows will change if data frame's shape change###############IMPORTANT df = pd.DataFrame(D) print(df.columns.values) tempmax = df["Max Temp (°C)"] tempmin = df["Min Temp (°C)"] # Data frame's column year = list(df['Year'])[1] # Just so that we can name final file! name = list(df['Name'])[1] length = len(
pd.Series.dropna(tempmin)
pandas.Series.dropna
# Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import tarfile import warnings from collections import defaultdict import numpy as np import tensorflow as tf from scipy import linalg from six.moves import urllib import pandas as pd MODEL_DIR = '/tmp/imagenet' DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' softmax = None pool3 = None pool3_mean_real = None pool3_std_real = None # Call this function with list of images. Each of elements should be a # numpy array with values ranging from 0 to 255. def get_features(images): assert ((images.shape[3]) == 3) assert (np.max(images) > 10) assert (np.min(images) >= 0.0) images = images.astype(np.float32) bs = 100 sess = tf.get_default_session() preds = [] feats = [] for inp in np.array_split(images, round(images.shape[0] / bs)): # sys.stdout.write(".") # sys.stdout.flush() [feat, pred] = sess.run([pool3, softmax], {'InputTensor:0': inp}) feats.append(feat.reshape(-1, 2048)) preds.append(pred) feats = np.concatenate(feats, 0) preds = np.concatenate(preds, 0) return preds, feats def update_fid_mean(images): global pool3_mean_real global pool3_std_real preds, feats = get_features(images) pool3_mean_real = np.mean(feats, axis=0) pool3_std_real = np.cov(feats, rowvar=False) def calc_scores(images, splits=10): preds, feats = get_features(images) # calc inception scores = [] for i in range(splits): part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) kl = np.mean(np.sum(kl, 1)) scores.append(np.exp(kl)) inception_m = np.mean(scores) inception_s = np.std(scores) # fid mu2 = np.mean(feats, axis=0) sigma2 = np.cov(feats, rowvar=False) fid = calculate_frechet_distance(pool3_mean_real, pool3_std_real, mu2, sigma2) return inception_m, inception_s, fid def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by <NAME>. Params: -- mu1 : Numpy array containing the activations of the pool_3 layer of the inception net ( like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations of the pool_3 layer, precalcualted on an representive data set. -- sigma1: The covariance matrix over activations of the pool_3 layer for generated samples. -- sigma2: The covariance matrix over activations of the pool_3 layer, precalcualted on an representive data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths" assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions" diff = mu1 - mu2 # product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = "fid calculation produces singular product; adding %s to diagonal of cov estimates" % eps warnings.warn(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError("Imaginary component {}".format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean # ------------------------------------------------------------------------------- # This function is called automatically. def _init_inception(): global softmax global pool3 if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) filename = DATA_URL.split('/')[-1] filepath = os.path.join(MODEL_DIR, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR) with tf.gfile.GFile(os.path.join( MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # Import model with a modification in the input tensor to accept arbitrary # batch size. input_tensor = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='InputTensor') _ = tf.import_graph_def(graph_def, name='inception_v3', input_map={'ExpandDims:0': input_tensor}) # Works with an arbitrary minibatch size. pool3 = tf.get_default_graph().get_tensor_by_name('inception_v3/pool_3:0') ops = pool3.graph.get_operations() for op_idx, op in enumerate(ops): if 'inception_v3' in op.name: for o in op.outputs: shape = o.get_shape() shape = [s.value for s in shape] new_shape = [] for j, s in enumerate(shape): if s == 1 and j == 0: new_shape.append(None) else: new_shape.append(s) o.set_shape(tf.TensorShape(new_shape)) w = tf.get_default_graph().get_operation_by_name("inception_v3/softmax/logits/MatMul").inputs[1] logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w) softmax = tf.nn.softmax(logits) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='index of gpu to be used') parser.add_argument('--results_dir', type=str, default='./results/gans', help='directory to save the results to') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) result_dir = args.results_dir (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() scores = defaultdict(list) with tf.Session() as sess: _init_inception() update_fid_mean(x_train) for iter in range(1000, 50001, 1000): print('run iteration: '+str(iter)) file = os.path.join(result_dir, 'gen_imgs', 'iter{}.npy'.format(iter)) if os.path.isfile(file): imgs = np.load(file) inception_m, inception_s, fid = calc_scores(imgs) scores['Iteration'].append(iter) scores['Inception_mean'].append(inception_m) scores['Inception std'].append(inception_s) scores['FID'].append(fid) scores =
pd.DataFrame(scores)
pandas.DataFrame
""" * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import sys import tempfile from six.moves import urllib import urllib.request import sys import os import math import time import logging import concurrent.futures as cf import numpy as np import pandas as pd import sklearn.preprocessing as skp logging.basicConfig(format='%(asctime)s %(message)s') logging.root.setLevel(logging.NOTSET) NUM_INTEGER_COLUMNS = 13 NUM_CATEGORICAL_COLUMNS = 26 NUM_TOTAL_COLUMNS = 1 + NUM_INTEGER_COLUMNS + NUM_CATEGORICAL_COLUMNS MAX_NUM_WORKERS = NUM_TOTAL_COLUMNS INT_NAN_VALUE = np.iinfo(np.int32).min CAT_NAN_VALUE = '80000000' def idx2key(idx): if idx == 0: return 'label' return 'I' + str(idx) if idx <= NUM_INTEGER_COLUMNS else 'C' + str(idx - NUM_INTEGER_COLUMNS) def _fill_missing_features_and_split(chunk, series_list_dict): for cid, col in enumerate(chunk.columns): NAN_VALUE = INT_NAN_VALUE if cid <= NUM_INTEGER_COLUMNS else CAT_NAN_VALUE result_series = chunk[col].fillna(NAN_VALUE) series_list_dict[col].append(result_series) def _merge_and_transform_series(src_series_list, col, dense_cols, normalize_dense): result_series = pd.concat(src_series_list) if col != 'label': unique_value_counts = result_series.value_counts() unique_value_counts = unique_value_counts.loc[unique_value_counts >= 6] unique_value_counts = set(unique_value_counts.index.values) NAN_VALUE = INT_NAN_VALUE if col.startswith('I') else CAT_NAN_VALUE result_series = result_series.apply( lambda x: x if x in unique_value_counts else NAN_VALUE) if col == 'label' or col in dense_cols: result_series = result_series.astype(np.int64) le = skp.LabelEncoder() result_series = pd.DataFrame(le.fit_transform(result_series)) if col != 'label': result_series = result_series + 1 else: oe = skp.OrdinalEncoder(dtype=np.int64) result_series = pd.DataFrame(oe.fit_transform(pd.DataFrame(result_series))) result_series = result_series + 1 if normalize_dense != 0: if col in dense_cols: mms = skp.MinMaxScaler(feature_range=(0,1)) result_series = pd.DataFrame(mms.fit_transform(result_series)) result_series.columns = [col] min_max = (np.int64(result_series[col].min()), np.int64(result_series[col].max())) if col != 'label': logging.info('column {} [{}, {}]'.format(col, str(min_max[0]),str(min_max[1]))) return [result_series, min_max] def _convert_to_string(series): return series.astype(str) def _merge_columns_and_feature_cross(series_list, min_max, feature_pairs, feature_cross): name_to_series = dict() for series in series_list: name_to_series[series.columns[0]] = series.iloc[:,0] df =
pd.DataFrame(name_to_series)
pandas.DataFrame
import pandas as pd import tushare as ts from StockAnalysisSystem.core.config import TS_TOKEN from StockAnalysisSystem.core.Utility.common import * from StockAnalysisSystem.core.Utility.time_utility import * from StockAnalysisSystem.core.Utility.CollectorUtility import * # ---------------------------------------------------------------------------------------------------------------------- FIELDS = { 'Finance.BusinessComposition': { 'bz_item': '主营业务来源', 'bz_sales': '主营业务收入(元)', 'bz_profit': '主营业务利润(元)', 'bz_cost': '主营业务成本(元)', 'curr_type': '货币代码', 'update_flag': '是否更新', }, } # -------------------------------------------------------- Prob -------------------------------------------------------- def plugin_prob() -> dict: return { 'plugin_name': 'finance_business_tushare_pro', 'plugin_version': '0.0.0.1', 'tags': ['tusharepro'] } def plugin_adapt(uri: str) -> bool: return uri in FIELDS.keys() def plugin_capacities() -> list: return list(FIELDS.keys()) # ---------------------------------------------------------------------------------------------------------------------- # fina_mainbz: https://tushare.pro/document/2?doc_id=81 def __fetch_bussiness_data_by_type(pro: ts.pro_api, ts_code: str, classify: str, since: datetime.datetime, until: datetime.datetime): limit = 10 result = None derive_time = until while limit > 0: ts_since = since.strftime('%Y%m%d') ts_until = derive_time.strftime('%Y%m%d') ts_delay('fina_mainbz') sub_result = pro.fina_mainbz(ts_code=ts_code, start_date=ts_since, end_date=ts_until, type=classify) if not isinstance(sub_result, pd.DataFrame) or sub_result.empty: break result = pd.concat([result, sub_result]) result = result.reset_index(drop=True) result_since = min(sub_result['end_date']) result_since = text_auto_time(result_since) # End condition if result_since == derive_time or len(sub_result) < 100: break limit -= 1 derive_time = result_since if isinstance(result, pd.DataFrame): result = result.drop_duplicates() return result def __fetch_business_data(**kwargs) -> pd.DataFrame: uri = kwargs.get('uri') result = check_execute_test_flag(**kwargs) if result is None: period = kwargs.get('period') ts_code = pickup_ts_code(kwargs) since, until = normalize_time_serial(period, default_since(), today()) # since_limit = years_ago_of(until, 3) # since = max([since, since_limit]) # Because of the implementation of this interface, we only fetch the annual report # since_year = since.year # until_year = until.year result = None pro = ts.pro_api(TS_TOKEN) try: if is_slice_update(ts_code, since, until): ts_since = since.strftime('%Y%m%d') clock = Clock() result_product = pro.fina_mainbz_vip(ts_since, type='P') result_area = pro.fina_mainbz_vip(ts_since, type='D') print('%s: [%s] - Network finished, time spending: %sms' % (uri, ts_code, clock.elapsed_ms())) else: clock = Clock() result_product = __fetch_bussiness_data_by_type(pro, ts_code, 'P', since, until) result_area = __fetch_bussiness_data_by_type(pro, ts_code, 'D', since, until) print('%s: [%s] - Network finished, time spending: %sms' % (uri, ts_code, clock.elapsed_ms())) if isinstance(result_product, pd.DataFrame) and not result_product.empty: result_product['classification'] = 'product' if isinstance(result_area, pd.DataFrame) and not result_area.empty: result_area['classification'] = 'area' result =
pd.concat([result_product, result_area])
pandas.concat
import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression,RidgeClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier from sklearn import preprocessing from sklearn.model_selection import GridSearchCV from tensorflow.keras.wrappers.scikit_learn import KerasClassifier import tensorflow as tf from tensorflow.keras import layers from copy import copy def transform_data(data_orig): """ Function that takes experimental data and gives us the dependent/independent variables for analysis. Parameters ---------- data : Pandas DataFrame or string. If this is a DataFrame, it should have the columns `contrast1` and `answer` from which the dependent and independent variables will be extracted. If this is a string, it should be the full path to a csv file that contains data that can be read into a DataFrame with this specification. Returns ------- X : array train data, information about each passenger features: ['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',\ 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'] y : array label of survival of each passenger """ if isinstance(data_orig, str): data_orig = pd.read_csv(data_orig) data = data_orig num_rows,num_variables = data.shape all_columns = data.columns.tolist() clean_data(data,all_columns,ignore_na=False,fill_mode="prob") expand_features(data) variables = ['Pclass','Sex',"Fare","Age","SibSp","Parch","Embarked","Fam_size",\ "cabin_no","ticket_no","friend","Fare_person","Child"] X = pd.get_dummies(data[variables]) ## normalise features to zero man and unit variance scaler = preprocessing.StandardScaler().fit(X) X_scaled = scaler.transform(X) X =
pd.DataFrame(X_scaled, columns=X.columns)
pandas.DataFrame
#!/usr/bin/python # encoding: utf-8 """ @author: Ian @file: test.py @time: 2019-05-15 15:09 """ import pandas as pd if __name__ == '__main__': mode = 1 if mode == 1: df =
pd.read_excel('zy_all.xlsx', converters={'出险人客户号': str})
pandas.read_excel
# coding:utf-8 # 用 ARMA 进行时间序列预测 import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.tsa.arima_model import ARMA from statsmodels.graphics.api import qqplot # 创建数据 data = [5922, 5308, 5546, 5975, 2704, 1767, 4111, 5542, 4726, 5866, 6183, 3199, 1471, 1325, 6618, 6644, 5337, 7064, 2912, 1456, 4705, 4579, 4990, 4331, 4481, 1813, 1258, 4383, 5451, 5169, 5362, 6259, 3743, 2268, 5397, 5821, 6115, 6631, 6474, 4134, 2728, 5753, 7130, 7860, 6991, 7499, 5301, 2808, 6755, 6658, 7644, 6472, 8680, 6366, 5252, 8223, 8181, 10548, 11823, 14640, 9873, 6613, 14415, 13204, 14982, 9690, 10693, 8276, 4519, 7865, 8137, 10022, 7646, 8749, 5246, 4736, 9705, 7501, 9587, 10078, 9732, 6986, 4385, 8451, 9815, 10894, 10287, 9666, 6072, 5418] data=pd.Series(data) data_index = sm.tsa.datetools.dates_from_range('1901','1990') # 绘制数据图 data.index =
pd.Index(data_index)
pandas.Index
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ],
pd.Timestamp("2015-01-20")
pandas.Timestamp
""" 分析模块 """ import warnings from typing import Tuple, Union import re import numpy as np import pandas as pd from scipy import stats from statsmodels.api import OLS, add_constant from QUANTAXIS.QAFactor import utils from QUANTAXIS.QAFactor.parameters import DAYS_PER_MONTH, DAYS_PER_QUARTER, DAYS_PER_YEAR from QUANTAXIS.QAFactor.process import demean_forward_returns from QUANTAXIS.QAFactor.utils import get_forward_returns_columns def mean_return_by_quantile( factor_data: pd.DataFrame, by_datetime: bool = False, by_group: bool = False, demeaned: bool = True, group_adjust: bool = False, ) -> Tuple: """ 按分位计算因子远期收益和标准差 参数 --- :param factor_data: 索引为 ['日期' '资产'] 的 MultiIndex, values 包括因子的值,各期因子远期收益,因子分位数, 因子分组 [可选], 因子权重 [可选] :param by_datetime: 按日期计算各分位数的因子远期收益均值 :param by_group: 按分组计算各分位数的因子远期收益均值 :param demeaned: 按日期计算超额收益 :param group_adjust: 按日期和分组计算超额收益 返回 --- :return mean_ret: 各分位数因子远期收益均值 :return std_error_ret: 各分位数因子远期收益标准差 """ if group_adjust: grouper = ["datetime", "group"] factor_data = demean_forward_returns(factor_data, grouper) elif demeaned: factor_data = demean_forward_returns(factor_data) else: factor_data = factor_data.copy() grouper = ["factor_quantile"] if by_datetime: grouper.append("datetime") if by_group: grouper.append("group") mean_ret, std_error_ret = weighted_mean_return(factor_data, grouper=grouper) return mean_ret, std_error_ret def weighted_mean_return(factor_data: pd.DataFrame, grouper: list): """ 计算加权平均收益/标准差 """ forward_returns_columns = get_forward_returns_columns(factor_data.columns) def agg(values, weights): count = len(values) average = np.average(values, weights=weights, axis=0) variance = ( np.average((values - average)**2, weights=weights, axis=0) * count / max((count - 1), 1) ) return pd.Series( [average, np.sqrt(variance), count], index=["mean", "std", "count"] ) group_stats = factor_data.groupby(grouper)[forward_returns_columns.append( pd.Index(["weights"]) )].apply( lambda x: x[forward_returns_columns]. apply(agg, weights=x["weights"].fillna(0.0).values) ) mean_ret = group_stats.xs("mean", level=-1) std_error_ret = group_stats.xs( "std", level=-1 ) / np.sqrt(group_stats.xs("count", level=-1)) return mean_ret, std_error_ret def mean_returns_spread( mean_returns: pd.DataFrame, upper_quant: int, lower_quant: int, std_err=None ): """ 计算 upper_quant 与 lower_quant 之间的收益差,与联合收益标准差 参数 --- :param mean_returns: 平均回报 :param upper_quant: 上分位 :param lower_quant: 下分位 :param std_err: 收益标准差 """ mean_return_difference = mean_returns.xs(upper_quant ) - mean_returns.xs(lower_quant) if std_err is None: joint_std_err = None else: std1 = std_err.xs(upper_quant) std2 = std_err.xs(lower_quant) joint_std_err = np.sqrt(std1**2 + std2**2) return mean_return_difference, joint_std_err def factor_alpha_beta( factor_data: pd.DataFrame, returns: pd.DataFrame = None, demeaned: bool = True, group_adjust: bool = False, equal_weight: bool = False, ): """ 计算因子的 alpha (超额收益), alpha 的 t-统计量 以及 beta 值 参数 --- :param factor_data: 索引为 ['日期' '股票'] 的 MultiIndex, values 包括因子值,远期收益,因子分位,因子分组 [可选] :param returns: 因子远期收益,默认为 None, 如果为 None 的时候,会通过调用 `factor_returns` 来计算相应的收益 :param demeaned: 是否基于一个多空组合 :param group_adjust: 是否进行行业中性处理 :param equal_weight: 返回 --- """ if returns is None: returns = factor_returns( factor_data, demeaned, group_adjust, equal_weight ) universe_ret = ( factor_data.groupby(level="datetime")[get_forward_returns_columns( factor_data.columns )].mean().loc[returns.index] ) if isinstance(returns, pd.Series): returns.name = universe_ret.columns.values[0] returns = pd.DataFrame(returns) alpha_beta = pd.DataFrame() for period in returns.columns.values: x = universe_ret[period].values y = returns[period].values x = add_constant(x) reg_fit = OLS(y, x).fit() try: alpha, beta = reg_fit.params except ValueError: alpha_beta.loc["Ann. alpha", period] = np.nan alpha_beta.loc["beta", period] = np.nan else: freq_adjust = pd.Timedelta(days=DAYS_PER_YEAR) / pd.Timedelta( utils.get_period(period.replace("period_", "")) ) alpha_beta.loc["Ann. alpha", period] = (1 + alpha)**freq_adjust - 1.0 alpha_beta.loc["beta", period] = beta return alpha_beta def factor_returns( factor_data: pd.DataFrame, demeaned: bool = True, group_adjust: bool = False, equal_weight: bool = False, by_asset: bool = False, ): """ 计算按因子值加权的投资组合收益 参数 --- :param factor_data: 因子数据 :param demeaned: 是否构建多空组合 :param group_adjust: 是否按分组进行多空组合 :param equal_weight: 针对因子中位数分别构建多空组合 :param by_asset: 按股票展示组合收益, 默认为 False 返回值 --- """ weights = factor_weights(factor_data, demeaned, group_adjust, equal_weight) weighted_returns = factor_data[get_forward_returns_columns( factor_data.columns )].multiply( weights, axis=0 ) if by_asset: returns = weighted_returns else: returns = weighted_returns.groupby(level="datetime").sum() return returns def factor_weights( factor_data: pd.DataFrame, demeaned: bool = True, group_adjust: bool = False, equal_weight: bool = False, ): def to_weights(group, _demeaned, _equal_weight): if _equal_weight: group = group.copy() if _demeaned: # top assets positive weights, bottom ones negative group = group - group.median() negative_mask = group < 0 group[negative_mask] = -1.0 positive_mask = group > 0 group[positive_mask] = 1.0 if _demeaned: # positive weights must equal negative weights if negative_mask.any(): if negative_mask.sum() == 0: group[negative_mask] = 0 group[negative_mask] /= negative_mask.sum() if positive_mask.any(): if positive_mask.sum() == 0: group[positive_mask] = 0 group[positive_mask] /= positive_mask.sum() elif _demeaned: group = group - group.mean() if group.abs().sum() == 0: # 二分类可能和为 0 return group * 0.0 return group / group.abs().sum() grouper = ["datetime"] if group_adjust: grouper.append("group") weights = factor_data.groupby(grouper)["factor"].apply( to_weights, demeaned, equal_weight ) if group_adjust: weights = weights.groupby(level="datetime" ).apply(to_weights, False, False) return weights def factor_information_coefficient( factor_data: pd.DataFrame, group_adjust: bool = False, by_group: bool = False ): """ Computes the Spearman Rank Correlation based Information Coefficient (IC) between factor values and N period forward returns for each period in the factor index. Parameters ---------- factor_data : pd.DataFrame - MultiIndex A MultiIndex DataFrame indexed by date (level 0) and asset (level 1), containing the values for a single alpha factor, forward returns for each period, the factor quantile/bin that factor value belongs to, and (optionally) the group the asset belongs to. - See full explanation in utils.get_clean_factor_and_forward_returns group_adjust : bool Demean forward returns by group before computing IC. by_group : bool If True, compute period wise IC separately for each group. Returns ------- ic : pd.DataFrame Spearman Rank correlation between factor and provided forward returns. """ def src_ic(group): f = group["factor"] _ic = group[get_forward_returns_columns( factor_data.columns )].apply(lambda x: stats.spearmanr(x, f)[0]) return _ic factor_data = factor_data.copy() grouper = ["datetime"] if group_adjust: factor_data = demean_forward_returns(factor_data, grouper + ["group"]) if by_group: grouper.append("group") ic = factor_data.groupby(grouper).apply(src_ic) return ic def quantile_turnover( quantile_factor: pd.DataFrame, quantile: int, period: Union[int, str] = 1 ): """ Computes the proportion of names in a factor quantile that were not in that quantile in the previous period. Parameters ---------- quantile_factor : pd.Series DataFrame with date, asset and factor quantile. quantile : int Quantile on which to perform turnover analysis. period: string or int, optional Period over which to calculate the turnover. If it is a string it must follow pandas.Timedelta constructor format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc). Returns ------- quant_turnover : pd.Series Period by period turnover for that quantile. """ quant_names = quantile_factor[quantile_factor == quantile] quant_name_sets = quant_names.groupby( level=["datetime"] ).apply(lambda x: set(x.index.get_level_values("code"))) if isinstance(period, int): name_shifted = quant_name_sets.shift(period) else: period = utils.get_period(period) shifted_idx = utils.add_custom_calendar_timedelta( quant_name_sets.index, -pd.Timedelta(period) ) name_shifted = quant_name_sets.reindex(shifted_idx) name_shifted.index = quant_name_sets.index new_names = (quant_name_sets - name_shifted).dropna() quant_turnover = new_names.apply(lambda x: len(x) ) / quant_name_sets.apply(lambda x: len(x)) quant_turnover.name = quantile return quant_turnover def factor_rank_autocorrelation( factor_data: pd.DataFrame, period: Union[int, str] = 1 ): grouper = ["datetime"] ranks = factor_data.groupby(grouper)["factor"].rank() asset_factor_rank = ranks.reset_index().pivot( index="datetime", columns="code", values="factor" ) if isinstance(period, int): asset_shifted = asset_factor_rank.shift(period) else: shifted_idx = utils.add_custom_calendar_timedelta( asset_factor_rank.index, -pd.Timedelta(period), ) asset_shifted = asset_factor_rank.reindex(shifted_idx) asset_shifted.index = asset_factor_rank.index autocorr = asset_factor_rank.corrwith(asset_shifted, axis=1) autocorr.name = period return autocorr def cumulative_returns(returns: pd.DataFrame, period, freq=None): if not isinstance(period, pd.Timedelta): period = pd.Timedelta(period) if freq is None: freq = returns.index.freq if freq is None: freq = pd.tseries.offsets.BDay() warnings.warn( "'freq' not set, using business day calendar", UserWarning ) trades_idx = returns.index.copy() returns_idx = utils.add_custom_calendar_timedelta(trades_idx, period) full_idx = trades_idx.union(returns_idx) sub_returns = [] while len(trades_idx) > 0: sub_idx = [] next = trades_idx.min() while next <= trades_idx.max(): sub_idx.append(next) next = utils.add_custom_calendar_timedelta( input=next, timedelta=period, ) try: i = trades_idx.get_loc(next, method="bfill") next = trades_idx[i] except KeyError: break sub_idx = pd.DatetimeIndex(sub_idx, tz=full_idx.tz) subret = returns[sub_idx] subret = subret.reindex(full_idx) for pret_idx in reversed(sub_idx): pret = subret[pret_idx] pret_end_idx = utils.add_custom_calendar_timedelta(pret_idx, period) slice = subret[(subret.index > pret_idx) & (subret.index <= pret_end_idx)].index if
pd.isnull(pret)
pandas.isnull
import pandas as pd import numpy as np import pytest from features_creator.features_creator import * @pytest.fixture def data_df(): data = { "week_payment1": [1.0, 2, 3], "week_payment2": [4, 5.0, 6], "week_payment3": [7, 8, 9.0], "othercolumn": [1, 1, 1]} df = pd.DataFrame(data) return df def test_calculate_average(data_df): # Test for TypeError with pytest.raises(TypeError): # check if TypeError is raised when data is not a pandas dataframe calculate_average(1, "week_payment") # check if TypeError is raised when pattern is not a string calculate_average(data_df, 1) # Test for ValueError with pytest.raises(ValueError): # check if ValueError is raised when pattern is not a string calculate_average(data_df, "") # check if ValueError is raised when columns not found calculate_average(data_df, "not_a_column") # Test for return type assert isinstance(calculate_average(data_df, "week_payment"), np.ndarray) # Test the function with a dataframe with only one column data_1col = { "week_payment1": [1, 2, 3]} df_1col = pd.DataFrame(data_1col) assert np.array_equal(calculate_average( df_1col, "week_payment"), np.array([1, 2, 3])) # Test the function return correct value when there is only one row data_1row = { "week_payment1": [1]} df_1row = pd.DataFrame(data_1row) assert np.array_equal(calculate_average( df_1row, "week_payment"), np.array([1])) # Test the function return correct value assert np.array_equal(calculate_average( data_df, "week_payment"), np.array([4, 5, 6])) def test_get_matching_column_names(): """ Tests the `get_matching_column_names` function. Verifies that it raises the correct exceptions, works in "normal" usage, and does not return any extra columns. """ test_df = pd.DataFrame({ "week_payment1": [1, 2, 3], "week_payment2": [1, 2, 3], "week_payment3": [1, 2, 3], "othercolumn": [5, 6, 7], "week_payment_string4": [5, 6, 7] }) # Returns the correct type assert isinstance(get_matching_column_names( test_df, "week_payment"), list), "Returned the wrong data type" # Does not return extra columns assert "othercolumn" not in get_matching_column_names( test_df, "week_payment"), "`othercolumn` was returned" assert "week_payment_string7" not in get_matching_column_names( test_df, "week_payment"), "`week_payment_string7` was returned" # Raises exceptions for wrong types with pytest.raises(TypeError): get_matching_column_names("FakeDF", "week_payment") get_matching_column_names(test_df, [12, 34]) # Raises an exception for no matches with pytest.raises(ValueError): get_matching_column_names(test_df, "fake_string") # Normal usage test assert get_matching_column_names(test_df, "week_payment") == [ "week_payment1", "week_payment2", "week_payment3"], "Incorrect columns were returned" test_df = pd.DataFrame({ "week_payment1": [1.0, 2, 3], "week_payment2": [4, 5.0, 6], "week_payment3": [7, 8, 9.0], "othercolumn": [1, 1, 1] }) @pytest.mark.parametrize( 'json', ( ### Check data type of the first argument:data {"data": 3.141, "pattern": "week_payment", "check": "TypeErrorInput1"}, {"data": "test.txt", "pattern": "week_payment", "check": "TypeErrorInput1"}, {"data": ["list", "of", "words"], "pattern": "week_payment", "check": "TypeErrorInput1"}, ### Check data type of the second argument:pattern {"data": test_df, "pattern": 3.14, "check": "TypeErrorInput2"}, {"data": test_df, "pattern":
pd.DataFrame([])
pandas.DataFrame
import pull_mdsplus as pull import pandas as pd import numpy as np import meas_locations as geo import MDSplus as mds import itertools from scipy import interpolate def load_gfile_mds(shot, time, tree="EFIT01", exact=False, connection=None, tunnel=True): """ This is scavenged from the load_gfile_d3d script on the EFIT repository, except updated to run on python3. shot: Shot to get gfile for. time: Time of the shot to load gfile for, in ms. tree: One of the EFIT trees to get the data from. exact: If True will raise error if time does not exactly match any gfile times. False will grab the closest time. connection: An MDSplus connection to atlas. tunnel: Set to True if accessing outside DIII-D network. returns: The requested gfile as a dictionary. """ # Connect to server, open tree and go to g-file if connection is None: if tunnel is True: connection = mds.Connection("localhost") else: connection = mds.Connection('atlas.gat.com') connection.openTree(tree, shot) base = 'RESULTS:GEQDSK:' # get time slice print("\nLoading gfile:") print(" Shot: " + str(shot)) print(" Tree: " + tree) print(" Time: " + str(time)) signal = 'GTIME' k = np.argmin(np.abs(connection.get(base + signal).data() - time)) time0 = int(connection.get(base + signal).data()[k]) if (time != time0): if exact: raise RuntimeError(tree + ' does not exactly contain time %.2f' %time + ' -> Abort') else: print('Warning: ' + tree + ' does not exactly contain time %.2f' %time + ' the closest time is ' + str(time0)) print('Fetching time slice ' + str(time0)) time = time0 # store data in dictionary g = {'shot': shot, 'time': time} # get header line header = connection.get(base + 'ECASE').data()[k] # get all signals, use same names as in read_g_file translate = {'MW': 'NR', 'MH': 'NZ', 'XDIM': 'Xdim', 'ZDIM': 'Zdim', 'RZERO': 'R0', 'RMAXIS': 'RmAxis', 'ZMAXIS': 'ZmAxis', 'SSIMAG': 'psiAxis', 'SSIBRY': 'psiSep', 'BCENTR': 'Bt0', 'CPASMA': 'Ip', 'FPOL': 'Fpol', 'PRES': 'Pres', 'FFPRIM': 'FFprime', 'PPRIME': 'Pprime', 'PSIRZ': 'psiRZ', 'QPSI': 'qpsi', 'NBBBS': 'Nlcfs', 'LIMITR': 'Nwall'} for signal in translate: g[translate[signal]] = connection.get(base + signal).data()[k] g['R1'] = connection.get(base + 'RGRID').data()[0] g['Zmid'] = 0.0 RLIM = connection.get(base + 'LIM').data()[:, 0] ZLIM = connection.get(base + 'LIM').data()[:, 1] g['wall'] = np.vstack((RLIM, ZLIM)).T RBBBS = connection.get(base + 'RBBBS').data()[k][:int(g['Nlcfs'])] ZBBBS = connection.get(base + 'ZBBBS').data()[k][:int(g['Nlcfs'])] g['lcfs'] = np.vstack((RBBBS, ZBBBS)).T KVTOR = 0 RVTOR = 1.7 NMASS = 0 RHOVN = connection.get(base + 'RHOVN').data()[k] # convert floats to integers for item in ['NR', 'NZ', 'Nlcfs', 'Nwall']: g[item] = int(g[item]) # convert single (float32) to double (float64) and round for item in ['Xdim', 'Zdim', 'R0', 'R1', 'RmAxis', 'ZmAxis', 'psiAxis', 'psiSep', 'Bt0', 'Ip']: g[item] = np.round(np.float64(g[item]), 7) # convert single arrays (float32) to double arrays (float64) for item in ['Fpol', 'Pres', 'FFprime', 'Pprime', 'psiRZ', 'qpsi', 'lcfs', 'wall']: g[item] = np.array(g[item], dtype=np.float64) # Construct (R,Z) grid for psiRZ g['dR'] = g['Xdim']/(g['NR'] - 1) g['R'] = g['R1'] + np.arange(g['NR'])*g['dR'] g['dZ'] = g['Zdim']/(g['NZ'] - 1) NZ2 = int(np.floor(0.5*g['NZ'])) g['Z'] = g['Zmid'] + np.arange(-NZ2, NZ2+1)*g['dZ'] # normalize psiRZ g['psiRZn'] = (g['psiRZ'] - g['psiAxis']) / (g['psiSep'] - g['psiAxis']) return g def rbs_into_df(number, probe, conn, start=2500, end=5000, step=500, verbal=False): """ Pulls RBS data from the MDSplus tree 'dp_probes' and puts it into a DataFrame ready for analysis. Require ssh to r2d2 if remote. number: Probe number. probe: One of A, B or C. conn: An MDSplus Connection returned via the pull.thin_connect function. start: Start of time that will be analyzed (i.e. the first gfile loaded). end: End of time for analysis (i.e. the last gfile loaded). step: Time step for the above. returns: A DataFrame formatted and ready to be filled with data (R-Rsep, R-Rsep_omp, etc.) """ # Create array of times to be sampled. times = np.arange(start, end, step) # Get shots probe was in for and Rprobe. Same for U and D sides, obviously. shots = pull.pull_shots(conn, probe + 'U', verbal=verbal) rprobe = pull.pull_rprobe(conn, probe + 'U', probe_corr=True, verbal=verbal) print("Shots to be analyzed: " + str(shots)) # Then pull the RBS data. print('\nLoading ' + probe + 'U' + str(number) + ' data...') rbs_dict_U = pull.pull_all_rbs(conn, number, probe + 'U', verbal=verbal) print('\nLoading ' + probe + 'D' + str(number) + ' data...') rbs_dict_D = pull.pull_all_rbs(conn, number, probe + 'D', verbal=verbal) # Now prepare the DataFrame. Will have set of data at each time, at each # shot. So essentially len(times)*len(shots) DataFrames stacked together. rbs_df_U = pd.DataFrame(rbs_dict_U) rbs_df_D = pd.DataFrame(rbs_dict_D) # Want 'locs' as an index. rbs_df_U.set_index('locs', inplace=True) rbs_df_D.set_index('locs', inplace=True) # Create set of DataFrames, len(times) of them, to be 'stacked' on top of each other. rbs_df_U = pd.concat(list(itertools.repeat(rbs_df_U, len(times))), keys=times, names=['times']) rbs_df_D = pd.concat(list(itertools.repeat(rbs_df_D, len(times))), keys=times, names=['times']) # Now do it again, except with shots. rbs_df_U = pd.concat(list(itertools.repeat(rbs_df_U, len(shots))), keys=shots, names=['shots']) rbs_df_D = pd.concat(list(itertools.repeat(rbs_df_D, len(shots))), keys=shots, names=['shots']) return rbs_df_U, rbs_df_D, rprobe def fill_in_rbs_df(rbs_df_U, rbs_df_D, probe, rprobe, conn, verbal=False): """ Takes the rbs_df from above and fill it in with R-Rsep, R-Rsep_omp, etc. It returns all if it, so that it may then be averaged and get the std. dev. of after all the data colloction has taken place. Requires ssh to atlas if remote. rbs_df_U: The DataFrame returned from rbs_into_df. Likewise for D. probe: One of A, B or C. rprobe: Radial position of probe tip returned from rbs_into_df. conn: An MDSplus Connection object from the mds.Connection function (different procedure compared to connecting to r2d2). returns: Filled in rbs_df. """ if verbal: print("Analyzing atlas relevant data...") # Get the shots, times and locs from the rbs_df index. np.unique will sort # the locs (don't want), so returning the indices and reordering will fix this. shots = np.unique(rbs_df_U.index.get_level_values('shots').values) times = np.unique(rbs_df_U.index.get_level_values('times').values) locs_U, order_U = np.unique(rbs_df_U.index.get_level_values('locs').values, return_index=True) locs_D, order_D = np.unique(rbs_df_D.index.get_level_values('locs').values, return_index=True) locs_U = locs_U[order_U] locs_D = locs_D[order_D] # Extra columns to be filled out. rbs_df_U['R-Rsep (cm)'] = pd.Series(); rbs_df_D['R-Rsep (cm)'] = pd.Series() rbs_df_U['R-Rsep omp (cm)'] = pd.Series(); rbs_df_D['R-Rsep omp (cm)'] = pd.Series() rbs_df_U['Psin'] = pd.Series(); rbs_df_D['Psin'] = pd.Series() rbs_df_U['R (cm)'] = pd.Series(); rbs_df_D['R (cm)'] = pd.Series() # Establish the Z to be used depending on the probe. if probe == 'A': Z_probe = -0.188 elif probe == 'B': Z_probe = -0.1546 elif probe == 'C': Z_probe = -0.2054 else: print("Error in probe entry.") for shot in shots: for time in times: try: # Load gfile. gfile = load_gfile_mds(shot, time, connection=conn, tunnel=True) # Create grid of R's and Z's. Rs, Zs = np.meshgrid(gfile['R'], gfile['Z']) # Z and R of magnetic axis (where omp is), in m. Z_axis = gfile['ZmAxis'] R_axis = gfile['RmAxis'] # Z's and R's of the separatrix, in m. Zes = np.copy(gfile['lcfs'][:, 1][13:-17]) Res = np.copy(gfile['lcfs'][:, 0][13:-17]) # Only want right half of everything. Rs_trunc = Rs > R_axis # Interpolation functions of psin(R, Z) and R(psin, Z). f_psin = interpolate.Rbf(Rs[Rs_trunc], Zs[Rs_trunc], gfile['psiRZn'][Rs_trunc]) f_Romp = interpolate.Rbf(gfile['psiRZn'][Rs_trunc], Zs[Rs_trunc], Rs[Rs_trunc], epsilon=0.00001) f_Rs = interpolate.interp1d(Zes, Res, assume_sorted=False) # R of the separatrix at each probe Z in cm. Rsep = f_Rs(Z_probe) * 100.0 Rsep_omp = f_Rs(Z_axis) * 100.0 # Get R of each location along the probe in cm, then R-Rsep. R_locs_U = geo.calc_R_meas(rprobe, locs_U, probe + 'U') RminRsep_U = R_locs_U - Rsep R_locs_D = geo.calc_R_meas(rprobe, locs_D, probe + 'D') RminRsep_D = R_locs_D - Rsep # Get the corresponding psins of each location along the probe. psin_locs_U = f_psin(R_locs_U / 100.0, np.full((len(R_locs_U),), Z_probe)) psin_locs_D = f_psin(R_locs_D / 100.0, np.full((len(R_locs_D),), Z_probe)) # Calculate R_loc at the omp, then R-Rsep omp. R_locs_omp_U = f_Romp(psin_locs_U, np.full((len(psin_locs_U),), Z_axis)) * 100.0 RminRsep_omp_U = R_locs_omp_U - Rsep_omp R_locs_omp_D = f_Romp(psin_locs_D, np.full((len(psin_locs_D),), Z_axis)) * 100.0 RminRsep_omp_D = R_locs_omp_D - Rsep_omp except: print("Error loading this time.") # Finally store all these in the corresponding part of the DataFrame. rbs_df_U.loc[shot].loc[time]['R-Rsep (cm)'] = pd.Series(RminRsep_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_U.loc[shot].loc[time]['R-Rsep omp (cm)'] = pd.Series(RminRsep_omp_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_U.loc[shot].loc[time]['Psin'] = pd.Series(psin_locs_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_U.loc[shot].loc[time]['R (cm)'] = pd.Series(R_locs_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['R-Rsep (cm)'] = pd.Series(RminRsep_D, index=rbs_df_D.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['R-Rsep omp (cm)'] = pd.Series(RminRsep_omp_D, index=rbs_df_D.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['Psin'] = pd.Series(psin_locs_D, index=rbs_df_D.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['R (cm)'] = pd.Series(R_locs_D, index=rbs_df_D.loc[shot].loc[time].index) return rbs_df_U, rbs_df_D def rbs_df_stats(rbs_df, U_or_D, verbal=False): """ Computes the average of each data point at each location along the probe. rbs_df: DataFrame returned from the above 'fill_in_rbs_df'. returns: DataFrame of averages at each location for each time during each shot. """ if False: print("Aggregating statistics over all shots and times...") # First get how many locations there are. np.unique will sort them (don't want), # so return index will give the indices to preserve order. locs, order = np.unique(rbs_df.index.get_level_values('locs').values, return_index=True) locs = locs[order] nlocs = locs.size # The DataFrames that will hold our results. rbs_stat_df = pd.DataFrame() err_df =
pd.DataFrame()
pandas.DataFrame
import math import load_data import pickle import pandas as pd import numpy as np import datetime from collections import deque import scipy.stats as st import ast import astpretty import re def main(): # Used first in Organization.ipynb print('\nCell Output') get_cell_output() print('\nCell Stats') get_cell_stats() print('\nCell Order') get_cell_order() print('\nCell Types') get_cell_types() print('\nComments') get_comments() # Used first in Packages.ipynb print('\nGet Imports') get_nb_imports() print('\nGet Code') get_nb_code() print('\nGetting nb_imports_code_df') nb_imports_code_df = load_data.load_nb_imports(code = True) print('\nnb_imports_code_df loaded') cell_types_df = load_data.load_cell_types() print('\ncell_types loaded') cell_stats_df = load_data.load_cell_stats() print('\ncell_stats loaded') cell_info_code_df = cell_types_df.merge( cell_stats_df, on = 'file' ).merge( nb_imports_code_df.rename(columns={'code':'code_list'}), on = 'file' ) print('\ndfs combined') #Used first in APIs.ipynb print('\nGet Objects') get_all_objects(cell_info_code_df) print('\nGet Lines Per Code Cell') get_lines_per_code_cell(cell_info_code_df) print('\nGet Function Definitions') get_function_defs(cell_info_code_df) print('\nGet Function Uses') get_function_use(cell_info_code_df) print('\nSeparate User-defined functions from not user-defined') add_user_funcs() # Used first in Struggles.ipynb print('\nGet Erros') get_errors() print('\nGet Statuses') get_statuses() # Used first in Visualizations.ipynb print('\nGet Visualization Uses') get_vis_uses(nb_imports_code_df) print('\nAdd Visualization Uses to Notebooks') get_vis_uses_nb(nb_imports_code_df) # Used first in Models.ipynb print('\nGet Framework Uses') get_framework_uses(nb_imports_code_df) print('\nGet Magic') get_magic() def get_magic(): df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','cell_id','code'], chunksize = 10000 ) def aggregate_special_lines(list_of_lines_of_code): return [ l for l in load_data.flatten([l.split('\n') for l in list_of_lines_of_code if str(l) != 'nan']) if l.startswith('%') or '!' in l or l.startswith('?') or l.endswith('?') ] special_dfs = [] i = 0 start = datetime.datetime.now() i = len(special_dfs) for chunk in df_chunks: df = chunk.groupby('file')['code'].aggregate( aggregate_special_lines ).reset_index() special_dfs.append(df) if i%1000 == 0: print(i, datetime.datetime.now() - start) i+=1 end = datetime.datetime.now() print('Chunks done in', end - start) start = datetime.datetime.now() special_df = pd.concat( special_dfs, sort = False ).reset_index(drop = True).groupby('file')['code'].aggregate( load_data.flatten ).reset_index() end = datetime.datetime.now() print('Combined in', end - start) start = datetime.datetime.now() f = open('analysis_data/special_functions.df', 'wb') pickle.dump(special_df, f) f.close() end = datetime.datetime.now() print('Saved in', end - start) def get_nb_code(): start = datetime.datetime.now() df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','code','cell_type'], chunksize=10000 ) # 25 minutes start = datetime.datetime.now() i = 0 code_dfs = [] for chunk in df_chunks: code_dfs.append( chunk[chunk.cell_type == 'code'].groupby('file')['code'].aggregate(lambda x: list(x)).reset_index() ) if i%1000 == 0: print(i, datetime.datetime.now() - start) i += 1 end = datetime.datetime.now() print('Chunks', end - start) code_df = pd.concat(code_dfs, sort = False).reset_index(drop=True) start = datetime.datetime.now() code_df = code_df.groupby('file')['code'].aggregate(load_data.flatten).reset_index() end = datetime.datetime.now() print('Combined', end - start) print('now saving') start = datetime.datetime.now() try: f = open('analysis_data/nb_code.df', 'wb') pickle.dump(code_df, f) f.close() print('saved to pickle') except: try: f = open('analysis_data/nb_code.df', 'wb') pickle.dump(code_df, f) f.close() print('saved to pickle') except: try: f = open('analysis_data/nb_code.df', 'wb') pickle.dump(code_df, f) f.close() print('saved to pickle') except: code_df.to_csv('analysis_data/nb_code.csv', index = False) print('saved to csv') end = datetime.datetime.now() print(end - start) def get_all_objects(cell_info_code_df): # 1.5 hours start = datetime.datetime.now() all_objects = [] unprocessed = 0 target_types = [ast.Name,ast.Tuple, ast.Attribute, ast.Subscript, ast.List ] for i, row in cell_info_code_df.iterrows(): o = { 'file': row['file'], 'objects': [] } try: all_code = '\n'.join([ c for c in '\n'.join([l for l in row.code_list if type(l) == str]).split('\n') if (c != '' and not c.strip().startswith('%') and not c.strip().startswith('?') and not c.strip().startswith('!') ) ]) tree = ast.parse(all_code) except Exception as e: all_objects.append(o) unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start, unprocessed, 'unprocessed') continue for t in tree.body: if type(t) == ast.Assign: value_type = type(t.value) for target in t.targets: if type(target) in [ast.Tuple, ast.List]: for node in ast.walk(target): if type(node) == ast.Name: o['objects'].append((node.id, value_type)) else: if type(target) == ast.Name: for node in ast.walk(target): if type(node) == ast.Name: o['objects'].append((node.id, value_type)) all_objects.append(o) if i%200000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Found objects', end - start) all_objects_df = pd.DataFrame(all_objects) # 14 seconds start = datetime.datetime.now() f = open('analysis_data/all_objects.df', 'wb') pickle.dump(all_objects_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_lines_per_code_cell(cell_info_code_df): # 12.5 minutes start = datetime.datetime.now() lines_per_code_cell = [ row['lines_of_code'] / row['code'] for i, row in cell_info_code_df.iterrows() if row['code'] != 0 ] end = datetime.datetime.now() print('Calculated', end - start) # 0.2 seconds start = datetime.datetime.now() f = open('analysis_data/lines_per_code_cell.list', 'wb') pickle.dump(lines_per_code_cell, f) f.close() end = datetime.datetime.now() print('Saved',end - start) def get_function_use(cell_info_code_df): ''' Get all function calls from a python file The MIT License (MIT) Copyright (c) 2016 <NAME> <<EMAIL>> ''' class FuncCallVisitor(ast.NodeVisitor): def __init__(self): self._name = deque() @property def name(self): return '.'.join(self._name) @name.deleter def name(self): self._name.clear() def visit_Name(self, node): self._name.appendleft(node.id) def visit_Attribute(self, node): try: self._name.appendleft(node.attr) self._name.appendleft(node.value.id) except AttributeError: self.generic_visit(node) def get_func_calls(tree): func_calls = [] for node in ast.walk(tree): if isinstance(node, ast.Call): callvisitor = FuncCallVisitor() callvisitor.visit(node.func) func_calls.append((callvisitor.name, [type(a) for a in node.args])) return func_calls # 1 hour 45 minutes start = datetime.datetime.now() function_use = { 'functions': [], 'parameters': [], 'file': [] } unprocessed = 0 for i, row in cell_info_code_df.iterrows(): nb_funcs = [] nb_params = [] try: all_code = '\n'.join([c for c in '\n'.join([l for l in row.code_list if str(l) != 'nan']).split('\n') if (c != '' and str(c) != 'nan' and not c.strip().startswith('%') and not c.strip().startswith('?') and not c.strip().startswith('!'))]) tree = ast.parse(all_code) except: unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start) continue for t in tree.body: try: for f in get_func_calls(t): if f[0] not in nb_funcs: nb_funcs.append(f[0]) nb_params.append(len(f[1])) except: unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start) continue function_use['functions'].append(nb_funcs) function_use['parameters'].append(nb_params) function_use['file'].append(row['file']) if i%200000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Gone through for function uses', end - start) function_use_df = pd.DataFrame(function_use) # 48 seconds start = datetime.datetime.now() f = open('analysis_data/nb_function_use.df', 'wb') pickle.dump(function_use_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_function_defs(cell_info_code_df): start = datetime.datetime.now() unprocessed = 0 function_defs = { 'function': [], 'parameters':[], 'file': [] } for i, row in cell_info_code_df.iterrows(): try: all_code = '\n'.join([c for c in '\n'.join([l for l in row.code_list if str(l) != 'nan']).split('\n') if (c != '' and str(c) != 'nan' and not c.strip().startswith('%') and not c.strip().startswith('?') and not c.strip().startswith('!'))]) tree = ast.parse(all_code) except: unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start) continue for t in tree.body: if type(t) == ast.FunctionDef: name = t.name num_args = 0 for a in ast.walk(t.args): if type(a) == ast.arg: num_args += 1 function_defs['function'].append(name) function_defs['parameters'].append(num_args) function_defs['file'].append(row.file) elif type(t) == ast.ClassDef: name = t.name num_args = 0 for b in t.body: if type(b) == ast.FunctionDef and b.name == '__init__': for a in ast.walk(b.args): if type(a) == ast.arg and a.arg != 'self': num_args += 1 elif type(b) == ast.FunctionDef: name_b = name+"."+b.name num_args_b = 0 for a in ast.walk(b.args): if type(a) == ast.arg and a.arg != 'self': num_args_b += 1 function_defs['function'].append(name_b) function_defs['parameters'].append(num_args_b) function_defs['file'].append(row.file) function_defs['function'].append(name) function_defs['parameters'].append(num_args) function_defs['file'].append(row.file) if i%200000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Through cell_info_code for functions', end - start) start = datetime.datetime.now() function_defs_df = pd.DataFrame(function_defs) f = open('analysis_data/function_defs.df', 'wb') pickle.dump(function_defs_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def add_user_funcs(): notebooks = load_data.load_notebooks() cell_stats_df = load_data.load_cell_stats() cell_types_df = load_data.load_cell_types() function_defs_df = load_data.load_function_defs() function_use_df = load_data.load_function_use() print('grouping...') start = datetime.datetime.now() function_defs_nb_df = function_defs_df.groupby('file')['function'].aggregate(lambda x: list(x)).reset_index().rename(columns={'function':'function_defs'}) end = datetime.datetime.now() print('...grouped', end - start) print('merging...') start = datetime.datetime.now() functions_df = function_use_df.merge(function_defs_nb_df, on = 'file', how = 'left') functions_df.function_defs.loc[functions_df.function_defs.isna()] = [[]]*sum(functions_df.function_defs.isna()) end = datetime.datetime.now() print('...merged', end - start) start = datetime.datetime.now() all_def = [] all_not = [] for i, row in functions_df.iterrows(): def_uses = [f for f in row.functions if f in row.function_defs] not_uses = [f for f in row.functions if f not in row.function_defs] all_def.append(def_uses) all_not.append(not_uses) if i%100000 == 0 or i == 100 or i == 1000: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print(end - start) function_use_df['user_def'] = all_def function_use_df['not_user_def'] = all_not t = datetime.datetime.now() print('Added to df', t - end) f = open('analysis_data/nb_function_use.df', 'wb') pickle.dump(function_use_df, f) f.close() print('Saved', datetime.datetime.now() - t) print('DONE') def get_errors(): df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','num_error','error_names','cell_id'], chunksize=10000 ) # 25 minutes start = datetime.datetime.now() error_dfs = [] i = 0 for chunk in df_chunks: try: load_data.string_to_list(chunk, 'error_names') error_dfs.append( chunk.groupby('file')['num_error'].aggregate(['sum','count']).reset_index().merge( chunk.groupby('file')['error_names'].aggregate(load_data.flatten).reset_index(), on = 'file' ) ) except Exception: print(i, type(chunk)) if i%1000 == 0: print(i, datetime.datetime.now() - start) i+=1 end = datetime.datetime.now() print('Chunks', end - start) error_df = pd.concat(error_dfs, sort = False).reset_index(drop=True) start = datetime.datetime.now() error_df = error_df.groupby('file')['count'].sum().reset_index().merge( error_df.groupby('file')['error_names'].aggregate(load_data.flatten).reset_index(), on = 'file' ) end = datetime.datetime.now() print('Combined', end - start) # 5 seconds start = datetime.datetime.now() f = open('analysis_data/error.df', 'wb') pickle.dump(error_df, f) f.close end = datetime.datetime.now() print('Saved', end - start) def get_vis_uses_nb(nb_imports_code_df): notebooks = pd.read_csv('data_final/notebooks_final.csv') repos = pd.read_csv('data_final/repos_final.csv') DATE_CHOICE = 'pushed_at' vis = ['matplotlib','altair','seaborn', 'ggplot','bokeh','pygal','plotly', 'geoplotlib','gleam','missingno', 'leather'] start = datetime.datetime.now() for v in vis: nb_imports_code_df[v] = [v in [i[0].split('.')[0] for i in imports] for imports in nb_imports_code_df.imports ] print(v, datetime.datetime.now() - start) end = datetime.datetime.now() print('Got uses', end - start) start = datetime.datetime.now() notebooks = notebooks.merge( nb_imports_code_df[['file'] + vis], on = 'file' ).merge(repos[['repo_id',DATE_CHOICE]], on = 'repo_id') notebooks[DATE_CHOICE] = pd.to_datetime(notebooks[DATE_CHOICE]) notebooks['year'] = [c.year for c in notebooks[DATE_CHOICE]] notebooks['month'] = [c.month for c in notebooks[DATE_CHOICE]] end = datetime.datetime.now() print('Added to nbs', end - start) start = datetime.datetime.now() f = open('analysis_data/notebooks_vis.df', 'wb') pickle.dump(notebooks, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_vis_uses(nb_imports_code_df): def get_uses(imports, code): vis = ['matplotlib','altair','seaborn', 'ggplot','bokeh','pygal','plotly', 'geoplotlib','gleam','missingno', 'leather'] uses = [] for im in imports: for v in vis: if im[0].startswith(v): # look for im in code for line in '\n'.join([c for c in row.code if type(c) == str]).split('\n'): f = re.findall( '(?<![a-zA-Z._])'+im[1]+'\.[a-zA-Z._]{1,}|(?<![a-zA-Z._])'+im[1]+'\s', str(line) ) if len(f) > 0: uses += [use.strip().replace(im[1],im[0]) for use in f] return uses # 2 hours start = datetime.datetime.now() all_vis_uses = [] for i, row in nb_imports_code_df.iterrows(): all_vis_uses += get_uses( row.imports, row.code ) if i%100000==0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Gone through code for visualization uses', end - start) # 30 minutes start = datetime.datetime.now() f = open('analysis_data/all_vis_uses.list', 'wb') pickle.dump(all_vis_uses, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_framework_uses(nb_imports_code_df): # 22 minutes def get_uses(row): frameworks = ['tensorflow', 'sklearn', 'keras', 'theano', 'mxnet', 'caffe', 'pytorch', 'cntk'] uses = {} for im in row.imports: for f in frameworks: if im[0].startswith(f): if f not in uses: uses[f] = set([]) as_alias = im[1] for line in '\n'.join([c for c in row.code if type(c) == str]).split('\n'): line = line.split('#')[0] if as_alias in line and 'import' not in line: use = as_alias+as_alias.join(line.split(as_alias)[1:]) use = re.split('[()\[\]=\s]', use)[0] if use == as_alias or use.startswith(as_alias+'.'): use = use.replace(as_alias, im[0]) uses[f].add(use) return uses framework_uses = { 'file': [], 'uses': [] } start = datetime.datetime.now() for i, row in nb_imports_code_df[len(framework_uses):].iterrows(): framework_uses['file'].append(row.file) try: framework_uses['uses'].append(get_uses(row)) except: framework_uses['uses'].append({}) if i%100000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Gone through code for uses', end - start) start = datetime.datetime.now() framework_uses_df = pd.DataFrame(framework_uses) f = open('analysis_data/framework_uses.df','wb') pickle.dump(framework_uses_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_nb_imports(): df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','imports','cell_id'], chunksize=10000 ) def string_to_list_of_lists(df, column): df[column] = [[] if len(df[column][i]) == 2 else [h.replace("'","").split(', ') for h in df[column][i][2:-2].replace('(','[').replace(')',']').split('], [')] for i in range(len(df))] def agg_imports(list_of_lists): overall = [] for li in list_of_lists: for l in li: if type(l) == list and len(l) != 0: overall.append(l) return overall nb_imports = [] # 1 hour start = datetime.datetime.now() i = 0 for chunk in df_chunks: try: string_to_list_of_lists(chunk.reset_index(drop=True), 'imports') chunk_nb_imports = chunk.groupby('file')['imports']\ .aggregate(agg_imports).reset_index() nb_imports.append(chunk_nb_imports) except Exception: print(type(chunk)) if i%1000 == 0: print(i, datetime.datetime.now() - start) # prints up to 15000 i+=1 end = datetime.datetime.now() print('Chunks', end - start) # 2.5 minutes start = datetime.datetime.now() nb_imports_df = pd.concat(nb_imports).reset_index(drop=True).groupby('file')['imports'].aggregate(load_data.flatten).reset_index() end = datetime.datetime.now() print('Combined', end - start) # 1 minute start = datetime.datetime.now() f = open('analysis_data/nb_imports.df', 'wb') pickle.dump(nb_imports_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_cell_output(): df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = [ 'file','num_execute_result', 'execute_result_keys','num_display_data', 'num_stream','cell_id' ], chunksize=10000 ) # 27 minutes start = datetime.datetime.now() output_dfs = [] def agg_execute_result_keys(list_of_strs): vis_count = 0 for v_output in [ 'application/vnd.vegalite.v2+json', 'application/vnd.vegalite.v3+json', 'image/png' ]: vis_count += ' '.join(list_of_strs).count(v_output) return vis_count i = 0 for chunk in df_chunks: df = chunk.groupby('file')[[ 'num_execute_result','num_display_data','num_stream' ]].sum().reset_index().merge( chunk.groupby('file')['cell_id'].count().reset_index().rename( columns = {'cell_id':'num_cells'} ), on = 'file' ).merge( chunk.groupby('file')['execute_result_keys'].aggregate( agg_execute_result_keys ).reset_index().rename(columns = {'execute_result_keys':'num_vis_out'}), on = 'file' ) output_dfs.append(df) if i%1000 == 0: print(i, datetime.datetime.now() - start) i += 1 end = datetime.datetime.now() print('Chunks done', end - start) # 33 seconds start = datetime.datetime.now() output_df =
pd.concat(output_dfs)
pandas.concat
import datetime as dt import os.path import re import numpy as np import pandas as pd import pandas.testing as pdt import pint.errors import pytest import scmdata.processing from scmdata import ScmRun from scmdata.errors import MissingRequiredColumnError, NonUniqueMetadataError from scmdata.testing import _check_pandas_less_120 @pytest.fixture(scope="function") def test_processing_scm_df(): data = np.array( [ [1, 1.1, 1.2, 1.1], [1.1, 1.2, 1.3, 1.41], [1.3, 1.4, 1.5, 1.6], [1.3, 1.5, 1.6, 1.2], [1.48, 1.51, 1.72, 1.56], ] ).T yield ScmRun( data=data, columns={ "model": ["a_iam"], "climate_model": ["a_model"], "scenario": ["a_scenario"], "region": ["World"], "variable": ["Surface Air Temperature Change"], "unit": ["K"], "ensemble_member": range(data.shape[1]), }, index=[2005, 2006, 2007, 2100], ) @pytest.fixture() def test_processing_scm_df_multi_climate_model(test_processing_scm_df): other = test_processing_scm_df + 0.1 other["climate_model"] = "z_model" return test_processing_scm_df.append(other) crossing_times_year_conversions = pytest.mark.parametrize( "return_year,conv_to_year", ((None, True), (True, True), (False, False),) ) def _get_calculate_crossing_times_call_kwargs(return_year): call_kwargs = {} if return_year is not None: call_kwargs["return_year"] = return_year return call_kwargs def _get_expected_crossing_times(exp_vals, conv_to_year): if conv_to_year: exp_vals = [v if pd.isnull(v) else v.year for v in exp_vals] else: exp_vals = [pd.NaT if pd.isnull(v) else v for v in exp_vals] return exp_vals @pytest.mark.parametrize( "threshold,exp_vals", ( ( 1.0, [ dt.datetime(2006, 1, 1), # doesn't cross 1.0 until 2006 dt.datetime(2005, 1, 1), dt.datetime(2005, 1, 1), dt.datetime(2005, 1, 1), dt.datetime(2005, 1, 1), ], ), ( 1.5, [ np.nan, # never crosses np.nan, # never crosses dt.datetime(2100, 1, 1), # doesn't cross 1.5 until 2100 dt.datetime(2007, 1, 1), # 2007 is first year to actually exceed 1.5 dt.datetime(2006, 1, 1), ], ), (2.0, [np.nan, np.nan, np.nan, np.nan, np.nan]), ), ) @crossing_times_year_conversions def test_crossing_times( threshold, exp_vals, return_year, conv_to_year, test_processing_scm_df ): call_kwargs = _get_calculate_crossing_times_call_kwargs(return_year) res = scmdata.processing.calculate_crossing_times( test_processing_scm_df, threshold=threshold, **call_kwargs, ) exp_vals = _get_expected_crossing_times(exp_vals, conv_to_year) exp = pd.Series(exp_vals, pd.MultiIndex.from_frame(test_processing_scm_df.meta)) pdt.assert_series_equal(res, exp) @pytest.mark.parametrize( "end_year", ( 5000, pytest.param( 10 ** 3, marks=pytest.mark.xfail(reason="ScmRun fails to initialise #179") ), pytest.param( 10 ** 4, marks=pytest.mark.xfail(reason="ScmRun fails to initialise #179") ), ), ) @crossing_times_year_conversions def test_crossing_times_long_runs( end_year, return_year, conv_to_year, test_processing_scm_df ): test_processing_scm_df = test_processing_scm_df.timeseries(time_axis="year").rename( {2100: end_year}, axis="columns" ) test_processing_scm_df = scmdata.ScmRun(test_processing_scm_df) call_kwargs = _get_calculate_crossing_times_call_kwargs(return_year) res = scmdata.processing.calculate_crossing_times( test_processing_scm_df, threshold=1.5, **call_kwargs, ) exp_vals = [ np.nan, np.nan, dt.datetime(end_year, 1, 1), dt.datetime(2007, 1, 1), dt.datetime(2006, 1, 1), ] exp_vals = _get_expected_crossing_times(exp_vals, conv_to_year) exp = pd.Series(exp_vals, pd.MultiIndex.from_frame(test_processing_scm_df.meta)) pdt.assert_series_equal(res, exp) @crossing_times_year_conversions def test_crossing_times_multi_climate_model( return_year, conv_to_year, test_processing_scm_df_multi_climate_model ): call_kwargs = _get_calculate_crossing_times_call_kwargs(return_year) threshold = 1.5 exp_vals = [ # a_model np.nan, np.nan, dt.datetime(2100, 1, 1), dt.datetime(2007, 1, 1), dt.datetime(2006, 1, 1), # z_model np.nan, dt.datetime(2100, 1, 1), dt.datetime(2007, 1, 1), dt.datetime(2006, 1, 1), dt.datetime(2005, 1, 1), ] res = scmdata.processing.calculate_crossing_times( test_processing_scm_df_multi_climate_model, threshold=threshold, **call_kwargs, ) exp_vals = _get_expected_crossing_times(exp_vals, conv_to_year) exp = pd.Series( exp_vals, pd.MultiIndex.from_frame(test_processing_scm_df_multi_climate_model.meta), ) pdt.assert_series_equal(res, exp) def _get_expected_crossing_time_quantiles( cts, groups, exp_quantiles, interpolation, nan_fill_value, nan_fill_threshold ): cts = cts.fillna(nan_fill_value) cts_qs = cts.groupby(groups).quantile(q=exp_quantiles, interpolation=interpolation) out = cts_qs.where(cts_qs < nan_fill_threshold) out.index = out.index.set_names("quantile", level=-1) return out @pytest.mark.parametrize( "groups", (["model", "scenario"], ["climate_model", "model", "scenario"]) ) @pytest.mark.parametrize( "quantiles,exp_quantiles", ( (None, [0.05, 0.5, 0.95]), ([0.05, 0.17, 0.5, 0.83, 0.95], [0.05, 0.17, 0.5, 0.83, 0.95]), ), ) @pytest.mark.parametrize( "interpolation,exp_interpolation", ((None, "linear"), ("linear", "linear"), ("nearest", "nearest"),), ) def test_crossing_times_quantiles( groups, quantiles, exp_quantiles, interpolation, exp_interpolation, test_processing_scm_df_multi_climate_model, ): threshold = 1.5 crossing_times = scmdata.processing.calculate_crossing_times( test_processing_scm_df_multi_climate_model, threshold=threshold, # return_year False handled in # test_crossing_times_quantiles_datetime_error return_year=True, ) exp = _get_expected_crossing_time_quantiles( crossing_times, groups, exp_quantiles, exp_interpolation, nan_fill_value=10 ** 6, nan_fill_threshold=10 ** 5, ) call_kwargs = {"groupby": groups} if quantiles is not None: call_kwargs["quantiles"] = quantiles if interpolation is not None: call_kwargs["interpolation"] = interpolation res = scmdata.processing.calculate_crossing_times_quantiles( crossing_times, **call_kwargs ) if _check_pandas_less_120(): check_dtype = False else: check_dtype = True pdt.assert_series_equal(res, exp, check_dtype=check_dtype) def test_crossing_times_quantiles_datetime_error( test_processing_scm_df_multi_climate_model, ): crossing_times = scmdata.processing.calculate_crossing_times( test_processing_scm_df_multi_climate_model, threshold=1.5, return_year=False, ) with pytest.raises(NotImplementedError): scmdata.processing.calculate_crossing_times_quantiles( crossing_times, ["model", "scenario"] ) @pytest.mark.parametrize( "nan_fill_value,out_nan_threshold,exp_vals", ( (None, None, [2025.4, 2027.0, np.nan]), (None, 10 ** 4, [2025.4, 2027.0, np.nan]), (10 ** 5, 10 ** 4, [2025.4, 2027.0, np.nan]), (10 ** 6, 10 ** 5, [2025.4, 2027.0, np.nan]), ( # fill value less than threshold means calculated quantiles are used 3000, 10 ** 5, [2025.4, 2027.0, 2805.4], ), (3000, 2806, [2025.4, 2027.0, 2805.4]), (3000, 2805, [2025.4, 2027.0, np.nan]), ), ) def test_crossing_times_quantiles_nan_fill_values( nan_fill_value, out_nan_threshold, exp_vals ): data = np.array( [ [1.3, 1.35, 1.5, 1.52], [1.37, 1.43, 1.54, 1.58], [1.48, 1.51, 1.72, 2.02], [1.55, 1.65, 1.85, 2.1], [1.42, 1.46, 1.55, 1.62], ] ).T ensemble = scmdata.ScmRun( data=data, index=[2025, 2026, 2027, 2100], columns={ "model": ["a_iam"], "climate_model": ["a_model"], "scenario": ["a_scenario"], "region": ["World"], "variable": ["Surface Air Temperature Change"], "unit": ["K"], "ensemble_member": range(data.shape[1]), }, ) call_kwargs = {} if nan_fill_value is not None: call_kwargs["nan_fill_value"] = nan_fill_value if out_nan_threshold is not None: call_kwargs["out_nan_threshold"] = out_nan_threshold crossing_times = scmdata.processing.calculate_crossing_times( ensemble, threshold=1.53, return_year=True, ) res = scmdata.processing.calculate_crossing_times_quantiles( crossing_times, ["climate_model", "scenario"], quantiles=(0.05, 0.5, 0.95), **call_kwargs, ) exp = pd.Series( exp_vals, pd.MultiIndex.from_product( [["a_model"], ["a_scenario"], [0.05, 0.5, 0.95]], names=["climate_model", "scenario", "quantile"], ), ) if _check_pandas_less_120(): check_dtype = False else: check_dtype = True pdt.assert_series_equal(res, exp, check_dtype=check_dtype) output_name_options = pytest.mark.parametrize( "output_name", (None, "test", "test other") ) def _get_calculate_exceedance_probs_call_kwargs(output_name): call_kwargs = {} if output_name is not None: call_kwargs["output_name"] = output_name return call_kwargs def _get_calculate_exeedance_probs_expected_name(output_name, threshold): if output_name is not None: return output_name return "{} exceedance probability".format(threshold) @pytest.mark.parametrize( "threshold,exp_vals", ( (1.0, [0.8, 1.0, 1.0, 1.0]), (1.5, [0.0, 0.2, 0.4, 0.4]), (2.0, [0.0, 0.0, 0.0, 0.0]), ), ) @output_name_options def test_exceedance_probabilities_over_time( output_name, threshold, exp_vals, test_processing_scm_df ): call_kwargs = _get_calculate_exceedance_probs_call_kwargs(output_name) res = scmdata.processing.calculate_exceedance_probabilities_over_time( test_processing_scm_df, process_over_cols="ensemble_member", threshold=threshold, **call_kwargs, ) exp_idx = pd.MultiIndex.from_frame( test_processing_scm_df.meta.drop( "ensemble_member", axis="columns" ).drop_duplicates() ) exp = pd.DataFrame( np.array(exp_vals)[np.newaxis, :], index=exp_idx, columns=test_processing_scm_df.time_points.to_index(), ) exp.index = exp.index.set_levels( [_get_calculate_exeedance_probs_expected_name(output_name, threshold)], level="variable", ).set_levels(["dimensionless"], level="unit",) pdt.assert_frame_equal(res, exp, check_like=True, check_column_type=False) def test_exceedance_probabilities_over_time_multiple_res( test_processing_scm_df_multi_climate_model, ): start = test_processing_scm_df_multi_climate_model.copy() threshold = 1.5 exp_vals = np.array([[0, 1, 2, 2], [1, 2, 3, 3]]) / 5 res = scmdata.processing.calculate_exceedance_probabilities_over_time( start, process_over_cols=["ensemble_member"], threshold=threshold, ) exp_idx = pd.MultiIndex.from_frame( start.meta.drop(["ensemble_member"], axis="columns").drop_duplicates() ) exp = pd.DataFrame(exp_vals, index=exp_idx, columns=start.time_points.to_index()) exp.index = exp.index.set_levels( [_get_calculate_exeedance_probs_expected_name(None, threshold)], level="variable", ).set_levels(["dimensionless"], level="unit",) pdt.assert_frame_equal(res, exp, check_like=True, check_column_type=False) def test_exceedance_probabilities_over_time_multiple_grouping( test_processing_scm_df_multi_climate_model, ): start = test_processing_scm_df_multi_climate_model.copy() threshold = 1.5 exp_vals = np.array([1, 3, 5, 5]) / 10 res = scmdata.processing.calculate_exceedance_probabilities_over_time( start, process_over_cols=["climate_model", "ensemble_member"], threshold=threshold, ) exp_idx = pd.MultiIndex.from_frame( start.meta.drop( ["climate_model", "ensemble_member"], axis="columns" ).drop_duplicates() ) exp = pd.DataFrame( exp_vals[np.newaxis, :], index=exp_idx, columns=start.time_points.to_index(), ) exp.index = exp.index.set_levels( [_get_calculate_exeedance_probs_expected_name(None, threshold)], level="variable", ).set_levels(["dimensionless"], level="unit",) pdt.assert_frame_equal(res, exp, check_like=True, check_column_type=False) @pytest.mark.parametrize( "threshold,exp_val", ((1.0, 1.0), (1.5, 0.6), (2.0, 0.0),), ) @output_name_options def test_exceedance_probabilities( output_name, threshold, exp_val, test_processing_scm_df ): call_kwargs = _get_calculate_exceedance_probs_call_kwargs(output_name) res = scmdata.processing.calculate_exceedance_probabilities( test_processing_scm_df, process_over_cols="ensemble_member", threshold=threshold, **call_kwargs, ) exp_idx = pd.MultiIndex.from_frame( test_processing_scm_df.meta.drop( "ensemble_member", axis="columns" ).drop_duplicates() ) exp = pd.Series(exp_val, index=exp_idx) exp.name = _get_calculate_exeedance_probs_expected_name(output_name, threshold) exp.index = exp.index.set_levels(["dimensionless"], level="unit",) pdt.assert_series_equal(res, exp) def test_exceedance_probabilities_multiple_res( test_processing_scm_df_multi_climate_model, ): start = test_processing_scm_df_multi_climate_model.copy() threshold = 1.5 exp_vals = [0.6, 0.8] res = scmdata.processing.calculate_exceedance_probabilities( start, process_over_cols=["ensemble_member"], threshold=threshold, ) exp_idx = pd.MultiIndex.from_frame( start.meta.drop("ensemble_member", axis="columns").drop_duplicates() ) exp = pd.Series(exp_vals, index=exp_idx) exp.name = _get_calculate_exeedance_probs_expected_name(None, threshold) exp.index = exp.index.set_levels(["dimensionless"], level="unit",) pdt.assert_series_equal(res, exp) def test_exceedance_probabilities_multiple_grouping( test_processing_scm_df_multi_climate_model, ): start = test_processing_scm_df_multi_climate_model.copy() threshold = 1.5 exp_vals = [0.7] res = scmdata.processing.calculate_exceedance_probabilities( start, process_over_cols=["ensemble_member", "climate_model"], threshold=threshold, ) exp_idx = pd.MultiIndex.from_frame( start.meta.drop( ["ensemble_member", "climate_model"], axis="columns" ).drop_duplicates() ) exp = pd.Series(exp_vals, index=exp_idx) exp.name = _get_calculate_exeedance_probs_expected_name(None, threshold) exp.index = exp.index.set_levels(["dimensionless"], level="unit",) pdt.assert_series_equal(res, exp) @pytest.mark.parametrize("col", ["unit", "variable"]) @pytest.mark.parametrize( "func,kwargs", ( (scmdata.processing.calculate_exceedance_probabilities, {"threshold": 1.5}), ( scmdata.processing.calculate_exceedance_probabilities_over_time, {"threshold": 1.5}, ), ), ) def test_requires_preprocessing(test_processing_scm_df, col, func, kwargs): test_processing_scm_df[col] = [ str(i) for i in range(test_processing_scm_df.shape[0]) ] error_msg = ( "More than one value for {}. " "This is unlikely to be what you want.".format(col) ) with pytest.raises(ValueError, match=error_msg): func( test_processing_scm_df, process_over_cols=["ensemble_member", col], **kwargs, ) def _get_calculate_peak_call_kwargs(output_name, variable): call_kwargs = {} if output_name is not None: call_kwargs["output_name"] = output_name return call_kwargs @output_name_options def test_peak(output_name, test_processing_scm_df): call_kwargs = _get_calculate_peak_call_kwargs( output_name, test_processing_scm_df.get_unique_meta("variable", True), ) exp_vals = [1.2, 1.41, 1.6, 1.6, 1.72] res = scmdata.processing.calculate_peak(test_processing_scm_df, **call_kwargs,) exp_idx = pd.MultiIndex.from_frame(test_processing_scm_df.meta) exp = pd.Series(exp_vals, index=exp_idx) if output_name is not None: exp.index = exp.index.set_levels([output_name], level="variable") else: idx = exp.index.names exp = exp.reset_index() exp["variable"] = exp["variable"].apply(lambda x: "Peak {}".format(x)) exp = exp.set_index(idx)[0] pdt.assert_series_equal(res, exp) def test_peak_multi_variable(test_processing_scm_df_multi_climate_model): test_processing_scm_df_multi_climate_model["variable"] = [ str(i) for i in range(test_processing_scm_df_multi_climate_model.shape[0]) ] exp_vals = [1.2, 1.41, 1.6, 1.6, 1.72, 1.3, 1.51, 1.7, 1.7, 1.82] res = scmdata.processing.calculate_peak(test_processing_scm_df_multi_climate_model,) exp_idx = pd.MultiIndex.from_frame(test_processing_scm_df_multi_climate_model.meta) exp = pd.Series(exp_vals, index=exp_idx) idx = exp.index.names exp = exp.reset_index() exp["variable"] = exp["variable"].apply(lambda x: "Peak {}".format(x)) exp = exp.set_index(idx)[0] pdt.assert_series_equal(res, exp) def _get_calculate_peak_time_call_kwargs(return_year, output_name): call_kwargs = {} if return_year is not None: call_kwargs["return_year"] = return_year if output_name is not None: call_kwargs["output_name"] = output_name return call_kwargs @output_name_options @crossing_times_year_conversions def test_peak_time(output_name, return_year, conv_to_year, test_processing_scm_df): call_kwargs = _get_calculate_peak_time_call_kwargs(return_year, output_name) exp_vals = [ dt.datetime(2007, 1, 1), dt.datetime(2100, 1, 1), dt.datetime(2100, 1, 1), dt.datetime(2007, 1, 1), dt.datetime(2007, 1, 1), ] res = scmdata.processing.calculate_peak_time(test_processing_scm_df, **call_kwargs,) exp_idx = pd.MultiIndex.from_frame(test_processing_scm_df.meta) if conv_to_year: exp_vals = [v.year if conv_to_year else v for v in exp_vals] time_name = "Year" else: time_name = "Time" exp =
pd.Series(exp_vals, index=exp_idx)
pandas.Series
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/1/26 13:10 Desc: 申万指数-申万一级、二级和三级 http://www.swsindex.com/IdxMain.aspx https://legulegu.com/stockdata/index-composition?industryCode=851921.SI """ import time import json import pandas as pd from akshare.utils import demjson import requests from bs4 import BeautifulSoup from akshare.index.cons import sw_headers, sw_payload, sw_url def sw_index_representation_spot() -> pd.DataFrame: """ 申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" params = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "9", "timed": "1632300641756", } r = requests.get(url, params=params) data_json = demjson.decode(r.text) temp_df = pd.DataFrame(data_json["root"]) temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_spot() -> pd.DataFrame: """ 申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" result = [] for i in range(1, 3): payload = sw_payload.copy() payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_second_spot() -> pd.DataFrame: """ 申万二级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnId=8833 :return: 申万二级行业-实时行情数据 :rtype: pandas.DataFrame """ result = [] for i in range(1, 6): payload = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801011','801012','801013','801014','801015','801016','801021','801022','801023','801032','801033','801034','801035','801036','801037','801041','801051','801072','801073','801074','801075','801081','801082','801083','801084','801092','801093','801094','801101','801102','801111','801112','801123','801131','801132','801141','801142','801143','801151','801152','801153','801154','801155','801156','801161','801162','801163','801164','801171','801172','801173','801174','801175','801176','801177','801178','801181','801182','801191','801192','801193','801194','801202','801211','801212','801213','801214','801222','801223','801053','801054','801055','801076','801203','801204','801205','801711','801712','801713','801721','801722','801723','801724','801725','801731','801732','801733','801734','801741','801742','801743','801744','801751','801752','801761','801881','801017','801018')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "98", "timed": "", } payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(sw_url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_cons(symbol: str = "801011") -> pd.DataFrame: """ 申万指数成份信息-包括一级和二级行业都可以查询 http://www.swsindex.com/idx0210.aspx?swindexcode=801010 :param symbol: 指数代码 :type symbol: str :return: 申万指数成份信息 :rtype: pandas.DataFrame """ url = f"http://www.swsindex.com/downfile.aspx?code={symbol}" r = requests.get(url) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 4: stock_code = cols[0].text stock_name = cols[1].text weight = cols[2].text start_date = cols[3].text data.append( { "stock_code": stock_code, "stock_name": stock_name, "start_date": start_date, "weight": weight, } ) temp_df = pd.DataFrame(data) temp_df["start_date"] = pd.to_datetime(temp_df["start_date"]).dt.date temp_df["weight"] = pd.to_numeric(temp_df["weight"]) return temp_df def sw_index_daily( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20201207", ) -> pd.DataFrame: """ 申万指数一级和二级日频率行情数据 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 申万指数日频率行情数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel2.aspx" params = { "ctable": "swindexhistory", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 10: symbol = cols[0].text index_name = cols[1].text date = cols[2].text open_ = cols[3].text high = cols[4].text low = cols[5].text close = cols[6].text vol = cols[7].text amount = cols[8].text change_pct = cols[9].text data.append( { "index_code": symbol.replace(",", ""), "index_name": index_name.replace(",", ""), "date": date.replace(",", ""), "open": open_.replace(",", ""), "high": high.replace(",", ""), "low": low.replace(",", ""), "close": close.replace(",", ""), "vol": vol.replace(",", ""), "amount": amount.replace(",", ""), "change_pct": change_pct.replace(",", ""), } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["open"] = pd.to_numeric(temp_df["open"]) temp_df["high"] = pd.to_numeric(temp_df["high"]) temp_df["low"] = pd.to_numeric(temp_df["low"]) temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["vol"] = pd.to_numeric(temp_df["vol"]) temp_df["amount"] = pd.to_numeric(temp_df["amount"]) temp_df["change_pct"] = pd.to_numeric(temp_df["change_pct"]) return temp_df def sw_index_daily_indicator( symbol: str = "801011", start_date: str = "20191201", end_date: str = "20210907", data_type: str = "Day", ) -> pd.DataFrame: """ 申万一级和二级行业历史行情指标 http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day :param symbol: 申万指数 :type symbol: str :param start_date: 开始时间 :type start_date: str :param end_date: 结束时间 :type end_date: str :param data_type: choice of {"Day": 日报表, "Week": 周报表} :type data_type: str :return: 申万指数不同频率数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "http://www.swsindex.com/excel.aspx" params = { "ctable": "V_Report", "where": f" swindexcode in ('{symbol}') and BargainDate >= '{start_date}' and BargainDate <= '{end_date}' and type='{data_type}'", } r = requests.get(url, params=params) soup = BeautifulSoup(r.text, "html5lib") data = [] table = soup.findAll("table")[0] rows = table.findAll("tr") for row in rows: cols = row.findAll("td") if len(cols) >= 14: symbol = cols[0].text index_name = cols[1].text date = cols[2].text close = cols[3].text volume = cols[4].text chg_pct = cols[5].text turn_rate = cols[6].text pe = cols[7].text pb = cols[8].text v_wap = cols[9].text turnover_pct = cols[10].text float_mv = cols[11].text avg_float_mv = cols[12].text dividend_yield_ratio = cols[13].text data.append( { "index_code": symbol, "index_name": index_name, "date": date, "close": close, "volume": volume, "chg_pct": chg_pct, "turn_rate": turn_rate, "pe": pe, "pb": pb, "vwap": v_wap, "float_mv": float_mv, "avg_float_mv": avg_float_mv, "dividend_yield_ratio": dividend_yield_ratio, "turnover_pct": turnover_pct, } ) temp_df = pd.DataFrame(data) temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df["close"] = pd.to_numeric(temp_df["close"]) temp_df["volume"] = temp_df["volume"].apply(lambda x: x.replace(",", "")) temp_df["volume"] = pd.to_numeric(temp_df["volume"]) temp_df["chg_pct"] = pd.to_numeric(temp_df["chg_pct"]) temp_df["turn_rate"] = pd.to_numeric(temp_df["turn_rate"]) temp_df["pe"] = pd.to_numeric(temp_df["pe"]) temp_df["pb"] = pd.to_numeric(temp_df["pb"]) temp_df["vwap"] = pd.to_numeric(temp_df["vwap"]) temp_df["float_mv"] = temp_df["float_mv"].apply(lambda x: x.replace(",", "")) temp_df["float_mv"] = pd.to_numeric( temp_df["float_mv"], ) temp_df["avg_float_mv"] = temp_df["avg_float_mv"].apply( lambda x: x.replace(",", "") ) temp_df["avg_float_mv"] = pd.to_numeric(temp_df["avg_float_mv"]) temp_df["dividend_yield_ratio"] = pd.to_numeric(temp_df["dividend_yield_ratio"]) temp_df["turnover_pct"] = pd.to_numeric(temp_df["turnover_pct"]) return temp_df def sw_index_third_info() -> pd.DataFrame: """ 乐咕乐股-申万三级-分类 https://legulegu.com/stockdata/sw-industry-overview#level1 :return: 分类 :rtype: pandas.DataFrame """ url = "https://legulegu.com/stockdata/sw-industry-overview" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") code_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-industries-item-chinese-title"} ) name_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-industries-item-number"} ) value_raw = soup.find("div", attrs={"id": "level3Items"}).find_all( "div", attrs={"class": "lg-sw-industries-item-value"} ) code = [item.get_text() for item in code_raw] name = [item.get_text().split("(")[0] for item in name_raw] num = [item.get_text().split("(")[1].split(")")[0] for item in name_raw] num_1 = [ item.find_all("span", attrs={"class": "value"})[0].get_text().strip() for item in value_raw ] num_2 = [ item.find_all("span", attrs={"class": "value"})[1].get_text().strip() for item in value_raw ] num_3 = [ item.find_all("span", attrs={"class": "value"})[2].get_text().strip() for item in value_raw ] num_4 = [ item.find_all("span", attrs={"class": "value"})[3].get_text().strip() for item in value_raw ] temp_df = pd.DataFrame([code, name, num, num_1, num_2, num_3, num_4]).T temp_df.columns = [ "行业代码", "行业名称", "成份个数", "静态市盈率", "TTM(滚动)市盈率", "市净率", "静态股息率", ] temp_df["成份个数"] = pd.to_numeric(temp_df["成份个数"]) temp_df["静态市盈率"] = pd.to_numeric(temp_df["静态市盈率"]) temp_df["TTM(滚动)市盈率"] = pd.to_numeric(temp_df["TTM(滚动)市盈率"]) temp_df["市净率"] = pd.to_numeric(temp_df["市净率"]) temp_df["静态股息率"] = pd.to_numeric(temp_df["静态股息率"]) return temp_df def sw_index_third_cons(symbol: str = "851921.SI") -> pd.DataFrame: """ 乐咕乐股-申万三级-行业成份 https://legulegu.com/stockdata/index-composition?industryCode=851921.SI :param symbol: 三级行业的行业代码 :type symbol: str :return: 行业成份 :rtype: pandas.DataFrame """ url = f"https://legulegu.com/stockdata/index-composition?industryCode={symbol}" temp_df = pd.read_html(url)[0] temp_df.columns = [ "序号", "股票代码", "股票简称", "纳入时间", "申万1级", "申万2级", "申万3级", "价格", "市盈率", "市盈率ttm", "市净率", "股息率", "市值", ] temp_df["价格"] = pd.to_numeric(temp_df["价格"], errors="coerce") temp_df["市盈率"] = pd.to_numeric(temp_df["市盈率"], errors="coerce") temp_df["市盈率ttm"] = pd.to_
numeric(temp_df["市盈率ttm"], errors="coerce")
pandas.to_numeric
import sys, os sys.path.append(os.path.abspath(__file__).split('test')[0]) import pandas as pd import numpy as np from pyml.supervised.linear_regression.LinearRegression import LinearRegression """ ------------------------------------------------------------------------------------------------------------------------ SIMPLE LINEAR REGRESSION ------------------------------------------------------------------------------------------------------------------------ """ #----------------------------------------------------------------------------------------------------------------------- #---------------------------------------------- OBTENCION DATOS -------------------------------------------------------- #----------------------------------------------------------------------------------------------------------------------- data = pd.read_csv('../../../data/ex1data1.txt', sep=",", header=None) #Cargamos los datos data.columns = ["population", "profit"] print("\n--------------------------------------------") print("--------------------------------------------") print(" SIMPLE LINEAR REGRESSION ") print("--------------------------------------------") print("--------------------------------------------\n") print(data.head()) #Imprimimos los datos print(data.describe()) num_col = data.shape[0] #Numero de columnas: numero de ejemplos num_filas = data.shape[1] #Numero de filas: numero de features X = np.matrix([np.ones(num_col), data['population']]).T #Cada fila es un ejemplo, cada columna es un feature del ejemplo y = np.matrix(data['profit']).T #Vector columna #----------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------- TEST ------------------------------------------------------------- #----------------------------------------------------------------------------------------------------------------------- norm_linear_regression = LinearRegression(X, y, axis=1) norm_linear_regression.norm_equation() print("\n--------------------------------------------") print(" RESULTADOS ") print("--------------------------------------------\n") print("\nMinimizacion parámetros theta: ", norm_linear_regression.theta) print("Dimension theta: ", norm_linear_regression.theta.shape) print("Theta como array: ", np.ravel(norm_linear_regression.theta)) print("Prueba prediccion de: ", 6.1101, " con nuestro modelo de Linear Regression: ", norm_linear_regression.prediccion(np.matrix([1, 6.1101]).T)) norm_linear_regression.plot_regression("Plot sin division", "Poblacion", "Beneficio") #----------------------------------------------------------------------------------------------------------------------- #---------------------------------------------- DIVISION Y TEST -------------------------------------------------------- #----------------------------------------------------------------------------------------------------------------------- norm_linear_regression = LinearRegression(X, y, axis=1, split=0.2) norm_linear_regression.norm_equation() norm_linear_regression.plot_regression("Training set", "Poblacion", "Beneficio") norm_linear_regression.plot_regression_test("Test set", "Poblacion", "Beneficio") """ ------------------------------------------------------------------------------------------------------------------------ EJEMPLO SALARIOS ------------------------------------------------------------------------------------------------------------------------ """ #----------------------------------------------------------------------------------------------------------------------- #---------------------------------------------- OBTENCION DATOS -------------------------------------------------------- #----------------------------------------------------------------------------------------------------------------------- data_salarios =
pd.read_csv("../../../data/Salary_Data.csv", sep=",")
pandas.read_csv
import os import numpy as np import matplotlib.pyplot as pp import pandas as pd ######################### ## INTIALISE VARIABLES ## ######################### newDesk=[] selectedList=[] yPlotlabel="" flow=["red", "orange","brown","tan", "lime", "purple", "teal", "black", "blue", "grey", "pink", "violet", "goldenrod","darkkhaki","peru", "saddlebrown"] blues=["blue","turquoise","lime", "darkgreen","midnightblue", "slateblue", "dodgerblue", "mediumblue", "seagreen","yellowgreen","olivedrab","lightseagreen"] greens=["olive","crimson","black", "blue", "maroon", "lightcoral", "chocolate", "lightsalmon", "darkolivegreen", "rosybrown"] reds=flow+blues+greens+flow+blues+greens BODStats=pd.DataFrame() ###################### ## DEFINE FUNCTIONS ## ###################### def importData(directory): os.chdir(directory) folderList=os.listdir() idvgData=pd.DataFrame() # Initialises a blank dataframe to be appended to newDesk=[] # Initialise a blank list for the data to be selected from counter=0 for folderName in folderList:# Loop over the functionalisation folders os.chdir(directory) folderList=os.listdir( )# Now list the FOLDERS inside the top directory os.chdir(directory+"/"+folderName) # Change directory to the ith folderName fileList=os.listdir() # List the FILES in the folderName FOLDER for file in fileList:# Loop over the files in the fileList and import them to the dataframe with a new snazzier name fName = directory+"/"+folderName+"/"+file df=pd.read_csv(fName, usecols=[1,2], skiprows=248) global device newTitle,device = newNameFinal(folderName,file) df.columns=pd.MultiIndex.from_product([[newTitle],df.columns]) # Introduce multiindex naming of columns idvgData=pd.concat([idvgData,df],axis=1) newDesk.append(newTitle) global copied_original copied_original=idvgData.copy() copied_original.name=device return copied_original,device,newDesk def newNameFinal(folderName1, originalName): # Takes a file name and shortens it based on the position of the "_" and then concatenates with the folder name. displayText=originalName[0:originalName.find("_")] outputName=folderName1+"_"+displayText return outputName, displayText[0:2] def importBOD(filename): # Imports data from a .BOD file (a file which has been previosuly exported from SCRAMBLE) BODdf=pd.read_csv(filename, header=[0,1]) global copied_original copied_original=BODdf.copy() # Produce a list of the data niceCoffee=[] for i, x in enumerate(BODdf.columns.get_level_values(0)): if i%2>0: # Select every other name as they are repeated niceCoffee.append(x) return copied_original,niceCoffee def statsTable(selection): bigData=copied_original.copy() # Always work from a copy of the original data statsInput=bigData.loc[:,(selection)] # Filter based on name of data sVg = statsInput.loc[:,[statsInput.columns[0]]] # Select the Vbg sDrain = statsInput.loc[:,[statsInput.columns[1]]] # Select the Ids statsFrame=pd.DataFrame() #Initialise the dataframe for this loop ## FORWARD SWEEP STATS ## #Slice the data and select the forward sweep fVg=sVg.iloc[0:(int(statsInput.shape[0]/2))] fDrain=sDrain.iloc[0:(int(statsInput.shape[0]/2))] #DP Current - fDPI fMinI=fDrain.describe().loc["min"] statsFrame=pd.concat([statsFrame,fMinI],ignore_index=True) #DP Voltage - fDPV fMinVIndex=abs(fDrain-fMinI).idxmin() fMinV1=fVg.iloc[fMinVIndex].values[0][0] fMinV=pd.Series(fMinV1) statsFrame=pd.concat([statsFrame,fMinV], ignore_index=True) #DP Voltage Gradient - fDPMaxgrad and fDPMaxgradV fDPIseries=fDrain[statsInput.columns[1]].values fDPVseries=fVg[statsInput.columns[0]].values fDPIgrad1=np.gradient(fDPIseries) fDPIgradMax1=max(abs(fDPIgrad1)) indexGradMax=np.argmax(abs(fDPIgrad1)) fDPVgradMax1=fDPVseries[indexGradMax] fDPIgradMaxI1=fDPIseries[indexGradMax] fDPIgradMax=pd.Series(fDPIgradMax1) fDPVgradMax=pd.Series(fDPVgradMax1) fDPIgradMaxI=pd.Series(fDPIgradMaxI1) statsFrame=pd.concat([statsFrame,fDPIgradMax], ignore_index=True) statsFrame=pd.concat([statsFrame,fDPVgradMax], ignore_index=True) statsFrame=pd.concat([statsFrame,fDPIgradMaxI], ignore_index=True) #Current value at 0 BackGate - fI0Vg fI0Vg1=fDrain.iloc[int(((fDrain.shape[0])-1)/2)].values[0] # Halfway point fI0Vg=pd.Series(fI0Vg1) statsFrame=pd.concat([statsFrame,fI0Vg], ignore_index=True) ## REVERSE SWEEP STATS ## #Slice the data and select the reverse sweep rVg=sVg.iloc[(int(statsInput.shape[0]/2)):] rDrain=sDrain.iloc[(int(statsInput.shape[0]/2)):] #DP Current - rDPI rMinI=rDrain.describe().loc["min"] statsFrame=pd.concat([statsFrame,rMinI],ignore_index=True) #DP Voltage - rDPV rMinVIndex=abs(rDrain-rMinI).idxmin() rMinV1=sVg.iloc[rMinVIndex].values[0][0] rMinV=pd.Series(rMinV1) statsFrame=pd.concat([statsFrame,rMinV], ignore_index=True) #DP Voltage Gradient - rDPMaxgrad and rDPMaxgradV rDPIseries=rDrain[statsInput.columns[1]].values rDPVseries=rVg[statsInput.columns[0]].values rDPIgrad1=np.gradient(rDPIseries) rDPIgradMax1=max(abs(rDPIgrad1)) indexGradMax=np.argmax(abs(rDPIgrad1)) rDPVgradMax1=rDPVseries[indexGradMax] rDPIgradMaxI1=rDPIseries[indexGradMax] rDPIgradMax=pd.Series(rDPIgradMax1) rDPVgradMax=pd.Series(rDPVgradMax1) rDPIgradMaxI=pd.Series(rDPIgradMaxI1) statsFrame=pd.concat([statsFrame,rDPIgradMax], ignore_index=True) statsFrame=pd.concat([statsFrame,rDPVgradMax], ignore_index=True) statsFrame=pd.concat([statsFrame,rDPIgradMaxI], ignore_index=True) #Current value at 0 BackGate - fI0Vg rI0Vg1=rDrain.iloc[int(((rDrain.shape[0])-1)/2)].values[0] rI0Vg=pd.Series(rI0Vg1) statsFrame=pd.concat([statsFrame,rI0Vg], ignore_index=True) ## CONSTRUCT THE PARAMETER TABLE ## insides = {'Column 1' : [1,2,3,4,5,6,30,40,50,60,70,80], 'Index Title' : ["fDPI","fDPV","fMaxgrad","fMaxgradV", "fMaxgradI", "fI0Vg", "rDPI","rDPV","rMaxgrad","rMaxgradV","rMaxgradI", "rI0Vg"]} blankStats = pd.DataFrame(insides) del blankStats["Column 1"] blankStats.index.name = "BOD_Params" newFrame=pd.concat([blankStats,statsFrame], axis=1) #Concatenate the initial df with data from statsFrame newFrame.index = newFrame["Index Title"] del newFrame["Index Title"] newFrame.columns=[selection] newFrame.index.name="BOD_Params" return newFrame #Output from StatsTable def mobility(selection,Vds,L,W,oxideThick,oxideDielectric): bigData=copied_original.copy() # Always work from a copy of the original data mobilitySeries=pd.Series([]) # Convert dataframe to series for ease of maniupulation mobilityFrame=
pd.DataFrame()
pandas.DataFrame
# Written and maintained by <NAME> # <EMAIL> # # A project of XamPak Open Source Software # Follow my github for more ! # https://github.com/XamNalpak # # Last updated 2/22/21 # # # Interested in more ideas? Let me know !!## # # # # # importing Python Packages import praw import pandas as pd from datetime import datetime import time #Reddit API information from https://www.reddit.com/prefs/apps # sign into your account and set up an app reddit = praw.Reddit( username='', # this is your reddit username password='', # this is your reddit password client_id='', # client ID from the top left of the information box client_secret='', # secret code developed by reddit user_agent='' # the agent name you assigned ) # intializing which subreddit we want to look at subreddit = reddit.subreddit('nbatopshot') #which section we want to look at and the limit of entries to return # i.e this subreddit isn't active enought for 1000 posts a day at the moment of 2/22/21 new_subreddit = subreddit.new(limit=1000) # creating a dictionary to return the submission values and create a dataframe topics_dict = { "title":[], "score":[], "id":[], "url":[], "comms_num": [], "date": [], "body":[]} # returning all the values from each post for submission in new_subreddit: topics_dict["id"].append(submission.id) topics_dict["title"].append(submission.title) topics_dict["score"].append(submission.score) topics_dict["comms_num"].append(submission.num_comments) topics_dict["date"].append(datetime.fromtimestamp(submission.created).strftime('%Y-%m-%d')) topics_dict["body"].append(submission.selftext) topics_dict["url"].append(submission.url) # turning the dict to a df topics_data = pd.DataFrame(topics_dict) # only taking the posts w/ todays data todays_subs = topics_data[topics_data['date'] >= datetime.now().strftime('%Y-%m-%d')] # reading in for counting purposes old =
pd.read_csv('nbatop.csv')
pandas.read_csv
#################### # IMPORT LIBRARIES # #################### import streamlit as st import pandas as pd import numpy as np import plotly as dd import plotly.express as px import seaborn as sns import matplotlib.pyplot as plt import matplotlib.font_manager import plotly.graph_objects as go import functions as fc import modelling as ml import os import altair as alt import bs4 import requests from collections import Counter import streamlit.components.v1 as components import yfinance as yf import datetime from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from streamlit import caching import SessionState import sys import platform from pysummarization.nlpbase.auto_abstractor import AutoAbstractor from pysummarization.tokenizabledoc.simple_tokenizer import SimpleTokenizer from pysummarization.web_scraping import WebScraping from pysummarization.abstractabledoc.std_abstractor import StdAbstractor from pysummarization.abstractabledoc.top_n_rank_abstractor import TopNRankAbstractor from sklearn.feature_extraction.text import CountVectorizer #---------------------------------------------------------------------------------------------- def app(): # Clear cache caching.clear_cache() # Hide traceback in error messages (comment out for de-bugging) sys.tracebacklimit = 0 #------------------------------------------------------------------------------------------ # SETTINGS settings_expander=st.sidebar.beta_expander('Settings') with settings_expander: st.caption("**Help**") sett_hints = st.checkbox('Show learning hints', value=False) st.caption("**Appearance**") sett_wide_mode = st.checkbox('Wide mode', value=False) sett_theme = st.selectbox('Theme', ["Light", "Dark"]) #sett_info = st.checkbox('Show methods info', value=False) #sett_prec = st.number_input('Set the number of diggits for the output', min_value=0, max_value=8, value=2) st.sidebar.markdown("") st.sidebar.markdown("") # Check if wide mode if sett_wide_mode: fc.wide_mode_func() # Check theme if sett_theme == "Dark": fc.theme_func_dark() if sett_theme == "Light": fc.theme_func_light() #++++++++++++++++++++++++++++++++++++++++++++ # RESET INPUT #st.sidebar.subheader("Reset") reset_clicked = st.sidebar.button("Reset all your input") session_state = SessionState.get(id = 0) if reset_clicked: session_state.id = session_state.id + 1 st.sidebar.markdown("") #++++++++++++++++++++++++++++++++++++++++++++ # Text Mining #++++++++++++++++++++++++++++++++++++++++++++ basic_text="Let STATY do text/web processing for you and start exploring your data stories right below... " st.header('**Web scraping and text data**') tw_meth = ['Text analysis','Web-Page summary','Stock data analysis'] tw_classifier = st.selectbox('What analysis would you like to perform?', list('-')+tw_meth, key = session_state.id) if tw_classifier in tw_meth: st.write("") st.write("") st.header('**'+tw_classifier+'**') st.markdown(basic_text) if tw_classifier=='Web-Page summary': user_path = st.text_input("What what web page should I summarize in five sentences for you?","https://en.wikipedia.org/wiki/Data_mining") run_models = st.button("Press to start the data processing...") if run_models: # Pysummarization of a web page: def pysumMain(url): web_scrape = WebScraping() # Web-scraping: document = web_scrape.scrape(url) auto_abstractor = AutoAbstractor() auto_abstractor.tokenizable_doc = SimpleTokenizer() # Set delimiter for a sentence: auto_abstractor.delimiter_list = [".", "\n"] abstractable_doc = TopNRankAbstractor() # Summarize a document: result_dict = auto_abstractor.summarize(document, abstractable_doc) # Set the limit for the number of output sentences: limit = 5 i = 1 for sentence in result_dict["summarize_result"]: st.write(sentence) if i >= limit: break i += 1 #user_path = st.text_input("What what web page should I summarize in five sentences for you?","https://en.wikipedia.org/wiki/Data_mining") if user_path !='': a1, a2 = st.beta_columns(2) with a1: st.subheader('Web page preview:') st.text("") components.iframe(user_path,width=None,height=500,scrolling=True) with a2: st.subheader('Web page summary:') st.text("") pysumMain(user_path) if tw_classifier =='Stock data analysis': # dwonload first the list of comanies in the S&P500 and DAX indices payload=
pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')
pandas.read_html
import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib as mpl import netCDF4 as nc import datetime as dt from salishsea_tools import evaltools as et, places, viz_tools, visualisations, geo_tools import xarray as xr import pandas as pd import pickle import os import gsw # Extracting winds from the correct path def getWindVarsYear(year,loc): ''' Given a year, returns the correct directory and nam_fmt for wind forcing as well as the location of S3 on the corresponding grid. Parameters: year: a year value in integer form loc: the location name as a string. Eg. loc='S3' Returns: jW: y-coordinate for the location iW: x-coordinate for the location opsdir: path to directory where wind forcing file is stored nam_fmt: naming convention of the appropriate files ''' if year>2014: opsdir='/results/forcing/atmospheric/GEM2.5/operational/' nam_fmt='ops' jW,iW=places.PLACES[loc]['GEM2.5 grid ji'] else: opsdir='/data/eolson/results/MEOPAR/GEMLAM/' nam_fmt='gemlam' with xr.open_dataset('/results/forcing/atmospheric/GEM2.5/gemlam/gemlam_y2012m03d01.nc') as gridrefWind: # always use a post-2011 file here to identify station grid location lon,lat=places.PLACES[loc]['lon lat'] jW,iW=geo_tools.find_closest_model_point(lon,lat, gridrefWind.variables['nav_lon'][:,:]-360,gridrefWind.variables['nav_lat'][:,:], grid='GEM2.5') # the -360 is needed because longitudes in this case are reported in postive degrees East return jW,iW,opsdir,nam_fmt # Metric 1: def metric1_bloomtime(phyto_alld,no3_alld,bio_time): ''' Given datetime array and two 2D arrays of phytoplankton and nitrate concentrations, over time and depth, returns a datetime value of the spring phytoplankton bloom date according to the following definition (now called 'metric 1'): 'The spring bloom date is the peak phytoplankton concentration (averaged from the surface to 3 m depth) within four days of the average upper 3 m nitrate concentration going below 0.5 uM (the half-saturation concentration) for two consecutive days' EDIT: 0.5 uM was changed to 2.0 uM to yield more accurate results Parameters: phyto_alld: 2D array of phytoplankton concentrations (in uM N) over all depths and time range of 'bio_time' no3_alld: 2D array of nitrate concentrations (in uM N) over all depths and time range of 'bio_time' bio_time: 1D datetime array of the same time frame as phyto_alld and no3_alld Returns: bloomtime1: the spring bloom date as a single datetime value ''' # a) get avg phytplankton in upper 3m phyto_alld_df=pd.DataFrame(phyto_alld) upper_3m_phyto=pd.DataFrame(phyto_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_phyto.columns=['upper_3m_phyto'] #upper_3m_phyto # b) get average no3 in upper 3m no3_alld_df=pd.DataFrame(no3_alld) upper_3m_no3=pd.DataFrame(no3_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_no3.columns=['upper_3m_no3'] #upper_3m_no3 # make bio_time into a dataframe bio_time_df=pd.DataFrame(bio_time) bio_time_df.columns=['bio_time'] metric1_df=pd.concat((bio_time_df,upper_3m_phyto,upper_3m_no3), axis=1) # c) Find first location where nitrate crosses below 0.5 micromolar and # stays there for 2 days # NOTE: changed the value to 2 micromolar location1=np.nan for i, row in metric1_df.iterrows(): try: if metric1_df['upper_3m_no3'].iloc[i]<2 and metric1_df['upper_3m_no3'].iloc[i+1]<2: location1=i break except IndexError: location1=np.nan print('bloom not found') # d) Find date with maximum phytoplankton concentration within four days (say 9 day window) of date in c) if np.isnan(location1): bloomrange=np.nan bloomtime1=np.nan else: bloomrange=metric1_df[location1-4:location1+5] bloomtime1=bloomrange.loc[bloomrange.upper_3m_phyto.idxmax(), 'bio_time'] return bloomtime1 # Metric 2: def metric2_bloomtime(phyto_alld,no3_alld,bio_time): ''' Given datetime array and two 2D arrays of phytoplankton and nitrate concentrations, over time and depth, returns a datetime value of the spring phytoplankton bloom date according to the following definition (now called 'metric 2'): 'The first peak in which chlorophyll concentrations in upper 3m are above 5 ug/L for more than two days' Parameters: phyto_alld: 2D array of phytoplankton concentrations (in uM N) over all depths and time range of 'bio_time' no3_alld: 2D array of nitrate concentrations (in uM N) over all depths and time range of 'bio_time' bio_time: 1D datetime array of the same time frame as sphyto and sno3 Returns: bloomtime2: the spring bloom date as a single datetime value ''' # a) get avg phytplankton in upper 3m phyto_alld_df=pd.DataFrame(phyto_alld) upper_3m_phyto=pd.DataFrame(phyto_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_phyto.columns=['sphyto'] #upper_3m_phyto # b) get average no3 in upper 3m no3_alld_df=pd.DataFrame(no3_alld) upper_3m_no3=pd.DataFrame(no3_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_no3.columns=['sno3'] #upper_3m_no3 # make bio_time into a dataframe bio_time_df=pd.DataFrame(bio_time) bio_time_df.columns=['bio_time'] df=pd.concat((bio_time_df,upper_3m_phyto,upper_3m_no3), axis=1) # to find all the peaks: df['phytopeaks'] = df.sphyto[(df.sphyto.shift(1) < df.sphyto) & (df.sphyto.shift(-1) < df.sphyto)] # need to covert the value of interest from ug/L to uM N (conversion factor: 1.8 ug Chl per umol N) chlvalue=5/1.8 # extract the bloom time date for i, row in df.iterrows(): try: if df['sphyto'].iloc[i-1]>chlvalue and df['sphyto'].iloc[i-2]>chlvalue and
pd.notna(df['phytopeaks'].iloc[i])
pandas.notna
#!/usr/bin/env python3 import numpy as np import pandas as pd from functools import partial from .model_selection import features from .model_selection import make_k_folds from .model_selection import perform_k_fold_cv from .model_selection import make_score_dict from .model_selection import report_result def selector( df, k, indel_class, artifact_ratio, beta, num_of_processes, feature_names, max_features="auto", ): """Select s subset of features optimizing F beta Args: df (pandas,DataFrame) k (int): num of folds in cross validation indel_class (str): s for single-nucleotide indels, m for multi-nucleotide indels artifact_ratio (int): downsampling ratio for artifact class beta (int): specify F beta score to be optimized num_of_processes (int): num of processes in parallelism feature_names (str): filename specifying a subset of features to be selected max_features (str or int): maximum num of features considered in sklearn random forest. default to 'auto' Returns: report_result (tuple): (selected_features (str), fs_f_beta (float), fs_precision (float)) selected_features: subset of features optimizing fs_f_beta. features are semicolon-delimited(;) fs_f_beta: F beta score optimized in feature selection (fs) step fs_precision: associated precision at the F beta optimum """ folds = make_k_folds(df, k, indel_class) if feature_names: feature_list = [line.rstrip() for line in open(feature_names)] selected_features = feature_list[:-1] remaining_features = [feature_list[-1]] else: selected_features = [] remaining_features = features(indel_class) result_dict_lst = [] while remaining_features: d = {} best, f_beta, precision = greedy_search( selected_features, remaining_features, folds, artifact_ratio, beta, num_of_processes, max_features, ) selected_features.append(best) remaining_features.remove(best) f_label = "tpr" if beta > 100 else "f" + str(beta) d["param"] = ";".join(selected_features) d[f_label] = f_beta d["precision"] = precision result_dict_lst.append(d) return report_result(pd.DataFrame(result_dict_lst), beta) def greedy_search( selected_features, remaining_features, folds, artifact_ratio, beta, num_of_processes, max_features, ): """Pick up a feature with the greatest increment in F beta in a greedy manner Args: selected_features (list): selected features remaining_features (list): features to be examined folds (list): folds (list): a k-element list of list [training_df, validation_df] artifact_ratio (int): downsampling ratio for artifact class beta (int): specify F beta score to be optimized num_of_processes (int): num of processes in parallelism max_features (str or int): maximum num of features considered in sklearn random forest model Returns: report_result (tuple): (best, f_beta, precision) best (str): feature name with maximum increment in f_beta f_beta (float): F beta score for model with selected_features + best precision (float): associated precision """ scores = [] for feature in remaining_features: selected_features.append(feature) # do k-fold CV for each feature stats = perform_k_fold_cv( folds, selected_features, artifact_ratio, num_of_processes, max_features ) scores.append(make_score_dict(feature, stats, beta)) del selected_features[-1] return report_result(
pd.DataFrame(scores)
pandas.DataFrame
import os import requests from time import sleep, time import pandas as pd from polygon import RESTClient from dotenv import load_dotenv, find_dotenv from FileOps import FileReader, FileWriter from TimeMachine import TimeTraveller from Constants import PathFinder import Constants as C class MarketData: def __init__(self): load_dotenv(find_dotenv('config.env')) self.writer = FileWriter() self.reader = FileReader() self.finder = PathFinder() self.traveller = TimeTraveller() self.provider = 'iexcloud' def get_indexer(self, s1, s2): return list(s1.intersection(s2)) def try_again(self, func, **kwargs): retries = (kwargs['retries'] if 'retries' in kwargs else C.DEFAULT_RETRIES) delay = (kwargs['delay'] if 'delay' in kwargs else C.DEFAULT_DELAY) func_args = {k: v for k, v in kwargs.items() if k not in { 'retries', 'delay'}} for retry in range(retries): try: return func(**func_args) except Exception as e: if retry == retries - 1: raise e else: sleep(delay) def get_symbols(self): # get cached list of symbols symbols_path = self.finder.get_symbols_path() return list(self.reader.load_csv(symbols_path)[C.SYMBOL]) def get_dividends(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_dividends_path(symbol, self.provider)) filtered = self.reader.data_in_timeframe(df, C.EX, timeframe) return filtered def standardize(self, df, full_mapping, filename, columns, default): mapping = {k: v for k, v in full_mapping.items() if k in df} df = df[list(mapping)].rename(columns=mapping) time_col, val_cols = columns[0], columns[1:] if time_col in df and set(val_cols).issubset(df.columns): df = self.reader.update_df( filename, df, time_col).sort_values(by=[time_col]) # since time col is pd.datetime, # consider converting to YYYY-MM-DD str format for val_col in val_cols: df[val_col] = df[val_col].apply( lambda val: float(val) if val else default) return df def standardize_dividends(self, symbol, df): full_mapping = dict( zip( ['exDate', 'paymentDate', 'declaredDate', 'amount'], [C.EX, C.PAY, C.DEC, C.DIV] ) ) filename = self.finder.get_dividends_path(symbol, self.provider) return self.standardize( df, full_mapping, filename, [C.EX, C.DIV], 0 ) def save_dividends(self, **kwargs): # given a symbol, save its dividend history symbol = kwargs['symbol'] filename = self.finder.get_dividends_path(symbol, self.provider) if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_dividends(**kwargs), C.EX, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def get_splits(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_splits_path(symbol, self.provider)) filtered = self.reader.data_in_timeframe(df, C.EX, timeframe) return filtered def standardize_splits(self, symbol, df): full_mapping = dict( zip( ['exDate', 'paymentDate', 'declaredDate', 'ratio'], [C.EX, C.PAY, C.DEC, C.RATIO] ) ) filename = self.finder.get_splits_path(symbol, self.provider) return self.standardize( df, full_mapping, filename, [C.EX, C.RATIO], 1 ) def save_splits(self, **kwargs): # given a symbol, save its splits history symbol = kwargs['symbol'] filename = self.finder.get_splits_path(symbol, self.provider) if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_splits(**kwargs), C.EX, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_ohlc(self, symbol, df, filename=None): full_mapping = dict( zip( ['date', 'open', 'high', 'low', 'close', 'volume', 'average', 'trades'], [C.TIME, C.OPEN, C.HIGH, C.LOW, C.CLOSE, C.VOL, C.AVG, C.TRADES] ) ) filename = filename or self.finder.get_ohlc_path(symbol, self.provider) df = self.standardize( df, full_mapping, filename, [C.TIME, C.OPEN, C.HIGH, C.LOW, C.CLOSE], 0 ) for col in [C.VOL, C.TRADES]: if col in df: df[col] = df[col].apply( lambda val: 0 if pd.isnull(val) else int(val)) return df def get_ohlc(self, symbol, timeframe='max'): df = self.reader.load_csv( self.finder.get_ohlc_path(symbol, self.provider)) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe) return filtered def save_ohlc(self, **kwargs): symbol = kwargs['symbol'] filename = self.finder.get_ohlc_path(symbol, self.provider) if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_ohlc(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def get_social_sentiment(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_sentiment_path(symbol)) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.POS, C.NEG]] return filtered def get_social_volume(self, symbol, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_sentiment_path(symbol)) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.VOL, C.DELTA]] return filtered def save_social_sentiment(self, **kwargs): # # given a symbol, save its sentiment data symbol = kwargs['symbol'] filename = self.finder.get_sentiment_path(symbol) if os.path.exists(filename): os.remove(filename) sen_df = self.reader.update_df( filename, self.get_social_sentiment(**kwargs), C.TIME) sen_df = sen_df[self.get_indexer( {C.TIME, C.POS, C.NEG}, sen_df.columns)] vol_df = self.reader.update_df( filename, self.get_social_volume(**kwargs), C.TIME) vol_df = vol_df[self.get_indexer( {C.TIME, C.VOL, C.DELTA}, vol_df.columns)] if sen_df.empty and not vol_df.empty: df = vol_df elif not sen_df.empty and vol_df.empty: df = sen_df elif not sen_df.empty and not vol_df.empty: df = sen_df.merge(vol_df, how="outer", on=C.TIME) else: return self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_sentiment(self, symbol, df): full_mapping = dict( zip( ['timestamp', 'bullish', 'bearish'], [C.TIME, C.POS, C.NEG] ) ) filename = self.finder.get_sentiment_path(symbol, self.provider) df = self.standardize( df, full_mapping, filename, [C.TIME, C.POS, C.NEG], 0 ) return df[self.get_indexer({C.TIME, C.POS, C.NEG}, df.columns)] def standardize_volume(self, symbol, df): full_mapping = dict( zip( ['timestamp', 'volume_score', 'volume_change'], [C.TIME, C.VOL, C.DELTA] ) ) filename = self.finder.get_sentiment_path(symbol, self.provider) df = self.standardize( df, full_mapping, filename, [C.TIME, C.VOL, C.DELTA], 0 ) return df[self.get_indexer({C.TIME, C.VOL, C.DELTA}, df.columns)] def get_intraday(self, symbol, min=1, timeframe='max', extra_hrs=False): # implement way to transform 1 min dataset to 5 min data # or 30 or 60 should be flexible soln # implement way to only get market hours # given a symbol, return a cached dataframe dates = self.traveller.dates_in_range(timeframe) for date in dates: df = self.reader.load_csv( self.finder.get_intraday_path(symbol, date, self.provider)) yield self.reader.data_in_timeframe(df, C.TIME, timeframe) def save_intraday(self, **kwargs): symbol = kwargs['symbol'] dfs = self.get_intraday(**kwargs) filenames = [] for df in dfs: date = df[C.TIME].iloc[0].strftime(C.DATE_FMT) filename = self.finder.get_intraday_path( symbol, date, self.provider) if os.path.exists(filename): os.remove(filename) save_fmt = f'{C.DATE_FMT} {C.TIME_FMT}' df = self.reader.update_df( filename, df, C.TIME, save_fmt) self.writer.update_csv(filename, df) if os.path.exists(filename): filenames.append(filename) return filenames def get_unemployment_rate(self, timeframe='max'): # given a timeframe, return a cached dataframe df = self.reader.load_csv( self.finder.get_unemployment_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe) return filtered def standardize_unemployment(self, df): full_mapping = dict( zip( ['time', 'value'], [C.TIME, C.UN_RATE] ) ) filename = self.finder.get_unemployment_path() return self.standardize( df, full_mapping, filename, [C.TIME, C.UN_RATE], 0 ) def save_unemployment_rate(self, **kwargs): # given a symbol, save its dividend history filename = self.finder.get_unemployment_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_unemployment_rate(**kwargs), C.TIME, '%Y-%m') self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_s2f_ratio(self, df): full_mapping = dict( zip( ['t', 'o.daysTillHalving', 'o.ratio'], [C.TIME, C.HALVING, C.RATIO] ) ) filename = self.finder.get_s2f_path() df = self.standardize( df, full_mapping, filename, [C.TIME, C.HALVING, C.RATIO], 0 ) return df[self.get_indexer({C.TIME, C.HALVING, C.RATIO}, df.columns)] def get_s2f_ratio(self, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_s2f_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.HALVING, C.RATIO]] return filtered def save_s2f_ratio(self, **kwargs): # # given a symbol, save its s2f data filename = self.finder.get_s2f_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_s2f_ratio(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_diff_ribbon(self, df): full_mapping = dict( zip( ['t', 'o.ma9', 'o.ma14', 'o.ma25', 'o.ma40', 'o.ma60', 'o.ma90', 'o.ma128', 'o.ma200'], [C.TIME] + C.MAs ) ) filename = self.finder.get_diff_ribbon_path() df = self.standardize( df, full_mapping, filename, [C.TIME] + C.MAs, 0 ) return df[self.get_indexer(set([C.TIME] + C.MAs), df.columns)] def get_diff_ribbon(self, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_diff_ribbon_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME] + C.MAs] return filtered def save_diff_ribbon(self, **kwargs): # # given a symbol, save its s2f data filename = self.finder.get_diff_ribbon_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_diff_ribbon(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename def standardize_sopr(self, df): full_mapping = dict( zip( ['t', 'v'], [C.TIME, C.SOPR] ) ) filename = self.finder.get_diff_ribbon_path() df = self.standardize( df, full_mapping, filename, [C.TIME, C.SOPR], 1 ) return df[self.get_indexer({C.TIME, C.SOPR}, df.columns)] def get_sopr(self, timeframe='max'): # given a symbol, return a cached dataframe df = self.reader.load_csv( self.finder.get_sopr_path()) filtered = self.reader.data_in_timeframe(df, C.TIME, timeframe)[ [C.TIME, C.SOPR]] return filtered def save_sopr(self, **kwargs): # # given a symbol, save its s2f data filename = self.finder.get_sopr_path() if os.path.exists(filename): os.remove(filename) df = self.reader.update_df( filename, self.get_sopr(**kwargs), C.TIME, C.DATE_FMT) self.writer.update_csv(filename, df) if os.path.exists(filename): return filename # def handle_request(self, url, err_msg): class IEXCloud(MarketData): def __init__(self, test=False): super().__init__() self.version = 'v1' self.provider = 'iexcloud' if test: self.base = 'https://sandbox.iexapis.com' self.token = os.environ['IEXCLOUD_SANDBOX'] else: self.base = 'https://cloud.iexapis.com' self.token = os.environ['IEXCLOUD'] def get_dividends(self, **kwargs): # given a symbol, return the dividend history def _get_dividends(symbol, timeframe='3m'): category = 'stock' dataset = 'dividends' parts = [ self.base, self.version, category, symbol.lower(), dataset, timeframe ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) empty = pd.DataFrame() if response.ok: data = [datum for datum in response.json() if datum['flag'] == 'Cash' and datum['currency'] == 'USD'] else: raise Exception( f'Invalid response from IEX for {symbol} dividends.') if data == []: return empty df = self.standardize_dividends(symbol, pd.DataFrame(data)) return self.reader.data_in_timeframe(df, C.EX, timeframe) return self.try_again(func=_get_dividends, **kwargs) def get_splits(self, **kwargs): # given a symbol, return the stock splits def _get_splits(symbol, timeframe='3m'): category = 'stock' dataset = 'splits' parts = [ self.base, self.version, category, symbol.lower(), dataset, timeframe ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) empty = pd.DataFrame() if response.ok: data = response.json() else: raise Exception( f'Invalid response from IEX for {symbol} splits.') if data == []: return empty df = self.standardize_splits(symbol, pd.DataFrame(data)) return self.reader.data_in_timeframe(df, C.EX, timeframe) return self.try_again(func=_get_splits, **kwargs) def get_ohlc(self, **kwargs): def _get_prev_ohlc(symbol): category = 'stock' dataset = 'previous' parts = [ self.base, self.version, category, symbol.lower(), dataset ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) empty = pd.DataFrame() if response.ok: data = response.json() else: raise Exception( f'Invalid response from IEX for {symbol} OHLC.') if data == []: return empty df = pd.DataFrame([data]) return self.standardize_ohlc(symbol, df) def _get_ohlc(symbol, timeframe='1m'): if timeframe == '1d': return _get_prev_ohlc(symbol) category = 'stock' dataset = 'chart' parts = [ self.base, self.version, category, symbol.lower(), dataset, timeframe ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) empty = pd.DataFrame() if response.ok: data = response.json() else: raise Exception( f'Invalid response from IEX for {symbol} OHLC.') if data == []: return empty df = self.standardize_ohlc(symbol, pd.DataFrame(data)) return self.reader.data_in_timeframe(df, C.TIME, timeframe) return self.try_again(func=_get_ohlc, **kwargs) # extra_hrs should be True if possible def get_intraday(self, **kwargs): def _get_intraday(symbol, min=1, timeframe='max', extra_hrs=True): # pass min directly into hist prices endpoint # to get 1, 5, 30, 60 min granularity if possible # and get extra hrs if possible category = 'stock' dataset = 'chart' dates = self.traveller.dates_in_range(timeframe) if dates == []: raise Exception(f'No dates in timeframe: {timeframe}.') for date in dates: parts = [ self.base, self.version, category, symbol.lower(), dataset, 'date', date.replace('-', '') ] url = '/'.join(parts) params = {'token': self.token} response = requests.get(url, params=params) if response.ok: data = response.json() else: raise Exception( f'Invalid response from IEX for {symbol} intraday.') if data == []: continue df = pd.DataFrame(data) df['date'] = pd.to_datetime(df['date'] + ' ' + df['minute']) # if all values are na except time, then skip num_data_rows = len( df.drop(columns=['date', 'minute']).dropna(how='all')) if (num_data_rows == 0): continue res_cols = ['date', 'minute', 'marketOpen', 'marketHigh', 'marketLow', 'marketClose', 'marketVolume', 'marketAverage', 'marketNumberOfTrades'] std_cols = ['date', 'minute', 'open', 'high', 'low', 'close', 'volume', 'average', 'trades'] columns = dict(zip(res_cols, std_cols)) df = df[res_cols].rename(columns=columns) df.drop(columns='minute', inplace=True) filename = self.finder.get_intraday_path( symbol, date, self.provider) df = self.standardize_ohlc(symbol, df, filename) yield df return self.try_again(func=_get_intraday, **kwargs) class Polygon(MarketData): def __init__(self, token=os.environ.get('POLYGON'), free=True): super().__init__() self.client = RESTClient(token) self.provider = 'polygon' self.free = free def obey_free_limit(self): if self.free and hasattr(self, 'last_api_call_time'): time_since_last_call = time() - self.last_api_call_time delay = C.POLY_FREE_DELAY - time_since_last_call if delay > 0: sleep(delay) def log_api_call_time(self): self.last_api_call_time = time() def get_dividends(self, **kwargs): def _get_dividends(symbol, timeframe='max'): self.obey_free_limit() try: response = self.client.reference_stock_dividends(symbol) except Exception as e: raise e finally: self.log_api_call_time() raw = pd.DataFrame(response.results) df = self.standardize_dividends(symbol, raw) return self.reader.data_in_timeframe(df, C.EX, timeframe) return self.try_again(func=_get_dividends, **kwargs) def get_splits(self, **kwargs): def _get_splits(symbol, timeframe='max'): self.obey_free_limit() try: response = self.client.reference_stock_splits(symbol) except Exception as e: raise e finally: self.log_api_call_time() raw = pd.DataFrame(response.results) df = self.standardize_splits(symbol, raw) return self.reader.data_in_timeframe(df, C.EX, timeframe) return self.try_again(func=_get_splits, **kwargs) def get_ohlc(self, **kwargs): def _get_ohlc(symbol, timeframe='max'): is_crypto = symbol.find('X%3A') == 0 formatted_start, formatted_end = self.traveller.convert_dates( timeframe) self.obey_free_limit() try: response = self.client.stocks_equities_aggregates( symbol, 1, 'day', from_=formatted_start, to=formatted_end, unadjusted=False ) except Exception as e: raise e finally: self.log_api_call_time() raw = response.results columns = {'t': 'date', 'o': 'open', 'h': 'high', 'l': 'low', 'c': 'close', 'v': 'volume', 'vw': 'average', 'n': 'trades'} df = pd.DataFrame(raw).rename(columns=columns) if is_crypto: df['date'] = pd.to_datetime( df['date'], unit='ms') else: df['date'] = pd.to_datetime( df['date'], unit='ms').dt.tz_localize( 'UTC').dt.tz_convert( C.TZ).dt.tz_localize(None) df = self.standardize_ohlc(symbol, df) return self.reader.data_in_timeframe(df, C.TIME, timeframe) return self.try_again(func=_get_ohlc, **kwargs) def get_intraday(self, **kwargs): def _get_intraday(symbol, min=1, timeframe='max', extra_hrs=True): # pass min directly into stock_aggs function as multiplier is_crypto = symbol.find('X%3A') == 0 dates = self.traveller.dates_in_range(timeframe) if dates == []: raise Exception(f'No dates in timeframe: {timeframe}.') for idx, date in enumerate(dates): self.obey_free_limit() try: response = self.client.stocks_equities_aggregates( symbol, min, 'minute', from_=date, to=date, unadjusted=False ) except Exception as e: raise e finally: self.log_api_call_time() if hasattr(response, 'results'): response = response.results else: continue columns = {'t': 'date', 'o': 'open', 'h': 'high', 'l': 'low', 'c': 'close', 'v': 'volume', 'vw': 'average', 'n': 'trades'} df = pd.DataFrame(response).rename(columns=columns) if is_crypto: df['date'] = pd.to_datetime( df['date'], unit='ms') else: df['date'] = pd.to_datetime( df['date'], unit='ms').dt.tz_localize( 'UTC').dt.tz_convert( C.TZ).dt.tz_localize(None) filename = self.finder.get_intraday_path( symbol, date, self.provider) df = self.standardize_ohlc(symbol, df, filename) df = df[df[C.TIME].dt.strftime(C.DATE_FMT) == date] yield df return self.try_again(func=_get_intraday, **kwargs) # newShares = oldShares / ratio class StockTwits(MarketData): def __init__(self): super().__init__() self.base = 'https://api.stocktwits.com' self.version = '2' self.token = os.environ.get('STOCKTWITS') self.provider = 'stocktwits' def get_social_volume(self, **kwargs): def _get_social_volume(symbol, timeframe='max'): parts = [ self.base, 'api', self.version, 'symbols', symbol, 'volume.json' ] url = '/'.join(parts) params = {'access_token': self.token} vol_res = requests.get(url, params=params) json_res = vol_res.json() empty = pd.DataFrame() if vol_res.ok: vol_data = json_res['data'] else: if 'errors' in json_res: errors = '\n'.join([error['message'] for error in json_res['errors']]) raise Exception( f'Invalid response from Stocktwits for {symbol}\n{errors}') if vol_data == []: return empty vol_data.sort(key=lambda x: x['timestamp']) vol_data.pop() df = pd.DataFrame(vol_data) std = self.standardize_volume(symbol, df) if timeframe == '1d': filtered = std.tail(1) else: filtered = self.reader.data_in_timeframe( std, C.TIME, timeframe) [[C.TIME, C.VOL, C.DELTA]] return filtered return self.try_again(func=_get_social_volume, **kwargs) def get_social_sentiment(self, **kwargs): def _get_social_sentiment(symbol, timeframe='max'): parts = [ self.base, 'api', self.version, 'symbols', symbol, 'sentiment.json' ] url = '/'.join(parts) params = {'access_token': self.token} sen_res = requests.get(url, params=params) json_res = sen_res.json() empty = pd.DataFrame() if sen_res.ok: sen_data = json_res['data'] else: if 'errors' in json_res: errors = '\n'.join([error['message'] for error in json_res['errors']]) raise Exception( f'Invalid response from Stocktwits for {symbol}\n{errors}') if sen_data == []: return empty sen_data.sort(key=lambda x: x['timestamp']) sen_data.pop() df = pd.DataFrame(sen_data) std = self.standardize_sentiment(symbol, df) if timeframe == '1d': filtered = std.tail(1) else: filtered = self.reader.data_in_timeframe( std, C.TIME, timeframe) return filtered return self.try_again(func=_get_social_sentiment, **kwargs) class LaborStats(MarketData): def __init__(self): super().__init__() self.base = 'https://api.bls.gov' self.version = 'v2' self.token = os.environ.get('BLS') self.provider = 'bls' def get_unemployment_rate(self, **kwargs): def _get_unemployment_rate(timeframe): start, end = self.traveller.convert_dates(timeframe, '%Y') parts = [ self.base, 'publicAPI', self.version, 'timeseries', 'data' ] url = '/'.join(parts) params = {'registrationkey': self.token, 'startyear': start, 'endyear': end, 'seriesid': 'LNS14000000'} response = requests.post(url, data=params) if ( response.ok and response.json()['status'] == 'REQUEST_SUCCEEDED' ): payload = response.json() if payload['status'] == 'REQUEST_SUCCEEDED': data = payload['Results']['series'][0]['data'] else: raise Exception( f''' Invalid response from BLS because {data["message"][0]} ''' ) else: raise Exception( 'Invalid response from BLS for unemployment rate') df = pd.DataFrame(data) df['time'] = df['year'] + '-' + \ df['period'].str.slice(start=1) df = self.standardize_unemployment(df) return self.reader.data_in_timeframe(df, C.TIME, timeframe) return self.try_again(func=_get_unemployment_rate, **kwargs) class Glassnode(MarketData): def __init__(self): super().__init__() self.base = 'https://api.glassnode.com' self.version = 'v1' self.token = os.environ.get('<PASSWORD>') self.provider = 'glassnode' def get_s2f_ratio(self, **kwargs): def _get_s2f_ratio(timeframe): parts = [ self.base, self.version, 'metrics', 'indicators', 'stock_to_flow_ratio' ] url = '/'.join(parts) empty = pd.DataFrame() response = requests.get( url, params={'a': 'BTC', 'api_key': self.token}) if response.ok: data = response.json() else: raise Exception( 'Invalid response from Glassnode for S2F Ratio') if data == []: return empty df =
pd.json_normalize(data)
pandas.json_normalize
import pandas as pd a = {"Bir": 1, "İki": 2, "Üç": 3, "Dört": 4, "Beş": 5} b = {"Bir": 10, "İki": 20, "Üç": 30, "Dört": 40, "Altı": 60} x = pd.Series(a) y =
pd.Series(b)
pandas.Series
from sequana.viz import ANOVA from pylab import normal def test_anova(): import pandas as pd A = normal(0.5,size=10000) B = normal(0.25, size=10000) C = normal(0, 0.5,size=10000) df =
pd.DataFrame({"A":A, "B":B, "C":C})
pandas.DataFrame
from copy import deepcopy import inspect import pydoc import numpy as np import pytest import pandas.util._test_decorators as td from pandas.util._test_decorators import ( async_mark, skip_if_no, ) import pandas as pd from pandas import ( DataFrame, Series, date_range, timedelta_range, ) import pandas._testing as tm class TestDataFrameMisc: def test_getitem_pop_assign_name(self, float_frame): s = float_frame["A"] assert s.name == "A" s = float_frame.pop("A") assert s.name == "A" s = float_frame.loc[:, "B"] assert s.name == "B" s2 = s.loc[:] assert s2.name == "B" def test_get_axis(self, float_frame): f = float_frame assert f._get_axis_number(0) == 0 assert f._get_axis_number(1) == 1 assert f._get_axis_number("index") == 0 assert f._get_axis_number("rows") == 0 assert f._get_axis_number("columns") == 1 assert f._get_axis_name(0) == "index" assert f._get_axis_name(1) == "columns" assert f._get_axis_name("index") == "index" assert f._get_axis_name("rows") == "index" assert f._get_axis_name("columns") == "columns" assert f._get_axis(0) is f.index assert f._get_axis(1) is f.columns with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(2) with pytest.raises(ValueError, match="No axis.*foo"): f._get_axis_name("foo") with pytest.raises(ValueError, match="No axis.*None"): f._get_axis_name(None) with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(None) def test_column_contains_raises(self, float_frame): with pytest.raises(TypeError, match="unhashable type: 'Index'"): float_frame.columns in float_frame def test_tab_completion(self): # DataFrame whose columns are identifiers shall have them in __dir__. df = DataFrame([list("abcd"), list("efgh")], columns=list("ABCD")) for key in list("ABCD"): assert key in dir(df) assert isinstance(df.__getitem__("A"), Series) # DataFrame whose first-level columns are identifiers shall have # them in __dir__. df = DataFrame( [list("abcd"), list("efgh")], columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))), ) for key in list("ABCD"): assert key in dir(df) for key in list("EFGH"): assert key not in dir(df) assert isinstance(df.__getitem__("A"), DataFrame) def test_not_hashable(self): empty_frame = DataFrame() df = DataFrame([1]) msg = "'DataFrame' objects are mutable, thus they cannot be hashed" with pytest.raises(TypeError, match=msg): hash(df) with pytest.raises(TypeError, match=msg): hash(empty_frame) def test_column_name_contains_unicode_surrogate(self): # GH 25509 colname = "\ud83d" df = DataFrame({colname: []}) # this should not crash assert colname not in dir(df) assert df.columns[0] == colname def test_new_empty_index(self): df1 = DataFrame(np.random.randn(0, 3)) df2 = DataFrame(np.random.randn(0, 3)) df1.index.name = "foo" assert df2.index.name is None def test_get_agg_axis(self, float_frame): cols = float_frame._get_agg_axis(0) assert cols is float_frame.columns idx = float_frame._get_agg_axis(1) assert idx is float_frame.index msg = r"Axis must be 0 or 1 \(got 2\)" with pytest.raises(ValueError, match=msg): float_frame._get_agg_axis(2) def test_empty(self, float_frame, float_string_frame): empty_frame = DataFrame() assert empty_frame.empty assert not float_frame.empty assert not float_string_frame.empty # corner case df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3)) del df["A"] assert not df.empty def test_len(self, float_frame): assert len(float_frame) == len(float_frame.index) # single block corner case arr = float_frame[["A", "B"]].values expected = float_frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(arr, expected) def test_axis_aliases(self, float_frame): f = float_frame # reg name expected = f.sum(axis=0) result = f.sum(axis="index") tm.assert_series_equal(result, expected) expected = f.sum(axis=1) result = f.sum(axis="columns") tm.assert_series_equal(result, expected) def test_class_axis(self): # GH 18147 # no exception and no empty docstring assert pydoc.getdoc(DataFrame.index) assert pydoc.getdoc(DataFrame.columns) def test_series_put_names(self, float_string_frame): series = float_string_frame._series for k, v in series.items(): assert v.name == k def test_empty_nonzero(self): df = DataFrame([1, 2, 3]) assert not df.empty df = DataFrame(index=[1], columns=[1]) assert not df.empty df = DataFrame(index=["a", "b"], columns=["c", "d"]).dropna() assert df.empty assert df.T.empty empty_frames = [ DataFrame(), DataFrame(index=[1]), DataFrame(columns=[1]), DataFrame({1: []}), ] for df in empty_frames: assert df.empty assert df.T.empty def test_with_datetimelikes(self): df = DataFrame( { "A": date_range("20130101", periods=10), "B": timedelta_range("1 day", periods=10), } ) t = df.T result = t.dtypes.value_counts() expected = Series({np.dtype("object"): 10}) tm.assert_series_equal(result, expected) def test_deepcopy(self, float_frame): cp = deepcopy(float_frame) series = cp["A"] series[:] = 10 for idx, value in series.items(): assert float_frame["A"][idx] != value def test_inplace_return_self(self): # GH 1893 data = DataFrame( {"a": ["foo", "bar", "baz", "qux"], "b": [0, 0, 1, 1], "c": [1, 2, 3, 4]} ) def _check_f(base, f): result = f(base) assert result is None # -----DataFrame----- # set_index f = lambda x: x.set_index("a", inplace=True) _check_f(data.copy(), f) # reset_index f = lambda x: x.reset_index(inplace=True) _check_f(data.set_index("a"), f) # drop_duplicates f = lambda x: x.drop_duplicates(inplace=True) _check_f(data.copy(), f) # sort f = lambda x: x.sort_values("b", inplace=True) _check_f(data.copy(), f) # sort_index f = lambda x: x.sort_index(inplace=True) _check_f(data.copy(), f) # fillna f = lambda x: x.fillna(0, inplace=True) _check_f(data.copy(), f) # replace f = lambda x: x.replace(1, 0, inplace=True) _check_f(data.copy(), f) # rename f = lambda x: x.rename({1: "foo"}, inplace=True) _check_f(data.copy(), f) # -----Series----- d = data.copy()["c"] # reset_index f = lambda x: x.reset_index(inplace=True, drop=True) _check_f(data.set_index("a")["c"], f) # fillna f = lambda x: x.fillna(0, inplace=True) _check_f(d.copy(), f) # replace f = lambda x: x.replace(1, 0, inplace=True) _check_f(d.copy(), f) # rename f = lambda x: x.rename({1: "foo"}, inplace=True) _check_f(d.copy(), f) @async_mark() @td.check_file_leaks async def test_tab_complete_warning(self, ip, frame_or_series): # GH 16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter if frame_or_series is DataFrame: code = "from pandas import DataFrame; obj = DataFrame()" else: code = "from pandas import Series; obj = Series(dtype=object)" await ip.run_code(code) # GH 31324 newer jedi version raises Deprecation warning; # appears resolved 2021-02-02 with tm.assert_produces_warning(None): with provisionalcompleter("ignore"): list(ip.Completer.completions("obj.", 1)) def test_attrs(self): df = DataFrame({"A": [2, 3]}) assert df.attrs == {} df.attrs["version"] = 1 result = df.rename(columns=str) assert result.attrs == {"version": 1} @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) setitem (no copy) @pytest.mark.parametrize("allows_duplicate_labels", [True, False, None]) def test_set_flags(self, allows_duplicate_labels, frame_or_series): obj =
DataFrame({"A": [1, 2]})
pandas.DataFrame
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df["A"].values).sum() assert result.index.name is None result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(11, np.max)}) closure_good = grouped.agg({"high": agg_before(11, np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby("a").mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame( {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} ).set_index(["x", "y"]) assert not df.index.is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort).apply(DataFrame.drop_duplicates) expected = df tm.assert_frame_equal(expected, result) result = ( df.sort_index() .groupby(level=level, sort=sort) .apply(DataFrame.drop_duplicates) ) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # the wake of GH5375 df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) # ... and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) gb = df.groupby("a") result = gb.transform("mean") gb2 = df2.groupby("a") expected = gb2.transform("mean") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sort_column", ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], ) @pytest.mark.parametrize( "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] ) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( { "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], "ints": [8, 7, 4, 5, 2, 9, 1, 1], "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], } ) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): tm.assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_group_shift_with_null_key(): # This test is designed to replicate the segfault in issue #13813. n_rows = 1200 # Generate a moderately large dataframe with occasional missing # values in column `B`, and then group by [`A`, `B`]. This should # force `-1` in `labels` array of `g.grouper.group_info` exactly # at those places, where the group-by key is partially missing. df = DataFrame( [(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1) tm.assert_frame_equal(result, expected) def test_group_shift_with_fill_value(): # GH #24128 n_rows = 24 df = DataFrame( [(i % 12, i % 3, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1, fill_value=0)[["Z"]] tm.assert_frame_equal(result, expected) def test_group_shift_lose_timezone(): # GH 30134 now_dt = pd.Timestamp.utcnow() df = DataFrame({"a": [1, 1], "date": now_dt}) result = df.groupby("a").shift(0).iloc[0] expected = Series({"date": now_dt}, name=result.name) tm.assert_series_equal(result, expected) def test_pivot_table_values_key_error(): # This test is designed to replicate the error in issue #14938 df = pd.DataFrame( { "eventDate": pd.date_range(datetime.today(), periods=20, freq="M").tolist(), "thename": range(0, 20), } ) df["year"] = df.set_index("eventDate").index.year df["month"] = df.set_index("eventDate").index.month with pytest.raises(KeyError, match="'badname'"): df.reset_index().pivot_table( index="year", columns="month", values="badname", aggfunc="count" ) def test_empty_dataframe_groupby(): # GH8093 df = DataFrame(columns=["A", "B", "C"]) result = df.groupby("A").sum() expected = DataFrame(columns=["B", "C"], dtype=np.float64) expected.index.name = "A" tm.assert_frame_equal(result, expected) def test_tuple_as_grouping(): # https://github.com/pandas-dev/pandas/issues/18314 df = pd.DataFrame( { ("a", "b"): [1, 1, 1, 1], "a": [2, 2, 2, 2], "b": [2, 2, 2, 2], "c": [1, 1, 1, 1], } ) with pytest.raises(KeyError, match=r"('a', 'b')"): df[["a", "b", "c"]].groupby(("a", "b")) result = df.groupby(("a", "b"))["c"].sum() expected = pd.Series([4], name="c", index=pd.Index([1], name=("a", "b"))) tm.assert_series_equal(result, expected) def test_tuple_correct_keyerror(): # https://github.com/pandas-dev/pandas/issues/18798 df = pd.DataFrame( 1, index=range(3), columns=pd.MultiIndex.from_product([[1, 2], [3, 4]]) ) with pytest.raises(KeyError, match=r"^\(7, 8\)$"): df.groupby((7, 8)).mean() def test_groupby_agg_ohlc_non_first(): # GH 21716 df = pd.DataFrame( [[1], [1]], columns=["foo"], index=pd.date_range("2018-01-01", periods=2, freq="D"), ) expected = pd.DataFrame( [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], columns=pd.MultiIndex.from_tuples( ( ("foo", "sum", "foo"), ("foo", "ohlc", "open"), ("foo", "ohlc", "high"), ("foo", "ohlc", "low"), ("foo", "ohlc", "close"), ) ), index=pd.date_range("2018-01-01", periods=2, freq="D"), ) result = df.groupby(pd.Grouper(freq="D")).agg(["sum", "ohlc"]) tm.assert_frame_equal(result, expected) def test_groupby_multiindex_nat(): # GH 9236 values = [ (pd.NaT, "a"), (datetime(2012, 1, 2), "a"), (datetime(2012, 1, 2), "b"), (datetime(2012, 1, 3), "a"), ] mi =
pd.MultiIndex.from_tuples(values, names=["date", None])
pandas.MultiIndex.from_tuples
import time from Bio import Entrez import xml.etree.ElementTree as ET import pandas as pd import numpy as np from io import StringIO import unidecode # Create output file output_file = 'BIOI4870-Tumor-Sample-Database-DML.sql' with open(output_file, 'w+') as f: pass # Email for connecting to Entrez, enter your own email Entrez.email = '<EMAIL>' # string in ids that indicate type of data, biosample ids begin with SAMN and sra ids begin with SRX biosample_header = 'SAMN' sra_header = 'SRX' # Create DML for cancer_categories table, this is done first for the biosample table # to compare 'disease' strings to 'cancer_type' strings present in cancer_categories input_file = 'NCG_cancerdrivers_annotation_supporting_evidence.tsv' cancer = pd.read_csv(input_file, sep="\t") cancer = cancer.drop(columns = ['entrez','symbol','pubmed_id','type','method','coding_status', 'cgc_annotation','vogelstein_annotation','saito_annotation','NCG_oncogene','NCG_tsg']) cancer = cancer.dropna(how='any') cancer = cancer.drop_duplicates() # Clean up table format cancer = cancer.sort_values(by=['primary_site']) cancer = cancer.sort_values(by=['organ_system']) print(cancer) with open(output_file, 'a') as f: print("--DML for cancer_categories", file=f) for i in cancer.itertuples(index=False, name=None): print("INSERT INTO cancer_categories VALUES {};".format(str(i).replace('_',' ')), file=f) # Create dict object from cancer_dict.tsv cancer_dict = {} with open('cancer_dict.tsv', 'r') as f: for i in f: key, value = i.split('\t') cancer_dict[key] = value.strip('\n') # Pull biosample and SRA data from samples folder samples = open('sample_files.txt', 'r') sra_attributes = StringIO("sra_id,link,study,instrument,strategy,source,selection,layout") biosample_attributes = StringIO("biosample_id,sra_id,biomaterial_provider,sample_type,isolate," + "tissue,cell_type,disease_stage,cancer_type,phenotype,ethnicity,population,age,sex") sra = pd.read_csv(sra_attributes) biosample = pd.read_csv(biosample_attributes) # Determine if entry is a biosample id or sra id for i in samples.readlines(): if biosample_header in i: db = 'biosample' elif sra_header in i: db = 'sra' # Retrieve NCBI xml page through Entrez handle = Entrez.efetch(db, id = i.strip('\n')) tree = ET.parse(handle) root = tree.getroot() # Parse Biosample data if root.tag == 'BioSampleSet': # Create dict for values to be inserted into dataframe biosample_add = dict( biosample_id = '', sra_id = '', biomaterial_provider = '', sample_type = '', isolate = '', tissue = '', cell_type = '', disease_stage = '', cancer_type = '', phenotype = '', ethnicity = '', population = '', age = '', sex = '' ) for id in root.find('BioSample').find('Ids'): if 'db' in id.attrib: # Set biosample_id value if id.get('db') == 'BioSample': biosample_add['biosample_id'] = id.text # Set sra_id value elif id.get('db') == 'SRA': biosample_add['sra_id'] = id.text # For each attribute, check for identical key in biosample_add dict, and if present, set key value to text of xml attribute for attribute in root.find('BioSample').find('Attributes'): if attribute.get('harmonized_name') in biosample_add: if attribute.get('harmonized_name') == 'biomaterial_provider': # Removes accents from biomaterial_provider string they do not agree with SQL biosample_add[attribute.get('harmonized_name')] = unidecode.unidecode(attribute.text) else: biosample_add[attribute.get('harmonized_name')] = attribute.text elif attribute.get('harmonized_name') == 'disease': # Converts disease string to one recognized by cancer_categories and cancer_genes table if attribute.text in cancer_dict: biosample_add['cancer_type'] = cancer_dict[attribute.text] else: for disease in cancer['cancer_type']: if disease.lower().replace('_',' ') == attribute.text.lower().replace('_',' '): biosample_add['cancer_type'] = disease.lower().replace('_',' ') pd_add =
pd.DataFrame.from_dict([biosample_add])
pandas.DataFrame.from_dict
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-20') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-21', '2015-01-22') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 310, pd.Timestamp('2015-01-09')), (10, 311, pd.Timestamp('2015-01-15')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-11')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateWindows(NextEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader(bz.data(events), columns) class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp('2015-01-14') @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-09'), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp('2015-01-20')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20')], 'estimate': [130., 131., 230., 231.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30 }) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [140., 240.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40 }) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [150., 250.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50 }) return pd.concat([ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ]) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (-1., 2., 3., 4., 5., 6., 7., 100), 'effective_date': (pd.Timestamp('2014-01-01'), # Filter out # Split before Q1 event & after first estimate pd.Timestamp('2015-01-07'), # Split before Q1 event pd.Timestamp('2015-01-09'), # Split before Q1 event pd.Timestamp('2015-01-13'), # Split before Q1 event pd.Timestamp('2015-01-15'), # Split before Q1 event pd.Timestamp('2015-01-18'), # Split after Q1 event and before Q2 event pd.Timestamp('2015-01-30'), # Filter out - this is after our date index pd.Timestamp('2016-01-01')) }) sid_10_splits = pd.DataFrame({ SID_FIELD_NAME: 10, 'ratio': (.2, .3), 'effective_date': ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp('2015-01-07'), # Apply a single split before Q1 event. pd.Timestamp('2015-01-20')), }) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame({ SID_FIELD_NAME: 20, 'ratio': (.4, .5, .6, .7, .8, .9,), 'effective_date': ( pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18'), pd.Timestamp('2015-01-30')), }) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame({ SID_FIELD_NAME: 30, 'ratio': (8, 9, 10, 11, 12), 'effective_date': ( # Split before the event and before the # split-asof-date. pd.Timestamp('2015-01-07'), # Split on date of event but before the # split-asof-date. pd.Timestamp('2015-01-09'), # Split after the event, but before the # split-asof-date. pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18')), }) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame({ SID_FIELD_NAME: 40, 'ratio': (13, 14), 'effective_date': ( pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-22') ) }) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame({ SID_FIELD_NAME: 50, 'ratio': (15, 16), 'effective_date': ( pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14') ) }) return pd.concat([ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ]) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-12') ]), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150. * 1 / 16, pd.Timestamp('2015-01-09')), ], pd.Timestamp('2015-01-13')), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')) ], pd.Timestamp('2015-01-14')), pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-01-21') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 221*.8*.9, pd.Timestamp('2015-02-10')), (30, 231, pd.Timestamp('2015-01-20')), (40, 240.*13*14, pd.Timestamp('2015-02-10')), (50, 250., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-19')] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11*12, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-02-10')), (30, 131*11*12, pd.Timestamp('2015-01-20')), (40, 140. * 13 * 14, pd.Timestamp('2015-02-10')), (50, 150., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousWithSplitAdjustedWindows(PreviousWithSplitAdjustedWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 130*1/10, cls.window_test_start_date), (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140, pd.Timestamp('2015-01-09')), (50, 150.*1/15*1/16, pd.Timestamp('2015-01-09'))], pd.Timestamp('2015-01-09') ), cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/15*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-12') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-13') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-14') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*5, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*.7, cls.window_test_start_date), (20, 121*.7, pd.Timestamp('2015-01-07')), (30, 230*11, cls.window_test_start_date), (40, 240, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), cls.create_expected_df_for_factor_compute( [(0, 100*5*6, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110*.3, pd.Timestamp('2015-01-09')), (10, 111*.3, pd.Timestamp('2015-01-12')), (20, 120*.7*.8, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-07')), (30, 230*11*12, cls.window_test_start_date), (30, 231, pd.Timestamp('2015-01-20')), (40, 240*13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-21') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-22') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8, cls.window_test_start_date), (20, 221*.8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220*5/3, cls.window_test_start_date), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), (50, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-09') )] + [cls.create_expected_df_for_factor_compute( [(0, 200*1/4, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*5/3, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-12') )] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-13', '2015-01-14')] + [cls.create_expected_df_for_factor_compute( [(0, 200*5,
pd.Timestamp('2015-01-12')
pandas.Timestamp
""" Packages to use : tsfresh tsfel https://tsfel.readthedocs.io/en/latest/ sktime feature tools : https://docs.featuretools.com/en/stable/automated_feature_engineering/handling_time.html Cesium http://cesium-ml.org/docs/feature_table.html Feature Tools for advacned fewatures `https://github.com/Featuretools/predict-remaining-useful-life/blob/master/Advanced%20Featuretools%20RUL.ipynb """ import pandas as pd import tsfresh from tsfresh import extract_relevant_features, extract_features import numpy as np import pdb import re def features_time_basic(df, input_raw_path = None, dir_out = None, features_group_name = None, auxiliary_csv_path = None, drop_cols = None, index_cols = None, merge_cols_mapping = None, cat_cols = None, id_cols = None, dep_col = None, max_rows = 10): df['date_t'] = pd.to_datetime(df['date']) df['year'] = df['date_t'].dt.year df['month'] = df['date_t'].dt.month df['week'] = df['date_t'].dt.week df['day'] = df['date_t'].dt.day df['dayofweek'] = df['date_t'].dt.dayofweek cat_cols = [] return df[['year', 'month', 'week', 'day', 'dayofweek'] + id_cols], cat_cols def features_lag(df, fname): out_df = df[['item_id', 'dept_id', 'cat_id', 'store_id', 'state_id']] ############################################################################### # day lag 29~57 day and last year's day lag 1~28 day day_lag = df.iloc[:,-28:] day_year_lag = df.iloc[:,-393:-365] day_lag.columns = [str("lag_{}_day".format(i)) for i in range(29,57)] # Rename columns day_year_lag.columns = [str("lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # Rolling mean(3) and (7) and (28) and (84) 29~57 day and last year's day lag 1~28 day rolling_3 = df.iloc[:,-730:].T.rolling(3).mean().T.iloc[:,-28:] rolling_3.columns = [str("rolling3_lag_{}_day".format(i)) for i in range(29,57)] # Rename columns rolling_3_year = df.iloc[:,-730:].T.rolling(3).mean().T.iloc[:,-393:-365] rolling_3_year.columns = [str("rolling3_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] rolling_7 = df.iloc[:,-730:].T.rolling(7).mean().T.iloc[:,-28:] rolling_7.columns = [str("rolling7_lag_{}_day".format(i)) for i in range(29,57)] # Rename columns rolling_7_year = df.iloc[:,-730:].T.rolling(7).mean().T.iloc[:,-393:-365] rolling_7_year.columns = [str("rolling7_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] rolling_28 = df.iloc[:,-730:].T.rolling(28).mean().T.iloc[:,-28:] rolling_28.columns = [str("rolling28_lag_{}_day".format(i)) for i in range(29,57)] rolling_28_year = df.iloc[:,-730:].T.rolling(28).mean().T.iloc[:,-393:-365] rolling_28_year.columns = [str("rolling28_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] rolling_84 = df.iloc[:,-730:].T.rolling(84).mean().T.iloc[:,-28:] rolling_84.columns = [str("rolling84_lag_{}_day".format(i)) for i in range(29,57)] rolling_84_year = df.iloc[:,-730:].T.rolling(84).mean().T.iloc[:,-393:-365] rolling_84_year.columns = [str("rolling84_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_lag = pd.DataFrame({}) for i in range(1,19): if i == 1: monthly = df.iloc[:,-28*i:].T.sum().T month_lag["monthly_lag_{}_month".format(i)] = monthly else: monthly = df.iloc[:, -28*i:-28*(i-1)].T.sum().T month_lag["monthly_lag_{}_month".format(i)] = monthly # combine day lag and monthly lag out_df = pd.concat([out_df, day_lag], axis=1) out_df = pd.concat([out_df, day_year_lag], axis=1) out_df = pd.concat([out_df, rolling_3], axis=1) out_df = pd.concat([out_df, rolling_3_year], axis=1) out_df = pd.concat([out_df, rolling_7], axis=1) out_df = pd.concat([out_df, rolling_7_year], axis=1) out_df = pd.concat([out_df, rolling_28], axis=1) out_df = pd.concat([out_df, rolling_28_year], axis=1) out_df = pd.concat([out_df, rolling_84], axis=1) out_df = pd.concat([out_df, rolling_84_year], axis=1) out_df = pd.concat([out_df, month_lag], axis=1) ############################################################################### # dept_id group_dept = df.groupby("dept_id").sum() # day lag 29~57 day and last year's day lag 1~28 day dept_day_lag = group_dept.iloc[:,-28:] dept_day_year_lag = group_dept.iloc[:,-393:-365] dept_day_lag.columns = [str("dept_lag_{}_day".format(i)) for i in range(29,57)] dept_day_year_lag.columns = [str("dept_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_dept_lag = pd.DataFrame({}) for i in range(1,19): if i == 1: monthly_dept = group_dept.iloc[:,-28*i:].T.sum().T month_dept_lag["dept_monthly_lag_{}_month".format(i)] = monthly_dept elif i >= 7 and i < 13: continue else: monthly = group_dept.iloc[:, -28*i:-28*(i-1)].T.sum().T month_dept_lag["dept_monthly_lag_{}_month".format(i)] = monthly_dept # combine out df out_df = pd.merge(out_df, dept_day_lag, left_on="dept_id", right_index=True, how="left") out_df = pd.merge(out_df, dept_day_year_lag, left_on="dept_id", right_index=True, how="left") out_df = pd.merge(out_df, month_dept_lag, left_on="dept_id", right_index=True, how="left") ############################################################################### # cat_id group_cat = df.groupby("cat_id").sum() # day lag 29~57 day and last year's day lag 1~28 day cat_day_lag = group_cat.iloc[:,-28:] cat_day_year_lag = group_cat.iloc[:,-393:-365] cat_day_lag.columns = [str("cat_lag_{}_day".format(i)) for i in range(29,57)] cat_day_year_lag.columns = [str("cat_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_cat_lag = pd.DataFrame({}) for i in range(1,19): if i == 1: monthly_cat = group_cat.iloc[:,-28*i:].T.sum().T month_cat_lag["cat_monthly_lag_{}_month".format(i)] = monthly_cat elif i >= 7 and i < 13: continue else: monthly_cat = group_cat.iloc[:, -28*i:-28*(i-1)].T.sum().T month_cat_lag["dept_monthly_lag_{}_month".format(i)] = monthly_cat # combine out df out_df = pd.merge(out_df, cat_day_lag, left_on="cat_id", right_index=True, how="left") out_df = pd.merge(out_df, cat_day_year_lag, left_on="cat_id", right_index=True, how="left") out_df = pd.merge(out_df, month_cat_lag, left_on="cat_id", right_index=True, how="left") ############################################################################### # store_id group_store = df.groupby("store_id").sum() # day lag 29~57 day and last year's day lag 1~28 day store_day_lag = group_store.iloc[:,-28:] store_day_year_lag = group_store.iloc[:,-393:-365] store_day_lag.columns = [str("store_lag_{}_day".format(i)) for i in range(29,57)] store_day_year_lag.columns = [str("store_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_store_lag = pd.DataFrame({}) for i in range(1,19): if i == 1: monthly_store = group_store.iloc[:,-28*i:].T.sum().T month_store_lag["store_monthly_lag_{}_month".format(i)] = monthly_store elif i >= 7 and i <13: continue else: monthly_store = group_store.iloc[:, -28*i:-28*(i-1)].T.sum().T month_store_lag["store_monthly_lag_{}_month".format(i)] = monthly_store # combine out df out_df = pd.merge(out_df, store_day_lag, left_on="store_id", right_index=True, how="left") out_df = pd.merge(out_df, store_day_year_lag, left_on="store_id", right_index=True, how="left") out_df = pd.merge(out_df, month_store_lag, left_on="store_id", right_index=True, how="left") ############################################################################### # state_id group_state = df.groupby("state_id").sum() # day lag 29~57 day and last year's day lag 1~28 day state_day_lag = group_state.iloc[:,-28:] state_day_year_lag = group_state.iloc[:,-393:-365] state_day_lag.columns = [str("state_lag_{}_day".format(i)) for i in range(29,57)] state_day_year_lag.columns = [str("state_lag_{}_day_of_last_year".format(i)) for i in range(1,29)] # monthly lag 1~18 month month_state_lag = pd.DataFrame({}) for i in range(1,13): if i == 1: monthly_state = group_state.iloc[:,-28*i:].T.sum().T month_state_lag["state_monthly_lag_{}_month".format(i)] = monthly_state elif i >= 7 and i < 13: continue else: monthly_state = group_state.iloc[:, -28*i:-28*(i-1)].T.sum().T month_state_lag["state_monthly_lag_{}_month".format(i)] = monthly_state # combine out df out_df = pd.merge(out_df, state_day_lag, left_on="state_id", right_index=True, how="left") out_df = pd.merge(out_df, state_day_year_lag, left_on="state_id", right_index=True, how="left") out_df =
pd.merge(out_df, month_state_lag, left_on="state_id", right_index=True, how="left")
pandas.merge
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2021/10/14 12:19 Desc: 巨潮资讯-数据中心-专题统计-债券报表-债券发行 http://webapi.cninfo.com.cn/#/thematicStatistics """ import time import pandas as pd import requests from py_mini_racer import py_mini_racer js_str = """ function mcode(input) { var keyStr = "<KEY> <KEY>; var output = ""; var chr1, chr2, chr3 = ""; var enc1, enc2, enc3, enc4 = ""; var i = 0; do { chr1 = input.charCodeAt(i++); chr2 = input.charCodeAt(i++); chr3 = input.charCodeAt(i++); enc1 = chr1 >> 2; enc2 = ((chr1 & 3) << 4) | (chr2 >> 4); enc3 = ((chr2 & 15) << 2) | (chr3 >> 6); enc4 = chr3 & 63; if (isNaN(chr2)) { enc3 = enc4 = 64; } else if (isNaN(chr3)) { enc4 = 64; } output = output + keyStr.charAt(enc1) + keyStr.charAt(enc2) + keyStr.charAt(enc3) + keyStr.charAt(enc4); chr1 = chr2 = chr3 = ""; enc1 = enc2 = enc3 = enc4 = ""; } while (i < input.length); return output; } """ def bond_treasure_issue_cninfo( start_date: str = "20210910", end_date: str = "20211109" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-国债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 国债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1120" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ "F009D": "缴款日", "SECNAME": "债券简称", "DECLAREDATE": "公告日期", "F004D": "发行起始日", "F003D": "发行终止日", "F008N": "单位面值", "SECCODE": "债券代码", "F007N": "发行价格", "F006N": "计划发行总量", "F005N": "实际发行总量", "F028N": "增发次数", "BONDNAME": "债券名称", "F014V": "发行对象", "F002V": "交易市场", "F013V": "发行方式", }, inplace=True, ) temp_df = temp_df[ [ "债券代码", "债券简称", "发行起始日", "发行终止日", "计划发行总量", "实际发行总量", "发行价格", "单位面值", "缴款日", "增发次数", "交易市场", "发行方式", "发行对象", "公告日期", "债券名称", ] ] temp_df["发行起始日"] = pd.to_datetime(temp_df["发行起始日"]).dt.date temp_df["发行终止日"] = pd.to_datetime(temp_df["发行终止日"]).dt.date temp_df["缴款日"] = pd.to_datetime(temp_df["缴款日"]).dt.date temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行价格"] = pd.to_numeric(temp_df["发行价格"]) temp_df["单位面值"] = pd.to_numeric(temp_df["单位面值"]) temp_df["增发次数"] = pd.to_numeric(temp_df["增发次数"]) return temp_df def bond_local_government_issue_cninfo( start_date: str = "20210911", end_date: str = "20211110" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-地方债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 地方债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1121" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ "F009D": "缴款日", "SECNAME": "债券简称", "DECLAREDATE": "公告日期", "F004D": "发行起始日", "F003D": "发行终止日", "F008N": "单位面值", "SECCODE": "债券代码", "F007N": "发行价格", "F006N": "计划发行总量", "F005N": "实际发行总量", "F028N": "增发次数", "BONDNAME": "债券名称", "F014V": "发行对象", "F002V": "交易市场", "F013V": "发行方式", }, inplace=True, ) temp_df = temp_df[ [ "债券代码", "债券简称", "发行起始日", "发行终止日", "计划发行总量", "实际发行总量", "发行价格", "单位面值", "缴款日", "增发次数", "交易市场", "发行方式", "发行对象", "公告日期", "债券名称", ] ] temp_df["发行起始日"] = pd.to_datetime(temp_df["发行起始日"]).dt.date temp_df["发行终止日"] = pd.to_datetime(temp_df["发行终止日"]).dt.date temp_df["缴款日"] = pd.to_datetime(temp_df["缴款日"]).dt.date temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行价格"] = pd.to_numeric(temp_df["发行价格"]) temp_df["单位面值"] = pd.to_numeric(temp_df["单位面值"]) temp_df["增发次数"] = pd.to_numeric(temp_df["增发次数"]) return temp_df def bond_corporate_issue_cninfo( start_date: str = "20210911", end_date: str = "20211110" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-企业债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 企业债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1122" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ "SECNAME": "债券简称", "DECLAREDATE": "公告日期", "F004D": "交易所网上发行终止日", "F003D": "交易所网上发行起始日", "F008N": "发行面值", "SECCODE": "债券代码", "F007N": "发行价格", "F006N": "实际发行总量", "F005N": "计划发行总量", "F022N": "最小认购单位", "F017V": "承销方式", "F052N": "最低认购额", "F015V": "发行范围", "BONDNAME": "债券名称", "F014V": "发行对象", "F013V": "发行方式", "F023V": "募资用途说明", }, inplace=True, ) temp_df = temp_df[ [ "债券代码", "债券简称", "公告日期", "交易所网上发行起始日", "交易所网上发行终止日", "计划发行总量", "实际发行总量", "发行面值", "发行价格", "发行方式", "发行对象", "发行范围", "承销方式", "最小认购单位", "募资用途说明", "最低认购额", "债券名称", ] ] temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["交易所网上发行起始日"] = pd.to_datetime(temp_df["交易所网上发行起始日"]).dt.date temp_df["交易所网上发行终止日"] = pd.to_datetime(temp_df["交易所网上发行终止日"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行面值"] = pd.to_numeric(temp_df["发行面值"]) temp_df["发行价格"] = pd.to_numeric(temp_df["发行价格"]) temp_df["最小认购单位"] = pd.to_numeric(temp_df["最小认购单位"]) temp_df["最低认购额"] = pd.to_numeric(temp_df["最低认购额"]) return temp_df def bond_cov_issue_cninfo( start_date: str = "20210913", end_date: str = "20211112" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-可转债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 可转债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1123" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ 'F029D': '发行起始日', 'SECNAME': '债券简称', 'F027D': '转股开始日期', 'F003D': '发行终止日', 'F007N': '发行面值', 'F053D': '转股终止日期', 'F005N': '计划发行总量', 'F051D': '网上申购日期', 'F026N': '初始转股价格', 'F066N': '网上申购数量下限', 'F052N': '发行价格', 'BONDNAME': '债券名称', 'F014V': '发行对象', 'F002V': '交易市场', 'F032V': '网上申购简称', 'F086V': '转股代码', 'DECLAREDATE': '公告日期', 'F028D': '债权登记日', 'F004D': '优先申购日', 'F068D': '网上申购中签结果公告日及退款日', 'F054D': '优先申购缴款日', 'F008N': '网上申购数量上限', 'SECCODE': '债券代码', 'F006N': '实际发行总量', 'F067N': '网上申购单位', 'F065N': '配售价格', 'F017V': '承销方式', 'F015V': '发行范围', 'F013V': '发行方式', 'F021V': '募资用途说明', 'F031V': '网上申购代码' }, inplace=True, ) temp_df = temp_df[ [ '债券代码', '债券简称', '公告日期', '发行起始日', '发行终止日', '计划发行总量', '实际发行总量', '发行面值', '发行价格', '发行方式', '发行对象', '发行范围', '承销方式', '募资用途说明', '初始转股价格', '转股开始日期', '转股终止日期', '网上申购日期', '网上申购代码', '网上申购简称', '网上申购数量上限', '网上申购数量下限', '网上申购单位', '网上申购中签结果公告日及退款日', '优先申购日', '配售价格', '债权登记日', '优先申购缴款日', '转股代码', '交易市场', '债券名称', ] ] temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["发行起始日"] = pd.to_datetime(temp_df["发行起始日"]).dt.date temp_df["发行终止日"] = pd.to_datetime(temp_df["发行终止日"]).dt.date temp_df["转股开始日期"] = pd.to_datetime(temp_df["转股开始日期"]).dt.date temp_df["转股终止日期"] = pd.to_datetime(temp_df["转股终止日期"]).dt.date temp_df["转股终止日期"] = pd.to_datetime(temp_df["转股终止日期"]).dt.date temp_df["网上申购日期"] = pd.to_datetime(temp_df["网上申购日期"]).dt.date temp_df["网上申购中签结果公告日及退款日"] = pd.to_datetime(temp_df["网上申购中签结果公告日及退款日"]).dt.date temp_df["债权登记日"] = pd.to_datetime(temp_df["债权登记日"]).dt.date temp_df["优先申购日"] = pd.to_datetime(temp_df["优先申购日"]).dt.date temp_df["优先申购缴款日"] = pd.to_datetime(temp_df["优先申购缴款日"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行面值"] = pd.to_nu
meric(temp_df["发行面值"])
pandas.to_numeric
import matplotlib.pyplot as plt import os import seaborn as sns import numpy as np from matplotlib.colors import ListedColormap import pandas as pd from sklearn.manifold import TSNE from src.Utils.Fitness import Fitness class Graphs: def __init__(self,objectiveNames,data,save=True,display=False,path='./Figures/'): self.objectiveNames = objectiveNames self.data = data self.save = save self.path = path self.display = display self.CheckIfPathExist() def CheckIfPathExist(self): p = self.path.split('/') p = p[:-1] p = '/'.join(p) pathExist = os.path.exists(p) if not pathExist : os.mkdir(p) def dataTSNE(self): self.data = self.ChangeAlgoNames(self.data) fig = sns.relplot(data=self.data,x=self.data['x'],y=self.data['y'],col='algorithm',kind='scatter',col_wrap=4,height=8.27, aspect=17/8.27) if self.display: plt.show() if self.save: fig.savefig(self.path + ".png") def findGlobalParetoFront(self,dataSet,pop): print('find global pareto front') fitness = Fitness('horizontal_binary', ['support','confidence','cosine'], len(pop) ,dataSet.shape[1]) fitness.ComputeScorePopulation(pop,dataSet) scores = fitness.scores print(scores) paretoFront = [] isParetoFrontColumn = [] for p in range(len(scores)): dominate = True for q in range(len(scores)): if fitness.Domination(scores[p], scores[q]) == 1: dominate = False isParetoFrontColumn.append(False) break if dominate: paretoFront.append(p) isParetoFrontColumn.append(True) paretoFront = np.array(paretoFront) return paretoFront def getRulesFromFiles(self,dataSet,data): rules = [] pop = [] files = os.listdir('D:/ULaval/Maitrise/Recherche/Code/Experiments/MUSHROOM/Rules/0/') for file in files: f = open('D:/ULaval/Maitrise/Recherche/Code/Experiments/MUSHROOM/Rules/0/'+file,'r') lines = f.readlines() f.close() for i in range(len(lines)): if(i%2==0): ind = np.zeros(dataSet.shape[1]*2) line = lines[i] line = line[1:len(line)-2] line = line.split("' '") line = [l.replace("'", "") for l in line] for li in range(len(line)): obj = line[li] obj = obj[1:len(obj)-1] obj = obj.split(' ') obj= [ x for x in obj if x!=''] if(li==0): for item in obj: ind[int(item)] = 1 if(li==2): for item in obj: ind[int(item)+dataSet.shape[1]] = 1 pop.append(ind) pop = np.array(pop) paretoFront = self.findGlobalParetoFront(dataSet,pop) pop = pop[paretoFront] pop = [list(x) for x in pop] isInParetoFront = [] for i in range(len(data)): line = list(np.array(data.loc[i])[1:]) isInPareto = False for ind in pop: if(ind == line): isInPareto = True if isInPareto: isInParetoFront.append(True) else: isInParetoFront.append(False) return isInParetoFront def dataTSNEFromFile(self,dataSet): self.data = pd.read_csv('D:/ULaval/Maitrise/Recherche/Code/Experiments/MUSHROOM/0/TestedIndividuals/49.csv',index_col=0) isParetoFrontColumn = self.getRulesFromFiles(dataSet,self.data) self.data = self.ChangeAlgoNames(self.data) print(self.data) algorithms = self.data['algorithm'] self.data = self.data.drop('algorithm',axis=1) self.data['isInParetoFront'] = isParetoFrontColumn self.data = TSNE(n_components=2, learning_rate='auto', init='random').fit_transform(np.asarray(self.data,dtype='float64')) transformed = pd.DataFrame(list(zip(list(algorithms),self.data[:,0],self.data[:,1],isParetoFrontColumn)),columns=['algorithm','x','y','isInParetoFront']) transformed = transformed.drop_duplicates() self.data = transformed print(self.data) fig = sns.relplot(data=self.data,x=self.data['x'],y=self.data['y'],col='algorithm',kind='scatter',col_wrap=4,height=8.27, aspect=17/8.27,hue='isInParetoFront') self.path = 'D:/ULaval/Maitrise/Recherche/Code/Experiments/MUSHROOM/0/TestedIndividuals/graph' if True: plt.show() if True: fig.savefig(self.path + ".png") def GraphNbRules(self): plt.cla() plt.clf() fig = plt.figure(figsize=(15,15)) sns.barplot(x='algorithm', y='nbRules', data=self.data) plt.xticks(rotation=70) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphDistances(self): plt.cla() plt.clf() fig = plt.figure(figsize=(15,15)) sns.barplot(x='algorithm', y='distances', data=self.data) plt.xticks(rotation=70) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphCoverages(self): plt.cla() plt.clf() fig = plt.figure(figsize=(15,15)) sns.barplot(x='algorithm', y='coverages', data=self.data) plt.xticks(rotation=70) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphAverageCoverages(self,p,algName,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) df = pd.read_csv(p + str(i) + '/Coverages.csv', index_col=0) for nameIndex in range(len(algName)): # data.append([algName[nameIndex],float(df.loc[(df['algorithm'] == algName[nameIndex]) & (df['i'] == nbIter-1)]['coverages'])]) data.append([algName[nameIndex], float( df.loc[df['algorithm'] == algName[nameIndex]].head(1)['coverages'])]) df = pd.DataFrame(data,columns=['algorithm','coverages']) df = df.sort_values(by=['coverages'],ascending=False) df.reset_index(level=0, inplace=True) df = self.ChangeAlgoNames(df) print(df) fig = plt.figure(figsize=(15,15)) sns.barplot(x='algorithm', y='coverages', data=df) plt.xticks(rotation=70) plt.tight_layout() if true: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphAverageNBRules(self,p,algName,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) df = pd.read_csv(p + str(i) + '/NbRules/'+str(nbIter-1)+'.csv', index_col=0) for nameIndex in range(len(algName)): data.append([algName[nameIndex],float(df.loc[df['algorithm'] == algName[nameIndex]]['nbRules'])]) df = pd.DataFrame(data,columns=['algorithm','nbRules']) df = df.sort_values(by=['nbRules'],ascending=False) df = self.ChangeAlgoNames(df) print(df) fig = plt.figure(figsize=(15,15)) sns.barplot(x='algorithm', y='nbRules', data=df) plt.xticks(rotation=70) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphAverageExecutionTime(self,p,algName,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) df = pd.read_csv(p + str(i) + '/ExecutionTime.csv', index_col=0) for nameIndex in range(len(algName)): for j in range(nbIter): data.append([algName[nameIndex], float(df.loc[(df['algorithm'] == algName[nameIndex]) & (df['i'] == j)]['execution Time'])]) df = pd.DataFrame(data, columns=['algorithm', 'execution Time']) df = df.sort_values(by=['execution Time'], ascending=False) df = self.ChangeAlgoNames(df) print(df) fig = plt.figure(figsize=(15, 15)) sns.barplot(x='algorithm', y='execution Time', data=df) plt.xticks(rotation=70) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphAverageDistances(self, p, algName,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) df = pd.read_csv(p + str(i) + '/Distances.csv', index_col=0) for nameIndex in range(len(algName)): # data.append([algName[nameIndex], float(df.loc[(df['algorithm'] == algName[nameIndex]) & (df['i'] == nbIter-1) ]['distances'])]) data.append([algName[nameIndex], float( df.loc[df['algorithm'] == algName[nameIndex]].head(1)['distances'])]) df = pd.DataFrame(data, columns=['algorithm', 'distances']) df = df.sort_values(by=['distances'], ascending=False) df.reset_index(level=0, inplace=True) df = self.ChangeAlgoNames(df) fig = plt.figure(figsize=(15, 15)) sns.barplot(x='algorithm', y='distances', data=df) plt.xticks(rotation=70) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphExecutionTime(self): plt.cla() plt.clf() fig = plt.figure(figsize=(15,15)) self.data = self.ChangeAlgoNames(self.data) sns.lineplot(x='i',y='execution Time',hue='algorithm',style='algorithm',data=self.data) fig.legend(loc='center left', bbox_to_anchor=(1, 0.5)) if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path+".png") def GraphScores(self): plt.cla() plt.clf() fig = plt.figure(figsize=(15,15)) ax = fig.add_subplot(111, projection='3d') ax.set_xlim3d(0, 1) ax.set_ylim3d(0, 1) #a Changer si on a une IM avec un interval de definition autre ax.set_zlim3d(0, 1) ax.set_xlabel(self.objectiveNames[0]) ax.set_ylabel(self.objectiveNames[1]) ax.set_zlabel(self.objectiveNames[2]) for alg in self.data.algorithm.unique(): ax.scatter(self.data[self.data.algorithm==alg][self.objectiveNames[0]], self.data[self.data.algorithm==alg][self.objectiveNames[1]], self.data[self.data.algorithm==alg][self.objectiveNames[2]], label=alg) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path+".png") def ChangeAlgoNames(self,df): df = df.replace('custom','Cambrian Explosion') df = df.replace('mohsbotsarm', 'Bee Swarm') df = df.replace('moaloarm', 'Antlion') df = df.replace('modearm', 'Differential Evolution') df = df.replace('mossoarm', 'Social Spider') df = df.replace('modaarm', 'Dragonfly') df = df.replace('mowoaarm', 'Whale') df = df.replace('mogsaarm', 'Gravity Search') df = df.replace('hmofaarm', 'Firefly') df = df.replace('mofpaarm', 'Flower Polination') df = df.replace('mososarm', 'Symbiotic') df = df.replace('mowsaarm', 'Wolf') df = df.replace('mocatsoarm', 'Cat') df = df.replace('mogeaarm', 'Gradient') df = df.replace('nshsdearm', 'NSHSDE') df = df.replace('mosaarm', 'Simulated Annealing') df = df.replace('motlboarm', 'Teaching Learning') df = df.replace('mopso', 'Particle Swarm') df = df.replace('mocssarm', 'Charged System') df = df.replace('nsgaii', 'NSGAII') df = df.replace('mocsoarm', 'Cockroach') return df def getAverage(self): nbRepeat = 50 dataset = 'RISK' mesureFolder = 'LeaderBoard' dfArray = [] avgArray = [] for i in range(nbRepeat): p = 'D:/ULaval/Maitrise/Recherche/Code/Experiments/' + dataset + '/' p = p +str(i)+'/'+ mesureFolder+'/49.csv' df = pd.read_csv(p,index_col=1) if(i>0): fdf = fdf + df else: fdf = df fdf = fdf/nbRepeat fdf = fdf.sort_values(by=['support'],ascending=False) print(fdf) def Graph3D(self): plt.cla() plt.clf() fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = self.data[:, 0] y = self.data[:, 1] z = self.data[:, 2] ax.set_xlabel(self.objectiveNames[0]) ax.set_ylabel(self.objectiveNames[1]) ax.set_zlabel(self.objectiveNames[2]) ax.scatter(x, y, z) if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path+".png") plt.close() def GraphNBRulesVsCoverages(self,algName,p,graphType,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) dfNbRules = pd.read_csv(p + str(i) + '/NbRules/' + str(nbIter - 1) + '.csv', index_col=0) dfCoverages = pd.read_csv(p + str(i) + '/Coverages.csv', index_col=0) # dfCoverages = dfCoverages[dfCoverages['i']==float(nbRepeat-1)] for nameIndex in range(len(algName)): data.append([algName[nameIndex], float(dfNbRules.loc[dfNbRules['algorithm'] == algName[nameIndex]]['nbRules']),float( dfCoverages.loc[dfCoverages['algorithm'] == algName[nameIndex]].head(1)['coverages'])]) df = pd.DataFrame(data, columns=['algorithm', 'nbRules','coverages']) df = df.sort_values(by=['nbRules'], ascending=False) coverages = df.groupby(['algorithm']) coverages = coverages['coverages'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) coverages = coverages.rename(columns={'mean':'covMean','std':'covStd'}) nbRules = df.groupby(['algorithm']) nbRules = nbRules['nbRules'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) nbRules = nbRules.rename(columns={'mean': 'nbRulesMean', 'std': 'nbRulesStd'}) df = pd.concat([coverages,nbRules],axis=1) df.reset_index(level=0, inplace=True) df = self.ChangeAlgoNames(df) fig = plt.figure(figsize=(15, 15)) ax = sns.scatterplot(x='nbRulesMean', y='covMean', hue='algorithm', style='algorithm',data=df) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() if self.save: fig.savefig(self.path+'GraphNBRulesVsCoverages' + ".png") def GraphSCCVsCoverage(self,algName,p,graphType,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) dfCoverages = pd.read_csv(p + str(i) + '/Coverages.csv', index_col=0) # dfCoverages = dfCoverages[dfCoverages['i'] == float(nbRepeat - 1)] dfScores = pd.read_csv(p + str(i) + '/LeaderBoard/'+ str(nbIter - 1)+'.csv', index_col=0) for nameIndex in range(len(algName)): data.append([algName[nameIndex], float(dfCoverages.loc[dfCoverages['algorithm'] == algName[nameIndex]].head(1)['coverages']),float( dfScores.loc[dfScores['algorithm'] == algName[nameIndex]]['support']),float( dfScores.loc[dfScores['algorithm'] == algName[nameIndex]]['confidence']),float( dfScores.loc[dfScores['algorithm'] == algName[nameIndex]]['cosine'])]) df = pd.DataFrame(data, columns=['algorithm', 'coverages','support','confidence','cosine']) df = df.sort_values(by=['coverages'], ascending=False) support = df.groupby(['algorithm']) support = support['support'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) support = support.rename(columns={'mean':'supportMean','std':'supportStd'}) confidence = df.groupby(['algorithm']) confidence = confidence['confidence'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) confidence = confidence.rename(columns={'mean': 'confidenceMean', 'std': 'confidenceStd'}) cosine = df.groupby(['algorithm']) cosine = cosine['cosine'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) cosine = cosine.rename(columns={'mean': 'cosineMean', 'std': 'cosineStd'}) coverages = df.groupby(['algorithm']) coverages = coverages['coverages'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) coverages = coverages.rename(columns={'mean': 'coveragesMean', 'std': 'coveragesStd'}) df = pd.concat([support,confidence,cosine,coverages],axis=1) df.reset_index(level=0, inplace=True) df = self.ChangeAlgoNames(df) fig, axes = plt.subplots(1, 3, figsize=(17, 5), sharey=True) ax = sns.scatterplot(ax=axes[0],x='coveragesMean', y='supportMean', hue='algorithm', style='algorithm',data=df) ax.get_legend().remove() ax =sns.scatterplot(ax=axes[1], x='coveragesMean', y='confidenceMean', hue='algorithm', style='algorithm', data=df) ax.get_legend().remove() ax =sns.scatterplot(ax=axes[2], x='coveragesMean', y='cosineMean', hue='algorithm', style='algorithm', data=df) ax.get_legend().remove() plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() if self.save: fig.savefig(self.path+'GraphCoveragesVsSCC' + ".png") def GraphSCCVsNBRules(self,algName,p,graphType,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) dfNbRules = pd.read_csv(p + str(i) + '/NbRules/' + str(nbIter - 1) + '.csv', index_col=0) dfScores = pd.read_csv(p + str(i) + '/LeaderBoard/'+ str(nbIter - 1)+'.csv', index_col=0) for nameIndex in range(len(algName)): data.append([algName[nameIndex], float(dfNbRules.loc[dfNbRules['algorithm'] == algName[nameIndex]]['nbRules']),float( dfScores.loc[dfScores['algorithm'] == algName[nameIndex]]['support']),float( dfScores.loc[dfScores['algorithm'] == algName[nameIndex]]['confidence']),float( dfScores.loc[dfScores['algorithm'] == algName[nameIndex]]['cosine'])]) df = pd.DataFrame(data, columns=['algorithm', 'nbRules','support','confidence','cosine']) df = df.sort_values(by=['nbRules'], ascending=False) support = df.groupby(['algorithm']) support = support['support'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) support = support.rename(columns={'mean':'supportMean','std':'supportStd'}) confidence = df.groupby(['algorithm']) confidence = confidence['confidence'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) confidence = confidence.rename(columns={'mean': 'confidenceMean', 'std': 'confidenceStd'}) cosine = df.groupby(['algorithm']) cosine = cosine['cosine'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) cosine = cosine.rename(columns={'mean': 'cosineMean', 'std': 'cosineStd'}) nbRules = df.groupby(['algorithm']) nbRules = nbRules['nbRules'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False) nbRules = nbRules.rename(columns={'mean': 'nbRulesMean', 'std': 'nbRulesStd'}) df = pd.concat([support,confidence,cosine,nbRules],axis=1) df.reset_index(level=0, inplace=True) df = self.ChangeAlgoNames(df) fig, axes = plt.subplots(1, 3, figsize=(18, 5), sharey=True) ax = sns.scatterplot(ax=axes[0],x='nbRulesMean', y='supportMean', hue='algorithm', style='algorithm',data=df) ax.get_legend().remove() ax =sns.scatterplot(ax=axes[1], x='nbRulesMean', y='confidenceMean', hue='algorithm', style='algorithm', data=df) ax.get_legend().remove() ax =sns.scatterplot(ax=axes[2], x='nbRulesMean', y='cosineMean', hue='algorithm', style='algorithm', data=df) ax.get_legend().remove() plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() if self.save: fig.savefig(self.path+'GraphNBRulesVsSCC' + ".png") def GraphPopDistances(self,algName,p,graphType,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p)) - 2 data = [] for i in range(nbRepeat): print(i) repetitionPath = p + str(i) + '/' + graphType + '/' nbIter = len(os.listdir(repetitionPath)) for j in range(nbIter): iterPath = repetitionPath+str(j)+'.csv' df = pd.read_csv(iterPath,index_col=0) nameCol = [nc for nc in df.columns if nc != 'algorithm'] for nameIndex in range(len(algName)): distances = df[df['algorithm'] == algName[nameIndex]][nameCol[0]] data.append([algName[nameIndex],j,float(distances)]) df = pd.DataFrame(data, columns=['algorithm', 'iter', 'distances']) df = self.ChangeAlgoNames(df) objectiveName = 'distances' fig = plt.figure(figsize=(15, 15)) ax = sns.lineplot(x='iter', y='distances', hue='algorithm', style='algorithm', data=df) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() dfTemp = df[df['iter'] == nbIter-1].groupby(['algorithm']) if self.save: fig.savefig(self.path+'distances' + ".png") plt.close() print('distances :') print(dfTemp['distances'].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False)) def GraphExperimentation(self,algName,p,graphType,nbIter): plt.cla() plt.clf() nbRepeat = len(os.listdir(p))-2 data = [] for i in range(nbRepeat): print(i) repetitionPath = p + str(i) + '/' + graphType + '/' nbIter = len(os.listdir(repetitionPath)) for j in range(nbIter): iterPath = repetitionPath+str(j)+'.csv' df = pd.read_csv(iterPath,index_col=0) nameCol = [nc for nc in df.columns if nc != 'algorithm'] for nameIndex in range(len(algName)): s1 = df[df['algorithm'] == algName[nameIndex]][nameCol[0]] s2 =df[df['algorithm'] == algName[nameIndex]][nameCol[1]] s3 = df[df['algorithm'] == algName[nameIndex]][nameCol[2]] data.append([algName[nameIndex],j,float(s1),float(s2),float(s3)]) df = pd.DataFrame(data,columns=['algorithm','iter']+self.objectiveNames) df.reset_index(level=0, inplace=True) df = self.ChangeAlgoNames(df) for k in range(len(self.objectiveNames)): objectiveName = self.objectiveNames[k] fig = plt.figure(figsize=(15, 15)) ax = sns.lineplot(x='iter', y=objectiveName, hue='algorithm', style='algorithm', data=df) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() dfTemp = df[df['iter'] == nbIter-1].groupby(['algorithm']) if self.save: fig.savefig(self.path+objectiveName + ".png") plt.close() print(objectiveName) print(dfTemp[objectiveName].agg( ['mean', 'std']).sort_values(by=['mean'], ascending=False)) def DatasetColumnsRows(self,p): df = pd.read_csv(p) plt.cla() plt.clf() fig = plt.figure(figsize=(15, 15)) sns.scatterplot(x='row', y='binary attribute',hue='dataset', data=df) plt.tight_layout() if self.display: plt.show() else: plt.close(fig) if self.save: fig.savefig(self.path + ".png") def GraphFitness(self,p): df =
pd.read_csv(p)
pandas.read_csv
import yaml import pandas as pd import numpy as np from os.path import join from os import makedirs import glob import sys import re def parse_samplesheet(fp_samplesheet): #print(fp_samplesheet.split('/')[-1]) # in a first iteration, open the file, read line by line and determine start # of sample information by looking for a line starting with "[Data]". # the following lines will be sample information, about lines are header infos. row_sampleinformation = None row_reads = None with open(fp_samplesheet, "r") as f: for linenumber, line in enumerate(f.readlines()): if line.startswith("[Data]"): row_sampleinformation = linenumber+1 elif line.startswith("[Reads]"): row_reads = linenumber+1 if row_sampleinformation is None: raise ValueError("Could not find [Data] line in file '%s'." % fp_samplesheet) if row_reads is None: raise ValueError("Could not find [Reads] line in file '%s'." % fp_samplesheet) header = pd.read_csv(fp_samplesheet, sep=",", nrows=row_reads-2, index_col=0).dropna(axis=1, how="all").dropna(axis=0, how="all") #header = header.set_index(header.columns[0]) header.index = list(map(lambda x: 'header_%s' % x, header.index)) header = header.dropna(axis=0, how="any") header = header.T.reset_index() del header['index'] # a xxx iteration parses sample information via pandas ss = pd.read_csv(fp_samplesheet, sep=",", skiprows=row_sampleinformation, dtype={'Sample_Name': str, 'Sample_ID': str, 'spike_entity_id': str}) # bcl2fasta automatically changes - into _ char in output filenames idx_rawilluminainput = ss[pd.notnull(ss['Lane'])].index for f in ['Sample_ID', 'Sample_Name', 'Sample_Project']: ss.loc[idx_rawilluminainput, f] = ss.loc[idx_rawilluminainput, f].apply(lambda x: x.replace('-', '_') if type(x) != float else x) # bcl2fastq uses a S%03i index to address samples. # They are numbered as occuring in the samplesheet order starting with 1. # However, number is not increased if Sample_ID was already seen. uidx = dict() for _, sample_id in ss['Sample_ID'].iteritems(): if sample_id not in uidx: uidx[sample_id] = len(uidx) + 1 ss['s-idx'] = ss['Sample_ID'].apply(lambda x: uidx[x]) ss['run'] = fp_samplesheet.split('/')[-1].replace('_spike.csv', '') # TODO: ensure that sample names do not clash when not considering s-idx! # fastq-prefix fp_fastqs = [] for idx, row in ss.iterrows(): fp_fastq = '' if pd.notnull(row['Sample_Project']): fp_fastq = row['Sample_Project'] if pd.notnull(row['Sample_Name']): fp_fastq = join(fp_fastq, row['Sample_ID']) fp_fastqs.append(join(fp_fastq, '%s' % ( row['Sample_Name'] if pd.notnull( row['Sample_Name']) else row['Sample_ID']))) ss['fastq-prefix'] = fp_fastqs # remove samples that are marked to be ignored if 'spike_ignore_sample' in ss.columns: ss = ss[pd.isnull(ss['spike_ignore_sample'])] if 'spike_notes' not in ss.columns: ss['spike_notes'] = None # merge with header information if not all([c not in ss.columns for c in header.columns]): raise ValueError("Header name conflicts with sample column in '%s'." % fp_samplesheet) for c in header.columns: ss[c] = header[c].iloc[0] return ss def validate_samplesheet(ss: pd.DataFrame, config, line_offset: int=22, err=sys.stderr): """Checks if sample sheet is valid. Parameters ---------- ss : pd.DataFrame Samplesheet to be validated. config : dict from YAML Snakemake configuration file holding information about projects. line_offset : int Default: 22. To give user information about problematic lines, we need to go back to the file (not the DataFrame) to address the correct line. err : IO.stream Default: sys.stderr Stream onto which warnings are written. Returns ------- [str] : List of warnings Raises ------ ValueError if errors are found in the sample sheet. """ errors = [] warnings = [] # ensure all needed columns are in the table exp_columns = {'Lane', 'Sample_ID', 'Sample_Name', 'I7_Index_ID', 'index', 'Sample_Project', 'spike_entity_id', 'spike_entity_role'} if len(exp_columns - set(ss.columns)) > 0: errors.append( 'Samplesheet is missing column(s): "%s".' % '", "'.join(sorted(exp_columns - set(ss.columns)))) # ensure to only use [A-z0-9_] in identifiers allowedChars = re.compile("^[A-z0-9_]*$") for field in ['Sample_ID', 'Sample_Name', 'Sample_Project', 'spike_entity_id', 'spike_entity_role']: if field in ss: for idx, x in ss[field].iteritems(): if pd.notnull(x): if allowedChars.fullmatch(x) is None: errors.append( ('%s in line %i contains a restricted char' 'acter: "%s". Only a-z A-Z 0-9 and _ are al' 'lowed!') % (field, line_offset+idx, x)) # ensure Sample_Project is not empty if 'Sample_Project' in ss: for idx, x in ss['Sample_Project'].iteritems(): if pd.isnull(x) or x.strip() == "": errors.append('Line %i has an empty Sample_Project.' % (line_offset+idx)) if len(errors) > 0: raise ValueError('The following %i errors(s) were found in your sample sheet:\n%s\n' % (len(errors), '\n'.join(['ERROR %i: %s' % (i+1, error) for i, error in enumerate(errors)]))) # check that sample project is describes in config.yaml for prj in ss['Sample_Project'].unique(): if prj not in config['projects']: warnings.append(('Sample_Project "%s" is not described in config.' 'yaml. No processing other than demultiplexing w' 'ill be applied.') % (prj)) # check that spike_entity_role is a defined one exp_roles = { 'patient', 'father', 'mother', 'sibling', 'healthy', 'tumor', 'tumor_patient', 'tumor_father', 'tumor_mother', 'tumor_sibling'} for idx, row in ss.iterrows(): if pd.notnull(row['spike_entity_role']): if row['spike_entity_role'] not in exp_roles: warnings.append('spike_entity_role "%s" in line %i for Sample_Project "%s" is unknown!' % (row['spike_entity_role'], line_offset+idx, row['Sample_Project'])) # test that entity name is infix of sample name for idx, row in ss.iterrows(): if pd.notnull(row['spike_entity_id']): if row['spike_entity_id'] not in row['Sample_ID']: warnings.append('spike_entity_id "%s" is not part of the Sample_ID "%s" in line %i.' % (row['spike_entity_id'], row['Sample_ID'], line_offset+idx)) # check assumptions about naming schemas per project exp_names = {'Keimbahn': re.compile("^KB\d{4}"), 'Alps': re.compile("^ALPS")} for idx, row in ss.iterrows(): if row['Sample_Project'] in exp_names: if exp_names[row['Sample_Project']].match(row['Sample_ID']) is None: warnings.append('Sample_ID "%s" does not follow expected naming schema "%s" in line %i.' % (row['Sample_ID'], exp_names[row['Sample_Project']].pattern, line_offset+idx)) # check assumptions about name suffices exp_suffices = {'Keimbahn': {'patient': {'_c'}, 'father': {'_f'}, 'mother': {'_m'}}, 'Alps': {'patient': {''}, 'father': {'_a', 'a'}, 'mother': {'_b', 'b'}}, 'Maus_Hauer': {'healthy': {'_c', 'c', '_n', 'n'}, 'tumor': {'_t', 't'}}} for idx, row in ss.iterrows(): if
pd.isnull(row['spike_entity_id'])
pandas.isnull
import calendar import datetime as dt from datetime import timedelta import holidays import math import os from dateutil.relativedelta import relativedelta import json import numpy as np import pandas as pd import pickle from pyiso import client_factory from pyiso.eia_esod import EIAClient import requests from sklearn import preprocessing from timezonefinderL import TimezoneFinder GEO_COORDS = { "NYISO": {"lat": "40.7128", "lon": "-73.935242"}, "ISONE": {"lat": "42.3601", "lon": "-71.0589"}, "CAISO": {"lat": "34.0522", "lon": "-118.2437"}, "PJM": {"lat": "39.9526", "lon": "-75.1652"}, "MISO": {"lat": "44.9778", "lon": "-93.2650",}, } MONTH_TO_SEASON = { 1: "Winter", 2: "Winter", 3: "Spring", 4: "Spring", 5: "Spring", 6: "Summer", 7: "Summer", 8: "Summer", 9: "Fall", 10: "Fall", 11: "Fall", 12: "Winter", } BASE_URL = "https://api.darksky.net/forecast" EXCLUDE = "flags, minutely, daily, alerts" LOAD_COLS = ["load_MW", "timestamp"] EASTERN_TZ = "US/Eastern" US_HOLIDAYS = holidays.UnitedStates() CATEGORICAL_FEATURES = ["weekday", "hour_of_day", "holiday"] NUMERICAL_FEATURES = ["temperature", "load (t-24)"] class LoadCollector: def __init__(self, iso: str, start_date: str, end_date: str): self.start = start_date self.end = end_date self.iso_name = iso self.lat = GEO_COORDS[iso]["lat"] self.lon = GEO_COORDS[iso]["lon"] self.iso = self._set_iso(iso) self.holidays = holidays.UnitedStates() self.load = self.get_historical_load() self.model_input = None def get_historical_load(self) -> pd.DataFrame: if self.iso_name == "CAISO": load = self.get_caiso_load() elif ( self.iso_name == "MISO" or self.iso_name == "PJM" or self.iso_name == "ERCOT" ): load = self.get_eia_load() else: load = pd.DataFrame( self.iso.get_load( latest=False, yesterday=False, start_at=self.start, end_at=self.end ) )[LOAD_COLS].set_index("timestamp") tz_finder = TimezoneFinder() tz_name = tz_finder.timezone_at(lng=float(self.lon), lat=float(self.lat)) load.index = load.index.tz_convert(tz_name) return load.resample("H").mean() def get_historical_peak_load(self) -> pd.DataFrame: daily_peak = self.load.resample("D").max() holiday_bool = dict() for date, _ in daily_peak.iterrows(): holiday_bool[date] = self._check_for_holiday(date) daily_peak["month"] = daily_peak.index.month_name() daily_peak["season"] = daily_peak.index.month.map(MONTH_TO_SEASON) daily_peak["weekday"] = daily_peak.index.day_name() daily_peak["holiday"] = daily_peak.index.map(holiday_bool) return daily_peak def get_eia_load(self): load = pd.DataFrame( self.iso.get_load( latest=True, yesterday=False, start_at=self.start, end_at=self.end ) ) load = load.iloc[::-1] return load[LOAD_COLS].set_index("timestamp") def get_caiso_load(self): if pd.Timestamp(self.start).month == pd.Timestamp(self.end).month: months = [pd.Timestamp(self.start)] else: months = pd.date_range(self.start, self.end, freq="MS").tolist() monthly_load = [] for month in months: start, end = self.get_month_day_range(month) start = start.strftime("%Y-%m-%d") end = end.strftime("%Y-%m-%d") load = pd.DataFrame( self.iso.get_load( latest=False, yesterday=False, start_at=start, end_at=end ) )[LOAD_COLS].set_index("timestamp") monthly_load.append(load) return pd.concat(monthly_load) @staticmethod def get_month_day_range(date): """ Returns the start and end date for the month of 'date'. """ last_day = date + relativedelta(day=1, months=+1, days=-1) first_day = date + relativedelta(day=1) return first_day, last_day def engineer_features(self): temperatures = dict() holiday_bool = dict() for date, _ in self.load.iterrows(): temperatures[date] = self._get_temperature(date) holiday_bool[date] = self._check_for_holiday(date) self.load["weekday"] = self.load.index.dayofweek self.load["hour_of_day"] = self.load.index.hour self.load["temperature"] = self.load.index.map(temperatures) self.load["holiday"] = self.load.index.map(holiday_bool) self.load["load (t-24)"] = self.load.load_MW.shift(24) def engineer_features_lite(self, weather_dict: dict): holiday_bool = dict() for date, _ in self.load.iterrows(): holiday_bool[date] = self._check_for_holiday(date) self.load["weekday"] = self.load.index.dayofweek self.load["hour_of_day"] = self.load.index.hour self.load["temperature"] = self.load.index.map(pd.Series(weather_dict)) self.load["holiday"] = self.load.index.map(holiday_bool) self.load["load (t-24)"] = self.load.load_MW.shift(24) def build_model_input(self): featurized_df = self.dummify_categorical_features(self.load.copy()) self.model_input = featurized_df[featurized_df.notna()] @staticmethod def _set_iso(iso_name: str): if iso_name == "NYISO": iso_engine = client_factory("NYISO") elif iso_name == "ISONE": iso_engine = client_factory("ISONE", timeout_seconds=60) elif iso_name == "CAISO": iso_engine = client_factory("CAISO") elif iso_name == "ERCOT": iso_engine = EIAClient(timeout_seconds=60) iso_engine.BA = "ERCOT" elif iso_name == "PJM": iso_engine = EIAClient(timeout_seconds=60) iso_engine.BA = "PJM" elif iso_name == "MISO": iso_engine = EIAClient(timeout_seconds=60) iso_engine.BA = "MISO" else: print(f"Peaky Finders does not support {iso_name} yet!") return iso_engine def _get_temperature(self, date): date_input = date.strftime("%s") full_url = f"{self.weather_url}{date_input}?exclude={EXCLUDE}" response = requests.get(full_url) if response.status_code == 200: print(response.status_code) else: raise ValueError( f"Error getting data from DarkSky API: " f"Response Code {response.status_code}" ) info = response.json() current_info = info["currently"] try: temp = current_info["temperature"] except KeyError: temp = None return temp @staticmethod def _check_for_holiday(day): if day in US_HOLIDAYS: return True else: return False @staticmethod def dummify_categorical_features(load_df: pd.DataFrame): for feature in CATEGORICAL_FEATURES: dummies =
pd.get_dummies(load_df[feature], prefix=feature, drop_first=True)
pandas.get_dummies
# coding: utf-8 # In[1]: # Implementation from https://github.com/dougalsutherland/opt-mmd import sys, os import numpy as np from math import sqrt CHANNEL_MEANS = (129.38732832670212/255, 124.35894414782524/255, 113.09937313199043/255) CHANNEL_STDS = (67.87980079650879/255, 65.10988622903824/255, 70.04801765084267/255) # In[2]: from scipy.spatial.distance import pdist, cdist def energy_distance(v, w): VV = np.mean(pdist(v, 'euclidean')) WW = np.mean(pdist(w, 'euclidean')) VW = np.mean(cdist(v, w, 'euclidean')) return 2 * VW - VV - WW # In[3]: from PIL import Image from matplotlib import pyplot as plt def display_sample(sample): img = sample.reshape((28, 28)) * 255. plt.imshow(Image.fromarray(img)) plt.show() # In[4]: # Add Bayesian-and-novelty directory to the PYTHONPATH import sys import os sys.path.append(os.path.realpath('../../../..')) # Autoreload changes in utils, etc. get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') import torch from torchvision import datasets, transforms import numpy as np from functools import reduce from novelty.utils.datasets import GaussianNoiseDataset from novelty.utils.datasets import UniformNoiseDataset from novelty.utils import DatasetSubset torch.manual_seed(1) # # CIFAR80 # In[5]: from novelty.utils import DatasetSubset def get_cifar_images(cifar80_dir): """ Return flattened and scaled CIFAR80 test data as a numpy array. Filter so only 'classes' remain in dataset. Saves/loads dataset from cifar80_dir. """ print("Loading CIFAR80 data") transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.ImageFolder(cifar80_dir, transform=transform) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) cifar80_test = get_cifar_images('/media/tadenoud/DATADisk/datasets/cifar80/test') # In[6]: cifar80_test.shape # In[7]: def get_imagenet_crop_data(imagenet_dir): """ Return cropped, flattened, and scaled TinyImageNet test data as a numpy array. Saves/loads dataset from imagenet_dir. """ print("Loading ImageNet crop") transform_crop = transforms.Compose([ transforms.RandomCrop([32, 32]), transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.ImageFolder(imagenet_dir, transform=transform_crop) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) imagenet_crop = get_imagenet_crop_data('/media/tadenoud/DATADisk/datasets/tiny-imagenet-200/test/') imagenet_crop_energy = energy_distance(cifar80_test, imagenet_crop) print("Imagenet (crop) Energy:", imagenet_crop_energy) # In[8]: def get_imagenet_resize_data(imagenet_dir): """ Return resized, flattened, and scaled TinyImageNet test data as a numpy array. Saves/loads dataset from imagenet_dir. """ print("Loading ImageNet resize") transform_resize = transforms.Compose([ transforms.Resize([32, 32]), transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.ImageFolder(imagenet_dir, transform=transform_resize) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) imagenet_resize = get_imagenet_resize_data('/media/tadenoud/DATADisk/datasets/tiny-imagenet-200/test/') imagenet_resize_energy = energy_distance(cifar80_test, imagenet_resize) print("Imagenet (resize) Energy:", imagenet_resize_energy) # In[9]: def get_lsun_crop_data(lsun_dir): """ Return cropped, flattened, and scaled LSUN test data as a numpy array. Saves/loads dataset from lsun_dir. """ print("Loading LSUN crop") transform_crop = transforms.Compose([ transforms.RandomCrop([32, 32]), transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.LSUN(lsun_dir, classes='test', transform=transform_crop) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) lsun_crop = get_lsun_crop_data('/media/tadenoud/DATADisk/datasets/lsun/') lsun_crop_energy = energy_distance(cifar80_test, lsun_crop) print("LSUN (crop) Energy:", lsun_crop_energy) # In[10]: def get_lsun_resize_data(lsun_dir): """ Return resized, flattened, and scaled LSUN test data as a numpy array. Saves/loads dataset from lsun_dir. """ print("Loading LSUN resize") transform_resize = transforms.Compose([ transforms.Resize([32, 32]), transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.LSUN(lsun_dir, classes='test', transform=transform_resize) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) lsun_resize = get_lsun_resize_data('/media/tadenoud/DATADisk/datasets/lsun/') lsun_resize_energy = energy_distance(cifar80_test, lsun_resize) print("LSUN (resize) Energy:", lsun_resize_energy) # In[11]: def get_isun_data(isun_dir): """ Return flattened, and scaled iSUN test data as a numpy array. Saves/loads dataset from isun_dir. """ print("Loading iSUN") transform_resize = transforms.Compose([ transforms.Resize([32, 32]), transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.ImageFolder(isun_dir, transform=transform_resize) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) isun_data = get_isun_data('/media/tadenoud/DATADisk/datasets/isun/') isun_energy = energy_distance(cifar80_test, isun_data) print("iSUN Energy:", isun_energy) # In[12]: def get_gaussian_test_data(): """Return flattened, and scaled Gaussian Noise test data as a numpy array.""" print("Loading Gaussian Noise data") dataset = GaussianNoiseDataset((10000, 32*32*3), mean=0.0, std=1) dataset = np.array([a for a, _ in iter(dataset)]) return dataset.astype('float32') gaussianTestX = get_gaussian_test_data() gaussian_energy = energy_distance(cifar80_test, gaussianTestX) print("Gaussian Energy:", gaussian_energy) # In[13]: import math def get_uniform_test_data(): """Return flattened, and scaled Uniform Noise test data as a numpy array.""" print("Loading Uniform Noise data") dataset = UniformNoiseDataset((10000, 32*32*3), low=-math.sqrt(3), high=math.sqrt(3)) dataset = np.array([a for a, _ in iter(dataset)]) return dataset.astype('float32') uniformTestX = get_uniform_test_data() uniform_energy = energy_distance(cifar80_test, uniformTestX) print("Uniform Energy:", uniform_energy) # In[14]: classes = [c for c in range(80, 100)] from novelty.utils import DatasetSubset def get_cifar_images(cifar80_dir): """ Return flattened and scaled CIFAR80 test data as a numpy array. Filter so only 'classes' remain in dataset. Saves/loads dataset from cifar80_dir. """ print("Loading CIFAR80 data") transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CHANNEL_MEANS, CHANNEL_STDS) ]) dataset = datasets.ImageFolder(cifar80_dir, transform=transform) dataset = np.array([a[0].numpy() for a in dataset]) dataset = dataset.astype('float32') return dataset.reshape(dataset.shape[0], reduce(lambda s, x: s * x, dataset.shape[1:], 1)) cifar20_test = get_cifar_images('/media/tadenoud/DATADisk/datasets/cifar20/test') cifar20_energy = energy_distance(cifar80_test, cifar20_test) print("CIFAR20 Energy:", cifar20_energy) # # CIFAR80 results # In[15]: import pandas as pd from IPython.display import display df = pd.DataFrame(columns=['energy'], index=['imagenet_crop', 'imagenet_resize', 'lsun_crop', 'lsun_resize', 'isun_resize', 'gaussian', 'uniform', 'cifar20']) df.loc['imagenet_crop'] = pd.Series({'energy': imagenet_crop_energy}) df.loc['imagenet_resize'] = pd.Series({'energy': imagenet_resize_energy}) df.loc['lsun_crop'] =
pd.Series({'energy': lsun_crop_energy})
pandas.Series
""" Auxiliar standarization functions """ import pandas as pd import numpy as np import os from ..IO.aux_functions import parse_xlsx_sheet from ..Preprocess.geo_filters import check_correct_spain_coord extra_folder = 'extra' servicios_columns = ['nom', 'nif', 'cp', 'cnae', 'localidad', 'x', 'y', 'es-x', 'es-y', 'holding', 'cierre', '06act', '07act', '08act', '09act', '10act', '11act', '12act', '13act', '06actc', '07actc', '08actc', '09actc', '10actc', '11actc', '12actc', '13actc', '06pasfijo', '07pasfijo', '08pasfijo', '09pasfijo', '10pasfijo', '11pasfijo', '12pasfijo', '13pasfijo', '06pasliq', '07pasliq', '08pasliq', '09pasliq', '10pasliq', '11pasliq', '12pasliq', '13pasliq', '06trab', '07trab', '08trab', '09trab', '10trab', '11trab', '12trab', '13trab', '06va', '07va', '08va', '09va', '10va', '11va', '12va', '13va', '06vtas', '07vtas', '08vtas', '09vtas', '10vtas', '11vtas', '12vtas', '13vtas'] def pre_read_servicios(pathdata): raw_locs_serv, nifs_serv, cps_serv, names_serv = [], [], [], [] muni_serv, null_cp, null_muni, null_locs = [], [], [], [] ca_cp_dict = {} for df, ca_name in get_sequencial_servicios(pathdata): names_serv += list(df['nom']) nifs_serv += list(df['nif']) cps_serv += list(df['cp']) raw_locs_serv.append(df[['es-x', 'es-y']].as_matrix()) # Dictionary cp_ca creation u_cp = df['cp'][np.logical_not(
pd.isnull(df['cp'])
pandas.isnull
# Copyright 2015 Novo Nordisk Foundation Center for Biosustainability, DTU. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods for stoichiometric analaysis""" from __future__ import print_function import logging from copy import copy from itertools import product import numpy as np import optlang from optlang.interface import OPTIMAL import pandas import six import sympy from cobra import Metabolite, Reaction, Model from numpy.linalg import svd from scipy.sparse import dok_matrix, lil_matrix from six.moves import zip from cobra.exceptions import OptimizationError __all__ = ['find_dead_end_reactions', 'find_coupled_reactions', 'ShortestElementaryFluxModes'] logger = logging.getLogger(__name__) def create_stoichiometric_array(model, array_type='dense', dtype=None): """Return a stoichiometric array representation of the given model. The the columns represent the reactions and rows represent metabolites. S[i,j] therefore contains the quantity of metabolite `i` produced (negative for consumed) by reaction `j`. Parameters ---------- model : cobra.Model The cobra model to construct the matrix for. array_type : string The type of array to construct. if 'dense', return a standard numpy.array, 'dok', or 'lil' will construct a sparse array using scipy of the corresponding type and 'data_frame' will give a pandas `DataFrame` with metabolite and reaction identifiers as indices. dtype : data-type The desired data-type for the array. If not given, defaults to float. Returns ------- matrix of class `dtype` The stoichiometric matrix for the given model. """ if dtype is None: dtype = np.float64 def data_frame(_, dtype): metabolite_ids = [met.id for met in model.metabolites] reaction_ids = [rxn.id for rxn in model.reactions] index = pandas.MultiIndex.from_tuples( list(product(metabolite_ids, reaction_ids))) return
pandas.DataFrame(data=0, index=index, columns=['stoichiometry'], dtype=dtype)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # # viewer.py - View aggregated i2p network statistics. # Author: <NAME> <<EMAIL>> # License: This is free and unencumbered software released into the public domain. # # NOTE: This file should never write to the database, only read. import argparse import datetime import math import matplotlib # We don't want matplotlib to use X11 (https://stackoverflow.com/a/3054314) matplotlib.use('Agg') import matplotlib.pyplot as plt import sqlite3 import pandas as pd from jinja2 import Environment, FileSystemLoader interval = 3600 # = 60 minutes num_intervals = 24 # = 20 hours min_version = 20 min_country = 20 # http://i2p-projekt.i2p/en/docs/how/network-database#routerInfo # H is left out since it's almost always empty. #netdb_caps = ['f','H','K','L','M','N','O','P','R','U','X',] netdb_caps = ['f','K','L','M','N','O','P','R','U','X',] # Used in the plots. generation_time = str(datetime.datetime.utcnow())[:-7] site = 'http://nacl.i2p/stats' ONE_DAY = 5*24*60*60 FIVE_DAYS = 5*24*60*60 FIFTEEN_DAYS = 15*24*60*60 THIRTY_DAYS = 30*24*60*60 ACTIVE_TIME = THIRTY_DAYS def query_db(conn, query, args=(), one=False): cur = conn.execute(query, args) rv = cur.fetchall() cur.close() return (rv[0] if rv else None) if one else rv # TODO: Port to Pandas def pie_graph(conn, query, output, title='', lower=0, log=False): labels = [] sizes = [] res = query_db(conn, query) # Sort so the graph doesn't look like complete shit. res = sorted(res, key=lambda tup: tup[1]) for row in res: if row[1] > lower: labels.append(row[0]) if log: sizes.append(math.log(row[1])) else: sizes.append(row[1]) # Normalize. norm = [float(i)/sum(sizes) for i in sizes] plt.pie(norm, labels=labels, shadow=True, startangle=90, ) plt.figtext(.1,.03,'{}\n{} UTC'.format(site,generation_time)) plt.axis('equal') plt.legend() plt.title(title) plt.savefig(output) plt.close() def plot_x_y(conn, query, output, title='', xlab='', ylab=''): df = pd.read_sql_query(query, conn) df['sh'] = pd.to_datetime(df['sh'], unit='s') df = df.set_index('sh') df.head(num_intervals).plot(marker='o') plt.figtext(.1,.03,'{}\n{} UTC'.format(site,generation_time)) plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.savefig(output) plt.close() # Plots network traffic. def i2pcontrol_stats(conn, output=''): things=[ {'stat':'activepeers','xlab':'time','ylab':'total',}, {'stat':'tunnelsparticipating','xlab':'time','ylab':'total',}, {'stat':'decryptFail','xlab':'time','ylab':'total',}, {'stat':'failedLookupRate','xlab':'time','ylab':'total',}, {'stat':'streamtrend','xlab':'time','ylab':'total',}, {'stat':'windowSizeAtCongestion','xlab':'time','ylab':'total',}, #{'stat':'','xlab':'','ylab':'',}, # Template to add more. ] tokens = query_db(conn, 'select owner,token from submitters;') for thing in things: combined=[] dfs=[] for token in tokens: q = 'select datetime(cast(((submitted)/({0})) as int)*{0}, "unixepoch") as sh, {1} from speeds where submitter="{2}" group by sh order by sh desc;'.format(interval, thing['stat'], token[1]) df = pd.read_sql_query(q, conn) # unix -> human df['sh'] = pd.to_datetime(df['sh'], unit='s') dfs.append(df) # Reverse so it's put in left to right combined = reduce(lambda left,right: pd.merge(left,right,on='sh',how='outer'), dfs) combined.columns=['time'] + [i[0] for i in tokens] combined = combined.set_index('time') combined.head(num_intervals).plot(marker='o') plt.figtext(.1,.03,'{}\n{} UTC'.format(site,generation_time)) plt.title(thing['stat']) plt.xlabel(thing['xlab']) plt.ylabel(thing['ylab']) plt.savefig('{}/{}.png'.format(output, thing['stat'])) plt.close() # Make plot of how many nodes reported in. def reporting_in(conn, output=''): q = 'select count(*) as count, datetime(cast(((submitted)/({0})) as int)*{0}, "unixepoch") as sh from speeds group by sh order by sh desc;'.format(interval) df = pd.read_sql_query(q, conn) # unix -> human df['sh'] =
pd.to_datetime(df['sh'], unit='s')
pandas.to_datetime
import requests import re from bs4 import BeautifulSoup import pandas as pd import gzip import csv import os import boto3 import json from decimal import Decimal cveTable = os.environ['CVE_TABLE'] awsRegion = os.environ['AWS_REGION'] dynamodb = boto3.resource('dynamodb', region_name = awsRegion) def collect_exploit(): print("Collecting CVE reference map for source EXPLOIT-DB") csv_file = open('Exploit_CVE.csv', 'w') csv_writer = csv.writer(csv_file) exploitUrl = 'https://cve.mitre.org/data/refs/refmap/source-EXPLOIT-DB.html' req = requests.get(exploitUrl, allow_redirects=True) # get status code print ("Exploit status code: " + str(req.status_code)) # read the data from the URL and print it in html form # this is the full html, not just the table's html # we will need to parse through this to only grab the table we are interested in # use BeautifulSoup to parse through the html soup = BeautifulSoup(req.text, "html.parser") # find all the tables that fit these attributes # we only want the ExploitDB/CVENum table, so we index with [1] to grab table #2 table = soup.findAll("table", attrs={"cellpadding":"2", "cellspacing":"2", "border":"2"})[1] # The first tr contains the field names. headings = ["ExploitId", "CveId"] datasets = [] for row in table.find_all("tr")[0:]: row = list(td.get_text() for td in row.find_all("td")) #print(type(dataset)) #df.append(dataset, ignore_index = True) #df = pd.DataFrame(dataset, columns=['ExploitDB Number', 'CVE Number']) datasets.append(row) #print(dataset) df = pd.DataFrame(datasets, columns = headings) # creating data frame with the proper headings and loading in the data df = df.astype('string') # converting the pandas objects (default) to strings df.drop(df.tail(2).index, inplace = True) # dropping the last two rows because they don't have exploit db Id's df[headings[0]] = df[headings[0]].str.replace(r'\D', '') # removing the prefix "EXPLOIT-DB" from the ExploitDBId column df[headings[1]] = df[headings[1]].str.rstrip("\n") # removing the trailing newline from the CVEId column df[headings[1]] = df[headings[1]].str.lstrip(' ') # removing the leading white space from the CVEId column df[headings[1]] = df[headings[1]].str.split(' ') # splitting the column based on white space within the entries df = df.set_index([headings[0]])[headings[1]].apply(pd.Series).stack().reset_index().drop('level_1',axis = 1).rename(columns = {0: headings[1]}) # creating multiple rows for exploits that correspond to multiple CVE #'s print(df) #print(df[headings[1]].nunique()) # find the number of unique CVE values #print(df[headings[0]].nunique()) # find the number of unique Exploit values #print(pd.concat(g for _, g in df.groupby("CveId") if len(g) > 1)) # find the CVEs that have more than one exploit n = len(df[headings[1]]) # find the number of rows in the dataframe csv_writer.writerow(headings) for i in range(n - 1): csv_writer.writerow(df.loc[i]) # writing data frame to a csv file csv_file.close() df.to_json("Exploit_CVE.json", indent = 2, orient = 'records') # writing the dataframe to a json file def collect_nvd_feeds(): print("Collecting JSON vulnerability feeds from NVD") nvdJson = [] req = requests.get('https://nvd.nist.gov/vuln/data-feeds#JSON_FEED') # scan for all yearly gzip files for gzFile in re.findall("nvdcve-1.1-[0-9]*\.json\.gz", req.text): #print(gzFile) url = 'https://nvd.nist.gov/feeds/json/cve/1.1/' + gzFile reqFile = requests.get(url, stream=True, allow_redirects=True) # get status code print (gzFile + " status code: " + str(reqFile.status_code)) # write response with open(gzFile, 'wb') as file: file.write(reqFile.content) with gzip.open(gzFile) as openGz: nvdDF = pd.read_json(openGz) for x in nvdDF['CVE_Items']: cveId = str(x['cve']['CVE_data_meta']['ID']) cveSrcUrl = 'https://cve.mitre.org/cgi-bin/cvename.cgi?name=' + cveId try: cweId = str(x['cve']['problemtype']['problemtype_data'][0]['description'][0]['value']) except: cweId = 'NONE_PROVIDED' try: reference = str(x['cve']['references']['reference_data'][0]['url']) except: reference = 'NONE_PROVIDED' try: description = str(x['cve']['description']['description_data'][0]['value']) except: description = 'NONE_PROVIDED' try: cvssV2Version = str('CVSSv' + x['impact']['baseMetricV2']['cvssV2']['version']) cvssV2AccessVector = str(x['impact']['baseMetricV2']['cvssV2']['accessVector']) cvssV2AccessComplexity = str(x['impact']['baseMetricV2']['cvssV2']['accessComplexity']) cvssV2Authentication = str(x['impact']['baseMetricV2']['cvssV2']['authentication']) cvssV2ConfidentialityImpact = str(x['impact']['baseMetricV2']['cvssV2']['confidentialityImpact']) cvssV2IntegrityImpact = str(x['impact']['baseMetricV2']['cvssV2']['integrityImpact']) cvssV2AvailabilityImpact = str(x['impact']['baseMetricV2']['cvssV2']['availabilityImpact']) cvssV2Score = float(x['impact']['baseMetricV2']['cvssV2']['baseScore']) cvssV2Severity = str(x['impact']['baseMetricV2']['severity']) except: cvssV2Version = 'NONE_PROVIDED' cvssV2AccessVector = 'Unknown' cvssV2AccessComplexity = 'Unknown' cvssV2Authentication = 'Unknown' cvssV2ConfidentialityImpact = 'Unknown' cvssV2IntegrityImpact = 'Unknown' cvssV2AvailabilityImpact = 'Unknown' cvssV2Score = float(0.0) cvssV2Severity = 'Unknown' try: cvssV3Version = str('CVSSv' + x['impact']['baseMetricV3']['cvssV3']['version']) cvssV3AttackVector = str(x['impact']['baseMetricV3']['cvssV3']['attackVector']) cvssV3AttackComplexity = str(x['impact']['baseMetricV3']['cvssV3']['attackComplexity']) cvssV3PrivilegesRequired = str(x['impact']['baseMetricV3']['cvssV3']['privilegesRequired']) cvssV3UserInteraction = str(x['impact']['baseMetricV3']['cvssV3']['userInteraction']) cvssV3Scope = str(x['impact']['baseMetricV3']['cvssV3']['scope']) cvssV3ConfidentialityImpact = str(x['impact']['baseMetricV3']['cvssV3']['confidentialityImpact']) cvssV3IntegrityImpact = str(x['impact']['baseMetricV3']['cvssV3']['integrityImpact']) cvssV3AvailabilityImpact = str(x['impact']['baseMetricV3']['cvssV3']['availabilityImpact']) cvssV3Score = float(x['impact']['baseMetricV3']['cvssV3']['baseScore']) cvssV3Severity = str(x['impact']['baseMetricV3']['cvssV3']['baseSeverity']) except: cvssV3Version = 'NONE_PROVIDED' cvssV3AttackVector = 'Unknown' cvssV3AttackComplexity = 'Unknown' cvssV3PrivilegesRequired = 'Unknown' cvssV3UserInteraction = 'Unknown' cvssV3Scope = 'Unknown' cvssV3ConfidentialityImpact = 'Unknown' cvssV3IntegrityImpact = 'Unknown' cvssV3AvailabilityImpact = 'Unknown' cvssV3Score = float(0.0) cvssV3Severity = 'Unknown' try: nvdJson.append({ 'CveId': cveId, 'CveSourceUrl': cveSrcUrl, 'CweId': cweId, 'Reference': reference, 'Description': description, 'CvssV2Version': cvssV2Version, 'CvssV2AccessVector': cvssV2AccessVector, 'CvssV2AccessComplexity': cvssV2AccessComplexity, 'CvssV2Authentication': cvssV2Authentication, 'CvssV2ConfidentialityImpact': cvssV2ConfidentialityImpact, 'CvssV2IntegrityImpact': cvssV2IntegrityImpact, 'CvssV2AvailabilityImpact': cvssV2AvailabilityImpact, 'CvssV2Score': cvssV2Score, 'CvssV2Severity': cvssV2Severity, 'CvssV3Version': cvssV3Version, 'CvssV3AttackVector': cvssV3AttackVector, 'CvssV3AttackComplexity': cvssV3AttackComplexity, 'CvssV3PrivilegesRequired': cvssV3PrivilegesRequired, 'CvssV3UserInteraction': cvssV3UserInteraction, 'CvssV3Scope': cvssV3Scope, 'CvssV3ConfidentialityImpact': cvssV3ConfidentialityImpact, 'CvssV3IntegrityImpact': cvssV3IntegrityImpact, 'CvssV3AvailabilityImpact': cvssV3AvailabilityImpact, 'CvssV3Score': cvssV3Score, 'CvssV3Severity': cvssV3Severity }) except Exception as e: print(e) with open("NVD_Feeds.json", "w") as file: json.dump(nvdJson, file) def cve_population(): table = dynamodb.Table(cveTable) exploitDF =
pd.read_json('./Exploit_CVE.json')
pandas.read_json
# pylint: disable=E1101 from pandas.util.py3compat import StringIO, BytesIO, PY3 from datetime import datetime from os.path import split as psplit import csv import os import sys import re import unittest import nose from numpy import nan import numpy as np from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, ExcelFile, TextFileReader, TextParser) from pandas.util.testing import (assert_almost_equal, assert_series_equal, network, ensure_clean) import pandas.util.testing as tm import pandas as pd import pandas.lib as lib from pandas.util import py3compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow from pandas._parser import OverflowError from pandas.io.parsers import (ExcelFile, ExcelWriter, read_csv) def _skip_if_no_xlrd(): try: import xlrd ver = tuple(map(int, xlrd.__VERSION__.split(".")[:2])) if ver < (0, 9): raise nose.SkipTest('xlrd not installed, skipping') except ImportError: raise nose.SkipTest('xlrd not installed, skipping') def _skip_if_no_xlwt(): try: import xlwt except ImportError: raise nose.SkipTest('xlwt not installed, skipping') def _skip_if_no_openpyxl(): try: import openpyxl except ImportError: raise nose.SkipTest('openpyxl not installed, skipping') def _skip_if_no_excelsuite(): _skip_if_no_xlrd() _skip_if_no_xlwt() _skip_if_no_openpyxl() _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd)[:10] _frame2 = DataFrame(_seriesd, columns=['D', 'C', 'B', 'A'])[:10] _tsframe = tm.makeTimeDataFrame()[:5] _mixed_frame = _frame.copy() _mixed_frame['foo'] = 'bar' class ExcelTests(unittest.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') self.frame = _frame.copy() self.frame2 = _frame2.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() def test_parse_cols_int(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols=3) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['A', 'B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols=3) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file) tm.assert_frame_equal(df3, df2, check_names=False) def test_parse_cols_list(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols=[0, 2, 3]) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols=[0, 2, 3]) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file tm.assert_frame_equal(df3, df2, check_names=False) def test_parse_cols_str(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() suffix = ['', 'x'] for s in suffix: pth = os.path.join(self.dirpath, 'test.xls%s' % s) xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A:D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['A', 'B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A:D') tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df3, df2, check_names=False) del df, df2, df3 df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A,C,D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A,C,D') tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xls file tm.assert_frame_equal(df3, df2, check_names=False) del df, df2, df3 df = xls.parse('Sheet1', index_col=0, parse_dates=True, parse_cols='A,C:D') df2 = read_csv(self.csv1, index_col=0, parse_dates=True) df2 = df2.reindex(columns=['B', 'C']) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True, parse_cols='A,C:D') tm.assert_frame_equal(df, df2, check_names=False) tm.assert_frame_equal(df3, df2, check_names=False) def test_excel_stop_iterator(self): _skip_if_no_xlrd() excel_data = ExcelFile(os.path.join(self.dirpath, 'test2.xls')) parsed = excel_data.parse('Sheet1') expected = DataFrame([['aaaa', 'bbbbb']], columns=['Test', 'Test1']) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self): _skip_if_no_xlrd() excel_data = ExcelFile(os.path.join(self.dirpath, 'test3.xls')) parsed = excel_data.parse('Sheet1') expected = DataFrame([[np.nan]], columns=['Test']) tm.assert_frame_equal(parsed, expected) def test_excel_table(self): _skip_if_no_xlrd() pth = os.path.join(self.dirpath, 'test.xls') xls = ExcelFile(pth) df = xls.parse('Sheet1', index_col=0, parse_dates=True) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df3 = xls.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True) tm.assert_frame_equal(df, df2, check_names=False) tm.assert_frame_equal(df3, df2, check_names=False) df4 = xls.parse('Sheet1', index_col=0, parse_dates=True, skipfooter=1) df5 = xls.parse('Sheet1', index_col=0, parse_dates=True, skip_footer=1) tm.assert_frame_equal(df4, df.ix[:-1]) tm.assert_frame_equal(df4, df5) def test_excel_read_buffer(self): _skip_if_no_xlrd() _skip_if_no_openpyxl() pth = os.path.join(self.dirpath, 'test.xls') f = open(pth, 'rb') xls = ExcelFile(f) # it works xls.parse('Sheet1', index_col=0, parse_dates=True) pth = os.path.join(self.dirpath, 'test.xlsx') f = open(pth, 'rb') xl = ExcelFile(f) df = xl.parse('Sheet1', index_col=0, parse_dates=True) def test_xlsx_table(self): _skip_if_no_xlrd() _skip_if_no_openpyxl() pth = os.path.join(self.dirpath, 'test.xlsx') xlsx = ExcelFile(pth) df = xlsx.parse('Sheet1', index_col=0, parse_dates=True) df2 = self.read_csv(self.csv1, index_col=0, parse_dates=True) df3 = xlsx.parse('Sheet2', skiprows=[1], index_col=0, parse_dates=True) tm.assert_frame_equal(df, df2, check_names=False) # TODO add index to xlsx file tm.assert_frame_equal(df3, df2, check_names=False) df4 = xlsx.parse('Sheet1', index_col=0, parse_dates=True, skipfooter=1) df5 = xlsx.parse('Sheet1', index_col=0, parse_dates=True, skip_footer=1) tm.assert_frame_equal(df4, df.ix[:-1]) tm.assert_frame_equal(df4, df5) def test_specify_kind_xls(self): _skip_if_no_xlrd() xlsx_file = os.path.join(self.dirpath, 'test.xlsx') xls_file = os.path.join(self.dirpath, 'test.xls') # succeeds with xlrd 0.8.0, weird # self.assertRaises(Exception, ExcelFile, xlsx_file, kind='xls') # ExcelFile(open(xls_file, 'rb'), kind='xls') # self.assertRaises(Exception, ExcelFile, open(xlsx_file, 'rb'), # kind='xls') def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def test_excel_roundtrip_xls(self): _skip_if_no_excelsuite() self._check_extension('xls') def test_excel_roundtrip_xlsx(self): _skip_if_no_excelsuite() self._check_extension('xlsx') def _check_extension(self, ext): path = '__tmp_to_excel_from_excel__.' + ext with ensure_clean(path) as path: self.frame['A'][:5] = nan self.frame.to_excel(path, 'test1') self.frame.to_excel(path, 'test1', cols=['A', 'B']) self.frame.to_excel(path, 'test1', header=False) self.frame.to_excel(path, 'test1', index=False) # test roundtrip self.frame.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1', index_col=0) tm.assert_frame_equal(self.frame, recons) self.frame.to_excel(path, 'test1', index=False) reader = ExcelFile(path) recons = reader.parse('test1', index_col=None) recons.index = self.frame.index tm.assert_frame_equal(self.frame, recons) self.frame.to_excel(path, 'test1', na_rep='NA') reader = ExcelFile(path) recons = reader.parse('test1', index_col=0, na_values=['NA']) tm.assert_frame_equal(self.frame, recons) def test_excel_roundtrip_xls_mixed(self): _skip_if_no_xlrd() _skip_if_no_xlwt() self._check_extension_mixed('xls') def test_excel_roundtrip_xlsx_mixed(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() self._check_extension_mixed('xlsx') def _check_extension_mixed(self, ext): path = '__tmp_to_excel_from_excel_mixed__.' + ext with ensure_clean(path) as path: self.mixed_frame.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1', index_col=0) tm.assert_frame_equal(self.mixed_frame, recons) def test_excel_roundtrip_xls_tsframe(self): _skip_if_no_xlrd() _skip_if_no_xlwt() self._check_extension_tsframe('xls') def test_excel_roundtrip_xlsx_tsframe(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() self._check_extension_tsframe('xlsx') def _check_extension_tsframe(self, ext): path = '__tmp_to_excel_from_excel_tsframe__.' + ext df = tm.makeTimeDataFrame()[:5] with ensure_clean(path) as path: df.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1') tm.assert_frame_equal(df, recons) def test_excel_roundtrip_xls_int64(self): _skip_if_no_excelsuite() self._check_extension_int64('xls') def test_excel_roundtrip_xlsx_int64(self): _skip_if_no_excelsuite() self._check_extension_int64('xlsx') def _check_extension_int64(self, ext): path = '__tmp_to_excel_from_excel_int64__.' + ext with ensure_clean(path) as path: self.frame['A'][:5] = nan self.frame.to_excel(path, 'test1') self.frame.to_excel(path, 'test1', cols=['A', 'B']) self.frame.to_excel(path, 'test1', header=False) self.frame.to_excel(path, 'test1', index=False) # Test np.int64, values read come back as float frame = DataFrame(np.random.randint(-10, 10, size=(10, 2)), dtype=np.int64) frame.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1').astype(np.int64) tm.assert_frame_equal(frame, recons, check_dtype=False) def test_excel_roundtrip_xls_bool(self): _skip_if_no_excelsuite() self._check_extension_bool('xls') def test_excel_roundtrip_xlsx_bool(self): _skip_if_no_excelsuite() self._check_extension_bool('xlsx') def _check_extension_bool(self, ext): path = '__tmp_to_excel_from_excel_bool__.' + ext with ensure_clean(path) as path: self.frame['A'][:5] = nan self.frame.to_excel(path, 'test1') self.frame.to_excel(path, 'test1', cols=['A', 'B']) self.frame.to_excel(path, 'test1', header=False) self.frame.to_excel(path, 'test1', index=False) # Test reading/writing np.bool8, roundtrip only works for xlsx frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1').astype(np.bool8) tm.assert_frame_equal(frame, recons) def test_excel_roundtrip_xls_sheets(self): _skip_if_no_excelsuite() self._check_extension_sheets('xls') def test_excel_roundtrip_xlsx_sheets(self): _skip_if_no_excelsuite() self._check_extension_sheets('xlsx') def _check_extension_sheets(self, ext): path = '__tmp_to_excel_from_excel_sheets__.' + ext with ensure_clean(path) as path: self.frame['A'][:5] = nan self.frame.to_excel(path, 'test1') self.frame.to_excel(path, 'test1', cols=['A', 'B']) self.frame.to_excel(path, 'test1', header=False) self.frame.to_excel(path, 'test1', index=False) # Test writing to separate sheets writer = ExcelWriter(path) self.frame.to_excel(writer, 'test1') self.tsframe.to_excel(writer, 'test2') writer.save() reader = ExcelFile(path) recons = reader.parse('test1', index_col=0) tm.assert_frame_equal(self.frame, recons) recons = reader.parse('test2', index_col=0) tm.assert_frame_equal(self.tsframe, recons) np.testing.assert_equal(2, len(reader.sheet_names)) np.testing.assert_equal('test1', reader.sheet_names[0]) np.testing.assert_equal('test2', reader.sheet_names[1]) def test_excel_roundtrip_xls_colaliases(self): _skip_if_no_excelsuite() self._check_extension_colaliases('xls') def test_excel_roundtrip_xlsx_colaliases(self): _skip_if_no_excelsuite() self._check_extension_colaliases('xlsx') def _check_extension_colaliases(self, ext): path = '__tmp_to_excel_from_excel_aliases__.' + ext with ensure_clean(path) as path: self.frame['A'][:5] = nan self.frame.to_excel(path, 'test1') self.frame.to_excel(path, 'test1', cols=['A', 'B']) self.frame.to_excel(path, 'test1', header=False) self.frame.to_excel(path, 'test1', index=False) # column aliases col_aliases = Index(['AA', 'X', 'Y', 'Z']) self.frame2.to_excel(path, 'test1', header=col_aliases) reader = ExcelFile(path) rs = reader.parse('test1', index_col=0) xp = self.frame2.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) def test_excel_roundtrip_xls_indexlabels(self): _skip_if_no_excelsuite() self._check_extension_indexlabels('xls') def test_excel_roundtrip_xlsx_indexlabels(self): _skip_if_no_excelsuite() self._check_extension_indexlabels('xlsx') def _check_extension_indexlabels(self, ext): path = '__tmp_to_excel_from_excel_indexlabels__.' + ext with ensure_clean(path) as path: self.frame['A'][:5] = nan self.frame.to_excel(path, 'test1') self.frame.to_excel(path, 'test1', cols=['A', 'B']) self.frame.to_excel(path, 'test1', header=False) self.frame.to_excel(path, 'test1', index=False) # test index_label frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel(path, 'test1', index_label=['test']) reader = ExcelFile(path) recons = reader.parse('test1', index_col=0).astype(np.int64) frame.index.names = ['test'] self.assertEqual(frame.index.names, recons.index.names) frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel( path, 'test1', index_label=['test', 'dummy', 'dummy2']) reader = ExcelFile(path) recons = reader.parse('test1', index_col=0).astype(np.int64) frame.index.names = ['test'] self.assertEqual(frame.index.names, recons.index.names) frame = (DataFrame(np.random.randn(10, 2)) >= 0) frame.to_excel(path, 'test1', index_label='test') reader = ExcelFile(path) recons = reader.parse('test1', index_col=0).astype(np.int64) frame.index.names = ['test'] self.assertEqual(frame.index.names, recons.index.names) # test index_labels in same row as column names path = '%s.xls' % tm.rands(10) with ensure_clean(path) as path: self.frame.to_excel(path, 'test1', cols=['A', 'B', 'C', 'D'], index=False) # take 'A' and 'B' as indexes (they are in same row as cols 'C', # 'D') df = self.frame.copy() df = df.set_index(['A', 'B']) reader = ExcelFile(path) recons = reader.parse('test1', index_col=[0, 1]) tm.assert_frame_equal(df, recons) def test_excel_roundtrip_indexname(self): _skip_if_no_xlrd() _skip_if_no_xlwt() path = '%s.xls' % tm.rands(10) df = DataFrame(np.random.randn(10, 4)) df.index.name = 'foo' with ensure_clean(path) as path: df.to_excel(path) xf = ExcelFile(path) result = xf.parse(xf.sheet_names[0], index_col=0) tm.assert_frame_equal(result, df) self.assertEqual(result.index.name, 'foo') def test_excel_roundtrip_datetime(self): _skip_if_no_xlrd() _skip_if_no_xlwt() # datetime.date, not sure what to test here exactly path = '__tmp_excel_roundtrip_datetime__.xls' tsf = self.tsframe.copy() with ensure_clean(path) as path: tsf.index = [x.date() for x in self.tsframe.index] tsf.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1') tm.assert_frame_equal(self.tsframe, recons) def test_to_excel_periodindex(self): _skip_if_no_excelsuite() for ext in ['xls', 'xlsx']: path = '__tmp_to_excel_periodindex__.' + ext frame = self.tsframe xp = frame.resample('M', kind='period') with ensure_clean(path) as path: xp.to_excel(path, 'sht1') reader = ExcelFile(path) rs = reader.parse('sht1', index_col=0, parse_dates=True) tm.assert_frame_equal(xp, rs.to_period('M')) def test_to_excel_multiindex(self): _skip_if_no_xlrd() _skip_if_no_xlwt() self._check_excel_multiindex('xls') def test_to_excel_multiindex_xlsx(self): _skip_if_no_xlrd() _skip_if_no_openpyxl() self._check_excel_multiindex('xlsx') def _check_excel_multiindex(self, ext): path = '__tmp_to_excel_multiindex__' + ext + '__.' + ext frame = self.frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=['first', 'second']) frame.index = new_index with ensure_clean(path) as path: frame.to_excel(path, 'test1', header=False) frame.to_excel(path, 'test1', cols=['A', 'B']) # round trip frame.to_excel(path, 'test1') reader = ExcelFile(path) df = reader.parse('test1', index_col=[0, 1], parse_dates=False) tm.assert_frame_equal(frame, df) self.assertEqual(frame.index.names, df.index.names) self.frame.index = old_index # needed if setUP becomes a classmethod def test_to_excel_multiindex_dates(self): _skip_if_no_xlrd() _skip_if_no_xlwt() self._check_excel_multiindex_dates('xls') def test_to_excel_multiindex_xlsx_dates(self): _skip_if_no_openpyxl() _skip_if_no_xlrd() self._check_excel_multiindex_dates('xlsx') def _check_excel_multiindex_dates(self, ext): path = '__tmp_to_excel_multiindex_dates__' + ext + '__.' + ext # try multiindex with dates tsframe = self.tsframe old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) with ensure_clean(path) as path: tsframe.to_excel(path, 'test1', index_label=['time', 'foo']) reader = ExcelFile(path) recons = reader.parse('test1', index_col=[0, 1]) tm.assert_frame_equal(tsframe, recons, check_names=False) self.assertEquals(recons.index.names, ['time', 'foo']) # infer index tsframe.to_excel(path, 'test1') reader = ExcelFile(path) recons = reader.parse('test1') tm.assert_frame_equal(tsframe, recons) self.tsframe.index = old_index # needed if setUP becomes classmethod def test_to_excel_float_format(self): _skip_if_no_excelsuite() for ext in ['xls', 'xlsx']: filename = '__tmp_to_excel_float_format__.' + ext df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean(filename) as filename: df.to_excel(filename, 'test1', float_format='%.2f') reader = ExcelFile(filename) rs = reader.parse('test1', index_col=None) xp = DataFrame([[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=['A', 'B'], columns=['X', 'Y', 'Z']) tm.assert_frame_equal(rs, xp) def test_to_excel_unicode_filename(self): _skip_if_no_excelsuite() for ext in ['xls', 'xlsx']: filename = u'\u0192u.' + ext try: f = open(filename, 'wb') except UnicodeEncodeError: raise nose.SkipTest('no unicode file names on this system') else: f.close() df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean(filename) as filename: df.to_excel(filename, 'test1', float_format='%.2f') reader = ExcelFile(filename) rs = reader.parse('test1', index_col=None) xp = DataFrame([[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=['A', 'B'], columns=['X', 'Y', 'Z']) tm.assert_frame_equal(rs, xp) def test_to_excel_styleconverter(self): from pandas.io.parsers import CellStyleConverter try: import xlwt import openpyxl except ImportError: raise nose.SkipTest hstyle = {"font": {"bold": True}, "borders": {"top": "thin", "right": "thin", "bottom": "thin", "left": "thin"}, "alignment": {"horizontal": "center"}} xls_style = CellStyleConverter.to_xls(hstyle) self.assertTrue(xls_style.font.bold) self.assertEquals(xlwt.Borders.THIN, xls_style.borders.top) self.assertEquals(xlwt.Borders.THIN, xls_style.borders.right) self.assertEquals(xlwt.Borders.THIN, xls_style.borders.bottom) self.assertEquals(xlwt.Borders.THIN, xls_style.borders.left) self.assertEquals(xlwt.Alignment.HORZ_CENTER, xls_style.alignment.horz) xlsx_style = CellStyleConverter.to_xlsx(hstyle) self.assertTrue(xlsx_style.font.bold) self.assertEquals(openpyxl.style.Border.BORDER_THIN, xlsx_style.borders.top.border_style) self.assertEquals(openpyxl.style.Border.BORDER_THIN, xlsx_style.borders.right.border_style) self.assertEquals(openpyxl.style.Border.BORDER_THIN, xlsx_style.borders.bottom.border_style) self.assertEquals(openpyxl.style.Border.BORDER_THIN, xlsx_style.borders.left.border_style) self.assertEquals(openpyxl.style.Alignment.HORIZONTAL_CENTER, xlsx_style.alignment.horizontal) # def test_to_excel_header_styling_xls(self): # import StringIO # s = StringIO.StringIO( # """Date,ticker,type,value # 2001-01-01,x,close,12.2 # 2001-01-01,x,open ,12.1 # 2001-01-01,y,close,12.2 # 2001-01-01,y,open ,12.1 # 2001-02-01,x,close,12.2 # 2001-02-01,x,open ,12.1 # 2001-02-01,y,close,12.2 # 2001-02-01,y,open ,12.1 # 2001-03-01,x,close,12.2 # 2001-03-01,x,open ,12.1 # 2001-03-01,y,close,12.2 # 2001-03-01,y,open ,12.1""") # df = read_csv(s, parse_dates=["Date"]) # pdf = df.pivot_table(values="value", rows=["ticker"], # cols=["Date", "type"]) # try: # import xlwt # import xlrd # except ImportError: # raise nose.SkipTest # filename = '__tmp_to_excel_header_styling_xls__.xls' # pdf.to_excel(filename, 'test1') # wbk = xlrd.open_workbook(filename, # formatting_info=True) # self.assertEquals(["test1"], wbk.sheet_names()) # ws = wbk.sheet_by_name('test1') # self.assertEquals([(0, 1, 5, 7), (0, 1, 3, 5), (0, 1, 1, 3)], # ws.merged_cells) # for i in range(0, 2): # for j in range(0, 7): # xfx = ws.cell_xf_index(0, 0) # cell_xf = wbk.xf_list[xfx] # font = wbk.font_list # self.assertEquals(1, font[cell_xf.font_index].bold) # self.assertEquals(1, cell_xf.border.top_line_style) # self.assertEquals(1, cell_xf.border.right_line_style) # self.assertEquals(1, cell_xf.border.bottom_line_style) # self.assertEquals(1, cell_xf.border.left_line_style) # self.assertEquals(2, cell_xf.alignment.hor_align) # os.remove(filename) # def test_to_excel_header_styling_xlsx(self): # import StringIO # s = StringIO.StringIO( # """Date,ticker,type,value # 2001-01-01,x,close,12.2 # 2001-01-01,x,open ,12.1 # 2001-01-01,y,close,12.2 # 2001-01-01,y,open ,12.1 # 2001-02-01,x,close,12.2 # 2001-02-01,x,open ,12.1 # 2001-02-01,y,close,12.2 # 2001-02-01,y,open ,12.1 # 2001-03-01,x,close,12.2 # 2001-03-01,x,open ,12.1 # 2001-03-01,y,close,12.2 # 2001-03-01,y,open ,12.1""") # df = read_csv(s, parse_dates=["Date"]) # pdf = df.pivot_table(values="value", rows=["ticker"], # cols=["Date", "type"]) # try: # import openpyxl # from openpyxl.cell import get_column_letter # except ImportError: # raise nose.SkipTest # if openpyxl.__version__ < '1.6.1': # raise nose.SkipTest # # test xlsx_styling # filename = '__tmp_to_excel_header_styling_xlsx__.xlsx' # pdf.to_excel(filename, 'test1') # wbk = openpyxl.load_workbook(filename) # self.assertEquals(["test1"], wbk.get_sheet_names()) # ws = wbk.get_sheet_by_name('test1') # xlsaddrs = ["%s2" % chr(i) for i in range(ord('A'), ord('H'))] # xlsaddrs += ["A%s" % i for i in range(1, 6)] # xlsaddrs += ["B1", "D1", "F1"] # for xlsaddr in xlsaddrs: # cell = ws.cell(xlsaddr) # self.assertTrue(cell.style.font.bold) # self.assertEquals(openpyxl.style.Border.BORDER_THIN, # cell.style.borders.top.border_style) # self.assertEquals(openpyxl.style.Border.BORDER_THIN, # cell.style.borders.right.border_style) # self.assertEquals(openpyxl.style.Border.BORDER_THIN, # cell.style.borders.bottom.border_style) # self.assertEquals(openpyxl.style.Border.BORDER_THIN, # cell.style.borders.left.border_style) # self.assertEquals(openpyxl.style.Alignment.HORIZONTAL_CENTER, # cell.style.alignment.horizontal) # mergedcells_addrs = ["C1", "E1", "G1"] # for maddr in mergedcells_addrs: # self.assertTrue(ws.cell(maddr).merged) # os.remove(filename) def test_excel_010_hemstring(self): try: import xlwt import openpyxl except ImportError: raise nose.SkipTest from pandas.util.testing import makeCustomDataframe as mkdf # ensure limited functionality in 0.10 # override of #2370 until sorted out in 0.11 def roundtrip(df, header=True, parser_hdr=0): path = '__tmp__test_xl_010_%s__.xls' % np.random.randint(1, 10000) df.to_excel(path, header=header) with ensure_clean(path) as path: xf = pd.ExcelFile(path) res = xf.parse(xf.sheet_names[0], header=parser_hdr) return res nrows = 5 ncols = 3 for i in range(1, 4): # row multindex upto nlevel=3 for j in range(1, 4): # col "" df =
mkdf(nrows, ncols, r_idx_nlevels=i, c_idx_nlevels=j)
pandas.util.testing.makeCustomDataframe
import csv import pprint import datetime import time import pandas as pd ## Filenames chicago = 'chicago.csv' new_york_city = 'new_york_city.csv' washington = 'washington.csv' def get_city(): '''Asks the user for a city and returns the filename for that city's bike share data. Args: none. Returns: (str) Filename for a city's bikeshare data. ''' city = input('\nHello! Let\'s explore some US bikeshare data!\n' 'Would you like to see data for Chicago, New York, or Washington?\n') city= city.lower() if city == 'chicago': print('Ok, Let\'s explore the data for Chicago!') return chicago elif city == 'new york': print('Ok, Let\'s explore the data for New York!') return new_york_city elif city== 'washington': print('Ok, Let\'s explore the data for Washington') return washington else: print ('Sorry that is not a valid input, please make sure you are using lowercase letters.') return get_city() def get_time_period(): '''Asks the user for a time period and returns the specified filter. Args: none. Returns: (str) Time period for a city's bikeshare data. ''' time_period = input('\nWould you like to filter the data by month, day, or not at' ' all? Type "none" for no time filter.\n') if time_period == 'month': print('Great, let\'s filter the data by month.') return get_month() elif time_period == 'day': print('Great, let\'s filter the data by day.') return get_day() elif time_period == 'none': print('Great, we will not filter the time period.') return time_period else: print('Sorry, that is not a valid input, please try again.') return get_time_period() def get_month(): '''Asks the user for a month and returns the specified month. Args: none. Returns: (str): Returns the month the user chooses. ''' month = input('\nWhich month? January, February, March, April, May, or June?\n') month= month.lower() if month not in ['january', 'february', 'march', 'april','may', 'june']: print('This input is not valid.') return get_month() return month def get_day(): '''Asks the user for as an integer day and returns the specified day. Args: none. Returns: (int): Returns the day of the weeek that the user chooses. ''' day = input('\nWhich day? Please type your response as an integer. For example Mon=0, Tues=1, etc.\n') if int(day) not in [0,1,2,3,4,5,6]: print('This input is not valid.') return get_day() day = int(day) return day def load_df(city): '''Loads data frame. Args: City Returns: Loads city CSV using pandas. ''' df =
pd.read_csv(city)
pandas.read_csv
import argparse import pandas as pd from util.util_funcs import load_json, load_jsonl def main(): parser = argparse.ArgumentParser( description="Merges table and sentence data for input to the veracity prediction model" ) parser.add_argument( "--tapas_csv_file", default=None, type=str, help="Path to the csv file containing the tapas data", ) parser.add_argument( "--sentence_data_file", default=None, type=str, help="Path to the jsonl file containing the sentence evidence", ) parser.add_argument( "--id_label_map_file", default=None, type=str, help="Path to the json file containing the id label mapping", ) parser.add_argument( "--out_file", default=None, type=str, help="Path to the output csv file to store the merged data", ) args = parser.parse_args() if not args.tapas_csv_file: raise RuntimeError("Invalid tapas csv file path") if ".csv" not in args.tapas_csv_file: raise RuntimeError( "The tapas csv file path should include the name of the .csv file" ) if not args.sentence_data_file: raise RuntimeError("Invalid sentence data file path") if ".jsonl" not in args.sentence_data_file: raise RuntimeError( "The sentence data file path should include the name of the .jsonl file" ) if not args.id_label_map_file: raise RuntimeError("Invalid id label map file path") if ".json" not in args.id_label_map_file: raise RuntimeError( "The id label map file path should include the name of the .jsonl file" ) if not args.out_file: raise RuntimeError("Invalid output file path") if ".csv" not in args.out_file: raise RuntimeError( "The output file path should include the name of the .csv file" ) tapas_data = pd.read_csv(args.tapas_csv_file) tapas_data.rename(columns={"question": "claim"}, inplace=True) tapas_data = tapas_data.drop(["annotator"], axis=1) sentence_data = load_jsonl(args.sentence_data_file) sent_data_table = pd.DataFrame(sentence_data) sent_data_table.rename(columns={"id": "claim_id"}, inplace=True) claim_id_label_map = load_json(args.id_label_map_file) claim_id_label_map = { "claim_id": list(claim_id_label_map.keys()), "label": list(claim_id_label_map.values()), } claim_id_label_map_table =
pd.DataFrame(claim_id_label_map)
pandas.DataFrame
import sys import psutil import pandas as pd from tornado import gen from functools import wraps from distributed import Client, LocalCluster from concurrent.futures import CancelledError from ..static import DatasetStatus from ..util import listify, logger _cluster = None tasks = {} futures = {} class StartCluster(): def __init__(self, n_cores=None): if n_cores is None: n_cores = psutil.cpu_count()-2 self.cluster = LocalCluster(processes=True, n_workers=1) self.client = Client(self.cluster) def __exit__(self, type, value, traceback): self.cluster.close() def _get_client(): global _cluster if _cluster is None: _cluster = StartCluster() return _cluster.client def add_async(f): @wraps(f) def wrapper(*args, **kwargs): async_tasks = kwargs.pop('async_tasks', None) if async_tasks: client = _get_client() future = client.submit(f, *args, **kwargs) client.loop.add_callback(add_result_when_done, future) futures[future.key] = future tasks[future.key] = { 'fn': f.__name__, 'args': args, 'kwargs': kwargs, 'status': DatasetStatus.PENDING, 'result': None, } return future.key else: return f(*args, **kwargs) return wrapper def get_pending_tasks(**kwargs): """Return list of pending tasks calls get_tasks with filter -> status=pending, passes through other kwargs (filters={}, expand=None, as_dataframe=None, with_future=None) """ filters = {'status': DatasetStatus.PENDING} if 'filters' in kwargs: kwargs['filters'].update(filters) else: kwargs['filters'] = filters return get_tasks(**kwargs) def get_task(task_id, with_future=None): """Get details for a task. Args: task_id (string,Required): id of a task with_future (bool, Optional, Default=None): If true include the task `future` objects in the returned dataframe/dictionary """ task = get_tasks(expand=True, with_future=with_future).get(task_id) if task is None: logger.error('task {} not found'.format(task_id)) return task def get_tasks(filters=None, expand=None, as_dataframe=None, with_future=None): """Get all available tasks. Args: filters (dict, Optional, Default=None): filter tasks by one or more of the available filters available filters: * `task_ids` (str or list): task id or list of task ids * `status` (str or list): single status or list of statuses. Must be subset of ['pending', 'cancelled', 'finished', 'lost', 'error'] * `fn` (str): name of the function a task was assigned * `args` (list): list of arguments that were passed to the task function * `kwargs` (dict): dictionary of keyword arguments that were passed to the task function * `result` (object): result of the task function expand (bool, Optional, Default=None): include details of tasks and format as a dict as_dataframe (bool, Optional, Default=None): include details of tasks and format as a pandas dataframe with_future (bool, Optional, Default=None): If true include the task `future` objects in the returned dataframe/dictionary Returns: tasks (list, dict, or pandas dataframe, Default=list): all available tasks """ task_list = tasks if filters: task_ids = listify(filters.pop('task_ids', None)) if task_ids is not None: task_list = {k: v for k, v in task_list.items() if k in task_ids} statuses = listify(filters.pop('status', None)) if statuses is not None: task_list = {k: v for k, v in task_list.items() if v['status'] in statuses} for fk, fv in filters.items(): task_list = {k: v for k, v in task_list.items() if v[fk] == fv} task_list =
pd.DataFrame.from_dict(task_list, orient='index')
pandas.DataFrame.from_dict
import pandas as pd import sys # from urllib import urlopen # python2 from urllib.request import urlopen #try: # from rpy2.robjects.packages import importr # try: # biomaRt = importr("biomaRt") # except: # print "rpy2 could be loaded but 'biomaRt' could not be found.\nIf you want to use 'biomaRt' related functions please install 'biomaRt' in R.\n\n$ R\n> source('http://bioconductor.org/biocLite.R')\n> biocLite()\n> biocLite('biomaRt')\n> quit()" # sys.stdout.flush() #except: # print "Failed to import rpy2 module.\nPlease make sure you are using the same version of R you had when AGEpy was installed." # sys.stdout.flush() import biomart from biomart import BiomartServer def organismsKEGG(): """ Lists all organisms present in the KEGG database. :returns: a dataframe containing one organism per row. """ organisms=urlopen("http://rest.kegg.jp/list/organism").read() organisms=organisms.decode().split("\n") #for o in organisms: # print o # sys.stdout.flush() organisms=[ s.split("\t") for s in organisms ] organisms=pd.DataFrame(organisms) return organisms def databasesKEGG(organism,ens_ids): """ Finds KEGG database identifiers for a respective organism given example ensembl ids. :param organism: an organism as listed in organismsKEGG() :param ens_ids: a list of ensenbl ids of the respective organism :returns: nothing if no database was found, or a string if a database was found """ all_genes=urlopen("http://rest.kegg.jp/list/"+organism).read() all_genes=all_genes.decode().split("\n") dbs=[] while len(dbs) == 0: for g in all_genes: if len(dbs) == 0: kid = g.split("\t")[0] gene=urlopen("http://rest.kegg.jp/get/"+kid).read() DBLINKS=gene.decode().split("\n") DBLINKS=[ s for s in DBLINKS if ":" in s ] for d in DBLINKS: test=d.split(" ") test=test[len(test)-1] if test in ens_ids: DBLINK=[ s for s in DBLINKS if test in s ] DBLINK=DBLINK[0].split(":") DBLINK=DBLINK[len(DBLINK)-2] dbs.append(DBLINK) else: break ens_db=dbs[0].split(" ") ens_db=ens_db[len(ens_db)-1] test_db=urlopen("http://rest.genome.jp/link/"+ens_db+"/"+organism).read() test_db=test_db.decode().split("\n") if len(test_db) == 1: print("For "+organism+" the following db was found: "+ens_db) print("This database does not seem to be valid KEGG-linked database identifier") print("For \n'hsa' use 'ensembl-hsa'\n'mmu' use 'ensembl-mmu'\n'cel' use 'EnsemblGenomes-Gn'\n'dme' use 'FlyBase'") sys.stdout.flush() ens_db = None else: print("For "+organism+" the following db was found: "+ens_db) sys.stdout.flush() return ens_db def ensembl_to_kegg(organism,kegg_db): """ Looks up KEGG mappings of KEGG ids to ensembl ids :param organism: an organisms as listed in organismsKEGG() :param kegg_db: a matching KEGG db as reported in databasesKEGG :returns: a Pandas dataframe of with 'KEGGid' and 'ENSid'. """ print("KEGG API: http://rest.genome.jp/link/"+kegg_db+"/"+organism) sys.stdout.flush() kegg_ens=urlopen("http://rest.genome.jp/link/"+kegg_db+"/"+organism).read() kegg_ens=kegg_ens.decode().split("\n") final=[] for i in kegg_ens: final.append(i.split("\t")) df=pd.DataFrame(final[0:len(final)-1])[[0,1]] ens_id=pd.DataFrame(df[1].str.split(":").tolist())[1] df=pd.concat([df,ens_id],axis=1) df.columns=['KEGGid','ensDB','ENSid'] df=df[['KEGGid','ENSid']] return df def ecs_idsKEGG(organism): """ Uses KEGG to retrieve all ids and respective ecs for a given KEGG organism :param organism: an organisms as listed in organismsKEGG() :returns: a Pandas dataframe of with 'ec' and 'KEGGid'. """ kegg_ec=urlopen("http://rest.kegg.jp/link/"+organism+"/enzyme").read() kegg_ec=kegg_ec.decode().split("\n") final=[] for k in kegg_ec: final.append(k.split("\t")) df=pd.DataFrame(final[0:len(final)-1])[[0,1]] df.columns=['ec','KEGGid'] return df def idsKEGG(organism): """ Uses KEGG to retrieve all ids for a given KEGG organism :param organism: an organism as listed in organismsKEGG() :returns: a Pandas dataframe of with 'gene_name' and 'KEGGid'. """ ORG=urlopen("http://rest.kegg.jp/list/"+organism).read() ORG=ORG.decode().split("\n") final=[] for k in ORG: final.append(k.split("\t")) df=pd.DataFrame(final[0:len(final)-1])[[0,1]] df.columns=['KEGGid','description'] field = pd.DataFrame(df['description'].str.split(';',1).tolist())[0] field = pd.DataFrame(field) df = pd.concat([df[['KEGGid']],field],axis=1) df.columns=['KEGGid','gene_name'] df=df[['gene_name','KEGGid']] return df def pathwaysKEGG(organism): """ Retrieves all pathways for a given organism. :param organism: an organism as listed in organismsKEGG() :returns df: a Pandas dataframe with the columns 'KEGGid','pathIDs', and 'pathName'. :returns df_: a Pandas dataframe with a columns for 'KEGGid', and one column for each pathway with the corresponding gene ids below """ print("KEGG API: http://rest.kegg.jp/list/pathway/"+organism) sys.stdout.flush() kegg_paths=urlopen("http://rest.kegg.jp/list/pathway/"+organism).read() kegg_paths=kegg_paths.decode().split("\n") final=[] for k in kegg_paths: final.append(k.split("\t")) df=pd.DataFrame(final[0:len(final)-1])[[0,1]] df.columns=['pathID','pathName'] print("KEGG API: http://rest.kegg.jp/link/"+organism+"/pathway/") sys.stdout.flush() kegg_paths_genes=urlopen("http://rest.kegg.jp/link/"+organism+"/pathway/").read() kegg_paths_genes=kegg_paths_genes.decode().split("\n") kegg_paths_genes=[ s.split("\t") for s in kegg_paths_genes ] kegg_paths_genes=pd.DataFrame(kegg_paths_genes) kegg_paths_genes.columns=['pathID','KEGGid'] df=
pd.merge(kegg_paths_genes,df,on=["pathID"],how="outer")
pandas.merge
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # VIP This notebook use data from `Fig2.ipynb` # + import os, sys, warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_context(context='poster') import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['font.sans-serif'] = "Arial" mpl.rcParams['font.monospace'] = 'Andale Mono' # mpl.rcParams['mathtext.fontset'] = 'stix' mpl.rcParams['mathtext.rm'] = 'Arial' mpl.rcParams['mathtext.default'] = 'rm' mpl.rcParams['axes.linewidth'] = 1.5 mpl.rcParams['xtick.major.width'] = 1.5 mpl.rcParams['ytick.major.width'] = 1.5 mpl.rcParams['text.usetex'] = False mpl.rcParams['text.latex.preamble'] = [ r'\usepackage{wasysym}', r'\usepackage{amsmath}', r'\usepackage{amssymb}', ] bigsize = 20 midsize = 18 smallsize = 14 hugesize = 24 # - sys.path.append('.'); warnings.simplefilter(action='ignore', category=FutureWarning); # + from figdata import ref, xlsx_tab, sum_df, cell_chr_cnv_size from figdata import sample_colors, good_pos, r_acen, chrf, bigCNV, big_cnv_cells, big_cnv_idx from matplotlib.colors import ListedColormap, LinearSegmentedColormap from sklearn.linear_model import LinearRegression # - from scipy import stats FSAMPLE = True FSAMPLE = False # --- # + male_heatmap = pd.read_csv('male_heatmap.csv', index_col=0) female_heatmap = pd.read_csv('female_heatmap.csv', index_col=0) cmap_CNV = LinearSegmentedColormap.from_list('forCNV', ['blueviolet', 'deepskyblue', 'black', 'darkorange', 'orangered']) # # Sort fraction tmp_df = sum_df.loc[big_cnv_idx].sort_values('chrom_fraction', ascending=False) tmp_df['chrom_fraction'] = (tmp_df['chrom_fraction']/10).round() # # Sort chroms. heatmap_order = ( tmp_df.set_index('Cell') .loc[tmp_df['Cell']] .reset_index() .groupby('Cell',sort=False).first() .replace({'Sample':xlsx_tab.set_index('SAMPLE')['CODE'].to_dict()}) # .sort_values(['chr_id','chrom_fraction','cnvTag','binSize','Cell'], ascending=[True, False, True, False, True]) .sort_values( ['chr_id','chrom_fraction','cnvTag','Sample','binSize','Cell'], ascending=[True, False, True, True, False, True] ) .index ) # # Sort fraction # tmp_df = cell_chr_cnv_size.sort_values('chrom_fraction', ascending=False) # # Sort chroms. # heatmap_order = ( # tmp_df.reset_index().set_index('Cell') # .loc[tmp_df['Cell']] # .reset_index() # .groupby('Cell',sort=False).first() # .sort_values(['chr_id','chrom_fraction','binSize','Cell'], ascending=[True, False, False, True]) # .index # ) del(tmp_df) # + male_fig_df = male_heatmap.reindex(columns=big_cnv_cells).dropna(how='all',axis=1).T male_fig_df.loc[:,male_fig_df.columns[male_fig_df.columns.str.contains(r'chr[X|Y]:')]] += 1 male_fig_df = male_fig_df.loc[:, ~male_fig_df.columns.str.contains('chrY')] chr_pos = [ male_fig_df.columns.get_loc(idx) for idx in ref.loc[male_fig_df.columns] .reset_index() .set_index(['space','start']) .loc[ ref.loc[male_fig_df.columns] .groupby('space',sort=False) .min().reset_index() .set_index(['space','start']).index, 'index' ].values ] + [ male_fig_df.columns.get_loc( male_fig_df.columns[-1] )-1 ] if not FSAMPLE: male_fig_df = male_fig_df.loc[male_fig_df.index[~male_fig_df.index.str.contains('$FSAMPLE')]] # + male_row_codes = xlsx_tab.set_index('SAMPLE').loc[ ( sum_df .set_index('Cell') .loc[male_fig_df.index,'Sample'] .reset_index() .drop_duplicates(keep='first') .set_index('Cell') .reindex(index=heatmap_order) .dropna()['Sample'] ), 'CODE' ].dropna() male_row_codes.index = (np.arange(0,male_row_codes.shape[0])) if not FSAMPLE: male_row_codes = male_row_codes.replace('M11','M10') male_sample_fig_df = pd.concat( [ pd.Series(np.arange(0,male_row_codes.shape[0]), name='y'), male_row_codes.rename('x').str.replace('M','').astype(int), ], axis=1 ) # + female_fig_df = female_heatmap.reindex(columns=big_cnv_cells).dropna(how='all',axis=1).T female_fig_df.loc[:,female_fig_df.columns[female_fig_df.columns.str.contains(r'chrY:')]] += 2 female_fig_df = female_fig_df.loc[:, ~female_fig_df.columns.str.contains('chrY')] female_row_codes = xlsx_tab.set_index('SAMPLE').loc[ ( sum_df .set_index('Cell') .loc[female_fig_df.index,'Sample'] .reset_index() .drop_duplicates(keep='first') .set_index('Cell') .reindex(index=heatmap_order) .dropna()['Sample'] ), 'CODE' ].dropna() female_row_codes.index = (np.arange(0,female_row_codes.shape[0])) female_sample_fig_df = pd.concat( [ pd.Series(np.arange(0,female_row_codes.shape[0]), name='y'), female_row_codes.rename('x').str.replace('F','').astype(int), ], axis=1 ) # - # --- def male_heatmap_plot(ax1, ax2): # ax1.scatter( # male_sample_fig_df['x'], male_sample_fig_df['y'], # s = 3, marker = 's', # color = pd.Series(sample_colors)[male_sample_fig_df['x']-1], # ) ax1.hlines( male_sample_fig_df['y'], male_sample_fig_df['x']-0.3, male_sample_fig_df['x']+0.3, color = pd.Series(sample_colors)[male_sample_fig_df['x']-1], lw=1 ) sns.heatmap( male_fig_df.reindex(index=heatmap_order).dropna(), cmap = cmap_CNV, ax = ax2, cbar = None, vmax=4, vmin=0, center=2, xticklabels=[], yticklabels=[], rasterized=True, ) ax1.set_xticks([]) ax1.set_yticks([]) ax1.set_ylabel('Male Cell (n = ' + str(male_fig_df.shape[0]) + ')' , fontsize=midsize) ax1.set_xlim(0,male_sample_fig_df['x'].max()+1) ax2.vlines(chr_pos, ax2.get_ylim()[0], ax2.get_ylim()[1], lw=1, color='lightgrey') ax2.set_ylabel('') ax2.set_xticks([]) ax2.set_yticks([]) return def female_heatmap_plot(ax1, ax2, ax3): # ax1.scatter( # female_sample_fig_df['x'], female_sample_fig_df['y'], # s = 3, marker = 's', # color = pd.Series(sample_colors[11:])[female_sample_fig_df['x']-1], # ) ax1.hlines( female_sample_fig_df['y'], female_sample_fig_df['x']-0.3, female_sample_fig_df['x']+0.3, color = pd.Series(sample_colors[11:])[female_sample_fig_df['x']-1], lw=1 ) sns.heatmap( female_fig_df.reindex(index=heatmap_order).dropna(), cmap = cmap_CNV, ax = ax2, cbar_ax = ax3, cbar_kws={ 'ticks' : np.arange(0,5), 'boundaries' : np.arange(-0.5,5.5,1), 'pad' : 0.01, 'orientation': 'horizontal', }, vmax=4, vmin=0, center=2, xticklabels=[], yticklabels=[], rasterized=True, ) ax1.set_xticks([]) ax1.set_yticks([]) ax1.set_ylabel('Female Cell (n = ' + str(female_fig_df.shape[0]) + ')' , fontsize=midsize) ax1.set_xlim(0,female_sample_fig_df['x'].max()+1) ax2.vlines(chr_pos, ax2.get_ylim()[0], ax2.get_ylim()[1], lw=1, color='lightgrey') ax2.set_ylabel('') ax2.set_xticks([]) ax2.set_yticks([]) return # + def sample_code_plot(ax, FSAMPLE=True): # fig, ax = plt.subplots(figsize=(6,2)) if not FSAMPLE: male_code = xlsx_tab.query('GENDER=="male" & SAMPLE!="$FSAMPLE"')['CODE'].replace('M11','M10') else: male_code = xlsx_tab.query('GENDER=="male"')['CODE'] female_code = xlsx_tab.query('GENDER=="female"')['CODE'] ax.scatter( x = np.arange(male_code.shape[0]).reshape(1, male_code.shape[0]), y = [1]*male_code.shape[0], s = 200, marker = 's', c=list(
pd.Series(sample_colors[:male_code.shape[0]])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[1]: import sys sys.path.append('..') # In[2]: import os import gc import yaml import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') from joblib import Parallel, delayed from utils import optimize_dtypes, get_files, int16_repr, downcast_dtypes # In[3]: BASE_PATH = '../../' CONFIG_DIR = os.path.join(BASE_PATH, 'config') STORAGE_DIR = os.path.join(BASE_PATH, 'storage') config = yaml.load(open(os.path.join(CONFIG_DIR, 'env.yml')), Loader=yaml.FullLoader) # In[4]: model = 'unplugged' model_storage = os.path.join(STORAGE_DIR, model) output_storage = os.path.join(STORAGE_DIR, 'output') # In[5]: filepath = os.path.join(output_storage, f'{model}.parquet') df = pd.read_parquet(filepath) # In[6]: converted_int = downcast_dtypes(df, ['int'], 'unsigned') converted_float = downcast_dtypes(df, ['float'], 'float') converted_bool = df.select_dtypes(include=['bool']) converted_object = df.select_dtypes(include=['object']) df.loc[:, converted_int.columns] = converted_int df.loc[:, converted_float.columns] = converted_float df.loc[:, converted_bool.columns] = converted_bool.astype(np.uint8) df.loc[:, converted_object.columns] = converted_object.astype('category') # In[7]: mappings = {'id': 'uint32', 'device_id': 'uint32', 'battery_level': 'uint8', 'timezone': 'category', 'memory_active': 'uint32', 'memory_inactive': 'uint32', 'memory_free': 'uint32', 'memory_user': 'uint32', 'health': 'category', 'voltage': 'float32', 'temperature': 'float32', 'usage': 'uint8', 'up_time': 'float32', 'sleep_time': 'float32', 'wifi_signal_strength': 'int16', 'wifi_link_speed': 'int16', 'screen_on': 'uint8', 'screen_brightness': 'int16', 'roaming_enabled': 'uint8', 'bluetooth_enabled': 'uint8', 'location_enabled': 'uint8', 'power_saver_enabled': 'uint8', 'nfc_enabled': 'uint8', 'developer_mode': 'uint8', 'free': 'uint32', 'total': 'uint32', 'free_system': 'uint32', 'total_system': 'uint32', 'wifi_enabled': 'uint8', 'mobile_enabled': 'uint8', 'wifi_active': 'uint8', 'mobile_active': 'uint8', 'profile': 'uint16'} # df = df.astype(mappings) # In[8]: df = df.rename({'usage': 'cpu_usage'}, axis=1) # In[9]: model = 'app_processes' model_storage = os.path.join(STORAGE_DIR, model) app_files = get_files(os.path.join(model_storage, '*.parquet')) # In[10]: mappings = {'sample_id': 'uint32', 'domain': 'category', 'application_label': 'category', 'is_system_app': 'uint8'} subset = ['domain', 'battery_level', 'health', 'voltage', 'temperature', 'cpu_usage', 'screen_on', 'screen_brightness', 'roaming_enabled', 'bluetooth_enabled', 'location_enabled', 'power_saver_enabled', 'developer_mode', 'wifi_enabled', 'wifi_active', 'mobile_active'] # In[11]: pages = [] min_id = df['id'].min() found_start = False for i, f in enumerate(app_files[:100]): page = pd.read_parquet(f) if found_start else pd.read_parquet(f, columns=['sample_id']) if page['sample_id'].max() < min_id: continue else: page = pd.read_parquet(f) found_start = True print(f'Entry {i}') page = page.dropna() page = page.astype(mappings) page = pd.merge(page, df, left_on='sample_id', right_on='id', sort=False, copy=False) pages.append(page.drop_duplicates(subset=subset)) # In[ ]: environments =
pd.DataFrame()
pandas.DataFrame
import io import requests import pandas as pd from bokeh.models import ColumnDataSource, HoverTool, ResizeTool, SaveTool from bokeh.models.widgets import TextInput, Button from bokeh.plotting import figure, curdoc from bokeh.layouts import row, widgetbox TICKER = "" base = "https://api.iextrading.com/1.0/" data = ColumnDataSource(dict(time=[], display_time=[], price=[])) def get_last_price(symbol): payload = { "format": "csv", "symbols": symbol } endpoint = "tops/last" raw = requests.get(base + endpoint, params=payload) raw = io.BytesIO(raw.content) prices_df = pd.read_csv(raw, sep=",") prices_df["time"] =
pd.to_datetime(prices_df["time"], unit="ms")
pandas.to_datetime
import json import boto3 import logging import pandas as pd import glob logger = logging.getLogger() logger.setLevel(logging.INFO) #https://stackoverflow.com/questions/43355074/read-a-csv-file-from-aws-s3-using-boto-and-pandas def flight_data_df_from_response(response): initial_df =
pd.read_csv(response['Body'])
pandas.read_csv
import pandas as pd import numpy as np import openml from pandas.api.types import is_numeric_dtype from sklearn.model_selection import cross_validate, train_test_split, GridSearchCV, RandomizedSearchCV from sklearn.metrics import f1_score, mean_squared_error from sklearn.pipeline import Pipeline from statistics import stdev from warnings import filterwarnings, resetwarnings from time import time from datetime import datetime from os import mkdir, listdir from shutil import rmtree import concurrent import matplotlib.pyplot as plt import seaborn as sns from multiprocessing import Process, Queue def get_single_dataset(q, dataset_did, dataset_name): dataset = openml.datasets.get_dataset(dataset_did) print(f" Loaded {dataset_name} from openml.org") q.put(dataset) class DatasetsTester: """ Tool to compare predictors (classifiers or regressors) on a set of datasets collected from openml.org. This simplifies automatically comparing the performance of predictors on potentially large numbers of datasets, thereby supporting more thorough and accurate testing of predictors. """ # have the directories and problem type set here def __init__(self, problem_type, path_local_cache=""): """ problem_type: str Either "classification" or "regression" All estimators will be compared using the same metric, so it is necessary that all datasets used are of the same type. path_local_cache: str Folder identify the local cache of datasets, stored in .csv format. """ self.problem_type = problem_type self.path_local_cache = path_local_cache self.openml_df = None def check_problem_type(self): problem_type_okay = self.problem_type in ["classification", "regression", "both"] if not problem_type_okay: print("problem_type must be one of: 'classification', 'regression', 'both'") return problem_type_okay def find_by_name(self, names_arr): """ Identifies, but does not collect, the set of datasets meeting the specified set of names. Parameters ---------- names_arr: array of dataset names Returns ------- dataframe with a row for each dataset on openml meeting the specified set of names. """ if not self.check_problem_type(): return None self.openml_df = openml.datasets.list_datasets(output_format="dataframe") self.openml_df = self.openml_df[self.openml_df.name.isin(names_arr)] return self.openml_df def find_by_tag(self, my_tag): """ Identifies, but does not collect, the set of datasets attached to the specified tag. Parameters ---------- my_tag: the dataset tag Returns ------- dataframe with a row for each dataset on openml meeting the specified tag. """ if not self.check_problem_type(): return None self.openml_df = openml.datasets.list_datasets(tag=my_tag, output_format="dataframe") return self.openml_df def find_datasets(self, use_cache=True, min_num_classes=2, max_num_classes=10, min_num_minority_class=5, max_num_minority_class=np.inf, min_num_features=0, max_num_features=100, min_num_instances=500, max_num_instances=5000, min_num_numeric_features=0, max_num_numeric_features=50, min_num_categorical_features=0, max_num_categorical_features=50): """ Identifies, but does not collect, the set of datasets meeting the specified set of names. This, find_by_name(), or find_by_tag() must be called to identify the potential set of datasets to be collected. Parameters ---------- All other parameters are direct checks of the statistics about each dataset provided by openml.org. Returns ------- dataframe with a row for each dataset on openml meeting the specified set of criteria. """ if not self.check_problem_type(): return None if self.problem_type == "classification" and (min_num_classes <= 0 or max_num_classes <= 0): print("For classification datasets, both min_num_classes and max_num_classes must be specified.") return None read_dataset_list = False # Set True if manage to read from cache. Otherwise read from openml.org. if use_cache and self.path_local_cache != "": try: path_to_file = self.path_local_cache + "/dataset_list.csv" self.openml_df = pd.read_csv(path_to_file) read_dataset_list = True except Exception as e: if "No such file or directory:" not in str(e): print(f" Error reading file: {e}") else: print(" File not found in cache.") if not read_dataset_list: self.openml_df = openml.datasets.list_datasets(output_format="dataframe") if use_cache and self.path_local_cache != "": try: mkdir(self.path_local_cache) except FileExistsError: pass except Exception as e: print(f"Error creating local cache folder: {e}") path_to_file = self.path_local_cache + "/dataset_list.csv" self.openml_df.to_csv(path_to_file) # Filter out datasets where some key attributes are unspecified self.openml_df = self.openml_df[ (np.isnan(self.openml_df.NumberOfFeatures) == False) & (np.isnan(self.openml_df.NumberOfInstances) == False) & (np.isnan(self.openml_df.NumberOfInstancesWithMissingValues) == False) & (np.isnan(self.openml_df.NumberOfMissingValues) == False) & (np.isnan(self.openml_df.NumberOfNumericFeatures) == False) & (np.isnan(self.openml_df.NumberOfSymbolicFeatures) == False) ] self.openml_df = self.openml_df[ (self.openml_df.NumberOfFeatures >= min_num_features) & (self.openml_df.NumberOfFeatures <= max_num_features) & (self.openml_df.NumberOfInstances >= min_num_instances) & (self.openml_df.NumberOfInstances <= max_num_instances) & (self.openml_df.NumberOfNumericFeatures >= min_num_numeric_features) & (self.openml_df.NumberOfNumericFeatures <= max_num_numeric_features) & (self.openml_df.NumberOfSymbolicFeatures >= min_num_categorical_features) & (self.openml_df.NumberOfSymbolicFeatures <= max_num_categorical_features) ] if self.problem_type == "classification": self.openml_df = self.openml_df[ (np.isnan(self.openml_df.MajorityClassSize) == False) & (np.isnan(self.openml_df.MaxNominalAttDistinctValues) == False) & (np.isnan(self.openml_df.MinorityClassSize) == False) & (np.isnan(self.openml_df.NumberOfClasses) == False) ] self.openml_df = self.openml_df[ (self.openml_df.NumberOfClasses >= min_num_classes) & (self.openml_df.NumberOfClasses <= max_num_classes) & (self.openml_df.MinorityClassSize >= min_num_minority_class) & (self.openml_df.MinorityClassSize <= max_num_minority_class) ] if self.problem_type == "regression": self.openml_df = self.openml_df[self.openml_df.NumberOfClasses == 0] return self.openml_df def collect_data(self, max_num_datasets_used=-1, method_pick_sets="pick_random", shuffle_random_state=0, exclude_list=None, use_automatic_exclude_list=False, max_cat_unique_vals=20, keep_duplicated_names=False, check_local_cache=False, check_online=True, save_local_cache=False, preview_data=False, one_hot_encode=True, fill_nan_and_inf_zero=True, verbose=False): """ This method collects the data from openml.org, unless check_local_cache is True and the dataset is available in the local folder. This will collect the specified subset of datasets identified by the most recent call to find_by_name() or find_datasets(). This allows users to call those methods until a suitable collection of datasets have been identified. Parameters ---------- max_num_datasets_used: integer The maximum number of datasets to collect. method_pick_sets: str If only a subset of the full set of matches are to be collected, this identifies if those will be selected randomly, or simply using the first matches shuffle_random_state: int Where method_pick_sets is "pick_random", this is used to shuffle the order of the datasets exclude_list: array list of names of datasets to exclude use_automatic_exclude_list: bool If set True, any files that can't be loaded will be appended to a list and subsequent calls will not attempt to load them. This may be set to save time. However, if there are errors simply due to internet problems or temporary issues, this may erroneously exclude some datasets. max_cat_unique_vals: int As categorical columns are one-hot encoded, it may not be desirable to one-hot encode categorical columns with large numbers of unique values. Columns with a greater number of unique values than max_cat_unique_vals will be dropped. keep_duplicated_names: bool If False, for each set of datasets with the same name, only the one with the highest version number will be used. In some cases, different versions of a dataset are significantly different. save_local_cache: bool If True, any collected datasets will be saved locally in path_local_cache check_local_cache: bool If True, before collecting any datasets from openml.org, each will be checked to determine if it is already stored locally in path_local_cache check_online: bool If True, openml.org may be checked for the dataset, unless check_local_cache is True and the dataset has been cached. preview_data: bool Indicates if the first rows of each collected dataset should be displayed one_hot_encode: bool If True, categorical columns are one-hot encoded. This is necessary for many types of predictor, but may be done elsewhere, for example in a pipeline passed to the run_tests() function. fill_nan_and_inf_zero: bool If True, all instances of NaN, inf and -inf are replaced with 0.0. Replacing these values with something valid is necessary for many types of predictor, butmay be done elsewhere, for example in a pipeline passed to the run_tests() function. verbose: bool If True, messages will be displayed indicating errors collecting any datasets. Returns ------- dataset_collection: dictionary containing: index in this collection, dataset_name, version, X, y This method will attempt to collect as many datasets as specified, even where additional datasets must be examined. """ def append_auto_exclude_list(did): if not use_automatic_exclude_list: return auto_exclude_list.append(did) def read_auto_exclude_list(): nonlocal auto_exclude_list if not use_automatic_exclude_list or self.path_local_cache == "": return try: path_to_file = self.path_local_cache + "/exclude_list.csv" auto_list_df = pd.read_csv(path_to_file) except Exception as e: print(f" Error reading file: {e}") return auto_exclude_list = auto_list_df['List'].tolist() def save_auto_exclude_list(): nonlocal auto_exclude_list if not use_automatic_exclude_list or self.path_local_cache == "" or len(auto_exclude_list) == 0: return try: mkdir(self.path_local_cache) except FileExistsError: pass except Exception as e: print(f"Error creating local cache folder: {e}") path_to_file = self.path_local_cache + "/exclude_list.csv" pd.DataFrame({'List': auto_exclude_list}).to_csv(path_to_file) assert method_pick_sets in ['pick_first', 'pick_random'] q = Queue() if self.openml_df is None or len(self.openml_df) == 0: print("Error. No datasets specified. Call find_datasets() or find_by_name() before collect_data().") return None if not keep_duplicated_names: self.openml_df = self.openml_df.drop_duplicates(subset=["name"], keep="last") self.dataset_collection = [] #if max_num_datasets_used > -1 and max_num_datasets_used < len(self.openml_df) and method_pick_sets == "pick_random": if -1 < max_num_datasets_used < len(self.openml_df) and method_pick_sets == "pick_random": openml_subset_df = self.openml_df.sample(frac=1, random_state=shuffle_random_state) else: openml_subset_df = self.openml_df auto_exclude_list = [] read_auto_exclude_list() usable_dataset_idx = 0 for dataset_idx in range(len(openml_subset_df)): if (max_num_datasets_used > -1) and (len(self.dataset_collection) >= max_num_datasets_used): break dataset_did = int(openml_subset_df.iloc[dataset_idx].did) dataset_name = openml_subset_df.iloc[dataset_idx]['name'] dataset_version = openml_subset_df.iloc[dataset_idx]['version'] if not exclude_list is None and dataset_name in exclude_list: continue if dataset_did in auto_exclude_list: continue print(f"Collecting {usable_dataset_idx}: {dataset_name}") dataset_df = None dataset_source = "" if check_local_cache: try: path_to_file = self.path_local_cache + "/" + dataset_name + '.csv' X_with_y = pd.read_csv(path_to_file) dataset_df = X_with_y.drop("y", axis=1) y = X_with_y["y"] dataset_source = "cache" except Exception as e: if "No such file or directory:" not in str(e): print(f" Error reading file: {e}") else: print(" File not found in cache.") dataset_df = None if not check_online and dataset_df is None: continue if dataset_df is None: p = Process(target=get_single_dataset, name="get_single_dataset", args=(q, dataset_did, dataset_name)) p.start() p.join(timeout=20) if q.empty(): print(f" Unable to collect {dataset_name} from openml.org") append_auto_exclude_list(dataset_did) continue dataset = q.get() try: X, y, categorical_indicator, attribute_names = dataset.get_data( dataset_format="dataframe", target=dataset.default_target_attribute ) except Exception as e: if verbose: print(f" Error collecting file with did: {dataset_did}, name: {dataset_name}. Error: {e}") append_auto_exclude_list(dataset_did) continue if X is None or y is None: if verbose: print(f" Error collecting file with did: {dataset_did}, name: {dataset_name}. X or y is None") append_auto_exclude_list(dataset_did) continue dataset_df = pd.DataFrame(X, columns=attribute_names) if len(dataset_df) != len(y): if verbose: print(f" Error collecting file with did: {dataset_did}, name: {dataset_name}. Number rows in X: {len(X)}. Number rows in y: {len(y)}") append_auto_exclude_list(dataset_did) continue if preview_data: print(dataset_df.head()) if save_local_cache: try: mkdir(self.path_local_cache) except FileExistsError: pass except Exception as e: print(f"Error creating local cache folder: {e}") X_with_y = dataset_df.copy() X_with_y['y'] = y X_with_y.to_csv(self.path_local_cache + "/" + dataset_name + '.csv', index=False) if (self.problem_type == "regression") and (is_numeric_dtype(y) == False): continue if dataset_source == "cache": print(f" Reading from local cache: {usable_dataset_idx}, id: {dataset_did}, name: {dataset_name}") else: print(f" Loading dataset from openml: {usable_dataset_idx}, id: {dataset_did}, name: {dataset_name}") dataset_df = self.__clean_dataset(dataset_df, max_cat_unique_vals, one_hot_encode, fill_nan_and_inf_zero) self.dataset_collection.append({'Index': usable_dataset_idx, 'Dataset_name': dataset_name, 'Dataset_version': dataset_version, 'X': dataset_df, 'y': y}) usable_dataset_idx += 1 save_auto_exclude_list() def __clean_dataset(self, X, max_cat_unique_vals, one_hot_encode, fill_nan_and_inf_zero): # The categorical_indicator provided by openml isn't 100% reliable, so we also check panda's is_numeric_dtype categorical_indicator = [False] * len(X.columns) for c in range(len(X.columns)): if not is_numeric_dtype(X[X.columns[c]]): categorical_indicator[c] = True # Remove any NaN or inf values if fill_nan_and_inf_zero: for c_idx, col_name in enumerate(X.columns): if categorical_indicator[c_idx] == True: if hasattr(X[col_name], "cat"): X[col_name] = X[col_name].cat.add_categories("").fillna("") else: X[col_name] = X[col_name].fillna("") else: X[col_name] = X[col_name].fillna(0.0) # One-hot encode the categorical columns if one_hot_encode: new_df =
pd.DataFrame()
pandas.DataFrame
""" This script is for analysing the outputs from the implementation of DeepAR in GluonTS """ import os, time from pathlib import Path import streamlit as st import pandas as pd import numpy as np from gluonts.model.predictor import Predictor from gluonts.dataset.common import ListDataset from gluonts.transform import FieldName from gluonts.evaluation.backtest import make_evaluation_predictions import autodraft.visualization as viz import autodraft.gluonts as glu import autodraft.api as nhl from bokeh.sampledata.perceptions import probly # @st.cache def load_model(file_path): model = Predictor.deserialize(Path(file_path)) return model @st.cache def get_data(path='../../data/input/full_dataset_4_seasons.csv'): data = pd.read_csv(path) return data # @st.cache # def load_predictions(path='/home/ubuntu/AutoDraft/data/deepar_truncated_results_ne100_lre-4_bs64.csv'): # data = pd.read_csv(path, index_col=2) # return data @st.cache def load_predictions(path='../../data/output/deepar_truncated_results_unit_s_ne300_lr1e-3_bs64_nl3_cl3.csv'): data = pd.read_csv(path, index_col=2) model_name = path.split('/')[-1].split('.')[0] return data, model_name @st.cache def load_joe(): joe = pd.read_csv('../../data/input/joe_schmo_4_seasons.csv') return joe @st.cache def get_roster(path='../../data/input/full_roster_4_seasons.csv'): data =
pd.read_csv(path)
pandas.read_csv
import torch import os import sys import pandas as pd class WeeBitDataset(torch.utils.data.Dataset): def __init__(self, datapath): self.dirs = os.listdir(datapath) self.data_dict = {'WRLevel2': [], 'WRLevel4': [], 'WRLevel3': [], 'BitGCSE': [], 'BitKS3': []} for dir in self.dirs: if dir != '.DS_Store': files = os.listdir('WeeBit-TextOnly/' + dir) for file in files: if file != '.DS_Store': f = open('WeeBit-TextOnly/' + dir + '/' + file, 'rb') text = f.read() text = text.decode('utf-8', errors='ignore').replace('\n', ' ') self.data_dict[dir].append(text) f.close() self.text_to_label = {'WRLevel2': 0, 'WRLevel3': 1, 'WRLevel4': 2, 'BitKS3': 3, 'BitGCSE': 4} self.df =
pd.DataFrame(columns=['text', 'label'])
pandas.DataFrame
# %% import os from google.cloud.bigquery.client import Client import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import typing from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from sklearn.manifold import TSNE from sklearn.metrics import silhouette_score from collections import Counter # %% # set Google BigQuery client os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'C:\\Users\\Francesco\\fiery-rarity-322109-6ba6fa8a811c.json' bq_client = Client() # set seaborn plotting theme sns.set_theme() # set colour palette COLORS_PALETTE = ['#00388F', '#FFB400', '#FF4B00', '#65B800', '#00B1EA'] sns.set_palette(sns.color_palette(COLORS_PALETTE)) # %% # run query address_clustering = bq_client.query(''' select * from `fiery-rarity-322109.ethereum.address_classification` where rank <= 1000 and date_month >= '2017-01-01' ''').to_dataframe() # %% class SklearnWrapper: def __init__(self, transformation: typing.Callable): self.transformation = transformation self._group_transforms = [] # Start with -1 and for each group up the pointer by one self._pointer = -1 def _call_with_function(self, df: pd.DataFrame, function: str): # If pointer >= len we are making a new apply, reset _pointer if self._pointer >= len(self._group_transforms): self._pointer = -1 self._pointer += 1 return pd.DataFrame( getattr(self._group_transforms[self._pointer], function)(df.values), columns=df.columns, index=df.index, ) def fit(self, df): self._group_transforms.append(self.transformation.fit(df.values)) return self def transform(self, df): return self._call_with_function(df, "transform") def fit_transform(self, df): self.fit(df) return self.transform(df) def inverse_transform(self, df): return self._call_with_function(df, "inverse_transform") # %% # Create scaler outside the class scaler = SklearnWrapper(StandardScaler()) # Fit and transform data (holding state) df_scale = address_clustering.loc[: , ~address_clustering.columns.isin(['address', 'rank'])].groupby("date_month").apply(scaler.fit_transform) df_scale = df_scale.loc[: , ~df_scale.columns.isin(['date_month'])] # %% # Run t-SNE tsne = TSNE(n_components=3, verbose=1, random_state=42) #, perplexity=80, n_iter=5000, learning_rate=200 tsne_scale_results = tsne.fit_transform(df_scale) tsne_df_scale =
pd.DataFrame(tsne_scale_results, columns=['t-SNE 1', 't-SNE 2', 't-SNE 3'])
pandas.DataFrame
from collections import defaultdict from typing import Any, Callable, Dict, Iterable, Sequence import numpy as np import pandas as pd import scipy.optimize from invoice_net.parsers import ( parses_as_full_date, parses_as_amount, parses_as_invoice_number, ) from invoice_net.data_handler import DataHandler def __inner_filter_out_mistakes( tokens: Iterable[str], filter_func: Callable[[str], Any], ignore_exceptions: bool = False, ) -> np.ndarray: mask = [] for token in tokens: try: mask.append(bool(filter_func(token))) except Exception: if ignore_exceptions: mask.append(False) else: raise return np.array(mask) def _filter_out_mistakes(token_predictions: pd.DataFrame) -> pd.DataFrame: """Filter out obvious mistakes, like Foo bar -> date prediction""" filters_table: Dict[str, Callable[[str], Any]] = defaultdict( lambda: lambda x: x ) filters_table["document_date"] = parses_as_full_date filters_table["document_id"] = parses_as_invoice_number filters_table["amount_total"] = parses_as_amount groups = [] for prediction, group in token_predictions.groupby("pred"): groups.append( group[ __inner_filter_out_mistakes( group.word, filters_table[prediction] ) ] ) return pd.concat(groups) def _get_token_predictions( predictions: np.ndarray, raw_text: Sequence[str], file_names: pd.Series ) -> pd.DataFrame: """Take model predictions and flatten to prediction per token.""" assert predictions.shape[0] == len(raw_text) == len(file_names), ( f"Number of samples does not match; ({predictions.shape[0]}, " f"{len(raw_text)}, {len(file_names)})" ) assert predictions.ndim == 3 candidates = np.where(predictions > 0.5) tokens = [line.split() for line in raw_text] tmp = [] for sample_idx, token_idx, class_idx in zip(*candidates): # if prediction is not for padding text if len(tokens[sample_idx]) > token_idx: tmp.append( { "word": tokens[sample_idx][token_idx], "pred": class_idx, "confidence": predictions[sample_idx, token_idx, class_idx], "file_name": file_names.iloc[sample_idx], } ) return pd.DataFrame.from_records(tmp) def hungarian_prediction(token_predictions): predictions = defaultdict(dict) for file_name, df in token_predictions.groupby("file_name"): hungarian_table = pd.pivot_table( df, values=["cost"], index=["word"], columns=["pred"], aggfunc=np.min, fill_value=1, ) row_idxs, col_idxs = scipy.optimize.linear_sum_assignment( hungarian_table ) for row_idx, col_idx in zip(row_idxs, col_idxs): col_name = hungarian_table.columns[col_idx][1] predictions[file_name][col_name] = ( hungarian_table.iloc[row_idx].name, 1 - hungarian_table.iloc[row_idx, col_idx], ) predictions_df =
pd.DataFrame(predictions)
pandas.DataFrame
""" Common routines to work with raw MS data from metabolomics experiments. Functions --------- detect_features(path_list) : Perform feature detection on several samples. feature_correspondence(feature_data) : Match features across different samples using a combination of clustering algorithms. """ import pandas as pd import numpy as np from .fileio import MSData from .container import DataContainer from .lcms import Roi from . import validation from pathlib import Path from sklearn.cluster import DBSCAN from sklearn import mixture from scipy.optimize import linear_sum_assignment from typing import Optional, Tuple, List, Dict, Union from IPython.display import clear_output __all__ = ["detect_features", "feature_correspondence", "make_data_container"] def detect_features(path: Union[Path, List[str]], separation: str = "uplc", instrument: str = "qtof", roi_params: Optional[dict] = None, smoothing_strength: Optional[float] = 1.0, noise_params: Optional[dict] = None, baseline_params: Optional[dict] = None, find_peaks_params: Optional[dict] = None, descriptors: Optional[dict] = None, filters: Optional[dict] = None, verbose: bool = True ) -> Tuple[Dict[str, List[Roi]], pd.DataFrame]: """ Perform feature detection on LC-MS centroid samples. Parameters ---------- path: Path or List[str] Path can be a list of strings of absolute path representations to mzML files in centroid mode or a Path object. Path objects can be used in two ways: It can point to a mzML file or to a directory. in the second case all mzML files inside the directory will be analyzed. separation: {"uplc", "hplc"} Analytical platform used for separation. Used to set default the values of `detect_peak_params`, `roi_params` and `filter_params`. instrument: {"qtof". "orbitrap"} MS instrument used for data acquisition. Used to set default value of `roi_params`. roi_params: dict, optional parameters to pass to :py:meth:`tidyms.MSData.make_roi` smoothing_strength: positive number, optional Width of a gaussian window used to smooth the ROI. If None, no smoothing is applied. find_peaks_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.detect_peaks` descriptors : dict, optional descriptors to pass to :py:func:`tidyms.peaks.get_peak_descriptors` filters : dict, optional filters to pass to :py:func:`tidyms.peaks.get_peak_descriptors` noise_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.estimate_noise` baseline_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.estimate_baseline` descriptors : dict, optional pass custom descriptors to :py:func:`tidyms.peaks.get_peak_descriptors` filters : dict, optional pass custom filters to :py:func:`tidyms.peaks.get_peak_descriptors` verbose: bool Returns ------- roi_dict: dict dictionary of sample names to a list of ROI. feature_table: DataFrame A Pandas DataFrame where each row is a feature detected in a sample and each column is a feature descriptor. By default the following descriptors are computed: mz weighted average of the m/z in the peak region. mz std standard deviation of the m/z in the peak region. rt weighted average of the retention time in the peak region. width Chromatographic peak width. height Height of the chromatographic peak minus the baseline. area Area of the chromatographic peak. minus the baseline area. sample The sample name where the feature was detected. Also, two additional columns have information to search each feature in its correspondent Roi: roi_index : index in the list of ROI where the feature was detected. peak_index : index of the peaks attribute of each ROI associated to the feature. Notes ----- Features are detected as follows: 1. Default parameters are set based on the values of the parameters `instrument` and `separation`. 2. Regions of interest (ROI) are detected in each sample. See the documentation of :py:meth:`tidyms.fileio.MSData.make_roi` for a detailed description of how ROI are created from raw data. 3. Features (chromatographic peaks) are detected on each ROI. See :py:meth:`tidyms.lcms.Chromatogram.find_peaks` for a detailed description of how peaks are detected and how descriptors are computed. See Also -------- fileio.MSData.make_roi : Finds ROIs in a mzML sample. lcms.ROI.find_peaks : Detect peaks and compute peak estimators for a ROI. """ # parameter validation # validation.validate_detect_peaks_params(detect_peak_params) validation.validate_descriptors(descriptors) validation.validate_filters(filters) if roi_params is None: roi_params = dict() path_list = _get_path_list(path) roi_dict = dict() ft_table_list = list() n_samples = len(path_list) for k, sample_path in enumerate(path_list): sample_name = sample_path.stem sample_path_str = str(sample_path) ms_data = MSData(sample_path_str, ms_mode="centroid", instrument=instrument, separation=separation) k_roi = ms_data.make_roi(**roi_params) if verbose: clear_output(wait=True) msg = "Processing sample {} ({}/{})." msg = msg.format(sample_name, k + 1, n_samples) print(msg) print("Searching features in {} ROI...".format(len(k_roi)), end=" ") k_table = _build_feature_table(k_roi, smoothing_strength=smoothing_strength, descriptors=descriptors, filters=filters, noise_params=noise_params, baseline_params=baseline_params, find_peaks_params=find_peaks_params) if verbose: msg = "Found {} features".format(k_table.shape[0]) print(msg) k_table["sample"] = sample_name roi_dict[sample_name] = k_roi ft_table_list.append(k_table) feature_table = pd.concat(ft_table_list).reset_index(drop=True) feature_table["roi index"] = feature_table["roi index"].astype(int) feature_table["peak index"] = feature_table["peak index"].astype(int) return roi_dict, feature_table def _get_path_list(path: Union[str, List[str], Path]) -> List[Path]: if isinstance(path, str): path = Path(path) if isinstance(path, list): path_list = [Path(x) for x in path] for p in path_list: # check if all files in the list exists if not p.is_file(): msg = "{} doesn't exist".format(p) raise ValueError(msg) else: if path.is_dir(): path_list = list(path.glob("*.mzML")) elif path.is_file(): path_list = [path] else: msg = ("Path must be a string or Path object pointing to a " "directory with mzML files or a list strings with the " "absolute path to mzML") raise ValueError(msg) return path_list def _build_feature_table(roi: List[Roi], smoothing_strength: Optional[float] = 1.0, descriptors: Optional[dict] = None, filters: Optional[dict] = None, noise_params: Optional[dict] = None, baseline_params: Optional[dict] = None, find_peaks_params: Optional[dict] = None ) -> pd.DataFrame: """ Builds a DataFrame with feature descriptors. Parameters ---------- roi : List[Roi] find_peaks_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.detect_peaks` smoothing_strength: positive number, optional Width of a gaussian window used to smooth the signal. If None, no smoothing is applied. descriptors : dict, optional descriptors to pass to :py:func:`tidyms.peaks.get_peak_descriptors` filters : dict, optional filters to pass to :py:func:`tidyms.peaks.get_peak_descriptors` noise_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.estimate_noise` baseline_params : dict, optional parameters to pass to :py:func:`tidyms.peaks.estimate_baseline` Returns ------- DataFrame """ roi_index_list = list() peak_index_list = list() mz_mean_list = list() mz_std_list = list() descriptors_list = list() for roi_index, k_roi in enumerate(roi): k_roi.fill_nan() k_params = k_roi.find_peaks(smoothing_strength=smoothing_strength, descriptors=descriptors, filters=filters, noise_params=noise_params, baseline_params=baseline_params, find_peaks_params=find_peaks_params) n_features = len(k_params) descriptors_list.extend(k_params) k_mz_mean, k_mz_std = k_roi.get_peaks_mz() roi_index_list.append([roi_index] * n_features) peak_index_list.append(range(n_features)) mz_mean_list.append(k_mz_mean) mz_std_list.append(k_mz_std) roi_index_list = np.hstack(roi_index_list) peak_index_list = np.hstack(peak_index_list) mz_mean_list = np.hstack(mz_mean_list) mz_std_list = np.hstack(mz_std_list) ft_table = pd.DataFrame(data=descriptors_list) ft_table = ft_table.rename(columns={"loc": "rt"}) ft_table["mz"] = mz_mean_list ft_table["mz std"] = mz_std_list ft_table["roi index"] = roi_index_list ft_table["peak index"] = peak_index_list ft_table = ft_table.dropna(axis=0) ft_table["roi index"] = ft_table["roi index"].astype(int) ft_table["peak index"] = ft_table["peak index"].astype(int) return ft_table def feature_correspondence(feature_data: pd.DataFrame, mz_tolerance: float, rt_tolerance: float, min_fraction: float = 0.2, min_likelihood: float = 0.0): r""" Match features across different samples. Feature matching is done using the DBSCAN algorithm and Gaussian mixture models. After performing feature correspondence, features that come from the same species are clustered together. Parameters ---------- feature_data: DataFrame Feature descriptors obtained from detect_features function mz_tolerance: float Maximum distance in m/z between two features in a cluster. rt_tolerance: float Maximum distance in rt between two features in a cluster. min_fraction: float Minimum fraction of samples forming a cluster. min_likelihood: float Minimum likelihood required to recover a missing value. Lower values will recover more features, but with lower confidence. Returns ------- cluster: Series The cluster number for each feature. See Also -------- detect_features make_data_container Notes ----- The correspondence algorithm is as follows: 1. Features ares clustered using m/z and rt information with the DBSCAN algorithm. Because the dispersion in the m/z and r/t dimension is independent the Chebyshev distance is used to make the clusters. `rt_tolerance` and `mz_tolerance` are used to build the :math:`\epsilon` parameter of the model. rt is scaled using these two parameters to have the same tolerance in both dimensions in the following way: .. math:: rt_{scaled} = rt * \frac{mz_{tolerance}}{rt_{tolerance}} The min_samples parameter is defined using from the minimum_dr (minimum detection rate) and the total number of samples in the data. This step gives us a matching of the features, but different species can be clustered together if they are close, or some features can be considered as noise and removed. These cases are analyzed in the following steps. 2. In this step the possibility that more than one species is present in a cluster is explored. The number of species is estimated computing the number of repeated features, :math:`n_{repeated}` in the cluster (that is, how many features come from only one sample, hoy many come from two, etc...). The fraction of repeated samples is computed using the total number of samples and then the number of species, :math:`n_{species}` is found as the maximum of repetitions with a fraction greater than `min_fraction`. Using :math:`n_{species}`, Each cluster is fit to a gaussian mixture model. Once again, because dispersion in rt and m/z is orthogonal, we used diagonal covariances matrices in the GMM. After this step, for each cluster, subclusters may be generated if :math:`n_{species}` is greater than one. 3. Each subcluster is analyzed then to remove repeated features. To remove repeated features the log-likelihood is evaluated for features coming from the same sample. The feature with the greatest likelihood is kept and the others are flagged as noise. 4. The final step is to search for missing features (a feature is missing if some of the samples are not present in a subcluster). This is done by searching for features that come from missing samples in the features flagged as noise by DBSCAN (or in the previous step). If a feature from a missing sample has a log-likelihood greater than `min_likelihood` then is added to the subcluster. If more than one feature is possible the one with the greatest likelihood is chosen. """ # sample names are used to search for missing samples. sample_names = feature_data["sample"].unique() # DBSCAN clustering min_samples = int(sample_names.size * min_fraction + 1) cluster = _make_initial_cluster(feature_data, mz_tolerance, rt_tolerance, min_samples) # split feature data into clustered data and noise data = feature_data[cluster != -1] noise = feature_data[cluster == -1] # cluster number is converted to a string. This makes easier to assign # subclusters using the notation 0-0, 0-1, etc... # TODO : maybe there's a better solution to this and it's not necessary # to convert values to str. cluster = cluster.astype(str) features_per_cluster = _estimate_n_species_per_cluster(data, cluster) for name, group in data.groupby(cluster): n_ft = features_per_cluster[name] # Here each cluster is split into subclusters, repeated values are # removed and missing values are searched in noise. # Each change is made changing the values in cluster. subcluster = _process_cluster(group, noise, cluster, sample_names, name, n_species=n_ft, min_likelihood=min_likelihood) cluster[subcluster.index] = subcluster # map cluster to numbers again cluster_value = np.sort(cluster.unique()) n_cluster = cluster_value.size has_noise = "-1" in cluster_value # set a feature code for each feature if has_noise: cluster_names = _make_feature_names(n_cluster - 1) cluster_names = ["noise"] + cluster_names else: cluster_names = _make_feature_names(n_cluster) cluster_mapping = dict(zip(cluster_value, cluster_names)) cluster = cluster.map(cluster_mapping) return cluster def make_data_container(feature_data: pd.DataFrame, cluster: pd.Series, sample_metadata: pd.DataFrame, fill_na: bool = True) -> DataContainer: """ Organizes the detected and matched features into a DataContainer. Parameters ---------- feature_data: DataFrame DataFrame obtained from detect_features function. cluster: pd.Series Series obtained from feature_correspondence function. sample_metadata: DataFrame DataFrame with information from each analyzed sample. The index must be the sample names used in feature_data. A column named "class", with the class name of each sample is required. For further data processing run order information in a column named "order" and analytical batch information in a column named "batch" are recommended. fill_na: bool, True If True fill missing values in the data matrix with zeros. Returns ------- DataContainer """ # remove noise feature_data["cluster"] = cluster not_noise = cluster != "noise" feature_data = feature_data[not_noise] # compute aggregate statistics for each feature -> feature metadata estimators = {"mz": ["mean", "std", "min", "max"], "rt": ["mean", "std", "min", "max"]} feature_metadata = feature_data.groupby("cluster").agg(estimators) feature_metadata.columns = _flatten_column_multindex(feature_metadata) feature_metadata.index.name = "feature" # make data matrix data_matrix = feature_data.pivot(index="sample", columns="cluster", values="area") data_matrix.columns.name = "feature" if fill_na: data_matrix = data_matrix.fillna(0) # add samples without features as nan rows missing_index = sample_metadata.index.difference(data_matrix.index) # TODO: manage data inputting missing = pd.DataFrame(data=0, index=missing_index, columns=data_matrix.columns) data_matrix = data_matrix.append(missing) data_matrix = data_matrix.loc[sample_metadata.index, :] dc = DataContainer(data_matrix, feature_metadata, sample_metadata) return dc def _make_feature_names(n_features: int): max_ft_str_length = len(str(n_features)) def ft_formatter(x): return "FT" + str(x + 1).rjust(max_ft_str_length, "0") ft_names = [ft_formatter(x) for x in range(n_features)] return ft_names def _flatten_column_multindex(df: pd.DataFrame): columns = df.columns level_0 = columns.get_level_values(0) level_1 = columns.get_level_values(1) col_name_map = {"mzmean": "mz", "mzstd": "mz std", "mzmin": "mz min", "mzmax": "mz max", "rtmean": "rt", "rtstd": "rt std", "rtmin": "rt min", "rtmax": "rt max"} new_names = [col_name_map[x + y] for x, y in zip(level_0, level_1)] return new_names def _make_initial_cluster(feature_data: pd.DataFrame, mz_tolerance: float, rt_tolerance: float, min_samples: int = 8): """ First guess of correspondence between features using DBSCAN algorithm. Auxiliary function to feature_correspondence. Parameters ---------- feature_data : DataFrame DataFrame obtained from `detect_features` function. mz_tolerance : float Used to build epsilon parameter of DBSCAN rt_tolerance : float Used to build epsilon parameter of DBSCAN. min_samples : int parameter to pass to DBSCAN Returns ------- cluster : Series The assigned cluster by DBSCAN """ ft_points = feature_data.loc[:, ["mz", "rt"]].copy() ft_points["rt"] = ft_points["rt"] * mz_tolerance / rt_tolerance dbscan = DBSCAN(eps=mz_tolerance, min_samples=min_samples, metric="chebyshev") dbscan.fit(ft_points) cluster = pd.Series(data=dbscan.labels_, index=feature_data.index) return cluster def _estimate_n_species_per_cluster(df: pd.DataFrame, cluster: pd. Series, min_dr: float = 0.2): """ Estimates the number of features that forms a cluster. The number of features is estimated as follows: 1. The number of features per sample is counted and normalized to the total number of features. 2. The number of features in a cluster will be the maximum normalized number of features per sample greater than the minimum detection rate. Parameters ---------- df: DataFrame Feature data obtained from feature_correspondence function min_dr: float, 0.2 Minimum detection rate. """ # sample_per_cluster counts the number of features that come from the same # sample and express it as a fraction of the total number features # the number of features in a cluster is the maximum number of samples # in a cluster above the minimum detection rate. def find_n_cluster(x): return x.index[np.where(x > min_dr)[0]][-1] sample_per_cluster = (df["sample"].groupby(cluster) .value_counts() .unstack(-1) .fillna(0) .astype(int) .apply(lambda x: x.value_counts(), axis=1) .fillna(0)) sample_per_cluster = sample_per_cluster / df["sample"].unique().size features_per_cluster = sample_per_cluster.apply(find_n_cluster, axis=1) return features_per_cluster def _make_gmm(ft_data: pd.DataFrame, n_feature: int, cluster_name: str): """ fit a gaussian model and set subcluster names for each feature. Auxiliary function to process cluster. Parameters ---------- ft_data : DataFrame The mz and rt columns of the cluster DataFrame n_feature : int Number of features estimated in the cluster. cluster_name: str Returns ------- gmm : GaussianMixtureModel fitted with cluster data score: The log-likelihood of each feature. subcluster : pd.Series with subcluster labels. """ gmm = mixture.GaussianMixture(n_components=n_feature, covariance_type="diag") gmm.fit(ft_data.loc[:, ["mz", "rt"]]) # scores = pd.Series(data=gmm.score_samples(ft_data), index=ft_data.index) ft_data["score"] = gmm.score_samples(ft_data.loc[:, ["mz", "rt"]]) # get index of features in the cases where the number of features is greater # than the number of components in the gmm noise_index = (ft_data .groupby("sample") .filter(lambda x: x.shape[0] > n_feature)) if not noise_index.empty: noise_index = (noise_index .groupby("sample") .apply(lambda x: _noise_ind(x, n_feature)) .droplevel(0) .index) else: noise_index = noise_index.index noise =
pd.Series(data="-1", index=noise_index)
pandas.Series
#Tools for mesh-based operations #Smoothing, import nibabel as nb import numpy as np import subprocess import os import potpourri3d as pp3d import meld_classifier.paths as paths # import paths as paths def find_nearest_multi(array, value): new_array = np.array([abs(x - value) for x in array]) min_array = new_array.min() idx = [i for i, val in enumerate(new_array) if val == min_array] return idx def calibrate_smoothing(coords, faces, start_v=125000, n_iter=70, cortex_mask=None): """find the calibratin curve for smoothing of a surface mesh""" print("Need to calibrate the smoothing curve for this surface mesh") # initialise a null array with only one non-null vertices in the middle of the cortex input_array = np.zeros(len(coords)) input_array[start_v] = 1 # find neighbours and include cortex mask neighbours = get_neighbours_from_tris(faces) old_array = input_array.copy() if cortex_mask is not None: for v, n in enumerate(neighbours): n = np.array(n) neighbours[v] = n[cortex_mask[n]] else: cortex_mask = np.ones(len(neighbours), dtype=bool) # preload geodesic distance solver solver = pp3d.MeshHeatMethodDistanceSolver(coords, faces) # create an array of geodesic distance from the mask (vertices > 0) to outward distance = solver.compute_distance_multisource([start_v]) # smooth the array at each iteration and find the full-width-at-half-maximum of non-null area fwhm_values = [] for iteration in np.arange(n_iter): new_array = smooth_array(old_array,neighbours,n_iter=1,cortex_mask=cortex_mask) # This is the smoothing function old_array = new_array.copy() # threshold at half maximum value max_pic = old_array.max() edge_v = find_nearest_multi(old_array, max_pic / 2) fwhm_value = distance[edge_v].mean() * 2 fwhm_values.append(fwhm_value) fwhm_values[0] = 0 # fit polynome to the mode to find calibration curve x = np.arange(n_iter) y = fwhm_values model = np.poly1d(np.polyfit(x, y, 2)) line = np.linspace(0, n_iter, 100) try: plt.plot(line, model(line)) plt.savefig(os.path.join(paths.BASE_PATH, "Images", "calibration_curve_smoothing.png")) except: pass print("End of calibration") return line, model(line) def smooth_array(input_array, neighbours, n_iter=70, cortex_mask=None): """smooth a matrix of surface data surface data input_array: variable to be smoothed n_vert x n_subs neighbours: list of neighbours cohort.neighbours works n_iter - number of iterations 5mm fwhm = 18 iterations 10mm fwhm = 70 iterations cortex_mask: binary mask of cortex eg cohort.cortex_mask""" dim = len(input_array.shape) if dim==1: input_array=input_array.reshape(-1,1) old_array = input_array.T if cortex_mask is not None: for v, n in enumerate(neighbours): n = np.array(n) neighbours[v] = n[cortex_mask[n]] else: cortex_mask = np.ones(len(neighbours), dtype=bool) #neighbours mask & array neighbours_array = np.zeros((len(neighbours),7),dtype=int) neighbours_mask=np.ones((len(neighbours),7),dtype=bool) #create masked array for ni,n in enumerate(neighbours): neighbours_array[ni,:len(neighbours[ni])]=neighbours[ni] neighbours_mask[ni,:len(neighbours[ni])]=False neighbours_array[ni,len(neighbours[ni])]=ni neighbours_mask[ni,len(neighbours[ni])]=False size=input_array.shape[1] for iteration in np.arange(n_iter): arr=np.ma.masked_array(old_array[:,neighbours_array],np.tile(neighbours_mask,(size,1,1))) new_array = arr.mean(axis=2) old_array = new_array if dim==1: return np.squeeze(new_array.data) return new_array.data.T def save_mgh(filename, array, demo): """save mgh file using nibabel and imported demo mgh file""" rand_int = np.random.randint(100) mmap = np.memmap("/tmp/tmp" + str(rand_int), dtype="float32", mode="w+", shape=demo.get_data().shape) mmap[:, 0, 0] = array[:] output = nb.MGHImage(mmap, demo.affine, demo.header) nb.save(output, filename) def smoothing_fs(overlay, fwhm, subject="fsaverage_sym", hemi="lh"): subjects_dir = paths.BASE_PATH os.environ["SUBJECTS_DIR"] = paths.BASE_PATH """smooth surface overlay on fsaverage_sym""" tmpdir = "/tmp/" + str(np.random.randint(1000000)) os.mkdir(tmpdir) dum = nb.load(os.path.join(subjects_dir, subject, "surf", hemi + ".white.avg.area.mgh")) save_mgh(os.path.join(tmpdir, hemi + ".tmp.mgh"), overlay, dum) subprocess.call( "mris_fwhm --s " + subject + " --hemi " + hemi + " --cortex --smooth-only --fwhm " + str(fwhm) + " --i " + os.path.join(tmpdir, hemi + ".tmp.mgh") + " --o " + os.path.join(tmpdir, hemi + ".sm_tmp.mgh"), shell=True, ) overlay_smoothed = load_mgh(os.path.join(tmpdir, hemi + ".sm_tmp.mgh")) subprocess.call("rm -r " + tmpdir, shell=True) return overlay_smoothed def load_mgh(filename): """import mgh file using nibabel. returns flattened data array""" mgh_file = nb.load(filename) mmap_data = mgh_file.get_data() array_data = np.ndarray.flatten(mmap_data) return array_data # function to load mesh geometry def load_mesh_geometry(surf_mesh): # if input is a filename, try to load it with nibabel if isinstance(surf_mesh, str): if ( surf_mesh.endswith("orig") or surf_mesh.endswith("pial") or surf_mesh.endswith("white") or surf_mesh.endswith("sphere") or surf_mesh.endswith("inflated") ): coords, faces = nb.freesurfer.io.read_geometry(surf_mesh) elif surf_mesh.endswith("gii"): coords, faces = ( nb.gifti.read(surf_mesh).getArraysFromIntent(nb.nifti1.intent_codes["NIFTI_INTENT_POINTSET"])[0].data, nb.gifti.read(surf_mesh).getArraysFromIntent(nb.nifti1.intent_codes["NIFTI_INTENT_TRIANGLE"])[0].data, ) elif surf_mesh.endswith("vtk"): coords, faces, _ = read_vtk(surf_mesh) elif surf_mesh.endswith("ply"): coords, faces = read_ply(surf_mesh) elif surf_mesh.endswith("obj"): coords, faces = read_obj(surf_mesh) elif isinstance(surf_mesh, dict): if "faces" in surf_mesh and "coords" in surf_mesh: coords, faces = surf_mesh["coords"], surf_mesh["faces"] else: raise ValueError( "If surf_mesh is given as a dictionary it must " 'contain items with keys "coords" and "faces"' ) else: raise ValueError( "surf_mesh must be a either filename or a dictionary " 'containing items with keys "coords" and "faces"' ) return {"coords": coords, "faces": faces} # function to load mesh data def load_mesh_data(surf_data, gii_darray=0): # if the input is a filename, load it if isinstance(surf_data, str): if surf_data.endswith("nii") or surf_data.endswith("nii.gz") or surf_data.endswith("mgz"): data = np.squeeze(nb.load(surf_data).get_data()) elif ( surf_data.endswith("curv") or surf_data.endswith("sulc") or surf_data.endswith("area") or surf_data.endswith("thickness") ): data = nb.freesurfer.io.read_morph_data(surf_data) elif surf_data.endswith("annot"): data = nb.freesurfer.io.read_annot(surf_data)[0] elif surf_data.endswith("label"): data = nb.freesurfer.io.read_label(surf_data) # check if this works with multiple indices (if dim(data)>1) elif surf_data.endswith("gii"): fulldata = nb.gifti.giftiio.read(surf_data) n_vectors = len(fulldata.darrays) if n_vectors == 1: data = fulldata.darrays[gii_darray].data else: print("Multiple data files found, output will be matrix") data = np.zeros([len(fulldata.darrays[gii_darray].data), n_vectors]) for gii_darray in range(n_vectors): data[:, gii_darray] = fulldata.darrays[gii_darray].data elif surf_data.endswith("vtk"): _, _, data = read_vtk(surf_data) elif surf_data.endswith("txt"): data = np.loadtxt(surf_data) else: raise ValueError("Format of data file not recognized.") elif isinstance(surf_data, np.ndarray): data = np.squeeze(surf_data) return data ## function to write mesh data def save_mesh_data(fname, surf_data): if isinstance(fname, str) and isinstance(surf_data, np.ndarray): if fname.endswith("curv") or fname.endswith("thickness") or fname.endswith("sulc"): nb.freesurfer.io.write_morph_data(fname, surf_data) elif fname.endswith("txt"): np.savetxt(fname, surf_data) elif fname.endswith("vtk"): if "data" in surf_dict.keys(): write_vtk(fname, surf_dict["coords"], surf_dict["faces"], surf_dict["data"]) else: write_vtk(fname, surf_dict["coords"], surf_dict["faces"]) elif fname.endswith("gii"): print("please write lovely write gifti command") elif fname.endswith("mgh"): print("please write lovely write mgh command, or retry saving as .curv file") else: raise ValueError("fname must be a filename and surf_data must be a numpy array") # function to read vtk files # ideally use pyvtk, but it didn't work for our data, look into why def read_vtk(file): """ Reads ASCII coded vtk files using pandas, returning vertices, faces and data as three numpy arrays. """ import pandas as pd import csv # read full file while dropping empty lines try: vtk_df = pd.read_csv(file, header=None, engine="python") except csv.Error: raise ValueError("This vtk file appears to be binary coded currently only ASCII coded vtk files can be read") vtk_df = vtk_df.dropna() # extract number of vertices and faces number_vertices = int(vtk_df[vtk_df[0].str.contains("POINTS")][0].iloc[0].split()[1]) number_faces = int(vtk_df[vtk_df[0].str.contains("POLYGONS")][0].iloc[0].split()[1]) # read vertices into df and array start_vertices = (vtk_df[vtk_df[0].str.contains("POINTS")].index.tolist()[0]) + 1 vertex_df = pd.read_csv( file, skiprows=range(start_vertices), nrows=number_vertices, sep="\s*", header=None, engine="python" ) if np.array(vertex_df).shape[1] == 3: vertex_array = np.array(vertex_df) # sometimes the vtk format is weird with 9 indices per line, then it has to be reshaped elif np.array(vertex_df).shape[1] == 9: vertex_df = pd.read_csv( file, skiprows=range(start_vertices), nrows=int(number_vertices / 3) + 1, sep="\s*", header=None, engine="python", ) vertex_array = np.array(vertex_df.iloc[0:1, 0:3]) vertex_array = np.append(vertex_array, vertex_df.iloc[0:1, 3:6], axis=0) vertex_array = np.append(vertex_array, vertex_df.iloc[0:1, 6:9], axis=0) for row in range(1, (int(number_vertices / 3) + 1)): for col in [0, 3, 6]: vertex_array = np.append( vertex_array, np.array(vertex_df.iloc[row : (row + 1), col : (col + 3)]), axis=0 ) # strip rows containing nans vertex_array = vertex_array[~np.isnan(vertex_array)].reshape(number_vertices, 3) else: print("vertex indices out of shape") # read faces into df and array start_faces = (vtk_df[vtk_df[0].str.contains("POLYGONS")].index.tolist()[0]) + 1 face_df = pd.read_csv( file, skiprows=range(start_faces), nrows=number_faces, sep="\s*", header=None, engine="python" ) face_array = np.array(face_df.iloc[:, 1:4]) # read data into df and array if exists if vtk_df[vtk_df[0].str.contains("POINT_DATA")].index.tolist() != []: start_data = (vtk_df[vtk_df[0].str.contains("POINT_DATA")].index.tolist()[0]) + 3 number_data = number_vertices data_df = pd.read_csv( file, skiprows=range(start_data), nrows=number_data, sep="\s*", header=None, engine="python" ) data_array = np.array(data_df) else: data_array = np.empty(0) return vertex_array, face_array, data_array # function to read ASCII coded ply file def read_ply(file): import pandas as pd import csv # read full file and drop empty lines try: ply_df = pd.read_csv(file, header=None, engine="python") except csv.Error: raise ValueError("This ply file appears to be binary coded currently only ASCII coded ply files can be read") ply_df = ply_df.dropna() # extract number of vertices and faces, and row that marks the end of header number_vertices = int(ply_df[ply_df[0].str.contains("element vertex")][0].iloc[0].split()[2]) number_faces = int(ply_df[ply_df[0].str.contains("element face")][0].iloc[0].split()[2]) end_header = ply_df[ply_df[0].str.contains("end_header")].index.tolist()[0] # read vertex coordinates into dict vertex_df = pd.read_csv( file, skiprows=range(end_header + 1), nrows=number_vertices, sep="\s*", header=None, engine="python" ) vertex_array = np.array(vertex_df) # read face indices into dict face_df = pd.read_csv( file, skiprows=range(end_header + number_vertices + 1), nrows=number_faces, sep="\s*", header=None, engine="python", ) face_array = np.array(face_df.iloc[:, 1:4]) return vertex_array, face_array # function to read MNI obj mesh format def read_obj(file): def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i : i + n] def indices(lst, element): result = [] offset = -1 while True: try: offset = lst.index(element, offset + 1) except ValueError: return result result.append(offset) fp = open(file, "r") n_vert = [] n_poly = [] k = 0 Polys = [] # Find number of vertices and number of polygons, stored in .obj file. # Then extract list of all vertices in polygons for i, line in enumerate(fp): if i == 0: # Number of vertices n_vert = int(line.split()[6]) XYZ = np.zeros([n_vert, 3]) elif i <= n_vert: XYZ[i - 1] = list(map(float, line.split())) elif i > 2 * n_vert + 5: if not line.strip(): k = 1 elif k == 1: Polys.extend(line.split()) Polys = list(map(int, Polys)) npPolys = np.array(Polys) triangles = np.array(list(chunks(Polys, 3))) return XYZ, triangles # function to save mesh geometry def save_mesh_geometry(fname, surf_dict): # if input is a filename, try to load it with nibabel if isinstance(fname, str) and isinstance(surf_dict, dict): if ( fname.endswith("orig") or fname.endswith("pial") or fname.endswith("white") or fname.endswith("sphere") or fname.endswith("inflated") ): nb.freesurfer.io.write_geometry(fname, surf_dict["coords"], surf_dict["faces"]) # save_freesurfer(fname,surf_dict['coords'],surf_dict['faces']) elif fname.endswith("gii"): write_gifti(fname, surf_dict["coords"], surf_dict["faces"]) elif fname.endswith("vtk"): if "data" in surf_dict.keys(): write_vtk(fname, surf_dict["coords"], surf_dict["faces"], surf_dict["data"]) else: write_vtk(fname, surf_dict["coords"], surf_dict["faces"]) elif fname.endswith("ply"): write_ply(fname, surf_dict["coords"], surf_dict["faces"]) elif fname.endswith("obj"): save_obj(fname, surf_dict["coords"], surf_dict["faces"]) # print('to view mesh in brainview, run the command:\n') # print('average_objects ' + fname + ' ' + fname) else: raise ValueError("fname must be a filename and surf_dict must be a dictionary") def write_gifti(surf_mesh, coords, faces): coord_array = nb.gifti.GiftiDataArray(data=coords, intent=nb.nifti1.intent_codes["NIFTI_INTENT_POINTSET"]) face_array = nb.gifti.GiftiDataArray(data=faces, intent=nb.nifti1.intent_codes["NIFTI_INTENT_TRIANGLE"]) gii = nb.gifti.GiftiImage(darrays=[coord_array, face_array]) nb.gifti.write(gii, surf_mesh) def save_obj(surf_mesh, coords, faces): # write out MNI - obj format n_vert = len(coords) norms = normal_vectors(coords, faces).tolist() XYZ = coords.tolist() Tri = faces.tolist() with open(surf_mesh, "w") as s: line1 = "P 0.3 0.3 0.4 10 1 " + str(n_vert) + "\n" s.write(line1) k = -1 for a in XYZ: k += 1 cor = " " + " ".join(list(map(str, XYZ[k]))) s.write("%s\n" % cor) s.write("\n") for k, a in enumerate(XYZ): normal = " " + " ".join(list(map(str, norms[k]))) s.write("%s\n" % normal) s.write("\n") l = " " + str(len(Tri)) + "\n" s.write(l) s.write(" 0 1 1 1 1\n") s.write("\n") nt = len(Tri) * 3 Triangles = np.arange(3, nt + 1, 3) Rounded8 = np.shape(Triangles)[0] / 8 N8 = int(8 * Rounded8) Triangles8 = Triangles[0:N8] RowsOf8 = np.split(Triangles8, N8 / 8) for r in RowsOf8: L = r.tolist() Lint = map(int, L) Line = " " + " ".join(map(str, Lint)) s.write("%s\n" % Line) L = Triangles[N8:].tolist() Lint = map(int, L) Line = " " + " ".join(map(str, Lint)) s.write("%s\n" % Line) s.write("\n") ListOfTriangles = np.array(Tri).flatten() Rounded8 = np.shape(ListOfTriangles)[0] / 8 N8 = int(8 * Rounded8) Triangles8 = ListOfTriangles[0:N8] ListTri8 = ListOfTriangles[0:N8] RowsOf8 = np.split(Triangles8, N8 / 8) for r in RowsOf8: L = r.tolist() Lint = map(int, L) Line = " " + " ".join(map(str, Lint)) s.write("%s\n" % Line) L = ListOfTriangles[N8:].tolist() Lint = map(int, L) Line = " " + " ".join(map(str, Lint)) s.write("%s\n" % Line) def write_vtk(filename, vertices, faces, data=None, comment=None): """ Creates ASCII coded vtk file from numpy arrays using pandas. Inputs: ------- (mandatory) * filename: str, path to location where vtk file should be stored * vertices: numpy array with vertex coordinates, shape (n_vertices, 3) * faces: numpy array with face specifications, shape (n_faces, 3) (optional) * data: numpy array with data points, shape (n_vertices, n_datapoints) NOTE: n_datapoints can be =1 but cannot be skipped (n_vertices,) * comment: str, is written into the comment section of the vtk file Usage: --------------------- write_vtk('/path/to/vtk/file.vtk', v_array, f_array) """ import pandas as pd # infer number of vertices and faces number_vertices = vertices.shape[0] number_faces = faces.shape[0] if data is not None: number_data = data.shape[0] # make header and subheader dataframe header = [ "# vtk DataFile Version 3.0", "%s" % comment, "ASCII", "DATASET POLYDATA", "POINTS %i float" % number_vertices, ] header_df = pd.DataFrame(header) sub_header = ["POLYGONS %i %i" % (number_faces, 4 * number_faces)] sub_header_df = pd.DataFrame(sub_header) # make dataframe from vertices vertex_df = pd.DataFrame(vertices) # make dataframe from faces, appending first row of 3's (indicating the polygons are triangles) triangles = np.reshape(3 * (np.ones(number_faces)), (number_faces, 1)) triangles = triangles.astype(int) faces = faces.astype(int) faces_df = pd.DataFrame(np.concatenate((triangles, faces), axis=1)) # write dfs to csv header_df.to_csv(filename, header=None, index=False) with open(filename, "a") as f: vertex_df.to_csv(f, header=False, index=False, float_format="%.3f", sep=" ") with open(filename, "a") as f: sub_header_df.to_csv(f, header=False, index=False) with open(filename, "a") as f: faces_df.to_csv(f, header=False, index=False, float_format="%.0f", sep=" ") # if there is data append second subheader and data if data != None: datapoints = data.shape[1] sub_header2 = [ "POINT_DATA %i" % (number_data), "SCALARS EmbedVertex float %i" % (datapoints), "LOOKUP_TABLE default", ] sub_header_df2 = pd.DataFrame(sub_header2) data_df = pd.DataFrame(data) with open(filename, "a") as f: sub_header_df2.to_csv(f, header=False, index=False) with open(filename, "a") as f: data_df.to_csv(f, header=False, index=False, float_format="%.16f", sep=" ") def write_ply(filename, vertices, faces, comment=None): import pandas as pd print("writing ply format") # infer number of vertices and faces number_vertices = vertices.shape[0] number_faces = faces.shape[0] # make header dataframe header = [ "ply", "format ascii 1.0", "comment %s" % comment, "element vertex %i" % number_vertices, "property float x", "property float y", "property float z", "element face %i" % number_faces, "property list uchar int vertex_indices", "end_header", ] header_df = pd.DataFrame(header) # make dataframe from vertices vertex_df =
pd.DataFrame(vertices)
pandas.DataFrame
# -------------- import pandas as pd import scipy.stats as stats import math import numpy as np import warnings warnings.filterwarnings('ignore') #Sample_Size sample_size=2000 #Z_Critical Score z_critical = stats.norm.ppf(q = 0.95) # path [File location variable] #Code starts here data =
pd.read_csv(path)
pandas.read_csv
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64'), columns=wrapper.columns ) ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: ma = mapped_array_nosort ma_grouped = mapped_array_nosort_grouped else: ma = mapped_array ma_grouped = mapped_array_grouped np.testing.assert_array_equal( ma['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( ma['a'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) np.testing.assert_array_equal( ma['b'].id_arr, np.array([3, 4, 5]) ) np.testing.assert_array_equal( ma['b'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'a']].id_arr, np.array([0, 1, 2, 0, 1, 2]) ) np.testing.assert_array_equal( ma[['a', 'a']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'b']].id_arr, np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( ma[['a', 'b']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = ma.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped['g1'].wrapper.ndim == 2 assert ma_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert ma_grouped['g2'].wrapper.ndim == 2 assert ma_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped[['g1']].wrapper.ndim == 2 assert ma_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert ma_grouped[['g1', 'g2']].wrapper.ndim == 2 assert ma_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_magic(self): a = vbt.MappedArray( wrapper, records_arr['some_field1'], records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) a_inv = vbt.MappedArray( wrapper, records_arr['some_field1'][::-1], records_arr['col'][::-1], id_arr=records_arr['id'][::-1], idx_arr=records_arr['idx'][::-1] ) b = records_arr['some_field2'] a_bool = vbt.MappedArray( wrapper, records_arr['some_field1'] > np.mean(records_arr['some_field1']), records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) b_bool = records_arr['some_field2'] > np.mean(records_arr['some_field2']) assert a ** a == a ** 2 with pytest.raises(Exception): _ = a * a_inv # binary ops # comparison ops np.testing.assert_array_equal((a == b).values, a.values == b) np.testing.assert_array_equal((a != b).values, a.values != b) np.testing.assert_array_equal((a < b).values, a.values < b) np.testing.assert_array_equal((a > b).values, a.values > b) np.testing.assert_array_equal((a <= b).values, a.values <= b) np.testing.assert_array_equal((a >= b).values, a.values >= b) # arithmetic ops np.testing.assert_array_equal((a + b).values, a.values + b) np.testing.assert_array_equal((a - b).values, a.values - b) np.testing.assert_array_equal((a * b).values, a.values * b) np.testing.assert_array_equal((a ** b).values, a.values ** b) np.testing.assert_array_equal((a % b).values, a.values % b) np.testing.assert_array_equal((a // b).values, a.values // b) np.testing.assert_array_equal((a / b).values, a.values / b) # __r*__ is only called if the left object does not have an __*__ method np.testing.assert_array_equal((10 + a).values, 10 + a.values) np.testing.assert_array_equal((10 - a).values, 10 - a.values) np.testing.assert_array_equal((10 * a).values, 10 * a.values) np.testing.assert_array_equal((10 ** a).values, 10 ** a.values) np.testing.assert_array_equal((10 % a).values, 10 % a.values) np.testing.assert_array_equal((10 // a).values, 10 // a.values) np.testing.assert_array_equal((10 / a).values, 10 / a.values) # mask ops np.testing.assert_array_equal((a_bool & b_bool).values, a_bool.values & b_bool) np.testing.assert_array_equal((a_bool | b_bool).values, a_bool.values | b_bool) np.testing.assert_array_equal((a_bool ^ b_bool).values, a_bool.values ^ b_bool) np.testing.assert_array_equal((True & a_bool).values, True & a_bool.values) np.testing.assert_array_equal((True | a_bool).values, True | a_bool.values) np.testing.assert_array_equal((True ^ a_bool).values, True ^ a_bool.values) # unary ops np.testing.assert_array_equal((-a).values, -a.values) np.testing.assert_array_equal((+a).values, +a.values) np.testing.assert_array_equal((abs(-a)).values, abs((-a.values))) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Mean', 'Std', 'Min', 'Median', 'Max', 'Min Index', 'Max Index' ], dtype='object') pd.testing.assert_series_equal( mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 11.777777777777779, 0.859116756396542, 11.0, 11.666666666666666, 12.666666666666666 ], index=stats_index[:-2], name='agg_func_mean' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 11.0, 1.0, 10.0, 11.0, 12.0, 'x', 'z' ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 12.166666666666666, 1.4719601443879746, 10.0, 12.5, 14.0, 'x', 'y' ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_stats_mapping(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Value Counts: test_10.0', 'Value Counts: test_11.0', 'Value Counts: test_12.0', 'Value Counts: test_13.0', 'Value Counts: test_14.0' ], dtype='object') pd.testing.assert_series_equal( mp_mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 0.5, 0.5, 0.5, 0.5, 0.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 1, 1, 1, 0, 0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 1, 1, 1, 2, 1 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(), mapped_array.stats(settings=dict(mapping=mapping)) ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mp_mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 9) pd.testing.assert_index_equal(stats_df.index, mp_mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# base.py ############# # class TestRecords: def test_config(self, tmp_path): assert vbt.Records.loads(records['a'].dumps()) == records['a'] assert vbt.Records.loads(records.dumps()) == records records.save(tmp_path / 'records') assert vbt.Records.load(tmp_path / 'records') == records def test_records(self): pd.testing.assert_frame_equal( records.records, pd.DataFrame.from_records(records_arr) ) def test_recarray(self): np.testing.assert_array_equal(records['a'].recarray.some_field1, records['a'].values['some_field1']) np.testing.assert_array_equal(records.recarray.some_field1, records.values['some_field1']) def test_records_readable(self): pd.testing.assert_frame_equal( records.records_readable, pd.DataFrame([ [0, 'a', 'x', 10.0, 21.0], [1, 'a', 'y', 11.0, 20.0], [2, 'a', 'z', 12.0, 19.0], [3, 'b', 'x', 13.0, 18.0], [4, 'b', 'y', 14.0, 17.0], [5, 'b', 'z', 13.0, 18.0], [6, 'c', 'x', 12.0, 19.0], [7, 'c', 'y', 11.0, 20.0], [8, 'c', 'z', 10.0, 21.0] ], columns=pd.Index(['Id', 'Column', 'Timestamp', 'some_field1', 'some_field2'], dtype='object')) ) def test_is_sorted(self): assert records.is_sorted() assert records.is_sorted(incl_id=True) assert not records_nosort.is_sorted() assert not records_nosort.is_sorted(incl_id=True) def test_sort(self): assert records.sort().is_sorted() assert records.sort().is_sorted(incl_id=True) assert records.sort(incl_id=True).is_sorted(incl_id=True) assert records_nosort.sort().is_sorted() assert records_nosort.sort().is_sorted(incl_id=True) assert records_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = records['a'].values['some_field1'] >= records['a'].values['some_field1'].mean() record_arrays_close( records['a'].apply_mask(mask_a).values, np.array([ (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) mask = records.values['some_field1'] >= records.values['some_field1'].mean() filtered = records.apply_mask(mask) record_arrays_close( filtered.values, np.array([ (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.), (6, 2, 0, 12., 19.) ], dtype=example_dt) ) assert records_grouped.apply_mask(mask).wrapper == records_grouped.wrapper def test_map_field(self): np.testing.assert_array_equal( records['a'].map_field('some_field1').values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( records.map_field('some_field1').values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) assert records_grouped.map_field('some_field1').wrapper == \ records.map_field('some_field1', group_by=group_by).wrapper assert records_grouped.map_field('some_field1', group_by=False).wrapper.grouper.group_by is None def test_map(self): @njit def map_func_nb(record): return record['some_field1'] + record['some_field2'] np.testing.assert_array_equal( records['a'].map(map_func_nb).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map(map_func_nb).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map(map_func_nb).wrapper == \ records.map(map_func_nb, group_by=group_by).wrapper assert records_grouped.map(map_func_nb, group_by=False).wrapper.grouper.group_by is None def test_map_array(self): arr = records_arr['some_field1'] + records_arr['some_field2'] np.testing.assert_array_equal( records['a'].map_array(arr[:3]).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map_array(arr).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map_array(arr).wrapper == \ records.map_array(arr, group_by=group_by).wrapper assert records_grouped.map_array(arr, group_by=False).wrapper.grouper.group_by is None def test_apply(self): @njit def cumsum_apply_nb(records): return np.cumsum(records['some_field1']) np.testing.assert_array_equal( records['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( records.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert records_grouped.apply(cumsum_apply_nb).wrapper == \ records.apply(cumsum_apply_nb, group_by=group_by).wrapper assert records_grouped.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_count(self): assert records['a'].count() == 3 pd.testing.assert_series_equal( records.count(), pd.Series( np.array([3, 3, 3, 0]), index=wrapper.columns ).rename('count') ) assert records_grouped['g1'].count() == 6 pd.testing.assert_series_equal( records_grouped.count(), pd.Series( np.array([6, 3]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('count') ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: r = records_nosort r_grouped = records_nosort_grouped else: r = records r_grouped = records_grouped record_arrays_close( r['a'].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) pd.testing.assert_index_equal( r['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) record_arrays_close( r[['a', 'a']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (0, 1, 0, 10., 21.), (1, 1, 1, 11., 20.), (2, 1, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) record_arrays_close( r[['a', 'b']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'b']].wrapper.columns,
pd.Index(['a', 'b'], dtype='object')
pandas.Index
import pandas as pd from typing import Tuple, Optional, List, Union from ..tools import _to_list_if_str DfListTuple = Tuple[pd.DataFrame, Optional[list]] def fixed_effects_reg_df_and_cols_dict(df, fe_vars): fe_vars = _to_list_if_str(fe_vars) fe_cols_dict = {} for fe_var in fe_vars: df, cols = _fixed_effects_reg_df_and_cols(df, fe_var) fe_cols_dict[fe_var] = cols return df, fe_cols_dict def _fixed_effects_reg_df_and_cols(df, fe_var): dummies = _get_dummy_df(df, fe_var) dummy_cols = [col for col in dummies.columns] fe_df = pd.concat([df, dummies], axis=1) if fe_var in fe_df.columns: fe_df.drop(fe_var, axis=1, inplace=True) return fe_df, dummy_cols def _get_dummy_df(df: pd.DataFrame, fe_var: str) -> pd.DataFrame: dummy_calc_df, index_cols = _get_dummy_calc_df(df, fe_var) dummies = pd.get_dummies(dummy_calc_df[fe_var].astype(str)) if index_cols is not None: # meed to add index back to dummy df dummies =
pd.concat([dummy_calc_df[index_cols], dummies], axis=1)
pandas.concat
# coding=utf-8 import pandas as pd import re import os import json from datetime import datetime class dataset_object: """ This class allow you to store the data and the category of these data """ def __init__(self, dataset,name): self.dataset, self.name = dataset, name class file_object: """ This class allow you to store detailed informations concerning the raw files """ def __init__(self, name, category, extension, path): self.name, self.category, self.extension, self.path = name, category, extension, path def load_data (list_of_file_object): """ Description : This function allow you to load data from a list of file_object and store those data in a dataset_object instance with the category of file those data have been loaded from. Then store these object in a dictionary where the keys is the category of the file where the data are from. Based on the extension of the files : Loading the data from the file If the are more one file, the respective dataframe are concatenate Storing the in a dictionary with the category as the key Args: list_of_file_object: list of file_object Returns: output: dict, key : string value : dataset_object """ dict_ds = {} for f in list_of_file_object: name_and_ext = re.split(r'\.',f.name) if(f.extension == "json"): if f.category in dict_ds: ds = pd.read_json(f.path + f.name) ds_concat = pd.concat([dict_ds[f.category].dataset,ds]) dict_ds[f.category] = dataset_object(ds_concat,name_and_ext[0]) else: ds = pd.read_json(f.path + f.name) dict_ds[f.category] = dataset_object(ds,name_and_ext[0]) elif(f.extension == "csv"): if f.category in dict_ds: ds = pd.read_csv(f.path + f.name) ds_concat =
pd.concat([dict_ds[f.category].dataset,ds])
pandas.concat
import argparse import pandas as pd import numpy as np from tqdm import tqdm import os import pickle from sklearn.decomposition import IncrementalPCA, MiniBatchDictionaryLearning import gc def load_subject(subject_filename): with open(subject_filename, 'rb') as f: subject_data = pickle.load(f) return subject_data class ImageLoader(): def __init__(self, transforms=None): self.transforms = transforms pass def transform(self, X, y=None): X = load_subject(X) if self.transforms is not None: X = self.transforms(image=X)['image'] return X def main(): parser = argparse.ArgumentParser(description='train pca and dl features') parser.add_argument('--data-path', default='./data/raw', help='path to original data, default ./data/raw') parser.add_argument('--imgs-path', default='./data/imgs', help='path to resaved images, default ./data/imgs') parser.add_argument('--path-to-save', default='./data/features', help='path to save features, default ./data/features') parser.add_argument('--path-to-save-model', default='./models/pca', help='path to save models, default ./models/pca') args = parser.parse_args() data_path = args.data_path imgs_path = args.imgs_path path_to_save = args.path_to_save path_to_save_model = args.path_to_save_model for _path in [path_to_save, path_to_save_model, os.path.join(path_to_save, '100dl_feats'), os.path.join(path_to_save, '200pca_feats')]: if not os.path.exists(_path): os.makedirs(_path) loading = pd.read_csv(os.path.join(data_path, 'loading.csv'), index_col = ['Id']) # creates pathes to all images img_path = pd.DataFrame(index=loading.index, columns=['path']) for index in img_path.index: path = str(index) + '.npy' img_path.loc[index, 'path'] = os.path.join(imgs_path, path) # start train and inference of pca feats print('PCA started. ~13 hours') for k in range(0, 6): ##fit pca = IncrementalPCA(n_components=200) batch = [] for n, i in enumerate(tqdm(img_path.values)): f = ImageLoader().transform(i[0]) f = f[k*10:(k+1)*10].flatten() batch.append(f) if (n + 1) % 200 == 0: batch = np.array(batch) pca.partial_fit(batch) del batch gc.collect() batch = [] ##save pca _p = os.path.join(path_to_save_model, f'200pca_3d_k{k}.pickle') with open(_p, 'wb') as f: pickle.dump(pca, f) ##transform res = [] batch = [] for n, i in enumerate(tqdm(img_path.values)): f = ImageLoader().transform(i[0]) f = f[k*10:(k+1)*10].flatten() batch.append(f) if (n + 1) % 200 == 0: batch = np.array(batch) res.append(pca.transform(batch)) del batch gc.collect() batch = [] lb = len(batch) if lb > 0: batch = np.array(batch) if lb == 1: res.append(pca.transform(batch.reshape(1, -1))) else: res.append(pca.transform(batch)) ##save df res = np.array(res) df_res = pd.DataFrame(np.vstack(res), index=loading.index, columns=[f'200PCA_k{k}_' + str(i) for i in range(200)]) _p = os.path.join(path_to_save, f'200pca_feats/200pca_3d_k{k}.csv') df_res.to_csv(_p) print('Dictionary learning started. ~47 hours') n_k = 100 for k in range(0, 6): ##fit pca = MiniBatchDictionaryLearning(n_components=n_k, random_state=0, n_iter=10, batch_size=n_k) batch = [] for n, i in enumerate(tqdm(img_path.values)): f = ImageLoader().transform(i[0]) f = f[k*10:(k+1)*10].flatten() batch.append(f) if (n + 1) % 100 == 0: batch = np.array(batch) pca.partial_fit(batch) del batch gc.collect() batch = [] ##save pca _p = os.path.join(path_to_save_model, f'dl_3d_k{k}.pickle') with open(_p, 'wb') as f: pickle.dump(pca, f) ##transform res = [] batch = [] for n, i in enumerate(tqdm(img_path.values)): f = ImageLoader().transform(i[0]) f = f[k*10:(k+1)*10].flatten() batch.append(f) if (n + 1) % 100 == 0: batch = np.array(batch) res.append(pca.transform(batch)) del batch gc.collect() batch = [] lb = len(batch) if lb > 0: batch = np.array(batch) if lb == 1: res.append(pca.transform(batch.reshape(1, -1))) else: res.append(pca.transform(batch)) ##save df res = np.array(res) df_res = pd.DataFrame(np.vstack(res), index=loading.index, columns=[f'dl_k{k}_' + str(i) for i in range(n_k)]) _p = os.path.join(path_to_save, f'100dl_feats/dl_3d_k{k}.csv') df_res.to_csv(_p) #resave results _p = os.path.join(path_to_save, '100dl_feats/dl_3d_k0.csv') data_pca = pd.read_csv(_p) for i in range(1, 6): _p = os.path.join(path_to_save, '100dl_feats/dl_3d_k{}.csv'.format(i)) part = pd.read_csv(_p) del part['Id'] data_pca =
pd.concat((data_pca, part), axis=1)
pandas.concat
""" Created on Jan 09 2021 <NAME> and <NAME> database analysis from https://data.gov.il/dataset/covid-19 Israel sities coordinates data https://data-israeldata.opendata.arcgis.com/ """ import json import requests import sys import extract_israel_data from Utils import * import time import pandas as pd import os import matplotlib.dates as mdates import matplotlib.pyplot as plt from plotly.subplots import make_subplots import datetime import numpy as np import warnings plt.style.use('default') warnings.filterwarnings("ignore") line_statistic_plot_log=None line_statistic_plot_fix_date=False # data line plot def line_statistic_plot(db, base, fields, title, ylabel, legend, text, save_name, log=None, fix_date=False): f, ax = plt.subplots(figsize=(18, 6)) date = db[base] date = pd.to_datetime(date) len_data = len(date) colors = plotly.colors.qualitative.Dark24 # ['blue', 'green', 'magenta', 'black', 'red', 'cyan', 'yellow'] sum_case = [] for cnt in range(len(fields)): case = fields[cnt] sum_case.append(db[case].max()) plt.plot(date, db[case], zorder=1, color=colors[cnt], linewidth=3) plt.title(title, fontsize=20) plt.ylabel(ylabel, fontsize=16) plt.legend(legend, fontsize=14) if fix_date: datemin = pd.to_datetime('2020-03-01') datemax = pd.to_datetime('2021-03-01') else: datemin = date.min() datemax = date.max() ax.set_xlim(datemin, datemax) ax.grid(True) # rotate and align the tick labels so they look better locator = mdates.AutoDateLocator() formatter = mdates.ConciseDateFormatter(locator) ax.fmt_xdata = formatter f.autofmt_xdate() if log: ax.set_yscale('log') if text is not None: tline = 0.25*max(sum_case) for kk in range(len(text)): plt.plot((text[kk], text[kk]), (0, tline), '-k', linewidth=3) plt.text(text[kk], 1.1*tline, text[kk].strftime('%d/%m/%y'), horizontalalignment='center', fontweight='bold', fontsize=14) save_string = save_name + datemax.strftime('%d%m%y') + '.png' f.savefig(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), save_string)) # Begin full_data_file = os.path.join(os.getcwd(), time.strftime("%d%m%Y"), time.strftime("%d%m%Y") + '_loaded_files.csv') if os.path.exists(full_data_file): files_db = pd.read_csv(full_data_file, encoding="ISO-8859-8") first_plt = False else: os.makedirs(os.path.join(os.getcwd(), time.strftime("%d%m%Y")), exist_ok=True) # Extract Data from Israel Dataset COVID-19 files_db = extract_israel_data.extract_israel_data() first_plt = True # Print LOG to file stdoutOrigin = sys.stdout fout = open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), 'israel_status_log.txt'), 'a') sys.stdout = MyWriter(sys.stdout, fout) text = None # text = pd.date_range('2020-04-01', '2021-04-01', freq="MS") # Isolation isolated = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('isolation').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('isolation').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'date' isolated[base] = pd.to_datetime(isolated[base]) isolated = isolated.sort_values([base]) for key in isolated.keys(): try: isolated.loc[isolated[key].str.contains('15>') != False, key] = 15 isolated[key] = isolated[key].astype(int) except: pass iso1 = isolated.new_contact_with_confirmed.astype(int).sum() iso2 = isolated.new_from_abroad.astype(int).sum() title = 'Israel (data from ' + isolated[base].max().strftime('%d/%m/%y') + ') - isolated persons, total ' + str(iso1+iso2) + ', now ' +\ str(isolated.isolated_today_contact_with_confirmed.iloc[-1] + isolated.isolated_today_abroad.iloc[-1]) ylabel = 'Number of individuals' legend = ('Isolated due to contact with confirmed, total ' + str(iso1), 'Isolated due to arrived from abroad, total ' + str(iso2)) save_name = 'israelIsolatedPersons_' fields = ['isolated_today_contact_with_confirmed', 'isolated_today_abroad'] # plot Isolated Total line_statistic_plot(isolated, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot isolated daily fields = ['new_contact_with_confirmed', 'new_from_abroad'] save_name = 'israelIsolatedPersons_Daily_' title = 'Israel (data from ' + isolated[base].max().strftime('%d/%m/%y') + ') - Daily isolated persons, total ' + str(iso1+iso2) + ', now ' +\ str(isolated.isolated_today_contact_with_confirmed.iloc[-1] + isolated.isolated_today_abroad.iloc[-1]) line_statistic_plot(isolated, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del isolated ################################################################################################################### # Medical Staff coronaMediaclStaffD = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('medical_staff').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('medical_staff').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'Date' coronaMediaclStaffD[base] = pd.to_datetime(coronaMediaclStaffD[base]) coronaMediaclStaffD = coronaMediaclStaffD.sort_values([base]) for key in coronaMediaclStaffD.keys(): try: coronaMediaclStaffD.loc[coronaMediaclStaffD[key].str.contains('<15') != False, key] = 15 coronaMediaclStaffD[key] = coronaMediaclStaffD[key].astype(int) except: pass ylabel = 'Number of individuals' title = 'Israel - medical staff confirmed (data from ' + coronaMediaclStaffD[base].max().strftime('%d/%m/%y') + ')' save_name = 'coronaMediaclStaffConfirmed_' fields = ['confirmed_cases_physicians', 'confirmed_cases_nurses', 'confirmed_cases_other_healthcare_workers'] legend = ['Confirmed physicians', 'Confirmed nurses', 'Confirmed other healthcare workers'] # plot coronaMediaclStaffConfirmed Total line_statistic_plot(coronaMediaclStaffD, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot coronaMediaclStaffIsolated daily title = 'Israel - medical staff in isolation (data from ' + coronaMediaclStaffD[base].max().strftime('%d/%m/%y') + ')' fields = ['isolated_physicians', 'isolated_nurses', 'isolated_other_healthcare_workers'] legend = ['Isolated physicians', 'Isolated nurses', 'Isolated other healthcare workers'] save_name = 'coronaMediaclStaffIsolated_' line_statistic_plot(coronaMediaclStaffD, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del coronaMediaclStaffD ################################################################################################################### # Hospitalization hospitalization = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('hospitalization').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('hospitalization').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'תאריך' hospitalization[base] = pd.to_datetime(hospitalization[base]) hospitalization = hospitalization.sort_values([base]) for key in hospitalization.keys(): try: hospitalization.loc[hospitalization[key].str.contains('15>') != False, key] = 15 hospitalization.loc[hospitalization[key].str.contains('<15') != False, key] = 15 hospitalization[key] = hospitalization[key].astype(int) except: pass ylabel = 'Number of individuals [persons]' title = 'Israel - Critical conditions (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' save_name = 'israelHospitalized_' fields = ['מונשמים', 'חולים קשה', 'מאושפזים'] legend = ('Ventilated patients', 'Seriously ill', 'Hospitalized') # plot israelHospitalized Total line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) title = 'Israel - Critical conditions mean Age division (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' save_name = 'israelHospitalizedInAge_' fields = ['גיל ממוצע מונשמים', 'גיל ממוצע חולים קשה', 'גיל ממוצע מאושפזים'] legend = ('Ventilated patients', 'Seriously ill', 'Hospitalized') # plot israelHospitalizeInAgeTotal line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) title = 'Israel - Critical conditions percentage of Women (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' save_name = 'israelHospitalizedInWomens_' fields = ['אחוז נשים מונשמות', 'אחוז נשים חולות קשה', 'אחוז נשים מאושפזות'] legend = ('Ventilated patients', 'Seriously ill', 'Hospitalized') # plot israelHospitalizeInAgeTotal line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot israel Ill title = 'Israel - ill conditions (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' fields = ['חולים קל', 'חולים בינוני', 'חולים קשה'] legend = ('Light ill', 'Mild ill', 'Seriously ill') save_name = 'illConditions_' line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot israel mean Age Ill title = 'Israel - ill conditions mean Age division (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' fields = ['גיל ממוצע חולים קל', 'גיל ממוצע חולים בינוני', 'גיל ממוצע חולים קשה'] legend = ('Light ill', 'Mild ill', 'Seriously ill') save_name = 'illConditionsInAge_' line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot israel Women Percentage Ill title = 'Israel - ill conditions percentage of Women (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' fields = ['אחוז נשים חולות קל', 'אחוז נשים חולות בינוני', 'אחוז נשים חולות קשה'] legend = ('Light ill', 'Middle ill', 'Seriously ill') save_name = 'illConditionsInWomens_' line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del hospitalization ################################################################################################################### # Recovered recovered = pd.read_excel(files_db.current_file_path[files_db.current_file_name.str.find('recovered').values.argmax()], encoding="ISO-8859-8") ################################################################################################################### id = files_db.current_file_name.str.find('recovered').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) recoveredMeanTime = recovered.days_between_pos_and_recovery.mean() recoveredMedianTime = recovered.days_between_pos_and_recovery.median() print('Recovered Mean Time: ' + str(int(recoveredMeanTime*100)/100) + ' days') print('Recovered Median Time: ' + str(int(recoveredMedianTime*100)/100) + ' days') NN = int(recovered.days_between_pos_and_recovery.max()) hh = np.histogram(recovered.days_between_pos_and_recovery, bins=np.arange(NN+1)) f, ax = plt.subplots(figsize=(15, 6)) plt.plot(hh[1][1:], hh[0], linewidth=3) # ax.set_yscale('log') plt.plot([recoveredMedianTime, recoveredMedianTime], [0, hh[0].max()], 'k--') plt.text(recoveredMedianTime, hh[0].max(), ' Recovered Median Time: ' + str(int(recoveredMedianTime*100)/100) + ' days') plt.plot([recoveredMeanTime, recoveredMeanTime], [0, hh[0][int(recoveredMeanTime)]], 'k--') plt.text(recoveredMeanTime, hh[0][int(recoveredMeanTime)], ' Recovered Mean Time: ' + str(int(recoveredMeanTime*100)/100) + ' days') plt.grid() plt.xlabel('Time to recovered [days]', fontsize=16) plt.ylabel('Number of individuals [persons]', fontsize=16) try: data_from = pd.to_datetime(str(files_db.last_update[id])) plt.title('Israel - Time to recovered. Num of persons ' + str(int(hh[0].sum())) + ' (data from ' + data_from.strftime('%d/%m/%y') + ')', fontsize=16) except: plt.title('Israel - Time to recovered. Num of persons ' + str(int(hh[0].sum())) + ' (data from ' + str(files_db.last_update[id]) + ')', fontsize=16) save_string = 'israelRecovered_' + str(files_db.last_update[id]) + '.png' f.savefig(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), save_string)) del recovered ################################################################################################################### # Deceased deceased = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('deceased').values.argmax()], encoding='latin-1') ################################################################################################################### id = files_db.current_file_name.str.find('deceased').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) deceasedMeanTime = deceased.Time_between_positive_and_death.mean() deceasedMedianTime = deceased.Time_between_positive_and_death.median() print('Deceased Mean Time: ' + str(int(deceasedMeanTime*100)/100) + ' days') print('Deceased Median Time: ' + str(int(deceasedMedianTime*100)/100) + ' days') NN = int(deceased.Time_between_positive_and_death.max()) hh = np.histogram(deceased.Time_between_positive_and_death, bins=np.arange(NN+1)) f, ax = plt.subplots(figsize=(15, 6)) plt.plot(hh[1][1:], hh[0], linewidth=3) plt.plot([deceasedMedianTime, deceasedMedianTime], [0, hh[0].max()], 'k--') plt.text(deceasedMedianTime, hh[0].max(), ' Deceased Median Time: ' + str(int(deceasedMedianTime*100)/100) + ' days') plt.plot([deceasedMeanTime, deceasedMeanTime], [0, hh[0][int(deceasedMeanTime)]], 'k--') plt.text(deceasedMeanTime, hh[0][int(deceasedMeanTime)], ' Deceased Mean Time: ' + str(int(deceasedMeanTime*100)/100) + ' days') plt.grid() plt.xlabel('Time to deceased [days]', fontsize=16) plt.ylabel('Number of individuals [persons]', fontsize=16) try: plt.title('Israel - Time to deceased. Num of persons ' + str(int(hh[0].sum())) + '. Num of Ventilated ' + str(int(deceased.Ventilated.sum())) + ' (data from ' + data_from.strftime('%d/%m/%y') + ')', fontsize=16) except: plt.title('Israel - Time to deceased. Num of persons ' + str(int(hh[0].sum())) + '. Num of Ventilated ' + str(int(deceased.Ventilated.sum())) + ' (data from ' + str(files_db.last_update[id]) + ')', fontsize=16) save_string = 'israelDeceased_' + str(files_db.last_update[id]) + '.png' f.savefig(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), save_string)) del deceased ################################################################################################################### plt.close('all') # Lab Test lab_tests = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('lab_tests').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('lab_tests').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'result_date' # lab_tests.loc[lab_tests['result_date'].isna() != False, 'result_date'] = lab_tests.loc[lab_tests['result_date'].isna() != False, 'test_date'] lab_tests = lab_tests[lab_tests['result_date'].isna() != True] N = len(lab_tests.corona_result) lab_tests[base] = pd.to_datetime(lab_tests[base]) lab_tests = lab_tests.sort_values([base]) possible_results = lab_tests.corona_result.unique() FirstTest = lab_tests.loc[lab_tests['is_first_Test'].str.contains('Yes') != False, ['result_date', 'corona_result']].reset_index() first_grouped = FirstTest.groupby(['result_date', 'corona_result'], as_index=False).count() first = first_grouped.set_index(['result_date', 'corona_result']).unstack().fillna(0).astype(int).add_prefix('ראשון ') del FirstTest, first_grouped first_positive = first.xs("ראשון חיובי", level="corona_result", axis=1).values.squeeze() first_negative = first.xs("ראשון שלילי", level="corona_result", axis=1).values.squeeze() all_first = first.sum(axis=1).values.squeeze() other_first = all_first - first_negative - first_positive NotFirstTest = lab_tests.loc[lab_tests['is_first_Test'].str.contains('Yes') != True, ['result_date', 'corona_result']].reset_index() not_first_grouped = NotFirstTest.groupby(['result_date', 'corona_result'], as_index=False).count() not_first = not_first_grouped.set_index(['result_date', 'corona_result']).unstack().fillna(0).astype(int).add_prefix('לא ראשון ') del NotFirstTest, not_first_grouped not_first_positive = not_first.xs("לא ראשון חיובי", level="corona_result", axis=1).values.squeeze() not_first_negative = not_first.xs("לא ראשון שלילי", level="corona_result", axis=1).values.squeeze() all_not_first = not_first.sum(axis=1).values.squeeze() other_not_first = all_not_first - not_first_positive - not_first_negative full_lab_data = pd.concat([first.squeeze(), not_first.squeeze()], axis=1, sort=False) # Saving full data full_lab_data.to_csv(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), time.strftime("%d%m%Y") + 'complete_laboratory_data.csv'), encoding="windows-1255") dateList = pd.DataFrame(lab_tests[base].unique(), columns=['Date']) fields = ['PositiveFirst', 'NegativeFirst', 'OtherFirst', 'PositiveNotFirst', 'NegativeNotFirst', 'OtherNotFirst'] lab_data = pd.concat([dateList, pd.DataFrame(first_positive, columns=[fields[0]]), pd.DataFrame(first_negative, columns=[fields[1]]), pd.DataFrame(other_first, columns=[fields[2]]), pd.DataFrame(not_first_positive, columns=[fields[3]]), pd.DataFrame(not_first_negative, columns=[fields[4]]), pd.DataFrame(other_not_first, columns=[fields[5]])], axis=1, sort=False) title = 'Israel ' + dateList.Date.max().strftime('%d/%m/%y') + ' - count of first test per person. Total tests performed ' + str(int(N)) ylabel = 'Number of individuals' save_name = 'israelTestPerformed_' base = 'Date' legend = ['Positive First test, total ' + str(int(lab_data.PositiveFirst.sum())), 'Negative First test, total ' + str(int(lab_data.NegativeFirst.sum())), 'Other First test, total ' + str(int(lab_data.OtherFirst.sum())), 'Positive not a First test, total ' + str(int(lab_data.PositiveNotFirst.sum())), 'Negative not a First test, total ' + str(int(lab_data.NegativeNotFirst.sum())), 'Other not a First test, total ' + str(int(lab_data.OtherNotFirst.sum())), ] # plot Test Performed Total line_statistic_plot(lab_data, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot Test Performed Total Log save_name = 'israelTestPerformed_Logy_' line_statistic_plot(lab_data, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del lab_tests ################################################################################################################### # Individuals individuals = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('tested_individuals_ver').values.argmax()]) individuals_last = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('tested_individuals_subset').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('tested_individual').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'test_date' individuals = individuals[individuals['test_date'].isna() != True] N = len(individuals.corona_result) individuals[base] = pd.to_datetime(individuals[base]) individuals = individuals.sort_values([base]) individuals_last[base] = pd.to_datetime(individuals_last[base]) individuals_last = individuals_last.sort_values([base]) individuals = individuals[(individuals['test_date'] >= individuals_last['test_date'].unique().min()).values != True] individuals = pd.concat([individuals, individuals_last]) individuals['symptoms'] = individuals.loc[:, ['cough', 'fever', 'sore_throat', 'shortness_of_breath', 'head_ache']].sum(axis=1) possible_results = individuals.corona_result.unique() dateList = pd.DataFrame(individuals[base].unique(), columns=['Date']) # TestIndication PosTest = individuals.loc[individuals['corona_result'].str.contains('חיובי') != False, ['test_date', 'test_indication']].reset_index() posindicate = PosTest.groupby(['test_date', 'test_indication'], as_index=False).count() posindicate = posindicate.set_index(['test_date', 'test_indication']).unstack().fillna(0).astype(int) # plot israelPositiveTestIndication fields = ['Abroad', 'Contact with confirmed', 'Other'] title = 'Israel (data from ' + dateList.Date.max().strftime('%d/%m/%y') + ')- Positive test indication (Total tests performed ' + str(int(N)) + ')' ylabel = 'Number of positive tests' save_name = 'israelPositiveTestIndication_' Abroad = posindicate.xs('Abroad', level="test_indication", axis=1).values.squeeze() Contact = posindicate.xs('Contact with confirmed', level="test_indication", axis=1).values.squeeze() Other = posindicate.xs('Other', level="test_indication", axis=1).values.squeeze() legend = ['Abroad, total ' + str(int(Abroad.sum())), 'Contact with confirmed, total ' + str(int(Contact.sum())), 'Other, total ' + str(int(Other.sum()))] pos_indicate = pd.concat([dateList, pd.DataFrame(Abroad, columns=[fields[0]]), pd.DataFrame(Contact, columns=[fields[1]]),
pd.DataFrame(Other, columns=[fields[2]])
pandas.DataFrame
import logging import os import warnings from pathlib import Path from typing import Dict, Iterable, Union import nibabel as nib import numpy as np import pandas as pd import tqdm from nilearn.image import resample_to_img from nipype.interfaces.ants import ApplyTransforms from nipype.interfaces.freesurfer import ( CALabel, MRIsCALabel, ParcellationStats, SegStats, ) from connecticity.parcellation import messages warnings.filterwarnings("ignore") #: Default parcellation logging configuration. LOGGER_CONFIG = dict( filemode="w", format="%(asctime)s - %(message)s", level=logging.INFO, ) #: Command template to be used to run dwi2tensor. DWI2TENSOR_COMMAND_TEMPLATE: str = "dwi2tensor -grad {grad} {dwi} {out_file}" #: Custom mapping of dwi2tensor keyword arguments. TENSOR2METRIC_KWARGS_MAPPING: Dict[str, str] = {"eval": "value"} #: QSIPrep DWI file template. QSIPREP_DWI_TEMPLATE = "{qsiprep_dir}/sub-{participant_label}/ses-{session}/dwi/sub-{participant_label}_ses-{session}_space-T1w_desc-preproc_dwi.{extension}" # noqa #: Tensor metric file template. TENSOR_METRICS_FILES_TEMPLATE = "{dmriprep_dir}/sub-{participant_label}/ses-{session}/dwi/sub-{participant_label}_ses-{session}_dir-FWD_space-anat_desc-{metric}_epiref.nii.gz" # noqa #: Parcellated tensor metrics file template. TENSOR_METRICS_OUTPUT_TEMPLATE = "{dmriprep_dir}/sub-{participant_label}/ses-{session}/dwi/sub-{participant_label}_ses-{session}_space-anat_desc-TensorMetrics_atlas-{parcellation_scheme}_meas-{measure}.csv" # noqa: E501 #: Command template to be used to run aparcstats2table. APARCTSTATS2TABLE_TEMPLATE = "aparcstats2table --subjects {subjects} --parc={parcellation_scheme} --hemi={hemi} --measure={measure} --tablefile={out_file}" # noqa: E501 #: Hemisphere labels in file name templates. HEMISPHERE_LABELS: Iterable[str] = ["lh", "rh"] #: Surface labels in file name templates. SURFACES: Iterable[str] = ["smoothwm", "curv", "sulc"] #: Data types in file name templates. DATA_TYPES: Iterable[str] = ["pial", "white"] #: Registered file name template. REG_FILE_NAME_TEMPLATE: str = "{hemisphere_label}.sphere.reg" #: FreeSurfer's surfaces directory name. SURFACES_DIR_NAME: str = "surf" #: FreeSurfer's MRI directory name. MRI_DIR_NAME: str = "mri" #: FreeSurfer's labels directory name. LABELS_DIR_NAME: str = "label" #: FreeSurfer's stats directory name. STATS_DIR_NAME: str = "stats" #: mris_anatomical_stats parameter keys. STATS_KEYS: Iterable[Union[str, bool]] = [ "brainmask", "aseg", "ribbon", "wm", "transform", "tabular_output", ] #: mris_anatomical_stats parameter values. STATS_VALUES: Iterable[str] = [ "brainmask.mgz", "aseg.presurf.mgz", "ribbon.mgz", "wm.mgz", "transforms/talairach.xfm", True, ] STATS_MEASURES: Iterable[str] = [ "area", "volume", "thickness", "thicknessstd", "meancurv", ] STATS_NAME_TEMPLATE: str = ( "{hemisphere_label}_{parcellation_scheme}_{measure}.csv" ) SUBCORTICAL_STATS_NAME_TEMPLATE: str = "subcortex.{parcellation_scheme}.stats" def generate_annotation_file( subject_dir: Path, hemisphere_label: str, parcellation_scheme: str, gcs_template: str, ): surfaces_dir = subject_dir / SURFACES_DIR_NAME labels_dir = subject_dir / LABELS_DIR_NAME # Check for existing file in expected output path. out_file_name = f"{hemisphere_label}.{parcellation_scheme}.annot" out_file = labels_dir / out_file_name if out_file.exists(): return out_file # If no existing output is found, create mris_ca_label input # configuration. reg_file_name = REG_FILE_NAME_TEMPLATE.format( hemisphere_label=hemisphere_label ) reg_file = surfaces_dir / reg_file_name curv, smoothwm, sulc = [ surfaces_dir / f"{hemisphere_label}.{surface_label}" for surface_label in SURFACES ] hemi_gcs = gcs_template.format(hemi=hemisphere_label) # Log annotation file generation start. message = messages.ANNOTATION_FILE_GENERATION_START.format( parcellation_scheme=parcellation_scheme, subject_label=subject_dir.name, hemisphere_label=hemisphere_label, ) logging.info(message) # Create interface instance, run, and return the result. ca_label = MRIsCALabel( canonsurf=reg_file, subjects_dir=subject_dir.parent, curv=curv, smoothwm=smoothwm, sulc=sulc, subject_id=subject_dir.parent.name, hemisphere=hemisphere_label, out_file=out_file, classifier=hemi_gcs, seed=42, ) ca_label.run() return out_file def generate_annotations( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs_template: str, ): """ For a single subject, produces an annotation file, in which each cortical surface vertex is assigned a neuroanatomical label. Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme gcs_template : str A freesurfer's .gcs template file Returns ------- dict A dictionary with keys of hemispheres and values as corresponding *.annot* files """ subject_dir = freesurfer_dir / subject_label return { hemisphere_label: generate_annotation_file( subject_dir, hemisphere_label, parcellation_scheme, gcs_template ) for hemisphere_label in HEMISPHERE_LABELS } def generate_default_args(freesurfer_dir: Path, subject_label: str) -> dict: """ Gather default required arguments for nipype's implementation of FreeSurfer's *mris_anatomical_stats*. Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* Returns ------- dict A dictionary with keys that map to nipype's required arguements """ subject_dir = freesurfer_dir / subject_label surface_dir = subject_dir / SURFACES_DIR_NAME mri_dir = subject_dir / MRI_DIR_NAME args = {"subject_id": subject_label, "subjects_dir": freesurfer_dir} for hemi in HEMISPHERE_LABELS: for datatype in DATA_TYPES: key = f"{hemi}_{datatype}" file_name = f"{hemi}.{datatype}" args[key] = surface_dir / file_name for key, value in zip(STATS_KEYS, STATS_VALUES): args[key] = mri_dir / value return args def map_subcortex( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs_subcrotex: str, ): """ For a single subject, produces an annotation file, in which each sub-cortical surface vertex is assigned a neuroanatomical label. Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme. gcs_subcortex : str A freesurfer's .gcs template file. Returns ------- dict A dictionary with keys of hemispheres and values as corresponding *.annot* files. """ # Check for an existing annotations file. subject_dir = freesurfer_dir / subject_label mri_dir = subject_dir / MRI_DIR_NAME out_file = mri_dir / f"{parcellation_scheme}_subcortex.mgz" if out_file.exists(): return out_file # Create a subcortical annotations file if none was found. target = mri_dir / "brain.mgz" transform = mri_dir / "transforms" / "talairach.m3z" # Log subcortical annotations file generation start. message = messages.SUBCORTICAL_ANNOTATION_FILE_GENERATION_START.format( parcellation_scheme=parcellation_scheme, subject_label=subject_label, ) logging.info(message) # Create interface instance, run, and return result. ca_label = CALabel( subjects_dir=freesurfer_dir, in_file=target, transform=transform, out_file=out_file, template=gcs_subcrotex, ) ca_label.run() return out_file def freesurfer_subcortical_parcellation( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs_subcortex: str, color_table: str, ): """ Calculates different Freesurfer-derived metrics according to subcortical parcellation Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme gcs_subcortex : str A freesurfer's .gcs template file Returns ------- dict A dictionary with keys corresponding to hemisphere's metrics acoording to *parcellation_scheme* """ mapped_subcortex = map_subcortex( freesurfer_dir, subject_label, parcellation_scheme, gcs_subcortex ) subject_dir = freesurfer_dir / subject_label stats_dir = subject_dir / STATS_DIR_NAME file_name = SUBCORTICAL_STATS_NAME_TEMPLATE.format( parcellation_scheme=parcellation_scheme ) summary_file = stats_dir / file_name if not summary_file.exists(): ss = SegStats( segmentation_file=mapped_subcortex, subjects_dir=freesurfer_dir, summary_file=summary_file, color_table_file=color_table, exclude_id=0, ) ss.run() return summary_file def freesurfer_anatomical_parcellation( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs: str, ): """ Calculates different Freesurfer-derived metrics according to .annot files Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme. gcs : str A freesurfer's .gcs template file. Returns ------- dict A dictionary with keys corresponding to hemisphere's metrics acoording to *parcellation_scheme* """ annotations = generate_annotations( freesurfer_dir, subject_label, parcellation_scheme, gcs ) args = generate_default_args(freesurfer_dir, subject_label) stats = {} subject_dir = freesurfer_dir / subject_label labels_dir = subject_dir / LABELS_DIR_NAME stats_dir = subject_dir / STATS_DIR_NAME surfaces_dir = subject_dir / SURFACES_DIR_NAME for hemisphere_label, annotations_path in annotations.items(): stats[hemisphere_label] = {} out_color = labels_dir / f"aparc.annot.{parcellation_scheme}.ctab" out_table = ( stats_dir / f"{hemisphere_label}.{parcellation_scheme}.stats" ) args["hemisphere"] = hemisphere_label args["in_annotation"] = annotations_path args["thickness"] = surfaces_dir / f"{hemisphere_label}.thickness" if not out_table.exists() or not out_color.exists(): parcstats = ParcellationStats(**args) parcstats.run() stats[hemisphere_label]["table"] = out_table stats[hemisphere_label]["color"] = out_color return stats def group_freesurfer_metrics( subjects: list, destination: Path, parcellation_scheme: str, force=True, ): """ Utilizes FreeSurfer's aparcstats2table to group different FreeSurfer-derived across subjects according to *parcellation_scheme*. Parameters ---------- subjects : list A list of subjects located under *SUBJECTS_DIR* destination : Path The destination underwhich group-wise files will be stored parcellation_scheme : str The parcellation scheme (subjects must have *stats/{hemi}.{parcellation_scheme}.stats* file for this to work) """ destination.mkdir(exist_ok=True, parents=True) data = {} for hemisphere_label in HEMISPHERE_LABELS: data[hemisphere_label] = {} for measure in STATS_MEASURES: out_file_name = STATS_NAME_TEMPLATE.format( hemisphere_label=hemisphere_label, parcellation_scheme=parcellation_scheme, measure=measure, ) out_file = destination / out_file_name if not out_file.exists() or force: cmd = APARCTSTATS2TABLE_TEMPLATE.format( subjects=" ".join(subjects), parcellation_scheme=parcellation_scheme, hemi=hemisphere_label, measure=measure, out_file=out_file, ) os.system(cmd) data[hemisphere_label][measure] = out_file return data def parcellate_image( atlas: Path, image: Path, parcels: pd.DataFrame, np_operation="nanmean" ) -> pd.Series: """ Parcellates an image according to *atlas*. Parameters ---------- atlas : Path A parcellation atlas in *image* space image : Path An image to be parcellated parcels : pd.DataFrame A dataframe for *atlas* parcels Returns ------- pd.Series The mean value of *image* in each *atlas* parcel """ out =
pd.Series(index=parcels.index)
pandas.Series
""" Module for sleep periods from accelerometer """ import datetime import numpy as np import pandas as pd import LAMP from ..feature_types import primary_feature, log from ..raw.accelerometer import accelerometer @primary_feature( name="cortex.feature.sleep_periods", dependencies=[accelerometer] ) def sleep_periods(attach=True, **kwargs): """ Generate sleep periods with given data Args: attach (boolean): **kwargs: id (string): The participant's LAMP id. Required. start (int): The initial UNIX timestamp (in ms) of the window for which the feature is being generated. Required. end (int): The last UNIX timestamp (in ms) of the window for which the feature is being generated. Required. Returns: """ def _expected_sleep_period(accelerometer_data_reduced): """ Return the expected sleep period for a set of accelerometer data :param accelerometer_data (list) :return _sleep_period_expted (dict): list bed/wake timestamps and mean accel. magnitude for expected bedtime """ df = pd.DataFrame.from_dict(accelerometer_data_reduced) # If we have data, we filter to remove duplicates here if 'timestamp' in df.columns: df = df[df['timestamp'] != df['timestamp'].shift()] # Creating possible times for expected sleep period, which will be checked times = [(datetime.time(hour=h, minute=m), (datetime.datetime.combine(datetime.date.today(), datetime.time(hour=h, minute=m)) + datetime.timedelta(hours=8, minutes=0)).time()) for h in range(18, 24) for m in [0, 30] ] + [(datetime.time(hour=h, minute=m), (datetime.datetime.combine(datetime.date.today(), datetime.time(hour=h, minute=m)) + datetime.timedelta(hours=8, minutes=0)).time()) for h in range(0, 4) for m in [0, 30]] mean_activity = float('inf') for t0, t1 in times: if datetime.time(hour=18, minute=0) <= t0 <= datetime.time(hour=23, minute=30): selection =
pd.concat([df.loc[t0 <= df.time, :], df.loc[df.time <= t1, :]])
pandas.concat
import os from functools import partial import logging import pandas as pd import numpy as np from scipy import stats logger = logging.getLogger('pylearn') def rank_varset(row, rank_coefficient=200): khat = float(row['KHAT']) nvar = int(row['NVAR']) return khat - (1 - khat) * nvar / (rank_coefficient - nvar - 1) def rank_varset_assess(assess=None, rank_coefficient=200): rank_with = partial(rank_varset, rank_coefficient=rank_coefficient) assess['VARSETRANK'] = assess.apply(rank_with, axis=1) return assess def get_xvars(dfunct=None, varset=None): """Function returns variables names in specified varset. Args: dfunct (DataFrame): DFUNCT data from lda. varset (Int): The integer representing the varset to extract. Returns: Pandas Series """ if varset: return dfunct[dfunct['VARSET3'] == varset]['VARNAMES3'].sort_values() else: return dfunct['VARNAMES3'].sort_values().unique() def get_xy_summary(xy=None, dfunct=None, yvar=None): """Function returns mean values for each unique variable in DFUNCT. Args: xy (DataFrame): The xy reference data. dfunct (DataFrame): DFUNCT data from lda. yvar (String): Variable Name representing the Y Class. Returns: Pandas DataFrame """ xvars = get_xvars(dfunct) data = [] for xvar in xvars: column = xy[xvar] summary = pd.pivot_table(xy, values=column.name, index=[yvar], aggfunc=np.mean) data.extend([{'ATTR': column.name, yvar: idx, 'MEAN': val} for idx, val in summary.iteritems()]) return pd.DataFrame(data=data) def get_rloadrank(xy=None, dfunct=None, yvar=None): """Function Extends DFUNCT with rank based relative loading per varset. Args: xy (DataFrame): The xy reference data. dfunct (DataFrame): DFUNCT data from lda. yvar (String): Variable Name representing the Y Class. Returns: Pandas DataFrame """ xy_summary = get_xy_summary(xy, dfunct, yvar) ranks = [] dfunct_by_varset = dfunct.groupby(by='VARSET3') for vset, df in dfunct_by_varset: vdfunct = df.copy() vdfunct.set_index('VARNAMES3', inplace=True) xvars = vdfunct.index.values xyref = xy.filter(items=xvars, axis=1) vdfunct['SD'] = xyref.std() vdfunct['B*'] = vdfunct['DFCOEF3'] * vdfunct['SD'] vdfunct['LOADING'] = np.sum(xyref.corr().mul(vdfunct['B*'].dropna(), axis=0)) vdfunct['RL'] = vdfunct['LOADING'] / vdfunct['LOADING'].max() for xvar in xvars: xvar_summary = xy_summary[xy_summary['ATTR'] == xvar] vdfunct.loc[xvar, 'Y0'] = xvar_summary[xvar_summary[yvar] == 0]['MEAN'].iat[0] vdfunct.loc[xvar, 'Y1'] = xvar_summary[xvar_summary[yvar] == 1]['MEAN'].iat[0] z0 = np.sum(vdfunct['DFCOEF3'].mul(vdfunct['Y0'], axis=0)) z1 = np.sum(vdfunct['DFCOEF3'].mul(vdfunct['Y1'], axis=0)) vdfunct['Z0'] = z0 vdfunct['Z1'] = z1 vdfunct['DFCOEF3_ADJ'] = vdfunct['DFCOEF3'] if z1 > z0 else vdfunct['DFCOEF3'] * -1 vdfunct['Z0_ADJ'] = np.sum(vdfunct['DFCOEF3_ADJ'].mul(vdfunct['Y0'], axis=0)) vdfunct['Z1_ADJ'] = np.sum(vdfunct['DFCOEF3_ADJ'].mul(vdfunct['Y1'], axis=0)) vdfunct['RANK'] = vdfunct['RL'].rank(ascending=False) ranks.append(vdfunct) labels = list(dfunct.axes[1]) labels.extend(['Y0', 'Y1', 'Z0', 'Z1','DFCOEF3_ADJ', 'Z0_ADJ', 'Z1_ADJ', 'SD', 'B*', 'LOADING', 'RL', 'RANK']) return
pd.concat(ranks)
pandas.concat
from typing import Any, Dict, Optional, List import argparse import json import os import re import pandas as pd from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from azureml.automl.core.shared import constants from azureml.automl.core.shared.types import GrainType from azureml.automl.runtime.shared.score import scoring GRAIN = "time_series_id" BACKTEST_ITER = "backtest_iteration" ACTUALS = "actual_level" PREDICTIONS = "predicted_level" ALL_GRAINS = "all_sets" FORECASTS_FILE = "forecast.csv" SCORES_FILE = "scores.csv" PLOTS_FILE = "plots_fcst_vs_actual.pdf" RE_INVALID_SYMBOLS = re.compile("[: ]") def _compute_metrics(df: pd.DataFrame, metrics: List[str]): """ Compute metrics for one data frame. :param df: The data frame which contains actual_level and predicted_level columns. :return: The data frame with two columns - metric_name and metric. """ scores = scoring.score_regression( y_test=df[ACTUALS], y_pred=df[PREDICTIONS], metrics=metrics ) metrics_df = pd.DataFrame(list(scores.items()), columns=["metric_name", "metric"]) metrics_df.sort_values(["metric_name"], inplace=True) metrics_df.reset_index(drop=True, inplace=True) return metrics_df def _format_grain_name(grain: GrainType) -> str: """ Convert grain name to string. :param grain: the grain name. :return: the string representation of the given grain. """ if not isinstance(grain, tuple) and not isinstance(grain, list): return str(grain) grain = list(map(str, grain)) return "|".join(grain) def compute_all_metrics( fcst_df: pd.DataFrame, ts_id_colnames: List[str], metric_names: Optional[List[set]] = None, ): """ Calculate metrics per grain. :param fcst_df: forecast data frame. Must contain 2 columns: 'actual_level' and 'predicted_level' :param metric_names: (optional) the list of metric names to return :param ts_id_colnames: (optional) list of grain column names :return: dictionary of summary table for all tests and final decision on stationary vs nonstaionary """ if not metric_names: metric_names = list(constants.Metric.SCALAR_REGRESSION_SET) if ts_id_colnames is None: ts_id_colnames = [] metrics_list = [] if ts_id_colnames: for grain, df in fcst_df.groupby(ts_id_colnames): one_grain_metrics_df = _compute_metrics(df, metric_names) one_grain_metrics_df[GRAIN] = _format_grain_name(grain) metrics_list.append(one_grain_metrics_df) # overall metrics one_grain_metrics_df = _compute_metrics(fcst_df, metric_names) one_grain_metrics_df[GRAIN] = ALL_GRAINS metrics_list.append(one_grain_metrics_df) # collect into a data frame return pd.concat(metrics_list) def _draw_one_plot( df: pd.DataFrame, time_column_name: str, grain_column_names: List[str], pdf: PdfPages, ) -> None: """ Draw the single plot. :param df: The data frame with the data to build plot. :param time_column_name: The name of a time column. :param grain_column_names: The name of grain columns. :param pdf: The pdf backend used to render the plot. """ fig, _ = plt.subplots(figsize=(20, 10)) df = df.set_index(time_column_name) plt.plot(df[[ACTUALS, PREDICTIONS]]) plt.xticks(rotation=45) iteration = df[BACKTEST_ITER].iloc[0] if grain_column_names: grain_name = [df[grain].iloc[0] for grain in grain_column_names] plt.title(f"Time series ID: {_format_grain_name(grain_name)} {iteration}") plt.legend(["actual", "forecast"]) plt.close(fig) pdf.savefig(fig) def calculate_scores_and_build_plots( input_dir: str, output_dir: str, automl_settings: Dict[str, Any] ): os.makedirs(output_dir, exist_ok=True) grains = automl_settings.get(constants.TimeSeries.GRAIN_COLUMN_NAMES) time_column_name = automl_settings.get(constants.TimeSeries.TIME_COLUMN_NAME) if grains is None: grains = [] if isinstance(grains, str): grains = [grains] while BACKTEST_ITER in grains: grains.remove(BACKTEST_ITER) dfs = [] for fle in os.listdir(input_dir): file_path = os.path.join(input_dir, fle) if os.path.isfile(file_path) and file_path.endswith(".csv"): df_iter = pd.read_csv(file_path, parse_dates=[time_column_name]) for _, iteration in df_iter.groupby(BACKTEST_ITER): dfs.append(iteration) forecast_df =
pd.concat(dfs, sort=False, ignore_index=True)
pandas.concat
import time from definitions_toxicity import ROOT_DIR import pandas as pd from src.preprocessing import custom_transformers as ct from sklearn.pipeline import Pipeline import nltk import pickle from src.preprocessing.text_utils import tokenize_by_sentences, fit_tokenizer, tokenize_text_with_sentences import numpy as np from sklearn.model_selection import train_test_split from skmultilearn.model_selection import iterative_train_test_split def load_text_data(data_filepath, text_column, copy_text_column=False, copy_col_name=None): """Data loader :param data_filepath: file path to data :type data_filepath: string :param text_column: name of column with text :type text_column: string :param copy_text_column: whether to copy column with text into new one, defaults to False :type copy_text_column: bool, optional :param copy_col_name: name of new column for copying original one, defaults to None :type copy_col_name: boolean, optional :return: dataframe with text data :rtype: Pandas dataframe """ df = pd.read_csv(ROOT_DIR + data_filepath) if copy_text_column: df[copy_col_name] = df[text_column].copy() return df def split_dataset(df, columns, labels, split='train_test', test_size=0.3, random_state=111, stratify=False, multiclass=False): """Data split function that can use both sklearn train_test_split and skmultilearn iterative_train_test_split for cases with imbalanced multilabel data. :param df: dataframe that requires splitting into train, test and possibly validation sets :type df: Pandas dataframe :param columns: names of columns that will be left in train/test/valiation sets :type columns: list :param labels: name of columns that represent labels :type labels: list :param split: selection of how to split dataset: train_test or train_val_test, defaults to 'train_test' :type split: str, optional :param test_size: fraction of whole dataset to be used as test set, defaults to 0.3 :type test_size: float, optional :param random_state: random state for splitting, defaults to 111 :type random_state: int, optional :param stratify: whether to stratify the data, defaults to False :type stratify: bool, optional :param multiclass: whether dataset has multiclass labels, defaults to False :type multiclass: bool, optional :return: train, test and optionally validation sets :rtype: Pandas dataframe """ # split on train and validation sets assert split == 'train_test' or split == 'train_val_test', "Split attribute accepts only 'train_test' or 'train_val_test'" strat = None if stratify: strat = df[labels] if not multiclass: x_tr, x_test, y_tr, y_test = train_test_split(df[columns], df[labels], test_size=test_size, random_state=random_state, stratify=strat) else: x_tr, y_tr, x_test, y_test = iterative_train_test_split(df[columns].values, df[labels].values, test_size=test_size) x_tr = pd.DataFrame(x_tr, columns=columns) y_tr = pd.DataFrame(y_tr, columns=labels) x_test = pd.DataFrame(x_test, columns=columns) y_test = pd.DataFrame(y_test, columns=labels) if split == 'train_test': return x_tr, x_test, y_tr, y_test elif split == 'train_val_test': if stratify: strat = y_test if not multiclass: x_val, x_test, y_val, y_test = train_test_split(x_test, y_test, test_size=0.5, random_state=random_state, stratify=strat) else: x_val, y_val, x_test, y_test = iterative_train_test_split(x_test.values, y_test.values, test_size=0.5) x_val = pd.DataFrame(x_val, columns=columns) y_val = pd.DataFrame(y_val, columns=labels) x_test =
pd.DataFrame(x_test, columns=columns)
pandas.DataFrame
import warnings import pytest import pandas as pd import pandas._testing as tm from pandas.tests.extension.base.base import BaseExtensionTests class BaseReduceTests(BaseExtensionTests): """ Reduction specific tests. Generally these only make sense for numeric/boolean operations. """ def check_reduce(self, s, op_name, skipna): result = getattr(s, op_name)(skipna=skipna) expected = getattr(s.astype("float64"), op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
pandas._testing.assert_almost_equal
import unittest import numpy as np import pandas as pd from numpy.testing import assert_almost_equal from pandas.testing import assert_frame_equal, assert_series_equal import cvxpy as cvx from zipline.optimize import MaximizeAlpha, TargetWeights from zipline.optimize.constraints import ( Basket, CannotHold, DollarNeutral, FactorExposure, FixedWeight, Frozen, LongOnly, MaxGrossExposure, NetExposure, NetGroupExposure, NotConstrained, NotExceed, NotLessThan, Pair, PositionConcentration, ReduceOnly, ShortOnly) class TestObjectives(unittest.TestCase): def setUp(self): stocks = [str(i).zfill(6) for i in range(1, 8)] alphas = pd.Series([-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3], index=stocks) # 用于调整特定目标 # alphas = pd.Series([-0.2, -0.1, -0.1, 0, 0.1, 0.2, 0.3], index=stocks) weights = pd.Series(alphas.values, index=stocks) labels = { '000001': 'A', '000002': 'A', '000003': 'B', '000004': 'B', '000005': 'C', '000006': 'C', '000007': 'D' } min_weights = {'A': -0.1, 'B': -0.2, 'C': -0.3, 'D': -0.4} max_weights = {'A': 0.1, 'B': 0.2, 'C': 0.3, 'D': 0.4} factors = ['f1', 'f2', 'f3'] data = [[3, 2, 3], [5, 1, 5], [2, 3, 1], [3, 5, 2], [4, 2, 3], [3, 4, 4]] #, [2, 5, 3]], loadings = pd.DataFrame(data=data, index=stocks[:6], columns=factors) min_exposures = pd.Series([2, 1, 2], index=factors) max_exposures = pd.Series([4, 5, 4], index=factors) self.stocks = stocks self.alphas = alphas self.weights = weights self.labels = labels self.min_weights = min_weights self.max_weights = max_weights self.loadings = loadings self.min_exposures = min_exposures self.max_exposures = max_exposures # 假设初始权重股票数量少于目标权重的股票数量(4只股票) init_weights = pd.Series([-0.6, -0.1, 0.1, 0.55], index=stocks[:4]) self.init_weights = init_weights def check(self, cons_obj, desired_value, desired_weights, init_w_s=None): # 基础限制:单个权重不超过0.5,空头不超过-1.0,总体不超过1.5 obj = MaximizeAlpha(self.alphas) cvx_objective = obj.to_cvxpy(None) w = obj.new_weights w_s = obj.new_weights_series constraints = [ con for con in cons_obj.gen_constraints(w, w_s, init_w_s) ] constraints += [cvx.norm(w, 1) <= 1.5, w <= 0.5, w >= -1.0] prob = cvx.Problem(cvx_objective, constraints) prob.solve() # print('求解状态', prob.status) # print('最优解', prob.value) # print('权重序列\n', obj.new_weights_value) # print('初始权重序列\n', init_w_s) self.assertAlmostEqual(desired_value, prob.value, 2) assert_series_equal( obj.new_weights_value, desired_weights, check_exact=False, check_less_precise=3) # 精度:小数点后3位 def test_MaxGrossExposure(self): cons_obj = MaxGrossExposure(1.5) desired_value = 0.45 desired_weights = pd.Series([-1.0] + [0.0] * 5 + [0.5], index=self.stocks) self.check(cons_obj, desired_value, desired_weights) def test_NetExposure(self): cons_obj = NetExposure(-0.1, 0.1) desired_value = 0.43 desired_weights = pd.Series( [-0.80] + [0.0] * 4 + [0.2, 0.5], index=self.stocks) self.check(cons_obj, desired_value, desired_weights) def test_DollarNeutral(self): cons_obj = DollarNeutral() desired_value = 0.33 desired_weights = pd.Series( [-0.25] + [0.0] * 2 + [0.25, 0, 0.5, 0.5], index=self.stocks) self.check(cons_obj, desired_value, desired_weights, self.init_weights) def test_NetGroupExposure_1(self): """检验输入""" with self.assertRaises(TypeError): NetGroupExposure('a', 'b', 'c') # with self.assertRaises(AssertionError): # labels = {'AAPL': 'TECH', 'MSFT': 'TECH', 'TSLA': 'CC', 'GM': 'CC'} # # 限定不平衡 # min_exposures = {'TECH': -0.5, 'CC': -0.25} # max_exposures = {'TECH': 0.5} # NetGroupExposure(labels, min_exposures, max_exposures) with self.assertRaises(AssertionError): labels = {'AAPL': 'TECH', 'MSFT': 'TECH', 'TSLA': 'CC', 'GM': 'CC'} min_exposures = {'TECH': -0.5, 'CC': -0.25} max_exposures = {'TECH': 0.5, 'CC': -0.5} # 最大值小于最小值 ne = NetGroupExposure(labels, min_exposures, max_exposures) self.check(ne, 1, 1, 1) def test_NetGroupExposure_2(self): """分组净多头单边限制""" min_weights = pd.Series( [0.0, 0.1, 0.2, 0.3], index=self.min_weights.keys()) cons_obj = NetGroupExposure(self.labels, min_weights, self.max_weights) desired_value = 0.21 # 精度累死 desired_weights = pd.Series( [-0.1612, 0.1612, -0.1207, 0.2207, -0.068, 0.368, 0.400], index=self.stocks) self.check(cons_obj, desired_value, desired_weights) def test_NetGroupExposure_3(self): """分组净空头单边限制""" # 最大值负数 max_weights = pd.Series([-0.05] * 4, index=self.max_weights.keys()) cons_obj = NetGroupExposure(self.labels, self.min_weights, max_weights) desired_value = 0.08 desired_weights = pd.Series( [-0.2908, 0.1908, -0.3606, 0.1606, -0.2485, 0.1985, -0.05], index=self.stocks) self.check(cons_obj, desired_value, desired_weights) def test_NetGroupExposure_4(self): """分组双边限制(下限为负,上限为正)""" cons_obj = NetGroupExposure(self.labels, self.min_weights, self.max_weights) desired_value = 0.25 desired_weights = pd.Series( [-0.2028, 0.1029, -0.284156, 0.084156, -0.062988, 0.3629, 0.4], index=self.stocks) self.check(cons_obj, desired_value, desired_weights) def test_NetGroupExposure_5(self): """取消单组最大或最小限制""" min_weights = pd.Series( [-0.3, 0.1, 0., 0.3], index=self.min_weights.keys()) max_weights = pd.Series([0.35] * 4, index=self.max_weights.keys()) # 取消A组最小限制 min_weights.loc['A'] = NotConstrained # 可多分配空头 # 取消C组最大限制 max_weights.loc['C'] = NotConstrained cons_obj = NetGroupExposure(self.labels, min_weights, max_weights) desired_value = 0.41 desired_weights = pd.Series( [-1, -0.000197, -0., 0.1, 0, 0.0498, 0.35], index=self.stocks) self.check(cons_obj, desired_value, desired_weights) def test_PositionConcentration_0(self): """验证输入及配置""" min_weights =
pd.Series([-0.2, 0.1, 0.4], index=['000001', '000003','000004'])
pandas.Series
import IMLearn.learners.regressors.linear_regression from IMLearn.learners.regressors import PolynomialFitting from IMLearn.utils import split_train_test import numpy as np import pandas as pd import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load city daily temperature dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (Temp) """ full_data = pd.read_csv(filename).drop_duplicates().dropna() full_data = full_data.loc[full_data["Month"] >= 1] full_data = full_data.loc[full_data["Day"] >= 1] full_data = full_data.loc[full_data["Year"] >= 1995] full_data = full_data.loc[full_data["Temp"] >= -10] full_data['Date'] =
pd.to_datetime(full_data['Date'], format='%Y-%m-%d')
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 5 19:53:58 2020 @author: chaowu """ import pandas as pd import numpy as np import matplotlib.pylab as plt import matplotlib.cbook as cbook import matplotlib.dates as mdates from scipy.signal import savgol_filter def smooth_list(l, window=3, poly=1): return savgol_filter(l, window, poly) df =
pd.read_csv("data/us-counties.csv")
pandas.read_csv
import os import pandas as pd def _gen_photo_df_(photo_dir): """ """ photo_dict = {"file_name": [], "dir_path": []} # may have to pass photo_dir as a list to iterate through # i.e. in case there are multiple locations for root, _, files in os.walk(photo_dir): for f in files: photo_dict["file_name"].append(f) photo_dict["dir_path"].append(root) photo_df =
pd.DataFrame(photo_dict)
pandas.DataFrame
import pandas as pd import csv import math import matplotlib.pyplot as plt import matplotlib.patches as mpatches ################################################################# # # # # # Load Data # # # # # ################################################################# # Reads the data from file. data = pd.read_csv("gcse-english-and-maths-national-data-2019-20.csv") # Load required columns ethnicity = data["Ethnicity"] gender = data["Gender"] freeSchoolMeals = data["FSM"] senType = data["SEN_type"] senGroup = data["SEN_grouping"] admissionType = data["Admission_type"] schoolCharacteristic = data["School_characteristic"] religion = data["Religious_denomination"] value = data["Value"] ################################################################# # # # # # Menu Function # # # # # ################################################################# def menu(ethnicity, gender, freeSchoolMeals, senType, senGroup, admissionType, schoolCharacteristic, religion, value): repeat=True while repeat==True: menuSelect=0 print("Enter a number between 1-4 or 5 to exit:\n1:Keyword search\n2:Co Efficient\n3:Total Passing\n4:Averages") menuSelect=input() if menuSelect == "1": print("Keyword Search") keywordSearch() repeat = True elif menuSelect == "2": print ("Co Efficient") CoefficientOfDev(ethnicity, gender, freeSchoolMeals, senType, senGroup, admissionType, schoolCharacteristic, religion, value) repeat =True elif menuSelect == "3": print ("Total Passing") TotalPassing(ethnicity, gender, freeSchoolMeals, senType, senGroup, admissionType, schoolCharacteristic, religion, value) repeat = True elif menuSelect == "4": print ("Averages") averages() repeat = True elif menuSelect == "5": print("menu exit") repeat = False else: print ("Invalid answer, please re enter") repeat = True ################################################################# # # # # # Calculate Coefficient of Standard Deviation # # # # # ################################################################# def CoefficientOfDev(ethnicity, gender, freeSchoolMeals, senType, senGroup, admissionType, schoolCharacteristic, religion, value): # Calculates coeficient of variation. # Creates Series CoefVariableList = [] CoefValueList = [] # Calculated Coefficient def myCoef(myInput): mean = 0 total = 0 counter = 0 # Calculates total of all the values of myInput for i, val in myInput.iteritems(): if myInput[i] != -1: mean = mean + myInput[i] counter = counter + 1 # Calculates mean mean = mean/counter # Initiates count to 0 count = 0 # Appends to myInput2 myInput2 = [] for i, val in myInput.iteritems(): myInput2.append((myInput[i]-mean) ** 2) # Adds up total and increases count for i, val in myInput.iteritems(): total = myInput2[i] + total count = count + 1 # Calculates mean next = total/count #Calculates square root of mean next = math.sqrt(total/count) # Divides by mean next = next/mean # Returns the coefficient of standard deviation return next # Calculates the coefficient of standard deviation for Ethnicity def ethnicityCoef(myVariable): newList = [] for i, val in ethnicity.iteritems(): if ethnicity[i] == myVariable: newList.append(value[i]) print(myVariable, end=":\t\t") newList2 =
pd.Series(newList)
pandas.Series
# First Import Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings # Read CSV File For RAW Heating And Electrical Consumption Pattern From Scraped Data df = pd.read_csv("C:\\Users\\PowerMan\\Desktop\\KASR\Final\\Code and data\\Data\\Whole_scraped_data\\Total-Load-Whole-Premise.csv") # Delete additional datas in RAW File # Delete Extra Columns df.drop('Date Start',axis=1,inplace=True) df.drop('(Weekdays) or (Weekends and Holidays)',axis=1,inplace=True) df.drop('Demand',axis=1,inplace=True) # Delete Extra Raws # Create an index to filter raws faster than normal for loop! df['keep']=np.where( df['City'] == 'City', 1, 0) df=df[df['keep']==0] # Delete Auxilary index Column df.drop('keep',axis=1,inplace=True) # Change data type to float df[['HR1','HR2','HR3','HR4','HR5','HR6','HR7','HR8','HR9','HR10','HR11','HR12','HR13','HR14','HR15','HR16','HR17','HR18','HR19','HR20','HR21','HR22','HR23','HR24']] = df[['HR1','HR2','HR3','HR4','HR5','HR6','HR7','HR8','HR9','HR10','HR11','HR12','HR13','HR14','HR15','HR16','HR17','HR18','HR19','HR20','HR21','HR22','HR23','HR24']].astype('float64') # Convert Sqft To Sqm Sqft/10.764=Sqm sqft_coef = 10.76391041671 #Convert wh/Sqft To wh/Sqm df.loc[:,'HR1':'HR24']=df.loc[:,'HR1':'HR24']/(sqft_coef) # Create 2 Column for State And City df['city_name'] = df.iloc[:, 0] df['city_state'] = df.iloc[:, 0] # Split City and State for i in range (0,120450): ct = df.iloc[i, 0] ct = ct.split(',', 1) ctname = ct[0] ctstate = ct[1] df.iloc[i, 28] = ctname df.iloc[i, 29] = ctstate # Save File step1 df.to_csv(path_or_buf="C:\\Users\\PowerMan\\Desktop\\KASR\\Final\\Code and data\\Codes\\datamunging\\step1.csv") ######################################################################################################## ######################################################################################################## ######################################################################################################## # Read New Modified CSV File df = pd.read_csv("C:\\Users\\PowerMan\\Desktop\\KASR\\Final\\Code and data\\Codes\\datamunging\\step1.csv") # Delete Old Index Column df.drop('Unnamed: 0',axis=1,inplace=True) #Create Day index day=[] for i in range (1,331): for j in range (1,366): day.append(j) day_no=pd.Series(day) df['day_num']=day_no #Load Cities List ct =
pd.read_csv("C:\\Users\\PowerMan\\Desktop\\KASR\\Final\\Code and data\\Codes\\datamunging\\sourcecity.csv")
pandas.read_csv
import sqlite3 import glob import pandas as pd import sys import time import datetime import os import numpy as np def main(): # save_irradiance_to_pickle_agg_by_station() # save_irradiance_to_pickle_agg_by_day() # plot_station_data() load_irradiance_agg_by_station() load_irradiance_agg_by_day() def plot_station_data(): df = pd.read_csv('TMY3_StationsMeta.csv') df.plot(x='Longitude', y='Latitude') def load_irradiance_agg_by_station(): df = pd.read_pickle('tmy3_agg_by_station.pkl') df.plot(x='long', y='lat') def load_irradiance_agg_by_day(): df = pd.read_pickle('tmy3_agg_by_day.pkl') df.plot(x='long', y='lat') def save_irradiance_to_pickle_agg_by_day(): start, start_readable = time.time(), datetime.datetime.now() print(f'Started at {start_readable}') i, num_files = 0, len(list(glob.iglob('alltmy3a/*.csv'))) df_global = pd.DataFrame(columns=['date', 'GHI (W/m^2)', 'usaf', 'name', 'state', 'lat', 'long', 'elev']) for filepath in glob.iglob('alltmy3a/*.csv'): df_data =
pd.read_csv(filepath, header=1, parse_dates=[[0,1]])
pandas.read_csv
import json import mmap import os import random import re from collections import Counter from collections import defaultdict import numpy as np import pandas as pd from sklearn.utils import shuffle from tqdm import tqdm class SUBEVENTKG_Processor(object): """ 对EVENTKG数据集取适用于知识表示任务的子数据集 原数据集地址链接在https://eventkg.l3s.uni-hannover.de/data.html,采用3.0版本的数据包 """ def __init__(self, events_nq_path, entities_nq_path, relations_base_nq_path, relations_events_other_nq_path, relations_entities_temporal_nq_path, processed_entities_path, processed_events_path, processed_event_event_path, processed_event_entity_path, processed_entity_entity_path, filt_event_event_path, filt_event_entity_path, filt_entity_entity_path, event_node_count_path, entity_node_count_path, event_rdf2name_path, entity_rdf2name_path, relation_rdf2name_path, event_lut_path, entity_lut_path, relation_lut_path, event_degree_list, entity_degree_list ): """ Args: events_nq_path:事件节点的原始数据集 entities_nq_path:实体节点的原始数据集 relations_base_nq_path:事件-事件(无时间信息)原始数据集 relations_events_other_nq_path:事件-实体,实体-事件原始数据集 relations_entities_temporal_nq_path:实体-实体(有时间信息)原始数据集 processed_entities_path:实体的字典,rdf->count(0) processed_events_path:事件的字典,rdf->count(0) processed_event_event_path:转化为五元组格式的 事件-事件 processed_event_entity_path:转化为五元组格式的 事件-实体 processed_entity_entity_path:转化为五元组格式的 实体-实体 filt_event_event_path:过滤后的 事件-事件 五元组 filt_event_entity_path:过滤后的 事件-实体 五元组 filt_entity_entity_path:过滤后的 实体-实体 五元组 event_node_count_path:统计出来的事件节点个数 entity_node_count_path:统计出来的实体节点个数 event_rdf2name_path:事件rdf转name entity_rdf2name_path:实体rdf转name relation_rdf2name_path:关系rdfname event_lut_path:事件查找表路径 entity_lut_path:实体查找表路径 relation_lut_path:关系查找表路径 event_degree_list:事件度的列表 entity_degree_list:实体度的列表 """ self.raw_events_path = events_nq_path self.raw_entities_path = entities_nq_path self.raw_event_event_path = relations_base_nq_path self.raw_event_entity_path = relations_events_other_nq_path self.raw_entity_entity_path = relations_entities_temporal_nq_path self.processed_entities_path = processed_entities_path self.processed_events_path = processed_events_path self.processed_event_event_path = processed_event_event_path self.processed_event_entity_path = processed_event_entity_path self.processed_entity_entity_path = processed_entity_entity_path self.filt_event_event_path = filt_event_event_path self.filt_event_entity_path = filt_event_entity_path self.filt_entity_entity_path = filt_entity_entity_path self.event_node_count_path = event_node_count_path self.entity_node_count_path = entity_node_count_path self.event_rdf2name_path = event_rdf2name_path self.entity_rdf2name_path = entity_rdf2name_path self.relation_rdf2name_path = relation_rdf2name_path self.event_lut_path = event_lut_path self.entity_lut_path = entity_lut_path self.relation_lut_path = relation_lut_path self.event_degree_list = event_degree_list self.entity_degree_list = entity_degree_list self.entity_dict = None self.event_dict = None self.rdf_triplets_event_event = None self.rdf_triplets_event_entity = None self.rdf_triplets_entity_entity = None self.filt_triplets_event_event = None self.filt_triplets_event_entity = None self.filt_triplets_entity_entity = None self.event_rdf2name_dict = dict() self.entity_rdf2name_dict = dict() self.relation_rdf2name_dict = dict() self.filt_event_set = set() self.filt_entity_set = set() self.filt_relation_set = set() seed = 1 random.seed(seed) np.random.seed(seed) def _get_num_lines(self, file_path): """ 统计txt文件的行数 :param file_path:待统计行数的txt文件路径 """ fp = open(file_path, "r+") buf = mmap.mmap(fp.fileno(), 0) lines = 0 while buf.readline(): lines += 1 return lines def create_entities_index(self, reprocess=True, describe=True): """ 建立{实体rdf:count}字典,这个实体是全集 Args: reprocess:True为重新处理 describe:True为显示数据集信息 """ if reprocess: self.entity_dict = dict() print("processing entities index...") with open(self.raw_entities_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(self.raw_entities_path)): line = line.strip().split(" ") entity = line[0] if entity not in self.entity_dict.keys(): self.entity_dict[entity] = 0 json.dump(self.entity_dict, open(self.processed_entities_path, "w"), indent=4, sort_keys=True) print("processed_entities_dict has been saved in {}".format(self.processed_entities_path)) else: if os.path.exists(self.processed_entities_path): print("loading entities index...") with open(self.processed_entities_path) as file: self.entity_dict = json.load(file) print("loading entities index succeed!") else: raise FileNotFoundError("processed_entities_path does not exists!") if describe: print("entities_dict_len", len(self.entity_dict)) def create_events_index(self, reprocess=True, describe=True): """ 建立{事件rdf:count}字典,这个事件是全集 """ if reprocess: self.event_dict = dict() print("processing events index...") with open(self.raw_events_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(self.raw_events_path)): line = line.strip().split(" ") event = line[0] if event not in self.event_dict.keys(): self.event_dict[event] = 0 json.dump(self.event_dict, open(self.processed_events_path, "w"), indent=4, sort_keys=True) print("processed_events_dict has been saved in {}".format(self.processed_events_path)) else: if os.path.exists(self.processed_events_path): print("loading events index...") with open(self.processed_events_path) as file: self.event_dict = json.load(file) print("loading events index succeed!") else: raise FileNotFoundError("processed_entities_path does not exists!") if describe: print("events_dict_len", len(self.event_dict)) def event_event_raw2df(self, reprocess=True, describe=True): """ 找出事件与事件的hassubevent,nextevent,previousevent三种关系,并转化成dataframe格式保存 原始格式 事件 关系 事件 存储格式 事件 关系 事件 开始时间 结束时间 (事件和事件三元组没有时间信息,表示为-1) """ if reprocess: df_lines = [] with open(self.raw_event_event_path, "r", encoding="utf-8") as file: print("processing event_event_raw2df...") for line in tqdm(file, total=self._get_num_lines(self.raw_event_event_path)): line = line.strip().split(" ") if line[1] == "<http://dbpedia.org/ontology/nextEvent>" or \ line[1] == "<http://dbpedia.org/ontology/previousEvent>" or \ line[1] == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasSubEvent>": head = line[0] relation = line[1] tail = line[2] df_lines.append([head, relation, tail, -1, -1]) self.rdf_triplets_event_event = pd.DataFrame(df_lines) self.rdf_triplets_event_event.columns = ["head", "relation", "tail", "start_time", "end_time"] self.rdf_triplets_event_event.to_csv(self.processed_event_event_path) print("rdf_triplets_event_event has been saved in {}".format(self.processed_event_event_path)) else: if os.path.exists(self.processed_event_event_path): print("loading event_event_raw2df...") self.rdf_triplets_event_event = pd.read_csv(self.processed_event_event_path) print("loading event_event_raw2df succeed!") else: raise FileNotFoundError("processed_event_event_path does not exists!") if describe: print("rdf_triplets_event_event_len", len(self.rdf_triplets_event_event)) def _node_relation_datatype_raw2df(self, reprocess=True, describe=True, datatype=None, raw_data_path=None, saved_path=None): def init_relation_node_dict(relation_node_dict, raw_data_path): """嵌套字典初始化""" with open(raw_data_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(raw_data_path)): line = line.strip().split(" ") relation_node = line[0] if relation_node not in relation_node_dict.keys(): relation_node_dict[relation_node]["head"] = -1 relation_node_dict[relation_node]["relation"] = -1 relation_node_dict[relation_node]["tail"] = -1 relation_node_dict[relation_node]["start_time"] = -1 relation_node_dict[relation_node]["end_time"] = -1 return relation_node_dict def add_value_relation_node_dict(relation_node_dict, raw_data_path): """嵌套字典添加值""" with open(raw_data_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(raw_data_path)): line = line.strip().split(" ") relation_node = line[0] arrow = line[1] value = line[2] if arrow == "<http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>": relation_node_dict[relation_node]["head"] = value if arrow == "<http://semanticweb.cs.vu.nl/2009/11/sem/roleType>": relation_node_dict[relation_node]["relation"] = value if arrow == "<http://www.w3.org/1999/02/22-rdf-syntax-ns#object>": relation_node_dict[relation_node]["tail"] = value if arrow == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasBeginTimeStamp>": relation_node_dict[relation_node]["start_time"] = value if arrow == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasEndTimeStamp>": relation_node_dict[relation_node]["end_time"] = value return relation_node_dict if reprocess: relation_node_dict = defaultdict(dict) print("processing {} _raw2df...".format(datatype)) relation_node_dict = init_relation_node_dict(relation_node_dict, raw_data_path) relation_node_dict = add_value_relation_node_dict(relation_node_dict, raw_data_path) # 嵌套字典转dataframe df_lines = [] for key in tqdm(relation_node_dict.keys()): df_lines.append([relation_node_dict[key]["head"], relation_node_dict[key]["relation"], relation_node_dict[key]["tail"], relation_node_dict[key]["start_time"], relation_node_dict[key]["end_time"]]) df = pd.DataFrame(df_lines) df.columns = ["head", "relation", "tail", "start_time", "end_time"] if datatype == "event_entity": self.rdf_triplets_event_entity = df if datatype == "entity_entity": self.rdf_triplets_entity_entity = df df.to_csv(saved_path) print("rdf_triplets_{} has been saved in {}".format(datatype, saved_path)) else: if os.path.exists(saved_path): print("loading {}_raw2df...".format(datatype)) df = pd.read_csv(saved_path) if datatype == "event_entity": self.rdf_triplets_event_entity = df if datatype == "entity_entity": self.rdf_triplets_entity_entity = df print("loading {}_raw2df succeed!".format(datatype)) else: raise FileNotFoundError("processed_{}_path does not exists!".format(datatype)) if describe: print("rdf_triplets_{}_len".format(datatype), len(df)) def event_entity_raw2df(self, reprocess=True, describe=True): """ 找出事件与实体,实体与事件的所有关系,并转化成dataframe格式保存 原始格式--》嵌套字典格式--》存储格式dataframe 原始格式 relation结点 subject event/entity (头结点) relation结点 object event/entity (尾结点) relation结点 roleType 比如参与者(关系) relation结点 hasbegintimestamp 时间 relation结点 hasendtimestamp 时间 嵌套字典格式 {relation结点:{头结点,关系,尾结点,开始时间,结束时间}。。。。。。。。。。} 存储格式 事件/实体 关系 实体/事件 开始时间 结束时间 如果有空值,则用-1表示,多个关系则随机选取一个 """ self._node_relation_datatype_raw2df(reprocess=reprocess, describe=describe, datatype="event_entity", raw_data_path=self.raw_event_entity_path, saved_path=self.processed_event_entity_path) def entity_entity_raw2df(self, reprocess=True, describe=True): """ 找出实体与实体的所有关系,并转化成dataframe格式保存 原始格式--》嵌套字典格式--》存储格式dataframe 原始格式 relation结点 subject entity (头结点) relation结点 object entity (尾结点) relation结点 roleType 比如参与者(关系) relation结点 hasbegintimestamp 时间 relation结点 hasendtimestamp 时间 嵌套字典格式 {relation结点:{头结点,关系,尾结点,开始时间,结束时间}。。。。。。。。。。} 存储格式 事件/实体 关系 实体/事件 开始时间 结束时间 如果有空值,则用-1表示,多个关系则随机选取一个 """ self._node_relation_datatype_raw2df(reprocess=reprocess, describe=describe, datatype="entity_entity", raw_data_path=self.raw_entity_entity_path, saved_path=self.processed_entity_entity_path) def count_event_node_num(self, reprocess=True, describe=True, event_event=True, event_entity=True): """ 统计事件节点的度 :param reprocess: True重新处理 :param describe: True展示数据描述 :param event_event: True统计event-event数据的事件节点数据量 :param event_entity: True统计event-entity数据的事件节点数据量 :return: None """ def count_node(rdf_triplets): for i, row in tqdm(rdf_triplets.iterrows(), total=len(rdf_triplets)): if row["head"] in self.event_dict.keys(): self.event_dict[row["head"]] = self.event_dict[row["head"]] + 1 if row["tail"] in self.event_dict.keys(): self.event_dict[row["tail"]] = self.event_dict[row["tail"]] + 1 def show(degree): print("event_node degree > %d " % (degree), "num", sum(np.array(list(node_rank)) > degree), "percent", "%.2f%%" % (sum(np.array(list(node_rank)) > degree) / event_len * 100)) if reprocess: if event_event: count_node(self.rdf_triplets_event_event) if event_entity: count_node(self.rdf_triplets_event_entity) json.dump(self.event_dict, open(self.event_node_count_path, "w"), indent=4, sort_keys=True) print("event_node_count has been saved in {}".format(self.event_node_count_path)) else: if os.path.exists(self.event_node_count_path): print("loading event_node_count...") with open(self.event_node_count_path) as file: self.event_dict = json.load(file) print("loading event_node_count succeed!") else: raise FileNotFoundError("event_node_count_path does not exists!") if describe: print("top 10 event_node:") count_node_rank_item = sorted(self.event_dict.items(), key=lambda x: x[1], reverse=True) print(count_node_rank_item[:10]) node_rank = sorted(self.event_dict.values(), reverse=True) event_len = sum(np.array(list(node_rank)) > 0) print("all_event_num", event_len) # interval=math.floor(event_len/100) # sample_index=np.arange(100)*interval # sample_rank=np.array(list(node_rank))[sample_index] # print(sample_rank) for degree in self.event_degree_list: show(degree) def count_entity_node_num(self, reprocess=True, describe=True, entity_entity=True, event_entity=True): """ 统计实体节点的度 :param reprocess: True重新处理 :param describe: True展示数据描述 :param entity_entity: True统计entity-entity数据的事件节点数据量 :param event_entity: True统计event-entity数据的事件节点数据量 :return: None """ def count_node(rdf_triplets): for i, row in tqdm(rdf_triplets.iterrows(), total=len(rdf_triplets)): if row["head"] in self.entity_dict.keys(): self.entity_dict[row["head"]] = self.entity_dict[row["head"]] + 1 if row["tail"] in self.entity_dict.keys(): self.entity_dict[row["tail"]] = self.entity_dict[row["tail"]] + 1 def show(degree): print("entity_node degree > %d " % (degree), "num", sum(np.array(list(node_rank)) > degree), "percent", "%.2f%%" % (sum(np.array(list(node_rank)) > degree) / entity_len * 100)) if reprocess: if entity_entity: count_node(self.rdf_triplets_entity_entity) if event_entity: count_node(self.rdf_triplets_event_entity) json.dump(self.entity_dict, open(self.entity_node_count_path, "w"), indent=4, sort_keys=True) print("entity_node_count has been saved in {}".format(self.entity_node_count_path)) else: if os.path.exists(self.entity_node_count_path): print("loading entity_node_count...") with open(self.entity_node_count_path) as file: self.entity_dict = json.load(file) print("loading entity_node_count succeed!") else: raise FileNotFoundError("entity_node_count_path does not exists!") if describe: print("top 10 entity_node:") count_node_rank_item = sorted(self.entity_dict.items(), key=lambda x: x[1], reverse=True) print(count_node_rank_item[:10]) node_rank = self.entity_dict.values() entity_len = sum(np.array(list(node_rank)) > 0) print("all_entity_num", entity_len) # interval=math.floor(entity_len/100) # sample_index=np.arange(100)*interval # sample_rank=np.array(list(node_rank))[sample_index] # print(sample_rank) for degree in self.entity_degree_list: show(degree) def filt_event_event(self, event_degree, reprocess=True, describe=True): """ 事件-事件 三元组过滤 :param event_degree: 保留事件节点的度大于degree 的三元组 """ if reprocess: filt_event_set = set([key for key, value in self.event_dict.items() if value > event_degree]) print(len(filt_event_set)) self.filt_triplets_event_event = list() for i, row in tqdm(self.rdf_triplets_event_event.iterrows(), total=len(self.rdf_triplets_event_event)): if row["head"] in filt_event_set and row["tail"] in filt_event_set: self.filt_triplets_event_event.append(row[1:]) self.filt_event_set.add(row["head"]) self.filt_event_set.add(row["tail"]) self.filt_relation_set.add(row["relation"]) self.filt_triplets_event_event = pd.DataFrame(self.filt_triplets_event_event) self.filt_triplets_event_event.columns = ["head", "relation", "tail", "start_time", "end_time"] self.filt_triplets_event_event.to_csv(self.filt_event_event_path) print("filt_triplets_event_event has been saved in {}".format(self.filt_event_event_path)) else: if os.path.exists(self.filt_event_event_path): print("loading {}...".format(self.filt_event_event_path)) self.filt_triplets_event_event = pd.read_csv(self.filt_event_event_path) print("loading {} succeed!".format(self.filt_triplets_event_event)) else: raise FileNotFoundError("{} does not exists!".format(self.filt_triplets_event_event)) if describe: print("filt_triplets_event_event_len", len(self.filt_triplets_event_event)) print("raw_triplets_event_event_len", len(self.rdf_triplets_event_event)) print("filt_percentage %.2f%%" % ( len(self.filt_triplets_event_event) * 100 / len(self.rdf_triplets_event_event))) def filt_event_entity(self, event_degree, entity_degree, reprocess=True, describe=True): """ 事件-实体 三元组过滤 :param event_degree: 保留事件节点的度大于degree 的三元组 """ if reprocess: filt_entity_set = set([key for key, value in self.entity_dict.items() if value > entity_degree]) filt_event_set = set([key for key, value in self.event_dict.items() if value > event_degree]) self.filt_triplets_event_entity = list() for i, row in tqdm(self.rdf_triplets_event_entity.iterrows(), total=len(self.rdf_triplets_event_entity)): if row["head"] in filt_event_set and row["tail"] in filt_entity_set: self.filt_triplets_event_entity.append(row[1:]) self.filt_event_set.add(row["head"]) self.filt_entity_set.add(row["tail"]) self.filt_relation_set.add(row["relation"]) if row["head"] in filt_entity_set and row["tail"] in filt_event_set: self.filt_triplets_event_entity.append(row[1:]) self.filt_event_set.add(row["tail"]) self.filt_entity_set.add(row["head"]) self.filt_relation_set.add(row["relation"]) self.filt_triplets_event_entity = pd.DataFrame(self.filt_triplets_event_entity) self.filt_triplets_event_entity.columns = ["head", "relation", "tail", "start_time", "end_time"] self.filt_triplets_event_entity.to_csv(self.filt_event_entity_path) print("filt_triplets_event_entity has been saved in {}".format(self.filt_event_entity_path)) else: if os.path.exists(self.filt_event_entity_path): print("loading {}...".format(self.filt_event_entity_path)) self.filt_triplets_event_entity = pd.read_csv(self.filt_event_entity_path) print("loading {} succeed!".format(self.filt_triplets_event_entity)) else: raise FileNotFoundError("{} does not exists!".format(self.filt_triplets_event_entity)) if describe: print("filt_triplets_event_entity_len", len(self.filt_triplets_event_entity)) print("raw_triplets_event_entity_len", len(self.rdf_triplets_event_entity)) print("filt_percentage %.2f%%" % ( len(self.filt_triplets_event_entity) * 100 / len(self.rdf_triplets_event_entity))) def filt_entity_entity(self, entity_degree, reprocess=True, describe=True): """ 实体-实体 三元组过滤 :param entity_degree: 保留实体节点的度大于degree 的三元组 """ if reprocess: filt_entity_set = set([key for key, value in self.entity_dict.items() if value > entity_degree]) print(len(filt_entity_set)) self.filt_triplets_entity_entity = list() for i, row in tqdm(self.rdf_triplets_entity_entity.iterrows(), total=len(self.rdf_triplets_entity_entity)): if row["head"] in filt_entity_set and row["tail"] in filt_entity_set: self.filt_triplets_entity_entity.append(row[1:]) self.filt_entity_set.add(row["head"]) self.filt_entity_set.add(row["tail"]) self.filt_relation_set.add(row["relation"]) self.filt_triplets_entity_entity = pd.DataFrame(self.filt_triplets_entity_entity) self.filt_triplets_entity_entity.columns = ["head", "relation", "tail", "start_time", "end_time"] self.filt_triplets_entity_entity.to_csv(self.filt_entity_entity_path) print("filt_triplets_entity_entity has been saved in {}".format(self.filt_entity_entity_path)) else: if os.path.exists(self.filt_entity_entity_path): print("loading {}...".format(self.filt_entity_entity_path)) self.filt_triplets_entity_entity = pd.read_csv(self.filt_entity_entity_path) print("loading {} succeed!".format(self.filt_triplets_entity_entity)) else: raise FileNotFoundError("{} does not exists!".format(self.filt_triplets_entity_entity)) if describe: print("filt_triplets_entity_entity_len", len(self.filt_triplets_entity_entity)) print("raw_triplets_entity_entity_len", len(self.rdf_triplets_entity_entity)) print("filt_percentage %.2f%%" % ( len(self.filt_triplets_entity_entity) * 100 / len(self.rdf_triplets_entity_entity))) def create_subeventkg_rdf2name_all(self, event_degree, entity_degree, reprocess=True): """ 建立rdf转name的三个字典 """ if reprocess: filt_event_set = set([key for key, value in self.event_dict.items() if value > event_degree]) filt_entity_set = set([key for key, value in self.entity_dict.items() if value > entity_degree]) filt_relation_set = set() for i, row in tqdm(self.rdf_triplets_event_event.iterrows(), total=len(self.rdf_triplets_event_event)): if row["head"] in filt_event_set and row["tail"] in filt_event_set: filt_relation_set.add(row[2]) for i, row in tqdm(self.rdf_triplets_event_entity.iterrows(), total=len(self.rdf_triplets_event_entity)): if (row["head"] in filt_event_set and row["tail"] in filt_entity_set) \ or (row["head"] in filt_entity_set and row["tail"] in filt_event_set): filt_relation_set.add(row[2]) for i, row in tqdm(self.rdf_triplets_entity_entity.iterrows(), total=len(self.rdf_triplets_entity_entity)): if row["head"] in filt_entity_set and row["tail"] in filt_entity_set: filt_relation_set.add(row[2]) index = 0 for event in tqdm(filt_event_set): self.event_rdf2name_dict[event] = "Q_{}".format(index) index = index + 1 index = 0 for entity in tqdm(filt_entity_set): self.entity_rdf2name_dict[entity] = "E_{}".format(index) index = index + 1 index = 0 for relation in tqdm(filt_relation_set): self.relation_rdf2name_dict[relation] = "R_{}".format(index) index = index + 1 json.dump(self.event_rdf2name_dict, open(self.event_rdf2name_path, "w"), indent=4, sort_keys=True) print("event_rdf2name has been saved in {}".format(self.event_rdf2name_path)) json.dump(self.entity_rdf2name_dict, open(self.entity_rdf2name_path, "w"), indent=4, sort_keys=True) print("entity_rdf2name has been saved in {}".format(self.entity_rdf2name_path)) json.dump(self.relation_rdf2name_dict, open(self.relation_rdf2name_path, "w"), indent=4, sort_keys=True) print("relation_rdf2name has been saved in {}".format(self.relation_rdf2name_path)) print("event_rdf2name_dict_len", len(self.event_rdf2name_dict)) print("entity_rdf2name_dict_len", len(self.entity_rdf2name_dict)) print("relation_rdf2name_dict_len", len(self.relation_rdf2name_dict)) else: print("loading {}...".format(self.event_rdf2name_path)) with open(self.event_rdf2name_path) as file: self.event_rdf2name_dict = json.load(file) print("event_rdf2name_dict_len", len(self.event_rdf2name_dict)) print("loading {}...".format(self.entity_rdf2name_path)) with open(self.entity_rdf2name_path) as file: self.entity_rdf2name_dict = json.load(file) print("entity_rdf2name_dict_len", len(self.entity_rdf2name_dict)) print("loading {}...".format(self.relation_rdf2name_path)) with open(self.relation_rdf2name_path) as file: self.relation_rdf2name_dict = json.load(file) print("relation_rdf2name_dict_len", len(self.relation_rdf2name_dict)) def create_relation_rdf2type_name(self, reprocess): if reprocess: self.type_name_dict = dict() file_list = ["property_labels.nq", "type_labels_dbpedia.nq"] for single_file in file_list: with open(single_file, "r", encoding="utf-8") as file: print("creating relation_rdf2name...") for line in tqdm(file, total=self._get_num_lines(single_file)): x = line.strip().split(" ") if x[1] == "<http://www.w3.org/2000/01/rdf-schema#label>": match_instance = re.findall(r"^<.*?> <.*?> (\".*?\"@en) <.*?> \D", line) if len(match_instance) != 0: self.type_name_dict[x[0]] = match_instance[0][1:-4] json.dump(self.type_name_dict, open("rdf2type_name", "w"), indent=4, sort_keys=True) else: with open("rdf2type_name") as file: self.type_name_dict = json.load(file) def create_subeventkg_event_lut(self, event_degree, reprocess=True): if reprocess: # filt_event_set=set([key for key,value in self.event_dict.items() if value>event_degree]) filt_event_set = self.filt_event_set event_lut = defaultdict(dict) self.new_event_dict = dict() index = 0 for key, value in self.event_rdf2name_dict.items(): if key in filt_event_set: new_value = "Q_{}".format(index) index = index + 1 self.new_event_dict[key] = new_value event_lut[new_value]["name"] = -1 event_lut[new_value]["name_rdf"] = key event_lut[new_value]["type"] = -1 event_lut[new_value]["type_rdf"] = -1 event_lut[new_value]["description"] = -1 # event_lut[value]["begintime"] = -1 # event_lut[value]["endtime"] = -1 print("event index num", index) with open(self.raw_events_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(self.raw_events_path)): x = line.strip().split(" ") if x[1] == "<http://www.w3.org/2000/01/rdf-schema#label>" and x[0] in filt_event_set: match_instance = re.findall(r"^<.*?> <.*?> (\".*?\"@en) <.*?> \D", line) if len(match_instance) != 0: event_lut[self.new_event_dict[x[0]]]["name"] = match_instance[0][1:-4] if x[1] == "<http://purl.org/dc/terms/description>" and x[0] in filt_event_set: match_instance = re.findall(r"^<.*?> <.*?> (\".*?\"@en) <.*?> \D", line) if len(match_instance) != 0: event_lut[self.new_event_dict[x[0]]]["description"] = match_instance[0][1:-4] with open("types_dbpedia.nq", "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines("types_dbpedia.nq")): x = line.strip().split(" ") if x[1] == "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>" and x[0] in filt_event_set: event_lut[self.new_event_dict[x[0]]]["type_rdf"] = x[2] event_lut[self.new_event_dict[x[0]]]["type"] = self.type_name_dict[x[2]] # with open("relations_base.nq","r",encoding="utf-8") as file: # for line in tqdm(file, total=self._get_num_lines("relations_base.nq")): # x=line.strip().split(" ") # if x[1]=="<http://semanticweb.cs.vu.nl/2009/11/sem/hasBeginTimeStamp>" and x[0] in filt_event_set: # event_lut[self.event_rdf2name_dict[x[0]]]["begintime"] = x[2][1:11] # if x[1] == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasEndTimeStamp>" and x[0] in filt_event_set: # event_lut[self.event_rdf2name_dict[x[0]]]["endtime"] = x[2][1:11] json.dump(event_lut, open(self.event_lut_path, "w"), indent=4, sort_keys=True) def create_subeventkg_entity_lut(self, entity_degree, reprocess=True): if reprocess: # filt_entity_set=set([key for key,value in self.entity_dict.items() if value>entity_degree]) filt_entity_set = self.filt_entity_set entity_lut = defaultdict(dict) self.new_entity_dict = dict() index = 0 for key, value in self.entity_rdf2name_dict.items(): if key in filt_entity_set: new_value = "E_{}".format(index) index = index + 1 self.new_entity_dict[key] = new_value entity_lut[new_value]["name"] = -1 entity_lut[new_value]["name_rdf"] = key entity_lut[new_value]["type"] = -1 entity_lut[new_value]["type_rdf"] = -1 entity_lut[new_value]["description"] = -1 # entity_lut[value]["begintime"] = -1 # entity_lut[value]["endtime"] = -1 print("entity index num", index) with open(self.raw_entities_path, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(self.raw_entities_path)): x = line.strip().split(" ") if x[1] == "<http://www.w3.org/2000/01/rdf-schema#label>" and x[0] in filt_entity_set: match_instance = re.findall(r"^<.*?> <.*?> (\".*?\"@en) <.*?> \D", line) if len(match_instance) != 0: entity_lut[self.new_entity_dict[x[0]]]["name"] = match_instance[0][1:-4] file_list = ["types_dbpedia.nq", "types.nq"] for single_file in file_list: with open(single_file, "r", encoding="utf-8") as file: for line in tqdm(file, total=self._get_num_lines(single_file)): x = line.strip().split(" ") if x[1] == "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>" and x[0] in filt_entity_set: entity_lut[self.new_entity_dict[x[0]]]["type_rdf"] = x[2] entity_lut[self.new_entity_dict[x[0]]]["type"] = self.type_name_dict[x[2]] # with open("relations_base.nq","r",encoding="utf-8") as file: # for line in tqdm(file, total=self._get_num_lines("relations_base.nq")): # x=line.strip().split(" ") # if x[1]=="<http://semanticweb.cs.vu.nl/2009/11/sem/hasBeginTimeStamp>" and x[0] in filt_entity_set: # entity_lut[self.entity_rdf2name_dict[x[0]]]["begintime"] = x[2][1:11] # if x[1] == "<http://semanticweb.cs.vu.nl/2009/11/sem/hasEndTimeStamp>" and x[0] in filt_entity_set: # entity_lut[self.entity_rdf2name_dict[x[0]]]["endtime"] = x[2][1:11] json.dump(entity_lut, open(self.entity_lut_path, "w"), indent=4, sort_keys=True) def create_subeventkg_relation_lut(self, reprocess=True): if reprocess: print("开始") my_dict = defaultdict(dict) for key, value in self.relation_rdf2name_dict.items(): my_dict[value]["rdf"] = key my_dict[value]["name"] = -1 for key, value in self.relation_rdf2name_dict.items(): my_dict[value]["rdf"] = key try: my_dict[value]["name"] = self.type_name_dict[key] except Exception as e: match_instance = re.findall(r"<.*?/.*?/.*?/.*?/(.*?)>$", key) my_dict[value]["name"] = match_instance[0] json.dump(my_dict, open(self.relation_lut_path, "w"), indent=4, sort_keys=True) def merge_all_data_convert_name(self, reprocess=True, event_degree=10, entity_degree=10): filt_event_set = set([key for key, value in self.event_dict.items() if value > event_degree]) filt_entity_set = set([key for key, value in self.entity_dict.items() if value > entity_degree]) if reprocess: df_lines = [] self.total_rdf_triplets = pd.concat([self.filt_triplets_event_event, self.filt_triplets_event_entity, self.filt_triplets_entity_entity], axis=0) for i, row in tqdm(self.total_rdf_triplets.iterrows(), total=len(self.total_rdf_triplets)): if row["head"] in filt_event_set: new_head = self.new_event_dict[row["head"]] if row["head"] in filt_entity_set: new_head = self.new_entity_dict[row["head"]] new_relation = self.relation_rdf2name_dict[row["relation"]] if row["tail"] in filt_event_set: new_tail = self.new_event_dict[row["tail"]] if row["tail"] in filt_entity_set: new_tail = self.new_entity_dict[row["tail"]] if str(row["start_time"]) != "-1": new_start_time = row["start_time"][1:11] else: new_start_time = row["start_time"] if str(row["end_time"]) != "-1": new_end_time = row["end_time"][1:11] else: new_end_time = row["end_time"] df_lines.append([new_head, new_relation, new_tail, new_start_time, new_end_time]) self.triplets = pd.DataFrame(df_lines) self.triplets.columns = ["head", "relation", "tail", "start_time", "end_time"] self.triplets.to_csv("all_triplets_data.txt", index=None) else: self.triplets =
pd.read_csv("all_triplets_data.txt", low_memory=False)
pandas.read_csv
#coding=utf-8 import os import re import json import time import redis import socket import random import requests import threading import pandas as pd from threading import Thread from multiprocessing import Process, Queue, Lock agents = [ "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.211.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.209.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.208.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.207.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.206.1 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.206.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.204.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.203.2 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.203.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 (KHTML, like Gecko) Chrome/4.0.202.0 Safari/525.13. ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.201.1 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.201.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.198.0 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.197.11 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.196.2 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.6 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML,like Gecko) Chrome/3.0.195.27 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.27 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.24 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.21 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.20 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.17 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.10 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.1 Safari/532.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/531.2 (KHTML, like Gecko) Chrome/3.0.191.3 Safari/531.2 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/531.0 (KHTML, like Gecko) Chrome/3.0.191.0 Safari/531.0 ", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/530.8 (KHTML, like Gecko) Chrome/2.0.178.0 Safari/530.8 "] url = 'http://zhaopin.baidu.com/api/quanzhiasync?' redis_save = redis.Redis(host='127.0.0.1', port=6379, db=0) class Spider_Job(object): __params = {'rn': 20, 'tid': 4139, 'ie': 'utf8', 'oe': 'utf8', 'sort_type': 1, 'query': None, 'city': None, 'detailmode': 'close'} # 初始化 def __init__(self, url, jobs='python', areas=None, page_num=1, pro_locks=None, pro_queue=None): self.__pro_locks = pro_locks self.__pro_queue = pro_queue self.__params['query'] = jobs self.__params['city'] = areas self.__page_total = page_num self.__total_list = [] self.__thd_area = areas self.__thd_jobs = jobs self.__file_name = jobs+'-'+areas+time.strftime('%Y-%m-%d',time.localtime(time.time())) self.url_list = [url+'pn={}'.format(nums*20) for nums in range(self.__page_total)] # 开始多线程爬取数据 def __thd_spider_data(self, url_nums, thd_lock): try: # 超时时间 socket.timeout = 7 thd_request = requests.get(self.url_list[url_nums], params=self.__params, headers={'User-Agent':random.choice(agents)}) data_source = thd_request.content.decode('utf-8') data_source = json.loads(data_source) data_display = data_source['data']['main']['data']['disp_data'] except Exception as error: print(error) return try: # 遍历数据并获取分类 for line in data_display: source_list = [] try: source_list.append({'公司名称': line['officialname']}) except Exception as error: print(error) source_list.append({'公司名称': line['commonname']}) # 企业类型 try: com_type = line['ori_employertype'] except Exception as error: try: source_list.append({'企业类型': line['employertype']}) except Exception as error: print(error) source_list.append({'企业类型': '未展示'}) else: source_list.append({'企业类型': com_type}) # 工作经验 try: experience = line['t_experience0'] except Exception as error: try: source_list.append({'工作经验': line['ori_experience']}) except Exception as error: print(error) source_list.append({'工作经验': '未展示'}) else: source_list.append({'工作经验': experience}) # 薪资范围 try: source_list.append({'薪资范围': line['t_salary0']}) except Exception as error: try: source_list.append({'薪资范围': line['salary']}) except Exception as error: print(error) source_list.append({'薪资范围': '未展示'}) try: source_list.append({'公司规模': line['size']}) except Exception as errror: try: source_list.append({'公司规模': line['ori_size']}) except Exception as error: # print(error) source_list.append({'公司规模': '未展示'}) try: source_list.append({'经营范围': line['industry']}) except Exception as error: try: source_list.append({'经营范围': line['jobfirstclass']}) except Exception as er: try: source_list.append({'经营范围': line['jobthirdclass']}) except Exception as er: print(er) source_list.append({'经营范围': '不限'}) # 公司网址 try: source_list.append({'公司网址': line['employerurl']}) except Exception as error: # print(error) source_list.append({'公司网址': '未展示'}) source_list.append({'学历要求': line['ori_education']}) source_list.append({'地区': line['district']}) source_list.append({'招聘来源': line['source']}) source_list.append({'职位名称': line['title']}) source_list.append({'职位描述': line['description_jd']}) source_list.append({'开始日期': line['startdate']}) source_list.append({'结束日期': line['enddate']}) # 字典形式 dicts = {} try: for list_dict in source_list: for name_key, name_value in list_dict.items(): try: dicts[name_key] = name_value except Exception as error: print(error) continue except Exception as error: print(error) # 将数据放到Redis数据库中 # try: # # redis_key = dicts['公司名称'] # redis_save.set(redis_key,dicts) # # except Exception as error: # # print(error) # continue # 将数据放到队列中 try: self.__pro_queue.put(dicts) except Exception as error: print(error) continue except Exception as error: print(error) else: print('------------------------{}-{},第{}页保存完成'.format(self.__thd_jobs, self.__thd_area, url_nums)) # 为每个线程添加一个随机时间 # time.sleep(random.randint(0,10)*0.001) # 根据任务数开启相应线程 def run_spider_thd(self): thd_list = [] thd_lock = threading.Lock() # 根据单个地区的页码数量创建相应数量的线程 for thd_st in range(self.__page_total): try: thd = Thread(target=self.__thd_spider_data, args=(thd_st, thd_lock)) thd.setDaemon(True) thd.start() except Exception as error: print(error) continue else: thd_list.append(thd) # 等待线程结束 for thd_end in thd_list: thd_end.join(timeout=8) print('\n{}-{}数据爬取完成,正在处理数据...\n'.format(self.__thd_area,self.__thd_jobs)) # 创建进程处理进行大分类爬取 class Pro_Spider(object): def __init__(self, pro_job, area_list, pro_total_num): self.__pro_job = pro_job self.__pro_area_list = area_list self.__pro_total_num = pro_total_num # 处理全局爬取的数据 def __deal_total_data(self, deal_list, file_name, save_queue): # 数据分类 dicts_propertys = ['公司名称', '企业类型', '公司规模', '经营范围', '地区', '招聘来源', '职位名称', '薪资范围', '工作经验', '学历要求', '职位描述', '开始日期', '结束日期', '公司网址'] # 使用列表推导式进行数据的分类处理 try: data_dicts = {mkey:[line[mkey] for line in deal_list] for mkey in dicts_propertys} except Exception as error: print(error) else: # 导出到excel job_file_class = 'Jobs_Data' if not job_file_class in os.listdir('./'): os.mkdir(job_file_class) deal_data =
pd.DataFrame.from_dict(data_dicts, orient='index')
pandas.DataFrame.from_dict
""" Mixture Class ============= Mixture of expert using clustering machine learning to form local surrogate models. :Example: :: >> from batman.surrogate import Mixture >> import numpy as np >> samples = np.array([[1., 5.], [2., 5.], [8., 5.], [9., 5.]]) >> data = np.array([[50., 51., 52.], [49., 48., 47.], [10., 11., 12,], [9., 8., 7.]]) >> sample_new = np.array([[0.5, 5.],[10., 5.],[8.5, 5.]]) >> plabels = ['x1', 'x2'] >> corners = np.array([[1., 5.], [9., 5.]]) >> fsizes = 3 >> algo = Mixture(samples, data, plabels, corners, fsizes) >> algo.evaluate(sample_new) (array([[30.196, 31.196, 32.196], [29. , 28. , 27. ], [28.804, 27.804, 26.804]]), array([[19.999, 19.999, 19.999], [20. , 20. , 20. ], [19.999, 19.999, 19.999]])) >> algo.estimate_quality() 1.0, array([0., 0.]) """ import logging import numpy as np from sklearn.decomposition import PCA import sklearn.mixture import sklearn.cluster import sklearn.gaussian_process import sklearn.svm import sklearn.naive_bayes import sklearn.neighbors from sklearn import preprocessing import pandas as pd from pandas.plotting import parallel_coordinates import matplotlib.pyplot as plt from matplotlib.colors import Normalize from ..misc import save_show class Mixture: """Mixture class. Unsupervised machine learning separate the DoE into clusters, supervised machine learning classify new sample to a cluster and local models predict the new sample.""" logger = logging.getLogger(__name__) def __init__(self, samples, data, corners, fsizes=None, pod=None, standard=True, local_method=None, pca_percentage=0.8, clusterer='cluster.KMeans(n_clusters=2)', classifier='gaussian_process.GaussianProcessClassifier()'): """Cluster data and fit local models. 1. If :attr:`data` is not scalar, compute PCA on :attr:`data`. 2. Cluster data. 3. Each sample is affiliated to a cluster. 4. Fit a classifier to handle new samples. 5. A local model for each cluster is built. If :attr:`local_method` is not None, set as list of dict with options. Ex: `[{'kriging': {**args}}]` :param array_like sample: Sample of parameters of Shape (n_samples, n_params). :param array_like data: Sample of realization which corresponds to the sample of parameters :attr:`sample` (n_samples, n_features). :param array_like corners: Hypercube ([min, n_features], [max, n_features]). :param int fsizes: Number of components of output features. :param dict pod: Whether to compute POD or not in local models. - **tolerance** (float) -- Basis modes filtering criteria. - **dim_max** (int) -- Number of basis modes to keep. :param bool standard: Whether to standardize data before clustering. :param lst(dict) local_method: List of local surrrogate models for clusters or None for Kriging local surrogate models. :param float pca_percentage: Percentage of information kept for PCA. :param str clusterer: Clusterer from sklearn (unsupervised machine learning). http://scikit-learn.org/stable/modules/clustering.html#clustering :param str classifier: Classifier from sklearn (supervised machine learning). http://scikit-learn.org/stable/supervised_learning.html """ self.scaler = preprocessing.MinMaxScaler() self.scaler.fit(np.array(corners)) samples = self.scaler.transform(samples) corners = [[0 for i in range(samples.shape[1])], [1 for i in range(samples.shape[1])]] # Only do the clustering on the sensor if fsizes is None: self.fsizes = data.shape[1] else: self.fsizes = fsizes if data.shape[1] > self.fsizes: clust = data[:, self.fsizes:] else: clust = data # Computation of PCA for vector output if clust.shape[1] > 1: pca = PCA(n_components=pca_percentage) pca.fit(clust.T) clust = pca.components_.T if standard is True: scaler = preprocessing.StandardScaler() clust = scaler.fit_transform(clust) # Acquisition of clusterer try: # Clusterer is already a sklearn object self.logger.debug('Clusterer info:\n{}' .format(clusterer.get_params)) except AttributeError: # Instanciate clusterer from str try: clusterer = eval("sklearn." + clusterer, {'__builtins__': None}, {'sklearn': __import__('sklearn'), 'sklearn.cluster': __import__('sklearn.cluster'), 'sklearn.mixture': __import__('sklearn.mixture')}) except (TypeError, AttributeError): raise AttributeError('Clusterer unknown from sklearn.') self.logger.debug('Clusterer info:\n{}' .format(clusterer.get_params())) # Clustering try: labels = clusterer.fit_predict(clust) except AttributeError: clusterer.fit(clust) labels = clusterer.predict(clust) self.logger.debug('Cluster of data :{}'.format(samples, labels)) self.clusters_id = np.unique(labels) # Acqusition of Classifier try: # Classifier is already a sklearn object self.logger.debug('Classifier info:\n{}' .format(classifier.get_params)) except AttributeError: # Instanciate classifier from str try: classifier = eval('ske.' + classifier, {'__builtins__': None}, {'ske': __import__('sklearn'), 'sklearn.svm': __import__('sklearn.svm'), 'sklearn.naive_bayes': __import__('sklearn.naive_bayes'), 'sklearn.gaussian_process': __import__('sklearn.gaussian_process'), 'sklearn.neighbors': __import__('sklearn.neighbors'), 'sklearn.ensemble': __import__('sklearn.ensemble')}) except (TypeError, AttributeError): raise AttributeError('Classifier unknown from sklearn.') self.logger.debug('Classifier info:\n{}' .format(classifier.get_params())) # Classification self.classifier = classifier self.classifier.fit(samples, labels) self.indice_clt = {} self.local_models = {} # Creation of local models for i, k in enumerate(self.clusters_id): idx = np.where(labels == k)[0] self.indice_clt[k] = list(idx) sample_ = [samples[j] for j in self.indice_clt[k]] data_ = [data[j, :self.fsizes] for j in self.indice_clt[k]] if pod is not None: from otsurrogate.pod import Pod local_pod = Pod(corners, **pod) local_pod.fit(space=sample_, data=data_) data_ = local_pod.VS else: local_pod = None from otsurrogate.surrogate import SurrogateModel if local_method is None: self.local_models[k] = SurrogateModel('kriging', corners, plabels=None) else: method = [lm for lm in local_method[i]][0] self.local_models[k] = SurrogateModel(method, corners, plabels=None, **local_method[i][method]) self.local_models[k].fit(np.asarray(sample_), np.asarray(data_), pod=local_pod) def boundaries(self, samples, plabels=None, fname=None): """Boundaries of clusters in the parameter space. Plot the boundaries for 2D and 3D hypercube or parallel coordinates plot for more than 3D to see the influence of sample variables on cluster affiliation. :param array_like samples: Sample features (n_samples, n_features). :param list(str) plabels: Names of each parameters (n_features). :param str fname: Whether to export to filename or display the figures. :returns: figure. :rtype: Matplotlib figure instances, Matplotlib AxesSubplot instances. """ samples = np.asarray(samples) samples_ = self.scaler.transform(samples) classif_samples = self.classifier.predict(samples_) n_dim = samples.shape[1] plabels = ['x' + str(i) for i in range(n_dim)]\ if plabels is None else plabels resolution = 20 cmap = plt.cm.Set1 color_clt = Normalize(vmin=min(self.clusters_id), vmax=max(self.clusters_id), clip=True) markers = ['x', 'o', '+', 'h', '*', 's', 'p', '<', '>', '^', 'v'] mins = samples.min(axis=0) maxs = samples.max(axis=0) fig, ax = plt.subplots() if n_dim == 1: xx = np.linspace(mins, maxs, resolution)[:, None] mesh = self.scaler.transform(xx) classif = self.classifier.predict(mesh) ax.scatter(xx, np.zeros(resolution), alpha=0.3, c=cmap(color_clt(classif))) for i, k in enumerate(self.clusters_id): samples_ = samples[classif_samples == k] ax.scatter(samples_, np.zeros(len(samples_)), c=cmap(color_clt(k)), marker=markers[i]) ax.set_xlabel(plabels[0]) elif n_dim == 2: xx, yy = np.meshgrid(np.linspace(mins[0], maxs[0], resolution), np.linspace(mins[1], maxs[1], resolution)) mesh = np.stack((xx.ravel(), yy.ravel()), axis=-1) mesh = self.scaler.transform(mesh) classif = self.classifier.predict(mesh) classif = classif.reshape(xx.shape) ax.imshow(classif, extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', interpolation='gaussian') for i, k in enumerate(self.clusters_id): ax.scatter(samples[:, 0][classif_samples == k], samples[:, 1][classif_samples == k], c=cmap(color_clt(k)), marker=markers[i]) ax.set_xlabel(plabels[0]) ax.set_ylabel(plabels[1]) else: classif_samples = classif_samples.reshape(-1, 1) samples_ = np.concatenate((samples_, classif_samples), axis=-1) df = pd.DataFrame(samples_, columns=plabels + ["cluster"]) ax =
parallel_coordinates(df, "cluster")
pandas.plotting.parallel_coordinates
# Copyright 2019 QuantRocket LLC - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # To run: python -m unittest discover -s tests/ -p test*.py -t . import unittest try: from unittest.mock import patch except ImportError: # py27 from mock import patch import pandas as pd import pytz import numpy as np import requests from quantrocket import get_prices, get_prices_reindexed_like from quantrocket.exceptions import ParameterError, MissingData, NoHistoricalData class GetPricesTestCase(unittest.TestCase): """ Test cases for `quantrocket.get_prices`. """ def test_complain_if_invalid_timezone(self): """ Tests error handling when the timezone is invalid. """ with self.assertRaises(ParameterError) as cm: get_prices("my-db", timezone="Timbuktu") self.assertIn("invalid timezone: Timbuktu (see `pytz.all_timezones` for choices)", str(cm.exception)) @patch("quantrocket.price.list_realtime_databases") @patch("quantrocket.price.list_history_databases") @patch("quantrocket.price.list_bundles") @patch("quantrocket.price.get_history_db_config") @patch("quantrocket.price.download_history_file") @patch("quantrocket.price.download_master_file") def test_pass_args_correctly_single_db(self, mock_download_master_file, mock_download_history_file, mock_get_history_db_config, mock_list_bundles, mock_list_history_databases, mock_list_realtime_databases): """ Tests that args are correctly passed to download_history_file, download_master_file, and get_db_config, when there is a single db. """ def _mock_get_history_db_config(db): return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def _mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ])) prices.to_csv(f, index=False) def _mock_list_history_databases(): return [ "usa-stk-1d", "demo-stk-1min" ] def _mock_list_realtime_databases(): return {} def _mock_list_bundles(): return {} mock_list_history_databases.side_effect = _mock_list_history_databases mock_list_realtime_databases.side_effect = _mock_list_realtime_databases mock_list_bundles.side_effect = _mock_list_bundles mock_download_history_file.side_effect = _mock_download_history_file mock_get_history_db_config.side_effect = _mock_get_history_db_config get_prices( "usa-stk-1d", start_date="2018-04-01", end_date="2018-04-03", universes="usa-stk", sids=["FI12345","FI23456"], fields=["Close"], exclude_universes=["usa-stk-pharm"], exclude_sids=[99999], cont_fut=False, timezone="America/New_York") mock_download_master_file.assert_not_called() self.assertEqual(len(mock_get_history_db_config.mock_calls), 1) db_config_call = mock_get_history_db_config.mock_calls[0] _, args, kwargs = db_config_call self.assertEqual(args[0], "usa-stk-1d") mock_list_history_databases.assert_called_once_with() mock_list_realtime_databases.assert_called_once_with() mock_list_bundles.assert_called_once_with() history_call = mock_download_history_file.mock_calls[0] _, args, kwargs = history_call self.assertEqual(args[0], "usa-stk-1d") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456"]) self.assertEqual(kwargs["start_date"], "2018-04-01") self.assertEqual(kwargs["end_date"], "2018-04-03") self.assertListEqual(kwargs["fields"], ["Close"]) self.assertEqual(kwargs["universes"], "usa-stk") self.assertListEqual(kwargs["exclude_sids"], [99999]) self.assertListEqual(kwargs["exclude_universes"], ["usa-stk-pharm"]) self.assertFalse(kwargs["cont_fut"]) @patch("quantrocket.price.list_realtime_databases") @patch("quantrocket.price.list_history_databases") @patch("quantrocket.price.list_bundles") @patch("quantrocket.price.get_realtime_db_config") @patch("quantrocket.price.get_history_db_config") @patch("quantrocket.price.get_bundle_config") @patch("quantrocket.price.download_market_data_file") @patch("quantrocket.price.download_history_file") @patch("quantrocket.price.download_bundle_file") def test_pass_args_correctly_multi_db( self, mock_download_bundle_file, mock_download_history_file, mock_download_market_data_file, mock_get_bundle_config, mock_get_history_db_config, mock_get_realtime_db_config, mock_list_bundles, mock_list_history_databases, mock_list_realtime_databases): """ Tests that args are correctly passed to download_history_file, download_master_file, and get_db_config, when there are multiple dbs, including 2 history dbs, 1 realtime db, and 1 zipline bundle. """ def _mock_get_history_db_config(db): if db == "usa-stk-1d": return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } else: return { "bar_size": "1 day", "universes": ["japan-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def _mock_get_realtime_db_config(db): return { "bar_size": "1 day", "fields": ["LastClose", "LastOpen", "VolumeClose"], "tick_db_code": "demo-stk-taq" } def _mock_get_bundle_config(db): return { "ingest_type": "usstock", "sids": None, "universes": None, "free": False, "data_frequency": "minute", "calendar": "XNYS", "start_date": "2007-01-03" } def _mock_download_history_file(code, f, *args, **kwargs): if code == "usa-stk-1d": prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ])) else: prices = pd.DataFrame( dict( Sid=[ "FI56789", "FI56789", "FI56789", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", ], Close=[ 5900, 5920, 5950 ])) prices.to_csv(f, index=False) def _mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], LastClose=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ])) prices.to_csv(f, index=False) def _mock_download_bundle_file(code, f, *args, **kwargs): raise NoHistoricalData("No minute data matches the query parameters") def _mock_list_history_databases(): return [ "usa-stk-1d", "demo-stk-1min", "japan-stk-1d" ] def _mock_list_realtime_databases(): return { "demo-stk-taq": ["demo-stk-taq-1d"] } def _mock_list_bundles(): return { "usstock-1min": True } mock_download_history_file.side_effect = _mock_download_history_file mock_download_bundle_file.side_effect = _mock_download_bundle_file mock_download_market_data_file.side_effect = _mock_download_market_data_file mock_get_history_db_config.side_effect = _mock_get_history_db_config mock_get_realtime_db_config.side_effect = _mock_get_realtime_db_config mock_get_bundle_config.side_effect = _mock_get_bundle_config mock_list_bundles.side_effect = _mock_list_bundles mock_list_history_databases.side_effect = _mock_list_history_databases mock_list_realtime_databases.side_effect = _mock_list_realtime_databases get_prices( ["usa-stk-1d", "japan-stk-1d", "demo-stk-taq-1d", "usstock-1min"], start_date="2018-04-01", end_date="2018-04-03", sids=["FI12345","FI23456","FI56789"], fields=["Close", "LastClose"], data_frequency="daily") mock_list_history_databases.assert_called_once_with() mock_list_realtime_databases.assert_called_once_with() mock_list_bundles.assert_called_once_with() self.assertEqual(len(mock_get_history_db_config.mock_calls), 2) db_config_call = mock_get_history_db_config.mock_calls[0] _, args, kwargs = db_config_call db_config_call_arg1 = args[0] db_config_call = mock_get_history_db_config.mock_calls[1] _, args, kwargs = db_config_call db_config_call_arg2 = args[0] self.assertSetEqual({db_config_call_arg1, db_config_call_arg2}, {"usa-stk-1d", "japan-stk-1d"}) self.assertEqual(len(mock_download_history_file.mock_calls), 2) history_call = mock_download_history_file.mock_calls[0] _, args, kwargs = history_call self.assertEqual(args[0], "usa-stk-1d") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456","FI56789"]) self.assertEqual(kwargs["start_date"], "2018-04-01") self.assertEqual(kwargs["end_date"], "2018-04-03") # only supported subset of fields is requested self.assertListEqual(kwargs["fields"], ["Close"]) history_call = mock_download_history_file.mock_calls[1] _, args, kwargs = history_call self.assertEqual(args[0], "japan-stk-1d") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456","FI56789"]) self.assertEqual(kwargs["start_date"], "2018-04-01") self.assertEqual(kwargs["end_date"], "2018-04-03") self.assertListEqual(kwargs["fields"], ["Close"]) self.assertNotIn("data_frequency", kwargs) self.assertEqual(len(mock_get_realtime_db_config.mock_calls), 1) db_config_call = mock_get_realtime_db_config.mock_calls[0] _, args, kwargs = db_config_call self.assertEqual(args[0], "demo-stk-taq-1d") self.assertEqual(len(mock_download_market_data_file.mock_calls), 1) realtime_call = mock_download_market_data_file.mock_calls[0] _, args, kwargs = realtime_call self.assertEqual(args[0], "demo-stk-taq-1d") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456","FI56789"]) self.assertEqual(kwargs["start_date"], "2018-04-01") self.assertEqual(kwargs["end_date"], "2018-04-03") # only supported subset of fields is requested self.assertListEqual(kwargs["fields"], ["LastClose"]) self.assertNotIn("data_frequency", kwargs) # since we passed data_frequency, we didn't need to query the bundle config self.assertEqual(len(mock_get_bundle_config.mock_calls), 0) self.assertEqual(len(mock_download_bundle_file.mock_calls), 1) zipline_call = mock_download_bundle_file.mock_calls[0] _, args, kwargs = zipline_call self.assertEqual(args[0], "usstock-1min") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456","FI56789"]) self.assertEqual(kwargs["start_date"], "2018-04-01") self.assertEqual(kwargs["end_date"], "2018-04-03") # only supported subset of fields is requested self.assertListEqual(kwargs["fields"], ["Close"]) # data_frequency arg is passed self.assertEqual(kwargs["data_frequency"], "daily") @patch("quantrocket.price.download_market_data_file") def test_maybe_pass_timezone_to_realtime_db( self, mock_download_market_data_file): """ Tests that the timezone, if passed, is appended to the start_date and/or end_date, if passed when querying a realtime db. """ def mock_get_realtime_db_config(db): return { "bar_size": "1 day", "fields": ["LastClose", "LastOpen", "VolumeClose"], "tick_db_code": "demo-stk-taq" } def _mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], LastClose=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ])) prices.to_csv(f, index=False) def mock_list_history_databases(): return [] def mock_list_realtime_databases(): return { "demo-stk-taq": ["demo-stk-taq-1d"] } def mock_list_bundles(): return {} mock_download_market_data_file.side_effect = _mock_download_market_data_file with patch('quantrocket.price.get_realtime_db_config', new=mock_get_realtime_db_config): with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): # First, don't pass timezone get_prices( "demo-stk-taq-1d", start_date="2018-04-01", end_date="2018-04-03") self.assertEqual(len(mock_download_market_data_file.mock_calls), 1) realtime_call = mock_download_market_data_file.mock_calls[0] _, args, kwargs = realtime_call self.assertEqual(kwargs["start_date"], "2018-04-01") self.assertEqual(kwargs["end_date"], "2018-04-03") # Pass timezone and start_date but not end date get_prices( "demo-stk-taq-1d", start_date="2018-04-01", timezone="America/New_York") self.assertEqual(len(mock_download_market_data_file.mock_calls), 2) realtime_call = mock_download_market_data_file.mock_calls[1] _, args, kwargs = realtime_call self.assertEqual(kwargs["start_date"], "2018-04-01 America/New_York") self.assertEqual(kwargs["end_date"], None) # Pass timezone and start_date and end date get_prices( "demo-stk-taq-1d", start_date="2018-04-01", end_date="2018-04-03 15:00:00", timezone="America/New_York") self.assertEqual(len(mock_download_market_data_file.mock_calls), 3) realtime_call = mock_download_market_data_file.mock_calls[2] _, args, kwargs = realtime_call self.assertEqual(kwargs["start_date"], "2018-04-01 America/New_York") self.assertEqual(kwargs["end_date"], "2018-04-03 15:00:00 America/New_York") def test_query_eod_history_db(self): """ Tests maniuplation of a single EOD db. """ def mock_get_history_db_config(db): return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ], Volume=[ 15000, 7800, 12400, 98000, 179000, 142500 ] )) prices.to_csv(f, index=False) def mock_list_history_databases(): return [ "usa-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): prices = get_prices("usa-stk-1d", fields=["Close", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) # EOD is tz-naive self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) self.assertListEqual( list(prices.index.get_level_values("Field")), ["Close", "Close", "Close", "Volume", "Volume", "Volume"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-03T00:00:00', "FI12345": 19.4, "FI23456": 51.59}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 15000, "FI23456": 98000}, {'Date': '2018-04-02T00:00:00', "FI12345": 7800, "FI23456": 179000}, {'Date': '2018-04-03T00:00:00', "FI12345": 12400, "FI23456": 142500}] ) def test_query_multiple_eod_history_dbs(self): """ Tests maniuplation of multiple EOD dbs. """ def mock_get_history_db_config(db): if db == "usa-stk-1d": return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } else: return { "bar_size": "1 day", "universes": ["japan-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): if code == "usa-stk-1d": prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ], Volume=[ 15000, 7800, 12400, 98000, 179000, 142500 ] )) else: prices = pd.DataFrame( dict( Sid=[ "FI56789", "FI56789", "FI56789", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", ], Close=[ 5900, 5920, 5950], Volume=[ 18000, 17600, 5600 ] )) prices.to_csv(f, index=False) def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): prices = get_prices(["usa-stk-1d", "japan-stk-1d"], fields=["Close", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) # EOD is tz-naive self.assertListEqual(list(prices.columns), ["FI12345","FI23456","FI56789"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.5, "FI56789": 5900.0}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 52.5, "FI56789": 5920.0}, {'Date': '2018-04-03T00:00:00', "FI12345": 19.4, "FI23456": 51.59, "FI56789": 5950.0}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 15000, "FI23456": 98000, "FI56789": 18000}, {'Date': '2018-04-02T00:00:00', "FI12345": 7800, "FI23456": 179000, "FI56789": 17600}, {'Date': '2018-04-03T00:00:00', "FI12345": 12400, "FI23456": 142500, "FI56789": 5600}] ) def test_query_eod_history_and_realtime_db(self): """ Tests querying of an EOD history db and EOD realtime aggregate db. This test is to make sure we can handle combining a history db with dates like "2020-04-05" and a 1-d realtime aggregate db with dates like "2020-04-05T00:00:00+00". It also tests that dates are made uniform across all fields. """ def mock_get_history_db_config(db): return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ], Volume=[ 15000, 7800, 12400, 98000, 179000, 142500 ] ) ) prices.to_csv(f, index=False) def mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI23456", "FI23456", ], Date=[ "2018-04-01T00:00:00+00", "2018-04-02T00:00:00+00", "2018-04-01T00:00:00+00", "2018-04-02T00:00:00+00", ], LastClose=[ 30.50, 39.40, 79.5, 79.59, ], LastCount=[ 305, 940, 795, 959, ] )) prices.to_csv(f, index=False) def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"usa-stk-tick": ["usa-stk-tick-1d"]} def mock_get_realtime_db_config(db): return { "bar_size": "1 day", "universes": ["japan-stk"], "vendor": "ibkr", "fields": ["LastClose","LastOpen","LastHigh","LastLow", "VolumeClose"] } def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.get_realtime_db_config', new=mock_get_realtime_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch('quantrocket.price.download_market_data_file', new=mock_download_market_data_file): prices = get_prices(["usa-stk-1d", "usa-stk-tick-1d"], fields=["Close", "LastClose"]) self.assertListEqual(list(prices.index.names), ["Field", "Date"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) # EOD is tz-naive self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-03T00:00:00', "FI12345": 19.4, "FI23456": 51.59}] ) last_closes = prices.loc["LastClose"] last_closes = last_closes.reset_index() last_closes.loc[:, "Date"] = last_closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( last_closes.fillna("nan").to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 30.50, "FI23456": 79.50}, {'Date': '2018-04-02T00:00:00', "FI12345": 39.40, "FI23456": 79.59}, {'Date': '2018-04-03T00:00:00', "FI12345": "nan", "FI23456": "nan"}] ) def test_consolidate_intraday_history_and_realtime_distinct_fields(self): """ Tests that when querying a history and real-time database with distinct fields and overlapping dates/sids, both fields are preserved. """ def mock_get_history_db_config(db): return { "bar_size": "15 mins", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_get_realtime_db_config(db): return { "bar_size": "15 min", "fields": ["LastClose","LastOpen","LastHigh","LastLow", "VolumeClose"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ], Close=[ 20.10, 20.50, 19.40, 18.56, 50.5, 52.5, 51.59, 54.23 ], Volume=[ 15000, 7800, 12400, 14500, 98000, 179000, 142500, 124000, ] )) prices.to_csv(f, index=False) def mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI23456", "FI23456", ], Date=[ # Data is UTC but will become NY "2018-04-01T19:30:00+00", "2018-04-02T19:30:00+00", "2018-04-01T19:30:00+00", "2018-04-02T19:30:00+00", ], LastClose=[ 30.50, 39.40, 79.5, 79.59, ] )) prices.to_csv(f, index=False) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/New_York"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-15min", "japan-stk-1d", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"usa-stk-snapshot": ["usa-stk-snapshot-15min"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.get_realtime_db_config', new=mock_get_realtime_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch('quantrocket.price.download_market_data_file', new=mock_download_market_data_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): prices = get_prices( ["usa-stk-15min", "usa-stk-snapshot-15min"], fields=["Close", "LastClose", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 19.4, "FI23456": 51.59}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 18.56, "FI23456": 54.23}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 15000.0, "FI23456": 98000.0}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 7800.0, "FI23456": 179000.0}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 12400.0, "FI23456": 142500.0}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 14500.0, "FI23456": 124000.0}] ) last_closes = prices.loc["LastClose"] last_closes = last_closes.reset_index() last_closes.loc[:, "Date"] = last_closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( last_closes.fillna("nan").to_dict(orient="records"), # Data was UTC but now NY [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": "nan", "FI23456": "nan"}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 30.5, "FI23456": 79.5}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": "nan", "FI23456": "nan"}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 39.4, "FI23456": 79.59}] ) def test_query_single_realtime_db(self): """ Tests querying a single real-time aggregate database, with no history db in the query. """ def mock_get_realtime_db_config(db): return { "bar_size": "15 min", "fields": ["LastClose","LastOpen","LastHigh","LastLow", "VolumeClose"] } def mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI23456", "FI23456", ], Date=[ # Data is UTC but will become Mexico_City "2018-04-01T19:30:00+00", "2018-04-02T19:30:00+00", "2018-04-01T19:30:00+00", "2018-04-02T19:30:00+00", ], LastClose=[ 30.50, 39.40, 79.5, 79.59, ], LastCount=[ 305, 940, 795, 959, ] )) prices.to_csv(f, index=False) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/Mexico_City", "America/Mexico_City"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-15min", "japan-stk-1d", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"mexi-stk-tick": ["mexi-stk-tick-15min"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_realtime_db_config', new=mock_get_realtime_db_config): with patch('quantrocket.price.download_market_data_file', new=mock_download_market_data_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): prices = get_prices("mexi-stk-tick-15min") self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) last_closes = prices.loc["LastClose"] last_closes = last_closes.reset_index() last_closes.loc[:, "Date"] = last_closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( last_closes.fillna("nan").to_dict(orient="records"), # Data was UTC but now Mexico_City [{'Date': '2018-04-01T00:00:00', 'Time': '14:30:00', "FI12345": 30.5, "FI23456": 79.5}, {'Date': '2018-04-02T00:00:00', 'Time': '14:30:00', "FI12345": 39.4, "FI23456": 79.59}] ) last_counts = prices.loc["LastCount"] last_counts = last_counts.reset_index() last_counts.loc[:, "Date"] = last_counts.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( last_counts.fillna("nan").to_dict(orient="records"), # Data was UTC but now Mexico_City [{'Date': '2018-04-01T00:00:00', 'Time': '14:30:00', "FI12345": 305.0, "FI23456": 795.0}, {'Date': '2018-04-02T00:00:00', 'Time': '14:30:00', "FI12345": 940.0, "FI23456": 959.0}] ) def test_query_single_zipline_bundle(self): """ Tests querying a single Zipline bundle, with no history db or realtime db in the query. """ def mock_download_bundle_file(code, f, *args, **kwargs): prices = pd.concat( dict( Close=pd.DataFrame( dict( FI12345=[ 48.90, 49.40, 55.49, 56.78 ], FI23456=[ 59.5, 59.59, 59.34, 51.56, ] ), index=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ]), Volume=pd.DataFrame( dict( FI12345=[ 100, 200, 300, 400 ], FI23456=[ 500, 600, 700, 800, ] ), index=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ]) ), names=["Field","Date"] ) prices.to_csv(f) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/New_York"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-15min", "japan-stk-1d", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"mexi-stk-tick": ["mexi-stk-tick-15min"]} def mock_get_bundle_config(db): return { "ingest_type": "usstock", "sids": None, "universes": None, "free": False, "data_frequency": "minute", "calendar": "XNYS", "start_date": "2007-01-03" } def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.download_bundle_file', new=mock_download_bundle_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): with patch("quantrocket.price.get_bundle_config", new=mock_get_bundle_config): prices = get_prices("usstock-1min", fields=["Close","Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.fillna("nan").to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', 'FI12345': 48.9, 'FI23456': 59.5}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', 'FI12345': 49.4, 'FI23456': 59.59}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', 'FI12345': 55.49, 'FI23456': 59.34}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', 'FI12345': 56.78, 'FI23456': 51.56}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.fillna("nan").to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', 'FI12345': 100, 'FI23456': 500}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', 'FI12345': 200, 'FI23456': 600}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', 'FI12345': 300, 'FI23456': 700}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', 'FI12345': 400, 'FI23456': 800}] ) @patch("quantrocket.price.download_bundle_file") def test_pass_data_frequency_based_on_bundle_config(self, mock_download_bundle_file): """ Tests that when querying a Zipline bundle and not providing a data_frequency arg, the data frequency is determined from the bundle config. """ def _mock_download_bundle_file(code, f, *args, **kwargs): prices = pd.concat( dict( Close=pd.DataFrame( dict( FI12345=[ 48.90, 49.40, 55.49, 56.78 ], FI23456=[ 59.5, 59.59, 59.34, 51.56, ] ), index=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ]), Volume=pd.DataFrame( dict( FI12345=[ 100, 200, 300, 400 ], FI23456=[ 500, 600, 700, 800, ] ), index=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ]) ), names=["Field","Date"] ) prices.to_csv(f) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/New_York"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-15min", "japan-stk-1d", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"mexi-stk-tick": ["mexi-stk-tick-15min"]} def mock_get_bundle_config(db): return { "ingest_type": "usstock", "sids": None, "universes": None, "free": False, "data_frequency": "minute", "calendar": "XNYS", "start_date": "2007-01-03" } def mock_list_bundles(): return {"usstock-1min": True} mock_download_bundle_file.side_effect = _mock_download_bundle_file with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): with patch("quantrocket.price.get_bundle_config", new=mock_get_bundle_config): # query with no data_frequency arg get_prices("usstock-1min") self.assertEqual(len(mock_download_bundle_file.mock_calls), 1) zipline_call = mock_download_bundle_file.mock_calls[0] _, args, kwargs = zipline_call self.assertEqual(args[0], "usstock-1min") self.assertEqual(kwargs["data_frequency"], "minute") # query with data_frequency arg get_prices("usstock-1min", data_frequency='daily') self.assertEqual(len(mock_download_bundle_file.mock_calls), 2) zipline_call = mock_download_bundle_file.mock_calls[1] _, args, kwargs = zipline_call self.assertEqual(args[0], "usstock-1min") self.assertEqual(kwargs["data_frequency"], "daily") @patch("quantrocket.price.download_market_data_file") @patch("quantrocket.price.download_history_file") @patch("quantrocket.price.download_bundle_file") def test_apply_times_filter_to_history_vs_realtime_database_vs_zipline_bundle( self, mock_download_bundle_file, mock_download_history_file, mock_download_market_data_file): """ Tests that the times filter is applied to a history database via the history query but is applied to the realtime database after converting to the exchange timezone. """ def mock_get_history_db_config(db): return { "bar_size": "1 mins", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Wap","Open","High","Low", "Volume"] } def mock_get_realtime_db_config(db): return { "bar_size": "1 min", "fields": ["LastClose","LastOpen","LastHigh","LastLow", "VolumeClose"] } def mock_get_bundle_config(db): return { "ingest_type": "usstock", "sids": None, "universes": None, "free": False, "data_frequency": "minute", "calendar": "XNYS", "start_date": "2007-01-03" } def _mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ], Wap=[ 20.10, 20.50, 19.40, 18.56, 50.5, 52.5, 51.59, 54.23 ], Volume=[ 15000, 7800, 12400, 14500, 98000, 179000, 142500, 124000, ] )) prices.to_csv(f, index=False) def _mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456", ], Date=[ # 19:00:00 UTC data is returned (15:00:00 NY) but will be filtered out "2018-04-01T19:00:00+00", "2018-04-01T19:30:00+00", "2018-04-02T19:00:00+00", "2018-04-02T19:30:00+00", "2018-04-01T19:00:00+00", "2018-04-01T19:30:00+00", "2018-04-02T19:00:00+00", "2018-04-02T19:30:00+00", ], LastClose=[ 30.50, 39.40, 45.49, 46.78, 79.5, 79.59, 89.34, 81.56, ] )) prices.to_csv(f, index=False) def _mock_download_bundle_file(code, f, *args, **kwargs): prices = pd.concat( dict( Close=pd.DataFrame( dict( FI12345=[ 48.90, 49.40, 55.49, 56.78 ], FI23456=[ 59.5, 59.59, 59.34, 51.56, ] ), index=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ]) ), names=["Field","Date"] ) prices.to_csv(f) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/New_York"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-1min", "japan-stk-1d", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"usa-stk-snapshot": ["usa-stk-snapshot-1min"]} def mock_list_bundles(): return {"usstock-1min": True, "usstock-free-1min": True} mock_download_history_file.side_effect = _mock_download_history_file mock_download_market_data_file.side_effect = _mock_download_market_data_file mock_download_bundle_file.side_effect = _mock_download_bundle_file with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.get_realtime_db_config', new=mock_get_realtime_db_config): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): with patch("quantrocket.price.get_bundle_config", new=mock_get_bundle_config): prices = get_prices( ["usa-stk-1min", "usa-stk-snapshot-1min", "usstock-1min"], fields=["Close", "LastClose", "Volume", "Wap"], times=["09:30:00", "15:30:00"], ) self.assertEqual(len(mock_download_history_file.mock_calls), 1) history_call = mock_download_history_file.mock_calls[0] _, args, kwargs = history_call self.assertEqual(args[0], "usa-stk-1min") # only supported subset of fields is requested self.assertSetEqual(set(kwargs["fields"]), {"Wap", "Volume"}) # times filter was passed self.assertListEqual(kwargs["times"], ["09:30:00", "15:30:00"]) self.assertEqual(len(mock_download_market_data_file.mock_calls), 1) realtime_call = mock_download_market_data_file.mock_calls[0] _, args, kwargs = realtime_call self.assertEqual(args[0], "usa-stk-snapshot-1min") # only supported subset of fields is requested self.assertListEqual(kwargs["fields"], ["LastClose"]) # times filter not passed self.assertNotIn("times", list(kwargs.keys())) self.assertEqual(len(mock_download_bundle_file.mock_calls), 1) minute_call = mock_download_bundle_file.mock_calls[0] _, args, kwargs = minute_call self.assertEqual(args[0], "usstock-1min") # only supported subset of fields is requested self.assertSetEqual(set(kwargs["fields"]), {"Close", "Volume"}) # times filter was passed self.assertListEqual(kwargs["times"], ["09:30:00", "15:30:00"]) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) waps = prices.loc["Wap"] waps = waps.reset_index() waps.loc[:, "Date"] = waps.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( waps.fillna("nan").to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 19.4, "FI23456": 51.59}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 18.56, "FI23456": 54.23}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 15000.0, "FI23456": 98000.0}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 7800.0, "FI23456": 179000.0}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 12400.0, "FI23456": 142500.0}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 14500.0, "FI23456": 124000.0}] ) last_closes = prices.loc["LastClose"] last_closes = last_closes.reset_index() last_closes.loc[:, "Date"] = last_closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( last_closes.fillna("nan").to_dict(orient="records"), # Data was UTC but now NY [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 'nan', "FI23456": 'nan'}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 39.4, "FI23456": 79.59}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 'nan', "FI23456": 'nan'}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 46.78, "FI23456": 81.56}] ) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.fillna("nan").to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', 'FI12345': 48.9, 'FI23456': 59.5}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', 'FI12345': 49.4, 'FI23456': 59.59}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', 'FI12345': 55.49, 'FI23456': 59.34}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', 'FI12345': 56.78, 'FI23456': 51.56}] ) def test_consolidate_overlapping_fields_and_respect_priority(self): """ Tests that when querying two databases with overlapping dates/sids/fields, the value is taken from the db which was passed first as an argument. """ def mock_get_history_db_config(db): if db == "usa-stk-1d": return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } else: return { "bar_size": "1 day", "universes": ["nyse-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): if code == "usa-stk-1d": prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ], Volume=[ 15000, 7800, 12400, 98000, 179000, 142500 ] )) else: prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", ], Close=[ 5900, 5920, 5950], )) prices.to_csv(f, index=False) def mock_list_history_databases(): return [ "usa-stk-1d", "nyse-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): # prioritize usa-stk-1d by passing first prices = get_prices(["usa-stk-1d", "nyse-stk-1d"], fields=["Close", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-03T00:00:00', "FI12345": 19.4, "FI23456": 51.59}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 15000, "FI23456": 98000}, {'Date': '2018-04-02T00:00:00', "FI12345": 7800, "FI23456": 179000}, {'Date': '2018-04-03T00:00:00', "FI12345": 12400, "FI23456": 142500}] ) # repeat test but prioritize nyse-stk-1d by passing first with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): prices = get_prices(["nyse-stk-1d", "usa-stk-1d"], fields=["Close", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 5900.0, "FI23456": 50.5}, {'Date': '2018-04-02T00:00:00', "FI12345": 5920.0, "FI23456": 52.5}, {'Date': '2018-04-03T00:00:00', "FI12345": 5950.0, "FI23456": 51.59}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") # Since volume is null in nyse-stk-1d, we get the volume from usa-stk-1d self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 15000, "FI23456": 98000}, {'Date': '2018-04-02T00:00:00', "FI12345": 7800, "FI23456": 179000}, {'Date': '2018-04-03T00:00:00', "FI12345": 12400, "FI23456": 142500}] ) def test_parse_bar_sizes(self): """ Tests that when querying a history and real-time database which have different bar size strings which are nevertheless equivalent, this is allowed. """ def mock_get_history_db_config(db): return { "bar_size": "15 mins", # 15 mins plural (IB format) "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_get_realtime_db_config(db): return { "bar_size": "15 min", # 15 min Pandas format "fields": ["LastClose","LastOpen","LastHigh","LastLow", "VolumeClose"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", "2018-04-01T09:30:00-04:00", "2018-04-01T15:30:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T15:30:00-04:00", ], Close=[ 20.10, 20.50, 19.40, 18.56, 50.5, 52.5, 51.59, 54.23 ], Volume=[ 15000, 7800, 12400, 14500, 98000, 179000, 142500, 124000, ] )) prices.to_csv(f, index=False) def mock_download_market_data_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI23456", "FI23456", ], Date=[ "2018-04-01T19:30:00+00", "2018-04-02T19:30:00+00", "2018-04-01T19:30:00+00", "2018-04-02T19:30:00+00", ], LastClose=[ 30.50, 39.40, 79.5, 79.59, ] )) prices.to_csv(f, index=False) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/New_York"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-15min", "japan-stk-1d", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"usa-stk-snapshot": ["usa-stk-snapshot-15min"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.get_realtime_db_config', new=mock_get_realtime_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch('quantrocket.price.download_market_data_file', new=mock_download_market_data_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): prices = get_prices( ["usa-stk-15min", "usa-stk-snapshot-15min"], fields=["Close", "LastClose", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 19.4, "FI23456": 51.59}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 18.56, "FI23456": 54.23}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": 15000.0, "FI23456": 98000.0}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 7800.0, "FI23456": 179000.0}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": 12400.0, "FI23456": 142500.0}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 14500.0, "FI23456": 124000.0}] ) last_closes = prices.loc["LastClose"] last_closes = last_closes.reset_index() last_closes.loc[:, "Date"] = last_closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( last_closes.fillna("nan").to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', 'Time': '09:30:00', "FI12345": "nan", "FI23456": "nan"}, {'Date': '2018-04-01T00:00:00', 'Time': '15:30:00', "FI12345": 30.5, "FI23456": 79.5}, {'Date': '2018-04-02T00:00:00', 'Time': '09:30:00', "FI12345": "nan", "FI23456": "nan"}, {'Date': '2018-04-02T00:00:00', 'Time': '15:30:00', "FI12345": 39.4, "FI23456": 79.59}] ) def test_no_complain_no_data_multiple_dbs(self): """ Tests that if multiple dbs are queried and one lacks data but the other has data, no error is raised. """ def mock_get_history_db_config(db): if db == "usa-stk-1d": return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } else: return { "bar_size": "1 day", "universes": ["japan-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): if code == "usa-stk-1d": prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", ], Date=[ "2018-04-01", "2018-04-02", "2018-04-03", "2018-04-01", "2018-04-02", "2018-04-03" ], Close=[ 20.10, 20.50, 19.40, 50.5, 52.5, 51.59, ], Volume=[ 15000, 7800, 12400, 98000, 179000, 142500 ] )) prices.to_csv(f, index=False) else: raise NoHistoricalData("no history matches the query parameters") def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): prices = get_prices(["usa-stk-1d", "japan-stk-1d"], fields=["Close", "Volume"]) self.assertListEqual(list(prices.index.names), ["Field", "Date"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) # EOD is tz-naive self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) closes = prices.loc["Close"] closes = closes.reset_index() closes.loc[:, "Date"] = closes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.5}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 52.5}, {'Date': '2018-04-03T00:00:00', "FI12345": 19.4, "FI23456": 51.59}] ) volumes = prices.loc["Volume"] volumes = volumes.reset_index() volumes.loc[:, "Date"] = volumes.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 15000, "FI23456": 98000}, {'Date': '2018-04-02T00:00:00', "FI12345": 7800, "FI23456": 179000}, {'Date': '2018-04-03T00:00:00', "FI12345": 12400, "FI23456": 142500}] ) def test_complain_no_data_multiple_dbs(self): """ Tests that if multiple dbs are queried and all of them lack data, an error is raised. """ def mock_get_history_db_config(db): if db == "usa-stk-1d": return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } else: return { "bar_size": "1 day", "universes": ["japan-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): raise NoHistoricalData("no history matches the query parameters") def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with self.assertRaises(NoHistoricalData) as cm: get_prices(["usa-stk-1d", "japan-stk-1d"]) self.assertIn( "no price data matches the query parameters in any of usa-stk-1d, japan-stk-1d", str(cm.exception)) def test_complain_no_data_single_db(self): """ Tests that if a single db is queried and it lacks data, an error is raised. """ def mock_get_history_db_config(db): return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): raise NoHistoricalData("this error will be passed through as is") def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with self.assertRaises(NoHistoricalData) as cm: get_prices("usa-stk-1d") self.assertIn( "this error will be passed through as is", str(cm.exception)) def test_complain_if_tick_db(self): """ Tests error handling when multiple dbs are queried and one is a tick db rather than a history or real-time agg db. """ def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min", "japan-stk-15min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"], "etf-taq": ["etf-taq-1h"], } def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with self.assertRaises(ParameterError) as cm: get_prices(["usa-stk-1d", "etf-taq", "japan-stk-15min"]) self.assertIn(( "etf-taq is a real-time tick database, only history databases or " "real-time aggregate databases are supported" ), str(cm.exception)) def test_complain_if_unknown_db(self): """ Tests error handling when an unknown db is queried. """ def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min", "japan-stk-15min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"], "etf-taq": ["etf-taq-1h"], } def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with self.assertRaises(ParameterError) as cm: get_prices(["asx-stk-1d"]) self.assertIn(( "no history or real-time aggregate databases or Zipline bundles called asx-stk-1d" ), str(cm.exception)) def test_complain_if_multiple_bar_sizes(self): """ Tests error handling when multiple dbs are queried and they have different bar sizes. """ def mock_get_history_db_config(db): if db == "usa-stk-1d": return { "bar_size": "1 day", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } else: return { "bar_size": "30 mins", "universes": ["japan-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min", "japan-stk-15min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} def mock_get_bundle_config(db): return { "ingest_type": "usstock", "sids": None, "universes": None, "free": False, "data_frequency": "minute", "calendar": "XNYS", "start_date": "2007-01-03" } with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.get_bundle_config', new=mock_get_bundle_config): # two history dbs with self.assertRaises(ParameterError) as cm: get_prices(["usa-stk-1d", "japan-stk-15min"]) self.assertIn(( "all databases must contain same bar size but usa-stk-1d, japan-stk-15min have different " "bar sizes:" ), str(cm.exception)) # history db and zipline bundle with self.assertRaises(ParameterError) as cm: get_prices(["usa-stk-1d", "usstock-1min"]) self.assertIn(( "all databases must contain same bar size but usa-stk-1d, usstock-1min have different " "bar sizes:" ), str(cm.exception)) def test_warn_if_no_history_service(self): """ Tests that a warning is triggered if the history service is not available. """ def mock_list_history_databases(): response = requests.models.Response() response.status_code = 502 raise requests.HTTPError(response=response) def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"], "etf-taq": ["etf-taq-1h"], } def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with self.assertWarns(RuntimeWarning) as warning_cm: with self.assertRaises(ParameterError) as cm: get_prices(["asx-stk-1d"]) self.assertIn( "Error while checking if asx-stk-1d is a history database, will assume it's not", str(warning_cm.warning)) self.assertIn(( "no history or real-time aggregate databases or Zipline bundles called asx-stk-1d" ), str(cm.exception)) def test_warn_if_no_realtime_service(self): """ Tests that a warning is triggered if the realtime service is not available. """ def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min", "japan-stk-15min" ] def mock_list_realtime_databases(): response = requests.models.Response() response.status_code = 502 raise requests.HTTPError(response=response) def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with self.assertWarns(RuntimeWarning) as warning_cm: with self.assertRaises(ParameterError) as cm: get_prices(["asx-stk-1d"]) self.assertIn( "Error while checking if asx-stk-1d is a realtime database, will assume it's not", str(warning_cm.warning)) self.assertIn(( "no history or real-time aggregate databases or Zipline bundles called asx-stk-1d" ), str(cm.exception)) def test_warn_if_no_zipline_service(self): """ Tests that a warning is triggered if the zipline service is not available. """ def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min", "japan-stk-15min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"], "etf-taq": ["etf-taq-1h"], } def mock_list_bundles(): response = requests.models.Response() response.status_code = 502 raise requests.HTTPError(response=response) with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with self.assertWarns(RuntimeWarning) as warning_cm: with self.assertRaises(ParameterError) as cm: get_prices(["asx-stk-1d"]) self.assertIn( "Error while checking if asx-stk-1d is a Zipline bundle, will assume it's not", str(warning_cm.warning)) self.assertIn(( "no history or real-time aggregate databases or Zipline bundles called asx-stk-1d" ), str(cm.exception)) def test_intraday_pass_timezone(self): """ Tests handling of an intraday db when a timezone is specified. """ def mock_get_history_db_config(db): return { "bar_size": "30 mins", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T10:00:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T10:00:00-04:00", "2018-04-01T09:30:00-04:00", "2018-04-01T10:00:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T10:00:00-04:00", ], Close=[ 20.10, 20.25, 20.50, 20.38, 50.15, 50.59, 51.59, 51.67 ], Volume=[ 1500, 7800, 1400, 800, 9000, 7100, 1400, 1500 ] )) prices.to_csv(f, index=False) def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): prices = get_prices( "usa-stk-15min", times=["09:30:00", "10:00:00"], fields=["Close", "Volume"], timezone="America/Chicago" ) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) self.assertSetEqual( set(prices.index.get_level_values("Field")), {"Close", "Volume"}) self.assertSetEqual( set(prices.index.get_level_values("Time")), {"08:30:00", "09:00:00"}) closes = prices.loc["Close"] closes_830 = closes.xs("08:30:00", level="Time") closes_830 = closes_830.reset_index() closes_830.loc[:, "Date"] = closes_830.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_830.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.15}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 51.59}] ) closes_900 = closes.xs("09:00:00", level="Time") closes_900 = closes_900.reset_index() closes_900.loc[:, "Date"] = closes_900.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_900.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.25, "FI23456": 50.59}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.38, "FI23456": 51.67}] ) volumes = prices.loc["Volume"] volumes_830 = volumes.xs("08:30:00", level="Time") volumes_830 = volumes_830.reset_index() volumes_830.loc[:, "Date"] = volumes_830.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes_830.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 1500.0, "FI23456": 9000.0}, {'Date': '2018-04-02T00:00:00', "FI12345": 1400.0, "FI23456": 1400.0}] ) def test_intraday_infer_timezone_from_securities(self): """ Tests handling of an intraday db when a timezone is not specified and is therefore inferred from the securities master. """ def mock_get_history_db_config(db): return { "bar_size": "30 mins", "universes": ["usa-stk"], "vendor": "ibkr" } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T10:00:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T10:00:00-04:00", "2018-04-01T09:30:00-04:00", "2018-04-01T10:00:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T10:00:00-04:00", ], Close=[ 20.10, 20.25, 20.50, 20.38, 50.15, 50.59, 51.59, 51.67 ], Volume=[ 1500, 7800, 1400, 800, 9000, 7100, 1400, 1500 ] )) prices.to_csv(f, index=False) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/New_York"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): prices = get_prices( "usa-stk-15min", times=["09:30:00", "10:00:00"], fields=["Close", "Volume"] ) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) self.assertSetEqual( set(prices.index.get_level_values("Field")), {"Close", "Volume"}) self.assertSetEqual( set(prices.index.get_level_values("Time")), {"09:30:00", "10:00:00"}) closes = prices.loc["Close"] closes_930 = closes.xs("09:30:00", level="Time") closes_930 = closes_930.reset_index() closes_930.loc[:, "Date"] = closes_930.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_930.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.15}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 51.59}] ) closes_1000 = closes.xs("10:00:00", level="Time") closes_1000 = closes_1000.reset_index() closes_1000.loc[:, "Date"] = closes_1000.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_1000.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.25, "FI23456": 50.59}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.38, "FI23456": 51.67}] ) volumes = prices.loc["Volume"] volumes_930 = volumes.xs("09:30:00", level="Time") volumes_930 = volumes_930.reset_index() volumes_930.loc[:, "Date"] = volumes_930.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( volumes_930.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 1500.0, "FI23456": 9000.0}, {'Date': '2018-04-02T00:00:00', "FI12345": 1400.0, "FI23456": 1400.0}] ) def test_complain_if_cannot_infer_timezone_from_securities(self): """ Tests error handling when a timezone is not specified and it cannot be inferred from the securities master because multiple timezones are represented. """ def mock_get_history_db_config(db): return { "bar_size": "5 mins", "universes": ["aapl-arb"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456" ], Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T10:00:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T10:00:00-04:00", "2018-04-01T08:30:00-05:00", "2018-04-01T09:00:00-05:00", "2018-04-02T08:30:00-05:00", "2018-04-02T09:00:00-05:00", ], Close=[ 20.10, 20.25, 20.50, 20.38, 50.15, 50.59, 51.59, 51.67 ], Volume=[ 1500, 7800, 1400, 800, 9000, 7100, 1400, 1500 ] )) prices.to_csv(f, index=False) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/Mexico_City"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min", "aapl-arb-5min", ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {} with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): with patch("quantrocket.price.list_bundles", new=mock_list_bundles): with self.assertRaises(ParameterError) as cm: get_prices( "aapl-arb-5min", fields=["Close", "Volume"], ) self.assertIn(( "cannot infer timezone because multiple timezones are present " "in data, please specify timezone explicitly (timezones: America/New_York, America/Mexico_City)" ), str(cm.exception)) def test_multiple_timezones(self): """ Tests that multiple timezones are properly handled. """ def mock_get_history_db_config(db): return { "bar_size": "5 mins", "universes": ["aapl-arb"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI23456", "FI23456", "FI23456", "FI23456" ], # These bars align but the times are different due to different timezones Date=[ "2018-04-01T09:30:00-04:00", "2018-04-01T10:00:00-04:00", "2018-04-02T09:30:00-04:00", "2018-04-02T10:00:00-04:00", "2018-04-01T08:30:00-05:00", "2018-04-01T09:00:00-05:00", "2018-04-02T08:30:00-05:00", "2018-04-02T09:00:00-05:00", ], Close=[ 20.10, 20.25, 20.50, 20.38, 50.15, 50.59, 51.59, 51.67 ] )) prices.to_csv(f, index=False) def mock_download_master_file(f, *args, **kwargs): securities = pd.DataFrame(dict(Sid=["FI12345","FI23456"], Timezone=["America/New_York", "America/Mexico_City"])) securities.to_csv(f, index=False) f.seek(0) def mock_list_history_databases(): return [ "usa-stk-1d", "aapl-arb-5min", "japan-stk-1d", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): prices = get_prices( "aapl-arb-5min", fields=["Close"], timezone="America/New_York" ) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) self.assertSetEqual( set(prices.index.get_level_values("Field")), {"Close"}) self.assertSetEqual( set(prices.index.get_level_values("Time")), {"09:30:00", "10:00:00"}) closes = prices.loc["Close"] closes_930 = closes.xs("09:30:00", level="Time") closes_930 = closes_930.reset_index() closes_930.loc[:, "Date"] = closes_930.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_930.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.15}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 51.59}] ) closes_1000 = closes.xs("10:00:00", level="Time") closes_1000 = closes_1000.reset_index() closes_1000.loc[:, "Date"] = closes_1000.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_1000.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.25, "FI23456": 50.59}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.38, "FI23456": 51.67}] ) # repeat with a different timezone with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): with patch("quantrocket.price.download_master_file", new=mock_download_master_file): prices = get_prices( "aapl-arb-5min", fields=["Close"], timezone="America/Mexico_City" ) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345","FI23456"]) self.assertSetEqual( set(prices.index.get_level_values("Field")), {"Close"}) self.assertSetEqual( set(prices.index.get_level_values("Time")), {"08:30:00", "09:00:00"}) closes = prices.loc["Close"] closes_830 = closes.xs("08:30:00", level="Time") closes_830 = closes_830.reset_index() closes_830.loc[:, "Date"] = closes_830.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_830.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.1, "FI23456": 50.15}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.5, "FI23456": 51.59}] ) closes_900 = closes.xs("09:00:00", level="Time") closes_900 = closes_900.reset_index() closes_900.loc[:, "Date"] = closes_900.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( closes_900.to_dict(orient="records"), [{'Date': '2018-04-01T00:00:00', "FI12345": 20.25, "FI23456": 50.59}, {'Date': '2018-04-02T00:00:00', "FI12345": 20.38, "FI23456": 51.67}] ) def test_intraday_fill_missing_times(self): """ Tests that each date is expanded to include all times represented in any date. (This makes the data easier to work when there early close days or when the data is queried intraday.) """ def mock_get_history_db_config(db): return { "bar_size": "2 hours", "universes": ["usa-stk"], "vendor": "ibkr", "fields": ["Close","Open","High","Low", "Volume"] } def mock_download_history_file(code, f, *args, **kwargs): prices = pd.DataFrame( dict( Sid=[ "FI12345", "FI12345", "FI12345", "FI12345", "FI12345", "FI12345", "FI12345", "FI12345", "FI12345" ], Date=[ # complete day "2018-04-01T10:00:00-04:00", "2018-04-01T12:00:00-04:00", "2018-04-01T14:00:00-04:00", # early close "2018-04-02T10:00:00-04:00", "2018-04-02T12:00:00-04:00", # Complete day "2018-04-03T10:00:00-04:00", "2018-04-03T12:00:00-04:00", "2018-04-03T14:00:00-04:00", # intraday query "2018-04-04T10:00:00-04:00", ], Close=[ 20.10, 20.25, 20.50, 20.38, 21.15, 22.59, 21.59, 20.67, 21.34 ] )) prices.to_csv(f, index=False) def mock_list_history_databases(): return [ "usa-stk-1d", "japan-stk-1d", "usa-stk-2h", "usa-stk-15min", "demo-stk-1min" ] def mock_list_realtime_databases(): return {"demo-stk-taq": ["demo-stk-taq-1h"]} def mock_list_bundles(): return {"usstock-1min": True} with patch('quantrocket.price.list_bundles', new=mock_list_bundles): with patch('quantrocket.price.list_realtime_databases', new=mock_list_realtime_databases): with patch('quantrocket.price.list_history_databases', new=mock_list_history_databases): with patch('quantrocket.price.get_history_db_config', new=mock_get_history_db_config): with patch('quantrocket.price.download_history_file', new=mock_download_history_file): prices = get_prices( "usa-stk-2h", timezone="America/New_York" ) self.assertListEqual(list(prices.index.names), ["Field", "Date", "Time"]) self.assertEqual(prices.columns.name, "Sid") dt = prices.index.get_level_values("Date") self.assertTrue(isinstance(dt, pd.DatetimeIndex)) self.assertIsNone(dt.tz) self.assertListEqual(list(prices.columns), ["FI12345"]) self.assertSetEqual( set(prices.index.get_level_values("Field")), {"Close"}) self.assertSetEqual( set(prices.index.get_level_values("Time")), {"10:00:00", "12:00:00", "14:00:00"}) closes = prices.loc["Close"] all_days = pd.DatetimeIndex(["2018-04-01", "2018-04-02", "2018-04-03", "2018-04-04"]) for time in ["10:00:00", "12:00:00", "14:00:00"]: idx = closes.xs(time, level="Time").index self.assertListEqual( list(idx), list(all_days), msg=time ) # replace nan with "nan" to allow equality comparisons closes = closes.where(closes.notnull(), "nan") closes = closes["FI12345"] self.assertEqual( closes.xs("14:00:00", level="Time").loc["2018-04-02"], "nan" ) self.assertEqual( closes.xs("12:00:00", level="Time").loc["2018-04-04"], "nan" ) self.assertEqual( closes.xs("14:00:00", level="Time").loc["2018-04-04"], "nan" ) class GetPricesReindexedLikeTestCase(unittest.TestCase): """ Test cases for `quantrocket.get_prices_reindexed_like`. """ def test_complain_if_date_level_not_in_index(self): """ Tests error handling when reindex_like doesn't have an index named Date. """ closes = pd.DataFrame( np.random.rand(3,2), columns=["FI12345","FI23456"], index=pd.date_range(start="2018-01-01", periods=3, freq="D")) with self.assertRaises(ParameterError) as cm: get_prices_reindexed_like(closes, "custom-fundamental-1d") self.assertIn("reindex_like must have index called 'Date'", str(cm.exception)) def test_complain_if_not_datetime_index(self): """ Tests error handling when the reindex_like index is named Date but is not a DatetimeIndex. """ closes = pd.DataFrame( np.random.rand(3,2), columns=["FI12345","FI23456"], index=pd.Index(["foo","bar","bat"], name="Date")) with self.assertRaises(ParameterError) as cm: get_prices_reindexed_like(closes, "custom-fundamental-1d") self.assertIn("reindex_like must have a DatetimeIndex", str(cm.exception)) @patch("quantrocket.price.get_prices") def test_pass_args_correctly(self, mock_get_prices): """ Tests that codes, sids, date ranges and and other args are correctly passed to get_prices. """ closes = pd.DataFrame( np.random.rand(6,2), columns=["FI12345","FI23456"], index=pd.date_range(start="2018-03-06", periods=6, freq="D", name="Date")) def _mock_get_prices(*args, **kwargs): dt_idx = pd.DatetimeIndex(["2018-03-04"]) fields = ["EPS","Revenue"] idx = pd.MultiIndex.from_product([fields, dt_idx], names=["Field", "Date"]) prices = pd.DataFrame( { "FI12345": [ # EPS 9, # Revenue 10e5, ], "FI23456": [ # EPS 19.89, # Revenue 5e8 ], }, index=idx ) return prices mock_get_prices.return_value = _mock_get_prices() get_prices_reindexed_like( closes, "custom-fundamental-1d", fields=["Revenue", "EPS"], lookback_window=2, timezone="America/New_York", times=["11:00:00", "12:00:00"], cont_fut=False, data_frequency="daily") get_prices_call = mock_get_prices.mock_calls[0] _, args, kwargs = get_prices_call self.assertEqual(args[0], "custom-fundamental-1d") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456"]) self.assertEqual(kwargs["start_date"], "2018-03-04") # 2018-03-06 - 2 day lookback window self.assertEqual(kwargs["end_date"], "2018-03-11") self.assertEqual(kwargs["fields"], ["Revenue", "EPS"]) self.assertEqual(kwargs["timezone"], "America/New_York") self.assertEqual(kwargs["times"], ["11:00:00", "12:00:00"]) self.assertFalse(kwargs["cont_fut"]) self.assertEqual(kwargs["data_frequency"], "daily") # repeat with default lookback get_prices_reindexed_like( closes, "custom-fundamental-1d", fields="Revenue") get_prices_call = mock_get_prices.mock_calls[1] _, args, kwargs = get_prices_call self.assertEqual(args[0], "custom-fundamental-1d") self.assertListEqual(kwargs["sids"], ["FI12345","FI23456"]) self.assertEqual(kwargs["start_date"], "2018-02-24") # 2018-03-06 - 10 day lookback window self.assertEqual(kwargs["end_date"], "2018-03-11") self.assertEqual(kwargs["fields"], "Revenue") def test_tz_aware_index(self): """ Tests that reindex_like.index can be tz-naive or tz-aware. """ def mock_get_prices(*args, **kwargs): dt_idx = pd.DatetimeIndex(["2018-03-31", "2018-06-30"]) fields = ["EPS"] idx = pd.MultiIndex.from_product([fields, dt_idx], names=["Field", "Date"]) prices = pd.DataFrame( { "FI12345": [ 9, 9.5, ], "FI23456": [ 19.89, 17.60 ], }, index=idx ) return prices with patch('quantrocket.price.get_prices', new=mock_get_prices): # request with tz_naive closes = pd.DataFrame( np.random.rand(4,1), columns=["FI12345"], index=pd.date_range(start="2018-06-30", periods=4, freq="D", name="Date")) data = get_prices_reindexed_like( closes, "custom-fundamental", fields="EPS") self.assertSetEqual(set(data.index.get_level_values("Field")), {"EPS"}) eps = data.loc["EPS"] self.assertListEqual(list(eps.index), list(closes.index)) self.assertListEqual(list(eps.columns), list(closes.columns)) eps = eps.reset_index() eps.loc[:, "Date"] = eps.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( eps.to_dict(orient="records"), [{'Date': '2018-06-30T00:00:00', 'FI12345': 9.0}, {'Date': '2018-07-01T00:00:00', 'FI12345': 9.5}, {'Date': '2018-07-02T00:00:00', 'FI12345': 9.5}, {'Date': '2018-07-03T00:00:00', 'FI12345': 9.5}] ) with patch('quantrocket.price.get_prices', new=mock_get_prices): # request with tz aware closes = pd.DataFrame( np.random.rand(4,1), columns=["FI12345"], index=pd.date_range(start="2018-06-30", periods=4, freq="D", tz="America/New_York",name="Date")) data = get_prices_reindexed_like( closes, "custom-fundamental", fields="EPS") self.assertSetEqual(set(data.index.get_level_values("Field")), {"EPS"}) eps = data.loc["EPS"] self.assertListEqual(list(eps.index), list(closes.index)) self.assertListEqual(list(eps.columns), list(closes.columns)) eps = eps.reset_index() eps.loc[:, "Date"] = eps.Date.dt.strftime("%Y-%m-%dT%H:%M:%S%z") self.assertListEqual( eps.to_dict(orient="records"), [{'Date': '2018-06-30T00:00:00-0400', 'FI12345': 9.0}, {'Date': '2018-07-01T00:00:00-0400', 'FI12345': 9.5}, {'Date': '2018-07-02T00:00:00-0400', 'FI12345': 9.5}, {'Date': '2018-07-03T00:00:00-0400', 'FI12345': 9.5}]) def test_shift(self): """ Tests handling of the shift parameter. """ def mock_get_prices(*args, **kwargs): dt_idx = pd.DatetimeIndex(["2018-03-31", "2018-06-30"]) fields = ["EPS"] idx =
pd.MultiIndex.from_product([fields, dt_idx], names=["Field", "Date"])
pandas.MultiIndex.from_product
import asyncio import sys import random as rand import os from .integration_test_utils import setup_teardown_test, _generate_table_name, V3ioHeaders, V3ioError from storey import build_flow, CSVSource, CSVTarget, SyncEmitSource, Reduce, Map, FlatMap, AsyncEmitSource, ParquetTarget, ParquetSource, \ DataframeSource, ReduceToDataFrame import pandas as pd import aiohttp import pytest import v3io import uuid import datetime @pytest.fixture() def v3io_create_csv(): # Setup file_path = _generate_table_name('bigdata/csv_test') asyncio.run(_write_test_csv(file_path)) # Test runs yield file_path # Teardown asyncio.run(_delete_file(file_path)) @pytest.fixture() def v3io_teardown_file(): # Setup file_path = _generate_table_name('bigdata/csv_test') # Test runs yield file_path # Teardown asyncio.run(_delete_file(file_path)) async def _write_test_csv(file_path): connector = aiohttp.TCPConnector() v3io_access = V3ioHeaders() client_session = aiohttp.ClientSession(connector=connector) try: data = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" await client_session.put(f'{v3io_access._webapi_url}/{file_path}', data=data, headers=v3io_access._get_put_file_headers, ssl=False) finally: await client_session.close() async def _delete_file(path): connector = aiohttp.TCPConnector() v3io_access = V3ioHeaders() client_session = aiohttp.ClientSession(connector=connector) try: response = await client_session.delete(f'{v3io_access._webapi_url}/{path}', headers=v3io_access._get_put_file_headers, ssl=False) if response.status >= 300 and response.status != 404 and response.status != 409: body = await response.text() raise V3ioError(f'Failed to delete item at {path}. Response status code was {response.status}: {body}') finally: await client_session.close() def test_csv_reader_from_v3io(v3io_create_csv): controller = build_flow([ CSVSource(f'v3io:///{v3io_create_csv}', header=True), FlatMap(lambda x: x), Map(lambda x: int(x)), Reduce(0, lambda acc, x: acc + x), ]).run() termination_result = controller.await_termination() assert termination_result == 495 def test_csv_reader_from_v3io_error_on_file_not_found(): controller = build_flow([ CSVSource('v3io:///bigdatra/tests/idontexist.csv', header=True), ]).run() try: controller.await_termination() assert False except FileNotFoundError: pass async def async_test_write_csv_to_v3io(v3io_teardown_csv): controller = build_flow([ AsyncEmitSource(), CSVTarget(f'v3io:///{v3io_teardown_csv}', columns=['n', 'n*10'], header=True) ]).run() for i in range(10): await controller.emit([i, 10 * i]) await controller.terminate() await controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.aio.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_csv.split('/', 1) result = await v3io_client.object.get(container, path) finally: await v3io_client.close() expected = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert result.body.decode("utf-8") == expected def test_write_csv_to_v3io(v3io_teardown_file): asyncio.run(async_test_write_csv_to_v3io(v3io_teardown_file)) def test_write_csv_with_dict_to_v3io(v3io_teardown_file): file_path = f'v3io:///{v3io_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, columns=['n', 'n*10'], header=True) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}) controller.terminate() controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_file.split('/', 1) result = v3io_client.object.get(container, path) finally: v3io_client.close() expected = "n,n*10\n0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert result.body.decode("utf-8") == expected def test_write_csv_infer_columns_without_header_to_v3io(v3io_teardown_file): file_path = f'v3io:///{v3io_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}) controller.terminate() controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_file.split('/', 1) result = v3io_client.object.get(container, path) finally: v3io_client.close() expected = "0,0\n1,10\n2,20\n3,30\n4,40\n5,50\n6,60\n7,70\n8,80\n9,90\n" assert result.body.decode("utf-8") == expected def test_write_csv_from_lists_with_metadata_and_column_pruning_to_v3io(v3io_teardown_file): file_path = f'v3io:///{v3io_teardown_file}' controller = build_flow([ SyncEmitSource(), CSVTarget(file_path, columns=['event_key=$key', 'n*10'], header=True) ]).run() for i in range(10): controller.emit({'n': i, 'n*10': 10 * i}, key=f'key{i}') controller.terminate() controller.await_termination() v3io_access = V3ioHeaders() v3io_client = v3io.dataplane.Client(endpoint=v3io_access._webapi_url, access_key=v3io_access._access_key) try: container, path = v3io_teardown_file.split('/', 1) result = v3io_client.object.get(container, path) finally: v3io_client.close() expected = "event_key,n*10\nkey0,0\nkey1,10\nkey2,20\nkey3,30\nkey4,40\nkey5,50\nkey6,60\nkey7,70\nkey8,80\nkey9,90\n" assert result.body.decode("utf-8") == expected def test_write_to_parquet_to_v3io(setup_teardown_test): out_dir = f'v3io:///{setup_teardown_test}' columns = ['my_int', 'my_string'] controller = build_flow([ SyncEmitSource(), ParquetTarget(out_dir, partition_cols='my_int', columns=columns, max_events=1) ]).run() expected = [] for i in range(10): controller.emit([i, f'this is {i}']) expected.append([i, f'this is {i}']) expected_in_pyarrow1 = pd.DataFrame(expected, columns=columns) expected_in_pyarrow3 = expected_in_pyarrow1.copy() expected_in_pyarrow1['my_int'] = expected_in_pyarrow1['my_int'].astype('int32') expected_in_pyarrow3['my_int'] = expected_in_pyarrow3['my_int'].astype('category') controller.terminate() controller.await_termination() read_back_df =
pd.read_parquet(out_dir, columns=columns)
pandas.read_parquet
""" This script is for analysing the outputs from the implementation of DeepAR in GluonTS """ import os, time from pathlib import Path import streamlit as st import pandas as pd import numpy as np from gluonts.model.predictor import Predictor from gluonts.dataset.common import ListDataset from gluonts.transform import FieldName from gluonts.evaluation.backtest import make_evaluation_predictions import autodraft.visualization as viz import autodraft.gluonts as glu import autodraft.api as nhl from bokeh.sampledata.perceptions import probly # @st.cache def load_model(file_path): model = Predictor.deserialize(Path(file_path)) return model @st.cache def get_data(path='../../data/input/full_dataset_4_seasons.csv'): data = pd.read_csv(path) return data # @st.cache # def load_predictions(path='/home/ubuntu/AutoDraft/data/deepar_truncated_results_ne100_lre-4_bs64.csv'): # data = pd.read_csv(path, index_col=2) # return data @st.cache def load_predictions(path='../../data/output/deepar_truncated_results_unit_s_ne300_lr1e-3_bs64_nl3_cl3.csv'): data = pd.read_csv(path, index_col=2) model_name = path.split('/')[-1].split('.')[0] return data, model_name @st.cache def load_joe(): joe = pd.read_csv('../../data/input/joe_schmo_4_seasons.csv') return joe @st.cache def get_roster(path='../../data/input/full_roster_4_seasons.csv'): data = pd.read_csv(path) return data @st.cache def process_data(data, roster): train, test, targets, targets_meta, stat_cat_features, dyn_cat_features, dyn_real_features, dyn_real_features_meta = glu.prep_df(data, roster, column_list=['name', 'date', 'gameNumber', 'cumStatpoints'], streamlit=True, scale=True) return train, test, targets, targets_meta, stat_cat_features, dyn_cat_features, dyn_real_features, dyn_real_features_meta # @st.cache def run_prediction(model, data): predictions = model.predict(dataset=data) return list(predictions) def process_prediction(prediction): mean = prediction.mean_ts mean = mean.reset_index() mean = mean.rename(columns={'index': 'predictions'}) mean = mean.reset_index() mean = mean.rename(columns={'index': 'gameNumber'}) mean = mean.drop(columns=[0]) mean.loc[:, 'gameNumber'] = mean.loc[:, 'gameNumber'] + 1 conf = pd.DataFrame() conf.loc[:, 'low'] = prediction.quantile('0.05') conf.loc[:, 'high'] = prediction.quantile('0.95') full_df = pd.concat([mean, conf], axis=1) return full_df def generate_prediction_df(predictions, train_data, test_data, drop=True, target='cumStatpoints', scaled=None, scaling_loc=None): if scaled is not None: scaling_meta = pd.read_pickle(scaling_loc) st.write(scaling_meta) names = test_data.loc[:, 'name'].unique() full_predictions = pd.DataFrame() for prediction, name in zip(predictions, names): player_df = pd.DataFrame() player_test_data = test_data.loc[test_data.loc[:, 'name'] == name].loc[:, ['name', 'date', target]] player_train_data = train_data.loc[train_data.loc[:, 'name'] == name].loc[:, ['name', 'date', target]] player_test_data.loc[:, 'date'] = pd.to_datetime(player_test_data.loc[:, 'date']) player_train_data.loc[:, 'date'] = pd.to_datetime(player_train_data.loc[:, 'date']) test_length = player_test_data.shape[0] prediction_df = process_prediction(prediction) # prediction_df.loc[:, 'name'] = name if drop: prediction_df = prediction_df.iloc[:test_length, :] player_test_data.reset_index(drop=True, inplace=True) prediction_df.reset_index(drop=True, inplace=True) if scaled == 'ss': scale_data = scaling_meta.loc[scaling_meta.loc[:, 'name'] == name] for column in ['predictions', 'low', 'high']: prediction_df.loc[:, column] = ((prediction_df.loc[:, column] * scale_data['maxabs']) \ * scale_data['std']) + scale_data['mean'] elif scaled == 'unit': scale_data = scaling_meta.loc[scaling_meta.loc[:, 'name'] == name] for column in ['predictions', 'low', 'high']: prediction_df.loc[:, column] = (prediction_df.loc[:, column] - scale_data['min'].values) / scale_data['scale'].values player_train_data.reset_index(drop=True, inplace=True) player_test_df = pd.concat([player_test_data, prediction_df], axis=1) player_df =
pd.concat([player_train_data, player_test_df])
pandas.concat