prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" This builds a script to convert raw madis sourced csv into min and max temperature. Version 1.0 """ import sys import pytz import numpy as np import pandas as pd from datetime import datetime, timedelta from os.path import exists #DEFINE CONSTANTS-------------------------------------------------------------- SOURCE = 'madis' SRC_VARNAME = 'temperature' SRC_KEY = 'stationId' SRC_TIME = 'time' SRC_VARKEY = 'varname' MASTER_KEY = 'NWS.id' INT_EXCEPT = {'E3941':144.,'F4600':96.} MASTER_LINK = r'https://raw.githubusercontent.com/ikewai/hawaii_wx_station_mgmt_container/main/Hawaii_Master_Station_Meta.csv' MASTER_DIR = r'/home/hawaii_climate_products_container/preliminary/' SOURCE_DIR = MASTER_DIR + r'data_aqs/data_outputs/madis/parse/' PROC_OUTPUT_DIR = MASTER_DIR + r'air_temp/working_data/processed_data/' + SOURCE + r'/' TRACK_DIR = MASTER_DIR + r'air_temp/data_outputs/tables/air_temp_station_tracking/' #END CONSTANTS----------------------------------------------------------------- #DEFINE FUNCTIONS-------------------------------------------------------------- def get_max_counts(temp_df,uni_stns): max_counts = {} for stn in uni_stns: if stn in INT_EXCEPT.keys(): max_count = INT_EXCEPT[stn] else: stn_df = temp_df[temp_df[SRC_KEY]==stn].drop_duplicates(subset=['time']).sort_values(by=SRC_TIME) stn_times = pd.to_datetime(stn_df[SRC_TIME]) stn_ints = (stn_times.round('min').diff().dropna().dt.total_seconds()/60).values if len(stn_ints) < 1: continue vals, counts = np.unique(stn_ints,return_counts=True) mode_id = np.argmax(counts) mode_val = vals[mode_id] max_count = (24*60)/mode_val max_counts[stn] = max_count return max_counts def get_tmin_tmax(temp_df): uni_stns = temp_df[SRC_KEY].unique() max_counts = get_max_counts(temp_df,uni_stns) temp_data = [] for stn in uni_stns: stn_df = temp_df[temp_df[SRC_KEY]==stn].sort_values(by=SRC_TIME) st_date = stn_df[SRC_TIME].values[0] date_str = pd.to_datetime(st_date).strftime('X%Y.%m.%d') if stn in max_counts.keys(): stn_max = max_counts[stn] stn_counts = stn_df[~stn_df['value'].isna()].drop_duplicates(subset=[SRC_TIME]).shape[0] valid_pct = stn_counts/stn_max tmin = stn_df[~stn_df['value'].isna()]['value'].min() tmax = stn_df[~stn_df['value'].isna()]['value'].max() if tmin<tmax: temp_data.append([stn,'Tmin',date_str,tmin,valid_pct]) temp_data.append([stn,'Tmax',date_str,tmax,valid_pct]) min_max_df = pd.DataFrame(temp_data,columns=[MASTER_KEY,'var','date','value','percent_valid']) return min_max_df def convert_dataframe(long_df,varname): var_df = long_df[long_df['var']==varname] valid_df = var_df[var_df['percent_valid']>=0.95] wide_df = pd.DataFrame(index=valid_df[MASTER_KEY].values) for stn in wide_df.index.values: stn_temp = valid_df[valid_df[MASTER_KEY]==stn].set_index('date')[['value']] wide_df.loc[stn,stn_temp.index.values] = stn_temp['value'] wide_df.index.name = MASTER_KEY wide_df = wide_df.reset_index() return wide_df """ def update_csv(csv_name,new_data_df): master_df = pd.read_csv(MASTER_LINK) merged_new_df = master_df.merge(new_data_df,on=MASTER_KEY,how='inner') merged_new_df = merged_new_df.set_index('SKN') meta_cols = list(master_df.columns) if exists(csv_name): old_df = pd.read_csv(csv_name) old_df = old_df.set_index('SKN') updated_df = old_df.merge(merged_new_df,on=meta_cols,how='outer') updated_df = updated_df.fillna('NA') updated_df = updated_df.reset_index() updated_df.to_csv(csv_name,index=False) else: merged_new_df = merged_new_df.fillna('NA') merged_new_df = merged_new_df.reset_index() merged_new_df.to_csv(csv_name,index=False) """ def update_csv(csv_name,new_data_df): master_df = pd.read_csv(MASTER_LINK) prev_ids = new_data_df[MASTER_KEY].values merged_new_df = master_df.merge(new_data_df,on=MASTER_KEY,how='inner') merged_new_df = merged_new_df.set_index('SKN') merged_ids = merged_new_df[MASTER_KEY].values unkn_ids = np.setdiff1d(prev_ids,merged_ids) master_df = master_df.set_index('SKN') meta_cols = list(master_df.columns) if exists(csv_name): old_df = pd.read_csv(csv_name) old_df = old_df.set_index('SKN') old_cols = list(old_df.columns) old_inds = old_df.index.values upd_inds = np.union1d(old_inds,merged_new_df.index.values) updated_df = pd.DataFrame(index=upd_inds) updated_df.index.name = 'SKN' updated_df.loc[old_inds,old_cols] = old_df updated_df.loc[merged_new_df.index.values,merged_new_df.columns] = merged_new_df updated_df = sort_dates(updated_df,meta_cols) updated_df = updated_df.fillna('NA') updated_df = updated_df.reset_index() updated_df.to_csv(csv_name,index=False) else: merged_new_df = merged_new_df.fillna('NA') merged_new_df = merged_new_df.reset_index() merged_new_df.to_csv(csv_name,index=False) return unkn_ids def sort_dates(df,meta_cols): non_meta_cols = [col for col in list(df.columns) if col not in meta_cols] date_keys_sorted = sorted(pd.to_datetime([dt.split('X')[1] for dt in non_meta_cols])) date_cols_sorted = [dt.strftime('X%Y.%m.%d') for dt in date_keys_sorted] sorted_cols = meta_cols + date_cols_sorted sorted_df = df[sorted_cols] return sorted_df def update_unknown(unknown_file,unknown_ids,date_str): if exists(unknown_file): prev_df = pd.read_csv(unknown_file) preex_ids = np.intersect1d(unknown_ids,list(prev_df['sourceID'].values)) new_ids = np.setdiff1d(unknown_ids,list(prev_df['sourceID'].values)) prev_df = prev_df.set_index('sourceID') prev_df.loc[preex_ids,'lastDate'] = date_str prev_df = prev_df.reset_index() data_table = [[new_ids[i],SOURCE,date_str] for i in range(len(new_ids))] unknown_df =
pd.DataFrame(data_table,columns=['sourceID','datastream','lastDate'])
pandas.DataFrame
# %% [Algorithm 1c Loop] # # MUSHROOMS # %% [markdown] # ## Binary Classification # %% [markdown] # ### Imports # %% import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt # %% [markdown] # ### Load Data dataset = pd.read_csv(r"C:\Users\yxie367\Documents\GitHub\Mushrooms\DATA\mushrooms.csv") #dataset = pd.read_csv(r"C:\Users\xieya\Documents\GitHub\Mushrooms\DATA\mushrooms.csv") # %% [markdown] # ### View Data and Informations # %% dataset.head() # %% dataset.info() # %% edible, poisonous = dataset['class'].value_counts() # print("Edible:\t ", edible,"\nPoisonous:", poisonous) # %% # Categorical to numerical labels = {'e': 0, 'p': 1} dataset['class'].replace(labels, inplace=True) edible, poisonous = dataset['class'].value_counts() #print("0 - Edible: ", edible,"\n1 - Poisonous:", poisonous) # %% [markdown] # # NN1 Stalk Root - Rooted (r) # %% [markdown] # ### Split Dataset # %% [markdown] # #### Get the Labels # %% X, y = dataset.drop('class', axis=1), dataset['class'].copy() #print("X:",X.shape,"\ny:",y.shape) # %% [markdown] # #### Train Set and Test Set total_error_1 = 0 total_error_2 = 0 total_error_comb = 0 randnum = np.arange(2,44,4) num_trials = len(randnum) record = "" wrong_record = "" run = 1 # %% Data cleaning from sklearn.model_selection import train_test_split X_white = pd.DataFrame() X_not_white = pd.DataFrame() y_white = pd.Series(dtype='float64') y_not_white = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"stalk-root"] == "r": X_white = X_white.append(X.iloc[i,:]) y_white = y_white.append(pd.Series(y.iloc[i])) else: X_not_white = X_not_white.append(X.iloc[i,:]) y_not_white = y_not_white.append(pd.Series(y.iloc[i])) # %% Data cleaning pt2 X_green = pd.DataFrame() X_not_green = pd.DataFrame() y_green = pd.Series(dtype='float64') y_not_green = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"odor"] == "a": X_green = X_green.append(X.iloc[i,:]) y_green = y_green.append(pd.Series(y.iloc[i])) else: X_not_green = X_not_green.append(X.iloc[i,:]) y_not_green = y_not_green.append(pd.Series(y.iloc[i])) # %% for j in randnum: X_train_not_white, X_test_not_white, y_train_not_white, y_test_not_white = train_test_split(X_not_white, y_not_white, test_size=1-(6905/(8124-len(X_white))), random_state=j) X_train_not_green, X_test_not_green, y_train_not_green, y_test_not_green = train_test_split(X_not_green, y_not_green, test_size=1-(6905/(8124-len(X_green))), random_state=j) X_train_green = (X_train_not_green) y_train_green = (y_train_not_green) X_train_white = (X_train_not_white) y_train_white = (y_train_not_white) # %% from sklearn.utils import shuffle X_train_full1 = shuffle(X_train_white, random_state=j) X_test = shuffle(X, random_state=j).iloc[4000:8000] y_train_full1 = shuffle(y_train_white, random_state=j) y_test = shuffle(y, random_state=j).iloc[4000:8000] # %% [markdown] # #### Validation Set # %% X_valid1, X_train1 = X_train_full1[:500], X_train_full1[500:] y_valid1, y_train1 = y_train_full1[:500], y_train_full1[500:] # print("X_train:", X_train1.shape[0], "y_train", y_train1.shape[0]) # print("X_valid: ", X_valid1.shape[0], "y_valid ", y_valid1.shape[0]) # print("X_test: ", X_test.shape[0], "y_test ", X_test.shape[0]) # %% [markdown] # ### Prepare the Data # %% [markdown] # #### Data Transformation # %% from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.compose import ColumnTransformer cat_attr_pipeline = Pipeline([ ('encoder', OrdinalEncoder()) ]) cols = list(X) pipeline = ColumnTransformer([ ('cat_attr_pipeline', cat_attr_pipeline, cols) ]) X_train1 = pipeline.fit_transform(X_train1) X_valid1 = pipeline.fit_transform(X_valid1) X_test1 = pipeline.fit_transform(X_test) # %% [markdown] # ### Neural Network # %% [markdown] # #### Model # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, Dense # %% # tf.random.set_seed(j) tf.random.set_random_seed(j) # %% model1 = Sequential([ InputLayer(input_shape=(22,)), # input layer Dense(45, activation='relu'), # hidden layer Dense(1, activation='sigmoid') # output layer ]) # %% #model1.summary() # %% [markdown] # #### Compile the Model # %% model1.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) # %% [markdown] # #### Prepare Callbacks # %% from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint_cb = ModelCheckpoint('../SavedModels/best_model.h5', save_best_only=True) early_stopping_cb = EarlyStopping(patience=3, restore_best_weights=True) # %% [markdown] # ### Training # %% train_model1 = model1.fit(X_train1, y_train1, epochs=100, validation_data=(X_valid1, y_valid1), callbacks=[checkpoint_cb, early_stopping_cb]) # %% [markdown] # ### Evaluate the Best Model on Test Set # %% results1 = model1.evaluate(X_test1, y_test) # print("test loss, test acc:", results1) # %% [markdown] # ### Make Some Predictions # %% X_new1 = X_test1[:5] y_prob1 = model1.predict(X_new1) # print(y_prob.round(3)) # %% y_pred1 = (model1.predict(X_new1) > 0.5).astype("int32") # print(y_pred) y_test_pred = (model1.predict(X_test1) > 0.5).astype("int32") # %% [markdown] # ## KL Divergence # %% # X_new = X_test[:5] X_df1 = pd.DataFrame(model1.predict(X_test1)) y_test_pred1 =
pd.DataFrame(y_test_pred)
pandas.DataFrame
import pandas as pd import numpy as np from datetime import datetime from multiprocessing import Pool from functools import partial from pathos import pools as pp import pickle as pkl from UserCentricMeasurements import * from ContentCentricMeasurements import * from CommunityCentricMeasurements import * from TEMeasurements import * from collections import defaultdict import jpype import json import os basedir = os.path.dirname(__file__) class BaselineMeasurements(UserCentricMeasurements, ContentCentricMeasurements, TEMeasurements, CommunityCentricMeasurements): def __init__(self, dfLoc, content_node_ids=[], user_node_ids=[], metaContentData=False, metaUserData=False, contentActorsFile=os.path.join(basedir, './baseline_challenge_data/filtUsers-baseline.pkl'), contentFile=os.path.join(basedir, './baseline_challenge_data/filtRepos-baseline.pkl'), topNodes=[], topEdges=[], previousActionsFile='', community_dictionary='', # community_dictionary=os.path.join(basedir, './baseline_challenge_data/baseline_challenge_community_dict.pkl'), te_config=os.path.join(basedir, './baseline_challenge_data/te_params_baseline.json'), platform='github', use_java=True): super(BaselineMeasurements, self).__init__() self.platform = platform try: # check if input is a data frame dfLoc.columns df = dfLoc except: # if not it should be a csv file path df = pd.read_csv(dfLoc) self.contribution_events = ['PullRequestEvent', 'PushEvent', 'IssuesEvent', 'IssueCommentEvent', 'PullRequestReviewCommentEvent', 'CommitCommentEvent', 'CreateEvent', 'post', 'tweet'] self.popularity_events = ['WatchEvent', 'ForkEvent', 'comment', 'post', 'retweet', 'quote', 'reply'] print('preprocessing...') self.main_df = self.preprocess(df) print('splitting optional columns...') # store action and merged columns in a seperate data frame that is not used for most measurements if platform == 'github' and len(self.main_df.columns) == 6 and 'action' in self.main_df.columns: self.main_df_opt = self.main_df.copy()[['action', 'merged']] self.main_df = self.main_df.drop(['action', 'merged'], axis=1) else: self.main_df_opt = None # For content centric print('getting selected content IDs...') if content_node_ids != ['all']: if self.platform == 'reddit': self.selectedContent = self.main_df[self.main_df.root.isin(content_node_ids)] elif self.platform == 'twitter': self.selectedContent = self.main_df[self.main_df.root.isin(content_node_ids)] else: self.selectedContent = self.main_df[self.main_df.content.isin(content_node_ids)] else: self.selectedContent = self.main_df # For userCentric self.selectedUsers = self.main_df[self.main_df.user.isin(user_node_ids)] print('processing repo metatdata...') # read in external metadata files # repoMetaData format - full_name_h,created_at,owner.login_h,language # userMetaData format - login_h,created_at,location,company if metaContentData != False: self.useContentMetaData = True meta_content_data =
pd.read_csv(metaContentData)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, re, sys import preprocess.EMGprocess import preprocess.plot_features from typing import List, Dict, Sized from sklearn.metrics import confusion_matrix import pickle import pandas as pds from time import sleep # ------- ------- ------- ------- General settings ------- ------- ------- ------- ------- ------- ------- ------- cond = 'OFF' # conditions to test for COI = [4,5,8] # channels of interest task = 'rst' # selected task n_splits = 10 # n-fold cross validation fileobj = preprocess.EMGprocess.EMGfileworks(task=task, subj='all', scaling=False) svmobj = preprocess.EMGprocess.EMGpredict() EMGdetails = preprocess.EMGprocess.ExtractEMGfeat(task=task, filename_append='') details = EMGdetails.extract_details(subj=fileobj.subj, act="return") # ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- listEMGallOFF, listEMGallON = fileobj.get_EMGfilelist_all(task='tap') for k in range(8, 9, 1): # loop through all segments in order to read how much recording time is necessary fileobj.filter_data_and_extract_features(listEMGallOFF, '', os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'filtered_data' + str(k)), os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'features_split' + str(k)), k) fileobj.filter_data_and_extract_features(listEMGallON, '', os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'filtered_data' + str(k)), os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'features_split' + str(k)), k) listEMGallOFF, listEMGallON = fileobj.get_EMGfilelist_all(task='rst') for k in range(1, 9, 1): # loop through all segments in order to read how much recording time is necessary fileobj.filter_data_and_extract_features(listEMGallOFF, '', os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'filtered_data' + str(k)), os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'features_split' + str(k)), k) #fileobj.filter_data_and_extract_features(listEMGallON, '', # os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'filtered_data' + str(k)), # os.path.join(fileobj.datobj.wdir, 'data', 'EMG', # 'features_split' + str(k)), k) # Obtain the names and metadata for both groups according to the excel file (see <dataprocess> for mor information) trem_details = details[details.type == 1] bradkin_details = details[(details.type == 0) | (details.type == 2)] # Sort data into two categories: a) bradikintic-rigid and b) tremordominant iPS-patients list_type = {} tremdom = [] brakin = [] for r in listEMGallOFF: filename = os.path.splitext(r)[0] if any(bradkin_details["Name"].str.find(filename[0:11]) == 0): brakin.append(r) else: tremdom.append(r) list_type.update({"brakin": brakin, "tremdom": tremdom}) # Load EMG features to memory, according to file-list <listEMGallOFF> (here only 8secs. are used) progbar_size = len(listEMGallOFF) print('Reading extracted features for all subjects ...') dfs: Dict = {} for idx, r in enumerate(listEMGallOFF): j = (idx + 1) / progbar_size sys.stdout.write('\r') sys.stdout.write("[%-20s] %d%%" % ('=' * int(20 * j), 100 * j)) sys.stdout.flush() sleep(0.25) filename = os.path.splitext(r)[0] infile = open(os.path.join(fileobj.datobj.wdir, 'data', 'EMG', 'features_split8', filename + '_8secs_features.pkl'), 'rb') dfs[r] = pickle.load(infile) infile.close() if any(bradkin_details["Name"].str.find(filename[0:11]) == 0): dfs[r].insert(0, "output_0", 0) else: dfs[r].insert(0, "output_0", 1) print() print("DONE reading features!") # Plot routine comparisons between both groups: features = ["IAV", "MAV2", "RMS", "VAR", "ZC", "SSC"] # features of interest column_regex = re.compile("^((" + ")|(".join(features) + "))_[0-9]+") feat_br = pds.DataFrame(columns=features) feat_td = pds.DataFrame(columns=features) feat_all = {} listEMGtremOFF = fileobj.get_EMGfilelist_per_subj(cond=cond, task=task, subj=list(trem_details.Name)) for idx, r in enumerate(listEMGtremOFF): print("Reading features per subject, reading: ", r) data_temp = pds.DataFrame() for f in listEMGtremOFF[r]: filename = os.path.splitext(f)[0] columns_input = list(filter(column_regex.match, list(dfs[f]))) data_temp = pds.concat([data_temp, dfs[f][columns_input]]) feat_all[idx + 1] = pds.DataFrame.mean(data_temp, skipna=True) feat_tdAllchan =
pds.DataFrame.from_dict(feat_all, orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Sat Jul 20 12:07:57 2019 @author: johnmount """ import numpy import pandas import vtreat.util import vtreat.transform class VarTransform: """build a treatment plan for a numeric outcome (regression)""" def __init__(self, incoming_column_name, derived_column_names, treatment): self.incoming_column_name_ = incoming_column_name self.derived_column_names_ = derived_column_names.copy() self.treatment_ = treatment self.need_cross_treatment_ = False self.refitter_ = None def transform(self, data_frame): raise NotImplementedError("base method called") class MappedCodeTransform(VarTransform): def __init__(self, incoming_column_name, derived_column_name, treatment, code_book): VarTransform.__init__( self, incoming_column_name, [derived_column_name], treatment ) self.code_book_ = code_book def transform(self, data_frame): incoming_column_name = self.incoming_column_name_ derived_column_name = self.derived_column_names_[0] sf = pandas.DataFrame({incoming_column_name: data_frame[incoming_column_name]}) bad_posns = vtreat.util.is_bad(sf[incoming_column_name]) sf.loc[bad_posns, incoming_column_name] = "_NA_" res = pandas.merge( sf, self.code_book_, on=[self.incoming_column_name_], how="left", sort=False ) # ordered by left table rows res = res[[derived_column_name]].copy() res.loc[vtreat.util.is_bad(res[derived_column_name]), derived_column_name] = 0 return res class YAwareMappedCodeTransform(MappedCodeTransform): def __init__( self, incoming_column_name, derived_column_name, treatment, code_book, refitter, extra_args, params, ): MappedCodeTransform.__init__( self, incoming_column_name=incoming_column_name, derived_column_name=derived_column_name, treatment=treatment, code_book=code_book, ) self.need_cross_treatment_ = True self.refitter_ = refitter self.extra_args_ = extra_args self.params_ = params class CleanNumericTransform(VarTransform): def __init__(self, incoming_column_name, replacement_value): VarTransform.__init__( self, incoming_column_name, [incoming_column_name], "clean_copy" ) self.replacement_value_ = replacement_value def transform(self, data_frame): col = numpy.asarray(data_frame[self.incoming_column_name_].copy()).astype(float) bad_posns = vtreat.util.is_bad(col) col[bad_posns] = self.replacement_value_ res = pandas.DataFrame({self.derived_column_names_[0]: col}) return res class IndicateMissingTransform(VarTransform): def __init__(self, incoming_column_name, derived_column_name): VarTransform.__init__( self, incoming_column_name, [derived_column_name], "missing_indicator" ) def transform(self, data_frame): col = vtreat.util.is_bad(data_frame[self.incoming_column_name_]) res =
pandas.DataFrame({self.derived_column_names_[0]: col})
pandas.DataFrame
import pandas as pd from paso3proyecto1 import eliminarRepetidos def juntarTablas(Dataframe1,Dataframe2): Dataframe1= eliminarRepetidos(Dataframe1) Dataframe2= eliminarRepetidos(Dataframe2) Dataframe3= pd.DataFrame() if "id_suite" in Dataframe1.columns and "id_suite" in Dataframe2.columns: Dataframe3= pd.merge(Dataframe1, Dataframe2, on='id_suite', how='outer',suffixes=("_nav","_conv")) elif "gclid" in Dataframe1.columns and "gclid" in Dataframe2.columns: Dataframe3= pd.merge(Dataframe1, Dataframe2, on='gclid', how='outer',suffixes=("_nav","_conv")) else: Dataframe3= pd.merge(Dataframe1, Dataframe2, on='url_landing', how='outer',suffixes=("_nav","_conv")) return Dataframe3 if __name__ == "__main__": conversiones=pd.read_csv("conversiones.csv", sep=";") navegacion=pd.read_csv("navegacion.csv", sep=";") nav=
pd.DataFrame(navegacion)
pandas.DataFrame
''' preprocessing_example.py This script is an example of pre-processing message data before applying the python code. Please refer to Section 3 of the Code and Data Appendix. For the meaning of the values of each column in the LSE message data, please refer to "London Stock Exchange MIT201 - Guide to the Trading System Issue 12.3" (https://web.archive.org/web/20150703141903/https://www.londonstockexchange.com/products-and-services/trading-services/guide-to-new-trading-system.pdf) Note that this script may not be directly used by researchers using message data from other exchanges or from LSE but during a different time period, as LSE makes changes to the trading protocol from time to time. We provide this script as an example and hope it can help the users of our code pre-process their message data. ''' import pandas as pd import numpy as np import os import multiprocessing import datetime import random import sys base = os.path.expanduser('~') + '/Dropbox/Project - HFT Measurement of the Arms Race/FCA Collaboration - confidential/Materials for Data Appendix/PackageTesting' path = base + '/Testing/' path_reference_data = path + '/ReferenceData/' file_symdates = path_reference_data + '/Sample_All_SymDates.csv.gz' def preprocess_msgs(date, sym, in_dir, out_dir): infile_msgs = '%s/%s/CleanMsgData_%s_%s.csv.gz' % (in_dir, date, date, sym) # Note: variable names and data types in user's data may be different from the ones below. dtypes_msgs = {'Source': 'O', 'SourceID': 'int64', 'StreamID': 'O','ConnectionID': 'O', 'GatewayIPAddress': 'O', 'GatewayPort': 'O', 'ID': 'int64', 'MessageTimestamp': 'O', 'UserID': 'O', 'MessageType': 'O', 'InstrumentID': 'O', 'ClientOrderID': 'O', 'OrderID': 'O', 'OrderStatus': 'O', 'OrderType': 'O', 'PublicOrderID': 'O', 'ExecType': 'O', 'TIF': 'O', 'ClOrdLinkID': 'O', 'ExpireDateTime': 'O', 'RawSide': 'O', 'OrderQty': 'float64', 'DisplayQty': 'float64', 'LimitPrice': 'int64', 'Capacity': 'O', 'OrderSubType': 'O', 'StoppedPrice': 'int64', 'Anonymity': 'O', 'PassiveOnlyOrder': 'O', 'OriginalClientOrderID': 'O', 'BidPrice': 'int64', 'BidSize': 'float64', 'AskPrice': 'int64', 'AskSize': 'float64', 'ExecutionID': 'O', 'OrderRejectCode': 'O', 'ExecutedPrice': 'int64', 'ExecutedQty': 'float64', 'LeavesQty': 'float64', 'Container': 'O', 'TradeMatchID': 'O', 'TransactTime': 'O', 'TypeOfTrade': 'O', 'MinQty': 'float64', 'DisplayMethod': 'O', 'PriceDifferential': 'O', 'CancelRejectReason': 'O', 'Symbol_Type': 'O', 'Segment_ID': 'O', 'Symbol': 'O', 'Date': 'O', 'Timestamp': 'O', 'FirmClass': 'O', 'FirmNum': 'float64', 'UserNum': 'float64', 'OrderNum': 'float64', 'QuoteRelated': 'bool', 'UniqueOrderID': 'O', 'Side': 'O', 'UnifiedMessageType': 'O', 'PrevPriceLvl': 'int64', 'PrevQty': 'float64', 'PriceLvl': 'int64', 'Classified': 'bool', 'EventNum': 'float64', 'Event': 'O', 'MinExecPriceLvl':'int64', 'MaxExecPriceLvl':'int64', 'PrevBidPriceLvl': 'int64', 'PrevBidQty': 'float64', 'BidPriceLvl': 'int64', 'BidClassified': 'bool', 'BidEventNum': 'float64', 'BidEvent': 'O', 'BidMinExecPriceLvl':'int64', 'BidMaxExecPriceLvl':'int64', 'PrevAskPriceLvl': 'int64', 'PrevAskQty': 'float64', 'AskPriceLvl': 'int64', 'AskClassified': 'bool', 'AskEventNum': 'float64', 'AskEvent': 'O', 'MinExecPriceLvl':'int64', 'MaxExecPriceLvl':'int64','PostOpenAuction':'bool','OpenAuction':'bool','AuctionTrade':'bool'} msgs = pd.read_csv(infile_msgs, dtype = dtypes_msgs, parse_dates=['MessageTimestamp']) msgs.drop(['Symbol'], axis=1, inplace=True) msgs = msgs.rename(columns = {'FirmNum':'FirmID','OpenAuction':'OpenAuctionTrade', 'StoppedPrice':'StopPrice','InstrumentID':'Symbol', 'OriginalClientOrderID':'OrigClientOrderID', 'OrderID':'MEOrderID'}) ### Get source format (if the exchange has multiple message formats, eg. Fix/native is_ntv, is_fix = msgs['Source'] == 'Native', msgs['Source'] == 'FIX' ### MessageType MessageTypes = {'D':'New_Order', 'F':'Cancel_Request','q':'Mass_Cancel_Request','G':'Cancel_Replace_Request', 'S':'New_Quote', '8':'Execution_Report','9':'Cancel_Reject','r':'Mass_Cancel_Report', '3':'Other_Reject','j':'Other_Reject'} msgs['MessageType'] = msgs['MessageType'].map(MessageTypes) ### OrderType OrderTypes = {'1':'Market', '2':'Limit', '3':'Stop', '4':'Stop_Limit', 'P':'Pegged'} msgs['OrderType'] = msgs['OrderType'].map(OrderTypes) # Set native messages pegged orders based on OrderSubType msgs.loc[is_ntv & (msgs['MessageType'] == 'New_Order') & (msgs['OrderType'].isin({'Market','Limit'})) & (msgs['OrderSubType'] == '5'), 'OrderType'] = 'Pegged' # Set passive-only orders to OrderType Passive_Only msgs.loc[(msgs['MessageType'] == 'New_Order') & (msgs['OrderType'] == 'Limit') & (msgs['PassiveOnlyOrder'].notnull()), 'OrderType'] = 'Passive_Only' msgs.loc[msgs['MessageType'] != 'New_Order', 'OrderType'] = np.nan ### TIF - check data type TIFs_ntv = {'5':'GFA','10':'GFA','12':'GFA','50':'GFA','51':'GFA','52':'GFA', '3':'IOC','4':'FOK', '0':'GoodTill','6':'GoodTill','7':'GoodTill'} TIFs_fix = {'2':'GFA','7':'GFA','9':'GFA','8':'GFA','C':'GFA', '3':'IOC','4':'FOK', '0':'GoodTill','6':'GoodTill'} msgs.loc[is_ntv, 'TIF'] = msgs['TIF'].map(TIFs_ntv) msgs.loc[is_fix, 'TIF'] = msgs['TIF'].map(TIFs_fix) ### ExecType ExecTypes = {'0':'Order_Accepted','8':'Order_Rejected','F':'Order_Executed', 'C':'Order_Expired','4':'Order_Cancelled','5':'Order_Replaced', 'D':'Order_Restated','9':'Order_Suspended'} msgs['ExecType'] = msgs['ExecType'].map(ExecTypes) ### Cancel Reject Reason # others are NA. check whether this is fine msgs.loc[is_ntv & (msgs['MessageType'] == 'Cancel_Reject') & (msgs['CancelRejectReason'] == '2000'), 'CancelRejectReason'] = 'TLTC' msgs.loc[is_fix & (msgs['MessageType'] == 'Cancel_Reject') & (msgs['CancelRejectReason'] == '1'), 'CancelRejectReason'] = 'TLTC' msgs.loc[(msgs['MessageType'] == 'Cancel_Reject') & (msgs['CancelRejectReason'] != 'TLTC'), 'CancelRejectReason'] = 'Other' ### OrderStatus OrderStatus = {'1':'Partial_Fill','2':'Full_Fill'} msgs.loc[(msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed'), 'OrderStatus'] = msgs['OrderStatus'].map(OrderStatus) msgs.loc[(~msgs['OrderStatus'].isin(['Partial_Fill','Full_Fill'])), 'OrderStatus'] = np.nan ### TradeInitiator: A P Other # Set auction trades to Other msgs.loc[(msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == True), 'TradeInitiator'] = 'Other' # Set TradeInitiator for native msgs msgs.loc[is_ntv & (msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == False), 'TradeInitiator'] = 'Other' msgs.loc[is_ntv & (msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == False) & (msgs['Container'].isin({'1'})), 'TradeInitiator'] = 'Passive' msgs.loc[is_ntv & (msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == False) & (msgs['Container'].isin({'0','3'})), 'TradeInitiator'] = 'Aggressive' # Set TradeInitiator for fix msgs msgs.loc[is_fix & (msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == False), 'TradeInitiator'] = 'Other' msgs.loc[is_fix & (msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == False) & (msgs['TypeOfTrade'].isin({'0','1'})), 'TradeInitiator'] = 'Passive' msgs.loc[is_fix & (msgs['MessageType'] == 'Execution_Report') & (msgs['ExecType'] == 'Order_Executed') & (msgs['AuctionTrade'] == False) & (msgs['TypeOfTrade'].isin({'2'})), 'TradeInitiator'] = 'Aggressive' ### Price factor conversion # Set Int values to dtype Int64 to allow np.nan mixed with int64 # Set missing prices to NA prices = ['LimitPrice', 'StopPrice', 'ExecutedPrice', 'BidPrice', 'AskPrice'] for col in prices: msgs[col] = msgs[col]/1e8 msgs.loc[msgs[col] <= 0, col] = np.nan ### Make SessionID and RegularHour # Load symbol-date info # Note: Depending on the format of the user's reference data, # it is likely that the way to add session ID info and regular hours info to # the message data is different from below info = pd.read_csv(base+'/Testing/ReferenceData/Symbol_Date_Info.csv') info = info.loc[(info['InstrumentID'].astype('str') == sym) & (info['Date'] == date)] # Generate reg hour and session ID reg_hours = pd.Series(False, index=msgs.index) sess_id = pd.Series(np.nan, index=msgs.index) i = 1 while i <= info['Sess_Max_N'].iloc[0]: sess_st = pd.to_datetime(info['Sess_St_%s' % i].iloc[0]) sess_end = pd.to_datetime(info['Sess_End_%s' % i].iloc[0]) # Session starts on first inbound in New Order / New Quote in regular hours sess_st_id = msgs.index[(msgs['MessageTimestamp'] > sess_st) & (msgs['MessageType'].isin({'New_Order', 'New_Quote'}))][0] # Session ends on last outbound in regular hours sess_end_id = msgs.index[(msgs['MessageTimestamp'] < sess_end) & (msgs['MessageType'].isin({'Execution_Report'}))][-1] sess_msgs = ((msgs.index >= sess_st_id) & (msgs.index <= sess_end_id)) sess_id[sess_msgs] = i reg_hours = reg_hours | sess_msgs i += 1 post_open_auction = msgs['PostOpenAuction'] msgs['RegularHour'] = reg_hours & post_open_auction msgs['SessionID'] = sess_id ### Add unique order id msgs = add_UniqueOrderID(msgs) ### add quote identifier msgs['QuoteRelated'] = msgs['UniqueOrderID'].str[-2:] == 'QR' ### Flag for FIX Quote, since we are missing their outbounds. ### Note: this is a specific problem to our LSE dataset and users may not need to ### to do this. msgs['Flag_FixQuote'] = (msgs['QuoteRelated']) & (msgs['Source'] == 'FIX') ### Replace mass cancel and mass cancel report msgs.loc[(msgs['MessageType']=='Mass_Cancel_Request'), 'MessageType'] = 'Other_Inbound' msgs.loc[(msgs['MessageType']=='Mass_Cancel_Report'), 'MessageType'] = 'Other_Outbound' ### Get the columns msgs['Date'] = date msgs['Symbol'] = sym cols = [ 'Date','Symbol', 'ClientOrderID', 'UniqueOrderID','TradeMatchID', 'SessionID', 'MEOrderID','OrigClientOrderID', 'UserID', 'FirmID', 'FirmClass', 'MessageTimestamp', 'Side', 'MessageType', 'OrderType', 'ExecType', 'OrderStatus', 'TradeInitiator', 'TIF', 'CancelRejectReason', 'LimitPrice', 'OrderQty', 'DisplayQty', 'ExecutedPrice', 'StopPrice', 'ExecutedQty', 'LeavesQty', 'QuoteRelated', 'BidPrice', 'BidSize', 'AskPrice', 'AskSize', 'OpenAuctionTrade', 'AuctionTrade', 'RegularHour', 'Flag_FixQuote' ] if not os.path.exists('%s/%s'%(out_dir, date)): os.makedirs('%s/%s'%(out_dir, date)) msgs[cols].to_csv('%s/%s/Raw_Msg_Data_%s_%s.csv.gz' % (out_dir, date, date, sym), index=False, compression = 'gzip') return date, sym def add_UniqueOrderID(msgs): ''' Add unique order id to the msgs dataframe. This is necessary because the order identifiers in the raw data may not be ideal: some of them are not populated for all messages in the same order (MEOrderID is only populated for outbounds, missing in inbounds) and some of them are not fixed during the lifetime of an order (ClientOrderID changes when user modifies the order). Thus, we need to assign an order identifier that is populated for all messages in the order and does not change when user modifies the order. Reference: Section 3.2.1 of the code and data appendix. Note that this function might not apply to other exchanges. User needs to rewrite this function if necessary, based on the specific institution details of the exchange in the user' data. This function can serve as an example of how to generate UniqueOrderID. The requirement is that the UniqueOrderID is populated for all messages in the order and does not change when user modifies the order. The UniqueOrderID column should never be missing. If the user's data contains the columns we use (listed below) to generate our unique order id, he/she may directly apply this function for generating UniqueOrderID, but the user must make sure that the variables they use fit the descriptions below and the logic behind the function can indeed generate a unique order id with the desired property (does not change throughout the life time of an order) under the rules of the exchange in the user's data. Input: sym-date level message dataset Used columns are: 'Source' : In many exchanges there are multiple interfaces (different message format). This field indicates which interface the message is from. Note that messages from all interfaces for a sym-date should be combined into a single message dataframe and be processed together. 'ClientOrderID': ClientOrderID is provided by users when submitting new orders. They can also change the ClientOrderID of an existing order when modifying the order. We assume that a user uses unique ClientOrderID when submitting new orders and modifying orders. This uniqueness is suggested by LSE and it is required in other exchanges such as NYSE. 'OrigClientOrderID': In cancel and cancel/replace requests users use OrigClientOrderID or MEOrderID to refer to the order they are trying to cancel/modify. When MEOrderID is populated in a cancel or cancel/replace request, this field is ignored. 'MEOrderID': MEOrderID is created by the matching engine after users submit new orders. It is populated in matching engine messages (outbounds) and cancel and cancel/replace messages. 'UserNum': In raw data users have a UserID. We enumerate all users and use index to refer to users The procedure: We loop over all messages for each User-MessageFormat pair. For new orders and mass cancel requests, we start a new UniqueOrderID. For cancel requests, cancel/replace requests, execution reports, rejection messages, and mass cancel reports, in cases where the MEOrderID is populated with a MEOrderID we have seen before, we assign the UniqueOrderID of the earlier message with the same MEOrderID to the current message. Otherwise, we assign the UniqueOrderID of the earlier message with the same ClientOrderID/OrigClientOrderID to the current message. The handling of those order is slightly different, please refer to the comments below to see the difference). We index all orders from the same user by integers (OrderNum). All quote related messages from the same user are in the same order (OrderNum='QR'). The format of the unique order id is Source_UserNum_OrderNum. Return: Message dataframe with UniqueOrderID added. ''' msgs['OrderNum'] = None msgs['UniqueOrderID'] = None originalid_orderid_conflict = 0 no_inbound_outbound_id = 0 # Loop over users: for _, user_msgs in msgs.groupby('UserID'): # Initialize counter counter = 0 # Loop over Native and FIX messages for source in set(msgs['Source'].unique()): # Initialize sets of previously observed IDs and message times prev = {'MEOrderID': {}, 'ClientOrderID': {}} time = {'MEOrderID': {}, 'ClientOrderID': {}} # Loop over user messages from source for i in user_msgs.loc[user_msgs['Source'] == source].index: order_id = msgs.at[i, 'MEOrderID'] client_order_id = msgs.at[i, 'ClientOrderID'] original_client_order_id = msgs.at[i, 'OrigClientOrderID'] # Gateway New Quote # For a given user, all quotes will have the same UniqueOrderID if msgs.at[i, 'MessageType'] == 'New_Quote': msgs.at[i, 'UniqueOrderID'] = '%s_%06d_QR' % (source, msgs.at[i, 'UserNum']) continue # Gateway New Order and Gateway Mass Cancel # Increment counter then set OrderNum to counter elif msgs.at[i, 'MessageType'] in {'New_Order', 'Mass_Cancel_Request'}: counter += 1 msgs.at[i, 'OrderNum'] = counter # Gateway Cancel/Replace and Gateway Cancel # C/R and Cancel should only happen if there has been a previous Outbound ID. # Else conditions are added for cases in which # there was no previous outbound message due to pack loss elif msgs.at[i, 'MessageType'] in {'Cancel_Replace_Request', 'Cancel_Request'}: # Case 1: User references both OrigClientOrderID and the ME MEOrderID if pd.notnull(order_id) & pd.notnull(original_client_order_id): # If both have already been seen, use the order number from the order ID. # Otherwise use MEOrderID or ClientOrderID depending on which has been seen if (order_id in prev['MEOrderID'].keys()) & (original_client_order_id in prev['ClientOrderID'].keys()): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] # If the clientOrderID is associated with a different ordernum increment the counter and test counter if prev['MEOrderID'][order_id] != prev['ClientOrderID'][original_client_order_id]: originalid_orderid_conflict += 1 elif order_id in prev['MEOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] elif original_client_order_id in prev['ClientOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['ClientOrderID'][original_client_order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter # Case 2: User references Outbound ID (MEOrderID) elif pd.notnull(order_id): if order_id in prev['MEOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter # Case 3: User references Inbound ID (OrigClientOrderID) elif pd.notnull(original_client_order_id): if original_client_order_id in prev['ClientOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['ClientOrderID'][original_client_order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter else: # It should never happen that there is neither an Inbound nor an Outbound ID. no_inbound_outbound_id += 1 counter += 1 msgs.at[i, 'OrderNum'] = counter # Execution Report # We should either have seen the MEOrderID or the ClientOrderID previously. # An else condition is added for cases in which we have not previously # seen the outbound or inbound due to pack loss. elif msgs.at[i, 'MessageType'] == 'Execution_Report': # Case 1: Both order id and client order id are populated if pd.notnull(order_id) & pd.notnull(client_order_id): # If both have already been seen, use the order number from the order ID. # Otherwise use MEOrderID or ClientOrderID depending on which has been seen if (order_id in prev['MEOrderID'].keys()) & (client_order_id in prev['ClientOrderID'].keys()): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] # If the ClientOrderID is associated with a different ordernum increment the testing counter if prev['MEOrderID'][order_id] != prev['ClientOrderID'][client_order_id]: originalid_orderid_conflict += 1 elif order_id in prev['MEOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] elif client_order_id in prev['ClientOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['ClientOrderID'][client_order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter # Case 2: only MEOrderID is populated elif order_id in prev['MEOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] # Case 3: only ClientOrderID is populated elif client_order_id in prev['ClientOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['ClientOrderID'][client_order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter # Order Reject or Order Mass Cancel Report # Note that order Mass Cancel Report is a response to an Order Mass Cancel Request message. elif msgs.at[i, 'MessageType'] in {'Cancel_Reject', 'Mass_Cancel_Report', 'Other_Reject'}: # Case 1: both are populated if pd.notnull(order_id) & pd.notnull(client_order_id): # If both have already been seen, use the order number from the order ID. If the ClientOrderID # is associated with a different ordernum increment the testing counter if (order_id in prev['MEOrderID'].keys()) & (client_order_id in prev['ClientOrderID'].keys()): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] # If the ClientOrderID is associated with a different ordernum increment the testing counter if prev['MEOrderID'][order_id] != prev['ClientOrderID'][client_order_id]: originalid_orderid_conflict += 1 elif order_id in prev['MEOrderID'].keys(): msgs.at[i, 'OrderNum'] = prev['MEOrderID'][order_id] elif client_order_id in prev['ClientOrderID'].keys(): # We require that the message occurs within 1min of an earlier message # from the same User-ClientOrderID pair. # In the LSE data the Symbol field is not populated for # 'Cancel_Reject', 'Mass_Cancel_Report', 'Other_Reject' # (including protocol reject and business message reject) messages. # When we split the messages into symbol-dates, we include those messages # in a symbol-date if we observe the same User-ClientOrderID pair in that # symbol-date. To further confirm that those messages are actually in that # symbol-date and avoid mismatch, we require that there is at least one # messages from the same user-client order id within one minute beofre the # reject message/mass cancel message. While this method is not theoretically # perfect, we believe that it is good enough for the purpose of this project, # because it is reasonable to assume that users use unique Client Order IDs across symbols. # (While this not a strict requirement in LSE, it appears in our data tht # most users follow this rule, and in many other exchanges this is a strict requirement) if msgs.at[i, 'MessageTimestamp'] < (time['ClientOrderID'][client_order_id] + pd.Timedelta('1 m')): msgs.at[i, 'OrderNum'] = prev['ClientOrderID'][client_order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter else: counter += 1 msgs.at[i, 'OrderNum'] = counter # Case 2: Only ClientOrderID is populated # Note that ClientOrderID must be populated, while MEOrderID may not, according to the LSE document elif client_order_id in prev['ClientOrderID'].keys(): if msgs.at[i, 'MessageTimestamp'] < (time['ClientOrderID'][client_order_id] + pd.Timedelta('1 m')): msgs.at[i, 'OrderNum'] = prev['ClientOrderID'][client_order_id] else: counter += 1 msgs.at[i, 'OrderNum'] = counter else: counter += 1 msgs.at[i, 'OrderNum'] = counter # Update the set of previously observed MEOrderID values and times if pd.notnull(order_id): prev['MEOrderID'][order_id] = msgs.at[i, 'OrderNum'] time['MEOrderID'][order_id] = msgs.at[i, 'MessageTimestamp'] # Update the set of previously observed ClientOrderID values and times if pd.notnull(client_order_id): prev['ClientOrderID'][client_order_id] = msgs.at[i, 'OrderNum'] time['ClientOrderID'][client_order_id] = msgs.at[i, 'MessageTimestamp'] # the format of UniqueOrderID is Source_UserNum_OrderNum msgs.at[i, 'UniqueOrderID'] = '%s_%06d_%08d' % (source, msgs.at[i, 'UserNum'], msgs.at[i, 'OrderNum']) return msgs def multi_process_wrapper(args): date, sym, in_dir, out_dir = args try: preprocess_msgs(*args) except: print(f'Error: {date}, {sym}') if __name__ == '__main__': num_workers = 1 pairs =
pd.read_csv(file_symdates, dtype={'Date':'O','Symbol':'O'})
pandas.read_csv
import numpy as np import pandas as pd from CEBD1260_preprocessing import ohe from CEBD1260_preprocessing import master_pipe from CEBD1260_cleaning import dtype_conver from scipy.sparse import coo_matrix, hstack # to display maximum rows and columns pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pandas.set_option
import numpy as np import pandas as pd from datetime import datetime import pytest import empyrical import vectorbt as vbt from vectorbt import settings from tests.utils import isclose day_dt = np.timedelta64(86400000000000) ts = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [5, 4, 3, 2, 1], 'c': [1, 2, 3, 2, 1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1), datetime(2018, 1, 2), datetime(2018, 1, 3), datetime(2018, 1, 4), datetime(2018, 1, 5) ])) ret = ts.pct_change() settings.returns['year_freq'] = '252 days' # same as empyrical seed = 42 np.random.seed(seed) benchmark_rets = pd.DataFrame({ 'a': ret['a'] * np.random.uniform(0.8, 1.2, ret.shape[0]), 'b': ret['b'] * np.random.uniform(0.8, 1.2, ret.shape[0]) * 2, 'c': ret['c'] * np.random.uniform(0.8, 1.2, ret.shape[0]) * 3 }) # ############# accessors.py ############# # class TestAccessors: def test_freq(self): assert ret.vbt.returns.wrapper.freq == day_dt assert ret['a'].vbt.returns.wrapper.freq == day_dt assert ret.vbt.returns(freq='2D').wrapper.freq == day_dt * 2 assert ret['a'].vbt.returns(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([1, 2, 3]).vbt.returns.wrapper.freq is None assert pd.Series([1, 2, 3]).vbt.returns(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([1, 2, 3]).vbt.returns(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 def test_ann_factor(self): assert ret['a'].vbt.returns(year_freq='365 days').ann_factor == 365 assert ret.vbt.returns(year_freq='365 days').ann_factor == 365 with pytest.raises(Exception) as e_info: assert pd.Series([1, 2, 3]).vbt.returns(freq=None).ann_factor def test_from_price(self): pd.testing.assert_series_equal(pd.Series.vbt.returns.from_price(ts['a']).obj, ts['a'].pct_change()) pd.testing.assert_frame_equal(pd.DataFrame.vbt.returns.from_price(ts).obj, ts.pct_change()) assert pd.Series.vbt.returns.from_price(ts['a'], year_freq='365 days').year_freq == pd.to_timedelta('365 days') assert pd.DataFrame.vbt.returns.from_price(ts, year_freq='365 days').year_freq == pd.to_timedelta('365 days') def test_daily(self): ret_12h = pd.DataFrame({ 'a': [0.1, 0.1, 0.1, 0.1, 0.1], 'b': [-0.1, -0.1, -0.1, -0.1, -0.1], 'c': [0.1, -0.1, 0.1, -0.1, 0.1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1, 0), datetime(2018, 1, 1, 12), datetime(2018, 1, 2, 0), datetime(2018, 1, 2, 12), datetime(2018, 1, 3, 0) ])) pd.testing.assert_series_equal( ret_12h['a'].vbt.returns.daily(), pd.Series( np.array([0.21, 0.21, 0.1]), index=pd.DatetimeIndex([ '2018-01-01', '2018-01-02', '2018-01-03' ], dtype='datetime64[ns]', freq='D'), name=ret_12h['a'].name ) ) pd.testing.assert_frame_equal( ret_12h.vbt.returns.daily(), pd.DataFrame( np.array([ [0.21, -0.19, -0.01], [0.21, -0.19, -0.01], [0.1, -0.1, 0.1] ]), index=pd.DatetimeIndex([ '2018-01-01', '2018-01-02', '2018-01-03' ], dtype='datetime64[ns]', freq='D'), columns=ret_12h.columns ) ) def test_annual(self): pd.testing.assert_series_equal( ret['a'].vbt.returns.annual(), pd.Series( np.array([4.]), index=pd.DatetimeIndex(['2018-01-01'], dtype='datetime64[ns]', freq='252D'), name=ret['a'].name ) ) pd.testing.assert_frame_equal( ret.vbt.returns.annual(), pd.DataFrame( np.array([[4., -0.8, 0.]]), index=pd.DatetimeIndex(['2018-01-01'], dtype='datetime64[ns]', freq='252D'), columns=ret.columns ) ) def test_cumulative(self): res_a = empyrical.cum_returns(ret['a']).rename('a') res_b = empyrical.cum_returns(ret['b']).rename('b') res_c = empyrical.cum_returns(ret['c']).rename('c') pd.testing.assert_series_equal( ret['a'].vbt.returns.cumulative(), res_a ) pd.testing.assert_frame_equal( ret.vbt.returns.cumulative(), pd.concat([res_a, res_b, res_c], axis=1) ) def test_total_return(self): res_a = empyrical.cum_returns_final(ret['a']) res_b = empyrical.cum_returns_final(ret['b']) res_c = empyrical.cum_returns_final(ret['c']) assert isclose(ret['a'].vbt.returns.total(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.total(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('total_return') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_total(ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_annualized_return(self): res_a = empyrical.annual_return(ret['a']) res_b = empyrical.annual_return(ret['b']) res_c = empyrical.annual_return(ret['c']) assert isclose(ret['a'].vbt.returns.annualized(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.annualized(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('annualized_return') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_annualized(ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_alpha", [1., 2., 3.], ) def test_annualized_volatility(self, test_alpha): res_a = empyrical.annual_volatility(ret['a'], alpha=test_alpha) res_b = empyrical.annual_volatility(ret['b'], alpha=test_alpha) res_c = empyrical.annual_volatility(ret['c'], alpha=test_alpha) assert isclose(ret['a'].vbt.returns.annualized_volatility(levy_alpha=test_alpha), res_a) pd.testing.assert_series_equal( ret.vbt.returns.annualized_volatility(levy_alpha=test_alpha), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('annualized_volatility') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_annualized_volatility(ret.shape[0], minp=1, levy_alpha=test_alpha).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_calmar_ratio(self): res_a = empyrical.calmar_ratio(ret['a']) res_b = empyrical.calmar_ratio(ret['b']) res_c = empyrical.calmar_ratio(ret['c']) assert isclose(ret['a'].vbt.returns.calmar_ratio(), res_a) pd.testing.assert_series_equal( ret.vbt.returns.calmar_ratio(), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('calmar_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_calmar_ratio(ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_risk_free,test_required_return", [(0.01, 0.1), (0.02, 0.2), (0.03, 0.3)], ) def test_omega_ratio(self, test_risk_free, test_required_return): res_a = empyrical.omega_ratio(ret['a'], risk_free=test_risk_free, required_return=test_required_return) if np.isnan(res_a): res_a = np.inf res_b = empyrical.omega_ratio(ret['b'], risk_free=test_risk_free, required_return=test_required_return) if np.isnan(res_b): res_b = np.inf res_c = empyrical.omega_ratio(ret['c'], risk_free=test_risk_free, required_return=test_required_return) if np.isnan(res_c): res_c = np.inf assert isclose(ret['a'].vbt.returns.omega_ratio( risk_free=test_risk_free, required_return=test_required_return), res_a) pd.testing.assert_series_equal( ret.vbt.returns.omega_ratio(risk_free=test_risk_free, required_return=test_required_return), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('omega_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_omega_ratio( ret.shape[0], minp=1, risk_free=test_risk_free, required_return=test_required_return).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_risk_free", [0.01, 0.02, 0.03], ) def test_sharpe_ratio(self, test_risk_free): res_a = empyrical.sharpe_ratio(ret['a'], risk_free=test_risk_free) res_b = empyrical.sharpe_ratio(ret['b'], risk_free=test_risk_free) res_c = empyrical.sharpe_ratio(ret['c'], risk_free=test_risk_free) assert isclose(ret['a'].vbt.returns.sharpe_ratio(risk_free=test_risk_free), res_a) pd.testing.assert_series_equal( ret.vbt.returns.sharpe_ratio(risk_free=test_risk_free), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('sharpe_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_sharpe_ratio(ret.shape[0], minp=1, risk_free=test_risk_free).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_deflated_sharpe_ratio(self): pd.testing.assert_series_equal( ret.vbt.returns.deflated_sharpe_ratio(risk_free=0.01), pd.Series([np.nan, np.nan, 0.0005355605507117676], index=ret.columns).rename('deflated_sharpe_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.deflated_sharpe_ratio(risk_free=0.03), pd.Series([np.nan, np.nan, 0.0003423112350834066], index=ret.columns).rename('deflated_sharpe_ratio') ) @pytest.mark.parametrize( "test_required_return", [0.01, 0.02, 0.03], ) def test_downside_risk(self, test_required_return): res_a = empyrical.downside_risk(ret['a'], required_return=test_required_return) res_b = empyrical.downside_risk(ret['b'], required_return=test_required_return) res_c = empyrical.downside_risk(ret['c'], required_return=test_required_return) assert isclose(ret['a'].vbt.returns.downside_risk(required_return=test_required_return), res_a) pd.testing.assert_series_equal( ret.vbt.returns.downside_risk(required_return=test_required_return), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('downside_risk') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_downside_risk( ret.shape[0], minp=1, required_return=test_required_return).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_required_return", [0.01, 0.02, 0.03], ) def test_sortino_ratio(self, test_required_return): res_a = empyrical.sortino_ratio(ret['a'], required_return=test_required_return) res_b = empyrical.sortino_ratio(ret['b'], required_return=test_required_return) res_c = empyrical.sortino_ratio(ret['c'], required_return=test_required_return) assert isclose(ret['a'].vbt.returns.sortino_ratio(required_return=test_required_return), res_a) pd.testing.assert_series_equal( ret.vbt.returns.sortino_ratio(required_return=test_required_return), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('sortino_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_sortino_ratio( ret.shape[0], minp=1, required_return=test_required_return).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_information_ratio(self): res_a = empyrical.excess_sharpe(ret['a'], benchmark_rets['a']) res_b = empyrical.excess_sharpe(ret['b'], benchmark_rets['b']) res_c = empyrical.excess_sharpe(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.information_ratio(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.information_ratio(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('information_ratio') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_information_ratio( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) def test_beta(self): res_a = empyrical.beta(ret['a'], benchmark_rets['a']) res_b = empyrical.beta(ret['b'], benchmark_rets['b']) res_c = empyrical.beta(ret['c'], benchmark_rets['c']) assert isclose(ret['a'].vbt.returns.beta(benchmark_rets['a']), res_a) pd.testing.assert_series_equal( ret.vbt.returns.beta(benchmark_rets), pd.Series([res_a, res_b, res_c], index=ret.columns).rename('beta') ) pd.testing.assert_series_equal( ret.vbt.returns.rolling_beta( benchmark_rets, ret.shape[0], minp=1).iloc[-1], pd.Series([res_a, res_b, res_c], index=ret.columns).rename(ret.index[-1]) ) @pytest.mark.parametrize( "test_risk_free", [0.01, 0.02, 0.03], ) def test_alpha(self, test_risk_free): res_a = empyrical.alpha(ret['a'], benchmark_rets['a'], risk_free=test_risk_free) res_b = empyrical.alpha(ret['b'], benchmark_rets['b'], risk_free=test_risk_free) res_c = empyrical.alpha(ret['c'], benchmark_rets['c'], risk_free=test_risk_free) assert isclose(ret['a'].vbt.returns.alpha(benchmark_rets['a'], risk_free=test_risk_free), res_a) pd.testing.assert_series_equal( ret.vbt.returns.alpha(benchmark_rets, risk_free=test_risk_free),
pd.Series([res_a, res_b, res_c], index=ret.columns)
pandas.Series
import glob import logging import os import sys from enum import Enum import geopandas as gpd import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup from tqdm import tqdm logging.basicConfig( level=logging.INFO, format="%(asctime)s || %(levelname)s || %(name)s || %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger("COVID19") cwd = os.path.dirname(os.path.abspath(__file__)) class COVIDerror(Exception): pass class DataUrls(Enum): zip_to_city_broken = ( "https://public.opendatasoft.com/explore/dataset/us-zip-code-latitude-and-longitude" "/download/?format=csv&timezone=America/New_York" "&lang=en&use_labels_for_header=true&csv_separator=%3B" ) zip_to_city = ( "https://public.opendatasoft.com/explore/dataset" "/georef-united-states-of-america-zc-point/download" "/?format=csv&timezone=America/New_York&lang=en&use_labels_for_header=true&csv_separator=%3B" ) maryland_zip_population = ( "https://www.maryland-demographics.com/zip_codes_by_population" ) geoshape = ( "https://www2.census.gov/geo/tiger/TIGER2019/ZCTA5/tl_2019_us_zcta510.zip" ) zip_covid_data_old = "https://opendata.arcgis.com/datasets/5f459467ee7a4ffda968139011f06c46_0.geojson" zip_covid_data = ( "https://services.arcgis.com/njFNhDsUCentVYJW/arcgis/rest/services/MDCOVID19_MASTER_ZIP_CODE_CASES" "/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json" ) class Data: def __init__(self, state="MD", datadir="./data"): # data and URL path self.state = state self.data_path = datadir self.zip_map_url = DataUrls.zip_to_city.value self.population_url = DataUrls.maryland_zip_population.value self.geo_shape_url = DataUrls.geoshape.value self.MD_zip_data_url = DataUrls.zip_covid_data.value # actual reading dat self.geo = None self.zip_map = None self.zip_covid = None self.zip_population = None def get(self, use_db=False): """ fill in data """ if use_db: self.read_zip_COVID_web() else: self.read_zip_COVID() self.read_map() self.read_zip_map() self.zip_codes = self.zip_map.Zip self.read_population() def _download(self, zipfile): logger.info("Downloading: %s to %s" % (self.geo_shape_url, zipfile)) r = requests.get(self.geo_shape_url, stream=True) total_size = int(r.headers.get("content-length", 0)) block_size = 1024 # 1 Kibibyte t = tqdm(total=total_size, unit="iB", unit_scale=True) with open(zipfile, "wb") as zf: for data in r.iter_content(block_size): t.update(len(data)) zf.write(data) t.close() if total_size == 0 and t.n != total_size: logger.error("Failed downloading") sys.exit() else: logger.info("Downloaded %s" % zipfile) def download_zipfile(self, zipfile): """ get the zip file for geo information """ self._download(zipfile) command = "unzip %s -d %s" % (zipfile, self.data_path) logger.info(command) os.system(command) logger.info("unzipped %s" % zipfile) def read_map(self): """ read geoshape of zip codes """ zipfile = self.data_path + "/tl_2019_us_zcta510.zip" shapefile = zipfile.replace(".zip", ".shp") if not os.path.isfile(shapefile): self.download_zipfile(zipfile) # out = gpd.read_file('zip://' + zipfile) \ self.geo = ( gpd.read_file(shapefile) .rename(columns={"ZCTA5CE10": "Zip"}) .assign(Zip=lambda d: d.Zip.astype(int)) ) logger.info("Loaded geo shape") def read_zip_COVID_web(self): """ cases count per zip code per day """ self.zip_covid = ( gpd.read_file(self.MD_zip_data_url) .pipe(lambda d: d[~pd.isnull(d.ZIP_CODE)]) .drop(["OBJECTID", "geometry"], axis=1) .pipe(pd.DataFrame) .pipe( pd.melt, id_vars=["ZIP_CODE"], var_name="Date", value_name="Cases", ) .assign(Cases=lambda d: d.Cases.fillna(0)) .assign( Date=lambda d: d.Date.str.extract( "([0-9]+_[0-9]+_[0-9]+)$", expand=False ) ) .assign(Date=lambda d: pd.to_datetime(d.Date, format="%m_%d_%Y")) .assign(ZIP_CODE=lambda d: d.ZIP_CODE.where(d.ZIP_CODE != "21802", "21804")) .groupby(["ZIP_CODE", "Date"], as_index=False) .agg({"Cases": "sum"}) .assign(ZIP_CODE=lambda d: d.ZIP_CODE.astype(int)) .rename(columns={"ZIP_CODE": "Zip"}) ) min_date = str(self.zip_covid.Date.min().date()) max_date = str(self.zip_covid.Date.max().date()) logger.info("Loaded %s to %s" % (min_date, max_date)) def read_zip_COVID(self): """ cases count per zip code per day """ logger.info("Using data from %s" % self.data_path) covid_data = {} data_files = glob.glob(self.data_path + "/*.tsv") if len(data_files) == 0: raise COVIDerror("No data from %s" % self.data_path) data_files.sort() logger.info("Latest file: %s" % data_files[-1]) for i, csv in enumerate(data_files): date = os.path.basename(csv.replace(".tsv", "")) covid_data[date] = pd.read_csv( csv, names=["Zip", "Cases"], sep="\t", dtype={"Zip": "Int64", "Cases": "str"}, ).assign(Cases=lambda d: d.Cases.str.replace(" Cases", "").astype(int)) self.zip_covid = pd.concat( date_data.assign(Date=date) for date, date_data in covid_data.items() ).assign(Date=lambda d: pd.to_datetime(d.Date, format="%Y-%m-%d")) logger.info("Loaded daily COVID cases (%i days)" % (i + 1)) def read_zip_map(self): """ zip city information """ self.zip_map = (
pd.read_csv(self.zip_map_url, sep=";")
pandas.read_csv
import os import random import pytest import pathlib import tempfile import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from cytominer_eval.transform import metric_melt from cytominer_eval.transform.util import set_pair_ids from cytominer_eval.operations.util import assign_replicates, calculate_precision_recall random.seed(123) tmpdir = tempfile.gettempdir() example_file = "SQ00015054_normalized_feature_select.csv.gz" example_file = pathlib.Path( "{file}/../../example_data/compound/{eg}".format( file=os.path.dirname(__file__), eg=example_file ) ) df =
pd.read_csv(example_file)
pandas.read_csv
# encoding: utf-8 ################################################## # This script shows how to create animated plots using matplotlib and a basic dataset # Multiple tutorials inspired the current design but they mostly came from: # hhttps://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1 # Note: the project keeps updating every course almost yearly ################################################## # ################################################## # Author: <NAME> # Credits: [Institute for Advanced Architecture of Catalonia - IAAC, Advanced Architecture group] # License: Apache License Version 2.0 # Version: 1.0.0 # Maintainer: <NAME> # Email: <EMAIL> # Status: development ################################################## import matplotlib import matplotlib.animation as animation import matplotlib.pyplot as plt import numpy as np # We need to import numpy and matplotlib library # importing libraries import pandas as pd import seaborn as sns # Read files and prepare data data = pd.read_csv('../data/2021_seguiment-covid19-bcn.csv') #data = pd.read_csv('https://opendata-ajuntament.barcelona.cat/data/dataset/4f3ffbda-d5be-4f2a-a836-26a77be6df1a/resource/f627ac0a-d05f-416d-9773-eeb464a3fc44/download') data.columns = ['date_indicator', 'frequency_indicator', 'place', 'name_indicator', 'name_variable', 'value', 'unit', 'source'] # We will use two datasets to generate plots data_daily = data[data['name_indicator'] == 'Casos de COVID-19 a Barcelona (diari)'] data_accumulated = data[data['name_indicator'] == 'Casos de COVID-19 a Barcelona (acumulat)'] # We need the data to be in time format to calculate values in days after day zero data_daily.loc[:, 'date_indicator'] = pd.to_datetime(data_daily['date_indicator']) initial_day = data_daily['date_indicator'].min() data_daily.loc[:, 'day_after_zero'] = data_daily['date_indicator'] - initial_day data_daily.loc[:, 'day_after_zero'] = data_daily['day_after_zero']/np.timedelta64(1, 'D') # We need the data to be in time format to calculate values in days after day zero data_accumulated.loc[:, 'date_indicator'] =
pd.to_datetime(data_accumulated['date_indicator'])
pandas.to_datetime
from django.contrib import messages from django.shortcuts import render from . forms import ApprovalForm from . models import Approvals import pickle from keras import backend as K import joblib import numpy as np from sklearn import preprocessing import pandas as pd from collections import defaultdict, Counter """ ONE HOT ENCODED FUNCTION""" def ohevalue(df): ohe_col = joblib.load("/Users/pro/Documents/python/MyDjangoProjects/Portfolio/loanapp/ohe_column.pkl") cat_columns=['Gender','Married','Education','Self_Employed','Property_Area'] df_processed = pd.get_dummies(df, columns=cat_columns) newdict={} for i in ohe_col: if i in df_processed.columns: newdict[i]=df_processed[i].values else: newdict[i]=0 newdf=
pd.DataFrame(newdict)
pandas.DataFrame
from pathlib import Path import copy import pickle as pkl from mmap import mmap from scipy import stats as st from scipy.stats._continuous_distns import FitDataError import torch from sklearn import svm from sklearn import linear_model import pandas as pd import seaborn as sns import warnings import numpy as np import os import matplotlib.colors as mcolors from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from mpl_toolkits.mplot3d.art3d import juggle_axes from matplotlib.ticker import MaxNLocator from joblib import Memory import math import lyap import model_loader_utils as loader import initialize_and_train as train import utils memory = Memory(location='./memoization_cache', verbose=2) # memory.clear() ## Functions for computing means and error bars for the plots. 68% confidence # intervals and means are currently # implemented in this code. The commented out code is for using a gamma # distribution to compute these, but uses a # custom version of seaborn plotting library to plot. def orth_proj(v): n = len(v) vv = v.reshape(-1, 1) return torch.eye(n) - ([email protected])/(v@v) USE_ERRORBARS = True # USE_ERRORBARS = False LEGEND = False # LEGEND = True folder_root = '../results/figs/' def ci_acc(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=1., shift=-.0001, reflect=True) return bounds[1], bounds[0] # ci_acc = 68 # ci_acc = 95 def est_acc(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=1., shift=-.0001, reflect=True) return median # est_acc = "mean" def ci_dim(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=.9999) return bounds[1], bounds[0] # ci_dim = 68 # ci_dim = 95 def est_dim(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=.9999) return median # est_dim = "mean" def point_replace(a_string): a_string = str(a_string) return a_string.replace(".", "p") def get_color(x, cmap=plt.cm.plasma): """Get normalized color assignments based on input data x and colormap cmap.""" mag = torch.max(x) - torch.min(x) x_norm = (x.float() - torch.min(x))/mag return cmap(x_norm) def median_and_bound(samples, perc_bound, dist_type='gamma', loc=0., shift=0, reflect=False): """Get median and probability mass intervals for a gamma distribution fit of samples.""" samples = np.array(samples) def do_reflect(x, center): return -1*(x - center) + center if dist_type == 'gamma': if np.sum(samples[0] == samples) == len(samples): median = samples[0] interval = [samples[0], samples[0]] return median, interval if reflect: samples_reflected = do_reflect(samples, loc) shape_ps, loc_fit, scale = st.gamma.fit(samples_reflected, floc=loc + shift) median_reflected = st.gamma.median(shape_ps, loc=loc, scale=scale) interval_reflected = np.array( st.gamma.interval(perc_bound, shape_ps, loc=loc, scale=scale)) median = do_reflect(median_reflected, loc) interval = do_reflect(interval_reflected, loc) else: shape_ps, loc, scale = st.gamma.fit(samples, floc=loc + shift) median = st.gamma.median(shape_ps, loc=loc, scale=scale) interval = np.array( st.gamma.interval(perc_bound, shape_ps, loc=loc, scale=scale)) else: raise ValueError("Distribution option (dist_type) not recognized.") return median, interval ## Set parameters for figure aesthetics plt.rcParams['font.size'] = 6 plt.rcParams['font.size'] = 6 plt.rcParams['lines.markersize'] = 1 plt.rcParams['lines.linewidth'] = 1 plt.rcParams['axes.labelsize'] = 7 plt.rcParams['axes.spines.right'] = False plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.titlesize'] = 8 # Colormaps class_style = 'color' cols11 = np.array([90, 100, 170])/255 cols12 = np.array([37, 50, 120])/255 cols21 = np.array([250, 171, 62])/255 cols22 = np.array([156, 110, 35])/255 cmap_activation_pnts = mcolors.ListedColormap([cols11, cols21]) cmap_activation_pnts_edge = mcolors.ListedColormap([cols12, cols22]) rasterized = False dpi = 800 ext = 'pdf' # Default figure size figsize = (1.5, 1.2) ax_pos = (0, 0, 1, 1) def make_fig(figsize=figsize, ax_pos=ax_pos): """Create figure.""" fig = plt.figure(figsize=figsize) ax = fig.add_axes(ax_pos) return fig, ax def out_fig(fig, figname, subfolder='', show=False, save=True, axis_type=0, name_order=0, data=None): """ Save figure.""" folder = Path(folder_root) figname = point_replace(figname) # os.makedirs('../results/figs/', exist_ok=True) os.makedirs(folder, exist_ok=True) ax = fig.axes[0] ax.set_xlabel('') ax.set_ylabel('') ax.set_rasterized(rasterized) if axis_type == 1: ax.tick_params(axis='both', which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off left=False, top=False, # ticks along the top edge are off labelbottom=False, labelleft=False) # labels along the bottom edge are off elif axis_type == 2: ax.axis('off') if name_order == 0: fig_path = folder/subfolder/figname else: fig_path = folder/subfolder/figname if save: os.makedirs(folder/subfolder, exist_ok=True) fig_file = fig_path.with_suffix('.' + ext) print(f"Saving figure to {fig_file}") fig.savefig(fig_file, dpi=dpi, transparent=True, bbox_inches='tight') if show: fig.tight_layout() fig.show() if data is not None: os.makedirs(folder/subfolder/'data/', exist_ok=True) with open(folder/subfolder/'data/{}_data'.format(figname), 'wb') as fid: pkl.dump(data, fid, protocol=4) plt.close('all') def autocorrelation(train_params, figname='autocorrelation'): train_params_loc = train_params.copy() model, params, run_dir = train.initialize_and_train(**train_params_loc) class_datasets = params['datasets'] # val_loss = params['history']['losses']['val'] # val_losses[i0, i1] = val_loss # val_acc = params['history']['accuracies']['val'] # val_accs[i0, i1] = val_acc train_samples_per_epoch = len(class_datasets['train']) class_datasets['train'].max_samples = 10 torch.manual_seed(params['model_seed']) X = class_datasets['train'][:][0] T = 0 if T > 0: X = utils.extend_input(X, T) X0 = X[:, 0] elif train_params_loc['network'] != 'feedforward': X0 = X[:, 0] else: X0 = X # X = utils.extend_input(X, 10) loader.load_model_from_epoch_and_dir(model, run_dir, -1) hid = [] hid += model.get_post_activations(X)[:-1] # auto_corr_mean = [] # auto_corr_var = [] auto_corr_table = pd.DataFrame(columns=['t_next', 'autocorr']) h = hid[0] for i0 in range(len(hid)): h_next = hid[i0] overlap = torch.sum(h*h_next, dim=1) norms_h = torch.sqrt(torch.sum(h**2, dim=1)) norms_h_next = torch.sqrt(torch.sum(h_next**2, dim=1)) corrs = overlap/(norms_h*norms_h_next) avg_corr = torch.mean(corrs) d = {'t_next': i0, 'autocorr': corrs} auto_corr_table = auto_corr_table.append(pd.DataFrame(d), ignore_index=True) fig, ax = make_fig(figsize) sns.lineplot(ax=ax, x='t_next', y='autocorr', data=auto_corr_table) out_fig(fig, figname) def snapshots_through_time(train_params, figname="snap", subdir="snaps"): """ Plot PCA snapshots of the representation through time. Parameters ---------- train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. """ subdir = Path(subdir) X_dim = train_params['X_dim'] FEEDFORWARD = train_params['network'] == 'feedforward' num_pnts_dim_red = 800 num_plot = 600 train_params_loc = copy.deepcopy(train_params) model, params, run_dir = train.initialize_and_train(**train_params_loc) class_datasets = params['datasets'] class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(train_params_loc['model_seed']) X, Y = class_datasets['train'][:] if FEEDFORWARD: T = 10 y = Y X0 = X else: T = 30 # T = 100 X = utils.extend_input(X, T + 2) X0 = X[:, 0] y = Y[:, -1] loader.load_model_from_epoch_and_dir(model, run_dir, 0, 0) hid_0 = [X0] hid_0 += model.get_post_activations(X)[:-1] loader.load_model_from_epoch_and_dir(model, run_dir, train_params_loc['num_epochs'], 0) hid = [X0] hid += model.get_post_activations(X)[:-1] if FEEDFORWARD: r = model.layer_weights[-1].detach().clone().T else: r = model.Wout.detach().clone() # r0_n = r[0] / torch.norm(r[0]) # r1_n = r[1] / torch.norm(r[1]) # # r0_n_v = r0_n.reshape(r0_n.shape[0], 1) # r1_n_v = r1_n.reshape(r1_n.shape[0], 1) # r0_orth = torch.eye(len(r0_n)) - r0_n_v @ r0_n_v.T # r1_orth = torch.eye(len(r1_n)) - r1_n_v @ r1_n_v.T # h = hid[10] # # h_proj = h @ r_orth # u, s, v = torch.svd(h) # v0 = v[:, 0] # def orth_projector(v): # n = len(v) # return (torch.eye(n) - v.reshape(n, 1)@v.reshape(1, n))/(v@v) # v0_orth = (torch.eye(n) - v0.reshape(n,1)@v0.reshape(1,n))/(v0@v0) # h_v0_orth = h @ v0_orth # r0_e_p = orth_projector(r0_e) # r1_e_p = orth_projector(r1_e) # h_r0_e_p0 = h[y] @ r0_e_p # h_r0_e_p1 = h[y] @ r1_e_p coloring = get_color(y, cmap_activation_pnts)[:num_plot] edge_coloring = get_color(y, cmap_activation_pnts_edge)[:num_plot] ## Now get principal components (pcs) and align them from time point to # time point pcs = [] p_track = 0 norm = np.linalg.norm projs = [] for i1 in range(1, len(hid)): # pc = utils.get_pcs_covariance(hid[i1], [0, 1]) out = utils.get_pcs_covariance(hid[i1], [0, 1], return_extra=True) pc = out['pca_projection'] mu = out['mean'] proj = out['pca_projectors'] mu_proj = mu@proj[:, :2] if i1 > 0: # Check for the best alignment pc_flip_x = pc.clone() pc_flip_x[:, 0] = -pc_flip_x[:, 0] pc_flip_y = pc.clone() pc_flip_y[:, 1] = -pc_flip_y[:, 1] pc_flip_both = pc.clone() pc_flip_both[:, 0] = -pc_flip_both[:, 0] pc_flip_both[:, 1] = -pc_flip_both[:, 1] difference0 = norm(p_track - pc) difference1 = norm(p_track - pc_flip_x) difference2 = norm(p_track - pc_flip_y) difference3 = norm(p_track - pc_flip_both) amin = np.argmin( [difference0, difference1, difference2, difference3]) if amin == 1: pc[:, 0] = -pc[:, 0] proj[:, 0] = -proj[:, 0] elif amin == 2: pc[:, 1] = -pc[:, 1] proj[:, 1] = -proj[:, 1] elif amin == 3: pc[:, 0] = -pc[:, 0] pc[:, 1] = -pc[:, 1] proj[:, 0] = -proj[:, 0] proj[:, 1] = -proj[:, 1] pc = pc + mu_proj p_track = pc.clone() pcs.append(pc[:num_plot]) projs.append(proj) def take_snap(i0, scats, fig, dim=2, border=False): # ax = fig.axes[0] hid_pcs_plot = pcs[i0][:, :dim].numpy() xm = np.min(hid_pcs_plot[:, 0]) xM = np.max(hid_pcs_plot[:, 0]) ym = np.min(hid_pcs_plot[:, 1]) yM = np.max(hid_pcs_plot[:, 1]) xc = (xm + xM)/2 yc = (ym + yM)/2 hid_pcs_plot[:, 0] = hid_pcs_plot[:, 0] - xc hid_pcs_plot[:, 1] = hid_pcs_plot[:, 1] - yc v = projs[i0] # u, s, v = torch.svd(h) if r.shape[0] == 2: r0_p = r[0]@v r1_p = r[1]@v else: r0_p = r.flatten()@v r1_p = -r.flatten()@v if class_style == 'shape': scats[0][0].set_offsets(hid_pcs_plot) else: if dim == 3: scat._offsets3d = juggle_axes(*hid_pcs_plot[:, :dim].T, 'z') scat._offsets3d = juggle_axes(*hid_pcs_plot[:, :dim].T, 'z') else: scats[0].set_offsets(hid_pcs_plot) scats[1].set_offsets(r0_p[:2].reshape(1, 2)) scats[2].set_offsets(r1_p[:2].reshape(1, 2)) xm = np.min(hid_pcs_plot[:, 0]) xM = np.max(hid_pcs_plot[:, 0]) ym = np.min(hid_pcs_plot[:, 1]) yM = np.max(hid_pcs_plot[:, 1]) max_extent = max(xM - xm, yM - ym) max_extent_arg = xM - xm > yM - ym if dim == 2: x_factor = .4 if max_extent_arg: ax.set_xlim( [xm - x_factor*max_extent, xM + x_factor*max_extent]) ax.set_ylim([xm - .1*max_extent, xM + .1*max_extent]) else: ax.set_xlim( [ym - x_factor*max_extent, yM + x_factor*max_extent]) ax.set_ylim([ym - .1*max_extent, yM + .1*max_extent]) else: if max_extent_arg: ax.set_xlim([xm - .1*max_extent, xM + .1*max_extent]) ax.set_ylim([xm - .1*max_extent, xM + .1*max_extent]) ax.set_zlim([xm - .1*max_extent, xM + .1*max_extent]) else: ax.set_xlim([ym - .1*max_extent, yM + .1*max_extent]) ax.set_ylim([ym - .1*max_extent, yM + .1*max_extent]) ax.set_zlim([ym - .1*max_extent, yM + .1*max_extent]) # ax.plot([r0_p[0]], [r0_p[1]], 'x', markersize=3, color='black') # ax.plot([r1_p[0]], [r1_p[1]], 'x', markersize=3, color='black') ax.set_ylim([-4, 4]) if dim == 3: out_fig(fig, f"{figname}_{i0}", subfolder=subdir, axis_type=0, name_order=1) else: out_fig(fig, f"{figname}_{i0}", subfolder=subdir, axis_type=0, name_order=1) return scats, dim = 2 hid_pcs_plot = pcs[0] if dim == 3: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlim([-10, 10]) ax.set_ylim([-10, 10]) ax.set_zlim([-10, 10]) else: fig, ax = make_fig() ax.grid(False) scat1 = ax.scatter(*hid_pcs_plot[:num_plot, :dim].T, c=coloring, edgecolors=edge_coloring, s=10, linewidths=.65) ax.plot([0], [0], 'x', markersize=7) scat2 = ax.scatter([0], [0], marker='x', s=3, c='black') scat3 = ax.scatter([0], [0], marker='x', s=3, color='black') scats = [scat1, scat2, scat3] # ax.plot([0], [0], 'o', markersize=10) if FEEDFORWARD: snap_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) else: snap_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 21, 26, 31]) # snap_idx = list(range(T + 1)) for i0 in snap_idx: take_snap(i0, scats, fig, dim=dim, border=False) print def _cluster_holdout_test_acc_stat_fun(h, y, clust_identity, classifier_type='logistic_regression', num_repeats=5, train_ratio=0.8, seed=11): np.random.seed(seed) num_clusts = np.max(clust_identity) + 1 num_clusts_train = int(round(num_clusts*train_ratio)) num_samples = h.shape[0] test_accs = np.zeros(num_repeats) train_accs = np.zeros(num_repeats) for i0 in range(num_repeats): permutation = np.random.permutation(np.arange(len(clust_identity))) perm_inv = np.argsort(permutation) clust_identity_shuffled = clust_identity[permutation] train_idx = clust_identity_shuffled <= num_clusts_train test_idx = clust_identity_shuffled > num_clusts_train hid_train = h[train_idx[perm_inv]] y_train = y[train_idx[perm_inv]] y_test = y[test_idx[perm_inv]] hid_test = h[test_idx[perm_inv]] if classifier_type == 'svm': classifier = svm.LinearSVC(random_state=3*i0 + 1) else: classifier = linear_model.LogisticRegression(random_state=3*i0 + 1, solver='lbfgs') with warnings.catch_warnings(): warnings.simplefilter("ignore") classifier.fit(hid_train, y_train) train_accs[i0] = classifier.score(hid_train, y_train) test_accs[i0] = classifier.score(hid_test, y_test) return train_accs, test_accs def clust_holdout_over_layers(seeds, gs, train_params, figname="clust_holdout_over_layers"): """ Logistic regression training and testing error on the representation through the layers. Compares networks trained with different choices of g_radius (specified by input parameter gs). Parameters ---------- seeds : List[int] List of random number seeds to use for generating instantiations of the model and dataset. Variation over these seeds is used to plot error bars. gs : List[float] Values of g_radius to iterate over. train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. Value of g_radius is overwritten by values in gs. figname : str Name of the figure to save. """ if not hasattr(gs, '__len__'): gs = [gs] layer_label = 'layer' @memory.cache def generate_data_table_clust(seeds, gs, train_params): layer_label = 'layer' clust_acc_table = pd.DataFrame( columns=['seed', 'g_radius', 'training', layer_label, 'LR training', 'LR testing']) train_params_loc = copy.deepcopy(train_params) for i0, seed in enumerate(seeds): for i1, g in enumerate(gs): train_params_loc['g_radius'] = g train_params_loc['model_seed'] = seed num_pnts_dim_red = 500 model, params, run_dir = train.initialize_and_train( **train_params_loc) class_datasets = params['datasets'] num_train_samples = len(class_datasets['train']) class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(params['model_seed']) X, Y = class_datasets['train'][:] if train_params_loc['network'] == 'feedforward': X0 = X else: X0 = X[:, 0] for epoch, epoch_label in zip([0, -1], ['before', 'after']): loader.load_model_from_epoch_and_dir(model, run_dir, epoch) hid = [X0] hid += model.get_post_activations(X)[:-1] if len(Y.shape) > 1: Y = Y[:, -1] cluster_identity = class_datasets['train'].cluster_identity ds = [] for lay, h in enumerate(hid): stat = _cluster_holdout_test_acc_stat_fun(h.numpy(), Y.numpy(), cluster_identity) ds.extend([{ 'seed': seed, 'g_radius': g, 'training': epoch_label, layer_label: lay, 'LR training': stat[0][k], 'LR testing': stat[1][k] } for k in range(len(stat[0]))]) clust_acc_table = clust_acc_table.append(
pd.DataFrame(ds)
pandas.DataFrame
""" Created on Fri Fev 13 16:26:00 2020 @author: <NAME> """ import sys import scipy.io as sio from pandas import DataFrame from numpy import array from os import listdir from os.path import isfile, join from myMNE import makeMNE def files_in_path(path): return [path+"/"+f for f in listdir(path) if isfile(join(path, f))] # Getting data from MNE strutuct def data_from_mne(files): return array([file.get_data().T for file in files]) def read_file(PATH_AUD, PATH_VIS): path_file_aud = files_in_path(PATH_AUD) path_file_vis = files_in_path(PATH_VIS) # Reading files with the MNE library files_aud = list(map(makeMNE, path_file_aud)) files_vis = list(map(makeMNE, path_file_vis)) # Getting data in numpy format data_aud = data_from_mne(files_aud) data_vis = data_from_mne(files_vis) return data_aud,data_vis, files_aud[0].ch_names def _bad_trials(file_name): file = sio.loadmat(file_name,squeeze_me=True, struct_as_record=False) badtrials = lambda df : df['ft_data_auditory'].badtrials return badtrials(file) def get_bad_trials(PATH_AUD, PATH_VIS): path_file_aud = files_in_path(PATH_AUD) path_file_vis = files_in_path(PATH_VIS) bad_trials_aud = list(map(_bad_trials, path_file_aud)) bad_trials_vis = list(map(_bad_trials, path_file_vis)) df_bad_trials_aud = DataFrame([bad_trials_aud],index=['Aud']) df_bad_trials_vis = DataFrame([bad_trials_vis],index=['Vis']) return df_bad_trials_aud, df_bad_trials_vis def get_bad_trials_comportamental(modality: str, N_TRIALS = 120, PATH_INFO = '../data/raw/info_'): """Read function to get the time (or the indice) when occurs S2. Parameters ---------- modality: str It will only work if the modality equals to 'aud' or 'vis'. export_as_indice: bool Control option for export type (indice or time) Returns ------- agg_by_person: np.array TO-DO: text. """ # Concatenating with 'aud' or 'vis' info_path = PATH_INFO+modality # Mapping the files listed in the folder for reading function. # Each file contains information about a single individual experiment. delays_people = list(map(sio.loadmat, files_in_path(info_path))) # Accumulator variable agg_by_person = [] for delay_by_person in delays_people: #import pdb; pdb.set_trace() # Accessing value in struct from matlab time_delay_by_person = delay_by_person['report']['all_trials_delay'][0][0][0] # Values in second time_reproduce_by_person = delay_by_person['report']['time_action'][0][0][0] agg_by_person.append(time_reproduce_by_person/time_delay_by_person) # Export as numpy for simplicity bad_comport = [DataFrame(array(agg_by_person))[i].apply(lambda x: ( False if ((x >= 2.0) | (x < 0.5)) else True)) for i in range(N_TRIALS)] df_bad_comport =
DataFrame(bad_comport)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/5/27 9:55 AM # @Author : R # @File : TMDB_Predict_Finally.py # @Software: PyCharm # coding: utf-8 # # Kaggle for TMDB # In[1]: import numpy as np import pandas as pd import warnings from tqdm import tqdm from datetime import datetime from sklearn.preprocessing import LabelEncoder from collections import Counter warnings.filterwarnings('ignore') # get_ipython().run_line_magic('matplotlib', 'inline') # Data description # id:每部电影的唯一标志 # belongs_to_collection:json格式下每部电影的tmdb id, 电影名、电影海报和电影背景的URL # budget:电影预算,数值为0表示未知 # genres:电影风格列表,json文件,包含id、name # homepage:电影官方主页的URL # imdb_id:该电影在imdb数据库中的唯一id标志 # original_language:电影制作的原始语言,长度为2的字符串 # original_title:电影的原始名称,可能与belong_to_collection中的名称不同 # overview: 剧情摘要 # popularity: 电影的受欢迎程度,float数值表示 # poster_path: 电影海报的URL # production_companies:json格式,电影制造公司的id、name # production_countries:json格式,电影制造国家 2字符简称、全称 # release_date:电影上映时间 # runtime:电影时长 # spoken_languages:电影语言版本,json格式 # status:电影是否已经发布 # tagline: 电影的标语 # title: 电影的英文名称 # keywords:电影关键字,json格式 # cast: json格式,演员列表,包括id,name,性别等 # crew:电影制作人员的信息,包括导演,作者等 # revenue:总收入,待预测值 # # EDA # EDA已做 # 特征工程以及预测 # 利用两个额外的数据集合 # 1.TMDB Competition Additional Features:本数据包含新的三个特征popularity2、rating、totalVotes # 2.TMDB Competition Additional Training Data:额外的2000个训练数据,没有给定训练集中所有的属性 # In[52]: # Feature Engineering & Prediction # 数据预处理函数,包括将非数值型属性转化为数值型 def prepare(df): global json_cols global train_dict df[['release_month', 'release_day', 'release_year']] = df['release_date'].str.split('/', expand=True).replace( np.nan, 0).astype(int) df['release_year'] = df['release_year'] df.loc[(df['release_year'] <= 19) & (df['release_year'] < 100), "release_year"] += 2000 df.loc[(df['release_year'] > 19) & (df['release_year'] < 100), "release_year"] += 1900 # 获取发行日期的星期、季度信息 releaseDate = pd.to_datetime(df['release_date']) df['release_dayofweek'] = releaseDate.dt.dayofweek df['release_quarter'] = releaseDate.dt.quarter # 对rating、totalVotes属性进行填充 rating_na = df.groupby(["release_year", "original_language"])['rating'].mean().reset_index() df[df.rating.isna()]['rating'] = df.merge(rating_na, how='left', on=["release_year", "original_language"]) vote_count_na = df.groupby(["release_year", "original_language"])['totalVotes'].mean().reset_index() df[df.totalVotes.isna()]['totalVotes'] = df.merge(vote_count_na, how='left', on=["release_year", "original_language"]) # df['rating'] = df['rating'].fillna(1.5) # df['totalVotes'] = df['totalVotes'].fillna(6) # 构建一个新属性,weightRating df['weightedRating'] = (df['rating'] * df['totalVotes'] + 6.367 * 1000) / (df['totalVotes'] + 1000) # 考虑到不同时期的面额意义不同,对其进行“通货膨胀”,通货膨胀比例为1.8%/年 df['originalBudget'] = df['budget'] df['inflationBudget'] = df['budget'] + df['budget'] * 1.8 / 100 * ( 2018 - df['release_year']) # Inflation simple formula df['budget'] = np.log1p(df['budget']) # 对crew、cast属性中人员性别构成进行统计 df['genders_0_crew'] = df['crew'].apply(lambda x: sum([1 for i in x if i['gender'] == 0])) df['genders_1_crew'] = df['crew'].apply(lambda x: sum([1 for i in x if i['gender'] == 1])) df['genders_2_crew'] = df['crew'].apply(lambda x: sum([1 for i in x if i['gender'] == 2])) df['genders_0_cast'] = df['cast'].apply(lambda x: sum([1 for i in x if i['gender'] == 0])) df['genders_1_cast'] = df['cast'].apply(lambda x: sum([1 for i in x if i['gender'] == 1])) df['genders_2_cast'] = df['cast'].apply(lambda x: sum([1 for i in x if i['gender'] == 2])) # 对belongs_to_collection、Keywords、cast进行统计 df['_collection_name'] = df['belongs_to_collection'].apply(lambda x: x[0]['name'] if x != {} else 0) le = LabelEncoder() le.fit(list(df['_collection_name'].fillna(''))) df['_collection_name'] = le.transform(df['_collection_name'].fillna('').astype(str)) df['_num_Keywords'] = df['Keywords'].apply(lambda x: len(x) if x != {} else 0) df['_num_cast'] = df['cast'].apply(lambda x: len(x) if x != {} else 0) df['_num_crew'] = df['crew'].apply(lambda x: len(x) if x != {} else 0) df['_popularity_mean_year'] = df['popularity'] / df.groupby("release_year")["popularity"].transform('mean') df['_budget_runtime_ratio'] = df['budget'] / df['runtime'] df['_budget_popularity_ratio'] = df['budget'] / df['popularity'] df['_budget_year_ratio'] = df['budget'] / (df['release_year'] * df['release_year']) df['_budget_year_ratio'] = df['budget'] / (df['release_year'] * df['release_year']) df['_releaseYear_popularity_ratio'] = df['release_year'] / df['popularity'] df['_releaseYear_popularity_ratio2'] = df['popularity'] / df['release_year'] df['_popularity_totalVotes_ratio'] = df['totalVotes'] / df['popularity'] df['_rating_popularity_ratio'] = df['rating'] / df['popularity'] df['_rating_totalVotes_ratio'] = df['totalVotes'] / df['rating'] df['_totalVotes_releaseYear_ratio'] = df['totalVotes'] / df['release_year'] df['_budget_rating_ratio'] = df['budget'] / df['rating'] df['_runtime_rating_ratio'] = df['runtime'] / df['rating'] df['_budget_totalVotes_ratio'] = df['budget'] / df['totalVotes'] # 对是否有homepage分类 df['has_homepage'] = 1 df.loc[pd.isnull(df['homepage']), "has_homepage"] = 0 # 对belongs_to_collection是否为空分类 df['isbelongs_to_collectionNA'] = 0 df.loc[pd.isnull(df['belongs_to_collection']), "isbelongs_to_collectionNA"] = 1 # 对tagline是否为空分类 df['isTaglineNA'] = 0 df.loc[df['tagline'] == 0, "isTaglineNA"] = 1 # 对original——langues是否为English判定 df['isOriginalLanguageEng'] = 0 df.loc[df['original_language'] == "en", "isOriginalLanguageEng"] = 1 # 对电影名是否不同判定 df['isTitleDifferent'] = 1 df.loc[df['original_title'] == df['title'], "isTitleDifferent"] = 0 # 对电影是否上映判定 df['isMovieReleased'] = 1 df.loc[df['status'] != "Released", "isMovieReleased"] = 0 # 电影是否有摘要 df['isOverviewNA'] = 0 df.loc[pd.isnull(df['overview']), 'isOverviewNA'] = 1 # 获取collection id df['collection_id'] = df['belongs_to_collection'].apply(lambda x: np.nan if len(x) == 0 else x[0]['id']) # 对original——title等属性统计长度 df['original_title_letter_count'] = df['original_title'].str.len() df['original_title_word_count'] = df['original_title'].str.split().str.len() # 对title、overview、tagline统计长度或个数 df['title_word_count'] = df['title'].str.split().str.len() df['overview_word_count'] = df['overview'].str.split().str.len() df['tagline_word_count'] = df['tagline'].str.split().str.len() df['len_title'] = df['title'].fillna('').apply(lambda x: len(str(x))) # 对production_conpany、country、cast、crew、spoken_languages统计 df['production_countries_count'] = df['production_countries'].apply(lambda x: len(x)) df['production_companies_count'] = df['production_companies'].apply(lambda x: len(x)) df['cast_count'] = df['cast'].apply(lambda x: len(x)) df['crew_count'] = df['crew'].apply(lambda x: len(x)) df['spoken_languages_count'] = df['spoken_languages'].apply(lambda x: len(x)) df['genres_count'] = df['genres'].apply(lambda x: len(x)) # 进行按年分组计算均值填充 df['meanruntimeByYear'] = df.groupby("release_year")["runtime"].aggregate('mean') df['meanPopularityByYear'] = df.groupby("release_year")["popularity"].aggregate('mean') df['meanBudgetByYear'] = df.groupby("release_year")["budget"].aggregate('mean') df['meantotalVotesByYear'] = df.groupby("release_year")["totalVotes"].aggregate('mean') df['meanTotalVotesByRating'] = df.groupby("rating")["totalVotes"].aggregate('mean') df['medianBudgetByYear'] = df.groupby("release_year")["budget"].aggregate('median') #################################################################################### df['_popularity_theatrical_ratio'] = df['theatrical'] / df['popularity'] df['_budget_theatrical_ratio'] = df['budget'] / df['theatrical'] # runtime df['runtime_cat_min_60'] = df['runtime'].apply(lambda x: 1 if (x <= 60) else 0) df['runtime_cat_61_80'] = df['runtime'].apply(lambda x: 1 if (x > 60) & (x <= 80) else 0) df['runtime_cat_81_100'] = df['runtime'].apply(lambda x: 1 if (x > 80) & (x <= 100) else 0) df['runtime_cat_101_120'] = df['runtime'].apply(lambda x: 1 if (x > 100) & (x <= 120) else 0) df['runtime_cat_121_140'] = df['runtime'].apply(lambda x: 1 if (x > 120) & (x <= 140) else 0) df['runtime_cat_141_170'] = df['runtime'].apply(lambda x: 1 if (x > 140) & (x <= 170) else 0) df['runtime_cat_171_max'] = df['runtime'].apply(lambda x: 1 if (x >= 170) else 0) lang = df['original_language'] df_more_17_samples = [x[0] for x in Counter(pd.DataFrame(lang).stack()).most_common(17)] for col in df_more_17_samples: df[col] = df['original_language'].apply(lambda x: 1 if x == col else 0) for col in range(1, 12): df['month' + str(col)] = df['release_month'].apply(lambda x: 1 if x == col else 0) # feature engeneering : Release date per quarter one hot encoding for col in range(1, 4): df['quarter' + str(col)] = df['release_quarter'].apply(lambda x: 1 if x == col else 0) for col in range(1, 7): df['dayofweek' + str(col)] = df['release_dayofweek'].apply(lambda x: 1 if x == col else 0) # 新加入属性 df['is_release_day_of_1'] = 0 df.loc[df['release_day'] == 1, 'is_release_day_of_1'] = 1 df['is_release_day_of_15'] = 0 df.loc[df['release_day'] == 15, 'is_release_day_of_15'] = 1 # 新属性加入 # df['popularity2'] = np.log1p(df['popularity2']) # df['popularity'] = np.log1p(df['popularity']) # for col in range(1, 32): # df['release_day' + str(col)] = df['release_day'].apply(lambda x: 1 if x == col else 0) df['is_release_day_of_31'] = 0 df.loc[df['release_day'] == 31, 'is_release_day_of_15'] = 1 # popularity df['popularity_cat_25'] = df['popularity'].apply(lambda x: 1 if (x <= 25) else 0) df['popularity_cat_26_50'] = df['popularity'].apply(lambda x: 1 if (x > 25) & (x <= 50) else 0) df['popularity_cat_51_100'] = df['popularity'].apply(lambda x: 1 if (x > 50) & (x <= 100) else 0) df['popularity_cat_101_150'] = df['popularity'].apply(lambda x: 1 if (x > 100) & (x <= 150) else 0) df['popularity_cat_151_200'] = df['popularity'].apply(lambda x: 1 if (x > 150) & (x <= 200) else 0) df['popularity_cat_201_max'] = df['popularity'].apply(lambda x: 1 if (x >= 200) else 0) df['_runtime_totalVotes_ratio'] = df['runtime'] / df['totalVotes'] df['_runtime_popularity_ratio'] = df['runtime'] / df['popularity'] # df['_rating_theatrical_ratio'] = df['theatrical'] / df['rating'] df['_totalVotes_theatrical_ratio'] = df['theatrical'] / df['totalVotes'] df['_budget_mean_year'] = df['budget'] / df.groupby("release_year")["budget"].transform('mean') df['_runtime_mean_year'] = df['runtime'] / df.groupby("release_year")["runtime"].transform('mean') df['_rating_mean_year'] = df['rating'] / df.groupby("release_year")["rating"].transform('mean') df['_totalVotes_mean_year'] = df['totalVotes'] / df.groupby("release_year")["totalVotes"].transform('mean') ############################################################### # 对某些json属性,具有多个值的,进行类似‘one-hot编码’ for col in ['genres', 'production_countries', 'spoken_languages', 'production_companies','Keywords']: df[col] = df[col].map(lambda x: sorted( list(set([n if n in train_dict[col] else col + '_etc' for n in [d['name'] for d in x]])))).map( lambda x: ','.join(map(str, x))) temp = df[col].str.get_dummies(sep=',') df = pd.concat([df, temp], axis=1, sort=False) # 删除非数值属性和暂时未提出有用信息的属性 df.drop(['genres_etc'], axis=1, inplace=True) df = df.drop(['id', 'revenue', 'belongs_to_collection', 'genres', 'homepage', 'imdb_id', 'overview', 'runtime' , 'poster_path', 'production_companies', 'production_countries', 'release_date', 'spoken_languages' , 'status', 'title', 'Keywords', 'cast', 'crew', 'original_language', 'original_title', 'tagline', 'collection_id' ], axis=1) # 填充缺失值 df.fillna(value=0.0, inplace=True) return df # 对train中的某些数据手动处理 # 处理包括budget、revenue # 对budget远小于revenue的情况统计,对其进行处理 # 处理原则,对于可以查询到的信息,进行真实数据填充,否则取当年同期同类型电影的均值 train = pd.read_csv('train.csv') train.loc[train['id'] == 16, 'revenue'] = 192864 # Skinning train.loc[train['id'] == 90, 'budget'] = 30000000 # Sommersby train.loc[train['id'] == 118, 'budget'] = 60000000 # Wild Hogs train.loc[train['id'] == 149, 'budget'] = 18000000 # Beethoven train.loc[train['id'] == 313, 'revenue'] = 12000000 # The Cookout train.loc[train['id'] == 451, 'revenue'] = 12000000 # Chasing Liberty train.loc[train['id'] == 464, 'budget'] = 20000000 # Parenthood train.loc[train['id'] == 470, 'budget'] = 13000000 # The Karate Kid, Part II train.loc[train['id'] == 513, 'budget'] = 930000 # From Prada to Nada train.loc[train['id'] == 797, 'budget'] = 8000000 # Welcome to Dongmakgol train.loc[train['id'] == 819, 'budget'] = 90000000 # Alvin and the Chipmunks: The Road Chip train.loc[train['id'] == 850, 'budget'] = 90000000 # Modern Times train.loc[train['id'] == 1007, 'budget'] = 2 # Zyzzyx Road train.loc[train['id'] == 1112, 'budget'] = 7500000 # An Officer and a Gentleman train.loc[train['id'] == 1131, 'budget'] = 4300000 # Smokey and the Bandit train.loc[train['id'] == 1359, 'budget'] = 10000000 # Stir Crazy train.loc[train['id'] == 1542, 'budget'] = 1 # All at Once train.loc[train['id'] == 1570, 'budget'] = 15800000 # Crocodile Dundee II train.loc[train['id'] == 1571, 'budget'] = 4000000 # Lady and the Tramp train.loc[train['id'] == 1714, 'budget'] = 46000000 # The Recruit train.loc[train['id'] == 1721, 'budget'] = 17500000 # Cocoon train.loc[train['id'] == 1865, 'revenue'] = 25000000 # Scooby-Doo 2: Monsters Unleashed train.loc[train['id'] == 1885, 'budget'] = 12 # In the Cut train.loc[train['id'] == 2091, 'budget'] = 10 # Deadfall train.loc[train['id'] == 2268, 'budget'] = 17500000 # Madea Goes to Jail budget train.loc[train['id'] == 2491, 'budget'] = 6 # Never Talk to Strangers train.loc[train['id'] == 2602, 'budget'] = 31000000 # Mr. Holland's Opus train.loc[train['id'] == 2612, 'budget'] = 15000000 # Field of Dreams train.loc[train['id'] == 2696, 'budget'] = 10000000 # Nurse 3-D train.loc[train['id'] == 2801, 'budget'] = 10000000 # Fracture train.loc[train['id'] == 335, 'budget'] = 2 train.loc[train['id'] == 348, 'budget'] = 12 train.loc[train['id'] == 470, 'budget'] = 13000000 train.loc[train['id'] == 513, 'budget'] = 1100000 train.loc[train['id'] == 640, 'budget'] = 6 train.loc[train['id'] == 696, 'budget'] = 1 train.loc[train['id'] == 797, 'budget'] = 8000000 train.loc[train['id'] == 850, 'budget'] = 1500000 train.loc[train['id'] == 1199, 'budget'] = 5 train.loc[train['id'] == 1282, 'budget'] = 9 # Death at a Funeral train.loc[train['id'] == 1347, 'budget'] = 1 train.loc[train['id'] == 1755, 'budget'] = 2 train.loc[train['id'] == 1801, 'budget'] = 5 train.loc[train['id'] == 1918, 'budget'] = 592 train.loc[train['id'] == 2033, 'budget'] = 4 train.loc[train['id'] == 2118, 'budget'] = 344 train.loc[train['id'] == 2252, 'budget'] = 130 train.loc[train['id'] == 2256, 'budget'] = 1 train.loc[train['id'] == 2696, 'budget'] = 10000000 # test异常处理 test = pd.read_csv('test.csv') # Clean Data test.loc[test['id'] == 6733, 'budget'] = 5000000 test.loc[test['id'] == 3889, 'budget'] = 15000000 test.loc[test['id'] == 6683, 'budget'] = 50000000 test.loc[test['id'] == 5704, 'budget'] = 4300000 test.loc[test['id'] == 6109, 'budget'] = 281756 test.loc[test['id'] == 7242, 'budget'] = 10000000 test.loc[test['id'] == 7021, 'budget'] = 17540562 # Two Is a Family test.loc[test['id'] == 5591, 'budget'] = 4000000 # The Orphanage test.loc[test['id'] == 4282, 'budget'] = 20000000 # Big Top Pee-wee test.loc[test['id'] == 3033, 'budget'] = 250 test.loc[test['id'] == 3051, 'budget'] = 50 test.loc[test['id'] == 3084, 'budget'] = 337 test.loc[test['id'] == 3224, 'budget'] = 4 test.loc[test['id'] == 3594, 'budget'] = 25 test.loc[test['id'] == 3619, 'budget'] = 500 test.loc[test['id'] == 3831, 'budget'] = 3 test.loc[test['id'] == 3935, 'budget'] = 500 test.loc[test['id'] == 4049, 'budget'] = 995946 test.loc[test['id'] == 4424, 'budget'] = 3 test.loc[test['id'] == 4460, 'budget'] = 8 test.loc[test['id'] == 4555, 'budget'] = 1200000 test.loc[test['id'] == 4624, 'budget'] = 30 test.loc[test['id'] == 4645, 'budget'] = 500 test.loc[test['id'] == 4709, 'budget'] = 450 test.loc[test['id'] == 4839, 'budget'] = 7 test.loc[test['id'] == 3125, 'budget'] = 25 test.loc[test['id'] == 3142, 'budget'] = 1 test.loc[test['id'] == 3201, 'budget'] = 450 test.loc[test['id'] == 3222, 'budget'] = 6 test.loc[test['id'] == 3545, 'budget'] = 38 test.loc[test['id'] == 3670, 'budget'] = 18 test.loc[test['id'] == 3792, 'budget'] = 19 test.loc[test['id'] == 3881, 'budget'] = 7 test.loc[test['id'] == 3969, 'budget'] = 400 test.loc[test['id'] == 4196, 'budget'] = 6 test.loc[test['id'] == 4221, 'budget'] = 11 test.loc[test['id'] == 4222, 'budget'] = 500 test.loc[test['id'] == 4285, 'budget'] = 11 test.loc[test['id'] == 4319, 'budget'] = 1 test.loc[test['id'] == 4639, 'budget'] = 10 test.loc[test['id'] == 4719, 'budget'] = 45 test.loc[test['id'] == 4822, 'budget'] = 22 test.loc[test['id'] == 4829, 'budget'] = 20 test.loc[test['id'] == 4969, 'budget'] = 20 test.loc[test['id'] == 5021, 'budget'] = 40 test.loc[test['id'] == 5035, 'budget'] = 1 test.loc[test['id'] == 5063, 'budget'] = 14 test.loc[test['id'] == 5119, 'budget'] = 2 test.loc[test['id'] == 5214, 'budget'] = 30 test.loc[test['id'] == 5221, 'budget'] = 50 test.loc[test['id'] == 4903, 'budget'] = 15 test.loc[test['id'] == 4983, 'budget'] = 3 test.loc[test['id'] == 5102, 'budget'] = 28 test.loc[test['id'] == 5217, 'budget'] = 75 test.loc[test['id'] == 5224, 'budget'] = 3 test.loc[test['id'] == 5469, 'budget'] = 20 test.loc[test['id'] == 5840, 'budget'] = 1 test.loc[test['id'] == 5960, 'budget'] = 30 test.loc[test['id'] == 6506, 'budget'] = 11 test.loc[test['id'] == 6553, 'budget'] = 280 test.loc[test['id'] == 6561, 'budget'] = 7 test.loc[test['id'] == 6582, 'budget'] = 218 test.loc[test['id'] == 6638, 'budget'] = 5 test.loc[test['id'] == 6749, 'budget'] = 8 test.loc[test['id'] == 6759, 'budget'] = 50 test.loc[test['id'] == 6856, 'budget'] = 10 test.loc[test['id'] == 6858, 'budget'] = 100 test.loc[test['id'] == 6876, 'budget'] = 250 test.loc[test['id'] == 6972, 'budget'] = 1 test.loc[test['id'] == 7079, 'budget'] = 8000000 test.loc[test['id'] == 7150, 'budget'] = 118 test.loc[test['id'] == 6506, 'budget'] = 118 test.loc[test['id'] == 7225, 'budget'] = 6 test.loc[test['id'] == 7231, 'budget'] = 85 test.loc[test['id'] == 5222, 'budget'] = 5 test.loc[test['id'] == 5322, 'budget'] = 90 test.loc[test['id'] == 5350, 'budget'] = 70 test.loc[test['id'] == 5378, 'budget'] = 10 test.loc[test['id'] == 5545, 'budget'] = 80 test.loc[test['id'] == 5810, 'budget'] = 8 test.loc[test['id'] == 5926, 'budget'] = 300 test.loc[test['id'] == 5927, 'budget'] = 4 test.loc[test['id'] == 5986, 'budget'] = 1 test.loc[test['id'] == 6053, 'budget'] = 20 test.loc[test['id'] == 6104, 'budget'] = 1 test.loc[test['id'] == 6130, 'budget'] = 30 test.loc[test['id'] == 6301, 'budget'] = 150 test.loc[test['id'] == 6276, 'budget'] = 100 test.loc[test['id'] == 6473, 'budget'] = 100 test.loc[test['id'] == 6842, 'budget'] = 30 release_dates = pd.read_csv('release_dates_per_country.csv') release_dates['id'] = range(1,7399) release_dates.drop(['original_title','title'],axis = 1,inplace = True) release_dates.index = release_dates['id'] train = pd.merge(train, release_dates, how='left', on=['id']) test = pd.merge(test, release_dates, how='left', on=['id']) test['revenue'] = np.nan # 将从TMDB下载的其他特征进行合并 train = pd.merge(train, pd.read_csv('TrainAdditionalFeatures.csv'), how='left', on=['imdb_id']) test = pd.merge(test,
pd.read_csv('TestAdditionalFeatures.csv')
pandas.read_csv
""" Cascaded Convolution Model - <NAME> (ps2958) - <NAME> (jw3468) """ import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.preprocessing import text, sequence from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical from keras.models import Model, Input from keras.layers import Embedding, Dense, TimeDistributed, Concatenate, BatchNormalization from keras.layers import Bidirectional, Activation, Dropout, CuDNNGRU, Conv1D from sklearn.model_selection import train_test_split, KFold from keras.metrics import categorical_accuracy from keras import backend as K from keras.regularizers import l1, l2 import tensorflow as tf ### Data Retrieval # cb6133 = np.load("../data/cb6133.npy") cb6133filtered = np.load("../data/cb6133filtered.npy") cb513 = np.load("../data/cb513.npy") print() # print(cb6133.shape) print(cb6133filtered.shape) print(cb513.shape) maxlen_seq = r = 700 # protein residues padded to 700 f = 57 # number of features for each residue residue_list = list('ACEDGFIHKMLNQPSRTWVYX') + ['NoSeq'] q8_list = list('LBEGIHST') + ['NoSeq'] columns = ["id", "len", "input", "profiles", "expected"] def get_data(arr, bounds=None): if bounds is None: bounds = range(len(arr)) data = [None for i in bounds] for i in bounds: seq, q8, profiles = '', '', [] for j in range(r): jf = j*f # Residue convert from one-hot to decoded residue_onehot = arr[i,jf+0:jf+22] residue = residue_list[np.argmax(residue_onehot)] # Q8 one-hot encoded to decoded structure symbol residue_q8_onehot = arr[i,jf+22:jf+31] residue_q8 = q8_list[np.argmax(residue_q8_onehot)] if residue == 'NoSeq': break # terminating sequence symbol nc_terminals = arr[i,jf+31:jf+33] # nc_terminals = [0. 0.] sa = arr[i,jf+33:jf+35] # sa = [0. 0.] profile = arr[i,jf+35:jf+57] # profile features seq += residue # concat residues into amino acid sequence q8 += residue_q8 # concat secondary structure into secondary structure sequence profiles.append(profile) data[i] = [str(i+1), len(seq), seq, np.array(profiles), q8] return
pd.DataFrame(data, columns=columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import pandas as pd from fbprophet import Prophet import matplotlib.pyplot as plt import seaborn as sns; sns.set() df = pd.read_pickle('all_trips.pkl') df.head() # Day of Week df['dow'] = df.trip_start_time.dt.day_name() df['hour'] = df.trip_start_time.dt.hour sns.set_style("darkgrid") ax = sns.FacetGrid(data=df.groupby( ['dow', 'hour'] ).hour.count().to_frame( name='day_hour_count').reset_index(), col='dow', col_order=[ 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'], col_wrap=4) ax.map(sns.barplot, 'hour', 'day_hour_count') # Predict daily = df.set_index('trip_start_time').groupby(pd.Grouper(freq='D')).size() daily =
pd.DataFrame(daily)
pandas.DataFrame
from flowsa.common import WITHDRAWN_KEYWORD from flowsa.flowbyfunctions import assign_fips_location_system from flowsa.location import US_FIPS import math import pandas as pd import io from flowsa.settings import log from string import digits YEARS_COVERED = { "asbestos": "2014-2018", "barite": "2014-2018", "bauxite": "2013-2017", "beryllium": "2014-2018", "boron": "2014-2018", "chromium": "2014-2018", "clay": "2015-2016", "cobalt": "2013-2017", "copper": "2011-2015", "diatomite": "2014-2018", "feldspar": "2013-2017", "fluorspar": "2013-2017", "fluorspar_inports": ["2016", "2017"], "gallium": "2014-2018", "garnet": "2014-2018", "gold": "2013-2017", "graphite": "2013-2017", "gypsum": "2014-2018", "iodine": "2014-2018", "ironore": "2014-2018", "kyanite": "2014-2018", "lead": "2012-2018", "lime": "2014-2018", "lithium": "2013-2017", "magnesium": "2013-2017", "manganese": "2012-2016", "manufacturedabrasive": "2017-2018", "mica": "2014-2018", "molybdenum": "2014-2018", "nickel": "2012-2016", "niobium": "2014-2018", "peat": "2014-2018", "perlite": "2013-2017", "phosphate": "2014-2018", "platinum": "2014-2018", "potash": "2014-2018", "pumice": "2014-2018", "rhenium": "2014-2018", "salt": "2013-2017", "sandgravelconstruction": "2013-2017", "sandgravelindustrial": "2014-2018", "silver": "2012-2016", "sodaash": "2010-2017", "sodaash_t4": ["2016", "2017"], "stonecrushed": "2013-2017", "stonedimension": "2013-2017", "strontium": "2014-2018", "talc": "2013-2017", "titanium": "2013-2017", "tungsten": "2013-2017", "vermiculite": "2014-2018", "zeolites": "2014-2018", "zinc": "2013-2017", "zirconium": "2013-2017", } def usgs_myb_year(years, current_year_str): """ Sets the column for the string based on the year. Checks that the year you picked is in the last file. :param years: string, with hypthon :param current_year_str: string, year of interest :return: string, year """ years_array = years.split("-") lower_year = int(years_array[0]) upper_year = int(years_array[1]) current_year = int(current_year_str) if lower_year <= current_year <= upper_year: column_val = current_year - lower_year + 1 return "year_" + str(column_val) else: log.info("Your year is out of scope. Pick a year between %s and %s", lower_year, upper_year) def usgs_myb_name(USGS_Source): """ Takes the USGS source name and parses it so it can be used in other parts of Flow by activity. :param USGS_Source: string, usgs source name :return: """ source_split = USGS_Source.split("_") name_cc = str(source_split[2]) name = "" for char in name_cc: if char.isupper(): name = name + " " + char else: name = name + char name = name.lower() name = name.strip() return name def usgs_myb_static_variables(): """ Populates the data values for Flow by activity that are the same for all of USGS_MYB Files :return: """ data = {} data["Class"] = "Geological" data['FlowType'] = "ELEMENTARY_FLOWS" data["Location"] = US_FIPS data["Compartment"] = "ground" data["Context"] = None data["ActivityConsumedBy"] = None return data def usgs_myb_remove_digits(value_string): """ Eliminates numbers in a string :param value_string: :return: """ remove_digits = str.maketrans('', '', digits) return_string = value_string.translate(remove_digits) return return_string def usgs_myb_url_helper(*, build_url, **_): """ This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for data imports that requires parts of the url text string to be replaced with info specific to the data year. This function does not parse the data, only modifies the urls from which data is obtained. :param build_url: string, base url :param config: dictionary, items in FBA method yaml :param args: dictionary, arguments specified when running flowbyactivity.py flowbyactivity.py ('year' and 'source') :return: list, urls to call, concat, parse, format into Flow-By-Activity format """ return [build_url] def usgs_asbestos_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[4:11]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 12: for x in range(12, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 12: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['asbestos'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_asbestos_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] product = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['asbestos'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Exports and reexports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['asbestos'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "nan": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system(dataframe, str(year)) return dataframe def usgs_barite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel( io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:14]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 11: df_data.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['barite'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_barite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['barite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:3": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Crude, sold or used by producers:": product = "production" elif df.iloc[index]["Production"].strip() == "Exports:2": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['barite'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_bauxite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[6:14]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one. columns) == 11: df_data_one.columns = ["Production", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['bauxite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_bauxite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Total"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['bauxite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Production": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption, as shipped:": prod = "import" elif df.iloc[index]["Production"].strip() == \ "Exports, as shipped:": prod = "export" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" flow_amount = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = flow_amount data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_beryllium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T4') df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data_two.loc[6:9]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[12:12]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_2.columns) > 11: for x in range(11, len(df_data_2.columns)): col_name = "Unnamed: " + str(x) del df_data_2[col_name] if len(df_data_1. columns) == 11: df_data_1.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] if len(df_data_2. columns) == 11: df_data_2.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['beryllium'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_beryllium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["United States6", "Mine shipments1", "Imports for consumption, beryl2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['beryllium'], year) for df in df_list: for index, row in df.iterrows(): prod = "production" if df.iloc[index]["Production"].strip() == \ "Imports for consumption, beryl2": prod = "imports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data["Description"] = name data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_boron_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data.loc[8:8]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] df_data_two = pd.DataFrame(df_raw_data.loc[21:22]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] df_data_three = pd.DataFrame(df_raw_data.loc[27:28]).reindex() df_data_three = df_data_three.reset_index() del df_data_three["index"] if len(df_data_one. columns) == 11: df_data_one.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_two.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_three.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['boron'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] del df_data_two[col] del df_data_three[col] frames = [df_data_one, df_data_two, df_data_three] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_boron_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["B2O3 content", "Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['boron'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "B2O3 content" or \ df.iloc[index]["Production"].strip() == "Quantity": product = "production" if df.iloc[index]["Production"].strip() == "Colemanite:4": des = "Colemanite" elif df.iloc[index]["Production"].strip() == "Ulexite:4": des = "Ulexite" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" if des == name: data['FlowName'] = name + " " + product else: data['FlowName'] = name + " " + product + " " + des data["Description"] = des data["ActivityProducedBy"] = name if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_chromium_call(*, resp, year, **_): """" Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[4:24]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 12: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] elif len(df_data. columns) == 13: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5", "space_6"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['chromium'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_chromium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Secondary2", "Total"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['chromium'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Imports:": product = "imports" elif df.iloc[index]["Production"].strip() == "Secondary2": product = "production" elif df.iloc[index]["Production"].strip() == "Exports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['chromium'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_clay_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data_ball = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T3') df_data_ball = pd.DataFrame(df_raw_data_ball.loc[19:19]).reindex() df_data_ball = df_data_ball.reset_index() del df_data_ball["index"] df_raw_data_bentonite = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T4 ') df_data_bentonite = pd.DataFrame( df_raw_data_bentonite.loc[28:28]).reindex() df_data_bentonite = df_data_bentonite.reset_index() del df_data_bentonite["index"] df_raw_data_common = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T5 ') df_data_common = pd.DataFrame(df_raw_data_common.loc[40:40]).reindex() df_data_common = df_data_common.reset_index() del df_data_common["index"] df_raw_data_fire = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T6 ') df_data_fire = pd.DataFrame(df_raw_data_fire.loc[12:12]).reindex() df_data_fire = df_data_fire.reset_index() del df_data_fire["index"] df_raw_data_fuller = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T7 ') df_data_fuller = pd.DataFrame(df_raw_data_fuller.loc[17:17]).reindex() df_data_fuller = df_data_fuller.reset_index() del df_data_fuller["index"] df_raw_data_kaolin = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T8 ') df_data_kaolin = pd.DataFrame(df_raw_data_kaolin.loc[18:18]).reindex() df_data_kaolin = df_data_kaolin.reset_index() del df_data_kaolin["index"] df_raw_data_export = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T13') df_data_export = pd.DataFrame(df_raw_data_export.loc[6:15]).reindex() df_data_export = df_data_export.reset_index() del df_data_export["index"] df_raw_data_import = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T14') df_data_import = pd.DataFrame(df_raw_data_import.loc[6:13]).reindex() df_data_import = df_data_import.reset_index() del df_data_import["index"] df_data_ball.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_bentonite.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_common.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_fire.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_fuller.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_kaolin.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_export.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2", "space_5", "extra"] df_data_import.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2", "space_5", "extra"] df_data_ball["type"] = "Ball clay" df_data_bentonite["type"] = "Bentonite" df_data_common["type"] = "Common clay" df_data_fire["type"] = "Fire clay" df_data_fuller["type"] = "Fuller’s earth" df_data_kaolin["type"] = "Kaolin" df_data_export["type"] = "export" df_data_import["type"] = "import" col_to_use = ["Production", "type"] col_to_use.append(usgs_myb_year(YEARS_COVERED['clay'], year)) for col in df_data_import.columns: if col not in col_to_use: del df_data_import[col] del df_data_export[col] for col in df_data_ball.columns: if col not in col_to_use: del df_data_ball[col] del df_data_bentonite[col] del df_data_common[col] del df_data_fire[col] del df_data_fuller[col] del df_data_kaolin[col] frames = [df_data_import, df_data_export, df_data_ball, df_data_bentonite, df_data_common, df_data_fire, df_data_fuller, df_data_kaolin] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_clay_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Ball clay", "Bentonite", "Fire clay", "Kaolin", "Fuller’s earth", "Total", "Grand total", "Artificially activated clay and earth", "Clays, not elsewhere classified", "Clays, not elsewhere classified"] dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["type"].strip() == "import": product = "imports" elif df.iloc[index]["type"].strip() == "export": product = "exports" else: product = "production" if str(df.iloc[index]["Production"]).strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" if product == "production": data['FlowName'] = \ df.iloc[index]["type"].strip() + " " + product data["Description"] = df.iloc[index]["type"].strip() data["ActivityProducedBy"] = df.iloc[index]["type"].strip() else: data['FlowName'] = \ df.iloc[index]["Production"].strip() + " " + product data["Description"] = df.iloc[index]["Production"].strip() data["ActivityProducedBy"] = \ df.iloc[index]["Production"].strip() col_name = usgs_myb_year(YEARS_COVERED['clay'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)" or \ str(df.iloc[index][col_name]) == "(2)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_cobalt_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T8') df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data_two.loc[6:11]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[23:23]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_2.columns) > 11: for x in range(11, len(df_data_2.columns)): col_name = "Unnamed: " + str(x) del df_data_2[col_name] if len(df_data_1. columns) == 12: df_data_1.columns = ["Production", "space_6", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] if len(df_data_2. columns) == 11: df_data_2.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['cobalt'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_cobalt_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} name = usgs_myb_name(source) des = name row_to_use = ["United Statese, 16, 17", "Mine productione", "Imports for consumption", "Exports"] dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): prod = "production" if df.iloc[index]["Production"].strip() == \ "United Statese, 16, 17": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption": prod = "imports" elif df.iloc[index]["Production"].strip() == "Exports": prod = "exports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['cobalt'], year) data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod data["FlowAmount"] = str(df.iloc[index][col_name]) remove_rows = ["(18)", "(2)"] if data["FlowAmount"] not in remove_rows: dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_copper_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data.loc[12:12]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[30:31]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_1. columns) == 12: df_data_1.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_2.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production", "Unit"] col_to_use.append(usgs_myb_year(YEARS_COVERED['copper'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_copper_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) if product == "Total": prod = "production" elif product == "Exports, refined": prod = "exports" elif product == "Imports, refined": prod = "imports" data["ActivityProducedBy"] = "Copper; Mine" data['FlowName'] = name + " " + prod data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['copper'], year) data["Description"] = "Copper; Mine" data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_diatomite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[7:10]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one.columns) == 10: df_data_one.columns = ["Production", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['diatomite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_diatomite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Exports2", "Imports for consumption2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports2": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption2": prod = "imports" elif df.iloc[index]["Production"].strip() == "Quantity": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand metric tons" col_name = usgs_myb_year(YEARS_COVERED['diatomite'], year) data["FlowAmount"] = str(df.iloc[index][col_name]) data["Description"] = name data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_feldspar_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_two = pd.DataFrame(df_raw_data_two.loc[4:8]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] df_data_one = pd.DataFrame(df_raw_data_two.loc[10:15]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_two. columns) == 13: df_data_two.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] df_data_one.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['feldspar'], year)) for col in df_data_two.columns: if col not in col_to_use: del df_data_two[col] del df_data_one[col] frames = [df_data_two, df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_feldspar_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Quantity3"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports, feldspar:4": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:4": prod = "imports" elif df.iloc[index]["Production"].strip() == \ "Production, feldspar:e, 2": prod = "production" elif df.iloc[index]["Production"].strip() == "Nepheline syenite:": prod = "production" des = "Nepheline syenite" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['feldspar'], year) data["FlowAmount"] = str(df.iloc[index][col_name]) data["Description"] = des data["ActivityProducedBy"] = name if name == des: data['FlowName'] = name + " " + prod else: data['FlowName'] = name + " " + prod + " " + des dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_fluorspar_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') if year in YEARS_COVERED['fluorspar_inports']: df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T2') df_raw_data_three = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T7') df_raw_data_four = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T8') df_data_one = pd.DataFrame(df_raw_data_one.loc[5:15]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if year in YEARS_COVERED['fluorspar_inports']: df_data_two =
pd.DataFrame(df_raw_data_two.loc[7:8])
pandas.DataFrame
import numpy as np import pandas as pd import gc import random from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.utils.rnn as rnn_utils from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader import os import time def MCMAE(output,targets,stds): maes=[] for i in range(output.shape[1]): mae=torch.abs(output[:,i]-targets[:,i]).mean()*stds[i] maes.append(mae) maes=torch.stack(maes).mean() return maes def update_lr(optimizer, lr): for param_group in optimizer.param_groups: param_group['lr'] = lr def get_lr(optimizer): for param_group in optimizer.param_groups: lr=param_group['lr'] return lr class lr_AIAYN(): ''' Learning rate scheduler from the paper: Attention is All You Need ''' def __init__(self,optimizer,d_model,warmup_steps=4000,factor=1): self.optimizer=optimizer self.d_model=d_model self.warmup_steps=warmup_steps self.step_num=0 self.factor=factor def step(self): self.step_num+=1 lr=self.d_model**-0.5*np.min([self.step_num**-0.5, self.step_num*self.warmup_steps**-1.5])*self.factor update_lr(self.optimizer,lr) return lr def add_features(df): #df['area'] = df['time_step'] * df['u_in'] #df['area'] = df.groupby('breath_id')['area'].cumsum() df['u_in_cumsum'] = (df['u_in']).groupby(df['breath_id']).cumsum() # fast area calculation df['time_delta'] = df['time_step'].diff() df['time_delta'].fillna(0, inplace=True) df['time_delta'].mask(df['time_delta'] < 0, 0, inplace=True) df['tmp'] = df['time_delta'] * df['u_in'] df['area_true'] = df.groupby('breath_id')['tmp'].cumsum() df['tmp'] = df['u_out']*(-1)+1 # inversion of u_out df['u_in_lag1'] = df.groupby('breath_id')['u_in'].shift(1) #df['u_out_lag1'] = df.groupby('breath_id')['u_out'].shift(1) df['u_in_lag_back1'] = df.groupby('breath_id')['u_in'].shift(-1) #df['u_out_lag_back1'] = df.groupby('breath_id')['u_out'].shift(-1) df['u_in_lag2'] = df.groupby('breath_id')['u_in'].shift(2) #df['u_out_lag2'] = df.groupby('breath_id')['u_out'].shift(2) df['u_in_lag_back2'] = df.groupby('breath_id')['u_in'].shift(-2) #df['u_out_lag_back2'] = df.groupby('breath_id')['u_out'].shift(-2) df['u_in_lag3'] = df.groupby('breath_id')['u_in'].shift(3) #df['u_out_lag3'] = df.groupby('breath_id')['u_out'].shift(3) df['u_in_lag_back3'] = df.groupby('breath_id')['u_in'].shift(-3) #df['u_out_lag_back3'] = df.groupby('breath_id')['u_out'].shift(-3) df['u_in_lag4'] = df.groupby('breath_id')['u_in'].shift(4) #df['u_out_lag4'] = df.groupby('breath_id')['u_out'].shift(4) df['u_in_lag_back4'] = df.groupby('breath_id')['u_in'].shift(-4) #df['u_out_lag_back4'] = df.groupby('breath_id')['u_out'].shift(-4) df = df.fillna(0) df['breath_id__u_in__max'] = df.groupby(['breath_id'])['u_in'].transform('max') #df['breath_id__u_out__max'] = df.groupby(['breath_id'])['u_out'].transform('max') df['u_in_diff1'] = df['u_in'] - df['u_in_lag1'] #df['u_out_diff1'] = df['u_out'] - df['u_out_lag1'] df['u_in_diff2'] = df['u_in'] - df['u_in_lag2'] #df['u_out_diff2'] = df['u_out'] - df['u_out_lag2'] df['breath_id__u_in__diffmax'] = df.groupby(['breath_id'])['u_in'].transform('max') - df['u_in'] df['breath_id__u_in__diffmean'] = df.groupby(['breath_id'])['u_in'].transform('mean') - df['u_in'] df['breath_id__u_in__diffmax'] = df.groupby(['breath_id'])['u_in'].transform('max') - df['u_in'] df['breath_id__u_in__diffmean'] = df.groupby(['breath_id'])['u_in'].transform('mean') - df['u_in'] df['u_in_diff3'] = df['u_in'] - df['u_in_lag3'] #df['u_out_diff3'] = df['u_out'] - df['u_out_lag3'] df['u_in_diff4'] = df['u_in'] - df['u_in_lag4'] #df['u_out_diff4'] = df['u_out'] - df['u_out_lag4'] #df['cross']= df['u_in']*df['u_out'] #df['cross2']= df['time_step']*df['u_out'] df['R'] = df['R'].astype(str) df['C'] = df['C'].astype(str) df['R__C'] = df["R"].astype(str) + '__' + df["C"].astype(str) df =
pd.get_dummies(df)
pandas.get_dummies
import os import numpy as np import pandas as pd import pytest from janitor.testing_utils import date_data TEST_DATA_DIR = "tests/test_data" EXAMPLES_DIR = "examples/" @pytest.fixture def dataframe(): data = { "a": [1, 2, 3] * 3, "Bell__Chart": [1.234_523_45, 2.456_234, 3.234_612_5] * 3, "decorated-elephant": [1, 2, 3] * 3, "animals@#$%^": ["rabbit", "leopard", "lion"] * 3, "cities": ["Cambridge", "Shanghai", "Basel"] * 3, } df =
pd.DataFrame(data)
pandas.DataFrame
import argparse from datetime import datetime import pandas as pd import re import os from tabulate import tabulate from ast import literal_eval import numpy as np def init_data( ) -> pd.DataFrame: """ Return ------- Plan: pd.DataFrame. Item of the planner Notes ------- Reads the plan from the file in "pwd/../data/data.csv" and initialise it into the plan pandas DataFrame. If either "data" folder or "data.csv" or both of them do not exist, it creates this file. """ # Features of the plan features = ["title", "note", "date", "tags"] # Initialise the plan as dataframe object plan = pd.DataFrame(columns=features) # finding the current directory loc_dir = os.path.abspath(os.getcwd()) # moving to the parent folder and into "data" folder dir_path = os.path.abspath(os.path.join(loc_dir, "..", "data")) # path to "data.csv" file data_path = os.path.abspath(os.path.join(dir_path, "data.csv")) # If the folder does not exist yet if not os.path.exists(dir_path): os.mkdir(dir_path) plan.to_csv(data_path, index=False) # If the folder already exists else: # If "data.csv" does not exist yet if not os.path.exists(data_path): plan.to_csv(data_path, index=False) # If "data.csv" already exists else: plan = pd.read_csv(data_path, index_col=False) # returning plan return plan def update_data( plan: pd.DataFrame ): """ Parameters ---------- plan: pd.DataFrame. Contains all the notes Notes ---- This function takes in input the updated version of plan and overwrite the existing local copy in "Data/data.csv" """ # finding the current directory loc_dir = os.path.abspath(os.getcwd()) # moving to the parent directory and into "data" folder dir_path = os.path.abspath(os.path.join(loc_dir, "..", "data")) # path to the "data.csv" file data_path = os.path.abspath(os.path.join(dir_path, "data.csv")) # Sorting the dictionary by date plan["date"] = pd.to_datetime(plan["date"], format = '%Y-%m-%d', errors='coerce') plan["date"] = plan["date"].dt.date plan = plan.sort_values(by="date") # overwriting data plan.to_csv(data_path, index=False) pass def add_note( args: argparse.Namespace, # parser arguments plan: pd.DataFrame # DataFrame to be updated ): """ Parameters ---------- args: argparse.Namespace. Contains the arguments "title", "note" and "date" plan: pd.DataFrame. Contains all the notes Returns ------- update_plan: pd.DataFrame with the added note Notes ----- This function adds a new note to the existing planner. Warnings -------- This function must be updated everytime the columns of the plan are changed """ item = {} for name in plan.columns: if str(name) != "tags": item[str(name)] = vars(args)[str(name)] # these three lines insert a list in the pd.DataFrame. ATTENTION: it is stored as a string # they are needed because pd.DataFrame can't be initialized with nested data item["tags"] = "..." data = pd.DataFrame(item, index=[0]) data.at[0, "tags"] = vars(args)[str("tags")] # use literal_eval('[1.23, 2.34]') to read this data plan = plan.append(data) update_data(plan) def add_note_verbose( plan: pd.DataFrame # DataFrame to be updated ): """ Parameters ---------- plan: pd.DataFrame Returns ------- plan: pd.DataFrame with the added note Notes ----- This function adds a new note to the existing planner. It uses an input/output interface; this is more convenient to use with larger notes or notes with tags. Warnings -------- This function must be updated everytime the columns of the plan are changed """ item = {} # initializing the new note # title title = input("Please, insert the title: ") item["title"] = title # body note = input("It's time to write your note: ") item["note"] = note # date date = input("Insert the date 'Y-m-d'. Press Enter to use the current date: ") if date == '': # insert the current data if requested date = datetime.today().strftime('%Y-%m-%d') item["date"] = date # tags tags = input("Insert the tags (separated by a space or a comma): ") # these three lines insert a list in the pd.DataFrame. ATTENTION: it is stored as a string. # they are needed because pd.DataFrame can't be initialized with nested data item["tags"] = "..." data_bug =
pd.DataFrame(item, index=[0])
pandas.DataFrame
import copy import re from textwrap import dedent import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, ) import pandas._testing as tm jinja2 = pytest.importorskip("jinja2") from pandas.io.formats.style import ( # isort:skip Styler, ) from pandas.io.formats.style_render import ( _get_level_lengths, _get_trimming_maximums, maybe_convert_css_to_tuples, non_reducing_slice, ) @pytest.fixture def mi_df(): return DataFrame( [[1, 2], [3, 4]], index=MultiIndex.from_product([["i0"], ["i1_a", "i1_b"]]), columns=MultiIndex.from_product([["c0"], ["c1_a", "c1_b"]]), dtype=int, ) @pytest.fixture def mi_styler(mi_df): return Styler(mi_df, uuid_len=0) @pytest.fixture def mi_styler_comp(mi_styler): # comprehensively add features to mi_styler mi_styler = mi_styler._copy(deepcopy=True) mi_styler.css = {**mi_styler.css, **{"row": "ROW", "col": "COL"}} mi_styler.uuid_len = 5 mi_styler.uuid = "abcde" mi_styler.set_caption("capt") mi_styler.set_table_styles([{"selector": "a", "props": "a:v;"}]) mi_styler.hide(axis="columns") mi_styler.hide([("c0", "c1_a")], axis="columns", names=True) mi_styler.hide(axis="index") mi_styler.hide([("i0", "i1_a")], axis="index", names=True) mi_styler.set_table_attributes('class="box"') mi_styler.format(na_rep="MISSING", precision=3) mi_styler.format_index(precision=2, axis=0) mi_styler.format_index(precision=4, axis=1) mi_styler.highlight_max(axis=None) mi_styler.applymap_index(lambda x: "color: white;", axis=0) mi_styler.applymap_index(lambda x: "color: black;", axis=1) mi_styler.set_td_classes( DataFrame( [["a", "b"], ["a", "c"]], index=mi_styler.index, columns=mi_styler.columns ) ) mi_styler.set_tooltips( DataFrame( [["a2", "b2"], ["a2", "c2"]], index=mi_styler.index, columns=mi_styler.columns, ) ) return mi_styler @pytest.mark.parametrize( "sparse_columns, exp_cols", [ ( True, [ {"is_visible": True, "attributes": 'colspan="2"', "value": "c0"}, {"is_visible": False, "attributes": "", "value": "c0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "c0"}, {"is_visible": True, "attributes": "", "value": "c0"}, ], ), ], ) def test_mi_styler_sparsify_columns(mi_styler, sparse_columns, exp_cols): exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"} exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"} ctx = mi_styler._translate(True, sparse_columns) assert exp_cols[0].items() <= ctx["head"][0][2].items() assert exp_cols[1].items() <= ctx["head"][0][3].items() assert exp_l1_c0.items() <= ctx["head"][1][2].items() assert exp_l1_c1.items() <= ctx["head"][1][3].items() @pytest.mark.parametrize( "sparse_index, exp_rows", [ ( True, [ {"is_visible": True, "attributes": 'rowspan="2"', "value": "i0"}, {"is_visible": False, "attributes": "", "value": "i0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "i0"}, {"is_visible": True, "attributes": "", "value": "i0"}, ], ), ], ) def test_mi_styler_sparsify_index(mi_styler, sparse_index, exp_rows): exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"} exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"} ctx = mi_styler._translate(sparse_index, True) assert exp_rows[0].items() <= ctx["body"][0][0].items() assert exp_rows[1].items() <= ctx["body"][1][0].items() assert exp_l1_r0.items() <= ctx["body"][0][1].items() assert exp_l1_r1.items() <= ctx["body"][1][1].items() def test_mi_styler_sparsify_options(mi_styler): with pd.option_context("styler.sparse.index", False): html1 = mi_styler.to_html() with pd.option_context("styler.sparse.index", True): html2 = mi_styler.to_html() assert html1 != html2 with pd.option_context("styler.sparse.columns", False): html1 = mi_styler.to_html() with pd.option_context("styler.sparse.columns", True): html2 = mi_styler.to_html() assert html1 != html2 @pytest.mark.parametrize( "rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn", [ (100, 100, 100, None, None, 12, 6), # reduce to (12, 6) < 100 elements (1000, 3, 750, None, None, 250, 3), # dynamically reduce rows to 250, keep cols (4, 1000, 500, None, None, 4, 125), # dynamically reduce cols to 125, keep rows (1000, 3, 750, 10, None, 10, 3), # overwrite above dynamics with max_row (4, 1000, 500, None, 5, 4, 5), # overwrite above dynamics with max_col (100, 100, 700, 50, 50, 25, 25), # rows cols below given maxes so < 700 elmts ], ) def test_trimming_maximum(rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn): rn, cn = _get_trimming_maximums( rn, cn, max_els, max_rows, max_cols, scaling_factor=0.5 ) assert (rn, cn) == (exp_rn, exp_cn) @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_rows", 3), ], ) def test_render_trimming_rows(option, val): # test auto and specific trimming of rows df = DataFrame(np.arange(120).reshape(60, 2)) with pd.option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 3 # index + 2 data cols assert len(ctx["body"]) == 4 # 3 data rows + trimming row assert len(ctx["body"][0]) == 3 # index + 2 data cols @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_columns", 2), ], ) def test_render_trimming_cols(option, val): # test auto and specific trimming of cols df = DataFrame(np.arange(30).reshape(3, 10)) with pd.option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 4 # index + 2 data cols + trimming col assert len(ctx["body"]) == 3 # 3 data rows assert len(ctx["body"][0]) == 4 # index + 2 data cols + trimming col def test_render_trimming_mi(): midx = MultiIndex.from_product([[1, 2], [1, 2, 3]]) df = DataFrame(np.arange(36).reshape(6, 6), columns=midx, index=midx) with pd.option_context("styler.render.max_elements", 4): ctx = df.style._translate(True, True) assert len(ctx["body"][0]) == 5 # 2 indexes + 2 data cols + trimming row assert {"attributes": 'rowspan="2"'}.items() <= ctx["body"][0][0].items() assert {"class": "data row0 col_trim"}.items() <= ctx["body"][0][4].items() assert {"class": "data row_trim col_trim"}.items() <= ctx["body"][2][4].items() assert len(ctx["body"]) == 3 # 2 data rows + trimming row assert len(ctx["head"][0]) == 5 # 2 indexes + 2 column headers + trimming col assert {"attributes": 'colspan="2"'}.items() <= ctx["head"][0][2].items() def test_render_empty_mi(): # GH 43305 df = DataFrame(index=MultiIndex.from_product([["A"], [0, 1]], names=[None, "one"])) expected = dedent( """\ > <thead> <tr> <th class="index_name level0" >&nbsp;</th> <th class="index_name level1" >one</th> </tr> </thead> """ ) assert expected in df.style.to_html() @pytest.mark.parametrize("comprehensive", [True, False]) @pytest.mark.parametrize("render", [True, False]) @pytest.mark.parametrize("deepcopy", [True, False]) def test_copy(comprehensive, render, deepcopy, mi_styler, mi_styler_comp): styler = mi_styler_comp if comprehensive else mi_styler styler.uuid_len = 5 s2 = copy.deepcopy(styler) if deepcopy else copy.copy(styler) # make copy and check assert s2 is not styler if render: styler.to_html() excl = [ "na_rep", # deprecated "precision", # deprecated "cellstyle_map", # render time vars.. "cellstyle_map_columns", "cellstyle_map_index", "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] if not deepcopy: # check memory locations are equal for all included attributes for attr in [a for a in styler.__dict__ if (not callable(a) and a not in excl)]: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: # check memory locations are different for nested or mutable vars shallow = [ "data", "columns", "index", "uuid_len", "uuid", "caption", "cell_ids", "hide_index_", "hide_columns_", "hide_index_names", "hide_column_names", "table_attributes", ] for attr in shallow: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) for attr in [ a for a in styler.__dict__ if (not callable(a) and a not in excl and a not in shallow) ]: if getattr(s2, attr) is None: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: assert id(getattr(s2, attr)) != id(getattr(styler, attr)) def test_clear(mi_styler_comp): # NOTE: if this test fails for new features then 'mi_styler_comp' should be updated # to ensure proper testing of the 'copy', 'clear', 'export' methods with new feature # GH 40675 styler = mi_styler_comp styler._compute() # execute applied methods clean_copy = Styler(styler.data, uuid=styler.uuid) excl = [ "data", "index", "columns", "uuid", "uuid_len", # uuid is set to be the same on styler and clean_copy "cell_ids", "cellstyle_map", # execution time only "cellstyle_map_columns", # execution time only "cellstyle_map_index", # execution time only "precision", # deprecated "na_rep", # deprecated "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] # tests vars are not same vals on obj and clean copy before clear (except for excl) for attr in [a for a in styler.__dict__ if not (callable(a) or a in excl)]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert not (all(res) if (hasattr(res, "__iter__") and len(res) > 0) else res) # test vars have same vales on obj and clean copy after clearing styler.clear() for attr in [a for a in styler.__dict__ if not (callable(a))]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert all(res) if hasattr(res, "__iter__") else res def test_export(mi_styler_comp, mi_styler): exp_attrs = [ "_todo", "hide_index_", "hide_index_names", "hide_columns_", "hide_column_names", "table_attributes", "table_styles", "css", ] for attr in exp_attrs: check = getattr(mi_styler, attr) == getattr(mi_styler_comp, attr) assert not ( all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check ) export = mi_styler_comp.export() used = mi_styler.use(export) for attr in exp_attrs: check = getattr(used, attr) == getattr(mi_styler_comp, attr) assert all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check used.to_html() def test_hide_raises(mi_styler): msg = "`subset` and `level` cannot be passed simultaneously" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", subset="something", level="something else") msg = "`level` must be of type `int`, `str` or list of such" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", level={"bad": 1, "type": 2}) @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) def test_hide_index_level(mi_styler, level): mi_styler.index.names, mi_styler.columns.names = ["zero", "one"], ["zero", "one"] ctx = mi_styler.hide(axis="index", level=level)._translate(False, True) assert len(ctx["head"][0]) == 3 assert len(ctx["head"][1]) == 3 assert len(ctx["head"][2]) == 4 assert ctx["head"][2][0]["is_visible"] assert not ctx["head"][2][1]["is_visible"] assert ctx["body"][0][0]["is_visible"] assert not ctx["body"][0][1]["is_visible"] assert ctx["body"][1][0]["is_visible"] assert not ctx["body"][1][1]["is_visible"] @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) @pytest.mark.parametrize("names", [True, False]) def test_hide_columns_level(mi_styler, level, names): mi_styler.columns.names = ["zero", "one"] if names: mi_styler.index.names = ["zero", "one"] ctx = mi_styler.hide(axis="columns", level=level)._translate(True, False) assert len(ctx["head"]) == (2 if names else 1) @pytest.mark.parametrize("method", ["applymap", "apply"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header(method, axis): # GH 41893 df = DataFrame({"A": [0, 0], "B": [1, 1]}, index=["C", "D"]) func = { "apply": lambda s: ["attr: val" if ("A" in v or "C" in v) else "" for v in s], "applymap": lambda v: "attr: val" if ("A" in v or "C" in v) else "", } # test execution added to todo result = getattr(df.style, f"{method}_index")(func[method], axis=axis) assert len(result._todo) == 1 assert len(getattr(result, f"ctx_{axis}")) == 0 # test ctx object on compute result._compute() expected = { (0, 0): [("attr", "val")], } assert getattr(result, f"ctx_{axis}") == expected @pytest.mark.parametrize("method", ["apply", "applymap"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header_mi(mi_styler, method, axis): # GH 41893 func = { "apply": lambda s: ["attr: val;" if "b" in v else "" for v in s], "applymap": lambda v: "attr: val" if "b" in v else "", } result = getattr(mi_styler, f"{method}_index")(func[method], axis=axis)._compute() expected = {(1, 1): [("attr", "val")]} assert getattr(result, f"ctx_{axis}") == expected def test_apply_map_header_raises(mi_styler): # GH 41893 with pytest.raises(ValueError, match="No axis named bad for object type DataFrame"): mi_styler.applymap_index(lambda v: "attr: val;", axis="bad")._compute() class TestStyler: def setup_method(self, method): np.random.seed(24) self.s = DataFrame({"A": np.random.permutation(range(6))}) self.df = DataFrame({"A": [0, 1], "B": np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo="bar"): return pd.Series(f"color: {foo}", index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = DataFrame({"A": ["color: red", "color: blue"]}) self.dataframes = [ self.df, DataFrame( {"f": [1.0, 2.0], "o": ["a", "b"], "c": pd.Categorical(["a", "b"])} ), ] self.blank_value = "&nbsp;" def test_init_non_pandas(self): msg = "``data`` must be a Series or DataFrame" with pytest.raises(TypeError, match=msg): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) assert result.data.ndim == 2 def test_repr_html_ok(self): self.styler._repr_html_() def test_repr_html_mathjax(self): # gh-19824 / 41395 assert "tex2jax_ignore" not in self.styler._repr_html_() with pd.option_context("styler.html.mathjax", False): assert "tex2jax_ignore" in self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): [("color", "red")], (1, 0): [("color", "blue")]} assert self.styler.ctx == expected def test_update_ctx_flatten_multi_and_trailing_semi(self): attrs = DataFrame({"A": ["color: red; foo: bar", "color:blue ; foo: baz;"]}) self.styler._update_ctx(attrs) expected = { (0, 0): [("color", "red"), ("foo", "bar")], (1, 0): [("color", "blue"), ("foo", "baz")], } assert self.styler.ctx == expected def test_render(self): df = DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_multiple_render(self): # GH 39396 s = Styler(self.df, uuid_len=0).applymap(lambda x: "color: red;", subset=["A"]) s.to_html() # do 2 renders to ensure css styles not duplicated assert ( '<style type="text/css">\n#T__row0_col0, #T__row1_col0 {\n' " color: red;\n}\n</style>" in s.to_html() ) def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.to_html() # An index but no columns DataFrame(columns=["a"]).style.to_html() # A column but no index DataFrame(index=["a"]).style.to_html() # No IndexError raised? def test_render_double(self): df = DataFrame({"A": [0, 1]}) style = lambda x: pd.Series( ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name ) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_set_properties(self): df = DataFrame({"A": [0, 1]}) result = df.style.set_properties(color="white", size="10px")._compute().ctx # order is deterministic v = [("color", "white"), ("size", "10px")] expected = {(0, 0): v, (1, 0): v} assert result.keys() == expected.keys() for v1, v2 in zip(result.values(), expected.values()): assert sorted(v1) == sorted(v2) def test_set_properties_subset(self): df = DataFrame({"A": [0, 1]}) result = ( df.style.set_properties(subset=pd.IndexSlice[0, "A"], color="white") ._compute() .ctx ) expected = {(0, 0): [("color", "white")]} assert result == expected def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.style._translate(True, True) assert len(result["head"]) == 1 expected = { "class": "blank level0", "type": "th", "value": self.blank_value, "is_visible": True, "display_value": self.blank_value, } assert expected.items() <= result["head"][0][0].items() def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index("A").style._translate(True, True) expected = { "class": "index_name level0", "type": "th", "value": "A", "is_visible": True, "display_value": "A", } assert expected.items() <= result["head"][1][0].items() def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df =
DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
pandas.DataFrame
from __future__ import print_function from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np import torch.utils.data as utils import pandas as pd from sklearn.model_selection import train_test_split as train_test_split from skmultilearn.problem_transform import BinaryRelevance from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC, SVC from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputRegressor from sklearn.multioutput import MultiOutputClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import SGDClassifier, RidgeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.multioutput import ClassifierChain mdl = [ (MultiOutputClassifier(LinearDiscriminantAnalysis(solver='svd')), "MultiOutputClassifier(LinearDiscriminantAnalysis(solver='svd'))"), # 0.3xx (MultiOutputClassifier(LinearDiscriminantAnalysis(solver='lsqr')), "MultiOutputClassifier(LinearDiscriminantAnalysis(solver='lsqr'))"), #0.3xx (MultiOutputClassifier(LinearDiscriminantAnalysis(solver='eigen')), "MultiOutputClassifier(LinearDiscriminantAnalysis(solver='eigen'))"), # 0.3xx MultiOutputClassifier(SVC()), # 0.4005246444843297 MultiOutputClassifier(AdaBoostClassifier(DecisionTreeClassifier(max_depth=5), n_estimators=10, learning_rate=2)), MultiOutputClassifier(AdaBoostClassifier(RandomForestClassifier())), # 0.40204335220212617 MultiOutputClassifier(GaussianNB()), ClassifierChain(GaussianNB()), #0.0009664503658704957 #ClassifierChain(SGDClassifier(loss='perceptron')), ClassifierChain(KNeighborsClassifier()), ClassifierChain(DecisionTreeClassifier(max_depth=10)), #ACC: 0.3296976390998205, mean(loss**2) = 0.00177 ClassifierChain(AdaBoostClassifier(DecisionTreeClassifier(max_depth=5))) ] def load_data(): Train_featues = pd.read_csv('../Data/train_features.csv') Train_targets_scored = pd.read_csv("../Data/train_targets_scored.csv") Train_targets_nonscored = pd.read_csv("../Data/train_targets_nonscored.csv") Test_features = pd.read_csv("../Data/test_features.csv") #return other files return Train_featues, Train_targets_scored , Test_features def preprocess(Data): def add_dummies(df, col): hot_vector =
pd.get_dummies(df[col])
pandas.get_dummies
import pandas as pd import dash from dash import html, dcc import dash_bootstrap_components as dbc from dash_extensions.javascript import Namespace from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate from dash_tabulator import DashTabulator from . import tools as T ns = Namespace("myNamespace", "tabulator") tabulator_options = { "groupBy": "Label", "selectable": True, "headerFilterLiveFilterDelay": 3000, "layout": "fitDataFill", "height": "900px", } downloadButtonType = { "css": "btn btn-primary", "text": "Export", "type": "csv", "filename": "Metadata", } clearFilterButtonType = {"css": "btn btn-outline-dark", "text": "Clear Filters"} meta_table = html.Div( id="meta-table-container", style={"minHeight": 100, "margin": "0%"}, children=[ DashTabulator( id="meta-table", columns=T.gen_tabulator_columns( add_ms_file_col=True, add_color_col=True, add_peakopt_col=True, add_ms_file_active_col=True, ), options=tabulator_options, downloadButtonType=downloadButtonType, clearFilterButtonType=clearFilterButtonType, ) ], ) options = [ {"label": "Batch", "value": "Batch"}, {"label": "Label", "value": "Label"}, {"label": "Color", "value": "Color"}, {"label": "Type", "value": "Type"}, {"label": "Concentration", "value": "Concentration"}, ] _label = "Metadata" _layout = html.Div( [ html.H3("Metadata"), dcc.Upload( id="meta-upload", children=html.Div(["Drag and Drop or ", html.A("Select Files")]), style={ "width": "100%", "height": "60px", "lineHeight": "60px", "borderWidth": "1px", "borderStyle": "dashed", "borderRadius": "5px", "textAlign": "center", "margin": "10px", }, # Allow multiple files to be uploaded multiple=True, ), dcc.Markdown("---"), dcc.Markdown("##### Actions"), dbc.Row( [ dcc.Dropdown( id="meta-action", options=[ {"label": "Set", "value": "Set"}, {"label": "Create column", "value": "create_column"}, {"label": "Delete column", "value": "delete_column"}, # {'label': 'Delete selected files', 'value': 'delete_ms_files'}, ], value="Set", style={"width": "150px"}, ), dcc.Dropdown( id="meta-column", options=options, value=None, style={"width": "150px"}, ), dcc.Input(id="meta-input"), dcc.Dropdown( id="meta-input-bool", options=[ {"value": "True", "label": "True"}, {"value": "False", "label": "False"}, ], value=None, ), html.Button("Apply", id="meta-apply"), ], style={"marginLeft": "5px"}, ), dcc.Markdown("---"), dcc.Loading(meta_table), html.Div(id="meta-upload-output", style={"visibility": "hidden"}), html.Div(id="meta-apply-output", style={"visibility": "hidden"}), ] ) _outputs = html.Div( id="meta-outputs", children=[ html.Div(id={"index": "meta-apply-output", "type": "output"}), html.Div(id={"index": "meta-table-saved-on-edit-output", "type": "output"}), ], ) def layout(): return _layout def callbacks(app, fsc, cache): @app.callback( Output("meta-table", "data"), Output("meta-table", "columns"), Output("meta-column", "options"), Input("tab", "value"), Input("meta-upload-output", "children"), Input("meta-apply-output", "children"), State("wdir", "children"), ) def meta_load_table(tab, upload_trigger, apply_trigger, wdir): if tab != "Metadata": raise PreventUpdate df = T.get_metadata(wdir) columns = df.columns.to_list() options = [{"label": col, "value": col} for col in columns if col != "index"] return ( df.to_dict("records"), T.gen_tabulator_columns( df.columns, add_ms_file_col=True, add_color_col=True, add_peakopt_col=True, add_ms_file_active_col=True, ), options, ) @app.callback( Output("meta-upload-output", "children"), Input("meta-upload", "contents"), Input("meta-upload", "filename"), State("wdir", "children"), ) def meta_upload(contents, filename, wdir): if contents is None: raise PreventUpdate df = T.get_metadata(wdir) contents = T.parse_table_content(contents[0], filename[0]) df = T.merge_metadata(df, contents) if "index" not in df.columns: df = df.reset_index() T.write_metadata(df, wdir) return "Table updated" @app.callback( Output("meta-table", "downloadButtonType"), Input("tab", "value"), State("active-workspace", "children"), ) def update_table_export_fn(tab, ws_name): fn = f"{T.today()}-{ws_name}_MINT-metadata" downloadButtonType = { "css": "btn btn-primary", "text": "Export", "type": "csv", "filename": fn, } return downloadButtonType @app.callback( Output({"index": "meta-apply-output", "type": "output"}, "children"), Output("meta-apply-output", "children"), Input("meta-apply", "n_clicks"), State("meta-table", "data"), State("meta-table", "multiRowsClicked"), State("meta-table", "dataFiltered"), State("meta-action", "value"), State("meta-column", "value"), State("meta-input", "value"), State("meta-input-bool", "value"), State("wdir", "children"), ) def meta_apply( n_clicks, data, selected_rows, data_filtered, action, column, value, value_bool, wdir, ): """ This callback saves applies the column actions and saves the table to the harddrive. """ if (n_clicks is None) or (data is None) or (len(data) == 0): raise PreventUpdate if action == "Set" and column == "PeakOpt": value = value_bool df = pd.DataFrame(data) if "index" in df.columns: df = df.set_index("index") else: df = df.reset_index() prop_id = dash.callback_context.triggered[0]["prop_id"] if prop_id == "meta-apply.n_clicks": if action == "Set": filtered_rows = [r for r in data_filtered["rows"] if r is not None] filtered_ndx = [r["index"] for r in filtered_rows] if selected_rows == []: # If nothing is selected apply to all visible rows ndxs = filtered_ndx else: # If something is selected only apply to selected rows ndxs = [ r["index"] for r in selected_rows if r["index"] in filtered_ndx ] if len(ndxs) == 0 or column is None: # If no column is selected just save the table. T.write_metadata(df, wdir) return dbc.Alert("Metadata saved.", color="info"), "Applied" df.loc[ndxs, column] = value elif action == "create_column": df[value] = "" elif action == "delete_column": del df[column] T.write_metadata(df, wdir) return dbc.Alert("Metadata saved.", color="info"), "Applied" @app.callback( Output( {"index": "meta-table-saved-on-edit-output", "type": "output"}, "children" ), Input("meta-table", "cellEdited"), State("meta-table", "data"), State("wdir", "children"), ) def save_table_on_edit(cell_edited, data, wdir): """ This callback saves the table on cell edits. This saves some bandwidth. """ if data is None or cell_edited is None: raise PreventUpdate df =
pd.DataFrame(data)
pandas.DataFrame
import os import pandas import sqlalchemy as sa import json import wx, wx.adv, wx.lib from datetime import datetime from wx.lib.wordwrap import wordwrap from threading import Thread from pydispatch import dispatcher from openpyxl import load_workbook CLOSE_DIALOG_SIGNAL = 'close-notification-dialog' from components.datatable import DataGrid from components.fieldcreation import (FieldCreateDialog, OrganismFieldFormDialog, DrugRegFormDialog, IndexFieldList, HeatmapFieldList, DateRangeFieldList) APPDATA_DIR = 'appdata' DRUG_REGISTRY_FILE = 'drugs.json' basepath = os.path.dirname(os.path.abspath(__file__)) drug_dict = {} drug_df = None def load_drug_registry(): global drug_dict global drug_df if DRUG_REGISTRY_FILE: try: drug_df = pandas.read_json(os.path.join(APPDATA_DIR, DRUG_REGISTRY_FILE)) except: return pandas.DataFrame(columns=['drug', 'abbreviation', 'group']) else: drug_dict = {} if drug_df.empty: drug_df = pandas.DataFrame(columns=['drug', 'abbreviation', 'group']) else: drug_df = drug_df.sort_values(['group']) for idx, row in drug_df.iterrows(): drug = row if row['abbreviation']: abbrs = [a.strip().lower() for a in row['abbreviation'].split(',')] else: abbrs = [] for ab in abbrs: drug_dict[ab] = drug class FieldAttribute(): def __init__(self): self.data = {} self.columns = [] self.organisms = {} def update_from_json(self, json_data): if not self.columns: return False json_data = json.loads(json_data) profile_cols = json_data['columns'] profile_cols_no_agg = set([col for col in profile_cols if not col.startswith('@')]) if profile_cols_no_agg.difference(self.columns): return False else: self.columns = profile_cols self.data = json_data['data'] self.organisms = json_data['organisms'] return True def update_from_json_for_database(self, json_data): """ Update columns with data from the saved profile :param json_data: :return: Boolean """ # Data must be loaded first if not self.columns: return False json_data = json.loads(json_data) profile_cols = json_data['columns'] # columns must match profile_cols_no_agg = [col for col in profile_cols if not col.startswith('@')] assert len(set(profile_cols_no_agg).difference(set(self.columns))) == 0 self.columns = profile_cols self.data = json_data['data'] self.organisms = json_data['organisms'] return True def update_from_dataframe(self, data_frame): self.columns = [] for n, column in enumerate(data_frame.columns): self.columns.append(column) self.data[column] = {'name': column, 'alias': column, 'organism': False, 'key': False, 'drug': True if column.lower() in drug_dict else False, 'date': False, 'type': str(data_frame[column].dtype), 'keep': True, 'desc': "", } def values(self): return self.data.values() def get_column(self, colname): try: return self.data[colname] except KeyError as e: raise AttributeError(e) def iget_column(self, index): try: return self.columns[index] except IndexError: return None def get_col_index(self, colname): try: return self.columns.index(colname) except ValueError: return -1 def is_col_aggregate(self, colname): if colname in self.data: if self.data[colname].get('aggregate'): return True else: return False else: raise KeyError def update_organisms(self, df): self.organisms = {} for idx, row in df.iterrows(): self.organisms[row[0]] = {'genus': row[1], 'species': row[2]} def browse(filetype='MLAB'): file_meta = { 'MLAB': { 'wildcard': "Excel files (*.xls;*xlsx)|*.xls;*.xlsx" }, 'CSV': { 'wildcard': "CSV files (*.csv)|*.csv" } } with wx.FileDialog(None, "Open data file", wildcard=file_meta[filetype]['wildcard'], style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) \ as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return return fileDialog.GetPath() def show_sheets(parent, worksheets): dlg = wx.SingleChoiceDialog(None, "Select a worksheet", "Worksheets", worksheets) if dlg.ShowModal() == wx.ID_OK: return dlg.GetStringSelection() dlg.Destroy() class NotificationBox(wx.Dialog): def __init__(self, parent, caption, message): super(NotificationBox, self).__init__(parent=parent, title=caption, size=(300, 90), style=wx.CAPTION) self.label = wx.StaticText(self, label=message) vsizer = wx.BoxSizer(wx.VERTICAL) vsizer.Add(self.label, 1, wx.ALL | wx.EXPAND | wx.CENTER, 20) self.SetSizer(vsizer) self.Center(wx.HORIZONTAL) dispatcher.connect(self.endModal, signal=CLOSE_DIALOG_SIGNAL, sender=dispatcher.Any) def updateLabel(self, msg): self.label.SetLabelText(msg) def endModal(self, rc): # Not sure why sometimes the dialog is not modal, # but failing to check it causes an error. if self.IsModal(): self.EndModal(rc) else: return rc class MainWindow(wx.Frame): def __init__(self, parent): super(MainWindow, self).__init__(parent) scr_width, scr_height = wx.DisplaySize() self.SetIcon(wx.Icon(os.path.join(basepath, 'icons/appicon.ico'))) self.version_no = '2019.1.8' self.description = 'Faculty of Medical Technology, Mahidol University' self.SetTitle('Mivisor Version {}'.format(self.version_no)) self.SetSize((int(scr_width * 0.75), int(scr_height * 0.85))) self.Center() self.current_column = None self.data_filepath = None self.profile_filepath = None self.db_filepath = None self.current_session_id = None self.dbengine = None self.data_loaded = False self.field_attr = FieldAttribute() df = pandas.DataFrame({'Name': ['Mivisor'], 'Version': [self.version_no], 'Released': ['2019-08-04'], 'Brought to you by': [self.description], 'Contact': ['<EMAIL>']}) menubar = wx.MenuBar() fileMenu = wx.Menu() dataMenu = wx.Menu() fieldMenu = wx.Menu() exportMenu = wx.Menu() antibiogramMenu = wx.Menu() registryMenu = wx.Menu() analyzeMenu = wx.Menu() aboutMenu = wx.Menu() databaseMenu = wx.Menu() imp = wx.Menu() mlabItem = imp.Append(wx.ID_ANY, 'Excel (MLAB)') # csvItem = imp.Append(wx.ID_ANY, 'CSV') # csvItem.Enable(False) fileMenu.AppendSeparator() fileMenu.Append(wx.ID_ANY, 'I&mport', imp) fileMenu.AppendSeparator() self.loadProfileItem = fileMenu.Append(wx.ID_ANY, 'Load Profile') self.loadProfileItem.Enable(False) self.saveProfileItem = fileMenu.Append(wx.ID_ANY, 'Save Profile') self.saveProfileItem.Enable(False) exitItem = fileMenu.Append(wx.ID_EXIT, 'Quit', 'Quit Application') self.createFieldItem = fieldMenu.Append(wx.ID_ANY, 'Matching') self.createFieldItem.Enable(False) dataMenu.Append(wx.ID_ANY, 'New field', fieldMenu) self.saveToDatabaseMenuItem = dataMenu.Append(wx.ID_ANY, 'Save to database') self.saveToDatabaseMenuItem.Enable(False) self.appendToDatabaseMenuItem = dataMenu.Append(wx.ID_ANY, 'Append to database') self.appendToDatabaseMenuItem.Enable(False) dataMenu.AppendSeparator() self.organismItem = dataMenu.Append(wx.ID_ANY, 'Organism') self.organismItem.Enable(False) dataMenu.AppendSeparator() self.exportToExcelMenuItem = exportMenu.Append(wx.ID_ANY, 'To Excel') self.saveToFlatDbMenuItem = exportMenu.Append(wx.ID_ANY, 'Create flat database') self.addToFlatDbMenuItem = exportMenu.Append(wx.ID_ANY, 'Add to flat database') self.exportToExcelMenuItem.Enable(False) self.saveToFlatDbMenuItem.Enable(False) self.addToFlatDbMenuItem.Enable(False) dataMenu.Append(wx.ID_ANY, 'Export flat table', exportMenu) drugRegMenuItem = registryMenu.Append(wx.ID_ANY, 'Drugs') self.biogramDbMenuItem = antibiogramMenu.Append(wx.ID_ANY, 'Create summary report') self.biogramDbMenuItem.Enable(True) self.biogramHeatmapMenuItem = antibiogramMenu.Append(wx.ID_ANY, 'Create heatmap plot') self.biogramHeatmapMenuItem.Enable(True) analyzeMenu.Append(wx.ID_ANY, 'Antibiogram', antibiogramMenu) aboutMenuItem = aboutMenu.Append(wx.ID_ANY, "About the program") self.connectDbMenuItem = databaseMenu.Append(wx.ID_ANY, 'Connect') self.disconnectDbMenuItem = databaseMenu.Append(wx.ID_ANY, 'Disconnect') self.Bind(wx.EVT_MENU, self.onConnectDbMenuItemClick, self.connectDbMenuItem) self.Bind(wx.EVT_MENU, self.onDisconnectDbMenuItemClick, self.disconnectDbMenuItem) self.Bind(wx.EVT_MENU, lambda x: self.onSaveToDatabaseMenuItemClick(x, action='replace'), self.saveToDatabaseMenuItem) self.Bind(wx.EVT_MENU, lambda x: self.onSaveToDatabaseMenuItemClick(x, action='append'), self.appendToDatabaseMenuItem) menubar.Append(fileMenu, '&File') menubar.Append(dataMenu, '&Data') menubar.Append(databaseMenu, 'Database') menubar.Append(analyzeMenu, 'Analy&ze') menubar.Append(registryMenu, '&Registry') menubar.Append(aboutMenu, '&About') self.SetMenuBar(menubar) accel_tbl = wx.AcceleratorTable([ (wx.ACCEL_CTRL, ord('M'), mlabItem.GetId()), ]) self.SetAcceleratorTable(accel_tbl) import sys self.Bind(wx.EVT_CLOSE, lambda x: sys.exit()) self.Bind(wx.EVT_MENU, self.on_about_menu_click, aboutMenuItem) self.Bind(wx.EVT_MENU, self.OnQuit, exitItem) self.Bind(wx.EVT_MENU, self.onLoadMLABItemClick, mlabItem) # self.Bind(wx.EVT_MENU, self.OnLoadCSV, csvItem) self.Bind(wx.EVT_MENU, self.OnCreateField, self.createFieldItem) self.Bind(wx.EVT_MENU, self.OnSaveProfile, self.saveProfileItem) self.Bind(wx.EVT_MENU, self.OnLoadProfile, self.loadProfileItem) self.Bind(wx.EVT_MENU, self.OnOrganismClick, self.organismItem) # TODO: rename OnExportRawData method self.Bind(wx.EVT_MENU, self.OnExportRawData, self.exportToExcelMenuItem) self.Bind(wx.EVT_MENU, lambda x: self.onSaveToFlatDbMenuItemClick(x, action='replace'), self.saveToFlatDbMenuItem) self.Bind(wx.EVT_MENU, lambda x: self.onSaveToFlatDbMenuItemClick(x, action='append'), self.addToFlatDbMenuItem) self.Bind(wx.EVT_MENU, self.on_drug_reg_menu_click, drugRegMenuItem) self.Bind(wx.EVT_MENU, self.onBiogramDbMenuItemClick, self.biogramDbMenuItem) self.Bind(wx.EVT_MENU, self.onBiogramHeatmapMenuItemClick, self.biogramHeatmapMenuItem) # init panels self.info_panel = wx.Panel(self, wx.ID_ANY) self.preview_panel = wx.Panel(self, wx.ID_ANY) self.summary_panel = wx.Panel(self, wx.ID_ANY) self.attribute_panel = wx.Panel(self, wx.ID_ANY) self.edit_panel = wx.Panel(self, wx.ID_ANY) # init sizers self.info_sizer = wx.StaticBoxSizer(wx.VERTICAL, self.info_panel, "Session Information") self.summary_sizer = wx.StaticBoxSizer(wx.VERTICAL, self.summary_panel, "Field Summary") self.field_attr_sizer = wx.StaticBoxSizer(wx.VERTICAL, self.attribute_panel, "Field Attributes") edit_box_sizer = wx.StaticBoxSizer(wx.HORIZONTAL, self.edit_panel, "Edit") self.data_grid_box_sizer = wx.StaticBoxSizer(wx.VERTICAL, self.preview_panel, "Data Preview") self.profile_lbl = wx.StaticText(self.info_panel, -1, "Profile filepath: {}".format(self.profile_filepath)) self.datafile_lbl = wx.StaticText(self.info_panel, -1, "Data filepath: {}".format(self.data_filepath)) self.dbfile_lbl = wx.StaticText(self.info_panel, -1, "Database filepath: {}".format(self.db_filepath)) self.info_sizer.Add(self.datafile_lbl) self.info_sizer.Add(self.profile_lbl) self.info_sizer.Add(self.dbfile_lbl) self.data_grid = DataGrid(self.preview_panel) self.data_grid.set_table(df) self.data_grid.AutoSize() self.data_grid_box_sizer.Add(self.data_grid, 1, flag=wx.EXPAND | wx.ALL) self.key_chkbox = wx.CheckBox(self.edit_panel, -1, label="Key", name="key") self.drug_chkbox = wx.CheckBox(self.edit_panel, -1, label="Drug", name="drug") self.organism_chkbox = wx.CheckBox(self.edit_panel, -1, label="Organism", name="organism") self.keep_chkbox = wx.CheckBox(self.edit_panel, -1, label="Included", name="keep") self.date_chkbox = wx.CheckBox(self.edit_panel, -1, label="Date", name="date") self.field_edit_checkboxes = [self.key_chkbox, self.drug_chkbox, self.keep_chkbox, self.organism_chkbox, self.date_chkbox] checkbox_sizer = wx.FlexGridSizer(cols=len(self.field_edit_checkboxes), hgap=4, vgap=0) for chkbox in self.field_edit_checkboxes: checkbox_sizer.Add(chkbox) chkbox.Bind(wx.EVT_CHECKBOX, self.on_edit_save_button_clicked) checkbox_label = wx.StaticText(self.edit_panel, -1, "Marked as") self.field_desc = wx.TextCtrl(self.edit_panel, -1, "", style=wx.TE_MULTILINE, size=(200, 100)) self.field_alias = wx.TextCtrl(self.edit_panel, -1, "") self.edit_save_button = wx.Button(self.edit_panel, -1, "Update") self.edit_save_button.Bind(wx.EVT_BUTTON, self.on_edit_save_button_clicked) alias_label = wx.StaticText(self.edit_panel, -1, "Alias") desc_label = wx.StaticText(self.edit_panel, -1, "Description") form_sizer = wx.FlexGridSizer(cols=2, hgap=2, vgap=2) form_sizer.AddMany([checkbox_label, checkbox_sizer]) form_sizer.AddMany([desc_label, self.field_desc]) form_sizer.AddMany([alias_label, self.field_alias]) form_sizer.AddMany([wx.StaticText(self.edit_panel, -1, ""), self.edit_save_button]) edit_box_sizer.Add(form_sizer, 1, flag=wx.ALIGN_LEFT) self.summary_table = wx.ListCtrl(self.summary_panel, style=wx.LC_REPORT) self.summary_table.InsertColumn(0, 'Field') self.summary_table.InsertColumn(1, 'Value') self.summary_sizer.Add(self.summary_table, 1, wx.EXPAND) self.field_attr_list = wx.ListCtrl(self.attribute_panel, style=wx.LC_REPORT) self.add_field_attr_list_column() self.field_attr_sizer.Add(self.field_attr_list, 1, wx.EXPAND) self.Bind(wx.EVT_LIST_ITEM_SELECTED, self.onFieldAttrListItemSelected) self.preview_panel.SetSizer(self.data_grid_box_sizer) self.attribute_panel.SetSizer(self.field_attr_sizer) self.summary_panel.SetSizer(self.summary_sizer) self.edit_panel.SetSizer(edit_box_sizer) self.info_panel.SetSizer(self.info_sizer) self.vbox = wx.BoxSizer(wx.VERTICAL) self.hbox = wx.BoxSizer(wx.HORIZONTAL) self.hbox.Add(self.edit_panel, 2, flag=wx.ALL | wx.EXPAND) self.hbox.Add(self.summary_panel, 1, flag=wx.ALL | wx.EXPAND) self.vbox.Add(self.info_panel, 0, flag=wx.EXPAND | wx.ALL) self.vbox.Add(self.preview_panel, 1, flag=wx.EXPAND | wx.ALL) self.vbox.Add(self.attribute_panel, flag=wx.ALL | wx.EXPAND) self.vbox.Add(self.hbox, flag=wx.ALL | wx.EXPAND | wx.ALL) self.SetSizer(self.vbox) load_drug_registry() def OnQuit(self, e): self.Close() def OnOrganismClick(self, event): columns = [] sel_col = None for c in self.field_attr.columns: col = self.field_attr.get_column(c) if col['keep'] and col['organism']: columns.append(col['alias']) if not columns: dlg = wx.MessageDialog(None, "No organism field specified.", "Please select a field for organism.", wx.OK) ret = dlg.ShowModal() if ret == wx.ID_OK: return dlg = wx.SingleChoiceDialog(None, "Select a column", "Kept columns", columns) if dlg.ShowModal() == wx.ID_OK: sel_col = dlg.GetStringSelection() dlg.Destroy() if sel_col: sel_col_index = self.field_attr.get_col_index(sel_col) column = self.field_attr.get_column(sel_col) values = self.data_grid.table.df[sel_col].unique() fc = OrganismFieldFormDialog() if not self.field_attr.organisms: _df = pandas.DataFrame({column['alias']: values, 'genus': None, 'species': None}) else: orgs = [] genuses = [] species = [] for org in self.field_attr.organisms: orgs.append(org) genuses.append(self.field_attr.organisms[org]['genus']) species.append(self.field_attr.organisms[org]['species']) _df = pandas.DataFrame({column['alias']: orgs, 'genus': genuses, 'species': species}) fc.grid.set_table(_df) resp = fc.ShowModal() self.field_attr.update_organisms(fc.grid.table.df) def load_profile_from_filepath(self, df): try: fp = open(self.profile_filepath, 'r') except IOError: wx.MessageDialog(self, 'Cannot read data from {}. Please double check the file path.'.format( self.profile_filepath), 'The profile file cannot be loaded', wx.ICON_ERROR).ShowModal() return json_data = fp.read() fp.close() if not self.field_attr.update_from_json_for_database(json_data): wx.MessageDialog(self, 'Fields in the profile and the data do not match.', 'The profile cannot be loaded', wx.ICON_INFORMATION).ShowModal() return for c in self.field_attr.columns: if self.field_attr.is_col_aggregate(c): column = self.field_attr.get_column(c) column_index = self.field_attr.get_col_index(c) if c not in df.columns: d = [] from_col = column['aggregate']['from'] dict_ = column['aggregate']['data'] for value in df[from_col]: d.append(dict_.get(value, value)) df.insert(column_index, c, value=d) return df def OnLoadProfile(self, event): if not self.data_filepath: dlg = wx.MessageDialog(None, "No data for this session.", "Please provide data for this session first.", wx.OK | wx.CENTER) ret = dlg.ShowModal() return wildcard = "JSON (*.json)|*.json" _profile_pth = self.data_filepath or os.getcwd() with wx.FileDialog(None, "Choose a file", _profile_pth, "", wildcard, wx.FC_OPEN) as file_dlg: if file_dlg.ShowModal() == wx.ID_CANCEL: return try: fp = open(file_dlg.GetPath(), 'r') json_data = fp.read() fp.close() if not self.field_attr.update_from_json(json_data): wx.MessageDialog(self, 'Fields in the profile and the data do not match.', 'The profile cannot be loaded', wx.ICON_INFORMATION).ShowModal() return for c in self.field_attr.columns: if self.field_attr.is_col_aggregate(c): column = self.field_attr.get_column(c) column_index = self.field_attr.get_col_index(c) if c not in self.data_grid.table.df.columns: d = [] from_col = column['aggregate']['from'] dict_ = column['aggregate']['data'] for value in self.data_grid.table.df[from_col]: d.append(dict_.get(value, value)) self.data_grid.table.df.insert(column_index, c, value=d) self.data_grid.table.InsertCols(column_index, 1) self.refresh_field_attr_list_column() self.update_edit_panel(self.field_attr.iget_column(0)) self.profile_filepath = file_dlg.GetPath() self.profile_lbl.SetLabelText("Profile filepath: {}".format(self.profile_filepath)) except IOError: print('Cannot load data from file.') def OnSaveProfile(self, event): wildcard = "JSON (*.json)|*.json" with wx.FileDialog(None, "Choose a file to save a profile.", os.getcwd(), "", wildcard, wx.FC_SAVE) as file_dlg: if file_dlg.ShowModal() == wx.ID_CANCEL: return try: fp = open(file_dlg.GetPath(), 'w') for col in self.field_attr.columns: column = self.field_attr.get_column(col) fp.write(json.dumps({'data': self.field_attr.data, 'columns': self.field_attr.columns, 'organisms': self.field_attr.organisms}, indent=2)) fp.close() self.profile_filepath = file_dlg.GetPath() self.profile_lbl.SetLabelText("Profile filepath: {}".format(self.profile_filepath)) except IOError: print('Cannot save data to file.') def load_datafile(self, filetype='MLAB'): filepath = browse(filetype) if filepath and filepath: try: worksheets = load_workbook(filepath).sheetnames except FileNotFoundError: wx.MessageDialog(self, 'Cannot download the data file.\nPlease check the file path again.', 'File Not Found!', wx.OK | wx.CENTER).ShowModal() else: if len(worksheets) > 1: sel_worksheet = show_sheets(self, worksheets) else: sel_worksheet = worksheets[0] bag = {'data': None, 'filepath': ''} def read_excel(): # TODO: need to handle an error df = pandas.read_excel(filepath, sheet_name=sel_worksheet) bag['data'] = df bag['filepath'] = filepath wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=0) thread = Thread(target=read_excel) thread.start() with NotificationBox(self, caption='Import Data', message='Reading from the Excel file...') as md: md.ShowModal() return bag['data'], bag['filepath'] else: wx.MessageDialog(self, 'File path is not valid!', 'Please check the file path.', wx.OK | wx.CENTER).ShowModal() return pandas.DataFrame(), '' def onLoadMLABItemClick(self, e): if self.data_loaded: dlg = wx.MessageDialog(None, "Click \"Yes\" to continue or click \"No\" to return to your session.", "Data in this current session will be discarded!", wx.YES_NO | wx.ICON_QUESTION) ret_ = dlg.ShowModal() if ret_ == wx.ID_NO: return self.profile_filepath = None self.db_filepath = None self.dbengine = None self.dbfile_lbl.SetLabelText('Database filepath:') self.profile_lbl.SetLabelText('Profile filepath:') df, filepath = self.load_datafile() if filepath: if df.empty: dlg = wx.MessageDialog(None, "Do you want to proceed?\nClick \"Yes\" to continue or \"No\" to cancel.", "Warning: dataset is empty.", wx.YES_NO | wx.ICON_QUESTION) ret_ = dlg.ShowModal() if ret_ == wx.ID_NO: return self.data_filepath = filepath self.datafile_lbl.SetLabelText("Data filepath: {}".format(self.data_filepath)) self.data_loaded = True self.data_grid_box_sizer.Remove(0) self.data_grid.Destroy() self.data_grid = DataGrid(self.preview_panel) self.data_grid.set_table(df) self.data_grid.AutoSizeColumns() self.data_grid_box_sizer.Add(self.data_grid, 1, flag=wx.EXPAND | wx.ALL) self.data_grid_box_sizer.Layout() # repaint the sizer self.field_attr.update_from_dataframe(df) self.field_attr_list.ClearAll() self.refresh_field_attr_list_column() if self.field_attr.columns: self.current_column = self.field_attr.iget_column(0) self.field_attr_list.Select(0) self.saveProfileItem.Enable(True) self.loadProfileItem.Enable(True) self.organismItem.Enable(True) self.loadProfileItem.Enable(True) self.createFieldItem.Enable(True) self.appendToDatabaseMenuItem.Enable(True) self.saveToDatabaseMenuItem.Enable(True) # need to enable load profile menu item here # after refactoring the menu bar def OnLoadCSV(self, e): filepath = browse('CSV') if filepath: try: df = pandas.read_csv(filepath) except FileNotFoundError: wx.MessageDialog(self, 'Cannot download the data file.\nPlease check the file path again.', 'File Not Found!', wx.OK | wx.CENTER).ShowModal() else: wx.MessageDialog(self, 'No File Path Found!', 'Please enter/select the file path.', wx.OK | wx.CENTER).ShowModal() def OnCreateField(self, event): columns = [] for c in self.field_attr.columns: col = self.field_attr.get_column(c) if col['keep']: columns.append(col['alias']) with wx.SingleChoiceDialog( None, "Select a column", "Kept columns", columns) as dlg: if dlg.ShowModal() == wx.ID_OK: sel_col = dlg.GetStringSelection() else: return if sel_col: sel_col_index = self.field_attr.get_col_index(sel_col) values = self.data_grid.table.df[sel_col].unique() _df = pandas.DataFrame({'Value': values, 'Group': values}) with FieldCreateDialog() as fc: fc.grid.set_table(_df) resp = fc.ShowModal() if resp == wx.ID_OK: _agg_dict = {} for idx, row in fc.grid.table.df.iterrows(): _agg_dict[row['Value']] = row['Group'] _agg_data = [] for value in self.data_grid.table.df[sel_col]: _agg_data.append(_agg_dict[value]) new_col = '@' + fc.field_name.GetValue() if new_col in self.field_attr.columns: new_col += '-copy' self.data_grid.table.df.insert(sel_col_index + 1, new_col, value=_agg_data) self.data_grid.AutoSize() self.data_grid_box_sizer.Layout() self.data_grid.table.InsertCols(sel_col_index + 1, 1) self.field_attr.columns.insert(sel_col_index + 1, new_col) self.field_attr.data[new_col] = { 'name': new_col, 'alias': new_col, 'organism': False, 'key': False, 'drug': False, 'date': False, 'type': str(self.data_grid.table.df[new_col].dtype), 'keep': True, 'desc': "", 'aggregate': { 'from': sel_col, 'data': _agg_dict } } self.refresh_field_attr_list_column() # self.OnSaveProfile(None) # self.onSaveToDatabaseMenuItemClick(None) def reset_summary_table(self, desc): self.summary_table.ClearAll() self.summary_table.InsertColumn(0, 'Field') self.summary_table.InsertColumn(1, 'Value') for n, k in enumerate(desc.keys()): self.summary_table.InsertItem(n, k) self.summary_table.SetItem(n, 1, str(desc[k])) def update_edit_panel(self, colname): for cb in self.field_edit_checkboxes: name = cb.GetName() cb.SetValue(self.field_attr.get_column(colname)[name]) self.field_alias.SetValue(self.field_attr.get_column(colname)['alias']) self.field_desc.SetValue(self.field_attr.get_column(colname)['desc']) self.current_column = colname def onFieldAttrListItemSelected(self, evt): index = evt.GetIndex() current_column = self.data_grid.table.df.columns[index] desc = self.data_grid.table.df[self.current_column].describe() self.reset_summary_table(desc=desc) self.update_edit_panel(current_column) self.data_grid.SelectCol(index) def refresh_field_attr_list_column(self): self.add_field_attr_list_column() self.update_field_attrs() def add_field_attr_list_column(self): self.field_attr_list.ClearAll() self.field_attr_list.InsertColumn(0, 'Field name') self.field_attr_list.InsertColumn(1, 'Alias name') self.field_attr_list.InsertColumn(2, 'Type') self.field_attr_list.InsertColumn(3, 'Key') self.field_attr_list.InsertColumn(4, 'Date') self.field_attr_list.InsertColumn(5, 'Organism') self.field_attr_list.InsertColumn(6, 'Drug') self.field_attr_list.InsertColumn(7, 'Description') self.field_attr_list.InsertColumn(8, 'Kept') self.field_attr_list.SetColumnWidth(7, 300) def update_field_attrs(self): for n, c in enumerate(self.field_attr.columns): col = self.field_attr.get_column(c) self.field_attr_list.InsertItem(n, col['name']) self.field_attr_list.SetItem(n, 1, col['alias']) self.field_attr_list.SetItem(n, 2, col['type']) self.field_attr_list.SetItem(n, 3, str(col['key'])) self.field_attr_list.SetItem(n, 4, str(col['date'])) self.field_attr_list.SetItem(n, 5, str(col['organism'])) self.field_attr_list.SetItem(n, 6, str(col['drug'])) self.field_attr_list.SetItem(n, 7, str(col['desc'])) self.field_attr_list.SetItem(n, 8, str(col['keep'])) def on_edit_save_button_clicked(self, event): col_index = self.field_attr.get_col_index(self.current_column) for cb in self.field_edit_checkboxes: name = cb.GetName() self.field_attr.get_column(self.current_column)[name] = cb.GetValue() self.field_attr.get_column(self.current_column)['alias'] = self.field_alias.GetValue() self.field_attr.get_column(self.current_column)['desc'] = self.field_desc.GetValue() self.refresh_field_attr_list_column() self.field_attr_list.Select(col_index) self.field_attr_list.Focus(col_index) def convert_to_flat(self, engine, startdate, enddate, deduplicate=True): info_columns = [] dup_keys = [] organism_column = None for colname in self.field_attr.columns: column = self.field_attr.get_column(colname) if column['keep']: if column['key'] and not column['organism'] and not column['drug'] and deduplicate: dup_keys.append(colname) if column['organism']: organism_column = column elif column['date']: date_column = colname info_columns.append(column) elif column['drug']: continue else: info_columns.append(column) if not organism_column: with wx.MessageDialog(self, "Please specify the organism column.", "Export failed.", wx.OK) as md: md.ShowModal() wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=1) rf = pandas.read_sql_table('records', con=engine) df = pandas.read_sql_table('drugs', con=engine) dict_ = {} for column in info_columns: dict_[column['alias']] = self.data_grid.table.df[column['name']] dict_['sur_key'] = rf['sur_key'] genuses = [] species = [] organisms = [] for org in self.data_grid.table.df[organism_column['name']]: organisms.append(org) org_item = self.field_attr.organisms.get(org, {'genus': org, 'species': org}) genuses.append(org_item.get('genus', org)) species.append(org_item.get('species', org)) dict_[organism_column['alias']] = organisms dict_['genus'] = genuses dict_['species'] = species dict_['organism_name'] = [' '.join(item) for item in zip(genuses, species)] def get_drug_group(x): global drug_dict return drug_dict.get(x.lower(), pandas.Series()).get('group', 'unspecified') exported_data = pandas.DataFrame(dict_) if deduplicate: if not dup_keys: with wx.MessageDialog(self, "Please specify some key columns.", "Export failed.", wx.OK) as md: md.ShowModal() wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=1) else: #TODO: inform user about error in deduplication if no date was found.. dup_keys.append('organism_name') # dup_keys.append('drug') if dup_keys and date_column: exported_data = exported_data.sort_values(by=date_column) exported_data = exported_data.drop_duplicates( subset=dup_keys, keep='first' ) else: with wx.MessageDialog(self, "Please specify a date column.", "Export failed.", wx.OK) as md: md.ShowModal() wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=1) df['drugGroup'] = df['drug'].apply(lambda x: get_drug_group(x)) self.flat_dataframe = exported_data.merge(df, on='sur_key', how='inner') del self.flat_dataframe['sur_key'] # remove surrogate key column if startdate and enddate: try: self.flat_dataframe = self.flat_dataframe[ (self.flat_dataframe[date_column] >= startdate) & (self.flat_dataframe[date_column] <= enddate)] except TypeError: wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=1) wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=0) def OnExportRawData(self, event): wildcard = "Excel (*.xlsx;*.xls)|*.xlsx;*.xls" with wx.FileDialog(None, "Choose a file", os.getcwd(), "", wildcard, wx.FC_SAVE) as file_dlg: if file_dlg.ShowModal() == wx.ID_CANCEL: return else: output_filepath = file_dlg.GetPath() date_dlg = DateRangeFieldList(self) if date_dlg.ShowModal() == wx.ID_OK: deduplicate = date_dlg.deduplicate.IsChecked() if not date_dlg.all.IsChecked(): startdate = map(int, date_dlg.startDatePicker.GetValue().FormatISODate().split('-')) enddate = map(int, date_dlg.endDatePicker.GetValue().FormatISODate().split('-')) startdate = pandas.Timestamp(*startdate) enddate = pandas.Timestamp(*enddate) else: startdate = None enddate = None thread = Thread(target=self.convert_to_flat, args=(self.dbengine, startdate, enddate, deduplicate)) thread.start() with NotificationBox(self, caption='Export Data', message='Preparing data to export...') as nd: result = nd.ShowModal() if result > 0: return ''' for colname in self.field_attr.columns: column = self.field_attr.get_column(colname) if column['keep'] and column['date']: date_column = colname ''' # df = self.flat_dataframe def write_to_excel(flat_df, output_filepath): try: flat_df.to_excel(output_filepath, engine='xlsxwriter', index=False) except: with wx.MessageDialog(None, "Cannot save data to the output file.", "Export failed.", wx.OK) as md: md.ShowModal() wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=1) else: with wx.MessageDialog(None, "Data have been export to Excel as a flat table.", "Export succeeds.", wx.OK) as md: md.ShowModal() wx.CallAfter(dispatcher.send, CLOSE_DIALOG_SIGNAL, rc=0) thread = Thread(target=write_to_excel, args=(self.flat_dataframe, output_filepath)) thread.start() with NotificationBox(self, caption='Writing Data', message='Writing data to Excel file...') as nd: result = nd.ShowModal() if result > 0: return def onSaveToFlatDbMenuItemClick(self, event, action='replace'): style = wx.FD_SAVE if not self.profile_filepath: wx.MessageDialog(None, "No profile path specified.", "Please save a profile to a file or load a profile to the session before continue.", wx.OK).ShowModal() return # Select date range to export data date_dlg = DateRangeFieldList(self) if date_dlg.ShowModal() == wx.ID_OK: deduplicate = date_dlg.deduplicate.IsChecked() if not date_dlg.all.IsChecked(): startdate = map(int, date_dlg.startDatePicker.GetValue().FormatISODate().split('-')) enddate = map(int, date_dlg.endDatePicker.GetValue().FormatISODate().split('-')) startdate = pandas.Timestamp(*startdate) enddate = pandas.Timestamp(*enddate) else: startdate = None enddate = None if self.dbengine: thread = Thread(target=self.convert_to_flat, args=(self.dbengine, startdate, enddate, deduplicate)) thread.start() with NotificationBox(self, caption='Export Data', message='Preparing data to export...' ) as nd: result = nd.ShowModal() if result == 1: wx.MessageDialog(None, "Could not save data to the database.", "Export failed.", wx.OK).ShowModal() if result == 2: wx.MessageDialog(None, "Could not save the profile data to the database.", "Export failed.", wx.OK).ShowModal() else: wx.MessageDialog(None, "Please first save data to the database.", "Export failed.", wx.OK).ShowModal() return with wx.FileDialog(None, "Choose an SQLite data file", wildcard='SQLite files (*.sqlite;*.db)|*.sqlite;*.db', style=style) \ as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return else: dw_filepath = fileDialog.GetPath() if dw_filepath: dwengine = sa.create_engine('sqlite:///{}'.format(dw_filepath)) try: self.flat_dataframe['added_at'] = datetime.utcnow() self.flat_dataframe.to_sql('facts', con=dwengine, if_exists=action, index=False) except IOError: wx.MessageDialog(self, "Error occurred while saving the data to the database.", "Failed to save the data.", wx.OK).ShowModal() return metadata = pandas.DataFrame({'profile': [self.profile_filepath], 'updatedAt': [datetime.utcnow()]}) try: metadata.to_sql('metadata', con=dwengine, if_exists='replace', index=False) except IOError: wx.MessageDialog(self, "Error occurred while saving the metadata to the database.", "Failed to save the metadata.", wx.OK).ShowModal() return wx.MessageDialog(self, "Data have been exported to the database.", "Finished.", wx.OK).ShowModal() def onSaveToDatabaseMenuItemClick(self, event, action='replace'): if not self.profile_filepath: with wx.MessageDialog(None, message='Please save the profile to a file first.', caption='Profile file not found error.', style=wx.OK | wx.CENTER) as msgDialog: msgDialog.ShowModal() return if action == 'append' or not self.dbengine: with wx.FileDialog(None, "Choose or specify a database file", wildcard='SQLite files (*.sqlite;*.db)|*.sqlite;*.db', style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) \ as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return else: self.db_filepath = fileDialog.GetPath() if self.db_filepath: if action == 'replace': with wx.MessageDialog(None, "Are you sure you want to write to {}".format(self.db_filepath), "Database is about to be overwritten.", wx.OK | wx.CANCEL) as msgDialog: ret = msgDialog.ShowModal() if ret == wx.ID_CANCEL: return elif action == 'append': with wx.MessageDialog(None, "Are you sure you want to write to {}".format(self.db_filepath), "Database is about to be modified.", wx.OK | wx.CANCEL) as msgDialog: ret = msgDialog.ShowModal() if ret == wx.ID_CANCEL: return metadata = pandas.DataFrame({'profile': [self.profile_filepath], 'updatedAt': [datetime.utcnow()]}) self.dbfile_lbl.SetLabelText('Database filepath {} CONNECTED'.format(self.db_filepath)) self.dbengine = sa.create_engine('sqlite:///{}'.format(self.db_filepath)) # add surrogate keys try: records_df =
pandas.read_sql_table('records', con=self.dbengine)
pandas.read_sql_table
''' このコードはKMiura.ioさんのコードを元に作成しています。 https://github.com/code4nagoya/covid19-scrape MIT License Copyright (c) 2020 KMiura.io Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import camelot import codecs import json import os import pandas as pd import re import traceback import urllib.request from bs4 import BeautifulSoup from datetime import datetime base_url = "https://www.pref.aichi.jp" outdir = './data' if not os.path.exists(outdir): os.mkdir(outdir) def findpath(url, searchWord): page_url = base_url + url raw_html = urllib.request.urlopen(page_url) soup = BeautifulSoup(raw_html, "html.parser") for aa in soup.find_all("a"): link = aa.get("href") name = aa.get_text() if searchWord in name: table_link = link if "Excelファイル" in name: ext = "xlsx" # Excelファイルなら確定 break elif "PDFファイル" in name: ext = "pdf" return table_link, ext def convert_pdf(FILE_PATH, pdf_path, csv_path): # 最新版のPDFをダウンロード page_url = base_url + FILE_PATH with urllib.request.urlopen(page_url) as b: with open(pdf_path, "bw") as f: f.write(b.read()) tables = camelot.read_pdf( pdf_path, pages="1-end", split_text=True, strip_text="\n", line_scale=40) # csvに保存 df_csv = pd.concat([table.df for table in tables]) df_csv.to_csv(csv_path, index=False, header=False) df = pd.read_csv(csv_path, parse_dates=["発表日"], date_parser=my_parser) df = add_date(df).fillna("") str_index = pd.Index([str(num) for num in list(df.index)]) df = df.set_index(str_index) # df.index.name = "No" # print(df) return df def convert_xlsx(FILE_PATH, xlsx_path): # 最新版のExcelをダウンロード page_url = base_url + FILE_PATH with urllib.request.urlopen(page_url) as b: with open(xlsx_path, "bw") as f: f.write(b.read()) df = pd.read_excel(xlsx_path, header=2, index_col=None, dtype={2: object}) df["発表日"] = df["発表日"].apply(exceltime2datetime) df = df.replace(0,"") df = add_date(df).fillna("") str_index = pd.Index([str(num) for num in list(df.index)]) df = df.set_index(str_index) # print(df) # exit() return df def add_date(df): basedate = df["発表日"] df["発表日"] = basedate.dt.strftime("%Y/%m/%d %H:%M") df["date"] = basedate.dt.strftime("%Y-%m-%d") df["w"] = [str(int(w)+1) if int(w)+1 != 7 else "0" for w in basedate.dt.dayofweek] df["short_date"] = basedate.dt.strftime("%m\\/%d") return df def my_parser(s): y = datetime.now().year m, d = map(int, re.findall("[0-9]{1,2}", s)) return pd.Timestamp(year=y, month=m, day=d) def exceltime2datetime(et): if et < 60: days = pd.to_timedelta(et - 1, unit='days') else: days = pd.to_timedelta(et - 2, unit='days') return pd.to_datetime('1900/1/1') + days if __name__ == "__main__": FILE_PATH1, extension1 = findpath("/site/covid19-aichi/kansensya-kensa.html", "7月まで") FILE_PATH2, extension2 = findpath("/site/covid19-aichi/kansensya-kensa.html", "8月以降") try: if extension1 == "xlsx": df1 = convert_xlsx(FILE_PATH1, "./data/source1.xlsx") elif extension1 == "pdf": df1 = convert_pdf(FILE_PATH1, "./data/source1.pdf", "./data/source1.csv") else: exit() if extension2 == "xlsx": df2 = convert_xlsx(FILE_PATH2, "./data/source2.xlsx") elif extension2 == "pdf": df2 = convert_pdf(FILE_PATH2, "./data/source2.pdf", "./data/source2.csv") else: exit() df =
pd.concat([df1, df2])
pandas.concat
""" test date_range, bdate_range construction from the convenience range functions """ from datetime import datetime, time, timedelta import numpy as np import pytest import pytz from pytz import timezone from pandas._libs.tslibs import timezones from pandas._libs.tslibs.offsets import BDay, CDay, DateOffset, MonthEnd, prefix_mapping from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td import pandas as pd from pandas import DatetimeIndex, Timestamp, bdate_range, date_range, offsets import pandas._testing as tm from pandas.core.arrays.datetimes import generate_range START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestTimestampEquivDateRange: # Older tests in TestTimeSeries constructed their `stamp` objects # using `date_range` instead of the `Timestamp` constructor. # TestTimestampEquivDateRange checks that these are equivalent in the # pertinent cases. def test_date_range_timestamp_equiv(self): rng = date_range("20090415", "20090519", tz="US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_dateutil(self): rng = date_range("20090415", "20090519", tz="dateutil/US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="dateutil/US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_explicit_pytz(self): rng = date_range("20090415", "20090519", tz=pytz.timezone("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=pytz.timezone("US/Eastern"), freq="D") assert ts == stamp @td.skip_if_windows_python_3 def test_date_range_timestamp_equiv_explicit_dateutil(self): from pandas._libs.tslibs.timezones import dateutil_gettz as gettz rng = date_range("20090415", "20090519", tz=gettz("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=gettz("US/Eastern"), freq="D") assert ts == stamp def test_date_range_timestamp_equiv_from_datetime_instance(self): datetime_instance = datetime(2014, 3, 4) # build a timestamp with a frequency, since then it supports # addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq="D")[0] ts = Timestamp(datetime_instance, freq="D") assert ts == timestamp_instance def test_date_range_timestamp_equiv_preserve_frequency(self): timestamp_instance = date_range("2014-03-05", periods=1, freq="D")[0] ts = Timestamp("2014-03-05", freq="D") assert timestamp_instance == ts class TestDateRanges: def test_date_range_nat(self): # GH#11587 msg = "Neither `start` nor `end` can be NaT" with pytest.raises(ValueError, match=msg): date_range(start="2016-01-01", end=pd.NaT, freq="D") with pytest.raises(ValueError, match=msg): date_range(start=pd.NaT, end="2016-01-01", freq="D") def test_date_range_multiplication_overflow(self): # GH#24255 # check that overflows in calculating `addend = periods * stride` # are caught with tm.assert_produces_warning(None): # we should _not_ be seeing a overflow RuntimeWarning dti = date_range(start="1677-09-22", periods=213503, freq="D") assert dti[0] == Timestamp("1677-09-22") assert len(dti) == 213503 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("1969-05-04", periods=200000000, freq="30000D") def test_date_range_unsigned_overflow_handling(self): # GH#24255 # case where `addend = periods * stride` overflows int64 bounds # but not uint64 bounds dti = date_range(start="1677-09-22", end="2262-04-11", freq="D") dti2 = date_range(start=dti[0], periods=len(dti), freq="D") assert dti2.equals(dti) dti3 = date_range(end=dti[-1], periods=len(dti), freq="D") assert dti3.equals(dti) def test_date_range_int64_overflow_non_recoverable(self): # GH#24255 # case with start later than 1970-01-01, overflow int64 but not uint64 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(start="1970-02-01", periods=106752 * 24, freq="H") # case with end before 1970-01-01, overflow int64 but not uint64 with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1969-11-14", periods=106752 * 24, freq="H") def test_date_range_int64_overflow_stride_endpoint_different_signs(self): # cases where stride * periods overflow int64 and stride/endpoint # have different signs start = Timestamp("2262-02-23") end = Timestamp("1969-11-14") expected = date_range(start=start, end=end, freq="-1H") assert expected[0] == start assert expected[-1] == end dti = date_range(end=end, periods=len(expected), freq="-1H") tm.assert_index_equal(dti, expected) start2 = Timestamp("1970-02-01") end2 = Timestamp("1677-10-22") expected2 = date_range(start=start2, end=end2, freq="-1H") assert expected2[0] == start2 assert expected2[-1] == end2 dti2 = date_range(start=start2, periods=len(expected2), freq="-1H") tm.assert_index_equal(dti2, expected2) def test_date_range_out_of_bounds(self): # GH#14187 msg = "Cannot generate range" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("2016-01-01", periods=100000, freq="D") with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1763-10-12", periods=100000, freq="D") def test_date_range_gen_error(self): rng = date_range("1/1/2000 00:00", "1/1/2000 00:18", freq="5min") assert len(rng) == 4 @pytest.mark.parametrize("freq", ["AS", "YS"]) def test_begin_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-01-01", "2014-01-01", "2015-01-01", "2016-01-01", "2017-01-01"], freq=freq, ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["A", "Y"]) def test_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-31"], freq=freq ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["BA", "BY"]) def test_business_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-30"], freq=freq )
tm.assert_index_equal(rng, exp)
pandas._testing.assert_index_equal
from context import dero import dero.data.ff.create.sort as ff_sort import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy import datetime class DataFrameTest: df_3_fac = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, .51, 1000), (10516, 'a', '1/2/2000', 1.02, .52, 2000), (10516, 'a', '1/3/2000', 1.03, .53, 3000), (10516, 'a', '1/4/2000', 1.04, .54, 4000), (10516, 'b', '1/1/2000', 1.05, 1.55, 50000), (10516, 'b', '1/2/2000', 1.06, 1.56, 60000), (10516, 'b', '1/3/2000', 1.07, 1.57, 70000), (10516, 'b', '1/4/2000', 1.08, 1.58, 80000), (10517, 'a', '1/1/2000', 1.09, .59, 9000), (10517, 'a', '1/2/2000', 1.10, .60, 10000), (10517, 'a', '1/3/2000', 1.11, .61, 11000), (10517, 'a', '1/4/2000', 1.12, .62, 12000), (10517, 'b', '1/1/2000', 1.13, .63, 13000), (10517, 'b', '1/2/2000', 1.14, .64, 14000), (10517, 'b', '1/3/2000', 1.15, .65, 15000), (10517, 'b', '1/4/2000', 1.16, .66, 16000), (10518, 'a', '1/1/2000', 1.17, .67, 17000), (10518, 'a', '1/2/2000', 1.18, .68, 18000), (10518, 'a', '1/3/2000', 1.19, .69, 19000), (10518, 'a', '1/4/2000', 1.20, .70, 20000), (10518, 'b', '1/1/2000', 1.21, .71, 21000), (10518, 'b', '1/2/2000', 1.22, .72, 22000), (10518, 'b', '1/3/2000', 1.23, .73, 23000), (10518, 'b', '1/4/2000', 1.24, .74, 24000), ], columns=['PERMNO', 'byvar', 'Date', 'RET', 'be/me', 'me']) df_3_fac['Date'] = pd.to_datetime(df_3_fac['Date']) class TestCalculateFFFactors(DataFrameTest): def test_create_portfolios(self): expect_df = pd.DataFrame(data=[ (10516, 'a', Timestamp('2000-01-01 00:00:00'), 1.01, 0.51, 1000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'a', Timestamp('2000-01-02 00:00:00'), 1.02, 0.52, 2000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'a', Timestamp('2000-01-03 00:00:00'), 1.03, 0.53, 3000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'a', Timestamp('2000-01-04 00:00:00'), 1.04, 0.54, 4000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10516, 'b', Timestamp('2000-01-01 00:00:00'), 1.05, 1.55, 50000, 3, Timestamp('2000-01-01 00:00:00'), 2, Timestamp('2000-01-01 00:00:00')), (10516, 'b', Timestamp('2000-01-02 00:00:00'), 1.06, 1.56, 60000, 3, Timestamp('2000-01-01 00:00:00'), 2, Timestamp('2000-01-01 00:00:00')), (10516, 'b', Timestamp('2000-01-03 00:00:00'), 1.07, 1.57, 70000, 3, Timestamp('2000-01-01 00:00:00'), 2, Timestamp('2000-01-01 00:00:00')), (10516, 'b', Timestamp('2000-01-04 00:00:00'), 1.08, 1.58, 80000, 3, Timestamp('2000-01-01 00:00:00'), 2, Timestamp('2000-01-01 00:00:00')), (10517, 'a', Timestamp('2000-01-01 00:00:00'), 1.09, 0.59, 9000, 2, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'a', Timestamp('2000-01-02 00:00:00'), 1.1, 0.6, 10000, 2, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'a', Timestamp('2000-01-03 00:00:00'), 1.11, 0.61, 11000, 2, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'a', Timestamp('2000-01-04 00:00:00'), 1.12, 0.62, 12000, 2, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'b', Timestamp('2000-01-01 00:00:00'), 1.13, 0.63, 13000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'b', Timestamp('2000-01-02 00:00:00'), 1.14, 0.64, 14000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'b', Timestamp('2000-01-03 00:00:00'), 1.15, 0.65, 15000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10517, 'b', Timestamp('2000-01-04 00:00:00'), 1.16, 0.66, 16000, 1, Timestamp('2000-01-01 00:00:00'), 1, Timestamp('2000-01-01 00:00:00')), (10518, 'a', Timestamp('2000-01-01 00:00:00'), 1.17, 0.67, 17000, 3, Timestamp('2000-01-01 00:00:00'), 2, Timestamp('2000-01-01 00:00:00')), (10518, 'a',
Timestamp('2000-01-02 00:00:00')
pandas.Timestamp
# -*- coding: utf-8 -*- """ Authors: <NAME>, <NAME>, <NAME>, and <NAME> IHE Delft 2017 Contact: <EMAIL> Repository: https://github.com/gespinoza/hants Module: hants """ from __future__ import division import netCDF4 import pandas as pd import math from .davgis.functions import (Spatial_Reference, List_Datasets, Clip, Resample, Raster_to_Array, NetCDF_to_Raster) import os import tempfile from copy import deepcopy import matplotlib.pyplot as plt import warnings def run_HANTS(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, nb, nf, HiLo, low, high, fet, dod, delta, epsg=4326, fill_val=-9999.0, rasters_path_out=None, export_hants_only=False): ''' This function runs the python implementation of the HANTS algorithm. It takes a folder with geotiffs raster data as an input, creates a netcdf file, and optionally export the data back to geotiffs. ''' create_netcdf(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, epsg, fill_val) HANTS_netcdf(nc_path, nb, nf, HiLo, low, high, fet, dod, delta, fill_val) #if rasters_path_out: #export_tiffs(rasters_path_out, nc_path, name_format, export_hants_only) return nc_path def create_netcdf(rasters_path, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, epsg=4326, fill_val=-9999.0): ''' This function creates a netcdf file from a folder with geotiffs rasters to be used to run HANTS. ''' # Latitude and longitude lat_ls = pd.np.arange(latlim[0] + 0.5*cellsize, latlim[1] + 0.5*cellsize, cellsize) lat_ls = lat_ls[::-1] # ArcGIS numpy lon_ls = pd.np.arange(lonlim[0] + 0.5*cellsize, lonlim[1] + 0.5*cellsize, cellsize) lat_n = len(lat_ls) lon_n = len(lon_ls) spa_ref = Spatial_Reference(epsg) ll_corner = [lonlim[0], latlim[0]] # Rasters dates_dt = pd.date_range(start_date, end_date, freq='D') dates_ls = [d.strftime('%Y%m%d') for d in dates_dt] ras_ls = List_Datasets(rasters_path, 'tif') # Cell code temp_ll_ls = [pd.np.arange(x, x + lon_n) for x in range(1, lat_n*lon_n, lon_n)] code_ls = pd.np.array(temp_ll_ls) empty_vec = pd.np.empty((lat_n, lon_n)) empty_vec[:] = fill_val # Create netcdf file print('Creating netCDF file...') nc_file = netCDF4.Dataset(nc_path, 'w', format="NETCDF4") # Create Dimensions lat_dim = nc_file.createDimension('latitude', lat_n) lon_dim = nc_file.createDimension('longitude', lon_n) time_dim = nc_file.createDimension('time', len(dates_ls)) # Create Variables crs_var = nc_file.createVariable('crs', 'i4') crs_var.grid_mapping_name = 'latitude_longitude' crs_var.crs_wkt = spa_ref lat_var = nc_file.createVariable('latitude', 'f8', ('latitude'), fill_value=fill_val) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lon_var = nc_file.createVariable('longitude', 'f8', ('longitude'), fill_value=fill_val) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' time_var = nc_file.createVariable('time', 'l', ('time'), fill_value=fill_val) time_var.standard_name = 'time' time_var.calendar = 'gregorian' code_var = nc_file.createVariable('code', 'i4', ('latitude', 'longitude'), fill_value=fill_val) outliers_var = nc_file.createVariable('outliers', 'i4', ('latitude', 'longitude', 'time'), fill_value=fill_val) outliers_var.long_name = 'outliers' original_var = nc_file.createVariable('original_values', 'f8', ('latitude', 'longitude', 'time'), fill_value=fill_val) original_var.long_name = 'original values' hants_var = nc_file.createVariable('hants_values', 'f8', ('latitude', 'longitude', 'time'), fill_value=fill_val) hants_var.long_name = 'hants values' combined_var = nc_file.createVariable('combined_values', 'f8', ('latitude', 'longitude', 'time'), fill_value=fill_val) combined_var.long_name = 'combined values' print('\tVariables created') # Load data lat_var[:] = lat_ls lon_var[:] = lon_ls time_var[:] = dates_ls code_var[:] = code_ls # temp folder temp_dir = tempfile.mkdtemp() bbox = [lonlim[0], latlim[0], lonlim[1], latlim[1]] # Raster loop print('\tExtracting data from rasters...') for tt in range(len(dates_ls)): # Raster ras = name_format.format(dates_ls[tt]) if ras in ras_ls: # Resample ras_resampled = os.path.join(temp_dir, 'r_' + ras) Resample(os.path.join(rasters_path, ras), ras_resampled, cellsize) # Clip ras_clipped = os.path.join(temp_dir, 'c_' + ras) Clip(ras_resampled, ras_clipped, bbox) # Raster to Array array = Raster_to_Array(ras_resampled, ll_corner, lon_n, lat_n, values_type='float32') # Store values original_var[:, :, tt] = array else: # Store values original_var[:, :, tt] = empty_vec # Close file nc_file.close() print('NetCDF file created') # Return return nc_path def HANTS_netcdf(nc_path, nb, nf, HiLo, low, high, fet, dod, delta, fill_val=-9999.0): ''' This function runs the python implementation of the HANTS algorithm. It takes the input netcdf file and fills the 'hants_values', 'combined_values', and 'outliers' variables. ''' # Read netcdfs nc_file = netCDF4.Dataset(nc_path, 'r+') time_var = nc_file.variables['time'][:] original_values = nc_file.variables['original_values'][:] [rows, cols, ztime] = original_values.shape size_st = cols*rows values_hants = pd.np.empty((rows, cols, ztime)) outliers_hants = pd.np.empty((rows, cols, ztime)) values_hants[:] = pd.np.nan outliers_hants[:] = pd.np.nan # Additional parameters ni = len(time_var) ts = range(ni) # Loop counter = 1 print('Running HANTS...') for m in range(rows): for n in range(cols): print('\t{0}/{1}'.format(counter, size_st)) y = pd.np.array(original_values[m, n, :]) y[pd.np.isnan(y)] = fill_val [yr, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta, fill_val) values_hants[m, n, :] = yr outliers_hants[m, n, :] = outliers counter = counter + 1 nc_file.variables['hants_values'][:] = values_hants nc_file.variables['outliers'][:] = outliers_hants nc_file.variables['combined_values'][:] = pd.np.where(outliers_hants, values_hants, original_values) # Close netcdf file nc_file.close() def HANTS_singlepoint(nc_path, point, nb, nf, HiLo, low, high, fet, dod, delta, fill_val=-9999.0): ''' This function runs the python implementation of the HANTS algorithm for a single point (lat, lon). It plots the fit and returns a data frame with the 'original' and the 'hants' time series. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r') time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[pd.np.abs(lat - latx).argmin()] lon_closest = lon.flat[pd.np.abs(lon - lonx).argmin()] lat_i = pd.np.where(lat == lat_closest)[0][0] lon_i = pd.np.where(lon == lon_closest)[0][0] # Read values original_values = nc_file.variables['original_values'][lat_i, lon_i, :] # Additional parameters ni = len(time) ts = range(ni) # HANTS y = pd.np.array(original_values) y[pd.np.isnan(y)] = fill_val [hants_values, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta, fill_val) # Plot top = 1.15*max(pd.np.nanmax(original_values), pd.np.nanmax(hants_values)) bottom = 1.15*min(pd.np.nanmin(original_values),
pd.np.nanmin(hants_values)
pandas.np.nanmin
# -*- coding: utf-8 -*- """ Created on Wed Jan 31 21:15:57 2018 @author: Chinmay """ # Import all the necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import ast from pyspark.sql.types import StringType from pyspark import SQLContext , SparkContext from pyspark.sql.session import SparkSession # Create a Spark Context sc = SparkContext('local','fisrt_SPARK') # If using locally sqlContext = SQLContext(sc) spark = SparkSession(sc) # sc.stop() # Load all the data into Spark Data Frame df = (spark.read.format("csv").options(header="true" , inferSchema = True ).load("D:/Dbda/Project/Final Draft/Chinmay/Final/final_all_3.0.csv")) batsman_all_data= (spark.read.format("csv").options(header="true" , inferSchema = True).load("D:/Dbda/Project/Final Draft/Chinmay/Final/all_batsmans_data_2.0.csv")) # List of the teams teams = ['Australia' , 'New Zealand' , 'India' , 'Zimbabwe' , 'Bangladesh' , 'South Africa' , 'England' , 'Sri Lanka' , 'Pakistan' , 'West Indies' , 'Ireland'] match_type = 'ODI' team1 = 'India' team2 = 'Australia' team_1 = [ '<NAME>' , '<NAME>' , '<NAME>' , '<NAME>', '<NAME>', '<NAME>' , 'HH Pandya' , '<NAME>' , '<NAME>' , '<NAME>' , 'YZ Chahal'] team_2 = ['<NAME>' , '<NAME>' , '<NAME>' , 'T Head' , '<NAME>' , '<NAME>' , '<NAME>' , '<NAME>' , '<NAME>' , 'NM Coulter-Nile' , '<NAME>'] bowlers_1 = ['<NAME>' , '<NAME>' , '<NAME>' , '<NAME>' , '<NAME>'] bowlers_2 = ['<NAME>' , '<NAME>' , 'NM Coulter-Nile' , '<NAME>', '<NAME>', 'T Head'] #bowlers_2 = ['<NAME>' , '<NAME>' , 'JT Ball' , '<NAME>' , '<NAME>' , '<NAME>' , 'JE Root'] #players = df.filter(df['`team`'].rlike('England')).select('batsman').distinct() #df_batsman = pd.DataFrame(df.filter(df['`team`'].rlike('England')).select('batsman').distinct().collect()) #df_bolwer = pd.DataFrame(df.filter(df['`team`'].rlike('England')).select('bowler').distinct().collect()) import math from sklearn.naive_bayes import GaussianNB import numpy as np from sklearn.model_selection import train_test_split from pyspark.sql import SparkSession from pyspark.sql.functions import isnan,isnull,when,count from sklearn.ensemble import RandomForestRegressor # Function to predict Player Score def score_predict(batsman , bowlers , team1 , team2 , match_type): #batsman = '<NAME>' #bowlers = ['<NAME>' , '<NAME>' , 'NM Coulter-Nile' , '<NAME>', '<NAME>', 'T Head'] ############ Prediction Based On Bowlers ############################## batsman_data = batsman_all_data[(batsman_all_data['name'] == batsman) & (batsman_all_data['match_type'] == match_type)] batsman_data_team = batsman_data[(batsman_data['against'] == team2)] if batsman_data_team.select('match_id').count() == 0: print("No Data Found against" , team2) return 0,0,0,0,0,0,0,0,0 batsman_data_team = batsman_data_team.toPandas() batsman_data = batsman_all_data[(batsman_all_data['name'] == batsman) & (batsman_all_data['match_type'] == match_type)] batsman_data_team = batsman_data[(batsman_data['against'] == team2)] if batsman_data_team.select('match_id').count() == 0: print("No Data Found against" , team2) return 0,0,0,0,0,0, batsman_data_team = batsman_data_team.toPandas() batsman_data_team['bowler_encoded'] = batsman_data_team['bowler'].astype('category').cat.codes A = batsman_data_team.loc[:, ['balls' , 'bowler_encoded' , 'home_away']].values B = batsman_data_team.loc[:, 'runs_scored'].values A = pd.DataFrame(A) B = pd.DataFrame(B) score_pred = [] score_act_pred = [] score_act = [] for bowler in bowlers: bowl = [] test = [] if batsman_data_team[(batsman_data_team['bowler'] == bowler)]['bowler_encoded'].empty: continue encoded_bowl = batsman_data_team[(batsman_data_team['bowler'] == bowler)]['bowler_encoded'].index encoded_bowler = batsman_data_team[(batsman_data_team['bowler'] == bowler)]['bowler_encoded'].iloc[0] if not encoded_bowler: continue X_train = A.loc[A.index != list(encoded_bowl)[-1]].values y_train = B.loc[B.index != list(encoded_bowl)[-1]].values X_test = A.loc[A.index == list(encoded_bowl)[-1]].values y_test = B.loc[B.index == list(encoded_bowl)[-1]].values y_test = y_test.tolist() if batsman_data_team[(batsman_data_team['bowler_encoded'] == encoded_bowler) & (batsman_data_team['balls'] != 0)]['balls'].count() == 0: continue avg = batsman_data_team[(batsman_data_team['bowler_encoded'] == encoded_bowler) & (batsman_data_team['balls'] != 0)]['balls'].sum()/batsman_data_team[(batsman_data_team['bowler_encoded'] == encoded_bowler) & (batsman_data_team['balls'] != 0)]['balls'].count() bowl.append(avg) bowl.append(encoded_bowler) test.append(bowl) model = GaussianNB() model.fit(X_train, y_train) regressor = RandomForestRegressor(max_depth = 2, min_samples_split=2, n_estimators = 100, random_state = 1) regressor.fit(X_train,y_train) if not test: predicted2 = 0 else: #predicted2= model.predict(test) #predicted = model.predict(X_test) predicted = regressor.predict(X_test) #score_pred.append(sum(predicted2)) score_act_pred.append(sum(predicted)) score_act.append(y_test[0][0]) #predicted = sum(score_pred) predicted = math.ceil(sum(score_act_pred)) predicted2 = math.ceil(sum(score_act)) #print(batsman , "will score against bowlers predicted" , sum(score_pred)) print(batsman , "will score against bowlers predicted" , predicted) print(batsman , "will score against bowlers " , predicted2) ############### Predicition Based On Against Team Record ######################### from pyspark.sql.functions import col df_team = df.filter(df['`info.teams`'].rlike('India')) df_team = df_team.toPandas() df_team['info.teams'] = df_team['info.teams'].str.strip().apply(ast.literal_eval) match_index = df_team['index_all'].unique() batsman_data =
pd.DataFrame()
pandas.DataFrame
import streamlit as st import streamlit.components.v1 as components from streamlit_folium import folium_static # import folium import pandas as pd import matplotlib.pyplot as plt import datetime import immo import ssl # to avoid SSLCertVerificationError ssl._create_default_https_context = ssl._create_unverified_context # search from data.gouv.fr geo-dvf @st.cache def load_data(code_commune): # json_data = immo.dvf_commune(postcode) url = "https://files.data.gouv.fr/geo-dvf/latest/csv/2021/communes/"+str(code_commune)[:2]+"/"+str(code_commune)+".csv" df = pd.read_csv(url) df.date_mutation =
pd.to_datetime(df.date_mutation)
pandas.to_datetime
import io import gzip import networkx as nx import numpy as np import pandas as pd import random import requests import scipy as sc import scipy.io from sklearn import cluster, manifold, linear_model, metrics from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import StandardScaler import time import umap import warnings import csrgraph as cg def make_blogcatalog(edgelist="../data/blogcatalog.mat", dedupe=True): """ Graph with cluster labels from blogcatalog Dedupe: Whether to deduplicate results (else some nodes have multilabels) """ mat = scipy.io.loadmat(edgelist) nodes = mat['network'].tocsr() groups = mat['group'] G = nx.from_scipy_sparse_matrix(nodes) labels = ( pd.DataFrame(groups.todense()) .idxmax(axis=1) .reset_index(drop=False) ) labels.columns = ['node', 'label'] labels.node = labels.node.astype(int) if dedupe: labels = labels.loc[~labels.node.duplicated() ].reset_index(drop=True) labels.label = labels.label.astype(int) - 1 return G, labels else: df = pd.DataFrame(groups.todense()) labels_list = df.apply(lambda row: list((row.loc[row > 0]).index), axis=1) return G, pd.DataFrame({'node': list(G), 'mlabels': pd.Series(labels_list)}) def get_karateclub(graph_name): """ Gets formatted dataset from KarateClub library https://karateclub.readthedocs.io """ try: from karateclub import GraphReader except: raise Exception( "get_karateclub requires the karateclub library!\n" + "Try 'pip install karateclub'\n" + "see https://github.com/benedekrozemberczki/KarateClub") G = GraphReader(graph_name).get_graph() y = GraphReader(graph_name).get_target() return G, pd.DataFrame({'node': list(G), 'label': pd.Series(y)}) def make_email(): """ Graph from university emails, clustered by departments Data from http://snap.stanford.edu/data/email-Eu-core.html Edge list Format """ res = requests.get('http://snap.stanford.edu/data/email-Eu-core.txt.gz', verify=False) edges = gzip.GzipFile(fileobj=io.BytesIO(res.content)) edges = pd.read_csv(io.StringIO(edges.read().decode()), header=None, sep=' ') edges.columns = ['src', 'dest'] # cluster labels per node res = requests.get('http://snap.stanford.edu/data/email-Eu-core-department-labels.txt.gz', verify=False) labels = gzip.GzipFile(fileobj=io.BytesIO(res.content)) labels = pd.read_csv(io.StringIO(labels.read().decode()), header=None, sep=' ') labels.columns = ['node', 'cluster'] G = nx.Graph() G.add_edges_from([(t.src, t.dest) for t in edges.itertuples()]) return G, pd.DataFrame({'node': list(G), 'label': labels.cluster}) def get_from_snap(url="http://snap.stanford.edu/data/wiki-Vote.txt.gz", sep='\t', header=None, comment='#'): """ Download graph from SNAP dataset """ res = requests.get(url, verify=False) edges = gzip.GzipFile(fileobj=io.BytesIO(res.content)) edges = pd.read_csv(io.StringIO(edges.read().decode()), header=header, sep=sep, comment=comment) edges.columns = ['src', 'dest'] G = nx.Graph() G.add_edges_from([(t.src, t.dest) for t in edges.itertuples()]) return G ############################# # # # RNG DATASETS # # # ############################# def make_cluster_graph( n_nodes, n_clusters, connections=1, drop_pct=0.1, max_edge_weight=None): """ Makes distinct complete subgraphs connected by random paths n_nodes (int): number of nodes n_clusters (int): number of clusters This is also the number of disjoint subgraphs connections (int): number of random connections These join the disjoint subgraphs """ div = int(n_nodes / n_clusters) subgraph_sizes = [div] * n_clusters # last cluster has remainder nodes subgraph_sizes[-1] = subgraph_sizes[-1] + (n_nodes % n_clusters) # Make G from disjoint subgraphs G = nx.complete_graph(subgraph_sizes[0]) for i in range(1, len(subgraph_sizes)): G = nx.disjoint_union(G, nx.complete_graph(subgraph_sizes[i])) # connecting paths for i in range(connections): while True: c1, c2 = np.random.randint(n_nodes, size=2) if G.has_edge(c1, c2): continue G.add_edge(c1, c2) break # Drop random edges n_edges = len(G.edges) to_remove=random.sample(G.edges(), k=int(n_edges * drop_pct)) G.remove_edges_from(to_remove) # Generate labels labels = [] for i in range(len(subgraph_sizes)): labels.append([i] * subgraph_sizes[i]) labels = sum(labels, []) assert len(labels) == n_nodes, f"{labels}" assert len(set(labels)) == n_clusters, f"{labels}" return G, pd.DataFrame({'node': list(G), 'label': pd.Series(labels)}) def make_weighed_cluster_graph( n_nodes, n_clusters, connections=1, drop_pct=0.1, max_edge_weight=10): """ Makes distinct complete subgraphs connected by random paths n_nodes (int): number of nodes n_clusters (int): number of clusters This is also the number of disjoint subgraphs connections (int): number of random connections These join the disjoint subgraphs """ div = int(n_nodes / n_clusters) subgraph_sizes = [div] * n_clusters # last cluster has remainder nodes subgraph_sizes[-1] = subgraph_sizes[-1] + (n_nodes % n_clusters) # Make G from disjoint subgraphs G = nx.complete_graph(subgraph_sizes[0]) for i in range(1, len(subgraph_sizes)): G = nx.disjoint_union(G, nx.complete_graph(subgraph_sizes[i])) for eg in G.edges: G[eg[0]][eg[1]]['weight'] = np.random.randint(0, max_edge_weight) # connecting paths for i in range(connections): while True: c1, c2 = np.random.randint(n_nodes, size=2) if G.has_edge(c1, c2): continue G.add_edge(c1, c2) G[c1][c2]['weight'] = np.random.randint(0, max_edge_weight) break # Drop random edges n_edges = len(G.edges) to_remove=random.sample(G.edges(), k=int(n_edges * drop_pct)) G.remove_edges_from(to_remove) # Generate labels labels = [] for i in range(len(subgraph_sizes)): labels.append([i] * subgraph_sizes[i]) labels = sum(labels, []) assert len(labels) == n_nodes, f"{labels}" assert len(set(labels)) == n_clusters, f"{labels}" return G, pd.DataFrame({'node': list(G), 'label': pd.Series(labels)}) ############################# # # # BIO DATASETS # # # ############################# def read_bionev_labels(filename): """ Reads multilabels in BioNEV format eg. node label1 label2 ... labeln ex. 1 5 8 99 103 2 4 3 9 192 777 Returns pd.DataFrame with nodeID """ fin = open(filename, 'r') node_list = [] labels = [] while 1: l = fin.readline() if l == '': break vec = l.strip().split() node_list.append(int(vec[0])) labels.append([int(x) for x in vec[1:]]) fin.close() res = pd.DataFrame({'nodes': node_list, 'mlabels':
pd.Series(labels)
pandas.Series
import pytest import numpy as np import pandas as pd from datetime import datetime from pandas.util import testing as tm from pandas import DataFrame, MultiIndex, compat, Series, bdate_range, Index def test_apply_issues(): # GH 5788 s = """2011.05.16,00:00,1.40893 2011.05.16,01:00,1.40760 2011.05.16,02:00,1.40750 2011.05.16,03:00,1.40649 2011.05.17,02:00,1.40893 2011.05.17,03:00,1.40760 2011.05.17,04:00,1.40750 2011.05.17,05:00,1.40649 2011.05.18,02:00,1.40893 2011.05.18,03:00,1.40760 2011.05.18,04:00,1.40750 2011.05.18,05:00,1.40649""" df = pd.read_csv( compat.StringIO(s), header=None, names=['date', 'time', 'value'], parse_dates=[['date', 'time']]) df = df.set_index('date_time') expected = df.groupby(df.index.date).idxmax() result = df.groupby(df.index.date).apply(lambda x: x.idxmax()) tm.assert_frame_equal(result, expected) # GH 5789 # don't auto coerce dates df = pd.read_csv( compat.StringIO(s), header=None, names=['date', 'time', 'value']) exp_idx = pd.Index( ['2011.05.16', '2011.05.17', '2011.05.18' ], dtype=object, name='date') expected = Series(['00:00', '02:00', '02:00'], index=exp_idx) result = df.groupby('date').apply( lambda x: x['time'][x['value'].idxmax()]) tm.assert_series_equal(result, expected) def test_apply_trivial(): # GH 20066 # trivial apply: ignore input and return a constant dataframe. df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'], 'data': [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=['key', 'data']) expected = pd.concat([df.iloc[1:], df.iloc[1:]], axis=1, keys=['float64', 'object']) result = df.groupby([str(x) for x in df.dtypes], axis=1).apply(lambda x: df.iloc[1:]) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason="GH#20066; function passed into apply " "returns a DataFrame with the same index " "as the one to create GroupBy object.", strict=True) def test_apply_trivial_fail(): # GH 20066 # trivial apply fails if the constant dataframe has the same index # with the one used to create GroupBy object. df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'], 'data': [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=['key', 'data']) expected = pd.concat([df, df], axis=1, keys=['float64', 'object']) result = df.groupby([str(x) for x in df.dtypes], axis=1).apply(lambda x: df) tm.assert_frame_equal(result, expected) def test_fast_apply(): # make sure that fast apply is correctly called # rather than raising any kind of error # otherwise the python path will be callsed # which slows things down N = 1000 labels = np.random.randint(0, 2000, size=N) labels2 = np.random.randint(0, 3, size=N) df = DataFrame({'key': labels, 'key2': labels2, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) def f(g): return 1 g = df.groupby(['key', 'key2']) grouper = g.grouper splitter = grouper._get_splitter(g._selected_obj, axis=g.axis) group_keys = grouper._get_group_keys() values, mutated = splitter.fast_apply(f, group_keys) assert not mutated def test_apply_with_mixed_dtype(): # GH3480, apply with mixed dtype on axis=1 breaks in 0.11 df = DataFrame({'foo1': np.random.randn(6), 'foo2': ['one', 'two', 'two', 'three', 'one', 'two']}) result = df.apply(lambda x: x, axis=1) tm.assert_series_equal(df.get_dtype_counts(), result.get_dtype_counts()) # GH 3610 incorrect dtype conversion with as_index=False df = DataFrame({"c1": [1, 2, 6, 6, 8]}) df["c2"] = df.c1 / 2.0 result1 = df.groupby("c2").mean().reset_index().c2 result2 = df.groupby("c2", as_index=False).mean().c2 tm.assert_series_equal(result1, result2) def test_groupby_as_index_apply(df): # GH #4648 and #3417 df = DataFrame({'item_id': ['b', 'b', 'a', 'c', 'a', 'b'], 'user_id': [1, 2, 1, 1, 3, 1], 'time': range(6)}) g_as = df.groupby('user_id', as_index=True) g_not_as = df.groupby('user_id', as_index=False) res_as = g_as.head(2).index res_not_as = g_not_as.head(2).index exp = Index([0, 1, 2, 4]) tm.assert_index_equal(res_as, exp) tm.assert_index_equal(res_not_as, exp) res_as_apply = g_as.apply(lambda x: x.head(2)).index res_not_as_apply = g_not_as.apply(lambda x: x.head(2)).index # apply doesn't maintain the original ordering # changed in GH5610 as the as_index=False returns a MI here exp_not_as_apply = MultiIndex.from_tuples([(0, 0), (0, 2), (1, 1), ( 2, 4)]) tp = [(1, 0), (1, 2), (2, 1), (3, 4)] exp_as_apply = MultiIndex.from_tuples(tp, names=['user_id', None]) tm.assert_index_equal(res_as_apply, exp_as_apply) tm.assert_index_equal(res_not_as_apply, exp_not_as_apply) ind = Index(list('abcde')) df = DataFrame([[1, 2], [2, 3], [1, 4], [1, 5], [2, 6]], index=ind) res = df.groupby(0, as_index=False).apply(lambda x: x).index tm.assert_index_equal(res, ind) def test_apply_concat_preserve_names(three_group): grouped = three_group.groupby(['A', 'B']) def desc(group): result = group.describe() result.index.name = 'stat' return result def desc2(group): result = group.describe() result.index.name = 'stat' result = result[:len(group)] # weirdo return result def desc3(group): result = group.describe() # names are different result.index.name = 'stat_%d' % len(group) result = result[:len(group)] # weirdo return result result = grouped.apply(desc) assert result.index.names == ('A', 'B', 'stat') result2 = grouped.apply(desc2) assert result2.index.names == ('A', 'B', 'stat') result3 = grouped.apply(desc3) assert result3.index.names == ('A', 'B', None) def test_apply_series_to_frame(): def f(piece): with np.errstate(invalid='ignore'): logged = np.log(piece) return DataFrame({'value': piece, 'demeaned': piece - piece.mean(), 'logged': logged}) dr = bdate_range('1/1/2000', periods=100) ts = Series(np.random.randn(100), index=dr) grouped = ts.groupby(lambda x: x.month) result = grouped.apply(f) assert isinstance(result, DataFrame) tm.assert_index_equal(result.index, ts.index) def test_apply_series_yield_constant(df): result = df.groupby(['A', 'B'])['C'].apply(len) assert result.index.names[:2] == ('A', 'B') def test_apply_frame_yield_constant(df): # GH13568 result = df.groupby(['A', 'B']).apply(len) assert isinstance(result, Series) assert result.name is None result = df.groupby(['A', 'B'])[['C', 'D']].apply(len) assert isinstance(result, Series) assert result.name is None def test_apply_frame_to_series(df): grouped = df.groupby(['A', 'B']) result = grouped.apply(len) expected = grouped.count()['C'] tm.assert_index_equal(result.index, expected.index) tm.assert_numpy_array_equal(result.values, expected.values) def test_apply_frame_concat_series(): def trans(group): return group.groupby('B')['C'].sum().sort_values()[:2] def trans2(group): grouped = group.groupby(df.reindex(group.index)['B']) return grouped.sum().sort_values()[:2] df = DataFrame({'A': np.random.randint(0, 5, 1000), 'B': np.random.randint(0, 5, 1000), 'C': np.random.randn(1000)}) result = df.groupby('A').apply(trans) exp = df.groupby('A')['C'].apply(trans2) tm.assert_series_equal(result, exp, check_names=False) assert result.name == 'C' def test_apply_transform(ts): grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) tm.assert_series_equal(result, expected) def test_apply_multikey_corner(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) def f(group): return group.sort_values('A')[-5:] result = grouped.apply(f) for key, group in grouped: tm.assert_frame_equal(result.loc[key], f(group)) def test_apply_chunk_view(): # Low level tinkering could be unsafe, make sure not df = DataFrame({'key': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'value': compat.lrange(9)}) # return view f = lambda x: x[:2] result = df.groupby('key', group_keys=False).apply(f) expected = df.take([0, 1, 3, 4, 6, 7]) tm.assert_frame_equal(result, expected) def test_apply_no_name_column_conflict(): df = DataFrame({'name': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2], 'name2': [0, 0, 0, 1, 1, 1, 0, 0, 1, 1], 'value': compat.lrange(10)[::-1]}) # it works! #2605 grouped = df.groupby(['name', 'name2']) grouped.apply(lambda x: x.sort_values('value', inplace=True)) def test_apply_typecast_fail(): df = DataFrame({'d': [1., 1., 1., 2., 2., 2.], 'c': np.tile( ['a', 'b', 'c'], 2), 'v': np.arange(1., 7.)}) def f(group): v = group['v'] group['v2'] = (v - v.min()) / (v.max() - v.min()) return group result = df.groupby('d').apply(f) expected = df.copy() expected['v2'] = np.tile([0., 0.5, 1], 2) tm.assert_frame_equal(result, expected) def test_apply_multiindex_fail(): index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3] ]) df = DataFrame({'d': [1., 1., 1., 2., 2., 2.], 'c': np.tile(['a', 'b', 'c'], 2), 'v': np.arange(1., 7.)}, index=index) def f(group): v = group['v'] group['v2'] = (v - v.min()) / (v.max() - v.min()) return group result = df.groupby('d').apply(f) expected = df.copy() expected['v2'] = np.tile([0., 0.5, 1], 2) tm.assert_frame_equal(result, expected) def test_apply_corner(tsframe): result = tsframe.groupby(lambda x: x.year).apply(lambda x: x * 2) expected = tsframe * 2 tm.assert_frame_equal(result, expected) def test_apply_without_copy(): # GH 5545 # returning a non-copy in an applied function fails data = DataFrame({'id_field': [100, 100, 200, 300], 'category': ['a', 'b', 'c', 'c'], 'value': [1, 2, 3, 4]}) def filt1(x): if x.shape[0] == 1: return x.copy() else: return x[x.category == 'c'] def filt2(x): if x.shape[0] == 1: return x else: return x[x.category == 'c'] expected = data.groupby('id_field').apply(filt1) result = data.groupby('id_field').apply(filt2) tm.assert_frame_equal(result, expected) def test_apply_corner_cases(): # #535, can't use sliding iterator N = 1000 labels = np.random.randint(0, 100, size=N) df = DataFrame({'key': labels, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) grouped = df.groupby('key') def f(g): g['value3'] = g['value1'] * 2 return g result = grouped.apply(f) assert 'value3' in result def test_apply_numeric_coercion_when_datetime(): # In the past, group-by/apply operations have been over-eager # in converting dtypes to numeric, in the presence of datetime # columns. Various GH issues were filed, the reproductions # for which are here. # GH 15670 df = pd.DataFrame({'Number': [1, 2], 'Date': ["2017-03-02"] * 2, 'Str': ["foo", "inf"]}) expected = df.groupby(['Number']).apply(lambda x: x.iloc[0]) df.Date = pd.to_datetime(df.Date) result = df.groupby(['Number']).apply(lambda x: x.iloc[0]) tm.assert_series_equal(result['Str'], expected['Str']) # GH 15421 df = pd.DataFrame({'A': [10, 20, 30], 'B': ['foo', '3', '4'], 'T': [pd.Timestamp("12:31:22")] * 3}) def get_B(g): return g.iloc[0][['B']] result = df.groupby('A').apply(get_B)['B'] expected = df.B expected.index = df.A tm.assert_series_equal(result, expected) # GH 14423 def predictions(tool): out = pd.Series(index=['p1', 'p2', 'useTime'], dtype=object) if 'step1' in list(tool.State): out['p1'] = str(tool[tool.State == 'step1'].Machine.values[0]) if 'step2' in list(tool.State): out['p2'] = str(tool[tool.State == 'step2'].Machine.values[0]) out['useTime'] = str( tool[tool.State == 'step2'].oTime.values[0]) return out df1 = pd.DataFrame({'Key': ['B', 'B', 'A', 'A'], 'State': ['step1', 'step2', 'step1', 'step2'], 'oTime': ['', '2016-09-19 05:24:33', '', '2016-09-19 23:59:04'], 'Machine': ['23', '36L', '36R', '36R']}) df2 = df1.copy() df2.oTime = pd.to_datetime(df2.oTime) expected = df1.groupby('Key').apply(predictions).p1 result = df2.groupby('Key').apply(predictions).p1 tm.assert_series_equal(expected, result) def test_time_field_bug(): # Test a fix for the following error related to GH issue 11324 When # non-key fields in a group-by dataframe contained time-based fields # that were not returned by the apply function, an exception would be # raised. df = pd.DataFrame({'a': 1, 'b': [datetime.now() for nn in range(10)]}) def func_with_no_date(batch): return pd.Series({'c': 2}) def func_with_date(batch): return pd.Series({'b': datetime(2015, 1, 1), 'c': 2}) dfg_no_conversion = df.groupby(by=['a']).apply(func_with_no_date) dfg_no_conversion_expected = pd.DataFrame({'c': 2}, index=[1]) dfg_no_conversion_expected.index.name = 'a' dfg_conversion = df.groupby(by=['a']).apply(func_with_date) dfg_conversion_expected = pd.DataFrame( {'b': datetime(2015, 1, 1), 'c': 2}, index=[1]) dfg_conversion_expected.index.name = 'a' tm.assert_frame_equal(dfg_no_conversion, dfg_no_conversion_expected) tm.assert_frame_equal(dfg_conversion, dfg_conversion_expected) def test_gb_apply_list_of_unequal_len_arrays(): # GH1738 df = DataFrame({'group1': ['a', 'a', 'a', 'b', 'b', 'b', 'a', 'a', 'a', 'b', 'b', 'b'], 'group2': ['c', 'c', 'd', 'd', 'd', 'e', 'c', 'c', 'd', 'd', 'd', 'e'], 'weight': [1.1, 2, 3, 4, 5, 6, 2, 4, 6, 8, 1, 2], 'value': [7.1, 8, 9, 10, 11, 12, 8, 7, 6, 5, 4, 3]}) df = df.set_index(['group1', 'group2']) df_grouped = df.groupby(level=['group1', 'group2'], sort=True) def noddy(value, weight): out = np.array(value * weight).repeat(3) return out # the kernel function returns arrays of unequal length # pandas sniffs the first one, sees it's an array and not # a list, and assumed the rest are of equal length # and so tries a vstack # don't die df_grouped.apply(lambda x: noddy(x.value, x.weight)) def test_groupby_apply_all_none(): # Tests to make sure no errors if apply function returns all None # values. Issue 9684. test_df = DataFrame({'groups': [0, 0, 1, 1], 'random_vars': [8, 7, 4, 5]}) def test_func(x): pass result = test_df.groupby('groups').apply(test_func) expected =
DataFrame()
pandas.DataFrame
from pathlib import Path from unicodedata import normalize import sys from itertools import chain sys.path.append("c:\\Users\\kpdav\\machine_learning\\projects\\PGA-portfolio-optimizer\\config") import config import requests from bs4 import BeautifulSoup import pandas as pd def pgatour_tournament_ids(url): """Find pgatour.com tournament ids on webpage Args: url (str) : pgatour.com stats webpage Returns: tournament_ids, with entires of (tournament_id, tournament_name) """ page = requests.get(url) soup = BeautifulSoup(page.content, "lxml") season = int(url[url.rfind("y") + 1:url.rfind(".")]) headers = soup.find("section", class_="statistics-details-content") tournaments_info = [] if headers is not None: tournament_parent = headers.find_all("div", class_="statistics-details-select-wrap tournament") if tournament_parent is not None: tournaments = tournament_parent[0].find_all("option") for tourn in tournaments: tournaments_info.append((tourn["value"], tourn.text, season)) return tournaments_info def get_pgatour_ids(start, end): """Get pgatour.com tournament ids for a range of seasons Args: start (int) : start season end (int): end season Returns: pgatour tournament ids """ seasons = [year for year in range(start, end+1)] # same tournament id's for all stat pages on pgatour.com urls = [f"https://www.pgatour.com/content/pgatour/stats/stat.328.y{season}.html" for season in seasons] pgatour_ids = [pgatour_tournament_ids(url) for url in urls] # flatten data pgatour_ids = list(chain.from_iterable(pgatour_ids)) return pgatour_ids def save_pgatour_ids(file_p): """Save pgatour tournament ids in given file path Args: file_p (str) : file path """ pgatour_data = get_pgatour_ids(2017, 2020) df = pd.DataFrame(pgatour_data, columns=["tournament_id", "tournament_name", "season"]) df.to_csv(file_p, index=False) def get_espn_tournaments(start, end=None, all_tournaments=False): """Get espn tournaments for given season(s). Notes: if all_tournaments is left as False, the dataframe of tournaments will contain only valid tournamets. Otherwise tournaments that have not been cancelled will be given (this includes tournaments of match play, charity events, etc.) Args: start (int) : starting pga season end (int) : ending pga season, optional all_tournaments (bool) : get all or valid tournaments Returns: dataframe of tournaments for specified season(s) """ if all_tournaments: pass else: # change path to point to 2011 to 2016 espn tournaments valid_tournaments_path = str(Path(config.TOURNAMENTS_DIR, "valid_espn_tournaments_2011_2016.csv")) df = pd.read_csv(valid_tournaments_path, date_parser=["date"]) if end is not None: season_df = df[(df.season_id >= start) & (df.season_id <= end)] else: season_df = df[df.season_id == start] return season_df def pgatour_statistic(url): """Get data on give pgatour statistic Args: url (str) : pgatour statistic url Returns: data of pgatour statistic """ with requests.Session() as session: page = session.get(url) soup = BeautifulSoup(page.content, "lxml") print(f"Fetching: {url}") data = [] data_keys = [] # meta-information pga_stat_id = url[url.rfind("stat.") + 5 : url.rfind(".y")] pga_tourn_id = url[url.rfind("off.") + 4 : url.rfind(".")] pga_season_id = url[url.rfind("y") + 1: url.rfind(".eoff")] statistic_name = soup.select("section.statistics-details-content") if statistic_name is not None: name_header = statistic_name[0].find("div", class_="header") name = name_header.find("h1") if name is not None: pga_stat_name = name.text pga_stat_name = pga_stat_name.replace(" ", "_") statistic_table = soup.select("div.details-table-wrap") if statistic_table is not None: header = statistic_table[0].find("thead") if header is not None: header_cols = header.find_all("th") for h_col in header_cols: col_str = h_col.text col_str = normalize('NFKD',col_str) col_str = col_str.strip() col_str = col_str.replace(" ", "_") data_keys.append(col_str) body = statistic_table[0].find("tbody") if body is not None: players = body.find_all("tr") for player in players: p_data = player.find_all("td") player_dict = {} player_dict["pga_stat_name"] = pga_stat_name player_dict["pga_stat_id"] = pga_stat_id player_dict["pga_tourn_id"] = pga_tourn_id player_dict["pga_season_id"] = pga_season_id key_counter = 0 for col in p_data: player_dict[data_keys[key_counter]] = col.text.strip() key_counter += 1 data.append(player_dict) return data def get_pgatour_statistic(url, start, end=None): """Get pgatour statistic over given range of season(s) Args: url (str) : base url for pga statistic start (int) : start season end (int) : end season Returns: dataframe of pgatour statistic over given range of season(s) """ front_url = url[:url.rfind("html")] end_url = url[url.rfind("."): ] if end is not None: base_urls = [front_url + "y" + str(season) for season in range(start, end+1)] pgatour_tournaments_path = str(Path(config.RAW_DATA_DIR, "PGATOUR_tournament_ids_2017_2020.csv")) pgatour_ids = pd.read_csv(pgatour_tournaments_path) pgatour_stat_urls = [] for url in base_urls: season_id = int(url[url.rfind("y")+1:]) tournament_id_list = pgatour_ids["tournament_id"][pgatour_ids["season"] == season_id] for t_id in tournament_id_list: stat_url = url + ".eoff." + t_id + end_url # print(stat_url) pgatour_stat_urls.append(stat_url) # tournament_id_list = pgatour_ids["tournament_id"][(pgatour_ids["season"] <= end) & (pgatour_ids["season"] >= start)].tolist() stat_data = [pgatour_statistic(url) for url in pgatour_stat_urls] # flatten data stat_data = list(chain.from_iterable(stat_data)) df = pd.DataFrame(stat_data) return df else: base_url = front_url + "y" + str(start) # Make into a function (get stored pgatour tournament ids) pgatour_tournaments_path = str(Path(config.RAW_DATA_DIR, "PGATOUR_tournament_ids_2017_2020.csv")) pgatour_ids = pd.read_csv(pgatour_tournaments_path) tournament_id_list = pgatour_ids["tournament_id"][pgatour_ids["season"] == start].tolist() pgatour_stat_urls = [base_url + ".eoff." + t_id + end_url for t_id in tournament_id_list] stat_data = [pgatour_statistic(url) for url in pgatour_stat_urls] # flatten data stat_data = list(chain.from_iterable(stat_data)) df =
pd.DataFrame(stat_data)
pandas.DataFrame
""" Script to extract all existing ontology annotations in HCA Ingest for a given set of projects. The script takes a list of project UUIDs and extracts the corresponding ontology annotations from the ingest API (prod). Project UUIDs can be specified as a comma delimited list or as a text file. You can run the script in your favourite IDE (eg Pycharm) or via the command line using `python3 ontology_mappings_extractor.py` The script generates a file called YYYY-mm-dd_HH-MM_property_mappings.tsv, which contains every single free-text to ontology term mapping in every biomaterial or protocol in every submission requested. To get a list of unique mappings by project, use the -u flag Improvement suggestion: read all mappings into a dictionary first, then save/print only unique ones. Warning - this script takes a while (10s of mins to a couple of hours!) to run for large submissions or if you give it many in one go! Copied from HumanCellAtlas/data-wrangling 30/04/2021. Original Author <NAME> Updated/refactored by <NAME> in April/May 2021. """ import argparse import requests import pandas as pd import sys from datetime import datetime import re def define_parser(): parser = argparse.ArgumentParser(description="Parser for the arguments") parser.add_argument("--file", "-f", action="store", dest="file_path", type=str, help="Path to a text file with project uuids.") parser.add_argument("--project_uuid", "-p", action="store", dest="uuid_list", type=str, help="Single or comma-delimited list of project uuids.") parser.add_argument("--unique", "-u", action="store_true", dest="unique", help="If specified, collapse duplicate curations per project.") parser.add_argument("--api", "-a", action="store", dest="ingest_api_url", default="http://api.ingest.archive.data.humancellatlas.org/", help="URL of the api to search, default is current prod api.") parser.add_argument("--iri_replace", "-i", action="store", dest="iri_replace", help="Path to a file where there are obo ids like EFO:000001 in column named 'SEMANTIC_TAG' " "and replace these with full iris. All other arguments ignored.") return parser def extract_mappings(uuid, api, unique, file_string): """ Method to iterate over project metadata as well as the entities in all submissions in a project and save progress to file. :param uuid: project uuid :type uuid: string :param api: string of ingest api to search :type api: string :param unique: Toggle to collapse duplicate curations :type unique: bool :param file_string: Path to file to save extracted mappings :type file_string: str """ project_json = requests.get("{}projects/search/findByUuid?uuid={}".format(api, uuid)).json() project_content = project_json['content'] project_name = project_content['project_core']['project_short_name'] if re.search("Integration Test", project_name): return project_mapping_list = read_properties(project_content, 'project', project_name, property_list=[]) save_df(project_mapping_list, unique, file_string) submissions_link = project_json['_links']['submissionEnvelopes']['href'] submissions_json = requests.get(submissions_link).json() for submission in submissions_json['_embedded']['submissionEnvelopes']: biomaterials_link = submission['_links']['biomaterials']['href'] biomaterials_mapping_list = process_json(biomaterials_link, 'biomaterials', project_name) save_df(biomaterials_mapping_list, unique, file_string) protocols_link = submission['_links']['protocols']['href'] protocols_mapping_list = process_json(protocols_link, 'protocols', project_name) save_df(protocols_mapping_list, unique, file_string) files_link = submission['_links']['files']['href'] files_mapping_list = process_json(files_link, 'files', project_name) save_df(files_mapping_list, unique, file_string) # TODO: Process Analysis entities def process_json(link, schema_type, project_name): """ Iterate through all pages of entities for a particular schema type in a particular submission. :param link: Link to the submission entities to request :type link: string :param schema_type: which type to return, one of biomaterials, files, protocols :type schema_type: string :param project_name: The short name of the projects :type project_name: string :return mapping_list: List of curation mappings :rtype mapping_list: list """ done = False mapping_list = [] while not done: entries = requests.get(link).json() try: for entry in entries['_embedded'][schema_type]: bioentity = entry['content']['describedBy'].split('/')[-1] mapping_list.extend(read_properties(entry['content'], bioentity, project_name, property_list=[])) if 'next' in entries['_links']: link = entries['_links']['next']['href'] else: done = True except KeyError: print("Error retrieving metadata from {}. Probably no submission metadata. Skipping...".format(link)) done = True return mapping_list # this function recursively reads through an entire json doc to find all the instances of ontology mappings def read_properties(data, bioentity, project_name, property_list=[], root=None): """ Recursively read through all properties of each json entity and retrieve ontology curations. :param data: Content from api request :type data: dict :param bioentity: The schema type of the content, fills the 'BIOENTITY' field in output :type bioentity: string :param project_name: The shortname of the project, fills the 'STUDY' field in output :type project_name: string :param property_list: The list of properties and curations in a dictionary for each property :type property_list: list of dicts :param root: :type root: :return: property_list - the list of property curations :rtype: list of dicts """ for k, v in data.items(): if isinstance(v, dict): if "ontology" in v: ontology = v['ontology'].strip() if ontology != "": text = v['text'].strip() property_list.append([project_name, bioentity, k, text, ontology]) else: read_properties(v, bioentity, project_name, property_list, k) elif isinstance(v, list): for index, e in enumerate(v): if isinstance(e, dict): if "ontology" in e.keys(): ontology = e['ontology'].strip() if ontology != "": text = e['text'].strip() property_list.append([project_name, bioentity, k, text, ontology]) else: read_properties(e, bioentity, project_name, property_list, k) return property_list def save_df(type_mapping_list, unique, file_string, write_mode='a', head=False): """ Save curation dataframe to file. :param type_mapping_list: The list of property curations :type type_mapping_list: list of dicts :param unique: Whether to collapse unique curations :type unique: bool :param file_string: The path to where to save the curations :type file_string: string :param write_mode: The write mode to use, append by default :type write_mode: string :param head: Whether to print the header of the dataframe :type head: bool """ column_names = ['STUDY', 'BIOENTITY', 'PROPERTY_TYPE', 'PROPERTY_VALUE', 'SEMANTIC_TAG'] property_df = pd.DataFrame(type_mapping_list, columns=column_names) if unique: property_df = property_df.drop_duplicates() property_df.to_csv(file_string, sep="\t", index=False, mode=write_mode, header=head) def get_full_iri(obo_id): """ Given an ontology id of the form X:01234, look up the full iri using the ebi ols :param obo_id: ontology identifier, e.g. HsapDv:0000087 :type obo_id: string :return: full iri for the term, e.g. http://purl.obolibrary.org/obo/HsapDv_0000087 :rtype: string """ try: obo_id = obo_id.strip() ols_response = requests.get('http://www.ebi.ac.uk/ols/api/terms?obo_id={}'.format(obo_id)) ols_json = ols_response.json() return ols_json['_embedded']['terms'][0]['iri'] except KeyError: print('http://www.ebi.ac.uk/ols/api/terms?id={}'.format(obo_id)) print("Could not find {}.".format(obo_id)) return None except ConnectionError as e: print(e) print("Something went wrong while trying to fetch from api.") def replace_obo_ids(property_df): """ Given a pandas DataFrame with the column 'SEMANTIC_TAG' filled with ontology ids of the form X:01234, replace those ontology ids with the full iris :param property_df: A pandas dataframe with column 'SEMANTIC_TAG' filled with obo_ids :type property_df: DataFrame :return: The updated DataFrame :rtype: DataFrame """ obo_ids = list(set(property_df['SEMANTIC_TAG'])) print("Found {} obo_ids to search and replace.".format(len(obo_ids))) obo_dict = {obo_id: get_full_iri(obo_id) for obo_id in obo_ids} property_df["SEMANTIC_TAG"].replace(obo_dict, inplace=True) return property_df def main(project_uuids, unique, api, iri_replace): """ The main method of the program that calls other methods and iterates over the specified project uuids. :param project_uuids: A list of project uuids from which to retrieve ontology curations :type project_uuids: list of strings :param unique: Toggle to indicate whether to collapse duplicate curations within a project :type unique: bool :param api: The ingest api to search :type api: string :param iri_replace: Toggle to indicate whether to replace obo ids with full iris :type iri_replace: bool """ if iri_replace: print("Getting full iris") mappings_df =
pd.read_csv(iri_replace, sep="\t")
pandas.read_csv
import json import logging import os import pathlib from itertools import chain from PIL import Image import mxnet as mx import numpy as np import pandas as pd from mxnet.recordio import MXIndexedRecordIO from tqdm import tqdm logging.basicConfig(level=logging.INFO) logger = logging.getLogger() RANDOM_STATE = 666 import pdb def json_labels_to_csv( dataset_path, output_csv_file='dataset_{}.csv', output_format=['class_name', 'fname', 'xmin', 'ymin', 'xmax', 'ymax','im_rows','im_cols','image_id'], val_split=0.1, shuffle=True ): """ :param dataset_path: Path to coco-like dataset (each pic has a json label file) :param output_csv_file: :param output_format: order of the columns in the csv-file defaults to: ['class_name', 'fname', 'xmin', 'ymin', 'xmax', 'ymax', 'im_rows','im_cols','image_id'] :param val_split: frac=0..1 size of validation data split :param shuffle: :return: """ dataset_path = pathlib.Path(dataset_path) images = list(dataset_path.glob('*.jpg')) records = [] for i, image_path in tqdm(enumerate(images)): file_name = image_path.name image = dataset_path / (image_path.stem + '.jpg') im = Image.open(image) im_rows, im_cols = im.size annotation = dataset_path / (image_path.stem + '.json') annotation_dict = json.loads(open(str(annotation)).read()) boxes = annotation_dict['boxes'] for box in boxes.keys(): current_box = boxes[box] record = { 'fname': file_name, 'class_name': current_box['illness'], 'xmin': int(current_box['xmin']), 'ymin': int(current_box['ymin']), 'xmax': int(current_box['xmax']), 'ymax': int(current_box['ymax']), 'im_rows': im_rows, 'im_cols': im_cols, 'image_id': i } records.append(record) df =
pd.DataFrame(records)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from itertools import product import calendar class Features(): def __init__(self): self.df = [] self.readFile() def execute(self): self.remove_ex_value() self.remove_same_data() self.augumentation() self.create_test_col() self.locate_feature() self.encodeing() self.time_feature() self.history_saled_feature() self.slide_window_feature() self.three_month_buying_feature() self.history_sum_feature() self.another_feature() self.save() def readFile(self): self.test = pd.read_csv('./data/test.csv') self.sales = pd.read_csv('./data/sales_train.csv') self.shops = pd.read_csv('./data/shops.csv') self.items = pd.read_csv('./data/items.csv') self.item_cats = pd.read_csv('./data/item_categories.csv') def remove_ex_value(self): self.train = self.sales[(self.sales.item_price < 100000) & (self.sales.item_price > 0)] self.train = self.train[self.sales.item_cnt_day < 1001] def remove_same_data(self): self.train.loc[self.train.shop_id == 0, 'shop_id'] = 57 self.test.loc[self.test.shop_id == 0, 'shop_id'] = 57 self.train.loc[self.train.shop_id == 1, 'shop_id'] = 58 self.test.loc[self.test.shop_id == 1, 'shop_id'] = 58 self.train.loc[self.train.shop_id == 40, 'shop_id'] = 39 self.test.loc[self.test.shop_id == 40, 'shop_id'] = 39 def augumentation(self): self.index_cols = ['shop_id', 'item_id', 'date_block_num'] for block_num in self.train['date_block_num'].unique(): cur_shops = self.train.loc[self.sales['date_block_num'] == block_num, 'shop_id'].unique() cur_items = self.train.loc[self.sales['date_block_num'] == block_num, 'item_id'].unique() self.df.append(np.array(list(product(*[cur_shops, cur_items, [block_num]])),dtype='int32')) self.df = pd.DataFrame(np.vstack(self.df), columns = self.index_cols,dtype=np.int32) self.group = self.train.groupby(['date_block_num','shop_id','item_id']).agg({'item_cnt_day': ['sum']}) self.group.columns = ['item_cnt_month'] self.group.reset_index(inplace=True) self.df = pd.merge(self.df, self.group, on=self.index_cols, how='left') self.df['item_cnt_month'] = (self.df['item_cnt_month'] .fillna(0) .clip(0,20) .astype(np.float16)) def create_test_col(self): self.test['date_block_num'] = 34 self.test['date_block_num'] = self.test['date_block_num'].astype(np.int8) self.test['shop_id'] = self.test['shop_id'].astype(np.int8) self.test['item_id'] = self.test['item_id'].astype(np.int16) df = pd.concat([self.df, self.test], ignore_index=True, sort=False, keys=self.index_cols) df.fillna(0, inplace=True) def locate_feature(self): self.shops['city'] = self.shops['shop_name'].apply(lambda x: x.split()[0].lower()) self.shops.loc[self.shops.city == '!якутск', 'city'] = 'якутск' self.shops['city_code'] = LabelEncoder().fit_transform(self.shops['city']) coords = dict() coords['якутск'] = (62.028098, 129.732555, 4) coords['адыгея'] = (44.609764, 40.100516, 3) coords['балашиха'] = (55.8094500, 37.9580600, 1) coords['волжский'] = (53.4305800, 50.1190000, 3) coords['вологда'] = (59.2239000, 39.8839800, 2) coords['воронеж'] = (51.6720400, 39.1843000, 3) coords['выездная'] = (0, 0, 0) coords['жуковский'] = (55.5952800, 38.1202800, 1) coords['интернет-магазин'] = (0, 0, 0) coords['казань'] = (55.7887400, 49.1221400, 4) coords['калуга'] = (54.5293000, 36.2754200, 4) coords['коломна'] = (55.0794400, 38.7783300, 4) coords['красноярск'] = (56.0183900, 92.8671700, 4) coords['курск'] = (51.7373300, 36.1873500, 3) coords['москва'] = (55.7522200, 37.6155600, 1) coords['мытищи'] = (55.9116300, 37.7307600, 1) coords['н.новгород'] = (56.3286700, 44.0020500, 4) coords['новосибирск'] = (55.0415000, 82.9346000, 4) coords['омск'] = (54.9924400, 73.3685900, 4) coords['ростовнадону'] = (47.2313500, 39.7232800, 3) coords['спб'] = (59.9386300, 30.3141300, 2) coords['самара'] = (53.2000700, 50.1500000, 4) coords['сергиев'] = (56.3000000, 38.1333300, 4) coords['сургут'] = (61.2500000, 73.4166700, 4) coords['томск'] = (56.4977100, 84.9743700, 4) coords['тюмень'] = (57.1522200, 65.5272200, 4) coords['уфа'] = (54.7430600, 55.9677900, 4) coords['химки'] = (55.8970400, 37.4296900, 1) coords['цифровой'] = (0, 0, 0) coords['чехов'] = (55.1477000, 37.4772800, 4) coords['ярославль'] = (57.6298700, 39.8736800, 2) self.shops['city_coord_1'] = self.shops['city'].apply(lambda x: coords[x][0]) self.shops['city_coord_2'] = self.shops['city'].apply(lambda x: coords[x][1]) self.shops['country_part'] = self.shops['city'].apply(lambda x: coords[x][2]) self.shops = self.shops[['shop_id', 'city_code', 'city_coord_1', 'city_coord_2', 'country_part']] self.df = pd.merge(self.df, self.shops, on=['shop_id'], how='left') def encodeing(self): map_dict = { 'Чистые носители (штучные)': 'Чистые носители', 'Чистые носители (шпиль)' : 'Чистые носители', 'PC ': 'Аксессуары', 'Служебные': 'Служебные ' } self.items = pd.merge(self.items, self.item_cats, on='item_category_id') self.items['item_category'] = self.items['item_category_name'].apply(lambda x: x.split('-')[0]) self.items['item_category'] = self.items['item_category'].apply(lambda x: map_dict[x] if x in map_dict.keys() else x) self.items['item_category_common'] = LabelEncoder().fit_transform(self.items['item_category']) self.items['item_category_code'] = LabelEncoder().fit_transform(self.items['item_category_name']) self.items = self.items[['item_id', 'item_category_common', 'item_category_code']] self.df = pd.merge(self.df, self.items, on=['item_id'], how='left') def time_feature(self): def count_days(date_block_num): year = 2013 + date_block_num // 12 month = 1 + date_block_num % 12 weeknd_count = len([1 for i in calendar.monthcalendar(year, month) if i[6] != 0]) days_in_month = calendar.monthrange(year, month)[1] return weeknd_count, days_in_month, month map_dict = {i: count_days(i) for i in range(35)} self.df['weeknd_count'] = self.df['date_block_num'].apply(lambda x: map_dict[x][0]) self.df['days_in_month'] = self.df['date_block_num'].apply(lambda x: map_dict[x][1]) def history_saled_feature(self): first_item_block = self.df.groupby(['item_id'])['date_block_num'].min().reset_index() first_item_block['item_first_interaction'] = 1 first_shop_item_buy_block = self.df[self.df['date_block_num'] > 0].groupby(['shop_id', 'item_id'])['date_block_num'].min().reset_index() first_shop_item_buy_block['first_date_block_num'] = first_shop_item_buy_block['date_block_num'] self.df =
pd.merge(self.df, first_item_block[['item_id', 'date_block_num', 'item_first_interaction']], on=['item_id', 'date_block_num'], how='left')
pandas.merge
from datetime import datetime, timedelta import unittest from pandas.core.datetools import ( bday, BDay, BQuarterEnd, BMonthEnd, BYearEnd, MonthEnd, DateOffset, Week, YearBegin, YearEnd, Hour, Minute, Second, format, ole2datetime, to_datetime, normalize_date, getOffset, getOffsetName, inferTimeRule, hasOffsetName) from nose.tools import assert_raises #### ## Misc function tests #### def test_format(): actual = format(datetime(2008, 1, 15)) assert actual == '20080115' def test_ole2datetime(): actual = ole2datetime(60000) assert actual == datetime(2064, 4, 8) assert_raises(Exception, ole2datetime, 60) def test_to_datetime1(): actual = to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) actual = to_datetime('20080115') assert actual == datetime(2008, 1, 15) # unparseable s = 'Month 1, 1999' assert to_datetime(s) == s def test_normalize_date(): actual = normalize_date(datetime(2007, 10, 1, 1, 12, 5, 10)) assert actual == datetime(2007, 10, 1) ##### ### DateOffset Tests ##### class TestDateOffset(object): def setUp(self): self.d = datetime(2008, 1, 2) def test_repr(self): repr(DateOffset()) repr(DateOffset(2)) repr(2 * DateOffset()) repr(2 * DateOffset(months=2)) def test_mul(self): assert DateOffset(2) == 2 * DateOffset(1) assert DateOffset(2) == DateOffset(1) * 2 def test_constructor(self): assert((self.d + DateOffset(months=2)) == datetime(2008, 3, 2)) assert((self.d - DateOffset(months=2)) == datetime(2007, 11, 2)) assert((self.d + DateOffset(2)) == datetime(2008, 1, 4)) assert not DateOffset(2).isAnchored() assert DateOffset(1).isAnchored() d = datetime(2008, 1, 31) assert((d + DateOffset(months=1)) == datetime(2008, 2, 29)) def test_copy(self): assert(DateOffset(months=2).copy() == DateOffset(months=2)) class TestBusinessDay(unittest.TestCase): def setUp(self): self.d = datetime(2008, 1, 1) self.offset = BDay() self.offset2 = BDay(2) def test_repr(self): assert repr(self.offset) == '<1 BusinessDay>' assert repr(self.offset2) == '<2 BusinessDays>' expected = '<1 BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 1, 3)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + BDay(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10*self.offset, self.d + BDay(10)) def testMult2(self): self.assertEqual(self.d + (-5*BDay(-10)), self.d + BDay(50)) def testRollback1(self): self.assertEqual(BDay(10).rollback(self.d), self.d) def testRollback2(self): self.assertEqual(BDay(10).rollback(datetime(2008, 1, 5)), datetime(2008, 1, 4)) def testRollforward1(self): self.assertEqual(BDay(10).rollforward(self.d), self.d) def testRollforward2(self): self.assertEqual(BDay(10).rollforward(datetime(2008, 1, 5)), datetime(2008, 1, 7)) def test_onOffset(self): tests = [(BDay(), datetime(2008, 1, 1), True), (BDay(), datetime(2008, 1, 5), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): tests = [] tests.append((bday, {datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) tests.append((2*bday, {datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) tests.append((-bday, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) tests.append((-2*bday, {datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) tests.append((BDay(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_apply_corner(self): self.assertRaises(Exception, BDay().apply, BMonthEnd()) def assertOnOffset(offset, date, expected): actual = offset.onOffset(date) assert actual == expected class TestWeek(unittest.TestCase): def test_corner(self): self.assertRaises(Exception, Week, weekday=7) self.assertRaises(Exception, Week, weekday=-1) def test_isAnchored(self): self.assert_(Week(weekday=0).isAnchored()) self.assert_(not Week().isAnchored()) self.assert_(not Week(2, weekday=2).isAnchored()) self.assert_(not Week(2).isAnchored()) def test_offset(self): tests = [] tests.append((Week(), # not business week {datetime(2008, 1, 1): datetime(2008, 1, 8), datetime(2008, 1, 4): datetime(2008, 1, 11), datetime(2008, 1, 5): datetime(2008, 1, 12), datetime(2008, 1, 6): datetime(2008, 1, 13), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(weekday=0), # Mon {datetime(2007, 12, 31): datetime(2008, 1, 7), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(0, weekday=0), # n=0 -> roll forward. Mon {datetime(2007, 12, 31): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) tests.append((
Week(-2, weekday=1)
pandas.core.datetools.Week
import argparse import torch from src.data import processors import os import json import numpy as np from transformers import AutoTokenizer from src import setup, train from torch.utils.data import Subset, SequentialSampler, DataLoader from tqdm import tqdm from torch.distributions.categorical import Categorical from pathlib import Path import pandas as pd def compute_entropy(sampled, dataset, model, train_args): """Compute average entropy in label distribution for examples in [sampled].""" all_entropy = None data = Subset(dataset, sampled) sampler = SequentialSampler(data) dataloader = DataLoader(data, sampler=sampler, batch_size=train_args.per_gpu_eval_batch_size) for batch in tqdm(dataloader, desc="Computing entropy"): batch = tuple(t.to(train_args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1]} if train_args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if train_args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) logits = outputs[0] categorical = Categorical(logits = logits) entropy = categorical.entropy() if all_entropy is None: all_entropy = entropy.detach().cpu().numpy() else: all_entropy = np.append(all_entropy, entropy.detach().cpu().numpy(), axis=0) avg_entropy = all_entropy.mean() return avg_entropy def token_set(data, train_args): all_tokens = set() sampler = SequentialSampler(data) dataloader = DataLoader(data, sampler=sampler, batch_size=32) for batch in tqdm(dataloader, desc="Getting tokens"): with torch.no_grad(): tokens = batch[0].unique().tolist() all_tokens = all_tokens.union(tokens) return all_tokens def jaccard(a, b): ji = len(a.intersection(b))/len(a.union(b)) return ji def compute_diversity(sampled, data, train_args): # compare jaccard similarity between sampled and unsampled points data_sampled = Subset(data, sampled) unsampled = np.delete(torch.arange(len(data)), sampled) data_unsampled = Subset(data, unsampled) tokens_sampled = token_set(data_sampled, train_args) tokens_unsampled = token_set(data_unsampled, train_args) ji = jaccard(tokens_sampled, tokens_unsampled) return ji def get_stats(model_path, base_model, dataset): sampling, sample_size = model_path.name.split('_') sampled = torch.load(model_path / 'sampled.pt') diversity = compute_diversity(sampled, dataset, train_args) entropy = compute_entropy(sampled, dataset, base_model, train_args) stats = { "sampling":sampling, "iteration":int(sample_size)/100, "task":model_path.parent.name, "diversity":diversity, "uncertainty":entropy } return stats TASKNAME = {'sst-2':'SST-2'} parser = argparse.ArgumentParser() parser.add_argument( "--task_models", default=None, type=Path, help="Directory of models for task" ) parser.add_argument( "--output", default=None, type=Path, help="Path to output file" ) parser.add_argument( "--clear", action="store_true", help="Flag for clearing csv" ) args = parser.parse_args() # get base model trained on full data train_args = torch.load(args.task_models / 'base' / 'training_args.bin' ) base_model, tokenizer, model_class, tokenizer_class = setup.load_model(train_args) # load training data task = train_args.task_name processor = processors[task]() if task in TASKNAME: task = TASKNAME[task] dataset = train.load_and_cache_examples(train_args, train_args.task_name, tokenizer, evaluate=False) # analyze samples from different active learning iterations all_stats = [] for model_path in args.task_models.glob('**/') : print(model_path.name) if (model_path / 'sampled.pt').exists(): stats = get_stats(model_path, base_model, dataset) all_stats.append(stats) # output results df =
pd.DataFrame(all_stats)
pandas.DataFrame
from numpy import loadtxt from xgboost import XGBClassifier from catboost import CatBoostClassifier from matplotlib import pyplot as plt import pandas as pd import numpy as np from sklearn.metrics import roc_auc_score, f1_score from sklearn import metrics import smote_variants as sv from sklearn.linear_model import LogisticRegression from sklearn import svm import heapq # prepare the smote data --> X_samp, y_samp df =
pd.read_csv("original_data.csv")
pandas.read_csv
"""Thread for running an rdkafka_performance producer from librdkafka 1.1.0.""" import os import tempfile import threading import time import fabric import numpy import pandas class LibrdkafkaProducer(threading.Thread): def __init__( self, name, server, log, bootstrap_servers, topic, msg_size, msg_count, output_path, **kwargs ): super().__init__(name=name) self.server = server self.log = log self.kwargs = kwargs self.bootstrap_servers = bootstrap_servers self.topic = topic self.msg_size = msg_size self.msg_count = msg_count self.output_path = output_path self.kwargs = kwargs self.result = None self.start_time = None self.end_time = None self.cmd = self._build_cmd() def run(self): self.start_time = round(time.time()) self._add_to_log( "{} running command: '{}'".format(self.name, self.cmd) ) with fabric.Connection(self.server) as c: self.result = c.run(self.cmd, hide=True, pty=True) self._add_to_log("{} finished running command".format(self.name)) self.end_time = round(time.time()) def _build_cmd(self): cmd = "rm -f {} {}".format( os.path.join(self.output_path, "output"), os.path.join(self.output_path, "error"), ) cmd = cmd + " && mkdir -p {}".format(self.output_path) cmd = cmd + "&& /opt/dm_group/librdkafka/librdkafka-1.1.0/examples/" cmd = cmd + "rdkafka_performance -P -b {} -t {} -s {} -c {} -u".format( self.bootstrap_servers, self.topic, self.msg_size, self.msg_count ) if "configs" in self.kwargs: for config in self.kwargs["configs"]: cmd = cmd + " -X {}".format(config) if "rate" in self.kwargs: cmd = cmd + " -r {}".format(self.kwargs["rate"]) if "partition" in self.kwargs: cmd = cmd + " -p {}".format(self.kwargs["partition"]) if "acks" in self.kwargs: cmd = cmd + " -a {}".format(self.kwargs["acks"]) stdout_path = os.path.join(self.output_path, "output") stderr_path = os.path.join(self.output_path, "error") cmd = cmd + " 1>{} 2>{}".format(stdout_path, stderr_path) return cmd def _add_to_log(self, message): t = round(time.time()) self.log.put("{}: {}".format(t, message)) def get_producer_metrics_and_errors(producers): """Get the results for a list of producers from remote servers.""" producer_metrics = {} producer_errors = {} for producer in producers: with tempfile.TemporaryDirectory() as tmpdir: _copy_producer_files(producer.server, producer.output_path, tmpdir) producer_metrics[producer.name] = _read_producer_output( os.path.join(tmpdir, "output") ) producer_errors[producer.name] = _read_producer_errors( os.path.join(tmpdir, "error") ) return producer_metrics, producer_errors def _copy_producer_files(server, remote_src, local_dst): with fabric.Connection(server) as c: c.get( os.path.join(remote_src, "output"), os.path.join(local_dst, "output"), ) c.get( os.path.join(remote_src, "error"), os.path.join(local_dst, "error") ) def _read_producer_output(path): # _parse_producer_output would work with a file path, but we pass the file # to simplify testing. with open(path, "r") as f: data_frame = _parse_producer_output(f) return data_frame def _parse_producer_output(output): data = numpy.genfromtxt( output, delimiter="|", comments="%", skip_header=2, usecols=range(1, 12), dtype=numpy.dtype( [ ("time_ms", "u8"), ("msgs", "u8"), ("bytes", "u8"), ("rtt", "u8"), ("dr", "u8"), ("dr_msgs_per_s", "u8"), ("dr_MB_per_s", "f8"), ("dr_err", "u8"), ("tx_err", "u8"), ("queue", "u8"), ("offset", "u8"), ] ), ) return
pandas.DataFrame(data)
pandas.DataFrame
"""Aggregate or condense tract-level energy burden into county-level data. The output table stores the values of the minimum and maximum tract-level energy burden within each county. Usage: python <script> <input_csv> <output_csv> """ import pandas as pd from sys import argv df = pd.read_csv(argv[1], encoding='latin-1', dtype=str) df['energy_burden_percent_income'] = df['energy_burden_percent_income'].astype(int) gb = df.groupby(['state_code', 'county_code']) out_df =
pd.DataFrame()
pandas.DataFrame
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier =
pd.concat([outlier_names, principalDf_outlier], axis=1)
pandas.concat
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype import pandas as pd from pandas import Index, Period, PeriodIndex, Series, date_range, offsets, period_range import pandas.core.indexes.period as period import pandas.util.testing as tm class TestPeriodIndex: def setup_method(self, method): pass def test_construction_base_constructor(self): # GH 13664 arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="D")] tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object)) tm.assert_index_equal( pd.Index(np.array(arr)), pd.Index(np.array(arr), dtype=object) ) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") with tm.assert_produces_warning(FutureWarning): index = PeriodIndex(start=p, periods=10) expected = period_range(start="4/2/2012", periods=10, freq="B") tm.assert_index_equal(index, expected) index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") msg = "Can either instantiate from fields or endpoints, but not both" with pytest.raises(ValueError, match=msg): PeriodIndex( year=years, month=months, freq="M", start=Period("2007-01", freq="M") ) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, pd.Index(years)) tm.assert_index_equal(pindex.quarter, pd.Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): msg = "Not enough parameters to construct Period range" with pytest.raises(ValueError, match=msg): PeriodIndex(periods=10, freq="A") start = Period("2007", freq="A-JUN") end = Period("2010", freq="A-DEC") msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end) msg = ( "Of the three parameters: start, end, and periods, exactly two" " must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) with pytest.raises(ValueError, match=msg): PeriodIndex(end=end) result = period_range("2007-01", periods=10.5, freq="M") exp = period_range("2007-01", periods=10, freq="M") tm.assert_index_equal(result, exp) def test_constructor_fromarraylike(self): idx = period_range("2007-01", periods=20, freq="M") # values is an array of Period, thus can retrieve freq tm.assert_index_equal(PeriodIndex(idx.values), idx) tm.assert_index_equal(PeriodIndex(list(idx.values)), idx) msg = "freq not specified and cannot be inferred" with pytest.raises(ValueError, match=msg): PeriodIndex(idx._ndarray_values) with pytest.raises(ValueError, match=msg): PeriodIndex(list(idx._ndarray_values)) msg = "'Period' object is not iterable" with pytest.raises(TypeError, match=msg): PeriodIndex(data=Period("2007", freq="A")) result = PeriodIndex(iter(idx)) tm.assert_index_equal(result, idx) result = PeriodIndex(idx) tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq="M") tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq=offsets.MonthEnd()) tm.assert_index_equal(result, idx) assert result.freq == "M" result = PeriodIndex(idx, freq="2M") tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq=offsets.MonthEnd(2)) tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq="D") exp = idx.asfreq("D", "e") tm.assert_index_equal(result, exp) def test_constructor_datetime64arr(self): vals = np.arange(100000, 100000 + 10000, 100, dtype=np.int64) vals = vals.view(np.dtype("M8[us]")) msg = r"Wrong dtype: datetime64\[us\]" with pytest.raises(ValueError, match=msg): PeriodIndex(vals, freq="D") @pytest.mark.parametrize("box", [None, "series", "index"]) def test_constructor_datetime64arr_ok(self, box): # https://github.com/pandas-dev/pandas/issues/23438 data = pd.date_range("2017", periods=4, freq="M") if box is None: data = data._values elif box == "series": data = pd.Series(data) result = PeriodIndex(data, freq="D") expected = PeriodIndex( ["2017-01-31", "2017-02-28", "2017-03-31", "2017-04-30"], freq="D" ) tm.assert_index_equal(result, expected) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = PeriodIndex(["2013-01", "2013-03"], dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-03"], freq="M") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[M]" idx = PeriodIndex(["2013-01-05", "2013-03-05"], dtype="period[3D]") exp = PeriodIndex(["2013-01-05", "2013-03-05"], freq="3D") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[3D]" # if we already have a freq and its not the same, then asfreq # (not changed) idx = PeriodIndex(["2013-01-01", "2013-01-02"], freq="D") res = PeriodIndex(idx, dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-01"], freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" res = PeriodIndex(idx, freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" msg = "specified freq and dtype are different" with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex(["2011-01"], freq="M", dtype="period[D]") def test_constructor_empty(self): idx = pd.PeriodIndex([], freq="M") assert isinstance(idx, PeriodIndex) assert len(idx) == 0 assert idx.freq == "M" with pytest.raises(ValueError, match="freq not specified"): pd.PeriodIndex([]) def test_constructor_pi_nat(self): idx = PeriodIndex( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="M")] ) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array([Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="M")]) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex( [pd.NaT, pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M")] ) exp = PeriodIndex(["NaT", "NaT", "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array( [ pd.NaT, pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M"), ] ) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex([pd.NaT, pd.NaT, "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex([pd.NaT, pd.NaT]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array([pd.NaT, pd.NaT])) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(["NaT", "NaT"]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array(["NaT", "NaT"])) def test_constructor_incompat_freq(self): msg = "Input has different freq=D from PeriodIndex\\(freq=M\\)" with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="D")] ) with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( np.array( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="D")] ) ) # first element is pd.NaT with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( [pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( np.array( [pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) ) def test_constructor_mixed(self): idx = PeriodIndex(["2011-01", pd.NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex(["NaT", pd.NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["NaT", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex([Period("2011-01-01", freq="D"), pd.NaT, "2012-01-01"]) exp = PeriodIndex(["2011-01-01", "NaT", "2012-01-01"], freq="D") tm.assert_index_equal(idx, exp) def test_constructor_simple_new(self): idx = period_range("2007-01", name="p", periods=2, freq="M") result = idx._simple_new(idx, name="p", freq=idx.freq) tm.assert_index_equal(result, idx) result = idx._simple_new(idx.astype("i8"), name="p", freq=idx.freq) tm.assert_index_equal(result, idx) def test_constructor_simple_new_empty(self): # GH13079 idx = PeriodIndex([], freq="M", name="p") result = idx._simple_new(idx, name="p", freq="M") tm.assert_index_equal(result, idx) @pytest.mark.parametrize("floats", [[1.1, 2.1], np.array([1.1, 2.1])]) def test_constructor_floats(self, floats): msg = r"PeriodIndex\._simple_new does not accept floats" with pytest.raises(TypeError, match=msg): pd.PeriodIndex._simple_new(floats, freq="M") msg = "PeriodIndex does not allow floating point in construction" with pytest.raises(TypeError, match=msg): pd.PeriodIndex(floats, freq="M") def test_constructor_nat(self): msg = "start and end must not be NaT" with pytest.raises(ValueError, match=msg): period_range(start="NaT", end="2011-01-01", freq="M") with pytest.raises(ValueError, match=msg): period_range(start="2011-01-01", end="NaT", freq="M") def test_constructor_year_and_quarter(self): year = pd.Series([2001, 2002, 2003]) quarter = year - 2000 idx = PeriodIndex(year=year, quarter=quarter) strs = ["%dQ%d" % t for t in zip(quarter, year)] lops = list(map(Period, strs)) p = PeriodIndex(lops) tm.assert_index_equal(p, idx) @pytest.mark.parametrize( "func, warning", [(PeriodIndex, FutureWarning), (period_range, None)] ) def test_constructor_freq_mult(self, func, warning): # GH #7811 with tm.assert_produces_warning(warning): # must be the same, but for sure... pidx = func(start="2014-01", freq="2M", periods=4) expected = PeriodIndex(["2014-01", "2014-03", "2014-05", "2014-07"], freq="2M") tm.assert_index_equal(pidx, expected) with tm.assert_produces_warning(warning): pidx = func(start="2014-01-02", end="2014-01-15", freq="3D") expected = PeriodIndex( ["2014-01-02", "2014-01-05", "2014-01-08", "2014-01-11", "2014-01-14"], freq="3D", ) tm.assert_index_equal(pidx, expected) with tm.assert_produces_warning(warning): pidx = func(end="2014-01-01 17:00", freq="4H", periods=3) expected = PeriodIndex( ["2014-01-01 09:00", "2014-01-01 13:00", "2014-01-01 17:00"], freq="4H" ) tm.assert_index_equal(pidx, expected) msg = "Frequency must be positive, because it" " represents span: -1M" with pytest.raises(ValueError, match=msg): PeriodIndex(["2011-01"], freq="-1M") msg = "Frequency must be positive, because it" " represents span: 0M" with pytest.raises(ValueError, match=msg): PeriodIndex(["2011-01"], freq="0M") msg = "Frequency must be positive, because it" " represents span: 0M" with pytest.raises(ValueError, match=msg): period_range("2011-01", periods=3, freq="0M") @pytest.mark.parametrize("freq", ["A", "M", "D", "T", "S"]) @pytest.mark.parametrize("mult", [1, 2, 3, 4, 5]) def test_constructor_freq_mult_dti_compat(self, mult, freq): freqstr = str(mult) + freq pidx = period_range(start="2014-04-01", freq=freqstr, periods=10) expected = date_range(start="2014-04-01", freq=freqstr, periods=10).to_period( freqstr ) tm.assert_index_equal(pidx, expected) def test_constructor_freq_combined(self): for freq in ["1D1H", "1H1D"]: pidx = PeriodIndex(["2016-01-01", "2016-01-02"], freq=freq) expected = PeriodIndex(["2016-01-01 00:00", "2016-01-02 00:00"], freq="25H") for freq in ["1D1H", "1H1D"]: pidx = period_range(start="2016-01-01", periods=2, freq=freq) expected = PeriodIndex(["2016-01-01 00:00", "2016-01-02 01:00"], freq="25H") tm.assert_index_equal(pidx, expected) def test_constructor_range_based_deprecated(self): with tm.assert_produces_warning(FutureWarning): pi = PeriodIndex(freq="A", start="1/1/2001", end="12/1/2009") assert len(pi) == 9 def test_constructor_range_based_deprecated_different_freq(self): with tm.assert_produces_warning(FutureWarning) as m: PeriodIndex(start="2000", periods=2) warning, = m assert 'freq="A-DEC"' in str(warning.message) def test_constructor(self): pi = period_range(freq="A", start="1/1/2001", end="12/1/2009") assert len(pi) == 9 pi = period_range(freq="Q", start="1/1/2001", end="12/1/2009") assert len(pi) == 4 * 9 pi = period_range(freq="M", start="1/1/2001", end="12/1/2009") assert len(pi) == 12 * 9 pi = period_range(freq="D", start="1/1/2001", end="12/31/2009") assert len(pi) == 365 * 9 + 2 pi = period_range(freq="B", start="1/1/2001", end="12/31/2009") assert len(pi) == 261 * 9 pi = period_range(freq="H", start="1/1/2001", end="12/31/2001 23:00") assert len(pi) == 365 * 24 pi = period_range(freq="Min", start="1/1/2001", end="1/1/2001 23:59") assert len(pi) == 24 * 60 pi = period_range(freq="S", start="1/1/2001", end="1/1/2001 23:59:59") assert len(pi) == 24 * 60 * 60 start = Period("02-Apr-2005", "B") i1 = period_range(start=start, periods=20) assert len(i1) == 20 assert i1.freq == start.freq assert i1[0] == start end_intv = Period("2006-12-31", "W") i1 = period_range(end=end_intv, periods=10) assert len(i1) == 10 assert i1.freq == end_intv.freq assert i1[-1] == end_intv end_intv = Period("2006-12-31", "1w") i2 = period_range(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq end_intv = Period("2006-12-31", ("w", 1)) i2 = period_range(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq end_intv = Period("2005-05-01", "B") i1 = period_range(start=start, end=end_intv) # infer freq from first element i2 = PeriodIndex([end_intv, Period("2005-05-05", "B")]) assert len(i2) == 2 assert i2[0] == end_intv i2 = PeriodIndex(np.array([end_intv, Period("2005-05-05", "B")])) assert len(i2) == 2 assert i2[0] == end_intv # Mixed freq should fail vals = [end_intv, Period("2006-12-31", "w")] msg = r"Input has different freq=W-SUN from PeriodIndex\(freq=B\)" with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(vals) vals = np.array(vals) with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(vals) def test_constructor_error(self): start = Period("02-Apr-2005", "B") end_intv = Period("2006-12-31", ("w", 1)) msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end_intv) msg = ( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) @pytest.mark.parametrize( "freq", ["M", "Q", "A", "D", "B", "T", "S", "L", "U", "N", "H"] ) def test_recreate_from_data(self, freq): org = period_range(start="2001/04/01", freq=freq, periods=1) idx = PeriodIndex(org.values, freq=freq) tm.assert_index_equal(idx, org) def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq="A") expected = Index([str(num) for num in raw]) res = index.map(str) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, str) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected) class TestSeriesPeriod: def setup_method(self, method): self.series = Series(period_range("2000-01-01", periods=10, freq="D")) def test_constructor_cant_cast_period(self): msg = "Cannot cast PeriodArray to dtype float64" with pytest.raises(TypeError, match=msg): Series(period_range("2000-01-01", periods=10, freq="D"), dtype=float) def test_constructor_cast_object(self): s = Series(period_range("1/1/2000", periods=10), dtype=
PeriodDtype("D")
pandas.core.dtypes.dtypes.PeriodDtype
# imports import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score, roc_auc_score # read in data - part-1: heros information file heros_info = pd.read_csv('./data/heroes_information.csv') # read in data - part-2: heros superpowers file heros_power = pd.read_csv('./data/super_hero_powers.csv') # since only binary classification is required, create a feature that defines weather the hero is human or not heros_info['isHuman'] = heros_info['Race'].apply(lambda i: 1 if i == 'Human' else 0) heros_info.drop(['Unnamed: 0'], inplace=True, axis=1) # create model matrix (aka dummies in pyworld) for superpowers data power_bool_cols = heros_power.columns.drop("hero_names") heros_power_dummies = pd.get_dummies(heros_power, columns=power_bool_cols) # model-matrix for info dataframe info_bool_cols = ['Gender', 'Eye color', 'Hair color', 'Skin color', 'Alignment'] heros_info_dummies =
pd.get_dummies(heros_info, columns=info_bool_cols)
pandas.get_dummies
# -*- coding: utf-8 -*- import os import pandas as pd import numpy as np def test_trend_bridge(): from ddf_utils.transformer import trend_bridge from numpy.testing import assert_almost_equal tr1 = pd.Index(range(0, 5)) tr2 = pd.Index(range(3, 8)) s1 =
pd.Series([1, 2, 3, 4, 5], index=tr1)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 21 15:28:02 2019 Ing.,Mgr. (MSc.) <NAME> Biomedical engineering International Clinical Research Center St. Anne's University Hospital in Brno Czech Republic & Mayo systems electrophysiology lab Mayo Clinic 200 1st St SW Rochester, MN United States """ # Standard library imports # Third party imports import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import label_binarize # Local imports # %% Load data path_to_data = 'data.pkl' svm_df =
pd.read_pickle(path_to_data)
pandas.read_pickle
#Script generated by SupremolecularAnalyser import sys sys.path.insert(0, "/net/archive/groups/plggkatksdh/pyplotTest") import matplotlib.pyplot as plt from simpleFilters import * import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.colors as mcolors from os.path import isdir, join, basename from os import makedirs, remove from glob import glob import json from collections import defaultdict from itertools import combinations from math import pi mpl.rcParams['mathtext.default'] = 'regular' plt.rcParams.update({'font.size': 16}) logDir = "logs/" postprocessingDir = "postprocessing/" resUniqueDir = join(postprocessingDir, "general") if not isdir(resUniqueDir): makedirs(resUniqueDir) # cases2run = { "preprocessing" : True, "a-g" : True, "UniqueSeq" : True, "histogram2d" : True, # "histogram2d-planar" : True, "histograms-linear" : True , "barplots": True , "resolutionplot":False, # "occurencesTable" : True, "occurencesPairs" : True, # "chainNeoghbors" : True } cases2run = { "preprocessing" : False, "a-g" : False, "UniqueSeq" : False, "histogram2d" : True, "hydrogenBondAnalysis" : False , "ligandsAnalysis" : False , "histogram2d-planar" : False, "histograms-linear" : False , "barplots": False , "resolutionplot":False, "occurencesTable" : False, "occurencesPairs" : False, "chainNeoghbors" : False } def saveUniqueRecordsSeq( logPath, logOut, chain1Key, chain2Key, headersSubset ): print("Aktualnie przetwarzam: ", logPath) uniqueSeqDf = pd.read_csv("chainClusters.csv", sep = "\t") uniqueSeqDf1 = uniqueSeqDf.rename( columns = { "Chain" : chain1Key, "Sequence ID" : "Sequence ID 1" } ) uniqueSeqDf2 = uniqueSeqDf.rename( columns = { "Chain" : chain2Key, "Sequence ID" : "Sequence ID 2" } ) df =
pd.read_table(logPath)
pandas.read_table
## import os,pandas, pickle, tqdm ## def convert(item): ## Order order = item[['$' in key for key in item.keys()]] order = order[order>0].sort_values() order = [key.split('$')[1] for key in order.keys()] ## Count count = item[['#' in key for key in item.keys()]] count = count[[key.split('#')[1] in order for key in count.keys()]] count = round(count).astype('int').astype('str') count.index = [key.split("#")[1] for key in count.keys()] ## text = "" for key, value in count[order].to_dict().items(): text += key + value pass return(text) ## with open("SOURCE/LOG/test.pickle", "rb") as paper: paper = pickle.load(paper) pass ## likelihood =
pandas.DataFrame(paper['test']['likelihood'])
pandas.DataFrame
''' Factor risk premium ''' # %% set system path import sys,os sys.path.append(os.path.abspath("..")) # %% import data import pandas as pd month_return = pd.read_hdf('.\data\month_return.h5', key='month_return') company_data = pd.read_hdf('.\data\last_filter_pe.h5', key='data') trade_data = pd.read_hdf('.\data\mean_filter_trade.h5', key='data') beta = pd.read_hdf('.\\data\\beta.h5', key='data') # %% data preprocessing # forward the monthly return for each stock # emrwd is the return including dividend month_return['emrwd'] = month_return.groupby(['Stkcd'])['Mretwd'].shift(-1) # emrnd is the return including no dividend month_return['emrnd'] = month_return.groupby(['Stkcd'])['Mretnd'].shift(-1) # select the A share stock month_return = month_return[month_return['Markettype'].isin([1, 4, 16])] # % distinguish the stocks whose size is among the up 30% stocks in each month def percentile(stocks) : return stocks >= stocks.quantile(q=.3) month_return['cap'] = month_return.groupby(['Trdmnt'])['Msmvttl'].apply(percentile) # %% Construct proxy variable import numpy as np # SMB # log(Size) month_return['Size'] = np.log(month_return['Msmvttl']) # HML company_data['BM'] = 1 / company_data['PBV1A'] # RMW # in this demo, the ROE(TTM) are used # ROE(TTM) = PBV1B/PE(TTM) company_data['ROE(TTM)'] = company_data['PBV1B']/company_data['PE1TTM'] # CMA # % calculate the total asset # asset = debt + equity # debt = company_value - market_value # equity = market_value / PB company_data['debt'] = company_data['EV1'] - company_data['MarketValue'] company_data['equity'] = company_data['MarketValue']/company_data['PBV1A'] company_data['asset'] = company_data['debt'] + company_data['equity'] # asset growth rate company_data['asset_growth_rate'] = company_data['asset'].groupby(['Symbol']).diff(12)/company_data['asset'] # Momentum month_return['rolling_12'] = np.array(month_return.groupby(['Stkcd'])['Mretwd'].rolling(12).sum()) month_return['momentum'] = month_return['rolling_12'] - month_return['Mretwd'] # Turnover trade_data['rolling_Turnover'] = np.array(trade_data['Turnover'].groupby('Symbol').rolling(12).mean()) trade_data['specific_Turnover'] = trade_data['Turnover'] / trade_data['rolling_Turnover'] # %% merge data from pandas.tseries.offsets import * month_return['Stkcd_merge'] = month_return['Stkcd'].astype(dtype='string') month_return['Date_merge'] =
pd.to_datetime(month_return['Trdmnt'])
pandas.to_datetime
import logging import math import re from collections import Counter import numpy as np import pandas as pd from certa.utils import diff def get_original_prediction(r1, r2, predict_fn): r1r2 = get_row(r1, r2) return predict_fn(r1r2)[['nomatch_score', 'match_score']].values[0] def get_row(r1, r2, lprefix='ltable_', rprefix='rtable_'): r1_df = pd.DataFrame(data=[r1.values], columns=r1.index) r2_df = pd.DataFrame(data=[r2.values], columns=r2.index) r1_df.columns = list(map(lambda col: lprefix + col, r1_df.columns)) r2_df.columns = list(map(lambda col: rprefix + col, r2_df.columns)) r1r2 = pd.concat([r1_df, r2_df], axis=1) return r1r2 def support_predictions(r1: pd.Series, r2: pd.Series, lsource: pd.DataFrame, rsource: pd.DataFrame, predict_fn, lprefix, rprefix, num_triangles: int = 100, class_to_explain: int = None, max_predict: int = -1, use_w: bool = True, use_q: bool = True): ''' generate a pd.DataFrame of support predictions to be used to generate open triangles. :param r1: the "left" record :param r2: the "right" record :param lsource: the "left" data source :param rsource: the "right" data source :param predict_fn: the ER model prediction function :param lprefix: the prefix of attributes from the "left" table :param rprefix: the prefix of attributes from the "right" table :param num_triangles: number of open triangles to be used to generate the explanation :param class_to_explain: the class to be explained :param max_predict: the maximum number of predictions to be performed by the ER model to generate the requested number of open triangles :param use_w: whether to use left open triangles :param use_q: whether to use right open triangles :return: a pd.DataFrame of record pairs with one record from the original prediction and one record yielding an opposite prediction by the ER model ''' r1r2 = get_row(r1, r2) original_prediction = predict_fn(r1r2)[['nomatch_score', 'match_score']].values[0] r1r2['id'] = "0@" + str(r1r2[lprefix + 'id'].values[0]) + "#" + "1@" + str(r1r2[rprefix + 'id'].values[0]) copies, copies_left, copies_right = expand_copies(lprefix, lsource, r1, r2, rprefix, rsource) find_positives, support = get_support(class_to_explain, pd.concat([lsource, copies_left]), max_predict, original_prediction, predict_fn, r1, r2, pd.concat([rsource, copies_right]), use_w, use_q, lprefix, rprefix, num_triangles) if len(support) > 0: if len(support) > num_triangles: support = support.sample(n=num_triangles) else: logging.warning(f'could find {str(len(support))} triangles of the {str(num_triangles)} requested') support['label'] = list(map(lambda predictions: int(round(predictions)), support.match_score.values)) support = support.drop(['match_score', 'nomatch_score'], axis=1) if class_to_explain == None: r1r2['label'] = np.argmax(original_prediction) else: r1r2['label'] = class_to_explain support_pairs = pd.concat([r1r2, support], ignore_index=True) return support_pairs, copies_left, copies_right else: logging.warning('no triangles found') return pd.DataFrame(), pd.DataFrame(), pd.DataFrame() def find_candidates_predict(record, source, find_positives, predict_fn, num_candidates, lj=True, max=-1, lprefix='ltable_', rprefix='rtable_'): if lj: records = pd.DataFrame() records = records.append([record] * len(source), ignore_index=True) copy = source.copy() records.columns = list(map(lambda col: lprefix + col, records.columns)) copy.columns = list(map(lambda col: rprefix + col, copy.columns)) records.index = copy.index samples = pd.concat([records, copy], axis=1) else: copy = source.copy() records = pd.DataFrame() records = records.append([record] * len(source), ignore_index=True) records.index = copy.index copy.columns = list(map(lambda col: lprefix + col, copy.columns)) records.columns = list(map(lambda col: rprefix + col, records.columns)) samples = pd.concat([copy, records], axis=1) if max > 0: samples = samples.sample(frac=1)[:max] record2text = " ".join([str(val) for k, val in record.to_dict().items() if k not in ['id']]) samples['score'] = samples.T.apply(lambda row: cs(record2text, " ".join(row.astype(str)))) samples = samples.sort_values(by='score', ascending=not find_positives) samples = samples.drop(['score'], axis=1) result = pd.DataFrame() batch = num_candidates * 4 splits = min(10, int(len(samples) / batch)) i = 0 while len(result) < num_candidates and i < splits: batch_samples = samples[batch * i:batch * (i + 1)] predicted = predict_fn(batch_samples) if find_positives: out = predicted[predicted["match_score"] > 0.5] else: out = predicted[predicted["match_score"] < 0.5] if len(out) > 0: result = pd.concat([result, out], axis=0) logging.info(f'{i}:{len(out)},{len(result)}') i += 1 return result def generate_subsequences(lsource, rsource, max=-1): new_records_left_df = pd.DataFrame() for i in np.arange(len(lsource[:max])): r = lsource.iloc[i] nr_df = pd.DataFrame(generate_modified(r, start_id=len(new_records_left_df) + len(lsource))) if len(nr_df) > 0: nr_df.columns = lsource.columns new_records_left_df = pd.concat([new_records_left_df, nr_df]) new_records_right_df = pd.DataFrame() for i in np.arange(len(rsource[:max])): r = rsource.iloc[i] nr_df = pd.DataFrame(generate_modified(r, start_id=len(new_records_right_df) + len(rsource))) if len(nr_df) > 0: nr_df.columns = rsource.columns new_records_right_df = pd.concat([new_records_right_df, nr_df]) return new_records_left_df, new_records_right_df def get_support(class_to_explain, lsource, max_predict, original_prediction, predict_fn, r1, r2, rsource, use_w, use_q, lprefix, rprefix, num_triangles): candidates4r1 = pd.DataFrame() candidates4r2 = pd.DataFrame() num_candidates = int(num_triangles / 2) if class_to_explain == None: findPositives = bool(original_prediction[0] > original_prediction[1]) else: findPositives = bool(0 == int(class_to_explain)) if use_q: candidates4r1 = find_candidates_predict(r1, rsource, findPositives, predict_fn, num_candidates, lj=True, max=max_predict, lprefix=lprefix, rprefix=rprefix) if use_w: candidates4r2 = find_candidates_predict(r2, lsource, findPositives, predict_fn, num_candidates, lj=False, max=max_predict, lprefix=lprefix, rprefix=rprefix) neighborhood = pd.DataFrame() candidates = pd.concat([candidates4r1, candidates4r2], ignore_index=True) if len(candidates) > 0: candidates['id'] = "0@" + candidates[lprefix + 'id'].astype(str) + "#" + "1@" + candidates[ rprefix + 'id'].astype(str) if findPositives: neighborhood = candidates[candidates.match_score >= 0.5].copy() else: neighborhood = candidates[candidates.match_score < 0.5].copy() return findPositives, neighborhood def generate_modified(record, start_id: int = 0): new_copies = [] t_len = len(record) copy = record.copy() for t in range(t_len): attr_value = str(copy.get(t)) values = attr_value.split() for cut in range(1, len(values)): for new_val in [" ".join(values[cut:]), " ".join(values[:cut])]: # generate new values with prefix / suffix dropped new_copy = record.copy() new_copy[t] = new_val # substitute the new value with missing prefix / suffix on the target attribute if start_id > 0: new_copy['id'] = len(new_copies) + start_id new_copies.append(new_copy) return new_copies WORD = re.compile(r'\w+') def cs(text1, text2): vec1 = Counter(WORD.findall(text1)) vec2 = Counter(WORD.findall(text2)) intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x] ** 2 for x in vec1.keys()]) sum2 = sum([vec2[x] ** 2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def expand_copies(lprefix, lsource, r1, r2, rprefix, rsource): generated_df = pd.DataFrame() new_copies_left = [] new_copies_right = [] left = True for record in [r1, r2]: r1_df = pd.DataFrame(data=[record.values], columns=record.index) r2_df = pd.DataFrame(data=[record.values], columns=record.index) r1_df.columns = list(map(lambda col: 'ltable_' + col, r1_df.columns)) r2_df.columns = list(map(lambda col: 'rtable_' + col, r2_df.columns)) r1r2c =
pd.concat([r1_df, r2_df], axis=1)
pandas.concat
import os import pandas as pd import json import argparse def main(args): align_heavy = args.heavy.split(',') print(align_heavy) align_light = args.light.split(',') print(align_light) align_combined = list() for heavy in align_heavy: sample = os.path.basename(heavy).replace('_corr_align.txt', '') for light in align_light: if sample == os.path.basename(light).replace('_corr_align.txt', ''): align_combined.append({ "sample": sample, "heavy": heavy, "light": light }) break else: raise Exception("Couldn't find corresponding light results for heavy object") print("aligncombined", align_combined) for results in align_combined: print("result:", results) light = pd.read_csv(results["light"], sep='\t', header=0) heavy = pd.read_csv(results["heavy"], sep='\t', header=0) combined =
pd.concat([light, heavy])
pandas.concat
from . import wrapper_double, wrapper_float import numpy as np, pandas as pd from scipy.sparse import coo_matrix, csr_matrix, csc_matrix, issparse, isspmatrix_coo, isspmatrix_csr, isspmatrix_csc import multiprocessing import ctypes import warnings __all__ = ["CMF", "CMF_implicit", "OMF_explicit", "OMF_implicit", "MostPopular", "ContentBased", "CMF_imputer"] ### TODO: this module should move from doing operations in Python to ### using the new designated C functions for each type of prediction. ### TODO: eliminate the hard dependency on pandas. class _CMF: def __repr__(self): return self.__str__() def set_params(self, **params): """ Set the parameters of this estimator. Kept for compatibility with scikit-learn. Note ---- Setting any parameter that is related to model hyperparameters (i.e. anything not related to verbosity or number of threads) will reset the model - that is, it will no longer be possible to use it for predictions without a new refit. Parameters ---------- **params : dict Estimator parameters. Returns ------- self : estimator instance Estimator instance. """ if not params: return self valid_params = self.get_params() for k,v in params.items(): if k not in valid_params.keys(): raise ValueError("Invalid parameter %s" % k) else: if v not in ["verbose", "nthreads", "n_jobs", "print_every", "handle_interrupt", "random_state"]: self.is_fitted_ = False setattr(self, k, v) return self def _take_params(self, implicit=False, alpha=40., downweight=False, apply_log_transf=False, nonneg=False, nonneg_C=False, nonneg_D=False, max_cd_steps=100, k=50, lambda_=1e2, method="als", add_implicit_features=False, scale_lam=False, scale_lam_sideinfo=False, scale_bias_const=False, use_cg=False, max_cg_steps=3, finalize_chol=False, user_bias=True, item_bias=True, center=False, k_user=0, k_item=0, k_main=0, w_main=1., w_user=1., w_item=1., w_implicit=0.5, l1_lambda=0., center_U=True, center_I=True, maxiter=400, niter=10, parallelize="separate", corr_pairs=4, NA_as_zero=False, NA_as_zero_user=False, NA_as_zero_item=False, precompute_for_predictions=True, use_float=False, random_state=1, verbose=True, print_every=10, handle_interrupt=True, produce_dicts=False, nthreads=-1, n_jobs=None): assert method in ["als", "lbfgs"] assert parallelize in ["separate", "single"] k = int(k) if isinstance(k, float) else k k_user = int(k_user) if isinstance(k_user, float) else k_user k_item = int(k_item) if isinstance(k_item, float) else k_item k_main = int(k_main) if isinstance(k_main, float) else k_main if not isinstance(self, OMF_explicit): assert isinstance(k, int) and k > 0 else: assert isinstance(k, int) and k >= 0 assert isinstance(k_user, int) and k_user >= 0 assert isinstance(k_item, int) and k_item >= 0 assert isinstance(k_main, int) and k_main >= 0 if ((max(k_user, k_item) + k + k_main + max(user_bias, item_bias))**2) > np.iinfo(ctypes.c_int).max: raise ValueError("Number of factors is too large.") lambda_ = float(lambda_) if isinstance(lambda_, int) else lambda_ if (isinstance(lambda_, list) or isinstance(lambda_, tuple) or isinstance(lambda_, pd.Series)): lambda_ = np.array(lambda_) if isinstance(lambda_, np.ndarray): lambda_ = lambda_.reshape(-1) assert lambda_.shape[0] == 6 assert np.all(lambda_ >= 0.) else: assert isinstance(lambda_, float) and lambda_ >= 0. l1_lambda = float(l1_lambda) if isinstance(l1_lambda, int) else l1_lambda if (isinstance(l1_lambda, list) or isinstance(l1_lambda, tuple) or isinstance(l1_lambda, pd.Series)): l1_lambda = np.array(l1_lambda) if isinstance(l1_lambda, np.ndarray): l1_lambda = l1_lambda.reshape(-1) assert l1_lambda.shape[0] == 6 assert np.all(l1_lambda >= 0.) else: assert isinstance(l1_lambda, float) and l1_lambda >= 0. niter = int(niter) if isinstance(niter, float) else niter assert isinstance(niter, int) and niter >= 0 if not implicit and method == "lbfgs": maxiter = int(maxiter) if isinstance(maxiter, float) else maxiter assert isinstance(maxiter, int) and maxiter >= 0 if n_jobs is not None: nthreads = n_jobs if nthreads < 1: nthreads = multiprocessing.cpu_count() + 1 - nthreads if nthreads is None: nthreads = 1 assert isinstance(nthreads, int) and nthreads > 0 if (nthreads > 1) and (not wrapper_double._get_has_openmp()): msg_omp = "Attempting to use more than 1 thread, but " msg_omp += "package was built without multi-threading " msg_omp += "support - see the project's GitHub page for " msg_omp += "more information." warnings.warn(msg_omp) if not implicit and method == "lbfgs": print_every = int(print_every) if isinstance(print_every, float) else print_every assert isinstance(print_every, int) and print_every >= 0 if not implicit and method == "lbfgs": corr_pairs = int(corr_pairs) if isinstance(corr_pairs, float) else corr_pairs assert isinstance(corr_pairs, int) and corr_pairs >= 2 if random_state is None: random_state = rng.default_rng() if isinstance(random_state, np.random.RandomState): random_state = random_state.randint(np.iinfo(np.int32).max) elif isinstance(random_state, np.random.Generator): random_state = random_state.integers(np.iinfo(np.int32).max) if (method == "lbfgs"): if (NA_as_zero or NA_as_zero_user or NA_as_zero_item): raise ValueError("Option 'NA_as_zero' not supported with method='lbfgs'.") if add_implicit_features: raise ValueError("Option 'add_implicit_features' not supported with method='lbfgs'.") if (nonneg) or (nonneg_C) or (nonneg_D): raise ValueError("non-negativity constraints not supported with method='lbfgs'.") if (scale_lam) or (scale_lam_sideinfo): raise ValueError("'scale_lam' not supported with method='lbfgs'.") if l1_lambda != 0.: raise ValueError("L1 regularization not supported with method='lbfgs'.") if method == "als": assert max_cg_steps > 0 if max_cd_steps is None: max_cd_steps = 0 if isinstance(max_cd_steps, float): max_cd_steps = int(max_cd_steps) assert max_cd_steps >= 0 assert isinstance(max_cd_steps, int) w_main = float(w_main) if isinstance(w_main, int) else w_main w_user = float(w_user) if isinstance(w_user, int) else w_user w_item = float(w_item) if isinstance(w_item, int) else w_item w_implicit = float(w_implicit) if isinstance(w_implicit, int) else w_implicit assert isinstance(w_main, float) and w_main > 0 assert isinstance(w_user, float) and w_user > 0 assert isinstance(w_item, float) and w_item > 0 assert isinstance(w_implicit, float) and w_implicit > 0 if implicit: alpha = float(alpha) if isinstance(alpha, int) else alpha assert isinstance(alpha, float) and alpha > 0. if (center and nonneg): warnings.warn("Warning: will fit a model with centering and non-negativity constraints.") if (center_U and nonneg_C): warnings.warn("Warning: will fit a model with centering in 'U' and non-negativity constraints in 'C'.") if (center_I and nonneg_D): warnings.warn("Warning: will fit a model with centering in 'I' and non-negativity constraints in 'D'.") if (NA_as_zero and add_implicit_features): warnings.warn("Warning: will add implicit features while having 'NA_as_zero'.") self.k = k self.k_user = k_user self.k_item = k_item self.k_main = k_main self.lambda_ = lambda_ self.l1_lambda = l1_lambda self.scale_lam = bool(scale_lam) self.scale_lam_sideinfo = bool(scale_lam_sideinfo) or self.scale_lam self.scale_bias_const = bool(scale_bias_const) self.alpha = alpha self.w_main = w_main self.w_user = w_user self.w_item = w_item self.w_implicit = w_implicit self.downweight = bool(downweight) self.user_bias = bool(user_bias) self.item_bias = bool(item_bias) self.center = bool(center) and not bool(implicit) self.center_U = bool(center_U) self.center_I = bool(center_I) self.method = method self.add_implicit_features = bool(add_implicit_features) self.apply_log_transf = bool(apply_log_transf) self.use_cg = bool(use_cg) self.max_cg_steps = int(max_cg_steps) self.max_cd_steps = int(max_cd_steps) self.finalize_chol = bool(finalize_chol) self.maxiter = maxiter self.niter = niter self.parallelize = parallelize self.NA_as_zero = bool(NA_as_zero) self.NA_as_zero_user = bool(NA_as_zero_user) self.NA_as_zero_item = bool(NA_as_zero_item) self.nonneg = bool(nonneg) self.nonneg_C = bool(nonneg_C) self.nonneg_D = bool(nonneg_D) self.precompute_for_predictions = bool(precompute_for_predictions) self.include_all_X = True self.use_float = bool(use_float) self.verbose = bool(verbose) self.print_every = print_every self.corr_pairs = corr_pairs self.random_state = int(random_state) self.produce_dicts = bool(produce_dicts) self.handle_interrupt = bool(handle_interrupt) self.nthreads = nthreads self._implicit = bool(implicit) self.dtype_ = ctypes.c_float if use_float else ctypes.c_double self._k_pred = k self._k_main_col = self.k_main if isinstance(self.lambda_, np.ndarray): if self.lambda_.dtype != self.dtype_: self.lambda_ = self.lambda_.astype(self.dtype_) if isinstance(self.l1_lambda, np.ndarray): if self.l1_lambda.dtype != self.dtype_: self.l1_lambda = self.l1_lambda.astype(self.dtype_) self._reset() def _reset(self): self.A_ = np.empty((0,0), dtype=self.dtype_) self.B_ = np.empty((0,0), dtype=self.dtype_) self.C_ = np.empty((0,0), dtype=self.dtype_) self.D_ = np.empty((0,0), dtype=self.dtype_) self.Cbin_ = np.empty((0,0), dtype=self.dtype_) self.Dbin_ = np.empty((0,0), dtype=self.dtype_) self.Ai_ = np.empty((0,0), dtype=self.dtype_) self.Bi_ = np.empty((0,0), dtype=self.dtype_) self.user_bias_ = np.empty(0, dtype=self.dtype_) self.item_bias_ = np.empty(0, dtype=self.dtype_) self.scaling_biasA_ = 0. self.scaling_biasB_ = 0. self.C_bias_ = np.empty(0, dtype=self.dtype_) self.D_bias_ = np.empty(0, dtype=self.dtype_) self.glob_mean_ = 0. self._TransBtBinvBt = np.empty((0,0), dtype=self.dtype_) ## will have lambda added for implicit but not for explicit, dim is k+k_main self._BtB = np.empty((0,0), dtype=self.dtype_) self._BtXbias = np.empty(0, dtype=self.dtype_) self._TransCtCinvCt = np.empty((0,0), dtype=self.dtype_) ## will be multiplied by w_user already self._CtC = np.empty((0,0), dtype=self.dtype_) self._BeTBe = np.empty((0,0), dtype=self.dtype_) self._BeTBeChol = np.empty((0,0), dtype=self.dtype_) self._BiTBi = np.empty((0,0), dtype=self.dtype_) self._CtUbias = np.empty(0, dtype=self.dtype_) self._A_pred = np.empty((0,0), dtype=self.dtype_) self._B_pred = np.empty((0,0), dtype=self.dtype_) self._B_plus_bias = np.empty((0,0), dtype=self.dtype_) self._U_cols = np.empty(0, dtype=object) self._I_cols = np.empty(0, dtype=object) self._Ub_cols = np.empty(0, dtype=object) self._Ib_cols = np.empty(0, dtype=object) self._U_colmeans = np.empty(0, dtype=self.dtype_) self._I_colmeans = np.empty(0, dtype=self.dtype_) self._w_main_multiplier = 1. self.is_fitted_ = False self._only_prediction_info = False self.nfev_ = None self.nupd_ = None self.user_mapping_ = np.array([], dtype=object) self.item_mapping_ = np.array([], dtype=object) self.reindex_ = False self.user_dict_ = dict() self.item_dict_ = dict() def _take_params_offsets(self, k_sec=0, k_main=0, add_intercepts=True): k_sec = int(k_sec) if isinstance(k_sec, float) else k_sec k_main = int(k_main) if isinstance(k_main, float) else k_main assert isinstance(k_sec, int) and k_sec >= 0 assert isinstance(k_main, int) and k_main >= 0 if ((max(k_sec, k_main) + self.k)**2 + 1) > np.iinfo(ctypes.c_int).max: raise ValueError("Number of factors is too large.") if self.method == "als": if self._implicit: msg = " not supported for implicit-feedback." else: msg = " not supported with method='als'." if k_sec > 0 or k_main > 0: raise ValueError("'k_sec' and 'k_main'" + msg) if isinstance(self.lambda_, np.ndarray): raise ValueError("Different regularization for each parameter is" + msg) if self.w_user != 1. or self.w_item != 1.: raise ValueError("'w_user' and 'w_main' are" + msg) self.k_sec = k_sec self.k_main = k_main self._k_pred = self.k_sec + self.k + self.k_main self._k_main_col = 0 self.add_intercepts = bool(add_intercepts) def _append_NAs(self, U, m_u, p, append_U): U_new = np.repeat(np.nan, m_u*p).reshape((m_u, p)) if U_new.dtype != self.dtype_: U_new = U_new.astype(U.dtype) if not U_new.flags["C_CONTIGUOUS"]: U_new = np.ascontiguousarray(U_new) U_new[np.setdiff1d(np.arange(m_u), append_U), :] = U if U_new.dtype != self.dtype_: U_new = U_new.astype(U.dtype) return U_new def _decompose_coo(self, X): row = X.row col = X.col val = X.data if row.dtype != ctypes.c_int: row = row.astype(ctypes.c_int) if col.dtype != ctypes.c_int: col = col.astype(ctypes.c_int) if val.dtype != self.dtype_: val = val.astype(self.dtype_) return row, col, val def _process_U_arr(self, U): Urow = np.empty(0, dtype=ctypes.c_int) Ucol = np.empty(0, dtype=ctypes.c_int) Uval = np.empty(0, dtype=self.dtype_) Uarr = np.empty((0,0), dtype=self.dtype_) Ucols = np.empty(0, dtype=object) m = 0 p = 0 if issparse(U) and not isspmatrix_coo(U): U = U.tocoo() if isspmatrix_coo(U): Urow, Ucol, Uval = self._decompose_coo(U) m, p = U.shape elif U is not None: if isinstance(U, pd.DataFrame): Ucols = U.columns.to_numpy() U = U.to_numpy() if not U.flags["C_CONTIGUOUS"]: U = np.ascontiguousarray(U) if U.dtype != self.dtype_: U = U.astype(self.dtype_) Uarr = U m, p = Uarr.shape return Urow, Ucol, Uval, Uarr, Ucols, m, p def _convert_ids(self, X, U, U_bin, col="UserId"): ### Note: if one 'UserId' column is a Pandas Categorical, then all ### of them in the other DataFrames have to be too. swapped = False append_U = np.empty(0, dtype=object) append_Ub = np.empty(0, dtype=object) msg = "'X' and side info have no IDs in common." if (U is not None) and (U_bin is not None): user_ids1 = np.intersect1d(U[col].to_numpy(), X[col].to_numpy()) user_ids2 = np.intersect1d(U_bin[col].to_numpy(), X[col].to_numpy()) user_ids3 = np.intersect1d(U_bin[col].to_numpy(), U[col].to_numpy()) if (user_ids1.shape[0] == 0) and (user_ids2.shape[0] == 0): raise ValueError(msg) user_ids = np.intersect1d(user_ids1, user_ids2) u_not_x = np.setdiff1d(U[col].to_numpy(), X[col].to_numpy()) x_not_u = np.setdiff1d(X[col].to_numpy(), U[col].to_numpy()) b_not_x = np.setdiff1d(U_bin[col].to_numpy(), X[col].to_numpy()) x_not_b = np.setdiff1d(X[col].to_numpy(), U_bin[col].to_numpy()) b_not_u = np.setdiff1d(U_bin[col].to_numpy(), U[col].to_numpy()) u_not_b = np.setdiff1d(U[col].to_numpy(), U_bin[col].to_numpy()) ### There can be cases in which the sets are disjoint, ### and will need to add NAs to one of the inputs. if (u_not_x.shape[0] == 0 and x_not_u.shape[0] == 0 and b_not_x.shape[0] == 0 and x_not_b.shape[0] == 0 and b_not_u.shape[0] == 0 and u_not_b.shape[0] == 0): user_ids = user_ids else: if u_not_b.shape[0] >= b_not_u.shape[0]: user_ids = np.r_[user_ids, user_ids1, X[col].to_numpy(), user_ids3, U[col].to_numpy(), U_bin[col].to_numpy()] append_U = x_not_u append_Ub = np.r_[x_not_b, u_not_b] else: user_ids = np.r_[user_ids, user_ids2, X[col].to_numpy(), user_ids3, U_bin[col].to_numpy(), U[col].to_numpy()] append_U = np.r_[x_not_u, b_not_u] append_Ub = x_not_b _, user_mapping_ = pd.factorize(user_ids) X = X.assign(**{col : pd.Categorical(X[col], user_mapping_).codes}) if X[col].dtype != ctypes.c_int: X = X.assign(**{col : X[col].astype(ctypes.c_int)}) U = U.assign(**{col : pd.Categorical(U[col], user_mapping_).codes}) if U[col].dtype != ctypes.c_int: U = U.assign({col : U[col].astype(ctypes.c_int)}) U_bin = U_bin.assign(**{col : pd.Categorical(U_bin[col], user_mapping_).codes}) if U_bin[col].dtype != ctypes.c_int: U_bin = U_bin.assign(**{col : U_bin[col].astype(ctypes.c_int)}) if append_U.shape[0]: append_U = pd.Categorical(np.unique(append_U), user_mapping_).codes.astype(ctypes.c_int) append_U = np.sort(append_U) if append_Ub.shape[0]: append_Ub = pd.Categorical(np.unique(append_Ub), user_mapping_).codes.astype(ctypes.c_int) append_Ub = np.sort(append_Ub) else: if (U is None) and (U_bin is not None): U, U_bin = U_bin, U swapped = True if (U is not None): user_ids = np.intersect1d(U[col].to_numpy(), X[col].to_numpy()) if user_ids.shape[0] == 0: raise ValueError(msg) u_not_x = np.setdiff1d(U[col].to_numpy(), X[col].to_numpy()) x_not_u = np.setdiff1d(X[col].to_numpy(), U[col].to_numpy()) if (u_not_x.shape[0]) or (x_not_u.shape[0]): ### Case0: both have the same entries ### This is the ideal situation if (x_not_u.shape[0] == 0) and (u_not_x.shape[0] == 0): user_ids = user_ids ### Case1: X has IDs that U doesn't, but not the other way around ### Here there's no need to do anything special afterwards if (x_not_u.shape[0] > 0) and (u_not_x.shape[0] == 0): user_ids = np.r_[user_ids, x_not_u] ### Case2: U has IDs that X doesn't, but not the other way around ### Don't need to do anything special afterwards either elif (u_not_x.shape[0] > 0) and (x_not_u.shape[0] == 0): user_ids = np.r_[user_ids, u_not_x] ### Case3: both have IDs that the others don't else: user_ids = np.r_[user_ids, X[col].to_numpy(), U[col].to_numpy()] append_U = x_not_u _, user_mapping_ = pd.factorize(user_ids) if not isinstance(user_mapping_, np.ndarray): user_mapping_ = user_mapping_.to_numpy() X = X.assign(**{col : pd.Categorical(X[col], user_mapping_).codes}) if X[col].dtype != ctypes.c_int: X = X.assign(**{col : X[col].astype(ctypes.c_int)}) U = U.assign(**{col : pd.Categorical(U[col], user_mapping_).codes}) if U[col].dtype != ctypes.c_int: U = U.assign(**{col : U[col].astype(ctypes.c_int)}) if append_U.shape[0]: append_U = pd.Categorical(append_U, user_mapping_).codes.astype(ctypes.c_int) append_U = np.sort(append_U) else: X_col, user_mapping_ = pd.factorize(X[col].to_numpy()) X = X.assign(**{col : X_col}) if X[col].dtype != ctypes.c_int: X = X.assign(**{col : X[col].astype(ctypes.c_int)}) if not isinstance(user_mapping_, np.ndarray): user_mapping_ = user_mapping_.to_numpy() if swapped: U, U_bin = U_bin, U append_U, append_Ub = append_Ub, append_U return X, U, U_bin, user_mapping_, append_U, append_Ub def _process_U_df(self, U, is_I=False, df_name="U"): Urow = np.empty(0, dtype=ctypes.c_int) Ucol = np.empty(0, dtype=ctypes.c_int) Uval = np.empty(0, dtype=self.dtype_) Uarr = np.empty((0,0), dtype=self.dtype_) Ucols = np.empty(0, dtype=object) cl_take = "ItemId" if is_I else "UserId" m = 0 p = 0 if U is not None: if "ColumnId" in U.columns.values: Urow = U[cl_take].astype(ctypes.c_int).to_numpy() Ucol = U.ColumnId.astype(ctypes.c_int).to_numpy() if "Value" not in U.columns.values: msg = "If passing sparse '%s', must have column 'Value'." msg = msg % df_name raise ValueError(msg) Uval = U.Value.astype(self.dtype_).to_numpy() m = int(Urow.max() + 1) p = int(Ucol.max() + 1) else: U = U.sort_values(cl_take) Uarr = U[[cl for cl in U.columns.values if cl != cl_take]] Ucols = Uarr.columns.to_numpy() Uarr = Uarr.to_numpy() if not Uarr.flags["C_CONTIGUOUS"]: Uarr = np.ascontiguousarray(Uarr) if Uarr.dtype != self.dtype_: Uarr = Uarr.astype(self.dtype_) m, p = Uarr.shape return Urow, Ucol, Uval, Uarr, Ucols, m, p def _process_new_U(self, U, U_col, U_val, U_bin, is_I=False): letter = "U" if not is_I else "I" name = "user" if not is_I else "item" Mat = self.C_ if not is_I else self.D_ MatBin = self.Cbin_ if not is_I else self.Dbin_ Cols = self._U_cols if not is_I else self._I_cols ColsBin = self._Ub_cols if not is_I else self._Ib_cols dct = self.user_dict_ if not is_I else self.item_dict_ mapping = self.user_mapping_ if not is_I else self.item_mapping_ if ((U_col is not None) and (U_val is None)) or ((U_col is None) and (U_val is not None)): raise ValueError("Must pass '%s_col' and '%s_val' together." % (letter, letter)) if (U_col is not None) and (U is not None): raise ValueError("Can only pass %s info in one format." % name) if (U is None) and (U_col is None) and (U_bin is None): raise ValueError("Must pass %s side information in some format." % name) ### if U is not None: if Mat.shape[0] == 0: raise ValueError("Model was not fit to %s data." % name) if isinstance(U, pd.DataFrame) and Cols.shape[0]: U = U[Cols] U = np.array(U).reshape(-1).astype(self.dtype_) if U.shape[0] != Mat.shape[0]: raise ValueError("Dimensions of %s don't match with earlier data." % letter) else: U = np.empty(0, dtype=self.dtype_) ### if U_bin is not None: if MatBin.shape[0] == 0: raise ValueError("Model was not fit to %s binary data." % name) if isinstance(U_bin, pd.DataFrame) and (ColsBin.shape[0]): U_bin = U_bin[ColsBin] U_bin = np.array(U_bin).reshape(-1).astype(self.dtype_) if U_bin.shape[0] != MatBin.shape[0]: raise ValueError("Dimensions of %s_bin don't match with earlier data." % letter) else: U_bin = np.empty(0, dtype=self.dtype_) ### if U_col is not None: if Mat.shape[0] == 0: raise ValueError("Model was not fit to %s data." % name) U_val = np.array(U_val).reshape(-1).astype(self.dtype_) if U_val.shape[0] == 0: if np.array(U_col).shape[0] > 0: raise ValueError("'%s_col' and '%s_val' must have the same number of entries." % (letter, letter)) U_col = np.empty(0, dtype=ctypes.c_int) U_val = np.empty(0, dtype=self.dtype_) else: if self.reindex_: if len(dct): try: U_col = np.array([dct[u] for u in U_col]) except: raise ValueError("Sparse inputs cannot contain missing values.") else: U_col = pd.Categorical(U_col, mapping).codes.astype(ctypes.c_int) if np.any(U_col < 0): raise ValueError("Sparse inputs cannot contain missing values.") U_col = U_col.astype(ctypes.c_int) else: U_col = np.array(U_col).reshape(-1).astype(ctypes.c_int) imin, imax = U_col.min(), U_col.max() if np.isnan(imin) or np.isnan(imax): raise ValueError("Sparse inputs cannot contain missing values.") if (imin < 0) or (imax >= Mat.shape[0]): msg = "Column indices for user info must be within the range" msg += " of the data that was pased to 'fit'." raise ValueError(msg) if U_val.shape[0] != U_col.shape[0]: raise ValueError("'%s_col' and '%s_val' must have the same number of entries." % (letter, letter)) else: U_col = np.empty(0, dtype=ctypes.c_int) U_val = np.empty(0, dtype=self.dtype_) ### return U, U_col, U_val, U_bin def _process_new_U_2d(self, U, is_I=False, allow_csr=False): letter = "U" if not is_I else "I" col_id = "UserId" if not is_I else "ItemId" Cols = self._U_cols if not is_I else self._I_cols Mat = self.C_ if not is_I else self.D_ Uarr = np.empty((0,0), dtype=self.dtype_) Urow = np.empty(0, dtype=ctypes.c_int) Ucol = np.empty(0, dtype=ctypes.c_int) Uval = np.empty(0, dtype=self.dtype_) Ucsr_p = np.empty(0, dtype=ctypes.c_size_t) Ucsr_i = np.empty(0, dtype=ctypes.c_int) Ucsr = np.empty(0, dtype=self.dtype_) m, p = U.shape if U is not None else (0,0) if (p != Mat.shape[0]) and (Mat.shape[0] > 0) and (p > 0): msg = "'%s' must have the same columns " msg += "as the data passed to 'fit'." raise ValueError(msg % letter) if issparse(U) and (not isspmatrix_coo(U)) and (not isspmatrix_csr(U)): U = U.tocoo() elif isspmatrix_csr(U) and not allow_csr: U = U.tocoo() if isinstance(U, pd.DataFrame): if col_id in U.columns.values: warnings.warn("'%s' not meaningful for new inputs." % col_id) if Cols.shape[0]: U = U[Cols] Uarr = U.to_numpy() Uarr = np.ascontiguousarray(Uarr) if Uarr.dtype != self.dtype_: Uarr = Uarr.astype(self.dtype_) elif isspmatrix_coo(U): Urow = U.row.astype(ctypes.c_int) Ucol = U.col.astype(ctypes.c_int) Uval = U.data.astype(self.dtype_) elif isspmatrix_csr(U): if not allow_csr: raise ValueError("Unexpected error.") Ucsr_p = U.indptr.astype(ctypes.c_size_t) Ucsr_i = U.indices.astype(ctypes.c_int) Ucsr = U.data.astype(self.dtype_) elif isinstance(U, np.ndarray): if not U.flags["C_CONTIGUOUS"]: U = np.ascontiguousarray(U) if U.dtype != self.dtype_: U = U.astype(self.dtype_) Uarr = U elif U is None: pass else: if not allow_csr: msg = "'%s' must be a Pandas DataFrame, SciPy sparse COO, or NumPy array." else: msg = "'%s' must be a Pandas DataFrame, SciPy sparse CSR or COO, or NumPy array." raise ValueError(msg % letter) return Uarr, Urow, Ucol, Uval, Ucsr_p, Ucsr_i, Ucsr, m, p def _process_new_Ub_2d(self, U_bin, is_I=False): letter = "U" if not is_I else "I" col_id = "UserId" if not is_I else "ItemId" Cols = self._Ub_cols if not is_I else self._Ib_cols Mat = self.Cbin_ if not is_I else self.Dbin_ Ub_arr = np.empty((0,0), dtype=self.dtype_) m_ub, pbin = U_bin.shape if U_bin is not None else (0,0) if max(m_ub, pbin) and (not Mat.shape[0] or not Mat.shape[1]): raise ValueError("Cannot pass binary data if model was not fit to binary side info.") if (pbin != Mat.shape[0]) and (Mat.shape[0] > 0) and (pbin > 0): msg = "'%s_bin' must have the same columns " msg += "as the data passed to 'fit'." raise ValueError(msg % letter) if isinstance(U_bin, pd.DataFrame): if col_id in U_bin.columns.values: warnings.warn("'%s' not meaningful for new inputs." % col_id) if Cols.shape[0]: U_bin = U_bin[Cols] Ub_arr = U_bin.to_numpy() Ub_arr = np.ascontiguousarray(Ub_arr) if Ub_arr.dtype != self.dtype_: Ub_arr = Ub_arr.astype(self.dtype_) elif isinstance(Ub_arr, np.ndarray): if not Ub_arr.flags["C_CONTIGUOUS"]: Ub_arr = np.ascontiguousarray(Ub_arr) if Ub_arr.dtype != self.dtype_: Ub_arr = Ub_arr.astype(self.dtype_) elif Ub_arr is None: pass else: raise ValueError("'%s_bin' must be a Pandas DataFrame or NumPy array." % letter) return Ub_arr, m_ub, pbin def _process_new_X_2d(self, X, W=None): if len(X.shape) != 2: raise ValueError("'X' must be 2-dimensional.") Xarr = np.empty((0,0), dtype=self.dtype_) Xrow = np.empty(0, dtype=ctypes.c_int) Xcol = np.empty(0, dtype=ctypes.c_int) Xval = np.empty(0, dtype=self.dtype_) Xcsr_p = np.empty(0, dtype=ctypes.c_size_t) Xcsr_i = np.empty(0, dtype=ctypes.c_int) Xcsr = np.empty(0, dtype=self.dtype_) W_dense = np.empty((0,0), dtype=self.dtype_) W_sp = np.empty(0, dtype=self.dtype_) m, n = X.shape if issparse(X) and (not isspmatrix_coo(X)) and (not isspmatrix_csr(X)): if (W is not None) and (not issparse(W)): if not isinstance(W, np.ndarray): W = np.array(W).reshape(-1) if W.shape[0] != X.nnz: raise ValueError("'X' and 'W' have different number of entries.") if isspmatrix_csc(X): W = csc_matrix((W, X.indices, X.indptr), shape=(X.shape[0], X.shape[1])) W = W.tocoo() else: raise ValueError("Must pass 'X' as SciPy sparse COO if there are weights.") X = X.tocoo() if issparse(W) and (not isspmatrix_coo(W)) and (not isspmatrix_csr(W)): W = W.tocoo() if (isspmatrix_coo(X) != isspmatrix_coo(W)): if not isspmatrix_coo(X): X = X.tocoo() if not isspmatrix_coo(W): W = W.tocoo() if issparse(W): W = W.data if isspmatrix_coo(X): Xrow = X.row.astype(ctypes.c_int) Xcol = X.col.astype(ctypes.c_int) Xval = X.data.astype(self.dtype_) if W is not None: W_sp = np.array(W).reshape(-1).astype(self.dtype_) if W_sp.shape[0] != Xval.shape[0]: msg = "'W' must have the same number of non-zero entries " msg += "as 'X'." raise ValueError(msg) elif isspmatrix_csr(X): Xcsr_p = X.indptr.astype(ctypes.c_size_t) Xcsr_i = X.indices.astype(ctypes.c_int) Xcsr = X.data.astype(self.dtype_) if W is not None: W_sp = np.array(W).reshape(-1).astype(self.dtype_) if W_sp.shape[0] != Xcsr.shape[0]: msg = "'W' must have the same number of non-zero entries " msg += "as 'X'." raise ValueError(msg) elif isinstance(X, np.ndarray): if not X.flags["C_CONTIGUOUS"]: X = np.ascontiguousarray(X) if X.dtype != self.dtype_: X = X.astype(self.dtype_) Xarr = X if W is not None: assert W.shape[0] == X.shape[0] assert W.shape[1] == X.shape[1] if not W.flags["C_CONTIGUOUS"]: W = np.ascontiguousarray(W) if W.dtype != self.dtype_: W = W.astype(self.dtype_) W_dense = W else: raise ValueError("'X' must be a SciPy CSR or COO matrix, or NumPy array.") if n > self._n_orig: raise ValueError("'X' has more columns than what was passed to 'fit'.") if self.apply_log_transf: if Xval.min() < 1: raise ValueError("Cannot pass values below 1 with 'apply_log_transf=True'.") return Xarr, Xrow, Xcol, Xval, Xcsr_p, Xcsr_i, Xcsr, m, n, W_dense, W_sp def _process_users_items(self, user, item, include, exclude, allows_no_item=True): if (include is not None and np.any(pd.isnull(include))) \ or (exclude is not None and np.any(pd.isnull(exclude))): raise ValueError("'include' and 'exclude' should not contain missing values.") if include is not None and exclude is not None: raise ValueError("Cannot pass 'include' and 'exclude' together.") include = np.array(include).reshape(-1) if include is not None \ else np.empty(0, dtype=ctypes.c_int) exclude = np.array(exclude).reshape(-1) if exclude is not None \ else np.empty(0, dtype=ctypes.c_int) if isinstance(user, list) or isinstance(user, tuple): user = np.array(user) if isinstance(item, list) or isinstance(item, tuple): item = np.array(item) if isinstance(user, pd.Series): user = user.to_numpy() if isinstance(item, pd.Series): item = item.to_numpy() if user is not None: if isinstance(user, np.ndarray): if len(user.shape) > 1: user = user.reshape(-1) assert user.shape[0] > 0 if self.reindex_: if user.shape[0] > 1: user = pd.Categorical(user, self.user_mapping_).codes if user.dtype != ctypes.c_int: user = user.astype(ctypes.c_int) else: if len(self.user_dict_): try: user = self.user_dict_[user] except: user = -1 else: user = pd.Categorical(user, self.user_mapping_).codes[0] else: if self.reindex_: if len(self.user_dict_): try: user = self.user_dict_[user] except: user = -1 else: user = pd.Categorical(np.array([user]), self.user_mapping_).codes[0] user = np.array([user]) if item is not None: if isinstance(item, np.ndarray): if len(item.shape) > 1: item = item.reshape(-1) assert item.shape[0] > 0 if self.reindex_: if item.shape[0] > 1: item = pd.Categorical(item, self.item_mapping_).codes if item.dtype != ctypes.c_int: item = item.astype(ctypes.c_int) else: if len(self.item_dict_): try: item = self.item_dict_[item[0]] except: item = -1 else: item = pd.Categorical(item, self.item_mapping_).codes[0] else: if self.reindex_: if len(self.item_dict_): try: item = self.item_dict_[item] except: item = -1 else: item = pd.Categorical(np.array([item]), self.item_mapping_).codes[0] item = np.array([item]) else: if not allows_no_item: raise ValueError("Must pass IDs for 'item'.") if self.reindex_: msg = "'%s' should contain only items that were passed to 'fit'." if include.shape[0]: if len(self.item_dict_): try: include = np.array([self.item_dict_[i] for i in include]) except: raise ValueError(msg % "include") else: include =
pd.Categorical(include, self.item_mapping_)
pandas.Categorical
from bs4 import BeautifulSoup as Bs4 from time import sleep from selenium import webdriver from selenium.webdriver.common.keys import Keys import pandas as pd def scroll(driver, timeout): scroll_pause_time = timeout # Get scroll height last_height = driver.execute_script("return document.body.scrollHeight") while True: # Scroll down to bottom driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") # Wait to load page sleep(scroll_pause_time) # Calculate new scroll height and compare with last scroll height new_height = driver.execute_script("return document.body.scrollHeight") if new_height == last_height: # If heights are the same it will exit the function break last_height = new_height driver = webdriver.Chrome(executable_path='C:/WebDrivers/chromedriver.exe') url = 'https://www.facebook.com/login' driver.get(url) driver.implicitly_wait(10) email = 'Your Email' email_xpath = """//*[@id="email"]""" find_email_element = driver.find_element_by_xpath(email_xpath) find_email_element.send_keys(email) driver.implicitly_wait(10) password = '<PASSWORD>' password_xpath = """//*[@id="pass"]""" find_password_element = driver.find_element_by_xpath(password_xpath) find_password_element.send_keys(password) find_password_element.send_keys(Keys.ENTER) sleep(6) group_url = "https://www.facebook.com/groups/group-name/members" driver.get(group_url) driver.implicitly_wait(10) scroll(driver, 2) names = [] final_names = [] src = driver.page_source html_soup = Bs4(src, 'lxml') html_soup.prettify() for name in html_soup.find_all('a', {'class': "oajrlxb2 g5ia77u1 qu0x051f esr5mh6w e9989ue4 r7d6kgcz rq0escxv nhd2j8a9 nc684nl6 p7hjln8o kvgmc6g5 cxmmr5t8 oygrvhab hcukyx3x jb3vyjys rz4wbd8a qt6c0cv9 a8nywdso i1ao9s8h esuyzwwr f1sip0of lzcic4wl oo9gr5id gpro0wi8 lrazzd5p"}): text = name.get_text() list_0 = names.append(text) for final_name in names[1:]: final_names.append(final_name) df =
pd.DataFrame(final_names)
pandas.DataFrame
from datetime import datetime import numpy as np import pytest from pandas import Index, MultiIndex, Series import pandas._testing as tm class TestSeriesAlterAxes: def test_setindex(self, string_series): # wrong type msg = ( r"Index\(\.\.\.\) must be called with a collection of some " r"kind, None was passed" ) with pytest.raises(TypeError, match=msg): string_series.index = None # wrong length msg = ( "Length mismatch: Expected axis has 30 elements, " "new values have 29 elements" ) with pytest.raises(ValueError, match=msg): string_series.index = np.arange(len(string_series) - 1) # works string_series.index = np.arange(len(string_series)) assert isinstance(string_series.index, Index) # Renaming def test_set_name_attribute(self): s = Series([1, 2, 3]) s2 = Series([1, 2, 3], name="bar") for name in [7, 7.0, "name", datetime(2001, 1, 1), (1,), "\u05D0"]: s.name = name assert s.name == name s2.name = name assert s2.name == name def test_set_name(self): s = Series([1, 2, 3]) s2 = s._set_name("foo") assert s2.name == "foo" assert s.name is None assert s is not s2 def test_set_index_makes_timeseries(self): idx = tm.makeDateIndex(10) s = Series(range(10)) s.index = idx assert s.index.is_all_dates def test_reorder_levels(self): index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=["L0", "L1", "L2"], ) s = Series(np.arange(6), index=index) # no change, position result = s.reorder_levels([0, 1, 2]) tm.assert_series_equal(s, result) # no change, labels result = s.reorder_levels(["L0", "L1", "L2"]) tm.assert_series_equal(s, result) # rotate, position result = s.reorder_levels([1, 2, 0]) e_idx = MultiIndex( levels=[["one", "two", "three"], [0, 1], ["bar"]], codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=["L1", "L2", "L0"], ) expected = Series(np.arange(6), index=e_idx) tm.assert_series_equal(result, expected) def test_rename_axis_mapper(self): # GH 19978 mi =
MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
pandas.MultiIndex.from_product
from collections import OrderedDict import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike import pandas as pd from pandas import Index, MultiIndex, date_range import pandas.util.testing as tm def test_constructor_single_level(): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], codes=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(): msg = "non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex(levels=[], codes=[]) msg = "Must pass both levels and codes" with pytest.raises(TypeError, match=msg): MultiIndex(levels=[]) with pytest.raises(TypeError, match=msg): MultiIndex(codes=[]) def test_constructor_nonhashable_names(): # GH 20527 levels = [[1, 2], ['one', 'two']] codes = [[0, 0, 1, 1], [0, 1, 0, 1]] names = (['foo'], ['bar']) msg = r"MultiIndex\.name must be a hashable type" with pytest.raises(TypeError, match=msg): MultiIndex(levels=levels, codes=codes, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] with pytest.raises(TypeError, match=msg): mi.rename(names=renamed) # With .set_names() with pytest.raises(TypeError, match=msg): mi.set_names(names=renamed) def test_constructor_mismatched_codes_levels(idx): codes = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] msg = "Length of levels and codes must be the same" with pytest.raises(ValueError, match=msg): MultiIndex(levels=levels, codes=codes) length_error = (r"On level 0, code max \(3\) >= length of level \(1\)\." " NOTE: this index is in an inconsistent state") label_error = r"Unequal code lengths: \[4, 2\]" code_value_error = r"On level 0, code value \(-2\) < -1" # important to check that it's looking at the right thing. with pytest.raises(ValueError, match=length_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, 1, 2, 3], [0, 3, 4, 1]]) with pytest.raises(ValueError, match=label_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, 0, 0, 0], [0, 0]]) # external API with pytest.raises(ValueError, match=length_error): idx.copy().set_levels([['a'], ['b']]) with pytest.raises(ValueError, match=label_error): idx.copy().set_codes([[0, 0, 0, 0], [0, 0]]) # test set_codes with verify_integrity=False # the setting should not raise any value error idx.copy().set_codes(codes=[[0, 0, 0, 0], [0, 0]], verify_integrity=False) # code value smaller than -1 with pytest.raises(ValueError, match=code_value_error): MultiIndex(levels=[['a'], ['b']], codes=[[0, -2], [0, 0]]) def test_na_levels(): # GH26408 # test if codes are re-assigned value -1 for levels # with mising values (NaN, NaT, None) result = MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[0, -1, 1, 2, 3, 4]]) expected = MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[-1, -1, -1, -1, 3, 4]]) tm.assert_index_equal(result, expected) result = MultiIndex(levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[0, -1, 1, 2, 3, 4]]) expected = MultiIndex(levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[-1, -1, 1, -1, 3, -1]]) tm.assert_index_equal(result, expected) # verify set_levels and set_codes result = MultiIndex( levels=[[1, 2, 3, 4, 5]], codes=[[0, -1, 1, 2, 3, 4]]).set_levels( [[np.nan, 's', pd.NaT, 128, None]]) tm.assert_index_equal(result, expected) result = MultiIndex( levels=[[np.nan, 's', pd.NaT, 128, None]], codes=[[1, 2, 2, 2, 2, 2]]).set_codes( [[0, -1, 1, 2, 3, 4]]) tm.assert_index_equal(result, expected) def test_labels_deprecated(idx): # GH23752 with tm.assert_produces_warning(FutureWarning): MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) with tm.assert_produces_warning(FutureWarning): idx.labels def test_copy_in_constructor(): levels = np.array(["a", "b", "c"]) codes = np.array([1, 1, 2, 0, 0, 1, 1]) val = codes[0] mi = MultiIndex(levels=[levels, levels], codes=[codes, codes], copy=True) assert mi.codes[0][0] == val codes[0] = 15 assert mi.codes[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val # ---------------------------------------------------------------------------- # from_arrays # ---------------------------------------------------------------------------- def test_from_arrays(idx): arrays = [np.asarray(lev).take(level_codes) for lev, level_codes in zip(idx.levels, idx.codes)] # list of arrays as input result = MultiIndex.from_arrays(arrays, names=idx.names) tm.assert_index_equal(result, idx) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(idx): # GH 18434 arrays = [np.asarray(lev).take(level_codes) for lev, level_codes in zip(idx.levels, idx.codes)] # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=idx.names) tm.assert_index_equal(result, idx) # invalid iterator input msg = "Input must be a list / sequence of array-likes." with pytest.raises(TypeError, match=msg): MultiIndex.from_arrays(0) def test_from_arrays_tuples(idx): arrays = tuple(tuple(np.asarray(lev).take(level_codes)) for lev, level_codes in zip(idx.levels, idx.codes)) # tuple of tuples as input result = MultiIndex.from_arrays(arrays, names=idx.names) tm.assert_index_equal(result, idx) def test_from_arrays_index_series_datetimetz(): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(): # 0 levels msg = "Must pass non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, codes=[[]] * N, names=names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('invalid_sequence_of_arrays', [ 1, [1], [1, 2], [[1], 2], [1, [2]], 'a', ['a'], ['a', 'b'], [['a'], 'b'], (1,), (1, 2), ([1], 2), (1, [2]), 'a', ('a',), ('a', 'b'), (['a'], 'b'), [(1,), 2], [1, (2,)], [('a',), 'b'], ((1,), 2), (1, (2,)), (('a',), 'b') ]) def test_from_arrays_invalid_input(invalid_sequence_of_arrays): msg = "Input must be a list / sequence of array-likes" with pytest.raises(TypeError, match=msg): MultiIndex.from_arrays(arrays=invalid_sequence_of_arrays) @pytest.mark.parametrize('idx1, idx2', [ ([1, 2, 3], ['a', 'b']), ([], ['a', 'b']), ([1, 2, 3], []) ]) def test_from_arrays_different_lengths(idx1, idx2): # see gh-13599 msg = '^all arrays must be same length$' with pytest.raises(ValueError, match=msg): MultiIndex.from_arrays([idx1, idx2]) # ---------------------------------------------------------------------------- # from_tuples # ---------------------------------------------------------------------------- def test_from_tuples(): msg = 'Cannot infer number of levels from empty list' with pytest.raises(TypeError, match=msg): MultiIndex.from_tuples([]) expected = MultiIndex(levels=[[1, 3], [2, 4]], codes=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], codes=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables msg = 'Input must be a list / sequence of tuple-likes.' with pytest.raises(TypeError, match=msg): MultiIndex.from_tuples(0) def test_from_tuples_empty(): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_index_values(idx): result = MultiIndex.from_tuples(idx) assert (result.values == idx.values).all() def test_tuples_with_name_string(): # GH 15110 and GH 14848 li = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] msg = "Names should be list-like for a MultiIndex" with pytest.raises(ValueError, match=msg): pd.Index(li, name='abc') with pytest.raises(ValueError, match=msg): pd.Index(li, name='a') def test_from_tuples_with_tuple_label(): # GH 15457 expected = pd.DataFrame([[2, 1, 2], [4, (1, 2), 3]], columns=['a', 'b', 'c']).set_index(['a', 'b']) idx = pd.MultiIndex.from_tuples([(2, 1), (4, (1, 2))], names=('a', 'b')) result = pd.DataFrame([2, 3], columns=['c'], index=idx) tm.assert_frame_equal(expected, result) # ---------------------------------------------------------------------------- # from_product # ---------------------------------------------------------------------------- def test_from_product_empty_zero_levels(): # 0 levels msg = "Must pass non-zero number of levels/codes" with pytest.raises(ValueError, match=msg): MultiIndex.from_product([]) def test_from_product_empty_one_level(): result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) @pytest.mark.parametrize('first, second', [ ([], []), (['foo', 'bar', 'baz'], []), ([], ['a', 'b', 'c']), ]) def test_from_product_empty_two_levels(first, second): names = ['A', 'B'] result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], codes=[[], []], names=names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('N', list(range(4))) def test_from_product_empty_three_levels(N): # GH12258 names = ['A', 'B', 'C'] lvl2 = list(range(N)) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], codes=[[], [], []], names=names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('invalid_input', [ 1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b'], ]) def test_from_product_invalid_input(invalid_input): msg = (r"Input must be a list / sequence of iterables|" "Input must be list-like") with pytest.raises(TypeError, match=msg): MultiIndex.from_product(iterables=invalid_input) def test_from_product_datetimeindex(): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([ (1, pd.Timestamp('2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp('2000-01-01')), (2, pd.Timestamp('2000-01-02')), ]) tm.assert_numpy_array_equal(mi.values, etalon) @pytest.mark.parametrize('ordered', [False, True]) @pytest.mark.parametrize('f', [ lambda x: x, lambda x: pd.Series(x), lambda x: x.values ]) def test_from_product_index_series_categorical(ordered, f): # GH13743 first = ['foo', 'bar'] idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) result = pd.MultiIndex.from_product([first, f(idx)]) tm.assert_index_equal(result.get_level_values(1), expected) def test_from_product(): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected =
MultiIndex.from_tuples(tuples, names=names)
pandas.MultiIndex.from_tuples
####################### # Header.R from datetime import time from operator import index from os import path, times import numpy as np import pandas as pd import os import logging from pathlib import Path from pandas.core.reshape.merge import merge from powergenome.util import regions_to_keep from powergenome.us_state_abbrev import (state2abbr, abbr2state) path_in = r"..\data\load_profiles_data\input" # fix #read in state proportions #how much state load should be distributed to GenXRegion # pop = pd.read_parquet(path_in + "\GenX_State_Pop_Weight.parquet") pop = pd.read_parquet(path_in + "\ipm_state_pop_weight_20210517.parquet") states = pop.drop_duplicates(subset=["State"])["State"] states_abb = list(map(state2abbr, states)) pop["State"] = list(map(state2abbr, pop["State"])) states_eastern_abbr = ["ME","VT","NH","MA","RI","CT","NY","PA","NJ","DE","MD","DC","MI","IN","OH","KY","WV","VA","NC","SC","GA","FL"] states_central_abbr = ["IL","MO","TN","AL","MS","WI","AR","LA","TX","OK","KS","NE","SD","ND","IA","MN"] states_mountain_abbr = ["MT","WY","CO","NM","AZ","UT","ID"] states_pacific_abbr = ["CA","NV","OR","WA"] states_eastern = list(map(abbr2state, states_eastern_abbr)) states_central = list(map(abbr2state, states_central_abbr)) states_mountain = list(map(abbr2state, states_mountain_abbr)) states_pacific = list(map(abbr2state, states_pacific_abbr)) # some parameters stated_states = ["New Jersey", "New York", "Virginia"] # Date Jan 29, 2021 # (2) PA, NJ, VA, NY, MI all have EV and heat pump stocks from NZA DD case # consistent with their economywide decarbonization goals. # https://www.c2es.org/content/state-climate-policy/ # Date Feb 10, 2021 # Remove high electrification growth in PA and MI in stated policies; # they dont have clean energy goals so kind of confusing/inconsistent to require high electrification in these states. # So our new "Stated Policies" definition for electrification is states # with BOTH economywide emissions goals + 100% carbon-free electricity standards # = NY, NJ, VA. stated_states_abbr = list(map(state2abbr, stated_states)) #years = ["2022", "2025", "2030", "2040", "2050"] cases = ["current_policy", "stated_policy", "deep_decarbonization"] running_sector = ['Residential','Residential', 'Commercial', 'Commercial','Transportation','Transportation','Transportation', 'Transportation'] running_subsector = ['space heating and cooling','water heating', 'space heating and cooling', 'water heating','light-duty vehicles','medium-duty trucks','heavy-duty trucks','transit buses'] Nsubsector = len(running_subsector) logger = logging.getLogger(__name__) #Define function for adjusting time-difference def addhour(x): x += 1 x = x.replace(8761, 1) return x def SolveThreeUnknowns(a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3): D = a1*b2*c3 + b1*c2*a3 + c1*a2*b3 - a1*c2*b3 - b1*a2*c3 - c1*b2*a3 Dx = d1*b2*c3 + b1*c2*d3 + c1*d2*b3 - d1*c2*b3 - b1*d2*c3 - c1*b2*d3 Dy = a1*d2*c3 + d1*c2*a3 + c1*a2*d3 - a1*c2*d3 - d1*a2*c3 - c1*d2*a3 Dz = a1*b2*d3 + b1*d2*a3 + d1*a2*b3 - a1*d2*b3 - b1*a2*d3 - d1*b2*a3 Sx = Dx/D Sy = Dy/D Sz = Dz/D d = {'Sx':Sx, 'Sy':Sy, 'Sz':Sz} return pd.DataFrame(d) def SolveTwoUnknowns(a1, b1, c1, a2, b2, c2): D = a1*b2 - a2*b1 Dx = c1*b2 - c2*b1 Dy = a1*c2 - a2*c1 Sx = Dx/D Sy = Dy/D d = {'Sx':Sx, 'Sy':Sy} return pd.DataFrame(d) def CreateOutputFolder(case_folder): path = case_folder / "extra_outputs" if not os.path.exists(path): os.makedirs(path) ###################################### # CreatingBaseLoad.R def CreateBaseLoad(years, regions, output_folder, path_growthrate): path_processed = path_in path_result = output_folder.__str__() years = years regions = regions path_growthrate = path_growthrate ## Method 3: annually EFS_2020_LoadProf = pd.read_parquet(path_in + "\EFS_REF_load_2020.parquet") EFS_2020_LoadProf = pd.merge(EFS_2020_LoadProf, pop, on = ["State"]) EFS_2020_LoadProf = EFS_2020_LoadProf.assign(weighted = EFS_2020_LoadProf["LoadMW"]*EFS_2020_LoadProf["State Prop"]) EFS_2020_LoadProf = EFS_2020_LoadProf.groupby(["Year", "GenX.Region", "LocalHourID", "Sector", "Subsector"], as_index = False).agg({"weighted" : "sum"}) # Read in 2019 Demand Original_Load_2019 = pd.read_parquet(path_in + "\ipm_load_curves_2019_EST.parquet") # Reorganize Demand Original_Load_2019 = Original_Load_2019.melt(id_vars="LocalHourID").rename(columns={"variable" : "GenX.Region", "value": "LoadMW_original"}) Original_Load_2019 = Original_Load_2019.groupby(["LocalHourID"], as_index = False).agg({"LoadMW_original" : "sum"}) ratio_A = Original_Load_2019["LoadMW_original"].sum() / EFS_2020_LoadProf["weighted"].sum() EFS_2020_LoadProf = EFS_2020_LoadProf.assign(weighted = EFS_2020_LoadProf["weighted"]*ratio_A) Base_Load_2019 = EFS_2020_LoadProf.rename(columns ={"weighted" : "LoadMW"}) breakpoint() # Read in the Growth Rate GrowthRate = pd.read_parquet(path_in + "\ipm_growthrate_2019.parquet") try: GrowthRate = pd.read_parquet(path_growthrate) except: pass # Create Base loads Base_Load_2019 = Base_Load_2019[Base_Load_2019["GenX.Region"].isin(regions)] Base_Load_2019.loc[(Base_Load_2019["Sector"] == "Industrial") & (Base_Load_2019["Subsector"].isin(["process heat", "machine drives"])), "Subsector"] = "other" Base_Load_2019 = Base_Load_2019[Base_Load_2019["Subsector"] == "other"] Base_Load_2019 = Base_Load_2019.groupby(["Year", "LocalHourID", "GenX.Region", "Sector"], as_index= False).agg({'LoadMW' : 'sum'}) Base_Load = Base_Load_2019 for y in years: ScaleFactor = GrowthRate.assign(ScaleFactor = (1+GrowthRate["growth_rate"])**(int(y) - 2019)) \ .drop(columns = "growth_rate") Base_Load_temp = pd.merge(Base_Load_2019, ScaleFactor, on = ["GenX.Region"]) Base_Load_temp = Base_Load_temp.assign(Year = y, LoadMW = Base_Load_temp["LoadMW"]*Base_Load_temp["ScaleFactor"])\ .drop(columns = "ScaleFactor") Base_Load = Base_Load.append(Base_Load_temp, ignore_index=True) Base_Load.to_parquet(path_result + "\Base_Load.parquet", index = False) del Base_Load, Base_Load_2019, Base_Load_temp, ScaleFactor,GrowthRate, Original_Load_2019 ##################################### # Add_Electrification.R def AddElectrification(years, regions, electrification, output_folder, path_stock): path_processed = path_in path_result = output_folder.__str__() path_stock = path_stock years = years electrification = electrification regions = regions #Creating Time-series SCENARIO_STOCK = pd.read_parquet(path_processed + "\SCENARIO_STOCK.parquet") SCENARIO_STOCK = SCENARIO_STOCK[(SCENARIO_STOCK["YEAR"].isin(years)) & (SCENARIO_STOCK["SCENARIO"].isin(electrification))] SCENARIO_STOCK_temp = pd.DataFrame() for year, case in zip(years, electrification): SCENARIO_STOCK_temp = SCENARIO_STOCK_temp.append(SCENARIO_STOCK[(SCENARIO_STOCK["YEAR"] == year) & (SCENARIO_STOCK["SCENARIO"] == case)]) SCENARIO_STOCK = SCENARIO_STOCK_temp del SCENARIO_STOCK_temp try: CUSTOM_STOCK = pd.read_parquet(path_stock) CUSTOM_STOCK = CUSTOM_STOCK[(CUSTOM_STOCK["YEAR"].isin(years)) & (CUSTOM_STOCK["SCENARIO"].isin(electrification))] SCENARIO_STOCK = SCENARIO_STOCK.append(CUSTOM_STOCK) except: pass #Method 1 Calculate from Type1 and Type 2 for i in range(0, Nsubsector): timeseries = pd.read_parquet(path_processed + "\\" + running_sector[i] + "_" + running_subsector[i] + "_Incremental_Factor.parquet") timeseries = timeseries[["State", "Year", "LocalHourID", "Unit", "Factor_Type1", "Factor_Type2" ]] stock_temp = SCENARIO_STOCK[(SCENARIO_STOCK["SECTOR"] == running_sector[i]) & (SCENARIO_STOCK["SUBSECTOR"] == running_subsector[i])] stock_temp = stock_temp[["SCENARIO", "STATE", "YEAR", "AGG_STOCK_TYPE1", "AGG_STOCK_TYPE2"]].rename(columns={"STATE" : "State", "YEAR" : "Year"}) years_pd = pd.Series(years) IF_years = pd.Series(timeseries["Year"].unique()) for year in years_pd: exists = year in IF_years.values if not exists: diff = np.array(IF_years - year) index = diff[np.where(diff <= 0)].argmax() year_approx = IF_years[index] timeseries_temp = timeseries[timeseries["Year"] == year_approx] timeseries_temp["Year"] = year logger.warning("No incremental factor available for year " + str(year) + ": using factors from year " + str(year_approx) + ".") timeseries = timeseries.append(timeseries_temp) timeseries = pd.merge(timeseries, stock_temp, on = ["State", "Year"]) timeseries = timeseries.assign(LoadMW = timeseries["AGG_STOCK_TYPE1"]*timeseries["Factor_Type1"] + timeseries["AGG_STOCK_TYPE2"]*timeseries["Factor_Type2"]) timeseries = timeseries[["SCENARIO", "State", "Year", "LocalHourID", "LoadMW"]].dropna() timeseries.to_parquet(path_result + "\\" + running_sector[i] + "_" + running_subsector[i] + "_Scenario_Timeseries_Method1.parquet", index = False) del timeseries, stock_temp ########################## # Read in time series and combine them Method = "Method1" Res_SPH = pd.read_parquet(path_result + "\Residential_space heating and cooling_Scenario_Timeseries_" + Method + ".parquet") Res_SPH = Res_SPH.rename(columns={"LoadMW" : "Res_SPH_LoadMW"}) Res_SPH_sum = Res_SPH Res_SPH_sum = Res_SPH.groupby(["SCENARIO", "State", "Year"], as_index = False)["Res_SPH_LoadMW"].agg({"Total_Res_SPH_TWh" : "sum"}) Res_SPH_sum["Total_Res_SPH_TWh"] = 10**-6*Res_SPH_sum["Total_Res_SPH_TWh"] Res_WH = pd.read_parquet(path_result + "\Residential_water heating_Scenario_Timeseries_" + Method +".parquet") Res_WH = Res_WH.rename(columns ={"LoadMW" : "Res_WH_LoadMW"}) Res_WH_sum = Res_WH Res_WH_sum = Res_WH.groupby(["SCENARIO", "State", "Year"], as_index = False)["Res_WH_LoadMW"].agg({"Total_Res_WH_TWh" : "sum"}) Res_WH_sum["Total_Res_WH_TWh"] = 10**-6*Res_WH_sum["Total_Res_WH_TWh"] Com_SPH = pd.read_parquet(path_result + "\Commercial_space heating and cooling_Scenario_Timeseries_" + Method +".parquet") Com_SPH = Com_SPH.rename(columns={"LoadMW" : "Com_SPH_LoadMW"}) Com_SPH_sum = Com_SPH Com_SPH_sum = Com_SPH.groupby(["SCENARIO", "State", "Year"], as_index = False)["Com_SPH_LoadMW"].agg({"Total_Com_SPH_TWh" : "sum"}) Com_SPH_sum["Total_Com_SPH_TWh"] = 10**-6*Com_SPH_sum["Total_Com_SPH_TWh"] Com_WH = pd.read_parquet(path_result + "\Commercial_water heating_Scenario_Timeseries_" + Method +".parquet") Com_WH = Com_WH.rename(columns ={"LoadMW" : "Com_WH_LoadMW"}) Com_WH_sum = Com_WH Com_WH_sum = Com_WH.groupby(["SCENARIO", "State", "Year"], as_index = False)["Com_WH_LoadMW"].agg({"Total_Com_WH_TWh" : "sum"}) Com_WH_sum["Total_Com_WH_TWh"] = 10**-6*Com_WH_sum["Total_Com_WH_TWh"] Trans_LDV =
pd.read_parquet(path_result + "\Transportation_light-duty vehicles_Scenario_Timeseries_" + Method +".parquet")
pandas.read_parquet
from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression import pandas as pd import numpy as np from sklearn import preprocessing from sklearn.model_selection import train_test_split import numpy as np, tensorflow as tf from sklearn.preprocessing import OneHotEncoder import os import csv import gc from sklearn.metrics import mean_squared_error import math from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel, RBF from sklearn.gaussian_process.kernels import RationalQuadratic from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RepeatedKFold from sklearn import linear_model from xgboost.sklearn import XGBRegressor from sklearn.decomposition import PCA import copy import pyflux as pf import datetime os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' PRICED_BITCOIN_FILE_PATH = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/pricedBitcoin2009-2018.csv" DAILY_OCCURRENCE_FILE_PATH = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/dailyOccmatrices/" betti0_input_path = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/betti_0(100).csv" betti1_input_path = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/betti_1(100).csv" DAILY_FILTERED_OCCURRENCE_FILE_PATH = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/filteredDailyOccMatrices/" ROW = -1 COLUMN = -1 TEST_SPLIT = 0.01 ALL_YEAR_INPUT_ALLOWED = False YEAR = 2017 # Baseline from sklearn.metrics import mean_squared_error from sklearn import metrics import matplotlib.pyplot as plt def exclude_days(train, test): row, column = train.shape train_days = np.asarray(train[:, -1]).reshape(-1, 1) x_train = train[:, 0:column - 1] test_days = np.asarray(test[:, -1]).reshape(-1, 1) x_test = test[:, 0:column - 1] return x_train, x_test, train_days, test_days def merge_data(occurrence_data, daily_occurrence_normalized_matrix, aggregation_of_previous_days_allowed): if(aggregation_of_previous_days_allowed): if(occurrence_data.size==0): occurrence_data = daily_occurrence_normalized_matrix else: occurrence_data = np.add(occurrence_data, daily_occurrence_normalized_matrix) else: if(occurrence_data.size == 0): occurrence_data = daily_occurrence_normalized_matrix else: occurrence_data = np.concatenate((occurrence_data, daily_occurrence_normalized_matrix), axis=0) #print("merge_data shape: {} occurrence_data: {} ".format(occurrence_data.shape, occurrence_data)) return occurrence_data def get_normalized_matrix_from_file(day, year, totaltx): daily_occurrence_matrix_path_name = DAILY_OCCURRENCE_FILE_PATH + "occ" + str(year) + '{:03}'.format(day) + '.csv' daily_occurence_matrix = pd.read_csv(daily_occurrence_matrix_path_name, sep=",", header=None).values return np.asarray(daily_occurence_matrix).reshape(1, daily_occurence_matrix.size)/totaltx def fl_get_normalized_matrix_from_file(day, year, totaltx, n_components): daily_occurence_matrix = np.asarray([],dtype=np.float32) for filter_number in range(0, 50, 10): daily_occurrence_matrix_path_name = DAILY_FILTERED_OCCURRENCE_FILE_PATH + "occ" + str(year) + '{:03}'.format(day) + "_" + str(filter_number) +'.csv' daily_occurence_matrix_read = pd.read_csv(daily_occurrence_matrix_path_name, sep=",", header=None).values if(daily_occurence_matrix.size == 0): daily_occurence_matrix = daily_occurence_matrix_read else: daily_occurence_matrix = np.concatenate((daily_occurence_matrix, daily_occurence_matrix_read), axis = 1) pca = PCA(n_components = 20) pca.fit(daily_occurence_matrix) daily_occurence_matrix = pca.transform(daily_occurence_matrix) #print("daily_occurence_matrix: ", daily_occurence_matrix, daily_occurence_matrix.shape) #return np.asarray(daily_occurence_matrix).reshape(1, daily_occurence_matrix.size)/totaltx return np.asarray(daily_occurence_matrix).reshape(1, daily_occurence_matrix.size) def get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): #print("priced_bitcoin: ", priced_bitcoin, priced_bitcoin.shape) #print("current_row: ", current_row, current_row.shape) previous_price_data = np.array([], dtype=np.float32) occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) #print("previous_price_data: ", previous_price_data,row['day'], row['year'], row['totaltx']) #print("occurrence_data: ", occurrence_data) if(is_price_of_previous_days_allowed): #print("previous_price_data: ", np.asarray(previous_price_data).reshape(1, -1), np.asarray(previous_price_data).reshape(1, -1).shape) occurrence_data = np.asarray(previous_price_data).reshape(1, -1) occurrence_input = np.concatenate((occurrence_data, np.asarray(current_row['price']).reshape(1,1)), axis=1) #print("current_row: ", current_row, current_row.shape) #print(" price occurrence_input: ", np.asarray(current_row['price']).reshape(1,1), (np.asarray(current_row['price']).reshape(1,1)).shape) #print("concatenate with price occurrence_input: ", occurrence_input, occurrence_input.shape) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) #print(" price occurrence_input: ", np.asarray(current_row['day']).reshape(1,1), (np.asarray(current_row['day']).reshape(1,1)).shape) #print("concatenate with day occurrence_input: ", occurrence_input, occurrence_input.shape) return occurrence_input def betti_get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.array([], dtype=np.float32) previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) betti0_50 = read_betti(betti0_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti0_50).reshape(1,-1)) betti1_50 = read_betti(betti1_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti1_50).reshape(1,-1)) if occurrence_data.size == 0: occurrence_data = previous_price_data else: occurrence_data = np.row_stack((occurrence_data,previous_price_data)) #print(occurrence_data, occurrence_data.shape) #print(previous_price_data, previous_price_data.shape) occurrence_data = np.asarray(occurrence_data).reshape(1, -1) #betti0_50 = read_betti(betti0_input_path, current_row['day']) #occurrence_input = np.concatenate((occurrence_data, np.asarray(betti0_50).reshape(1,-1)), axis=1) #betti1_50 = read_betti(betti1_input_path, current_row['day']) #occurrence_input = np.concatenate((occurrence_input, np.asarray(betti1_50).reshape(1,-1)), axis=1) occurrence_input = np.concatenate((occurrence_data, np.asarray(current_row['price']).reshape(1,1)), axis=1) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) return occurrence_input def betti_der_get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): #print("priced_bitcoin: ", priced_bitcoin, priced_bitcoin.shape) #print("current_row: ", current_row, current_row.shape) previous_price_data = np.array([], dtype=np.float32) occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) betti0_50 = read_betti(betti0_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti0_50).reshape(1,-1)) betti1_50 = read_betti(betti1_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti1_50).reshape(1,-1)) betti0_50_diff1 = betti0_50.diff(1).dropna() previous_price_data = np.concatenate((previous_price_data.reshape(1,-1), np.asarray(betti0_50_diff1).reshape(1,-1)), axis=1) betti1_50_diff1 = betti1_50.diff(1).dropna() previous_price_data = np.concatenate((previous_price_data, np.asarray(betti1_50_diff1).reshape(1,-1)), axis=1) if occurrence_data.size == 0: occurrence_data = previous_price_data else: occurrence_data = np.concatenate((occurrence_data, previous_price_data.reshape(1,-1)), axis=1) #print(occurrence_data, occurrence_data.shape) #print("previous_price_data: ", previous_price_data,row['day'], row['year'], row['totaltx']) occurrence_data = np.asarray(occurrence_data).reshape(1, -1) occurrence_input = np.concatenate((occurrence_data, np.asarray(current_row['price']).reshape(1,1)), axis=1) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) return occurrence_input def fl_get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): previous_price_data = np.array([], dtype=np.float32) occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) daily_occurrence_normalized_matrix = fl_get_normalized_matrix_from_file(row['day'], row['year'], row['totaltx'], 20) occurrence_data = merge_data(occurrence_data, daily_occurrence_normalized_matrix, aggregation_of_previous_days_allowed) #print("occurrence_data: ",occurrence_data, occurrence_data.shape) if(is_price_of_previous_days_allowed): occurrence_data = np.concatenate((occurrence_data.reshape(1,-1), np.asarray(previous_price_data).reshape(1,-1)), axis=1) occurrence_input = np.concatenate((occurrence_data.reshape(1,-1), np.asarray(current_row['price']).reshape(1,1)), axis=1) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) #print("occurrence_input: ",occurrence_input, occurrence_input.shape) return occurrence_input def read_betti(file_path, day): day = day - 1 betti = pd.read_csv(file_path, index_col=0) try: betti_50 = betti.iloc[day, 0:50] except: print("day:", day) return betti_50 def rf_base_rmse_mode(train_input, train_target, test_input, test_target): rf_regression = RandomForestRegressor(max_depth=2, random_state=0) rf_regression.fit(train_input, train_target.ravel() ) predicted = rf_regression.predict(test_input) rf_base_rmse = np.sqrt(metrics.mean_squared_error(test_target, predicted)) return rf_base_rmse def gp_base_rmse_mode(train_input, train_target, test_input, test_target): param = { 'kernel': RationalQuadratic(alpha=0.01, length_scale=1), 'n_restarts_optimizer': 2 } adj_params = {'kernel': [RationalQuadratic(alpha=0.01,length_scale=1)], 'n_restarts_optimizer': [2]} gpr = GaussianProcessRegressor(**param) cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) cscv = GridSearchCV(gpr, adj_params, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) cscv.fit(train_input,train_target) #print("cv_results_:",cscv.cv_results_) print("best_params_: ",cscv.best_params_) gpr = GaussianProcessRegressor(**cscv.best_params_) gpr.fit(train_input, train_target) mu, cov = gpr.predict(test_input, return_cov=True) test_y = mu.ravel() #uncertainty = 1.96 * np.sqrt(np.diag(cov)) gp_base_rmse = np.sqrt(metrics.mean_squared_error(test_target, test_y)) print(gp_base_rmse) return gp_base_rmse def enet_base_rmse_mode(train_input, train_target, test_input, test_target): param = { 'alpha': 10, 'l1_ratio': 1, } elastic = linear_model.ElasticNet(**param) adj_params = {'alpha': [10], 'l1_ratio': [ 1]} #'max_iter': [100000]} cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) cscv = GridSearchCV(elastic, adj_params, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) cscv.fit(train_input, train_target) print("best_params_: ",cscv.best_params_) elastic= linear_model.ElasticNet(**cscv.best_params_) elastic.fit(train_input,train_target.ravel()) predicted = elastic.predict(test_input) enet_base_rmse = np.sqrt(metrics.mean_squared_error(test_target, predicted)) print("enet_base_rmse: ", enet_base_rmse) #print ("RMSE:", np.sqrt(metrics.mean_squared_error(test_target, predicted))) return enet_base_rmse def xgbt_base_rmse_mode(train_input, train_target, test_input, test_target): param = { 'n_estimators':1000, 'learning_rate': 0.01, } adj_params = { 'n_estimators':[1000], 'learning_rate': [0.01] } xgbt = XGBRegressor(**param) cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) cscv = GridSearchCV(xgbt, adj_params, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) cscv.fit(train_input, train_target) print("best_params_: ", cscv.best_params_) xgbt= XGBRegressor(**cscv.best_params_) xgbt.fit(train_input,train_target.ravel()) predicted = xgbt.predict(test_input) xgbt_base_rmse = np.sqrt(metrics.mean_squared_error(test_target, predicted)) print("xgbt_base_rmse: ", xgbt_base_rmse) #print ("RMSE:", np.sqrt(metrics.mean_squared_error(test_target, predicted))) return xgbt_base_rmse def arimax_initialize_setting(dataset_model, window_size, prediction_horizon, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): data = preprocess_data(dataset_model, window_size, prediction_horizon, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) train = data[0:100, :] test = data[100:100+prediction_horizon, :] x_train, x_test, train_days, test_days = exclude_days(train, test) row, column = x_train.shape train_target = np.asarray(x_train[:, -1]).reshape(-1) train_input = x_train[:, 0:column - 1] test_target = x_test[: , -1] test_input = x_test[ : , 0:column - 1] return train_input, train_target, test_input, test_target, train_days, test_days def arimax_base_rmse_mode(train_input, train_target, test_input, test_target): train_input_diff_arr = np.array([]) train_columns_name = [] train_input_column = int(train_input.shape[1]) for i in range(train_input_column): if(i%2==0): train_columns_name.append('price_' + str(i)) else: train_columns_name.append('totaltx_' + str(i)) train_input_diff = np.diff(train_input[:,i] ) if i == 0: train_input_diff_arr = train_input_diff else: train_input_diff_arr = np.dstack((train_input_diff_arr, train_input_diff)) columns_name = copy.deepcopy(train_columns_name) columns_name.append('current_price') train_target_diff = np.diff(train_target ) train_input_diff_arr = np.dstack((train_input_diff_arr, train_target_diff)) train_input_diff_arr = pd.DataFrame(train_input_diff_arr[0], columns = columns_name) model = pf.ARIMAX(data=train_input_diff_arr,formula="current_price~totaltx_5",ar=1,ma=2,integ=0) model_1 = model.fit("MLE") model_1.summary() test_input_pd = pd.DataFrame(test_input, columns = train_columns_name) test_target_pd = pd.DataFrame(test_target, columns = ['current_price']) test_input_target = pd.concat([test_input_pd, test_target_pd], axis=1) pred = model.predict(h=test_input_target.shape[0], oos_data=test_input_target, intervals=True, ) arimax_base_rmse = mean_squared_error([test_input_target.iloc[0, 6]],[(train_target[99])+pred.current_price[99]]) print("arimax_base_rmse:",arimax_base_rmse) return arimax_base_rmse def run_print_model(train_input, train_target, test_input, test_target, train_days, test_days): rf_base_rmse = rf_base_rmse_mode(train_input, train_target, test_input, test_target) xgbt_base_rmse = xgbt_base_rmse_mode(train_input, train_target, test_input, test_target) gp_base_rmse = gp_base_rmse_mode(train_input, train_target, test_input, test_target) enet_base_rmse = enet_base_rmse_mode(train_input, train_target, test_input, test_target) return rf_base_rmse, xgbt_base_rmse, gp_base_rmse, enet_base_rmse #print_results(predicted, test_target, original_log_return, predicted_log_return, cost, test_days, rmse) #return rf_base_rmse def preprocess_data(dataset_model, window_size, prediction_horizon, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): priced_bitcoin = pd.read_csv(PRICED_BITCOIN_FILE_PATH, sep=",") if(ALL_YEAR_INPUT_ALLOWED): pass else: priced_bitcoin = priced_bitcoin[priced_bitcoin['year']==YEAR].reset_index(drop=True) # get normalized occurence matrix in a flat format and merge with totaltx daily_occurrence_input = np.array([],dtype=np.float32) temp = np.array([], dtype=np.float32) for current_index, current_row in priced_bitcoin.iterrows(): if(current_index<(window_size+prediction_horizon-1)): pass else: start_index = current_index - (window_size + prediction_horizon) + 1 end_index = current_index - prediction_horizon if(dataset_model=="base"): temp = get_daily_occurrence_matrices(priced_bitcoin[start_index:end_index+1], current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) elif(dataset_model=="betti"): temp = betti_get_daily_occurrence_matrices(priced_bitcoin[start_index:end_index+1], current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) elif(dataset_model=="fl"): temp = fl_get_daily_occurrence_matrices(priced_bitcoin[start_index:end_index+1], current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) elif(dataset_model=="betti_der"): temp = betti_der_get_daily_occurrence_matrices(priced_bitcoin[start_index:end_index+1], current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) else: sys.exit("Dataset model support only baseline, betti, fl and betti_der!") if(daily_occurrence_input.size == 0): daily_occurrence_input = temp else: daily_occurrence_input = np.concatenate((daily_occurrence_input, temp), axis=0) return daily_occurrence_input def initialize_setting(dataset_model, window_size, prediction_horizon, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): data = preprocess_data(dataset_model, window_size, prediction_horizon, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) train = data[0:100, :] test = data[100, :].reshape(1, -1) x_train, x_test, train_days, test_days = exclude_days(train, test) #print("x_train:", x_train) row, column = x_train.shape train_target = np.asarray(x_train[:, -1]).reshape(-1) train_input = x_train[:, 0:column - 1] #x_test = x_test.reshape(-1,1) test_target = x_test[: , -1] test_input = x_test[ : , 0:column - 1] return train_input, train_target, test_input, test_target, train_days, test_days parameter_dict = {#0: dict({'is_price_of_previous_days_allowed':True, 'aggregation_of_previous_days_allowed':True})} 1: dict({'is_price_of_previous_days_allowed':True, 'aggregation_of_previous_days_allowed':False})} for step in parameter_dict: names = locals() gc.collect() evalParameter = parameter_dict.get(step) is_price_of_previous_days_allowed = evalParameter.get('is_price_of_previous_days_allowed') aggregation_of_previous_days_allowed = evalParameter.get('aggregation_of_previous_days_allowed') print("IS_PRICE_OF_PREVIOUS_DAYS_ALLOWED: ", is_price_of_previous_days_allowed) print("AGGREGATION_OF_PREVIOUS_DAYS_ALLOWED: ", aggregation_of_previous_days_allowed) window_size_array = [3, 5, 7] horizon_size_array = [1, 2, 5, 7, 10, 15, 20, 25, 30] dataset_model_array = ["base", "betti", "fl","betti_der"] for dataset_model in dataset_model_array: print('dataset_model: ', dataset_model) for window_size in window_size_array: print('WINDOW_SIZE: ', window_size) for prediction_horizon in horizon_size_array: print("PREDICTION_HORIZON: ", prediction_horizon) train_input, train_target, test_input, test_target, train_days, test_days = initialize_setting(dataset_model, window_size, prediction_horizon, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed) rf_base_rmse, xgbt_base_rmse, gp_base_rmse, enet_base_rmse = run_print_model(train_input, train_target, test_input, test_target, train_days, test_days) rmse = pd.DataFrame({'rf_' + dataset_model + '_rmse_'+str(window_size): [rf_base_rmse], 'xgbt_' + dataset_model + '_rmse_'+str(window_size): [xgbt_base_rmse], 'gp_' + dataset_model + '_rmse_'+str(window_size): [gp_base_rmse], 'enet_' + dataset_model + '_rmse_'+str(window_size): [enet_base_rmse]}) if(prediction_horizon==1): rmse_total = rmse else: rmse_total = [rmse_total, rmse] rmse_total = pd.concat(rmse_total) if(window_size==3): names['rmse_' + dataset_model + '_total'] = rmse_total else: names['rmse_' + dataset_model + '_total'] = pd.concat([names.get('rmse_' + dataset_model + '_total') , rmse_total], axis=1) names['rmse_' + dataset_model + '_total'].index = pd.Series(horizon_size_array) print('rmse_{}_total = {}'.format(dataset_model, names.get('rmse_' + dataset_model + '_total'))) t = datetime.datetime.now() dir_name = t.strftime('%m_%d___%H_%M') if not os.path.exists(dir_name): os.makedirs(dir_name) betti_gain = 100 * (1 -rmse_betti_total.div(rmse_base_total.values)) fl_gain = 100 * (1 -rmse_fl_total.div(rmse_base_total.values)) betti_der_gain = 100 * (1 -rmse_betti_der_total.div(rmse_base_total.values)) for i in range(12): path = dir_name + "/" perf =
pd.concat([betti_gain.iloc[:,i],betti_der_gain.iloc[:,i], fl_gain.iloc[:, i]], axis=1)
pandas.concat
import itertools import numba as nb import numpy as np import pandas as pd import pytest from sid.contacts import _consolidate_reason_of_infection from sid.contacts import _numpy_replace from sid.contacts import calculate_infections_by_contacts from sid.contacts import create_group_indexer @pytest.mark.unit @pytest.mark.parametrize( "states, group_code_name, expected", [ ( pd.DataFrame({"a": [1] * 7 + [0] * 8}), "a", [list(range(7, 15)), list(range(7))], ), ( pd.DataFrame({"a": pd.Series([0, 1, 2, 3, 0, 1, 2, 3]).astype("category")}), "a", [[0, 4], [1, 5], [2, 6], [3, 7]], ), ( pd.DataFrame({"a": pd.Series([0, 1, 2, 3, 0, 1, 2, -1])}), "a", [[0, 4], [1, 5], [2, 6], [3]], ), ], ) def test_create_group_indexer(states, group_code_name, expected): result = create_group_indexer(states, group_code_name) result = [r.tolist() for r in result] assert result == expected @pytest.fixture() def households_w_one_infected(): states = pd.DataFrame( { "infectious": [True] + [False] * 7, "cd_infectious_true": [-1] * 8, "immunity": [1.0] + [0.0] * 7, "group_codes_households": [0] * 4 + [1] * 4, "households": [0] * 4 + [1] * 4, "group_codes_non_rec": [0] * 4 + [1] * 4, "n_has_infected": 0, "virus_strain": pd.Series(["base_strain"] + [pd.NA] * 7, dtype="category"), } ) params = pd.DataFrame( columns=["value"], data=1, index=pd.MultiIndex.from_tuples( [("infection_prob", "households", "households")] ), ) indexers = {"recurrent": nb.typed.List()} indexers["recurrent"].append(create_group_indexer(states, ["households"])) assortative_matching_cum_probs = nb.typed.List() assortative_matching_cum_probs.append(np.zeros((0, 0))) group_codes_info = {"households": {"name": "group_codes_households"}} virus_strains = { "names": ["base_strain"], "contagiousness_factor": np.ones(1), "immunity_resistance_factor": np.zeros(1), } return { "states": states, "recurrent_contacts": np.ones((len(states), 1), dtype=bool), "random_contacts": None, "params": params, "indexers": indexers, "assortative_matching_cum_probs": assortative_matching_cum_probs, "group_codes_info": group_codes_info, "susceptibility_factor": np.ones(len(states)), "virus_strains": virus_strains, "seasonality_factor":
pd.Series([1], index=["households"])
pandas.Series
""" Routines for casting. """ from contextlib import suppress from datetime import date, datetime, timedelta from typing import ( TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Set, Sized, Tuple, Type, Union, ) import numpy as np from pandas._libs import lib, tslib, tslibs from pandas._libs.tslibs import ( NaT, OutOfBoundsDatetime, Period, Timedelta, Timestamp, conversion, iNaT, ints_to_pydatetime, ints_to_pytimedelta, ) from pandas._libs.tslibs.timezones import tz_compare from pandas._typing import AnyArrayLike, ArrayLike, Dtype, DtypeObj, Scalar, Shape from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( DT64NS_DTYPE, INT64_DTYPE, POSSIBLY_CAST_DTYPES, TD64NS_DTYPE, ensure_int8, ensure_int16, ensure_int32, ensure_int64, ensure_object, ensure_str, is_bool, is_bool_dtype, is_categorical_dtype, is_complex, is_complex_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, is_sparse, is_string_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import ( DatetimeTZDtype, ExtensionDtype, IntervalDtype, PeriodDtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCExtensionArray, ABCPeriodArray, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.inference import is_list_like from pandas.core.dtypes.missing import ( is_valid_nat_for_dtype, isna, na_value_for_dtype, notna, ) if TYPE_CHECKING: from pandas import Series from pandas.core.arrays import ExtensionArray from pandas.core.indexes.base import Index _int8_max = np.iinfo(np.int8).max _int16_max = np.iinfo(np.int16).max _int32_max = np.iinfo(np.int32).max _int64_max = np.iinfo(np.int64).max def maybe_convert_platform(values): """ try to do platform conversion, allow ndarray or list here """ if isinstance(values, (list, tuple, range)): values = construct_1d_object_array_from_listlike(values) if getattr(values, "dtype", None) == np.object_: if hasattr(values, "_values"): values = values._values values = lib.maybe_convert_objects(values) return values def is_nested_object(obj) -> bool: """ return a boolean if we have a nested object, e.g. a Series with 1 or more Series elements This may not be necessarily be performant. """ if isinstance(obj, ABCSeries) and is_object_dtype(obj.dtype): if any(isinstance(v, ABCSeries) for v in obj._values): return True return False def maybe_box_datetimelike(value: Scalar, dtype: Optional[Dtype] = None) -> Scalar: """ Cast scalar to Timestamp or Timedelta if scalar is datetime-like and dtype is not object. Parameters ---------- value : scalar dtype : Dtype, optional Returns ------- scalar """ if dtype == object: pass elif isinstance(value, (np.datetime64, datetime)): value = tslibs.Timestamp(value) elif isinstance(value, (np.timedelta64, timedelta)): value = tslibs.Timedelta(value) return value def maybe_downcast_to_dtype(result, dtype: Union[str, np.dtype]): """ try to cast to the specified dtype (e.g. convert back to bool/int or could be an astype of float64->float32 """ do_round = False if is_scalar(result): return result elif isinstance(result, ABCDataFrame): # occurs in pivot_table doctest return result if isinstance(dtype, str): if dtype == "infer": inferred_type = lib.infer_dtype(ensure_object(result), skipna=False) if inferred_type == "boolean": dtype = "bool" elif inferred_type == "integer": dtype = "int64" elif inferred_type == "datetime64": dtype = "datetime64[ns]" elif inferred_type == "timedelta64": dtype = "timedelta64[ns]" # try to upcast here elif inferred_type == "floating": dtype = "int64" if issubclass(result.dtype.type, np.number): do_round = True else: dtype = "object" dtype = np.dtype(dtype) elif dtype.type is Period: from pandas.core.arrays import PeriodArray with suppress(TypeError): # e.g. TypeError: int() argument must be a string, a # bytes-like object or a number, not 'Period return PeriodArray(result, freq=dtype.freq) converted = maybe_downcast_numeric(result, dtype, do_round) if converted is not result: return converted # a datetimelike # GH12821, iNaT is cast to float if dtype.kind in ["M", "m"] and result.dtype.kind in ["i", "f"]: if hasattr(dtype, "tz"): # not a numpy dtype if dtype.tz: # convert to datetime and change timezone from pandas import to_datetime result = to_datetime(result).tz_localize("utc") result = result.tz_convert(dtype.tz) else: result = result.astype(dtype) return result def maybe_downcast_numeric(result, dtype: DtypeObj, do_round: bool = False): """ Subset of maybe_downcast_to_dtype restricted to numeric dtypes. Parameters ---------- result : ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype do_round : bool Returns ------- ndarray or ExtensionArray """ if not isinstance(dtype, np.dtype): # e.g. SparseDtype has no itemsize attr return result if isinstance(result, list): # reached via groupby.agg._ohlc; really this should be handled earlier result = np.array(result) def trans(x): if do_round: return x.round() return x if dtype.kind == result.dtype.kind: # don't allow upcasts here (except if empty) if result.dtype.itemsize <= dtype.itemsize and result.size: return result if is_bool_dtype(dtype) or is_integer_dtype(dtype): if not result.size: # if we don't have any elements, just astype it return trans(result).astype(dtype) # do a test on the first element, if it fails then we are done r = result.ravel() arr = np.array([r[0]]) if isna(arr).any(): # if we have any nulls, then we are done return result elif not isinstance(r[0], (np.integer, np.floating, int, float, bool)): # a comparable, e.g. a Decimal may slip in here return result if ( issubclass(result.dtype.type, (np.object_, np.number)) and notna(result).all() ): new_result = trans(result).astype(dtype) if new_result.dtype.kind == "O" or result.dtype.kind == "O": # np.allclose may raise TypeError on object-dtype if (new_result == result).all(): return new_result else: if np.allclose(new_result, result, rtol=0): return new_result elif ( issubclass(dtype.type, np.floating) and not is_bool_dtype(result.dtype) and not is_string_dtype(result.dtype) ): return result.astype(dtype) return result def maybe_cast_result( result: ArrayLike, obj: "Series", numeric_only: bool = False, how: str = "" ) -> ArrayLike: """ Try casting result to a different type if appropriate Parameters ---------- result : array-like Result to cast. obj : Series Input Series from which result was calculated. numeric_only : bool, default False Whether to cast only numerics or datetimes as well. how : str, default "" How the result was computed. Returns ------- result : array-like result maybe casted to the dtype. """ dtype = obj.dtype dtype = maybe_cast_result_dtype(dtype, how) assert not is_scalar(result) if ( is_extension_array_dtype(dtype) and not is_categorical_dtype(dtype) and dtype.kind != "M" ): # We have to special case categorical so as not to upcast # things like counts back to categorical cls = dtype.construct_array_type() result = maybe_cast_to_extension_array(cls, result, dtype=dtype) elif numeric_only and is_numeric_dtype(dtype) or not numeric_only: result = maybe_downcast_to_dtype(result, dtype) return result def maybe_cast_result_dtype(dtype: DtypeObj, how: str) -> DtypeObj: """ Get the desired dtype of a result based on the input dtype and how it was computed. Parameters ---------- dtype : DtypeObj Input dtype. how : str How the result was computed. Returns ------- DtypeObj The desired dtype of the result. """ from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.integer import Int64Dtype if how in ["add", "cumsum", "sum"] and (dtype == np.dtype(bool)): return np.dtype(np.int64) elif how in ["add", "cumsum", "sum"] and isinstance(dtype, BooleanDtype): return Int64Dtype() return dtype def maybe_cast_to_extension_array( cls: Type["ExtensionArray"], obj: ArrayLike, dtype: Optional[ExtensionDtype] = None ) -> ArrayLike: """ Call to `_from_sequence` that returns the object unchanged on Exception. Parameters ---------- cls : class, subclass of ExtensionArray obj : arraylike Values to pass to cls._from_sequence dtype : ExtensionDtype, optional Returns ------- ExtensionArray or obj """ from pandas.core.arrays.string_ import StringArray from pandas.core.arrays.string_arrow import ArrowStringArray assert isinstance(cls, type), f"must pass a type: {cls}" assertion_msg = f"must pass a subclass of ExtensionArray: {cls}" assert issubclass(cls, ABCExtensionArray), assertion_msg # Everything can be converted to StringArrays, but we may not want to convert if ( issubclass(cls, (StringArray, ArrowStringArray)) and
lib.infer_dtype(obj)
pandas._libs.lib.infer_dtype
import pandas as pd import numpy as np def fetch_total_population_df(): train_df = pd.read_csv('training_data.csv', encoding="ISO-8859-1") matrix = train_df.groupby(['pickup_grid_number','dropoff_grid_number']).size().unstack().fillna(0) matrixByHours = train_df.groupby(['hour','pickup_grid_number','dropoff_grid_number']).size().unstack().fillna(0) pickup_matrix = train_df.groupby(['hour', 'pickup_grid_number']).size().unstack().fillna(0) dropoff_matrix = train_df.groupby(['hour', 'dropoff_grid_number']).size().unstack().fillna(0) pickup_matrix.fillna(0, inplace=True) dropoff_matrix.fillna(0, inplace=True) change_obj = {} total_population_obj = {} for i in range(1, 2500): try: if i in dropoff_matrix[:].columns and i in pickup_matrix[:].columns: change_obj[str(i)] = dropoff_matrix[:][i] - pickup_matrix[:][i] try: total_population_obj[str(i)] = total_population_obj[str(i-1)] + change_obj[str(i)] except KeyError: total_population_obj[str(i)] = change_obj[str(i)] pass elif i in dropoff_matrix[:].columns: change_obj[str(i)] = dropoff_matrix[:][i] try: total_population_obj[str(i)] = total_population_obj[str(i-1)] + change_obj[str(i)] except KeyError: total_population_obj[str(i)] = change_obj[str(i)] pass elif i in pickup_matrix[:].columns: change_obj[str(i)] = -pickup_matrix[:][i] try: total_population_obj[str(i)] = total_population_obj[str(i-1)] + change_obj[str(i)] except KeyError: total_population_obj[str(i)] = change_obj[str(i)] pass except KeyError: pass #net_change_df is a 24x1010 (hour by zone) matrix containing the net change in a given zone #a positive value implies more people entering the zone then leaving #a negative value implies more people leaving the zone then entering net_change_df =
pd.DataFrame(change_obj)
pandas.DataFrame
import numpy as np import pandas as pd import lib.utils as utils import lib.aux_utils as aux from collections import defaultdict def transform_vacineja(df): ''' Description. Args: return_: Bool. colnames: List of strings or String. nrows: Integer or None. cur_date: datetime.date. Return: self.vacineja_df: pandas.DataFrame. If return_=True. ''' date_fmt = "%Y-%m-%d" date_cols = ["data_nascimento", "created_at"] for j in date_cols: df[j] = pd.to_datetime(df[j], format=date_fmt, errors="coerce") # More specific filters and transformations df = df.dropna(subset=["cpf", "data_nascimento"], axis=0) # Include only the individuals with male and female sex (to avoid the problem of before) df = df[df["sexo"].isin(["M", "F"])] df["cpf"] = df["cpf"].apply(lambda x:f"{x:11.0f}".replace(" ","0") if type(x)!=str else np.nan) df = df.drop_duplicates(subset=["cpf"], keep="first") df['cns'] = df['cns'].apply(lambda x: f'{x}') #df = df[df["cidade"]=="FORTALEZA"] #df = df.drop("cidade", axis=1) # --> Create custom primary keys to complement the linkage by 'cpf' with the other databases df["nome tratado"] = df["nome"].apply(lambda x: utils.replace_string(x)) df["nome mae tratado"] = df["nome_mae"].apply(lambda x: utils.replace_string(x) if not pd.isna(x) else np.nan) df["nome hashcode"] = df["nome"].apply(lambda x: utils.replace_string_hash(x) if not pd.isna(x) else np.nan) df["nome mae hashcode"] = df["nome_mae"].apply(lambda x: utils.replace_string_hash(x) if not pd.isna(x) else np.nan) # ----> CUSTOM PRIMARY KEYS df["NOMENASCIMENTOCHAVE"] = df["nome tratado"].astype(str)+df["data_nascimento"].astype(str) df["NOMENOMEMAECHAVE"] = df["nome tratado"].astype(str)+df["nome mae tratado"].astype(str) df["NOMEMAENASCIMENTOCHAVE"] = df["nome mae tratado"].astype(str) + df["data_nascimento"].astype(str) df["NOMEHASHNASCIMENTOCHAVE"] = df["nome hashcode"].astype(str) + df["data_nascimento"].astype(str) df["NOMEMAEHASHNASCIMENTOCHAVE"] = df["nome mae hashcode"].astype(str) + df["data_nascimento"].astype(str) df = df.drop(["nome tratado", "nome mae tratado", "nome hashcode", "nome mae hashcode"], axis=1) return df def transform_vacinados(df): ''' ''' date_fmt = "%Y-%m-%d" date_cols = ["data D1", "data D2", "data D3", "data D4", "data nascimento"] for j in date_cols: df[j] = pd.to_datetime(df[j], format=date_fmt, errors="coerce") # Apply filters # Remove records with the fields "cpf_usuario" and "data_nascimento" missing. df = df.dropna(subset=["cpf","data nascimento","sexo","vacina"], how="any", axis=0) # Format the field of "grupo prioritario" to reduce the rows with compound information. df["grupo prioritario"] = df["grupo prioritario"].apply(lambda x: x.split("-")[0] if not pd.isna(x) else x) # Process the CPF field df["cpf"] = df["cpf"].astype(float, errors="ignore") df["cpf"] = df["cpf"].apply(lambda x:f"{x:11.0f}".replace(" ","0") if type(x)!=str else np.nan) df = df.drop_duplicates(subset=["cpf"], keep="first") # Process the names of each person # Find all persons having an inconsistent set of vaccination dates. subset = ["data D1", "data D2"] df["data aplicacao consistente"] = df[subset].apply(lambda x: aux.f_d1d2(x["data D1"], x["data D2"]), axis=1) # --> Create custom primary keys to complement the linkage by 'cpf' with the other databases df["nome tratado"] = df["nome"].apply(lambda x: utils.replace_string(x)) df["nome mae tratado"] = df["nome mae"].apply(lambda x: utils.replace_string(x) if not pd.isna(x) else np.nan) df["nome hashcode"] = df["nome"].apply(lambda x: utils.replace_string_hash(x) if not pd.isna(x) else np.nan) df["nome mae hashcode"] = df["nome mae"].apply(lambda x: utils.replace_string_hash(x) if not pd.isna(x) else np.nan) df = df.add_suffix("(VACINADOS)") # ----> CUSTOM PRIMARY KEYS df["NOMENASCIMENTOCHAVE"] = df["nome tratado(VACINADOS)"].astype(str)+df["data nascimento(VACINADOS)"].astype(str) df["NOMENOMEMAECHAVE"] = df["nome tratado(VACINADOS)"].astype(str)+df["nome mae tratado(VACINADOS)"].astype(str) df["NOMEMAENASCIMENTOCHAVE"] = df["nome mae tratado(VACINADOS)"].astype(str) + df["data nascimento(VACINADOS)"].astype(str) df["NOMEHASHNASCIMENTOCHAVE"] = df["nome hashcode(VACINADOS)"].astype(str) + df["data nascimento(VACINADOS)"].astype(str) df["NOMEMAEHASHNASCIMENTOCHAVE"] = df["nome mae hashcode(VACINADOS)"].astype(str) + df["data nascimento(VACINADOS)"].astype(str) df = df.drop(["nome tratado(VACINADOS)", "nome mae tratado(VACINADOS)", "nome hashcode(VACINADOS)", "nome mae hashcode(VACINADOS)"], axis=1) return df def transform_integrasus(df, init_cohort): ''' ''' df["cpf"] = df["cpf"].apply(lambda x: f"{x:11.0f}".replace(" ", "0") if not pd.isna(x) else np.nan) df['nome_mae'] = df['nome_mae'].apply(lambda x: x if len(x)>0 and not pd.isna(x) else np.nan) df["nome tratado"] = df["nome_paciente"].apply(lambda x: utils.replace_string(x) if not pd.isna(x) else np.nan) df["nome hashcode"] = df["nome_paciente"].apply(lambda x: utils.replace_string_hash(x) if not pd.isna(x) else np.nan) df["nome mae tratado"] = df["nome_mae"].apply(lambda x: utils.replace_string(x) if not pd.isna(x) else np.nan) df["nome mae hashcode"] = df["nome_mae"].apply(lambda x: utils.replace_string_hash(x) if not pd.isna(x) else np.nan) df["cns"] = df["cns"].apply(lambda x: x if len(x)>0 or not pd.isna(x) else "INDETERMINADO") # Transform date fields df["data_nascimento"] = pd.to_datetime(df["data_nascimento"], errors="coerce") df["data_coleta_exame"] = pd.to_datetime(df["data_coleta_exame"], errors="coerce") df["data_inicio_sintomas_nova"] = pd.to_datetime(df["data_inicio_sintomas_nova"], errors="coerce") df["data_internacao_sivep"] = pd.to_datetime(df["data_internacao_sivep"], errors="coerce") df["data_entrada_uti_sivep"] =
pd.to_datetime(df["data_entrada_uti_sivep"], format="%Y/%m/%d", errors="coerce")
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Sep 14 13:16:25 2018 @author: nooteboom """ # -*- coding: utf-8 -*- """ Created on Wed Aug 1 16:41:17 2018 @author: nooteboom """ import numpy as np import matplotlib.pylab as plt import matplotlib import seaborn as sns import pandas as pd from matplotlib.font_manager import FontProperties #%% font = {'family' : 'Helvetica', #'weight' : 'bold', 'size' : 60} matplotlib.rc('font', **font) ddeg = 2 # resolution of the binning spl = [3, 6, 's1','s2', 11, 25, 50, 100, 200, 500] dd = 10 res = 1 #Set for Pdensity plots: scale = 'exponential' k_depth = 'proportion' outlier_prop = 0.5 whis = [5, 95] meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick', markersize=7) #%% boxplot of different sinking velocities toplot = np.load('process/toplot_TM-boxplot.npz') d = {'$10^6\ km^2$':toplot['areas'], 'sinking speed (m day$^{-1}$)':toplot['sinkingspeed'], ' ':toplot['locations'] } df =
pd.DataFrame(data=d)
pandas.DataFrame
import warnings warnings.filterwarnings("ignore") import os import json import argparse import time import datetime import json import pickle import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import tensorflow as tf from scipy.stats import spearmanr, mannwhitneyu import scipy.cluster.hierarchy as shc from skbio.stats.composition import clr from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold from scipy.cluster.hierarchy import cut_tree from src.models.MiMeNet import MiMeNet, tune_MiMeNet ################################################### # Read in command line arguments ################################################### parser = argparse.ArgumentParser(description='Perform MiMeNet') parser.add_argument('-micro', '--micro', help='Comma delimited file representing matrix of samples by microbial features', required=True) parser.add_argument('-metab', '--metab', help= 'Comma delimited file representing matrix of samples by metabolomic features', required=True) parser.add_argument('-external_micro', '--external_micro', help='Comma delimited file representing matrix of samples by microbial features') parser.add_argument('-external_metab', '--external_metab', help= 'Comma delimited file representing matrix of samples by metabolomic features') parser.add_argument('-annotation', '--annotation', help='Comma delimited file annotating subset of metabolite features') parser.add_argument('-labels', '--labels', help="Comma delimited file for sample labels to associate clusters with") parser.add_argument('-output', '--output', help='Output directory', required=True) parser.add_argument('-net_params', '--net_params', help='JSON file of network hyperparameters', default=None) parser.add_argument('-background', '--background', help='Directory with previously generated background', default=None) parser.add_argument('-num_background', '--num_background', help='Number of background CV Iterations', default=100, type=int) parser.add_argument('-micro_norm', '--micro_norm', help='Microbiome normalization (RA, CLR, or None)', default='CLR') parser.add_argument('-metab_norm', '--metab_norm', help='Metabolome normalization (RA, CLR, or None)', default='CLR') parser.add_argument('-threshold', '--threshold', help='Define significant correlation threshold', default=None) parser.add_argument('-num_run_cv', '--num_run_cv', help='Number of iterations for cross-validation', default=1, type=int) parser.add_argument('-num_cv', '--num_cv', help='Number of cross-validated folds', default=10, type=int) parser.add_argument('-num_run', '--num_run', help='Number of iterations for training full model', type=int, default=10) args = parser.parse_args() micro = args.micro metab = args.metab external_micro = args.external_micro external_metab = args.external_metab annotation = args.annotation out = args.output net_params = args.net_params threshold = args.threshold micro_norm = args.micro_norm metab_norm = args.metab_norm num_run_cv = args.num_run_cv num_cv = args.num_cv num_run = args.num_run background_dir = args.background labels = args.labels num_bg = args.num_background tuned = False gen_background = True if background_dir != None: gen_background = False start_time = time.time() if external_metab != None and external_micro == None: print("Warning: External metabolites found with no external microbiome...ignoring external set!") external_metab = None if net_params != None: print("Loading network parameters...") try: with open(net_params, "r") as infile: params = json.load(infile) num_layer = params["num_layer"] layer_nodes = params["layer_nodes"] l1 = params["l1"] l2 = params["l2"] dropout = params["dropout"] learning_rate = params["lr"] tuned = True print("Loaded network parameters...") except: print("Warning: Could not load network parameter file!") ################################################### # Load Data ################################################### metab_df = pd.read_csv(metab, index_col=0) micro_df = pd.read_csv(micro, index_col=0) if external_metab != None: external_metab_df = pd.read_csv(external_metab, index_col=0) if external_micro != None: external_micro_df =
pd.read_csv(external_micro, index_col=0)
pandas.read_csv
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype =
CategoricalDtype._from_fastpath(categories, self.ordered)
pandas.core.dtypes.dtypes.CategoricalDtype._from_fastpath
import pandas as pd import datetime as dt import numpy as np import pandas as pd from pandas import concat class BackTest(): def __init__(self, pending_sell_steps, stop_loss, initial_value = 100, value = 100, verbose = False, sell_on_profit = True ): self.initial_value = initial_value self.value = value self.verbose = verbose self.pending_sell_steps = pending_sell_steps self.pending = -1 self.sell_on_profit = sell_on_profit self.stop_loss = stop_loss self.reset() def reset(self): self.current = self.initial_value self.holding = 0 self.buy_price = 0 self.positive_trades = [] self.negative_trades = [] def on_state(self): self.pending -= 1 def is_sell_pending(self): return (self.pending >= 1) def is_bought(self): return (self.holding > 0) def is_valid_sell(self, bid): is_pending = self.is_sell_pending() has_profit = (bid > self.buy_price) is_not_pending = (not is_pending) profit_before_pending = ((is_pending and (has_profit)) and self.sell_on_profit) is_valid = (self.is_bought() and (is_not_pending or profit_before_pending)) #self.log(f"{is_valid} Pending {self.pending} Bid ({bid}): is_bought: {self.is_bought()} - is_not_pending: {is_not_pending} - profit_before_pending: {profit_before_pending}") return is_valid def is_obove_loss_limit(self, loss): return loss < self.stop_loss def on_up(self, bid, ask): self.on_state() if (self.is_bought()): positive, profit = self.is_profit(bid) should_sell = False if (positive): self.log(f"Profit detected bid: {bid} ask: {ask}") should_sell = True elif (self.is_obove_loss_limit(profit)): self.log(f"Loss limit dedected {self.stop_loss}: {bid} ask: {ask}") should_sell = True if (should_sell): self.sell(bid) else: self.buy(ask) def on_down(self, bid, ask): self.on_state() if (self.is_valid_sell(bid)): self.sell(bid) self.pending = -1 def report(self): percentage = self.get_profit() print(f'{percentage}% -> {self.current}') negative = 0 if (len(self.negative_trades) > 0): negative = np.average(self.negative_trades) print(f'Positive: {len(self.positive_trades)}({np.average(self.positive_trades)}) Negative: {len(self.negative_trades)}({negative})') def get_profit(self): percentage = ((self.current*100)/self.initial_value) - 100 #return self.positive_trades - self.negative_trades return round(percentage, 5) def buy(self, ask): self.current = self.current - self.value self.holding = self.value / ask self.buy_price = ask self.pending = self.pending_sell_steps self.log(f'Bought: {ask}') def is_profit(self, bid): profit = (bid - self.buy_price) * self.holding profit = round(profit, 4) positive = (profit > 0) return positive, profit def sell(self, bid): self.current = self.current + (bid * self.holding) positive, profit = self.is_profit(bid) if (positive): self.positive_trades.append(profit) result = f"PROFIT {profit}%" else: self.negative_trades.append(profit) result = f"LOSS {profit}%" self.log(f'SOLD >>>> Result: {result} total: {self.current}') self.holding = 0 self.buy_price = 0 def log(self, message): if (self.verbose): print(f'{dt.datetime.now()} BackTest: {message}') def __str__(self) -> str: return f"BackTest (pending_sell_steps={self.pending_sell_steps} sell_on_profit={self.sell_on_profit} value={self.value})" class ModelAgent(): def __init__(self, model = [], on_down = lambda bid, ask: bid, on_up = lambda bid, ask: ask, verbose = False, simulate_on_price = True, save_history = False ): self.model = model self.on_up = on_up self.on_down = on_down self.best_sell = 0 self.best_buy = 0 self.timestamp = 0 self.price = 0 self.verbose = verbose self.simulate_on_price = simulate_on_price self.last_action = {} self.last_action["time"] = '' self.last_action["action"] = '' self.history = [] self.save_history = save_history self.transction_enabled = True def on_x(self, x): y = self.model.predict(np.array([x])) return self.on_predicted(y[0]) def on_new_state(self, timestamp, price, bid, ask): self.best_ask = float(ask[-1][0]) self.best_bid = float(bid[-1][0]) self.timestamp = timestamp self.price = price #print(self.best_buy) def on_predicted(self, y): if (self.transction_enabled): is_up = y > 0.5 if (is_up): self.up() else: self.down() return is_up def up(self): if (self.simulate_on_price): self.log_action(f'UP') self.on_up(ask = self.price, bid = self.price) else: self.log_action(f'UP on ask: {self.best_ask}') self.on_up(ask = self.best_ask, bid = self.best_bid) def down(self): if (self.simulate_on_price): self.log_action(f'DOWN') self.on_down(ask = self.price, bid = self.price) else: self.log_action(f'DOWN on bid: {self.best_bid}') self.on_down(ask = self.best_ask, bid = self.best_bid) def log_action(self, action): self.last_action["time"] = dt.datetime.now() self.last_action["action"] = action stock_date = pd.to_datetime(self.timestamp, unit='s') if (self.verbose): print(f"{dt.datetime.now()} ModelAgent({self.price}): {stock_date}({self.timestamp}) {self.get_last_action()}") def get_last_action(self): return f"{self.last_action['action']}" def series_to_supervised(data, n_in=2, n_out=1): n_vars = 1 df = pd.DataFrame(data) cols = list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(i)) # put it all together agg =
concat(cols, axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 26 16:34:40 2020 @author: skyjones """ import os import pandas as pd import shutil stats_file = '/Users/manusdonahue/Documents/Sky/sienax_segmentations/K012/bin/axT1_raw_sienax/report.sienax' output_csv = '/Users/manusdonahue/Documents/Sky/parsing_testing.csv' def parse_sienax_stats(stats_file, output_csv): out_df =
pd.DataFrame()
pandas.DataFrame
import sys import os from collections import defaultdict import numpy as np import pandas as pd import dill import argparse from tqdm import tqdm from pyquaternion import Quaternion from kalman_filter import NonlinearKinematicBicycle nu_path = './devkit/python-sdk/' sys.path.append(nu_path) sys.path.append("../../mats") from nuscenes.nuscenes import NuScenes from nuscenes.prediction import PredictHelper from nuscenes.map_expansion.map_api import NuScenesMap from nuscenes.eval.prediction.splits import get_prediction_challenge_split from environment import Environment, Scene, Node, GeometricMap, derivative_of FREQUENCY = 2 dt = 1 / FREQUENCY data_columns_vehicle = pd.MultiIndex.from_product([['position', 'velocity', 'acceleration', 'heading'], ['x', 'y']]) data_columns_vehicle = data_columns_vehicle.append(pd.MultiIndex.from_tuples([('heading', '°'), ('heading', 'd°')])) data_columns_vehicle = data_columns_vehicle.append(
pd.MultiIndex.from_product([['velocity', 'acceleration'], ['norm']])
pandas.MultiIndex.from_product
""" Functions for returning optimization results in several forms. Contributor: <NAME> - <EMAIL> """ import logging import pandas as pd from oemof import solph from matplotlib import pyplot as plt import os def xlsx(nodes_data: dict, optimization_model: solph.Model, filepath: str): """ Returns model results as xlsx-files. Saves the in- and outgoing flows of every bus of a given, optimized energy system as .xlsx file :param nodes_data: dictionary containing data from excel scenario file :type nodes_data: dict :param optimization_model: optimized energy system :type optimization_model: oemof.solph.model :param filepath: path, where the results will be stored :type filepath: str :return: - **results** (.xlsx) - xlsx files containing in and \ outgoing flows of the energy systems' buses. <NAME> - <EMAIL> """ results = solph.processing.results(optimization_model) # Writes a spreadsheet containing the input and output flows into # every bus of the energy system for every timestep of the # timesystem for i, b in nodes_data['buses'].iterrows(): if b['active']: file_path = \ os.path.join(filepath, 'results_' + b['label'] + '.xlsx') node_results = solph.views.node(results, b['label']) df = node_results['sequences'] df.head(2) with pd.ExcelWriter(file_path) as writer: # doctest: +SKIP df.to_excel(writer, sheet_name=b['label']) # returns logging info logging.info(' ' + 'Results saved as xlsx for ' + b['label']) def charts(nodes_data: dict, optimization_model: solph.Model, energy_system: solph.EnergySystem): """ Plots model results. Plots the in- and outgoing flows of every bus of a given, optimized energy system :param nodes_data: dictionary containing data from excel scenario file :type nodes_data: dict :param optimization_model: optimized energy system :type optimization_model: oemof.solph.Model :param energy_system: original (unoptimized) energy system :type energy_system: oemof.solph.Energysystem :return: - **plots** (matplotlib.plot) plots displaying in \ and outgoing flows of the energy systems' buses. <NAME> - <EMAIL> """ # rename variables esys = energy_system results = solph.processing.results(optimization_model) for i, b in nodes_data['buses'].iterrows(): if b['active']: logging.info(' ' + "******************************************" + "***************") logging.info(' ' + 'RESULTS: ' + b['label']) bus = solph.views.node(results, b['label']) logging.info(' ' + bus['sequences'].sum()) fig, ax = plt.subplots(figsize=(10, 5)) bus['sequences'].plot(ax=ax) ax.legend(loc='upper center', prop={'size': 8}, bbox_to_anchor=(0.5, 1.4), ncol=2) fig.subplots_adjust(top=0.7) plt.show() esys.results['main'] = solph.processing.results(optimization_model) esys.results['meta'] = solph.processing.meta_results(optimization_model) esys.dump(dpath=None, filename=None) class Results: """ Class for preparing Plotly results and logging the results of Cbc-Solver """ results = None esys = None comp_input1 = None comp_input2 = None comp_output1 = None comp_output2 = None comp_capacity = None df_list_of_components = None df_result_table = pd.DataFrame() # columns_of_plotly_table copt = ['ID', 'type', 'input 1/kWh', 'input 2/kWh', 'output 1/kWh', 'output 2/kWh', 'capacity/kW', 'variable costs/CU', 'periodical costs/CU', 'investment/kW', 'max. invest./kW', 'constraints/CU'] @staticmethod def log_category(component: str): """ Returns logging info for type of given components. Which is the first step of the logging/ results producing process. :param component: component type :type component: str """ # returns logging infos logging.info(' ' + 56 * "*") logging.info(' ' + "***" + component + (53 - len(component)) * "*") logging.info(' ' + 56 * "*") logging.info(' ' + 56 * "-") def create_flow_dataframes(self, comp, component, excess_or_shortage=None): """ creates up to 5 pandas series consisting the flows of the given component """ # clearing all possibly used variables self.comp_input1 = None self.comp_input2 = None self.comp_output1 = None self.comp_output2 = None self.comp_capacity = None label = comp['label'] # because of not every sheet consisting the same columns these # tests are necessary bus1 = comp['bus1'] if 'bus1' in comp else None bus2 = comp['bus2'] if 'bus2' in comp else None if 'input' in comp: input1 = comp['input'] elif 'bus' in comp: input1 = comp['bus'] else: input1 = None if 'output' in comp: output = comp['output'] elif 'bus' in comp: output = comp['bus'] else: output = None output2 = comp['output2'] if 'output2' in comp else None for index, value in component['sequences'].sum().items(): # inflow 1 if index in [((input1, label), 'flow'), ((bus1, label), 'flow'), ((label, label + '_excess'), 'flow')]: self.comp_input1 = component['sequences'][index] # inflow2 elif index in [((label + '_low_temp' + '_bus', label), 'flow'), ((label + '_high_temp' + '_bus', label), 'flow'), ((bus2, label), 'flow'), ((label[:-10] + '_bus', label), 'flow')]: self.comp_input2 = component['sequences'][index] # outflow 1 elif index in [((label, output), 'flow'), ((label, bus2), 'flow'), ((label + '_shortage', label), 'flow')]: self.comp_output1 = component['sequences'][index] # outflow 2 elif index in [((label, output2), 'flow'), ((label, bus1), 'flow')]: self.comp_output2 = component['sequences'][index] # capacity elif index == ((label, 'None'), 'storage_content'): self.comp_capacity = component['sequences'][index] if excess_or_shortage == "excess": self.comp_output1 = None elif excess_or_shortage == "shortage": self.comp_input1 = None def get_comp_investment(self, comp, comp_type): component_investment = 0 if comp['max. investment capacity'] > 0: component_node = self.esys.groups[comp['label']] # defines bus_node for different components if comp_type == 'source': if comp['input'] in [0, 'None', 'none']: bus_node = self.esys.groups[comp['output']] else: component_node = self.esys.groups[comp['label'][:-10]] label = comp['label'][:-10] + '_bus' bus_node = self.esys.groups[label] elif comp_type == 'storage': bus_node = None elif comp_type == 'link': bus_node = self.esys.groups[comp['bus2']] elif comp_type == 'transformer': bus_node = self.esys.groups[comp['output']] else: raise ValueError('comp_type not known') # sets component investment component_investment += (self.results[component_node, bus_node] ['scalars']['invest']) if comp_type == 'source': if comp['input'] not in [0, 'None', 'none']: # considers area conversion factor on investment for # solar heat sources component_investment = \ component_investment / comp['Conversion Factor'] return component_investment def calc_constraint_costs(self, comp, investment=None, comp_type=None): # get flow values inflow1 = 0 if self.comp_input1 is None else self.comp_input1.sum() outflow1 = 0 if self.comp_output1 is None else self.comp_output1.sum() outflow2 = 0 if self.comp_output2 is None else self.comp_output2.sum() constraint_costs = 0 # calculating constraint costs for different components if comp_type == 'source': constraint_costs += outflow1 * comp['variable constraint costs'] elif comp_type == 'link': constraint_costs += \ comp['variable constraint costs'] * (outflow1 + outflow2) elif comp_type == 'excess': constraint_costs += \ inflow1 * comp['excess constraint costs'] elif comp_type == 'shortage': constraint_costs += \ outflow1 * comp['shortage constraint costs'] else: constraint_costs += outflow1 \ * comp['variable output constraint costs'] if comp_type == 'transformer': constraint_costs \ += outflow2 * comp['variable output constraint costs 2'] constraint_costs \ += inflow1 * comp['variable input constraint costs'] if comp_type == 'storage': constraint_costs \ += inflow1 * comp['variable input constraint costs'] if comp_type != 'excess' and comp_type != 'shortage': constraint_costs += investment \ * comp['periodical constraint costs'] return constraint_costs def calc_variable_costs(self, comp, comp_type): # get flow values inflow1 = 0 if self.comp_input1 is None else self.comp_input1.sum() outflow1 = 0 if self.comp_output1 is None else self.comp_output1.sum() outflow2 = 0 if self.comp_output2 is None else self.comp_output2.sum() variable_costs = 0 if comp_type == 'sources': variable_costs += comp['variable costs'] * outflow1 elif comp_type == 'storages' or comp_type == 'transformers': variable_costs += comp['variable input costs'] * inflow1 variable_costs += comp['variable output costs'] * outflow1 if comp_type == 'transformers': variable_costs += (comp['variable output costs 2'] * outflow2) elif comp_type == 'links': variable_costs += \ comp['variable output costs'] * (outflow1 + outflow2) elif comp_type == 'excess': variable_costs += comp['excess costs'] * inflow1 elif comp_type == 'shortage': variable_costs += comp['shortage costs'] * outflow1 return variable_costs @staticmethod def calc_periodical_costs(comp, investment): periodical_costs = 0 fix_invest = comp['fix investment costs'] \ if 'fix investment costs' in comp else 0 non_convex = comp['non-convex investment'] \ if 'non-convex investment' in comp else 0 periodical_costs += (fix_invest if (non_convex == 1 and investment > 0) else 0) periodical_costs += investment * comp['periodical costs'] return periodical_costs def add_component_to_loc(self, label, comp_type, capacity=None, variable_costs=None, periodical_costs=None, investment=None, maxinvest='---', constraints=None): """ adds the given component with its parameters to list of components (loc) """ # creating strings for dataframe inflow1 = '---' if self.comp_input1 is None \ else str(round(self.comp_input1.sum(), 2)) inflow2 = '---' if self.comp_input2 is None \ else str(round(self.comp_input2.sum(), 2)) outflow1 = '---' if self.comp_output1 is None \ else str(round(self.comp_output1.sum(), 2)) outflow2 = '---' if self.comp_output2 is None \ else str(round(self.comp_output2.sum(), 2)) capacity = '---' if capacity is None \ else str(round(capacity, 2)) variable_costs = '---' if variable_costs is None \ else str(round(variable_costs, 2)) periodical_costs = '---' if periodical_costs is None \ else str(round(periodical_costs, 2)) investment = '---' if investment is None \ else str(round(investment, 2)) constraints = '---' if constraints is None \ else str(round(constraints, 2)) self.df_list_of_components = \ self.df_list_of_components.append( pd.DataFrame( [[label, comp_type, inflow1, inflow2, outflow1, outflow2, capacity, variable_costs, periodical_costs, investment,maxinvest, constraints]], columns=self.copt)) @staticmethod def get_first_node_flow(flow): """ returns begin of the flow, used to log where the flow comes from""" flow_name = str(flow.name) flow_name = flow_name[2:-10] flow_name = flow_name.split(',') return flow_name[0] @staticmethod def get_last_node_flow(flow): """ returns end of the flow, used to log where the flow goes to""" flow_name = str(flow.name) flow_name = flow_name[2:-10] flow_name = flow_name.split(',') return flow_name[1] def console_logging(self, comp_type, capacity=None, variable_costs=None, periodical_costs=None, investment=None, transformer_type=None): """ consists of the different console logging entries and logs the one for the given component """ inflow1 = self.comp_input1 inflow2 = self.comp_input2 outflow1 = self.comp_output1 outflow2 = self.comp_output2 if comp_type == 'sink': logging.info(' ' + 'Total Energy Demand: ' + str(inflow1.sum()) + ' kWh') else: if comp_type == 'source': if inflow1 is None or \ 'shortage' in self.get_first_node_flow(outflow1): logging.info(' ' + 'Total Energy Input: ' + str(outflow1.sum()) + ' kWh') logging.info(' ' + 'Max. Capacity: ' + str(capacity) + ' kW') else: logging.info(' ' + 'Input from ' + self.get_first_node_flow(inflow1) + ': ' + str(round(inflow1.sum(), 2)) + ' kWh') logging.info(' ' + 'Ambient Energy Input to ' + self.get_first_node_flow(inflow2) + ': ' + str(round(inflow2.sum(), 2)) + ' kWh') logging.info(' ' + 'Energy Output to ' + self.get_last_node_flow(outflow1) + ': ' + str(round(outflow1.sum(), 2)) + ' kWh') if comp_type == 'transformer': if inflow2 is None: logging.info(' ' + 'Total Energy Output to' + self.get_last_node_flow(outflow1) + ': ' + str(round(outflow1.sum(), 2)) + ' kWh') if outflow2 is not None: logging.info(' ' + 'Total Energy Output to' + self.get_last_node_flow(outflow2) + ': ' + str(round(outflow2.sum(), 2)) + ' kWh') else: logging.info(' ' + 'Electricity Energy Input to ' + self.get_first_node_flow(inflow1) + ': ' + str(round(inflow1.sum(), 2)) + ' kWh') if transformer_type == 'absorption_heat_transformer': logging.info(' ' + 'Heat Input to' + self.get_last_node_flow(inflow2) + ': ' + str(round(inflow2.sum(), 2)) + ' kWh') elif transformer_type == 'compression_heat_transformer': logging.info(' ' + 'Ambient Energy Input to' + self.get_last_node_flow(inflow2) + ': ' + str(round(inflow2.sum(), 2)) + ' kWh') logging.info(' ' + 'Total Energy Output to' + self.get_last_node_flow(outflow1) + ': ' + str(round(outflow1.sum(), 2)) + ' kWh') logging.info(' ' + 'Max. Capacity: ' + str(capacity) + ' kW') if comp_type == 'storage': logging.info( ' ' + 'Energy Output from ' + self.get_first_node_flow(outflow1) + ': ' + str(round(outflow1.sum(), 2)) + 'kWh') logging.info(' ' + 'Energy Input to ' + self.get_last_node_flow(outflow1) + ': ' + str(round(inflow1.sum(), 2)) + ' kWh') if comp_type == 'link': if capacity is None: logging.info(' ' + 'Total Energy Output to ' + self.get_last_node_flow(outflow1) + ': ' + str(round(outflow1.sum(), 2)) + ' kWh') logging.info(' ' + 'Total Energy Output to ' + self.get_last_node_flow(outflow2) + ': ' + str(round(outflow2.sum(), 2)) + ' kWh') logging.info(' ' + 'Max. Capacity to ' + self.get_last_node_flow(outflow1) + ': ' + str(round(outflow1.max(), 2)) + ' kW') logging.info(' ' + 'Max. Capacity to ' + self.get_last_node_flow(outflow2) + ': ' + str(round(outflow2.max(), 2)) + ' kW') else: logging.info(' ' + 'Total Energy Output to ' + self.get_last_node_flow(outflow1) + ': ' + str(round(outflow1.sum(), 2)) + ' kWh') logging.info(' ' + 'Max. Capacity to ' + self.get_last_node_flow(outflow1) + ': ' + str(round(capacity, 2)) + ' kW') if investment is not None: logging.info(' ' + 'Investment Capacity: ' + str(round(investment, 2)) + ' kW') if periodical_costs is not None: logging.info(' ' + 'Periodical costs: ' + str(round(periodical_costs, 2)) + ' cost units p.a.') logging.info(' ' + 'Variable Costs: ' + str(round(variable_costs, 2)) + ' cost units') @staticmethod def insert_line_end_of_component(): logging.info( ' ' + '--------------------------------------------------------') def __init__(self, nodes_data: dict, optimization_model: solph.Model, energy_system: solph.EnergySystem, result_path: str, console_log: bool): """ Returns a list of all defined components with the following information: +------------+----------------------------------------------+ |component | information | +------------+----------------------------------------------+ |sinks | Total Energy Demand | +------------+----------------------------------------------+ |sources | Total Energy Input, Max. Capacity, | | | Variable Costs, Periodical Costs | +------------+----------------------------------------------+ |transformers| Total Energy Output, Max. Capacity, | | | Variable Costs, Investment Capacity, | | | Periodical Costs | +------------+----------------------------------------------+ |storages | Energy Output, Energy Input, Max. Capacity,| | | Total variable costs, Investment Capacity, | | | Periodical Costs | +------------+----------------------------------------------+ |links | Total Energy Output | +------------+----------------------------------------------+ Furthermore, a list of recommended investments is printed. The algorithm uses the following steps: 1. logging the component type for example "sinks" 2. creating pandas dataframe out of the results of the optimization consisting of every single flow in/out a component 3. calculating the investment and the costs regarding the flows 4. adding the component to the list of components (loc) which is part of the plotly dash and is the content of components.csv 5. logging the component specific text with its parameters in the console :param nodes_data: dictionary containing data from excel \ scenario file :type nodes_data: dict :param optimization_model: optimized energy system :type optimization_model: oemof.solph.Model :param energy_system: original (unoptimized) energy system :type energy_system: oemof.solph.Energysystem :param result_path: Path where the results are saved. :type result_path: str <NAME> - <EMAIL> <NAME> - <EMAIL> """ components_dict = { "sinks": nodes_data['sinks'], "buses_e": nodes_data['buses'], "sources": nodes_data['sources'], "buses_s": nodes_data['buses'], "transformers": nodes_data['transformers'], "storages": nodes_data['storages'], "links": nodes_data['links'] } # create excess and shortage sheet components_dict['buses_e'] = components_dict['buses_e'].drop( components_dict['buses_e'] [components_dict['buses_e']['excess'] == 0].index) components_dict['buses_s'] = components_dict['buses_s'].drop( components_dict['buses_s'] [components_dict['buses_s']['shortage'] == 0].index) investments_to_be_made = {} total_periodical_costs = 0 total_usage = 0 total_variable_costs = 0 total_constraint_costs = 0 total_demand = 0 # define class variables self.esys = energy_system self.results = solph.processing.results(optimization_model) self.df_list_of_components = pd.DataFrame(columns=self.copt) self.df_result_table =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 """Parse Postgres log to retrieve the dataset ids and the IP of the API users.""" import argparse import glob import json import os import pandas as pd # Limit to these postgrest queries QUERY_STRINGS = [""] def parseLog(log_file: str, parsed_log_file: str): """Parse the original log file.""" header = [ "log_time", "user_name", "database_name", "process_id", "connection_from", "session_id", "session_line_num", "command_tag", "session_start_time", "virtual_transaction_id", "transaction_id", "error_severity", "sql_state_code", "message", "detail", "hint", "internal_query", "internal_query_pos", "context", "query", "query_pos", # "location" , # verbose off: no location available "application_name", "backend_type", ] try: log = pd.read_csv( log_file, header=None, error_bad_lines=False, low_memory=False ) log.columns = header except (pd.errors.EmptyDataError, pd.errors.ParserError): print("Cannot decode the content of the log file") log =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from sklearn.metrics.pairwise import pairwise_distances from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neighbors import NearestNeighbors import numpy as np class ContentBased(object): def __init__(self,stop_words=None,token_pattern=None,metric='cosine',n_neighbors=5): self.tfidf_vectorizer=TfidfVectorizer( stop_words=stop_words, token_pattern=token_pattern) self.nearest_neigbors=NearestNeighbors(metric=metric,n_neighbors=n_neighbors,algorithm='brute') def fit(self,datos,columna_descripcion): self.datos=datos datos_por_tags = self.tfidf_vectorizer.fit_transform(datos[columna_descripcion]) self.nearest_neigbors.fit(datos_por_tags) def predict(self,descripcion): descripcion_tags = self.tfidf_vectorizer.transform(descripcion) if descripcion_tags.sum() == 0: return
pd.DataFrame(columns=datos.columns)
pandas.DataFrame
import dateparser from datetime import datetime import re from requests import Session from retry_requests import retry import pandas as pd LCPS_API_URL = 'https://s3.eu-de.cloud-object-storage.appdomain.cloud/cloud-object-storage-lcps/news.json' # noqa def get(url): session = retry(Session(), retries=10, backoff_factor=0.2) ret = session.get(url) while ret.status_code != 200: # keep trying until we succeed ret = session.get(url) return ret def titlenormalizer(title): return ' '.join(title.split(' ')[0:2]).replace('.', '').lower().strip() def titleclassifier(title): split = title.split(' ') if len(split) != 2: return False try: if split[1].startswith('covid') or split[1].startswith('corona'): return True except ValueError: pass return False if __name__ == '__main__': news = get(LCPS_API_URL).json() year = datetime.now().year data = [] for item in news['updates']: # print(item["content"]) title = titlenormalizer(item['title']) # print(item['content']) if titleclassifier(title): patients = int(title.split(' ')[0]) date = str(dateparser.parse(item['date'], languages=["nl"]).date()) matches = re.search( r"(\d+)\s+in\s+Duitsland", item['content'], re.MULTILINE ) patients_in_de = 0 try: patients_in_de = int(matches.group(1)) except AttributeError: pass data.append({'Date': date, 'Aantal': patients, 'AantalDuitsland': patients_in_de}) df_parsed_nums = pd.DataFrame(data).set_index('Date').sort_index() df_lcps = pd.read_csv('data/lcps_ic.csv', index_col=0) df_lcps = df_lcps.combine_first(df_parsed_nums) df_lcps['Aantal'] = df_lcps['Aantal'].astype(pd.Int64Dtype()) df_lcps['AantalDuitsland'] = df_lcps['AantalDuitsland'].astype(pd.Int64Dtype()) df_lcps[~df_lcps.index.duplicated()] df_lcps[["Aantal"]].to_csv('data/lcps_ic.csv') df_lcps_country = df_lcps.copy() df_lcps_country['Nederland'] = df_lcps['Aantal'] - df_lcps['AantalDuitsland'] df_lcps_country['Duitsland'] = df_lcps['AantalDuitsland'] df_lcps_country = df_lcps_country[["Nederland"]].stack(dropna=False) df_lcps_country.index.names = ['Datum', 'Land'] df_lcps_country.name = "Aantal" df_lcps_country = df_lcps_country.to_frame() df_lcps_country_from_file = pd.read_csv('data/lcps_ic_country.csv', index_col=[0, 1]) df_lcps_country = df_lcps_country_from_file.combine_first(df_lcps_country) df_lcps_country[~df_lcps_country.index.duplicated()] df_lcps_country['Aantal'] = df_lcps_country['Aantal'].astype(
pd.Int64Dtype()
pandas.Int64Dtype
# -*- coding: utf-8 -*- """ Created on Tue Nov 5 20:32:46 2019 @author: sbece """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm df = sm.datasets.macrodata.load_pandas().data df.head() print(sm.datasets.macrodata.NOTE) index = pd.Index(sm.tsa.datetools.dates_from_range('1959Q1' , '2009Q3')) df.index = index df.head() ##PLOT df['realgdp'].plot() ##TRENDS gdp_cycle, gdp_trend = sm.tsa.filters.hpfilter(df['realgdp']) df['trend'] = gdp_trend df[['realgdp','trend']]["2000-03-31":].plot() ##EMWA (EXPONENTIALLY WEIGHTED MOVING AVERAGES) MODELS ##SIMPLE MOVING AVERAGES (SMA) airline = pd.read_csv('airline-passengers.csv', index_col = "Month") airline.head() airline.dropna(inplace=True) airline.index = pd.to_datetime(airline.index) airline.head() airline.index airline['6-month-SMA'] = airline['#Passengers'].rolling(window=6).mean() airline['12-month-SMA'] = airline['#Passengers'].rolling(window=12).mean() airline.plot(figsize=(10,8)) airline['EWMA-12'] = airline['#Passengers'].ewm(span=12).mean() airline[["#Passengers","EWMA-12"]].plot() ##ETS (Error-Trend-Seasonality) MODELS ##Exponential Smoothing ##Trend Methods Models ##ETS Decomposition airline.plot() from statsmodels.tsa.seasonal import seasonal_decompose result = seasonal_decompose(airline['#Passengers'], model = 'multiplicative') result.seasonal.plot() result.trend.plot() result.plot() ##ARIMA MODELS ##Step 1 df = pd.read_csv('monthly-milk-production.csv') df.head() df.columns = ["Month", "Milk in pounds per cow"] df.head() df.tail() ##to drop a row ##df.drop(168, axis=0, inplace=True) df['Month'] = pd.to_datetime(df['Month']) df.set_index('Month', inplace=True) df.head() df.describe() df.describe().transpose() ##Step 2 df.plot() time_series = df['Milk in pounds per cow'] type(time_series) time_series.rolling(12).mean().plot(label = '12-Month Rolling Mean') time_series.rolling(12).std().plot(label = '12-Month Rolling Std') time_series.plot() plt.legend() from statsmodels.tsa.seasonal import seasonal_decompose decomp = seasonal_decompose(time_series) decomp.plot() fig = decomp.plot() fig.set_size_inches(15,8) from statsmodels.tsa.stattools import adfuller result = adfuller(df['Milk in pounds per cow']) def adf_check(time_series): result = adfuller(time_series) print(" Augmented Dicky-Fuller Test") labels = ['ADF Test Statistic', 'p-value', '# of lags', 'Num of Observations used'] for value, label in zip(result, labels): print (label+ ' : ' + str(value)) if result[1] <= 0.05: print("Strong evidence against null hypothesis") print("Reject null hypothesis") print("Data has no unit root and is stationary") else: print("Weak evidence against null hypothesis") print("Failed to reject null hypothesis") print("Data has a unit root and is non-stationary") adf_check(df['Milk in pounds per cow']) df['First Difference'] = df['Milk in pounds per cow'] -df['Milk in pounds per cow'].shift(1) df['First Difference'].plot() adf_check(df['First Difference'].dropna()) ##Si la primera diferencia es NO-estacionaria, tenemos que diferenciar tantas veces hasta ##que la sea ##A modo de ejemplo mostraremos la segunda diferencia df['Second Difference'] = df['First Difference'] -df['First Difference'].shift(1) df['Second Difference'].plot() adf_check(df['Second Difference'].dropna()) #####Seasonal difference df['Seasonal Difference'] = df['Milk in pounds per cow'] -df['Milk in pounds per cow'].shift(12) df['Seasonal Difference'].plot() adf_check(df['Seasonal Difference'].dropna()) #####Seasonal difference - 1st difference df['Seasonal First Difference'] = df['First Difference'] - df['First Difference'].shift(12) df['Seasonal First Difference'].plot() adf_check(df['Seasonal First Difference'].dropna()) ##ACF and PACF from statsmodels.graphics.tsaplots import plot_acf, plot_pacf fig_first = plot_acf(df['First Difference'].dropna()) fig_seasonal_first = plot_acf(df['Seasonal First Difference'].dropna()) from pandas.plotting import autocorrelation_plot autocorrelation_plot(df['Seasonal First Difference'].dropna()) result = plot_pacf(df['Seasonal First Difference'].dropna()) plot_acf(df['Seasonal First Difference'].dropna()) plot_pacf(df['Seasonal First Difference'].dropna()) ##deploy an ARIMA model from statsmodels.tsa.arima_model import ARIMA model = sm.tsa.statespace.SARIMAX(df['Milk in pounds per cow'], order = (0,1,0), seasonal_order=(1,1,1,12)) results = model.fit() print(results.summary()) results.resid #residuals results.resid.plot() results.resid.plot(kind='kde') #kernel density estimator df['forecast'] = results.predict(start=150, end=168) df[['Milk in pounds per cow', 'forecast']].plot() ##Predict new values from pandas.tseries.offsets import DateOffset future_dates = [df.index[-1] + DateOffset(months=x) for x in range(1,24)] future_dates future_df = pd.DataFrame(index=future_dates, columns=df.columns) future_df final_df =
pd.concat([df, future_df])
pandas.concat
# coding: utf-8 # In[1]: import numpy as np import os import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt import cvxopt os.chdir('H:/') # ### define functions # In[2]: #create xy for least square def create_xy(target_crop,grande,malay_gdp,malay_pop): y=grande['price'][target_crop] x=pd.concat([malay_gdp['Value'],malay_pop['Value'], grande['production'][target_crop]],axis=1) x=sm.add_constant(x) #set production negative x[target_crop.lower()]=x[target_crop].apply(lambda x:-1*x) del x[target_crop] return x,y # In[3]: #linear regression def lin_reg(crops,grande,malay_gdp,malay_pop,viz=False): D={} #run regression for target_crop in crops: #create xy x,y=create_xy(target_crop,grande,malay_gdp,malay_pop) m=sm.OLS(y,sm.add_constant(x)).fit() D[target_crop]=(m.rsquared,m.params.tolist()) #viz if viz: fig=plt.figure(figsize=(10,5)) ax=fig.add_subplot(111) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.ylabel('USD/Tonnes') plt.xlabel('Year') plt.plot(range(beginyear,endyear),m.predict(),label='Est',color='#C8C8A9') plt.plot(range(beginyear,endyear),y,label='Act',color='#EDE574') plt.title(target_crop+' Price') plt.legend() plt.show() return D # In[4]: def constrained_ols(x,y): linear_coeff=cvxopt.matrix(-1*np.mat(y.tolist())*np.mat(x)).T quadratic_coeff=cvxopt.matrix(np.mat(x).T*np.mat(x)) #inequality constraint inequality_coeff=cvxopt.matrix(0.0,(len(x.columns),len(x.columns))) #diagonal matrix #use -1 to achieve larger than inequality_coeff[::len(x.columns)+1]=-1 inequality_value=cvxopt.matrix([0.0 for _ in range(len(x.columns))]) cvxopt.solvers.options['show_progress']=False ans=cvxopt.solvers.qp(P=quadratic_coeff,q=linear_coeff, G=inequality_coeff,h=inequality_value)['x'] return ans # In[5]: #create params by using constrained ols def get_params(crops,grande,malay_gdp,malay_pop,viz=False): D={} for target_crop in crops: #create xy x,y=create_xy(target_crop,grande,malay_gdp,malay_pop) #constrained ols ans=constrained_ols(x,y) #viz if viz: #get forecast and convert to list forecast=np.mat(ans).T*np.mat(x).T forecast=forecast.ravel().tolist()[0] fig=plt.figure(figsize=(10,5)) ax=fig.add_subplot(111) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.ylabel('USD/Tonnes') plt.xlabel('Year') plt.plot(range(beginyear,endyear),forecast,label='Est',color='#C8C8A9',) plt.plot(range(beginyear,endyear),y,label='Act',color='#EDE574') plt.legend() plt.title(target_crop+' Price') plt.show() D[target_crop]=list(ans) return D # ### execution # In[6]: global beginyear,endyear beginyear=2012 endyear=2019 # In[7]: grand=pd.read_csv('grand.csv') malay_pop=pd.read_csv('malay_pop.csv') malay_gdp=
pd.read_csv('malay_gdp.csv')
pandas.read_csv
from datetime import datetime import numpy as np import pytest from pandas.core.dtypes.cast import find_common_type, is_dtype_equal import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas._testing as tm class TestDataFrameCombineFirst: def test_combine_first_mixed(self): a = Series(["a", "b"], index=range(2)) b = Series(range(2), index=range(2)) f = DataFrame({"A": a, "B": b}) a = Series(["a", "b"], index=range(5, 7)) b = Series(range(2), index=range(5, 7)) g = DataFrame({"A": a, "B": b}) exp = DataFrame({"A": list("abab"), "B": [0, 1, 0, 1]}, index=[0, 1, 5, 6]) combined = f.combine_first(g) tm.assert_frame_equal(combined, exp) def test_combine_first(self, float_frame): # disjoint head, tail = float_frame[:5], float_frame[5:] combined = head.combine_first(tail) reordered_frame = float_frame.reindex(combined.index) tm.assert_frame_equal(combined, reordered_frame) assert tm.equalContents(combined.columns, float_frame.columns) tm.assert_series_equal(combined["A"], reordered_frame["A"]) # same index fcopy = float_frame.copy() fcopy["A"] = 1 del fcopy["C"] fcopy2 = float_frame.copy() fcopy2["B"] = 0 del fcopy2["D"] combined = fcopy.combine_first(fcopy2) assert (combined["A"] == 1).all() tm.assert_series_equal(combined["B"], fcopy["B"]) tm.assert_series_equal(combined["C"], fcopy2["C"]) tm.assert_series_equal(combined["D"], fcopy["D"]) # overlap head, tail = reordered_frame[:10].copy(), reordered_frame head["A"] = 1 combined = head.combine_first(tail) assert (combined["A"][:10] == 1).all() # reverse overlap tail["A"][:10] = 0 combined = tail.combine_first(head) assert (combined["A"][:10] == 0).all() # no overlap f = float_frame[:10] g = float_frame[10:] combined = f.combine_first(g) tm.assert_series_equal(combined["A"].reindex(f.index), f["A"]) tm.assert_series_equal(combined["A"].reindex(g.index), g["A"]) # corner cases comb = float_frame.combine_first(DataFrame()) tm.assert_frame_equal(comb, float_frame) comb = DataFrame().combine_first(float_frame) tm.assert_frame_equal(comb, float_frame) comb = float_frame.combine_first(DataFrame(index=["faz", "boo"])) assert "faz" in comb.index # #2525 df = DataFrame({"a": [1]}, index=[datetime(2012, 1, 1)]) df2 = DataFrame(columns=["b"]) result = df.combine_first(df2) assert "b" in result def test_combine_first_mixed_bug(self): idx = Index(["a", "b", "c", "e"]) ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx) ser2 = Series(["a", "b", "c", "e"], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3}) idx = Index(["a", "b", "c", "f"]) ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx) ser2 = Series(["a", "b", "c", "f"], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3}) combined = frame1.combine_first(frame2) assert len(combined.columns) == 5 def test_combine_first_same_as_in_update(self): # gh 3016 (same as in update) df = DataFrame( [[1.0, 2.0, False, True], [4.0, 5.0, True, False]], columns=["A", "B", "bool1", "bool2"], ) other = DataFrame([[45, 45]], index=[0], columns=["A", "B"]) result = df.combine_first(other) tm.assert_frame_equal(result, df) df.loc[0, "A"] = np.nan result = df.combine_first(other) df.loc[0, "A"] = 45 tm.assert_frame_equal(result, df) def test_combine_first_doc_example(self): # doc example df1 = DataFrame( {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]} ) df2 = DataFrame( { "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0], "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0], } ) result = df1.combine_first(df2) expected = DataFrame({"A": [1, 2, 3, 5, 3, 7.0], "B": [np.nan, 2, 3, 4, 6, 8]}) tm.assert_frame_equal(result, expected) def test_combine_first_return_obj_type_with_bools(self): # GH3552 df1 = DataFrame( [[np.nan, 3.0, True], [-4.6, np.nan, True], [np.nan, 7.0, False]] ) df2 = DataFrame([[-42.6, np.nan, True], [-5.0, 1.6, False]], index=[1, 2]) expected = Series([True, True, False], name=2, dtype=bool) result_12 = df1.combine_first(df2)[2] tm.assert_series_equal(result_12, expected) result_21 = df2.combine_first(df1)[2] tm.assert_series_equal(result_21, expected) @pytest.mark.parametrize( "data1, data2, data_expected", ( ( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [pd.NaT, pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [pd.NaT, pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [datetime(2000, 1, 2), pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [datetime(2000, 1, 2), pd.NaT, pd.NaT], [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], ), ), ) def test_combine_first_convert_datatime_correctly( self, data1, data2, data_expected ): # GH 3593 df1, df2 = DataFrame({"a": data1}), DataFrame({"a": data2}) result = df1.combine_first(df2) expected = DataFrame({"a": data_expected}) tm.assert_frame_equal(result, expected) def test_combine_first_align_nan(self): # GH 7509 (not fixed) dfa = DataFrame([[pd.Timestamp("2011-01-01"), 2]], columns=["a", "b"]) dfb = DataFrame([[4], [5]], columns=["b"]) assert dfa["a"].dtype == "datetime64[ns]" assert dfa["b"].dtype == "int64" res = dfa.combine_first(dfb) exp = DataFrame( {"a": [pd.Timestamp("2011-01-01"), pd.NaT], "b": [2, 5]}, columns=["a", "b"], ) tm.assert_frame_equal(res, exp) assert res["a"].dtype == "datetime64[ns]" # ToDo: this must be int64 assert res["b"].dtype == "int64" res = dfa.iloc[:0].combine_first(dfb) exp = DataFrame({"a": [np.nan, np.nan], "b": [4, 5]}, columns=["a", "b"]) tm.assert_frame_equal(res, exp) # ToDo: this must be datetime64 assert res["a"].dtype == "float64" # ToDo: this must be int64 assert res["b"].dtype == "int64" def test_combine_first_timezone(self): # see gh-7630 data1 = pd.to_datetime("20100101 01:01").tz_localize("UTC") df1 = DataFrame( columns=["UTCdatetime", "abc"], data=data1, index=pd.date_range("20140627", periods=1), ) data2 = pd.to_datetime("20121212 12:12").tz_localize("UTC") df2 = DataFrame( columns=["UTCdatetime", "xyz"], data=data2, index=pd.date_range("20140628", periods=1), ) res = df2[["UTCdatetime"]].combine_first(df1) exp = DataFrame( { "UTCdatetime": [ pd.Timestamp("2010-01-01 01:01", tz="UTC"), pd.Timestamp("2012-12-12 12:12", tz="UTC"), ], "abc": [pd.Timestamp("2010-01-01 01:01:00", tz="UTC"), pd.NaT], }, columns=["UTCdatetime", "abc"], index=pd.date_range("20140627", periods=2, freq="D"), ) assert res["UTCdatetime"].dtype == "datetime64[ns, UTC]" assert res["abc"].dtype == "datetime64[ns, UTC]" tm.assert_frame_equal(res, exp) # see gh-10567 dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="UTC") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-03", "2015-01-05", tz="UTC") df2 = DataFrame({"DATE": dts2}) res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res["DATE"].dtype == "datetime64[ns, UTC]" dts1 = pd.DatetimeIndex( ["2011-01-01", "NaT", "2011-01-03", "2011-01-04"], tz="US/Eastern" ) df1 = DataFrame({"DATE": dts1}, index=[1, 3, 5, 7]) dts2 = pd.DatetimeIndex( ["2012-01-01", "2012-01-02", "2012-01-03"], tz="US/Eastern" ) df2 = DataFrame({"DATE": dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.DatetimeIndex( [ "2011-01-01", "2012-01-01", "NaT", "2012-01-02", "2011-01-03", "2011-01-04", ], tz="US/Eastern", ) exp = DataFrame({"DATE": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) # different tz dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="US/Eastern") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-03", "2015-01-05") df2 = DataFrame({"DATE": dts2}) # if df1 doesn't have NaN, keep its dtype res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res["DATE"].dtype == "datetime64[ns, US/Eastern]" dts1 = pd.date_range("2015-01-01", "2015-01-02", tz="US/Eastern") df1 = DataFrame({"DATE": dts1}) dts2 = pd.date_range("2015-01-01", "2015-01-03") df2 = DataFrame({"DATE": dts2}) res = df1.combine_first(df2) exp_dts = [ pd.Timestamp("2015-01-01", tz="US/Eastern"), pd.Timestamp("2015-01-02", tz="US/Eastern"), pd.Timestamp("2015-01-03"), ] exp = DataFrame({"DATE": exp_dts}) tm.assert_frame_equal(res, exp) assert res["DATE"].dtype == "object" def test_combine_first_timedelta(self): data1 = pd.TimedeltaIndex(["1 day", "NaT", "3 day", "4day"]) df1 = DataFrame({"TD": data1}, index=[1, 3, 5, 7]) data2 = pd.TimedeltaIndex(["10 day", "11 day", "12 day"]) df2 = DataFrame({"TD": data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.TimedeltaIndex( ["1 day", "10 day", "NaT", "11 day", "3 day", "4 day"] ) exp = DataFrame({"TD": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["TD"].dtype == "timedelta64[ns]" def test_combine_first_period(self): data1 = pd.PeriodIndex(["2011-01", "NaT", "2011-03", "2011-04"], freq="M") df1 = DataFrame({"P": data1}, index=[1, 3, 5, 7]) data2 = pd.PeriodIndex(["2012-01-01", "2012-02", "2012-03"], freq="M") df2 = DataFrame({"P": data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.PeriodIndex( ["2011-01", "2012-01", "NaT", "2012-02", "2011-03", "2011-04"], freq="M" ) exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["P"].dtype == data1.dtype # different freq dts2 = pd.PeriodIndex(["2012-01-01", "2012-01-02", "2012-01-03"], freq="D") df2 = DataFrame({"P": dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = [ pd.Period("2011-01", freq="M"), pd.Period("2012-01-01", freq="D"), pd.NaT, pd.Period("2012-01-02", freq="D"), pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M"), ] exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res["P"].dtype == "object" def test_combine_first_int(self): # GH14687 - integer series that do no align exactly df1 = DataFrame({"a": [0, 1, 3, 5]}, dtype="int64") df2 = DataFrame({"a": [1, 4]}, dtype="int64") result_12 = df1.combine_first(df2) expected_12 = DataFrame({"a": [0, 1, 3, 5]}) tm.assert_frame_equal(result_12, expected_12) result_21 = df2.combine_first(df1) expected_21 = DataFrame({"a": [1, 4, 3, 5]})
tm.assert_frame_equal(result_21, expected_21)
pandas._testing.assert_frame_equal
import nose import warnings import os import datetime import numpy as np import sys from distutils.version import LooseVersion from pandas import compat from pandas.compat import u, PY3 from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, period_range, Index, Categorical) from pandas.core.common import PerformanceWarning from pandas.io.packers import to_msgpack, read_msgpack import pandas.util.testing as tm from pandas.util.testing import (ensure_clean, assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, patch) from pandas.tests.test_panel import assert_panel_equal import pandas from pandas import Timestamp, NaT, tslib nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True _multiprocess_can_split_ = False def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, Panel): assert_panel_equal(a, b) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index):
assert_index_equal(a, b)
pandas.util.testing.assert_index_equal
######################################################################################88 import scanpy as sc import random import pandas as pd import matplotlib.pyplot as plt from os.path import exists from pathlib import Path from collections import Counter from sklearn.metrics import pairwise_distances from sklearn.utils import sparsefuncs from sklearn.decomposition import KernelPCA import numpy as np import scipy from scipy.cluster import hierarchy from scipy.spatial.distance import squareform, cdist from scipy.sparse import issparse, csr_matrix from anndata import AnnData import sys import os from sys import exit from . import tcr_scoring from . import util from . import pmhc_scoring from . import plotting from .tcrdist.tcr_distances import TcrDistCalculator from .util import tcrdist_cpp_available # we also allow 'va' in place of 'va_gene' / 'ja' in place of 'ja_gene', etc: CLONES_FILE_REQUIRED_COLUMNS = 'clone_id va_gene ja_gene cdr3a cdr3a_nucseq vb_gene jb_gene cdr3b cdr3b_nucseq'.split() # silly hack all_sexlinked_genes = frozenset('XIST DDX3Y EIF1AY KDM5D LINC00278 NLGN4Y RPS4Y1 TTTY14 TTTY15 USP9Y UTY ZFY'.split()) def check_if_raw_matrix_is_logged( adata ): return adata.uns.get( 'raw_matrix_is_logged', False ) def set_raw_matrix_is_logged_to_true( adata ): adata.uns[ 'raw_matrix_is_logged' ] = True def add_mait_info_to_adata_obs( adata, key_added = 'is_invariant' ): ''' This sets up a boolean array reflecting the presence of canonical MAIT or iNKT TCR chains. It uses pretty crude definitions! So for example a MAIT or iNKT cluster might be expected to have many clonotypes matching these but certainly not all. Note that it doesn't use the GEX data at all ''' if key_added in adata.obs: #print('adata.obs already has mait info') return tcrs = retrieve_tcrs_from_adata(adata) organism = 'human' if 'organism' not in adata.uns_keys() else \ adata.uns['organism'] if 'human' in organism: is_mait = [ tcr_scoring.is_human_mait_alpha_chain(x[0]) for x in tcrs ] is_inkt = [ tcr_scoring.is_human_inkt_tcr(x) for x in tcrs ] else: assert 'mouse' in organism is_mait = [ tcr_scoring.is_mouse_mait_alpha_chain(x[0]) for x in tcrs ] is_inkt = [ tcr_scoring.is_mouse_inkt_alpha_chain(x[0]) for x in tcrs ] adata.obs[key_added] = (np.array(is_mait) | np.array(is_inkt)) def normalize_and_log_the_raw_matrix( adata, normalize_antibody_features_CLR=True, # centered log normalize counts_per_cell_after = 1e4, ): ''' The GEX features are normalized to sum to `counts_per_cell_after` then log1p'ed If present, antibody aka protein/citeseq/dextramer features will log1p'ed and CLR log normalized (if `normalize_antibody_features_CLR` is True) or just log1p'ed ''' if check_if_raw_matrix_is_logged( adata ): print('normalize_and_log_the_raw_matrix:: matrix is already logged') return adata print('Normalize and logging matrix...') ft_varname = util.get_feature_types_varname(adata) if ft_varname: ftypes_counts = Counter(adata.raw.var[ft_varname]).most_common() print('feature_types counter:', ftypes_counts) ngenes = sum( adata.raw.var[ft_varname] == util.GENE_EXPRESSION_FEATURE_TYPE) #ngenes = sum( adata.raw.var[ft_varname] != 'Antibody Capture' ) else: ngenes = adata.raw.shape[1] n_ab_features = adata.raw.shape[1] - ngenes X_gex = adata.raw.X[:,:ngenes] counts_per_cell = np.sum( X_gex, axis=1 ).A1 # A1 since X_gex is sparse assert np.min( counts_per_cell ) > 0 ##### PARANOID: we don't want to accidentally normalize and log again if np.median( counts_per_cell ) < 100: # this actually not that great a check... print('WARNING normalize_and_log_the_raw_matrix:', 'low median counts_per_cell.', np.median(counts_per_cell),'\n', 'has the matrix already been log1p-ed???') exit() maxval = X_gex.max() print('normalize_and_log_the_raw_matrix: adata.raw.X.max()= ', maxval) if np.isnan(maxval): print('ERROR X matrix has nans!') exit() if maxval < 12.: print('WARNING!!!\n'*20) print('adata.raw.X.max() seems too low', maxval) print('Has the adata.raw.X array already been normalized and logged??') print('normalize_and_log_the_raw_matrix:: problem in setup?') print('confused? contact <EMAIL> (sorry for the trouble!)') print('WARNING!!!\n'*20) counts_per_cell /= counts_per_cell_after sparsefuncs.inplace_row_scale(X_gex, 1/counts_per_cell) new_counts_per_cell = np.sum( X_gex, axis=1 ).A1 # A1 since X_gex is sparse assert min(new_counts_per_cell) > counts_per_cell_after-1 and max(new_counts_per_cell) < counts_per_cell_after+1 # now log1p transform np.log1p( X_gex.data, out = X_gex.data ) if n_ab_features: X_ab = adata.raw.X[:,ngenes:] np.log1p( X_ab.data, out = X_ab.data ) if normalize_antibody_features_CLR: X_ab_mn = X_ab.mean(axis=1) X_ab = scipy.sparse.csr_matrix(X_ab - X_ab_mn) new_X = scipy.sparse.hstack( [X_gex, X_ab], format="csr" ) else: new_X = X_gex adata_new = AnnData( X = new_X, obs = adata.obs, var = adata.raw.var ) adata.raw = adata_new set_raw_matrix_is_logged_to_true( adata ) #print(adata) return adata tcr_keys = '<KEY>'.split() # ugly def store_tcrs_in_adata(adata, tcrs): ''' returns NOTHING, modifies adata tcrs is a list of (atcr,btcr) tuples, where atcr = (va,ja,cdr3a,cdr3a_nucseq) ... ''' assert len(tcrs) == adata.shape[0] global tcr_keys tcr_indices = ((x,y) for x in range(2) for y in range(4)) for tag, (i,j) in zip( tcr_keys, tcr_indices): adata.obs[tag] = [x[i][j] for x in tcrs ] # ensure lower case adata.obs['cdr3a_nucseq'] = adata.obs.cdr3a_nucseq.str.lower() adata.obs['cdr3b_nucseq'] = adata.obs.cdr3b_nucseq.str.lower() return def retrieve_tcrs_from_adata(adata, include_subject_id_if_present=False): ''' include_subject_id_if_present = True means that we add to the tcr-tuples the subject_id as given in the obs array. This will prevent clones from being condensed across individuals ''' global tcr_keys tcrs = [] if include_subject_id_if_present and util.SUBJECT_ID_OBS_KEY in adata.obs_keys(): print(f'retrieve_tcrs_from_adata: include_subject_id_if_present is True and {util.SUBJECT_ID_OBS_KEY} present') arrays = [ adata.obs[x] for x in tcr_keys+[util.SUBJECT_ID_OBS_KEY] ] for va, ja, cdr3a, cdr3a_nucseq, vb, jb, cdr3b, cdr3b_nucseq, subject_id in zip( *arrays): tcrs.append(((va, ja, cdr3a, cdr3a_nucseq.lower(), subject_id), (vb, jb, cdr3b, cdr3b_nucseq.lower(), subject_id))) else: arrays = [ adata.obs[x] for x in tcr_keys ] for va,ja,cdr3a,cdr3a_nucseq,vb,jb,cdr3b,cdr3b_nucseq in zip(*arrays): tcrs.append(((va, ja, cdr3a, cdr3a_nucseq.lower()), (vb, jb, cdr3b, cdr3b_nucseq.lower()) ) ) return tcrs def read_adata( gex_data, # filename gex_data_type, # string describing file type gex_only = True ): ''' Split this out so that other code can use it. Read GEX data ''' print('reading:', gex_data, 'of type', gex_data_type) if gex_data_type == 'h5ad': adata = sc.read_h5ad( gex_data ) elif gex_data_type == '10x_mtx': adata = sc.read_10x_mtx( gex_data, gex_only=gex_only ) elif gex_data_type == '10x_h5': adata = sc.read_10x_h5( gex_data, gex_only=gex_only ) adata.var_names_make_unique() elif gex_data_type == 'loom': adata = sc.read_loom( gex_data ) else: print('unrecognized gex_data_type:', gex_data_type, "should be one of ['h5ad', '10x_mtx', '10x_h5', 'loom']") exit() if adata.isview: # ran into trouble with AnnData views vs copies adata = adata.copy() return adata def read_dataset( gex_data, gex_data_type, clones_file, make_var_names_unique = True, keep_cells_without_tcrs = False, kpca_file = None, allow_missing_kpca_file = False, # only relevant if clones_file!=None gex_only=True, #only applies to 10x-formatted data suffix_for_non_gene_features=None, #None or a string ): ''' returns adata stores the tcr-dist kPCA info in adata.obsm under the key 'X_pca_tcr' stores the tcr info in adata.obs under multiple keys (see store_tcrs_in_adata(...) function) if clones_file is None, gex_data_type must be 'h5ad' and the tcr info must already be in the AnnData object (ie adata) when we load it ''' include_tcr_nucseq = True adata = read_adata(gex_data, gex_data_type, gex_only=gex_only) util.setup_uns_dicts(adata) # for storing conga results adata.uns['conga_stats']['num_cells_w_gex'] = adata.shape[0] adata.uns['conga_stats']['num_features_start'] = adata.shape[1] if suffix_for_non_gene_features is not None: feature_types_colname = util.get_feature_types_varname( adata ) assert feature_types_colname, \ 'cant identify non-gene features, no feature_types data column' ab_mask = np.array(adata.var[feature_types_colname] != util.GENE_EXPRESSION_FEATURE_TYPE) print(f'adding {suffix_for_non_gene_features} to {np.sum(ab_mask)}' f' non-GEX features: {adata.var_names[ab_mask]}') newnames = [ x+suffix_for_non_gene_features if y else x for x,y in zip(adata.var_names, ab_mask)] adata.var.index = newnames if make_var_names_unique: adata.var_names_make_unique() # added if clones_file is None: # adata should already contain the tcr information colnames = 'va ja cdr3a cdr3a_nucseq vb jb cdr3b cdr3b_nucseq'.split() for colname in colnames: if colname not in adata.obs_keys(): print('ERROR read_dataset: clones_file = None', 'but adata doesnt already contain', colname) sys.exit() # what about 'X_pca_tcr' ie the kernel PCs?? # should we worry about those now? if 'X_pca_tcr' not in adata.obsm_keys(): print('WARNING:: reading dataset without clones file', 'kernel PCs will not be set ie X_pca_tcr array', 'will be missing from adata.obsm!!!!!!!!!!!!!', sep='\n') return adata ########################################## EARLY RETURN barcodes = set( adata.obs.index ) print('total barcodes:',len(barcodes),adata.shape) # read the kpcs, etc bcmap_file = clones_file+'.barcode_mapping.tsv' if kpca_file is None: kpca_file = clones_file[:-4]+'_AB.dist_50_kpcs' assert exists(clones_file) assert exists(bcmap_file) if not allow_missing_kpca_file: assert exists(kpca_file) print('reading:',clones_file) tmpdata = open(clones_file,'r') clones_file_header = tmpdata.readline() tmpdata.close() #clones_file_header = popen('head -n1 '+clones_file).readlines()[0] clones_df =
pd.read_csv(clones_file, sep='\t')
pandas.read_csv
import pandas as pd def get_zipcode(lat, lon, all_l): row = all_l[(all_l['latitude'] == lat) & (all_l['longitude'] == lon)] print(row) print("*") if __name__ == "__main__": root_path = "/Users/shravya/Documents/CMU/Interactive_Data_Science/Assignments/3/Code2/data/" reviews = {'NYC': pd.read_csv(root_path + 'NYC_reviews.csv')} NYC_listings = {'01': pd.read_csv(root_path + '2020/NYC/listings_01.csv'), '02': pd.read_csv(root_path + '2020/NYC/listings_02.csv'), '03': pd.read_csv(root_path + '2020/NYC/listings_03.csv'), '04': pd.read_csv(root_path + '2020/NYC/listings_04.csv'), '05': pd.read_csv(root_path + '2020/NYC/listings_05.csv'), '06':
pd.read_csv(root_path + '2020/NYC/listings_06.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 7 11:42:15 2018 @author: akumler This script contains all the hard code that produces the solar forecast. The solar forecation application imports this module to get desired data. This is the second version, removing the requirement that a previous observation is needed in order to make the forecast (reconstruction). Other improvements are added. """ import pandas as pd import numpy as np from math import * from datetime import datetime import math from pvlib.solarposition import * from pvlib.atmosphere import * from pvlib.clearsky import * from pvlib.irradiance import * # from bird_clear_sky_model import * from sklearn.metrics import * # import seaborn as sns; # # sns.set() # import skill_metrics as sm from scipy import stats from datetime import datetime import time from time import strptime, strftime, mktime, gmtime from calendar import timegm def valid_datetime(date_time): """ Checks to make sure the datetime received from the platform is valid. Parameters ---------- date_time: 'Pandas DatetimeIndex' Current time. Usually a contains a year, month, day, hour, and minute. Returns ------- valid_time: 'datetimeindex' Current time. If 'valid_datetime' receives an invalid input, one is assumed from the previous valid time given. """ if (date_time is None): valid_time = np.array([pd.Timestamp.now()]) valid_time = pd.DatetimeIndex(valid_time).round('min') return valid_time elif (isinstance(date_time, datetime) == True): valid_time = np.array([
pd.to_datetime(date_time)
pandas.to_datetime
import os import json import torch import pandas as pd import argparse import habitat import habitat_extensions import tqdm import habitat_sim from config.default import get_config from tools.generate_topdown_maps.gt_map_generator import DummyRLEnv, get_items_list def get_obj_per_scene(env,label_idx): #Get the semantic scene of the env scene = env.habitat_env.sim.semantic_scene #Map all objects and their position/dimension in the current floor obj_pos = {} for name in label_idx.keys(): obj_pos[name] = {obj.id : [obj.aabb.center,obj.aabb.sizes] for obj in scene.objects if name == obj.category.name()} return obj_pos def switch_to_next_scene(env, scene_id): env.habitat_env.current_episode.scene_id = scene_id env.habitat_env.reconfigure(env.habitat_env._config) _ = env.habitat_env.task.reset(env.habitat_env.current_episode) def main(args): file_path = args.map_info with open(file_path) as json_file: all_maps_info = json.load(json_file) _ , label_idx = get_items_list("data/mpcat40.tsv") config_path = "tools/generate_topdown_maps/config/mp3d_train.yaml" minDistance = 0 maxDistance = 2.5 config = get_config(config_path) config = habitat_extensions.get_extended_config(config_path) try: env.close() except NameError: pass env = DummyRLEnv(config=config) env.seed(1234) device = torch.device("cuda:0") _ = env.reset() scene_objects = {} scene_ids = sorted(list(all_maps_info.keys())) for scene_id in scene_ids: scene_objects[scene_id] = {} floor_id = 0 for scene_floor in all_maps_info[scene_id]: scene_objects[scene_id][floor_id] = {} floor_id += 1 for scene in tqdm.tqdm(scene_ids): switch_to_next_scene(env, all_maps_info[scene][0]["scene_id"]) obj_pos = get_obj_per_scene(env,label_idx) for floor_id in scene_objects[scene]: floor_height = all_maps_info[scene][floor_id]["floor_height"] floor_objects = {} scene_objects[scene][floor_id] = floor_objects for target_obj in obj_pos.keys(): object_class = target_obj floor_objects[object_class] = 0 target_objects = obj_pos[object_class] for obj_id in target_objects: objectHeight = target_objects[obj_id][0][1] dObjectToFloor = objectHeight - floor_height if dObjectToFloor > minDistance and dObjectToFloor < maxDistance: #Check if Object is within 2.5m above the floor height floor_objects[object_class] += 1 else: continue #Create dataframe out of scene_objects dictionary df_scene_objects = pd.concat({k:
pd.DataFrame.from_dict(v, 'index')
pandas.DataFrame.from_dict
import pandas as pd import numpy as np from scipy.stats import hmean import cirpy import datetime from matplotlib import pyplot as plt import seaborn as sns from data_loader import GraphCancerMolecules sns.set() sns.set_context('talk') def read_in_cpdb(): cpdb_lit = pd.read_csv('../data/cpdb.lit.tab.txt', sep='\t') cpdb_nci = pd.read_csv('../data/cpdb.ncintp.tab.txt', sep='\t') cpdb_df = pd.concat([cpdb_lit, cpdb_nci]) print(f"number of unique chemcodes in rats cpdb {cpdb_df[cpdb_df['species']=='r']['chemcode'].nunique()}") print(f"number of unique chemcodes in cpdb {cpdb_df['chemcode'].nunique()}") cpdb_name = pd.read_csv('../data/cpdb_name.tsv', sep='\t') assert not cpdb_name['chemcode'].duplicated().sum() cpdb_df_len = len(cpdb_df) cpdb_df = cpdb_df.merge(cpdb_name, on='chemcode') assert cpdb_df_len == len(cpdb_df) cpdb_df['td50_log'] = np.log10(cpdb_df['td50']) return cpdb_df def genereate_summary_cpdb_plots(cpdb_df): plt.figure(figsize=(20,5)) vc = cpdb_df['chemcode'].value_counts() print(f"Number of experiments per compound stats: \n{pd.Series(vc.values).describe()}") print(f"number of compounds with more than 50 studies: {len(vc[vc>50])}") sns.distplot(vc[vc<=50],kde=False, bins=50) plt.xticks(np.arange(1,51, 1)) plt.title('Number of experiments per compound') plt.xlim(0, 50) plt.savefig('../plots/cpdb_num_experiments_per_compound.pdf') plt.figure(figsize=(10,5)) plt.title('Distribution of TD50 values per animal') ax = sns.violinplot(data=cpdb_df[cpdb_df['species'].isin(['m', 'r', 'h'])],x='species', y='td50_log') sns.stripplot(data=cpdb_df[cpdb_df['species'].isin(['m', 'r', 'h'])],x='species', y='td50_log',linewidth=1, color='white',alpha=.5) ax.set_xticklabels(['rat', 'mouse', 'hamster']) plt.savefig('../plots/TD50_distribution_per_species.pdf') def agregate_cpdb(cpdb_df): # These cas IDS map to the same smiles strings. So first remap these cas IDS so don't have to do # SMILES matching on all the rows cas_map = {'14026-03-0': '36702-44-0', '104-46-1': '4180-23-8', '13073-35-3': '67-21-0', '1150-37-4': '1150-42-1', '121-14-2': '25321-14-6', '72-20-8': '60-57-1', '319-84-6': '58-89-9', '319-85-7': '58-89-9', '608-73-1': '58-89-9', '764-41-0': '110-57-6', '107-06-2': '7572-29-4', '73-22-3': '54-12-6', '100-63-0': '59-88-1', '488-41-5': '10318-26-0', '9006-42-2': '12122-67-7'} cpdb_df['cas'] = [cas_map[x] if x in cas_map.keys() else x for x in cpdb_df['cas'].values] cpdb_g = cpdb_df[~cpdb_df['cas'].duplicated()][['name', 'cas', 'chemcode', 'species']] cpdb_g_len = len(cpdb_g) temp = cpdb_df[['cas', 'td50_log', 'td50', ]].groupby('cas').min().reset_index() columns_t = temp.columns.tolist() columns_t.remove('cas') columns_t = {x: x + '_min' for x in columns_t} temp.rename(columns=columns_t, inplace=True) cpdb_g =
pd.merge(cpdb_g, temp, on='cas')
pandas.merge
import json, logging, pickle, os, sys, time from shapely import geometry from pulp import * import pandas as pd import geopandas as gpd import numpy as np from geopy.distance import geodesic import matplotlib.pyplot as plt import matplotlib.lines as mlines tic = time.time() from shapely.strtree import STRtree import networkx as nx logging.basicConfig(stream=sys.stdout, level=logging.INFO) logger = logging.getLogger(__name__) gpd.options.use_pygeos=False def milp_geodesic_network_satisficing(pts_A, pts_B, alpha,mipgap=0.0001,v=False): pts_A_dict = {pt.name:pt for pt in pts_A} pts_B_dict = {pt.name:pt for pt in pts_B} A_names = [pt.name for pt in pts_A] B_names = [pt.name for pt in pts_B] Z = {pt.name:{} for pt in pts_A} MW_A = {pt.name:pt.MW for pt in pts_A} MW_B = {pt.name:pt.MW for pt in pts_B} if v: print ('generating Z..') for pt_A in pts_A: for pt_B in pts_B: Z[pt_A.name][pt_B.name]=(geodesic([pt_A.y,pt_A.x], [pt_B.y,pt_B.x]).kilometers)**2 sum_Z = sum([Z[A_name][B_name] for A_name in A_names for B_name in B_names]) ### declare model model = LpProblem("Network Satisficing Problem",LpMinimize) ### Declare variables # B -> Bipartite Network B = LpVariable.dicts("Bipartite",(A_names,B_names),0,1,LpInteger) # abs_diffs -> absolute value forcing variable abs_diffs = LpVariable.dicts("abs_diffs",B_names,cat='Continuous') ### Declare constraints # Contstraint - abs diffs edges for B_name in B_names: model += abs_diffs[B_name] >= (MW_B[B_name] - lpSum([MW_A[A_name]*B[A_name][B_name] for A_name in A_names]))/MW_B[B_name],"abs forcing pos {}".format(B_name) model += abs_diffs[B_name] >= -1 * (MW_B[B_name] - lpSum([MW_A[A_name]*B[A_name][B_name] for A_name in A_names]))/MW_B[B_name], "abs forcing neg {}".format(B_name) # Constraint - bipartite edges for A_name in A_names: model += lpSum([B[A_name][B_name] for B_name in B_names]) <= 1,"Bipartite Edges {}".format(A_name) ### Affine equations # Impedence error E_z = sum([Z[A_name][B_name]*B[A_name][B_name] for A_name in A_names for B_name in B_names])/sum_Z # mw error E_mw = sum([abs_diffs[B_name] for B_name in B_names])/len(B_names) ### Objective function model += E_z*alpha + (1-alpha)*E_mw, "Loss" if v: print ('solving model...') model.solve(pulp.GUROBI_CMD(options=[('MIPGap',str(mipgap)),('OutputFlag', str(0))])) if v: print(pulp.LpStatus[model.status]) return model, B, E_z, E_mw, Z class MatchRegion: def __init__(self, match): self.match=match if match=='wri': self.ini_target_gdf= self.prep_wri() elif match=='eia': self.ini_target_gdf = self.prep_eia() source_gdf = gpd.read_file(os.path.join(os.getcwd(),'data','ABCD_landcover.geojson')).reset_index() source_gdf['capacity_mw'] = source_gdf['area']*44.2/1000/1000 source_gdf = source_gdf.rename(columns={'index':'unique_id'}) source_gdf.geometry = source_gdf.geometry.representative_point() self.ini_source_gdf = source_gdf[['unique_id','iso-3166-1','capacity_mw','geometry']] self.ne = gpd.read_file(os.path.join(os.getcwd(),'data','ne_10m_countries.gpkg')) logger.info('Source gdf:') print (self.ini_source_gdf) logger.info('Target gdf:') print (self.ini_target_gdf) def prep_wri(self): """ output: gdf with lat/lon point geom, iso-3166-1, a unique_id, and MW capacity """ wri = pd.read_csv(os.path.join(os.getcwd(),'data','WRI_gppd.csv')) iso2 = pd.read_csv(os.path.join(os.getcwd(),'data','iso2.csv')) # attach country iso-3166-1 to wri wri = wri.merge(iso2[['iso2','iso3']], how='left',left_on='country',right_on='iso3') #filter solar PV wri = wri[wri['fuel1']=='Solar'] # rename iso2 wri = wri.rename(columns={'iso2':'iso-3166-1','gppd_idnr':'unique_id'}) # combine coordinates wri['coordinates'] = wri[['longitude','latitude']].values.tolist() # convert to shapely obj wri['geometry'] = wri['coordinates'].map(geometry.Point) wri = gpd.GeoDataFrame(wri[['unique_id','iso-3166-1','capacity_mw']], geometry=wri['geometry'], crs={'init':'epsg:4326'}) return wri def prep_eia(self): """ output: gdf with lat/lon point geom, iso-3166-1, a unique_id, and MW capacity """ # load file eia = gpd.read_file(os.path.join(os.getcwd(),'data','eia_powerstations','PowerPlants_US_202001.shp')) # add iso-3166-1 eia['iso-3166-1'] = 'US' # filter solar eia = eia[eia['PrimSource']=='solar'] # rename cols eia = eia.rename(columns={'Plant_Code':'unique_id','Install_MW':'capacity_mw'}) # keep cols eia = eia[['geometry','unique_id','capacity_mw','iso-3166-1']] return eia def get_components(self): """ use source and target gdfs to create a network, get the connected components of the network """ source_gdf = self.source_gdf.to_crs({'init':'epsg:3395'}) source_gdf['3395_x'] = source_gdf.geometry.x source_gdf['3395_y'] = source_gdf.geometry.y target_gdf = self.target_gdf.to_crs({'init':'epsg:3395'}) target_gdf['3395_x'] = target_gdf.geometry.x target_gdf['3395_y'] = target_gdf.geometry.y G = nx.Graph() source_df = pd.DataFrame(source_gdf) target_df = pd.DataFrame(target_gdf) def _match_st(row): bool_ind = (((target_df['3395_x'] - row['3395_x'])**2 + (target_df['3395_y'] - row['3395_y'])**2)**(1/2))<self.buffer return target_df[bool_ind]['unique_id'].values.tolist() source_df['sjoin_ids'] = source_df.apply(lambda row: _match_st(row), axis=1) logger.info('Non-matched df:') print (source_df[source_df['sjoin_ids'].str.len()<1]) for ii_r,row in enumerate(source_df.iterrows()): if ii_r %100==0: print ('#', end='') G.add_edges_from([(row[1]['unique_id'],ii) for ii in row[1]['sjoin_ids']]) logger.info (f'n nodes {len(G.nodes)}') logger.info(f'e dges {len(G.edges)}') self.G = G def run_main(self,region, dist_buffer=10000, alpha=0.15, mipgap=0.0001): self.buffer=dist_buffer self.alpha=alpha self.mipgap=mipgap self.region=region if region: # must be list(iso-3166-1), for now. self.source_gdf = self.ini_source_gdf[self.ini_source_gdf['iso-3166-1'].isin(region)] self.target_gdf = self.ini_target_gdf[self.ini_target_gdf['iso-3166-1'].isin(region)] self.outpath = os.path.join(os.getcwd(),'data','_'.join(['match',self.match,'-'.join(self.region),str(self.buffer),str(self.alpha)])) self.get_components() logger.info (f'n connect components: {len([_ for _ in nx.connected_components(self.G)])}') self.source_gdf['match_id'] = '' for ii_c, cc in enumerate(nx.connected_components(self.G)): print (f'Running component: {ii_c}, len: {len(cc)}', end=' ') B, E_z, E_mw = self.run_component(cc) matches = 0 for kk, vv in B.items(): for kk2, vv2 in vv.items(): if vv2.value()>0: matches+=1 self.source_gdf.loc[kk,'match_id']=kk2 print (f'found matches: {matches}, time: {time.time()-tic}') self.source_gdf.to_file(self.outpath+'.gpkg', driver="GPKG") def visualise(self, bounds = None): logger.info('Visualising...') fig, ax = plt.subplots(1,1,figsize=(72,72)) self.ne[self.ne['ISO_A2'].isin(self.region)].boundary.plot(ax=ax, color='grey') # plot the scatter -> how to adjust sizes? self.source_gdf.plot(ax=ax, marker='o',color='g',markersize=self.source_gdf['capacity_mw']) self.target_gdf.plot(ax=ax, marker='o',color='r',markersize=self.target_gdf['capacity_mw']) # plot the links link_df = pd.DataFrame(self.source_gdf) link_df = link_df[link_df['match_id']!=''] link_df = link_df.merge(
pd.DataFrame(self.target_gdf[['unique_id','geometry']])
pandas.DataFrame
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1., np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32')) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0., 2.], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match='NA'): arr.astype('Sparse[i8]') def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False)) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize('array, dtype, expected', [ (SparseArray([0, 1]), 'float', SparseArray([0., 1.], dtype=SparseDtype(float, 0.0))), (SparseArray([0, 1]), bool, SparseArray([False, True])), (SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True))), pytest.param( SparseArray([0, 1]), 'datetime64[ns]', SparseArray(np.array([0, 1], dtype='datetime64[ns]'), dtype=SparseDtype('datetime64[ns]', pd.Timestamp('1970'))), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), (SparseArray([0, 1, 10]), str, SparseArray(['0', '1', '10'], dtype=SparseDtype(str, '0'))), (SparseArray(['10', '20']), float, SparseArray([10.0, 20.0])), (SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0))), ]) def test_astype_more(self, array, dtype, expected): result = array.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match='Cannot convert non-finite'): arr.astype(int) def test_set_fill_value(self): arr = SparseArray([1., np.nan, 2.], fill_value=np.nan) arr.fill_value = 2 assert arr.fill_value == 2 arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64) arr.fill_value = 2 assert arr.fill_value == 2 # XXX: this seems fine? You can construct an integer # sparsearray with NaN fill value, why not update one? # coerces to int # msg = "unable to set fill_value 3\\.1 to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 3.1 assert arr.fill_value == 3.1 # msg = "unable to set fill_value nan to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) arr.fill_value = True assert arr.fill_value # coerces to bool # msg = "unable to set fill_value 0 to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 0 assert arr.fill_value == 0 # msg = "unable to set fill_value nan to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) @pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)]) def test_set_fill_invalid_non_scalar(self, val): arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) msg = "fill_value must be a scalar" with pytest.raises(ValueError, match=msg): arr.fill_value = val def test_copy(self): arr2 = self.arr.copy() assert arr2.sp_values is not self.arr.sp_values assert arr2.sp_index is self.arr.sp_index def test_values_asarray(self): assert_almost_equal(self.arr.to_dense(), self.arr_data) @pytest.mark.parametrize('data,shape,dtype', [ ([0, 0, 0, 0, 0], (5,), None), ([], (0,), None), ([0], (1,), None), (['A', 'A', np.nan, 'B'], (4,), np.object) ]) def test_shape(self, data, shape, dtype): # GH 21126 out = SparseArray(data, dtype=dtype) assert out.shape == shape @pytest.mark.parametrize("vals", [ [np.nan, np.nan, np.nan, np.nan, np.nan], [1, np.nan, np.nan, 3, np.nan], [1, np.nan, 0, 3, 0], ]) @pytest.mark.parametrize("fill_value", [None, 0]) def test_dense_repr(self, vals, fill_value): vals = np.array(vals) arr = SparseArray(vals, fill_value=fill_value) res = arr.to_dense() tm.assert_numpy_array_equal(res, vals) with tm.assert_produces_warning(FutureWarning): res2 = arr.get_values() tm.assert_numpy_array_equal(res2, vals) def test_getitem(self): def _checkit(i): assert_almost_equal(self.arr[i], self.arr.to_dense()[i]) for i in range(len(self.arr)): _checkit(i) _checkit(-i) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) def test_getslice(self): result = self.arr[:-3] exp = SparseArray(self.arr.to_dense()[:-3]) tm.assert_sp_array_equal(result, exp) result = self.arr[-4:] exp = SparseArray(self.arr.to_dense()[-4:]) tm.assert_sp_array_equal(result, exp) # two corner cases from Series result = self.arr[-12:] exp = SparseArray(self.arr) tm.assert_sp_array_equal(result, exp) result = self.arr[:-12] exp = SparseArray(self.arr.to_dense()[:0]) tm.assert_sp_array_equal(result, exp) def test_getslice_tuple(self): dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0]) sparse = SparseArray(dense) res = sparse[4:, ] exp = SparseArray(dense[4:, ]) tm.assert_sp_array_equal(res, exp) sparse = SparseArray(dense, fill_value=0) res = sparse[4:, ] exp = SparseArray(dense[4:, ], fill_value=0) tm.assert_sp_array_equal(res, exp) with pytest.raises(IndexError): sparse[4:, :] with pytest.raises(IndexError): # check numpy compat dense[4:, :] def test_boolean_slice_empty(self): arr = pd.SparseArray([0, 1, 2]) res = arr[[False, False, False]] assert res.dtype == arr.dtype @pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"]) def test_binary_operators(self, op): op = getattr(operator, op) data1 = np.random.randn(20) data2 = np.random.randn(20) data1[::2] = np.nan data2[::3] = np.nan arr1 = SparseArray(data1) arr2 = SparseArray(data2) data1[::2] = 3 data2[::3] = 3 farr1 = SparseArray(data1, fill_value=3) farr2 = SparseArray(data2, fill_value=3) def _check_op(op, first, second): res = op(first, second) exp = SparseArray(op(first.to_dense(), second.to_dense()), fill_value=first.fill_value) assert isinstance(res, SparseArray) assert_almost_equal(res.to_dense(), exp.to_dense()) res2 = op(first, second.to_dense()) assert isinstance(res2, SparseArray) tm.assert_sp_array_equal(res, res2) res3 = op(first.to_dense(), second) assert isinstance(res3, SparseArray) tm.assert_sp_array_equal(res, res3) res4 = op(first, 4) assert isinstance(res4, SparseArray) # Ignore this if the actual op raises (e.g. pow). try: exp = op(first.to_dense(), 4) exp_fv = op(first.fill_value, 4) except ValueError: pass else: assert_almost_equal(res4.fill_value, exp_fv) assert_almost_equal(res4.to_dense(), exp) with np.errstate(all="ignore"): for first_arr, second_arr in [(arr1, arr2), (farr1, farr2)]: _check_op(op, first_arr, second_arr) def test_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) tm.assert_sp_array_equal(unpickled, obj) _check_roundtrip(self.arr) _check_roundtrip(self.zarr) def test_generator_warnings(self): sp_arr = SparseArray([1, 2, 3]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings(action='always', category=DeprecationWarning) warnings.filterwarnings(action='always', category=PendingDeprecationWarning) for _ in sp_arr: pass assert len(w) == 0 def test_fillna(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0]) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan]) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64)
tm.assert_sp_array_equal(res, exp)
pandas.util.testing.assert_sp_array_equal
# -*- coding: utf-8 -*- # Name: pypandas # Version: 0.1a3 # Owner: <NAME> import pandas as pd def employees_num(engine): """Get number of employees""" df = pd.read_sql_table('employees', con=engine) num = df.employee_id.count() return num def sales_num_per_category(engine): """Get sales per category""" df1 = pd.read_sql_table('order_details', con=engine) df1 = df1[['order_id', 'product_id']] df2 = pd.read_sql_table('products', con=engine) df2 = df2[['product_id', 'category_id']] df3 =
pd.merge(df1, df2, on='product_id', how='outer')
pandas.merge
import pandas as pd from fairlens.metrics.correlation import distance_cn_correlation, distance_nn_correlation from fairlens.sensitive.correlation import find_column_correlation, find_sensitive_correlations pair_race = "race", "Ethnicity" pair_age = "age", "Age" pair_marital = "marital", "Family Status" pair_gender = "gender", "Gender" pair_nationality = "nationality", "Nationality" def test_correlation(): col_names = ["gender", "random", "score"] data = [ ["male", 10, 60], ["female", 10, 80], ["male", 10, 60], ["female", 10, 80], ["male", 9, 59], ["female", 11, 80], ["male", 12, 61], ["female", 10, 83], ] df = pd.DataFrame(data, columns=col_names) res = {"score": [pair_gender]} assert find_sensitive_correlations(df) == res def test_double_correlation(): col_names = ["gender", "nationality", "random", "corr1", "corr2"] data = [ ["woman", "spanish", 715, 10, 20], ["man", "spanish", 1008, 20, 20], ["man", "french", 932, 20, 10], ["woman", "french", 1300, 10, 10], ] df = pd.DataFrame(data, columns=col_names) res = {"corr1": [pair_gender], "corr2": [pair_nationality]} assert find_sensitive_correlations(df) == res def test_multiple_correlation(): col_names = ["race", "age", "score", "entries", "marital", "credit", "corr1"] data = [ ["arabian", 21, 10, 2000, "married", 10, 60], ["carribean", 20, 10, 3000, "single", 10, 90], ["indo-european", 41, 10, 1900, "widowed", 10, 120], ["carribean", 40, 10, 2000, "single", 10, 90], ["indo-european", 42, 10, 2500, "widowed", 10, 120], ["arabian", 19, 10, 2200, "married", 10, 60], ] df = pd.DataFrame(data, columns=col_names) res = {"corr1": [pair_race, pair_marital]} assert find_sensitive_correlations(df, corr_cutoff=0.9) == res def test_common_correlation(): col_names = ["race", "age", "score", "entries", "marital", "credit", "corr1", "corr2"] data = [ ["arabian", 21, 10, 2000, "married", 10, 60, 120], ["carribean", 20, 10, 3000, "single", 10, 90, 130], ["indo-european", 41, 10, 1900, "widowed", 10, 120, 210], ["carribean", 40, 10, 2000, "single", 10, 90, 220], ["indo-european", 42, 10, 2500, "widowed", 10, 120, 200], ["arabian", 19, 10, 2200, "married", 10, 60, 115], ] df =
pd.DataFrame(data, columns=col_names)
pandas.DataFrame
import pandas as pd from importlib import reload # allows reloading of modules import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA import ipywidgets as widgets from IPython.display import display, clear_output from importlib import reload import asyncio import pickle import pmagpy.pmag as pmag import pmagpy.ipmag as ipmag import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from pmagpy import contribution_builder as cb import scipy as scipy import pickle from sklearn.decomposition import PCA from scipy.optimize import curve_fit #The sortarai function from pmagpy, this will soon be modified so that additivity checks work. model_circle_fast=pickle.load(open('model_circle_fast.pkl','rb')) model_circle_slow=pickle.load(open('model_circle_slow.pkl','rb')) def get_mad(IZZI): """Calculates the free Maximum Angle of Deviation (MAD) of Kirshvink et al (1980)""" pca=PCA(n_components=3) fit=pca.fit(IZZI.loc[:,'NRM_x':'NRM_z'].values).explained_variance_ MAD=np.degrees(np.arctan(np.sqrt((fit[2]+fit[1])/(fit[0])))) return MAD def TaubinSVD(x,y): """ Function from PmagPy algebraic circle fit input: list [[x_1, y_1], [x_2, y_2], ....] output: a, b, r. a and b are the center of the fitting circle, and r is the radius Algebraic circle fit by Taubin <NAME>, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) """ X = np.array(list(map(float, x))) Xprime=X Y = np.array(list(map(float, y))) Yprime=Y XY = np.array(list(zip(X, Y))) XY = np.array(XY) X = XY[:,0] - np.mean(XY[:,0]) # norming points by x avg Y = XY[:,1] - np.mean(XY[:,1]) # norming points by y avg centroid = [np.mean(XY[:,0]), np.mean(XY[:,1])] Z = X * X + Y * Y Zmean = np.mean(Z) Z0 = (Z - Zmean)/(2. * np.sqrt(Zmean)) ZXY = np.array([Z0, X, Y]).T U, S, V = np.linalg.svd(ZXY, full_matrices=False) # V = V.transpose() A = V[:,2] A[0] = A[0]/(2. * np.sqrt(Zmean)) A = np.concatenate([A, [(-1. * Zmean * A[0])]], axis=0) a, b = (-1 * A[1:3]) / A[0] / 2 + centroid r = np.sqrt(A[1]*A[1]+A[2]*A[2]-4*A[0]*A[3])/abs(A[0])/2 errors=[] for i in list(range(0,len(Xprime)-1)): errors.append((np.sqrt((Xprime[i]-a)**2+(Yprime[i]-b)**2)-r)**2) sigma=np.sqrt((sum(errors))/(len(Xprime)-1)) return a,b,r,sigma def get_drat(IZZI,IZZI_trunc,P): """Calculates the difference ratio (DRAT) of pTRM checks (Selkin and Tauxe, 2000) to check for alteration""" IZZI_reduced=IZZI[IZZI.temp_step.isin(P.temp_step)] a=np.sum((IZZI_trunc.PTRM-np.mean(IZZI_trunc.PTRM))*(IZZI_trunc.NRM-np.mean(IZZI_trunc.NRM))) b=a/np.abs(a)*np.sqrt(np.sum((IZZI_trunc.NRM-np.mean(IZZI_trunc.NRM))**2)/np.sum((IZZI_trunc.PTRM-np.mean(IZZI_trunc.PTRM))**2)) yint=np.mean(IZZI_trunc.NRM)-b*np.mean(IZZI_trunc.PTRM) line={'slope':b,'intercept':yint} xprime=0.5*(IZZI_trunc.PTRM+(IZZI_trunc.NRM-line['intercept'])/line['slope']) yprime=0.5*(IZZI_trunc.NRM+line['slope']*IZZI_trunc.PTRM+line['intercept']) scalefactor=np.sqrt((min(xprime)-max(xprime))**2+(min(yprime)-max(yprime))**2) absdiff=max(np.abs(P.PTRM.values-IZZI_reduced.PTRM.values)/scalefactor)*100 return(absdiff) def calculate_anisotropy_correction(IZZI): """Calculates anisotropy correction factor for a paleointensity interpretation, given an s tensor""" #Convert the s tensor into a numpy array strlist=IZZI['s_tensor'].iloc[0].split(':') slist=[] for stringo in strlist: slist.append(float(stringo.strip())) stensor=np.array([[slist[0],slist[3],slist[5]],[slist[3],slist[1],slist[4]],[slist[5],slist[4],slist[2]]]) #Fit a PCA to the IZZI directions NRM_trunc_dirs=IZZI.loc[:,'NRM_x':'NRM_z'] pca=PCA(n_components=3) pca=pca.fit(NRM_trunc_dirs) #Calculate the anisotropy correction factor (see Standard Paleointensity Definitions) vector=pca.components_[0] vector=vector/np.sqrt(np.sum(vector**2)) ancvector=np.matmul(np.linalg.inv(stensor),vector) ancvector=ancvector/np.sqrt(np.sum(ancvector**2)) labmag=np.matmul(stensor,np.array([0,0,-1])) ancmag=np.matmul(stensor,ancvector) c=np.sqrt(np.sum(labmag**2))/np.sqrt(np.sum(ancmag**2)) return(c) def calculate_NLT_correction(IZZI,c): """Calculates the correction for non linear TRM for a paleointensity interpretation, given the anisotropy and cooling rate corrections""" a=np.sum((IZZI.PTRM-np.mean(IZZI.PTRM))*(IZZI.NRM-np.mean(IZZI.NRM))) b=a/np.abs(a)*np.sqrt(np.sum((IZZI.NRM-np.mean(IZZI.NRM))**2)/np.sum((IZZI.PTRM-np.mean(IZZI.PTRM))**2)) beta=IZZI['NLT_beta'].iloc[0] correction=c*IZZI.correction.iloc[0] B_lab=IZZI.B_lab.iloc[0]*1e6 total_correction=(np.arctanh(correction*np.abs(b)*np.tanh(beta*B_lab)))/(np.abs(b)*beta*B_lab) return(total_correction) def prep_data_for_fitting(IZZI_filtered,IZZI_original): """Returns the needed data for a paleointensity interpretation to perform the BiCEP method (Cych et al, in prep.), calculates all corrections for a specimen""" specimen=IZZI_original.specimen.iloc[0] #Specimen name methcodes='' #String For Method Codes extracolumnsdict={} #Extra Column Information for MagIC export (corrections) #Calculate Anisotropy Correction: if len(IZZI_original.dropna(subset=['s_tensor']))>0: c=calculate_anisotropy_correction(IZZI_filtered) extracolumnsdict['int_corr_aniso']=c #Get method code depending on anisotropy type (AARM or ATRM) methcodes+=IZZI_original['aniso_type'].iloc[0] else: c=1 #Get Cooling Rate Correction if IZZI_original.correction.iloc[0]!=1: methcodes+=':LP-CR-TRM' #method code for cooling rate correction extracolumnsdict['int_corr_cooling_rate']=IZZI_original.correction.iloc[0] #Calculate nonlinear TRM Correction if len(IZZI_original.dropna(subset=['NLT_beta']))>0: methcodes+=':DA-NL' #method code for nonlinear TRM correction total_correction=calculate_NLT_correction(IZZI_filtered,c) #total correction (combination of all three corrections) extracolumnsdict['int_corr_nlt']=total_correction/(c*IZZI_original.correction.iloc[0]) #NLT correction is total correction/original correction. else: total_correction=c*IZZI_original.correction.iloc[0] #Converting Arai plot data to useable form NRM0=IZZI_original.NRM.iloc[0] NRMS=IZZI_filtered.NRM.values/NRM0 PTRMS=IZZI_filtered.PTRM.values/NRM0/total_correction #We divide our pTRMs by the total correction, because we scale the pTRM values so that the maximum pTRM is one, this doesn't affect the fit and just gets scaled back when converting the circle tangent slopes back to intensities as would be expected, but it's easier to apply this here. PTRMmax=max(IZZI_original.PTRM/NRM0/total_correction) #We scale by our maximum pTRM to perform the circle fit. line=bestfit_line(IZZI_original.PTRM/NRM0/total_correction,IZZI_original.NRM/NRM0) #best fitting line to the pTRMs scale=np.sqrt((line['intercept']/line['slope'])**2+(line['intercept'])**2) #Flag- is this ever used? PTRMS=PTRMS/PTRMmax #Scales the pTRMs so the maximum pTRM is one #We subtract the minimum pTRM and NRM to maintain aspect ratio and make circle fitting easier. minPTRM=min(PTRMS) minNRM=min(NRMS) PTRMS=PTRMS-minPTRM NRMS=NRMS-minNRM #We perform the Taubin least squares circle fit to get values close to the Bayesian maximum likelihood to initialize our MCMC sampler at, this makes sampling a lot easier than initializing at a random point (which may have infinitely low probability). x_c,y_c,R,sigma=TaubinSVD(PTRMS,NRMS) #Calculate x_c,y_c and R dist_to_edge=abs(np.sqrt(x_c**2+y_c**2)-R) #Calculate D (dist_to_edge) phi=np.radians(np.degrees(np.arctan(y_c/x_c))%180) #Calculate (and ensure the sign of) k if y_c<0: k=-1/R else: k=1/R B_lab=IZZI_filtered.B_lab.unique()[0]*1e6 return(scale,minPTRM,minNRM,PTRMmax,k,phi,dist_to_edge,sigma,PTRMS,NRMS,B_lab,methcodes,extracolumnsdict) def BiCEP_fit(specimenlist,temperatures=None,n_samples=30000,priorstd=20,model=None,**kwargs): minPTRMs=[] minNRMs=[] IZZI_list=[] B_lab_list=[] klist=[] NRM0s=[] pTRMsList=np.array([]) NRMsList=np.array([]) lengths=[] philist=[] dist_to_edgelist=[] B_ancs=[] dmaxlist=[] PTRMmaxlist=[] centroidlist=[] spec_old='' newmethcodes={} newcolumns={} i=0 for specimen in specimenlist: if spec_old==specimen: i+=1 else: i=0 spec_old=specimen IZZI_original=temps[(temps.specimen==specimen)&((temps.steptype=='IZ')|(temps.steptype=="ZI"))] if temperatures==None: IZZI_filtered=IZZI_original else: IZZI_filtered=IZZI_original[(IZZI_original.temp_step>=temperatures[specimen][i,0])&(IZZI_original.temp_step<=temperatures[specimen][i,1])] scale,minPTRM,minNRM,PTRMmax,k,phi,dist_to_edge,sigma,PTRMS,NRMS,B_lab,methcodestr,extracolumnsdict=prep_data_for_fitting(IZZI_filtered,IZZI_original) newcolumns[specimen]=extracolumnsdict newmethcodes[specimen]=methcodestr if len(IZZI_filtered)<=3: print('Specimen Rejected- Too Few Points to make an interpretation') NRM0=IZZI_filtered.NRM.iloc[0] minPTRMs.append(minPTRM) minNRMs.append(minNRM) line=bestfit_line(IZZI_filtered.PTRM,IZZI_filtered.NRM) B_anc=-line['slope']*B_lab*IZZI_filtered.correction.iloc[0] B_ancs.append(B_anc) Pi,Pj=np.meshgrid(PTRMS,PTRMS) Ni,Nj=np.meshgrid(NRMS,NRMS) dmax=np.amax(np.sqrt((Pi-Pj)**2+(Ni-Nj)**2)) centroid=np.sqrt(np.mean(PTRMS)**2+np.mean(NRMS)**2) IZZI_list.append(IZZI_filtered) B_lab_list.append(B_lab) klist.append(k) philist.append(phi) dist_to_edgelist.append(dist_to_edge) NRM0s.append(NRM0) pTRMsList=np.append(pTRMsList,PTRMS) NRMsList=np.append(NRMsList,NRMS) lengths.append(int(len(PTRMS))) dmaxlist.append(dmax) PTRMmaxlist.append(PTRMmax) centroidlist.append(centroid) if model==None: if len(specimenlist)<7: model_circle=model_circle_slow else: model_circle=model_circle_fast else: model_circle=model fit_circle=model_circle.sampling ( data={'I':len(pTRMsList),'M':len(lengths),'PTRM':pTRMsList,'NRM':NRMsList,'N':lengths,'PTRMmax':PTRMmaxlist,'B_labs':B_lab_list,'dmax':np.sqrt(dmaxlist),'centroid':centroidlist,'priorstd':priorstd},iter=n_samples,warmup=int(n_samples/2), init=[{'k_scale':np.array(klist)*np.array(dist_to_edgelist),'phi':philist,'dist_to_edge':dist_to_edgelist,'int_real':B_ancs}]*4,**kwargs) return(fit_circle,newmethcodes,newcolumns) def sufficient_statistics(ptrm, nrm): """ inputs list of ptrm and nrm data and computes sufficent statistcs needed for computations """ corr = np.cov( np.stack((ptrm, nrm), axis=0) ) return {'xbar': np.mean(ptrm), 'ybar': np.mean(nrm), 'S2xx': corr[0,0], 'S2yy': corr[1,1], 'S2xy': corr[0,1] } def bestfit_line(ptrm, nrm): """ returns the slope and intercept of the best fit line to a set of points with NRM and PTRM using Bayesian maximum likelihood estimate """ stat = sufficient_statistics(ptrm, nrm) w = .5*(stat['S2xx'] - stat['S2yy'])/stat['S2xy'] m = -w-np.sqrt(w**2+1) b = stat['ybar']-m*stat['xbar'] return {'slope': m, 'intercept': b } def sortarai(datablock, s, Zdiff, **kwargs): """ sorts data block in to first_Z, first_I, etc. Parameters _________ datablock : Pandas DataFrame with Thellier-Tellier type data s : specimen name Zdiff : if True, take difference in Z values instead of vector difference NB: this should always be False **kwargs : version : data model. if not 3, assume data model = 2.5 Returns _______ araiblock : [first_Z, first_I, ptrm_check, ptrm_tail, zptrm_check, GammaChecks] field : lab field (in tesla) """ if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: dec_key, inc_key, csd_key = 'dir_dec', 'dir_inc', 'dir_csd' Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude','dir_csd'] meth_key = 'method_codes' temp_key, dc_key = 'treat_temp', 'treat_dc_field' dc_theta_key, dc_phi_key = 'treat_dc_field_theta', 'treat_dc_field_phi' # convert dataframe to list of dictionaries datablock = datablock.to_dict('records') else: dec_key, inc_key, csd_key = 'measurement_dec', 'measurement_inc','measurement_csd' Mkeys = ['measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'measurement_magnitude'] meth_key = 'magic_method_codes' temp_key, dc_key = 'treatment_temp', 'treatment_dc_field' dc_theta_key, dc_phi_key = 'treatment_dc_field_theta', 'treatment_dc_field_phi' first_Z, first_I, zptrm_check, ptrm_check, ptrm_tail = [], [], [], [], [] field, phi, theta = "", "", "" starthere = 0 Treat_I, Treat_Z, Treat_PZ, Treat_PI, Treat_M = [], [], [], [], [] ISteps, ZSteps, PISteps, PZSteps, MSteps = [], [], [], [], [] GammaChecks = [] # comparison of pTRM direction acquired and lab field rec = datablock[0] for key in Mkeys: if key in list(rec.keys()) and rec[key] != "": momkey = key break # first find all the steps for k in range(len(datablock)): rec = datablock[k] temp = float(rec[temp_key]) methcodes = [] tmp = rec[meth_key].split(":") for meth in tmp: methcodes.append(meth.strip()) if 'LT-T-I' in methcodes and 'LP-TRM' not in methcodes and 'LP-PI-TRM' in methcodes: Treat_I.append(temp) ISteps.append(k) if field == "": field = float(rec[dc_key]) if phi == "": phi = float(rec[dc_phi_key]) theta = float(rec[dc_theta_key]) # stick first zero field stuff into first_Z if 'LT-NO' in methcodes: Treat_Z.append(temp) ZSteps.append(k) if 'LT-T-Z' in methcodes: Treat_Z.append(temp) ZSteps.append(k) if 'LT-PTRM-Z' in methcodes: Treat_PZ.append(temp) PZSteps.append(k) if 'LT-PTRM-I' in methcodes: Treat_PI.append(temp) PISteps.append(k) if 'LT-PTRM-MD' in methcodes: Treat_M.append(temp) MSteps.append(k) if 'LT-NO' in methcodes: dec = float(rec[dec_key]) inc = float(rec[inc_key]) str = float(rec[momkey]) if csd_key not in rec.keys(): sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str elif rec[csd_key]!=None: sig = np.radians(float(rec[csd_key]))*np.sqrt(3)/np.sqrt(2)*str else: sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str first_I.append([273, 0., 0., 0., 0., 1]) first_Z.append([273, dec, inc, str, sig, 1]) # NRM step for temp in Treat_I: # look through infield steps and find matching Z step if temp in Treat_Z: # found a match istep = ISteps[Treat_I.index(temp)] irec = datablock[istep] methcodes = [] tmp = irec[meth_key].split(":") for meth in tmp: methcodes.append(meth.strip()) # take last record as baseline to subtract brec = datablock[istep - 1] zstep = ZSteps[Treat_Z.index(temp)] zrec = datablock[zstep] # sort out first_Z records if "LP-PI-TRM-IZ" in methcodes: ZI = 0 else: ZI = 1 dec = float(zrec[dec_key]) inc = float(zrec[inc_key]) str = float(zrec[momkey]) if csd_key not in rec.keys(): sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str elif rec[csd_key]!=None: sig = np.radians(float(rec[csd_key]))*np.sqrt(3)/np.sqrt(2)*str else: sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str first_Z.append([temp, dec, inc, str, sig, ZI]) # sort out first_I records idec = float(irec[dec_key]) iinc = float(irec[inc_key]) istr = float(irec[momkey]) X = pmag.dir2cart([idec, iinc, istr]) BL = pmag.dir2cart([dec, inc, str]) I = [] for c in range(3): I.append((X[c] - BL[c])) if I[2] != 0: iDir = pmag.cart2dir(I) if csd_key not in rec.keys(): isig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str elif rec[csd_key]!=None: isig = np.radians(float(rec[csd_key]))*np.sqrt(3)/np.sqrt(2)*istr else: isig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*istr isig = np.sqrt(isig**2+sig**2) if Zdiff == 0: first_I.append([temp, iDir[0], iDir[1], iDir[2], isig, ZI]) else: first_I.append([temp, 0., 0., I[2], 0., isig, ZI]) gamma = pmag.angle([iDir[0], iDir[1]], [phi, theta]) else: first_I.append([temp, 0., 0., 0., 0., ZI]) gamma = 0.0 # put in Gamma check (infield trm versus lab field) if 180. - gamma < gamma: gamma = 180. - gamma GammaChecks.append([temp - 273., gamma]) for temp in Treat_PI: # look through infield steps and find matching Z step step = PISteps[Treat_PI.index(temp)] rec = datablock[step] dec = float(rec[dec_key]) inc = float(rec[inc_key]) str = float(rec[momkey]) brec = datablock[step - 1] # take last record as baseline to subtract pdec = float(brec[dec_key]) pinc = float(brec[inc_key]) pint = float(brec[momkey]) X = pmag.dir2cart([dec, inc, str]) prevX = pmag.dir2cart([pdec, pinc, pint]) I = [] for c in range(3): I.append(X[c] - prevX[c]) dir1 = pmag.cart2dir(I) if csd_key not in rec.keys(): sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str psig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*dir1[2] elif rec[csd_key]!=None: sig = np.radians(float(rec[csd_key]))*np.sqrt(3)/np.sqrt(2)*str psig=np.radians(float(brec[csd_key]))*np.sqrt(3)/np.sqrt(2)*dir1[2] else: sig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*str psig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*dir1[2] psig=np.sqrt(sig**2+psig**2) if Zdiff == 0: ptrm_check.append([temp, dir1[0], dir1[1], dir1[2], sig]) else: ptrm_check.append([temp, 0., 0., I[2]], sig) # in case there are zero-field pTRM checks (not the SIO way) for temp in Treat_PZ: step = PZSteps[Treat_PZ.index(temp)] rec = datablock[step] dec = float(rec[dec_key]) inc = float(rec[inc_key]) str = float(rec[momkey]) brec = datablock[step - 1] pdec = float(brec[dec_key]) pinc = float(brec[inc_key]) pint = float(brec[momkey]) X = pmag.dir2cart([dec, inc, str]) prevX = pmag.dir2cart([pdec, pinc, pint]) I = [] for c in range(3): I.append(X[c] - prevX[c]) dir2 = pmag.cart2dir(I) if csd_key not in rec.keys(): sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str psig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*dir1[2] elif rec[csd_key]!=None: sig = np.radians(float(rec[csd_key]))*np.sqrt(3)/np.sqrt(2)*str psig= np.radians(float(brec[csd_key]))*np.sqrt(3)/np.sqrt(2)*dir2[2] else: sig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*str psig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*dir1[2] psig=np.sqrt(sig**2+psig**2) zptrm_check.append([temp, dir2[0], dir2[1], dir2[2],psig]) # get pTRM tail checks together - for temp in Treat_M: # tail check step - just do a difference in magnitude! step = MSteps[Treat_M.index(temp)] rec = datablock[step] dec = float(rec[dec_key]) inc = float(rec[inc_key]) str = float(rec[momkey]) if csd_key not in rec.keys(): sig= np.radians(2)*np.sqrt(3)/np.sqrt(2)*str elif rec[csd_key]!=None: sig = np.radians(float(rec[csd_key]))*np.sqrt(3)/np.sqrt(2)*str else: sig = np.radians(2)*np.sqrt(3)/np.sqrt(2)*str if temp in Treat_Z: step = ZSteps[Treat_Z.index(temp)] brec = datablock[step] pint = float(brec[momkey]) # X=dir2cart([dec,inc,str]) # prevX=dir2cart([pdec,pinc,pint]) # I=[] # for c in range(3):I.append(X[c]-prevX[c]) # d=cart2dir(I) # ptrm_tail.append([temp,d[0],d[1],d[2]]) # difference - if negative, negative tail! ptrm_tail.append([temp, dec, inc, str, sig]) else: print( s, ' has a tail check with no first zero field step - check input file! for step', temp - 273.) # # final check # if len(first_Z) != len(first_I): print(len(first_Z), len(first_I)) print(" Something wrong with this specimen! Better fix it or delete it ") input(" press return to acknowledge message") araiblock = (first_Z, first_I, ptrm_check, ptrm_tail, zptrm_check, GammaChecks) return araiblock, field def NLTsolver(fields,a,b): """Makes the non linear TRM correction""" return(a* np.tanh(b*fields)) def convert_intensity_measurements(measurements): """Converts a measurements table with only intensity experiments into the internal data format used by the BiCEP method""" specimens=list(measurements.specimen.unique())#This function constructs the 'temps' dataframe (used to plot Arai plots) #this may take a while to run depending on the number of specimens. #Constructs initial empty 'temps' dataframe data_array=np.empty(shape=(16,0)) for specimen in specimens: print('Working on:',specimen) araiblock,field=sortarai(measurements[measurements.specimen==specimen],specimen, Zdiff=False,version=3) #Get arai data sitename=measurements[measurements.specimen==specimen].site.unique() first_Z,first_I,ptrm_check,ptrm_tail,zptrm_check,GammaChecks=araiblock #Split NRM and PTRM values into step types B_lab=np.full(len(first_Z),field) #Lab field used m=len(first_Z) NRM_dec_max=first_Z[m-1][1] NRM_inc_max=first_Z[m-1][2] NRM_int_max=first_Z[m-1][3] PTRM_dec_max=first_I[m-1][1] PTRM_inc_max=first_I[m-1][2] PTRM_int_max=first_I[m-1][3] NRM_vector_max=pmag.dir2cart([NRM_dec_max,NRM_inc_max,NRM_int_max]) PTRM_vector_max=pmag.dir2cart([PTRM_dec_max,PTRM_inc_max,PTRM_int_max]) PTRM_vector_max=PTRM_vector_max-NRM_vector_max NRMS=[first_Z[i][3] for i in list(range(len(first_Z)))] first_Z=np.array(first_Z) first_I=np.array(first_I) if min(NRMS)/NRMS[0]<0.25: if(len(first_Z))>1: sample=np.full(len(first_Z),measurements[measurements.specimen==specimen]['sample'].unique()[0]) #Get sample name site=np.full(len(first_Z),measurements[measurements.specimen==specimen].site.unique()[0]) #Get site name specarray=np.full(len(first_Z),specimen) temp_step=first_Z[:,0] #Gets the temperature in kelvin we use NRM=first_Z[:,3] #NRM value (in first_Z dataframe) zbinary=first_Z[:,5]#Is it a ZI or an IZ step? zbinary=zbinary.astype('object') zbinary[zbinary==1]='ZI' zbinary[zbinary==0]='IZ' steptype=zbinary PTRM=first_I[:,3] #PTRM value (in first_I dataframe) PTRM_sigma=first_I[:,4] NRM_dec=first_Z[:,1] NRM_inc=first_Z[:,2] NRM_int=NRM NRM_sigma=first_Z[:,4] NRM_vector=pmag.dir2cart(np.array([NRM_dec,NRM_inc,NRM_int]).T) PTRM_vector=pmag.dir2cart(np.array([first_I[:,1],first_I[:,2],first_I[:,3]]).T) NRM_x=NRM_vector[:,0] NRM_y=NRM_vector[:,1] NRM_z=NRM_vector[:,2] PTRM_x=PTRM_vector[:,0] PTRM_y=PTRM_vector[:,1] PTRM_z=PTRM_vector[:,2] newarray=np.array([specarray,sample,site,NRM,PTRM,NRM_x,NRM_y,NRM_z,PTRM_x,PTRM_y,PTRM_z,NRM_sigma,PTRM_sigma,B_lab,steptype,temp_step]) data_array=np.concatenate((data_array,newarray),axis=1) #Doing PTRM Checks Part ptrm_check=np.array(ptrm_check) temp_step=ptrm_check[:,0] smallarray=data_array sample=np.full(len(ptrm_check),measurements[measurements.specimen==specimen]['sample'].unique()[0]) #Get sample name site=np.full(len(ptrm_check),measurements[measurements.specimen==specimen].site.unique()[0]) #Get site name specarray=np.full(len(ptrm_check),specimen) B_lab=np.full(len(ptrm_check),field) PTRM=ptrm_check[:,3] PTRM_sigma=ptrm_check[:,4] intersect=data_array[:,(data_array[0]==specimen)&(np.in1d(data_array[-1].astype('float'),temp_step.astype('float')))] NRM_vector=np.array([intersect[5],intersect[6],intersect[7]]) NRM_sigma=intersect[11] PTRM_vector=pmag.dir2cart(np.array([ptrm_check[:,1],ptrm_check[:,2],ptrm_check[:,3]]).T) NRM_x=NRM_vector[0] NRM_y=NRM_vector[1] NRM_z=NRM_vector[2] PTRM_x=PTRM_vector[:,0] PTRM_y=PTRM_vector[:,1] PTRM_z=PTRM_vector[:,2] NRM=intersect[3] steptype=np.full(len(ptrm_check),'P') if len(NRM)==len(PTRM): newarray=np.array([specarray,sample,site,NRM,PTRM,NRM_x,NRM_y,NRM_z,PTRM_x,PTRM_y,PTRM_z,NRM_sigma,PTRM_sigma,B_lab,steptype,temp_step]) data_array=np.concatenate((data_array,newarray),axis=1) else: diff=np.setdiff1d(temp_step,intersect[-1]) for i in diff: print('PTRM check at '+str(i)+'K has no corresponding infield measurement, ignoring') newarray=np.array([specarray[temp_step!=diff],sample[temp_step!=diff],site[temp_step!=diff],NRM,PTRM[temp_step!=diff],NRM_x,NRM_y,NRM_z,PTRM_x[temp_step!=diff],PTRM_y[temp_step!=diff],PTRM_z[temp_step!=diff],NRM_sigma,PTRM_sigma[temp_step!=diff],B_lab[temp_step!=diff],steptype[temp_step!=diff],temp_step[temp_step!=diff]]) data_array=np.concatenate((data_array,newarray),axis=1) #Add PTRM tail checks ptrm_tail=np.array(ptrm_tail) if len(ptrm_tail)>1: temp_step=ptrm_tail[:,0] sample=np.full(len(ptrm_tail),measurements[measurements.specimen==specimen]['sample'].unique()[0]) #Get sample name site=np.full(len(ptrm_tail),measurements[measurements.specimen==specimen].site.unique()[0]) #Get site name specarray=np.full(len(ptrm_tail),specimen) B_lab=np.full(len(ptrm_tail),field) intersect=data_array[:,(data_array[0]==specimen)&(np.in1d(data_array[-1].astype('float'),temp_step.astype('float')))&(data_array[-2]!='P')] NRM=ptrm_tail[:,3] NRM_sigma=ptrm_tail[:,4] NRM_vector=pmag.dir2cart(np.array([ptrm_tail[:,1],ptrm_tail[:,2],ptrm_tail[:,3]]).T) PTRM_vector=np.array([intersect[8],intersect[9],intersect[10]]) PTRM_sigma=intersect[12] PTRM_x=PTRM_vector[0] PTRM_y=PTRM_vector[1] PTRM_z=PTRM_vector[2] NRM_x=NRM_vector[:,0] NRM_y=NRM_vector[:,1] NRM_z=NRM_vector[:,2] PTRM=intersect[4] steptype=np.full(len(ptrm_tail),'T') if len(PTRM)==len(NRM): newarray=np.array([specarray,sample,site,NRM,PTRM,NRM_x,NRM_y,NRM_z,PTRM_x,PTRM_y,PTRM_z,NRM_sigma,PTRM_sigma,B_lab,steptype,temp_step]) data_array=np.concatenate((data_array,newarray),axis=1) else: diff=np.setdiff1d(temp_step,intersect[-1]) for i in diff: print('PTRM tail check at '+str(i)+'K has no corresponding zero field measurement, ignoring') newarray=np.array([specarray[temp_step!=diff],sample[temp_step!=diff],site[temp_step!=diff],NRM[temp_step!=diff],PTRM,NRM_x[temp_step!=diff],NRM_y[temp_step!=diff],NRM_z[temp_step!=diff],PTRM_x,PTRM_y,PTRM_z,NRM_sigma[temp_step!=diff],PTRM_sigma,B_lab[temp_step!=diff],steptype[temp_step!=diff],temp_step[temp_step!=diff]]) data_array=np.concatenate((data_array,newarray),axis=1) else: print(specimen,'in site',sitename[0],'Not included, not a thellier experiment') else: print(specimen,'in site',sitename[0],'Not included, demagnetization not completed') temps=pd.DataFrame(data_array.T,columns=['specimen','sample','site','NRM','PTRM','NRM_x','NRM_y','NRM_z','PTRM_x','PTRM_y','PTRM_z','NRM_sigma','PTRM_sigma','B_lab','steptype','temp_step']) return(temps) def generate_arai_plot_table(outputname): """ Generates a DataFrame with points on an Araiplot. Inputs: outputname (must be string) """ #This cell constructs the 'measurements' dataframe with samples and sites added status,measurements=cb.add_sites_to_meas_table('./') measurements=measurements[measurements.specimen.str.contains('#')==False] measurements_old=measurements measurements=measurements[measurements.experiment.str.contains('LP-PI-TRM')] temps=convert_intensity_measurements(measurements) temps['correction']=1 temps['s_tensor']=np.nan temps['aniso_type']=np.nan spec=pd.read_csv('specimens.txt',skiprows=1,sep='\t') #Create the anisotropy tensors if they don't already exist. print("Couldn't find Anisotropy Tensors, Generating...") #Tensor for ATRM ipmag.atrm_magic('measurements.txt',output_spec_file='specimens_atrm.txt') spec_atrm=pd.read_csv('specimens_atrm.txt',sep='\t',skiprows=1) for specimen in spec_atrm.specimen.unique(): temps.loc[temps.specimen==specimen,'s_tensor']=spec_atrm.loc[spec_atrm.specimen==specimen,'aniso_s'].iloc[0] temps.loc[temps.specimen==specimen,'aniso_type']=':LP-AN-TRM' #Tensor for AARM ipmag.aarm_magic('measurements.txt',output_spec_file='specimens_aarm.txt') spec_aarm=pd.read_csv('specimens_aarm.txt',sep='\t',skiprows=1) for specimen in spec_aarm.specimen.unique(): temps.loc[temps.specimen==specimen,'s_tensor']=spec_aarm.loc[spec_aarm.specimen==specimen,'aniso_s'].iloc[0] temps.loc[temps.specimen==specimen,'aniso_type']=':LP-AN-ARM' #Add Anisotropy tensors to specimen tables. if len(spec_atrm.specimen.unique())>0: cols = spec.columns.difference(spec_atrm.columns) cols=np.append(cols.values,'specimen') spec_1=pd.merge(spec.loc[:,cols],spec_atrm,how='right',left_on='specimen',right_on='specimen') if len(spec_aarm.specimen.unique())>0: spec_2=pd.merge(spec.loc[:,cols],spec_aarm,how='right',left_on='specimen',right_on='specimen') spec=
pd.concat([spec_2,spec_1])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sat Apr 11 16:42:34 2020 @author: <NAME> """ import requests import pandas as pd def getData(statistic, scope): apiUrl = '' if(scope == 'global'): apiUrl = 'https://covidapi.info/api/v1/global/count' else: apiUrl = 'https://covidapi.info/api/v1/country/{}'.format(scope) #Get the JSON data from the Covid API response = requests.get(apiUrl) json = response.json()['result'] #Convert the JSON data to a pandas dataframe response_data = pd.DataFrame.from_dict(json) #Transpose the dataframe and reset the index so timestamp is now index df = pd.DataFrame(data=response_data).T df = df.reset_index(level=None, drop=False, col_level=0) #Set the new column names df.columns = ['Date Time', 'Confirmed', 'Deaths', 'Recovered'] #calculate the concurrent number of infections df['Concurrent'] = df.apply(lambda x: (x['Confirmed'] - x['Recovered'] - x['Deaths']), axis=1) #calculate the rates df['Death_Rate'] = df['Deaths'].diff() df['Confirmed_Rate'] = df['Confirmed'].diff() df['Recovered_Rate'] = df['Recovered'].diff() df['Concurrent_Rate'] = df['Concurrent'].diff() #set the first value of these rates to 0, as they are NaN df['Death_Rate'][0] = 0 df['Confirmed_Rate'][0] = 0 df['Recovered_Rate'][0] = 0 df['Concurrent_Rate'][0] = 0 #Make a new data frame with the inputted statistic uni_data =
pd.DataFrame()
pandas.DataFrame
# Author: <NAME> # Email: <EMAIL> import numpy as np import pandas as pd import os import seaborn import matplotlib.pyplot as plt import matplotlib.dates as mdates import sklearn.metrics as metrics import matplotlib.pylab as pylab from glob import glob from Python_Files.hydrolibs import rasterops as rops from Python_Files.hydrolibs import vectorops as vops from Python_Files.hydrolibs.sysops import makedirs, make_proper_dir_name from datetime import datetime from sklearn.linear_model import LinearRegression def create_gw_time_series(actual_gw_file_dir, pred_gw_file_dir, grace_dir, actual_gw_pattern='GW*.tif', pred_gw_pattern='pred*.tif', grace_pattern='GRACE*.tif', make_trend=False, out_dir='../Outputs/'): """ Create time series data for actual and predicted GW values (annual mean) along with GRACE :param actual_gw_file_dir: Actual GW pumping raster directory :param pred_gw_file_dir: Predicted GW pumping raster directory :param grace_dir: GRACE raster directory :param actual_gw_pattern: Actual GW pumping raster file pattern :param pred_gw_pattern: Predicted GW pumping raster file pattern :param grace_pattern: GRACE raster file pattern :param make_trend: Make trend data for the monthly grace values :param out_dir: Output directory for storing the CSV files :return: Dataframe containing year and corresponding mean values """ actual_gw_raster_dict = rops.create_raster_dict(actual_gw_file_dir, pattern=actual_gw_pattern) pred_gw_raster_dict = rops.create_raster_dict(pred_gw_file_dir, pattern=pred_gw_pattern) grace_yearly_raster_dict = rops.create_yearly_avg_raster_dict(grace_dir, pattern=grace_pattern) grace_monthly_raster_dict = rops.create_monthly_avg_raster_dict(grace_dir, pattern=grace_pattern) years = sorted(list(pred_gw_raster_dict.keys())) dt_list = sorted(list(grace_monthly_raster_dict.keys())) mean_actual_gw = {} mean_pred_gw = {} mean_grace = {} mean_monthly_grace = {} for year in years: mean_actual_gw[year] = np.nanmean(actual_gw_raster_dict[year]) mean_pred_gw[year] = np.nanmean(pred_gw_raster_dict[year]) mean_grace[year] = np.nanmean(grace_yearly_raster_dict[year]) for dt in dt_list: mean_monthly_grace[dt] = grace_monthly_raster_dict[dt] df1 = {'YEAR': years, 'Actual_GW': list(mean_actual_gw.values()), 'Pred_GW': list(mean_pred_gw.values()), 'GRACE': list(mean_grace.values())} df1 = pd.DataFrame(data=df1) df1.to_csv(out_dir + 'ts_yearly.csv', index=False) time = [datetime.strftime(t, '%b %Y') for t in dt_list] grace_monthly_list = list(mean_monthly_grace.values()) df2 = {'Time': time, 'GRACE': grace_monthly_list} if make_trend: grace_fit = get_trend(dt_list, grace_monthly_list) df2['Trend'] = grace_fit df2 = pd.DataFrame(data=df2) df2.to_csv(out_dir + 'grace_monthly.csv', index=False) return df1, df2 def create_gw_forecast_time_series(actual_gw_file_dir_list, pred_gw_file_dir_list, grace_csv, gw_name_list=None, use_gws=True, actual_gw_pattern='GW*.tif', pred_gw_pattern='pred*.tif', out_dir='../Outputs/', exclude_years=(), forecast_years=()): """ Create GW and GRACE dataframes :param actual_gw_file_dir_list: Actual GW pumping raster directory list :param pred_gw_file_dir_list: Predicted GW pumping raster directory list :param grace_csv: GRACE TWS CSV file :param gw_name_list: List of GMD names :param use_gws: Set False to use entire GW raster for analysis :param actual_gw_pattern: Actual GW pumping raster file pattern :param pred_gw_pattern: Predicted GW pumping raster file pattern :param out_dir: Output directory for storing the CSV files :param exclude_years: Exclude these years from analysis :param forecast_years: Set these years as forecast years :return: Two dataframes, one with the GW pumping values and the other containing the monthly GRACE values """ grace_df = pd.read_csv(grace_csv) grace_df = grace_df.dropna(axis=0) grace_df['GRACE'] = grace_df['GRACE'] * 10 grace_df['DT'] = pd.to_datetime(grace_df['DT']).dt.date gw_df =
pd.DataFrame()
pandas.DataFrame
""" Module : Main Description : The main entry point for the program. Copyright : (c) CHER_WEI_YUAN, 29DEC2021 License : - Maintainer : <EMAIL> Portability : POSIX This program reads the output of GeneScan in csv format, remove peaks with small or relatively small areas, and calculates, for each sample, the percentage of the total area that each peak covers. The hard filtering procedure here has low threshold (in ambiguous situations, many peaks will not be removed) and the decision to keep or remove peaks is left to the user. ##### Development for isoform assignment to peaks # Note all sizes are in base pair (bp) # Log shift and command inputs # Plot error-shift line graph as visual quality control # Position of df is important: pos 1 is "Sample File Name" # Need to read exon_df """ PROGRAM_NAME = "genescanner" PROGRAM_VERSION = "1.0.2" EXIT_COLUMN_HEADER_ERROR = 1 DIRECTORY_MISSING_ERROR = 2 PERMISSION_ERROR = 3 MISSING_EXON_INFO_ERROR = 4 import sys from os import mkdir from os import path from logging import basicConfig from logging import info from logging import INFO from logging import error from argparse import ArgumentParser import pandas as pd from itertools import chain from seaborn import FacetGrid from seaborn import scatterplot from matplotlib.pyplot import bar from itertools import combinations from bisect import bisect_left from numpy import arange from copy import deepcopy def parse_args(): """ Parse command line arguments. """ description = "Reads the output of GeneScan from a SINGLE EXPERIMENT in csv format, remove peaks with small area, and calculates, for each sample, the percentage of the total area that each peak covers." epilog = "Example usage: genescanner \ --exon_df /mnt/c/mydata/exons.csv \ --outdir /mnt/c/output_folder \ --prefix output \ --filter 1 \ /mnt/c/mydata/genescan.csv" parser = ArgumentParser(description=description, epilog=epilog) parser.add_argument('input', type=str, help="Input GeneScan datasheet from a single run in CSV format. A single run can contain many samples but they share the same capillary injection") parser.add_argument('--exon_df', type=str, default = None, help='Datasheet containing exon sizes per sample in CSV format') parser.add_argument('--outdir', type=str, default='stdout', help='Name of output directory') parser.add_argument('--prefix', type=str, default='out', help='Prefix name of output files') parser.add_argument('--version', action='version', version=str(PROGRAM_VERSION)) parser.add_argument('--resolveAmbiguousPeaks', dest='resolve_peaks', action='store_true', help = 'Keep highest of multiple peaks close to each other. "Closeness" is defined as peaks within --peak_gap base pair of each other. If an ambiguous cluster of peaks has more than --cluster_size peaks, they will not be resolved.)') parser.add_argument('--not_resolveAmbiguousPeaks', dest='resolve_peaks', action='store_false', help = 'Do not clean peaks by only keeping the highest of closely clustered peaks.') parser.set_defaults(resolve_peaks = False) parser.add_argument('--peak_gap', type=float, default = 1.7, help='DEFAULT = 1.7. A pair of peaks within peak_gap of each other will be processed to give one peak') parser.add_argument('--cluster_size', type=int, default = 3, help='DEFAULT = 3. The maximum number of peaks within peak_gap of each other that will be processed together. Only one peak with largest area will remain.') parser.add_argument('--filter', type=float, default = 0.0, help='DEFAULT = 0.0. Float. Remove all peaks with percentage area lower than filter. Percentage area refers to the area of the peak over the area of all peaks of the same sample.') parser.add_argument('--Error_filter', type=float, default = 15.0, help='DEFAULT = 15.0. Float. Output dataframe with Error equals or more than the specified value will be removed.') parser.add_argument('--shift_range', type=list, default=[-50, 50, 0.25], help='DEFAULT = [-50, 50, 0.25]. Range of Error to consider. If the GeneScan results have drastic shift, consider using higher Error values.') parser.add_argument('--shift', default=False, help='Float. You can provide shift value if it is known.') return parser.parse_args() def exit_with_error(message, exit_status): '''Print an error message to stderr, prefixed by the program name and 'ERROR'. Then exit program with supplied exit status. Arguments: message: an error message as a string. exit_status: a positive integer representing the exit status of the program. ''' error(message) print("{} ERROR: {}, exiting".format(PROGRAM_NAME, message), file=sys.stderr) sys.exit(exit_status) def loadDf(input_file): """ Parameters ---------- input_file : TYPE String DESCRIPTION. Directory and name of GeneScan output sheet in csv. (e.g. ./input/data.csv) Returns ------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet. """ # Load dataframe df = pd.read_csv(input_file) # Sort dataframe by sample name and size df = df.sort_values(by=['Sample File Name', 'Size']).\ reset_index(drop = True, inplace = False) # Clean sample names by removing leading and trailing white space df["Sample File Name"] = df["Sample File Name"].str.rstrip().str.lstrip() # Clean df by making sure dtype is correct df = df.astype({'Sample File Name': str, 'Size': float, 'Height': float, 'Area': float}) # Check if df column names are correct expected = ['Sample File Name', 'Size','Height','Area'] for i in expected: if i not in list(df.columns): exit_with_error(f"Unexpected column header detected. Rename columns to {expected} and retry", EXIT_COLUMN_HEADER_ERROR) return df def getSampleNames(df): """ Parameters ---------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet. Returns ------- sample_names : TYPE List DESCRIPTION. List of unique sample names from df. """ sample_names = list(set(df.loc[:,"Sample File Name"])) return sample_names def findPeakCluster(index, build_list, df, peak_gap): """ Recursively finds members of a peak cluster starting from the peak with the smallest size. Parameters ---------- index : TYPE Integer DESCRIPTION. The index of df that corresponds to the rows (i.e. peaks) that are clustered (within peak_gap of each other) and awaiting to be processed to give fewer peaks. build_list : TYPE List DESCRIPTION. List of index of peaks in peak clusters df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet. peak_gap : TYPE Integer DESCRIPTION. User-supplied. A pair of peaks within peak_gap of each other will be processed to give one peak. Returns ------- TYPE List A list of index corresponding to peaks in a peak cluster. """ # Return build_list if we reach the end of dataframe if index == max(df.index): return list(set(build_list)) # Stop recursion when next peak is not within peak_gap of current peak elif df.loc[index + 1, "Size"] - df.loc[index, "Size"] > peak_gap: return list(set(build_list)) # Recursion to next peak else: build_list += [index, index + 1] return findPeakCluster(index + 1, build_list, df, peak_gap) def findMountainRanges(df, sample_names, peak_gap): """ Finds a list of peak_cluster (each peak cluster is a list of index corresponding to peaks within peak_gap of each other) called mountain_ranges (i.e. the collection of all peak clusters in df). Parameters ---------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet. sample_names : TYPE List DESCRIPTION. List of unique sample names from df. Returns ------- mountain_ranges : TYPE List DESCRIPTION. A master list containing list of indexes of continuous peaks within peak_gap of each other. """ mountain_ranges = [] # Loop through samples for i in sample_names: dfSample = df.loc[df.iloc[:,1] == i, :] # Loop through rows in subset df # and run findPeakCluster for index, row in dfSample.iterrows(): # Skip rows checked by findPeakCluster if index in chain(*mountain_ranges): pass else: mountain_ranges += [findPeakCluster(index, [], dfSample, peak_gap)] # Remove duplicate empty nested lists mountain_ranges = [x for x in mountain_ranges if x != []] return mountain_ranges def cleanMountainRanges(df, mountain_ranges, cluster_size): """ Generates a list of row index to remove from dataframe """ remove = [] for mountains in mountain_ranges: if len(mountains) == 2: a = df.loc[mountains[0], "Area"] b = df.loc[mountains[1], "Area"] if a > b: remove += [[mountains[1]]] elif b > a: remove += [[mountains[0]]] # Keep both peaks if they are equal elif a == b: pass elif len(mountains) > 2 and len(mountains) <= cluster_size: # Keep list of all areas of peaks in cluster lst = [] for i in range(len(mountains)): lst += [df.loc[mountains[i], "Area"]] # Remove index corresponding to largest area # and add remaining index to remove mountains.pop(lst.index(max(lst))) remove += [ mountains ] remove = list(chain(*remove)) return remove def RemoveArtefacts(df, remove): """ Create df for output to user Parameters ---------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet. remove : TYPE List DESCRIPTION. Flattened list of index to remove from df Returns ------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet with dirty peaks removed. """ return df.drop(labels = remove, axis = 0, inplace = False) def labelArtefacts(df, remove): """ Create df for plotting Parameters ---------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet. remove : TYPE List DESCRIPTION. Flattened list of index to remove from df Returns ------- df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet with dirty peaks to be removed marked as "Removed". """ df["Status"] = "Kept" if remove == []: pass else: for i in remove: df.loc[i, "Status"] = "Removed" return df def AddPercentage(processed_df, sample_names): """ Parameters ---------- processed_df : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned GeneScan datasheet from RemoveArtefacts. sample_names : TYPE List DESCRIPTION. List of unique sample names from df. Returns ------- df_out : TYPE Pandas dataframe DESCRIPTION. Dataframe of cleaned and processed GeneScan datasheet. """ data_list = [] # Loop through samples for i in sample_names: dfSample = processed_df.loc[processed_df.iloc[:,1] == i, :] # Calculate percentage per peak (row) # and keep only useful rows total_area = sum(dfSample.loc[:,"Area"]) for index, row in dfSample.iterrows(): name = row["Sample File Name"] size = row["Size"] height = row["Height"] area = row["Area"] percentage = int(round((row["Area"]/ total_area) * 100, 0)) data_list.append([name, size, height, area, percentage]) # Make output dataframe df_out = pd.DataFrame(data_list, columns = \ ["Sample File Name", "Size", "Height", "Area", "Percentage"]) return df_out def filterAreaPercent(df_out, filter_threshold): return df_out.query(f"Percentage > {filter_threshold}").\ sort_values(by=['Sample File Name', 'Size'], ascending = True) def plot(df_before, df_after, prefix, outdir): # Sort dataframe by sample name and size df_before = df_before.sort_values(by=['Sample File Name', 'Size']) df_after = df_after.sort_values(by=['Sample File Name', 'Size']) # Add new column to differentiate before and after df_before["Processed"] = "Before" df_after["Processed"] = "After" # Combine df df_combine =
pd.concat([df_before, df_after])
pandas.concat
""" MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from sklearn.utils import resample from sklearn.model_selection import train_test_split from sklearn.preprocessing import normalize from sklearn.ensemble import RandomForestRegressor from timeit import default_timer as timer from sklearn.utils import resample import shap import stratx.partdep import numpy as np import pandas as pd import matplotlib.pyplot as plt from numpy import nan def check(X, y, colname, expected_xranges, expected_slopes, expected_pdpx, expected_pdpy, expected_ignored=0, min_samples_leaf=15): leaf_xranges, leaf_slopes, slope_counts_at_x, dx, slope_at_x, pdpx, pdpy, ignored = \ stratx.partdep.partial_dependence(X, y, colname, min_samples_leaf=min_samples_leaf, min_slopes_per_x=1) # print(leaf_xranges, leaf_slopes, slope_counts_at_x, dx, slope_at_x, pdpx, pdpy) assert ignored==expected_ignored, f"Expected ignored {expected_ignored} got {ignored}" assert len(leaf_xranges)==len(expected_slopes), f"Expected ranges {expected_xranges}" assert np.isclose(leaf_xranges, np.array(expected_xranges)).all(), f"Expected ranges {expected_xranges} got {leaf_xranges}" assert len(leaf_slopes)==len(expected_slopes), f"Expected slopes {expected_slopes}" assert np.isclose(leaf_slopes, np.array(expected_slopes)).all(), f"Expected slopes {expected_slopes} got {leaf_slopes}" assert len(pdpx)==len(expected_pdpx), f"Expected pdpx {expected_pdpx}" assert np.isclose(pdpx, np.array(expected_pdpx)).all(), f"Expected pdpx {expected_pdpx} got {pdpx}" assert len(pdpy)==len(expected_pdpy), f"Expected pdpy {expected_pdpy}" assert np.isclose(pdpy, np.array(expected_pdpy)).all(), f"Expected pdpy {expected_pdpy} got {pdpy}" def test_binary_one_region(): df = pd.DataFrame() df['x1'] = [1, 1] df['x2'] = [65, 60] df['y'] = [100, 130] X = df.drop('y', axis=1) y = df['y'] expected_xranges = np.array([[60, 65]]) expected_slopes = np.array([-6]) expected_pdpx = np.array([60,65]) expected_pdpy = np.array([0,-30]) check(X, y, "x2", expected_xranges, expected_slopes, expected_pdpx, expected_pdpy, min_samples_leaf=2) def test_one_region(): df = pd.DataFrame() df['x1'] = [1, 1, 1] df['x2'] = [100,101,102] df['y'] = [10, 11, 12] X = df.drop('y', axis=1) y = df['y'] expected_xranges = np.array([[100, 101], [101, 102]]) expected_slopes = np.array([1, 1]) expected_pdpx = np.array([100,101,102]) expected_pdpy = np.array([0, 1, 2]) check(X, y, "x2", expected_xranges, expected_slopes, expected_pdpx, expected_pdpy, min_samples_leaf=3) def test_disjoint_regions(): """ What happens when we have two disjoint regions in x_j space? Does the 2nd start with 0 again with cumsum? """ df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ------------------------------------------------- @File: pretreatment_llr_cal.py @Author: haifeng @Since: python3.9 @Version: V1.0 @Date: 2021/9/13 21:38 @Description: ------------------------------------------------- @Change: 2021/9/13 21:38 ------------------------------------------------- """ import math import sys import pandas import numpy from sklearn import model_selection, preprocessing from sklearn.preprocessing import MinMaxScaler def get_array(file_name): dataframe = pandas.read_csv(file_name) text_array =
pandas.DataFrame(dataframe['text'])
pandas.DataFrame
""" Module containing the main gtfs_tripify method, logify, which takes an update stream as input and returns a logbook as output. Processing is done in two steps. First, the update stream is broken up by a unique_trip_id, which is inferred from the trip_id field and contextual information about trips with the same route_id which are aligned with one another. This is complicated by the fact that (1) trip_id values are not globally unique and are instead recycled by multiple trains over the course of a day and (2) end-to-end runs may have their trip_id reassigned without warning. Then once the messages are aligned they are first transformed into action logs, and then those action logs are compacted into logs in a logbook. """ import itertools from collections import defaultdict import uuid import numpy as np import pandas as pd from gtfs_tripify.utils import synthesize_route, finish_trip from gtfs_tripify.ops import ( drop_invalid_messages, drop_duplicate_messages, drop_nonsequential_messages, parse_feed ) ######################## # INTERMEDIATE PARSERS # ######################## # dictify: GTFS-RT Protobuf -> <dict> # actionify: (dict<trip_message>, dict<vehicle_message>, int<timestamp>) -> DataFrame<action_log> # tripify: list<action_logs> -> DataFrame<trip_log> def dictify(buffer): """ Parses a GTFS-Realtime Protobuf into a Python dict, which is more ergonomic to work with. Fields not in the GTFS-RT schema are ignored. """ update = { 'header': {'gtfs_realtime_version': buffer.header.gtfs_realtime_version, 'timestamp': buffer.header.timestamp}, 'entity': [] } # Helper functions for determining GTFS-RT message types. def is_vehicle_update(message): return str(message.trip_update.trip.route_id) == '' and str(message.alert) == '' def is_alert(message): return str(message.alert) != '' def is_trip_update(message): return not is_vehicle_update(message) and not is_alert(message) # Helper function for mapping dictionary-encoded statuses into human-readable strings. def munge_status(status_code): statuses = { 0: 'INCOMING_AT', 1: 'STOPPED_AT', 2: 'IN_TRANSIT_TO' } return statuses[status_code] for message in buffer.entity: if is_trip_update(message): parsed_message = { 'id': message.id, 'trip_update': { 'trip': { 'trip_id': message.trip_update.trip.trip_id, 'start_date': message.trip_update.trip.start_date, 'route_id': message.trip_update.trip.route_id }, 'stop_time_update': [ { 'stop_id': _update.stop_id, 'arrival': np.nan if str(_update.arrival) == "" else _update.arrival.time, 'departure': np.nan if str(_update.departure) == "" else _update.departure.time } for _update in message.trip_update.stop_time_update] }, 'type': 'trip_update' } update['entity'].append(parsed_message) elif is_vehicle_update(message): parsed_message = { 'id': message.id, 'vehicle': { 'trip': { 'trip_id': message.vehicle.trip.trip_id, 'start_date': message.vehicle.trip.start_date, 'route_id': message.vehicle.trip.route_id }, 'current_stop_sequence': message.vehicle.current_stop_sequence, 'current_status': munge_status(message.vehicle.current_status), 'timestamp': message.vehicle.timestamp, 'stop_id': message.vehicle.stop_id }, 'type': 'vehicle_update' } update['entity'].append(parsed_message) else: # is_alert parsed_message = { 'id': message.id, 'alert': { 'header_text': { 'translation': { 'text': message.alert.header_text.translation[0].text } }, 'informed_entity': [ { 'trip_id': _trip.trip.trip_id, 'route_id': _trip.trip.route_id } for _trip in message.alert.informed_entity] }, 'type': 'alert' } update['entity'].append(parsed_message) return update def actionify(trip_message, vehicle_message, timestamp): """ Parses the trip update and vehicle update messages (if there is one; may be None) for a particular trip into an action log. """ # If a vehicle message is not None, the trip is already in progress. inp = vehicle_message is not None # The base of the log entry is the same for all possible entries. base = np.array([trip_message['trip_update']['trip']['trip_id'], trip_message['trip_update']['trip']['route_id'], timestamp]) vehicle_status = vehicle_message['vehicle']['current_status'] if inp else 'QUEUED' loglist = [] def log_arrival(stop_id, arrival_time): loglist.append( np.append(base.copy(), np.array(['EXPECTED_TO_ARRIVE_AT', stop_id, arrival_time])) ) def log_departure(stop_id, departure_time): loglist.append( np.append(base.copy(), np.array(['EXPECTED_TO_DEPART_AT', stop_id, departure_time])) ) def log_stop(stop_id, arrival_time): loglist.append( np.append(base.copy(), np.array(['STOPPED_AT', stop_id, arrival_time])) ) def log_skip(stop_id, skip_time): loglist.append( np.append(base.copy(), np.array(['EXPECTED_TO_SKIP', stop_id, skip_time])) ) for s_i, stop_time_update in enumerate(trip_message['trip_update']['stop_time_update']): first_station = s_i == 0 last_station = s_i == len(trip_message['trip_update']['stop_time_update']) - 1 stop_id = stop_time_update['stop_id'] arrival_time = stop_time_update['arrival'] departure_time = stop_time_update['departure'] # First station, vehicle status is STOPPED_AT. if first_station and vehicle_status == 'STOPPED_AT': log_stop(stop_id, arrival_time) # First station, vehicle status is QUEUED. elif first_station and vehicle_status == 'QUEUED': log_departure(stop_id, departure_time) # First station, vehicle status is IN_TRANSIT_TO or INCOMING_AT, both arrival and # departure fields are non-null. # Intermediate station, both arrival and departure fields are non-null. elif ((first_station and vehicle_status in ['IN_TRANSIT_TO', 'INCOMING_AT'] and pd.notnull(arrival_time) and pd.notnull(departure_time)) or (not first_station and not last_station and pd.notnull(arrival_time) and
pd.notnull(departure_time)
pandas.notnull
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def oracle_url() -> str: conn = os.environ["ORACLE_URL"] return conn @pytest.mark.xfail @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_on_non_select(oracle_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" read_sql(oracle_url, query) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_complex_join(oracle_url: str) -> None: query = "SELECT a.test_int, b.test_date, c.test_num_int FROM test_table a left join test_types b on a.test_int = b.test_num_int cross join (select test_num_int from test_types) c where c.test_num_int < 3" df = read_sql(oracle_url, query) df = df.sort_values("TEST_INT").reset_index(drop=True) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 5, 2333], dtype="Int64"), "TEST_DATE": pd.Series( ["2019-05-21", None, None, "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]", ), "TEST_NUM_INT": pd.Series([1, 1, 1, 1, 1, 1], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) def test_oracle_complex_join(oracle_url: str) -> None: query = "SELECT a.test_int, b.test_date, c.test_num_int FROM test_table a left join test_types b on a.test_int = b.test_num_int cross join (select test_num_int from test_types) c where c.test_num_int < 3" df = read_sql(oracle_url, query) df = df.sort_values("TEST_INT").reset_index(drop=True) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 5, 2333], dtype="Int64"), "TEST_DATE": pd.Series( ["2019-05-21", None, None, "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]", ), "TEST_NUM_INT": pd.Series([1, 1, 1, 1, 1, 1], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_complex_join(oracle_url: str) -> None: query = "SELECT a.test_int, b.test_date, c.test_num_int FROM test_table a left join test_types b on a.test_int = b.test_num_int cross join (select test_num_int from test_types) c where c.test_num_int < 3" df = read_sql(oracle_url, query) df = df.sort_values("TEST_INT").reset_index(drop=True) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 5, 2333], dtype="Int64"), "TEST_DATE": pd.Series( ["2019-05-21", None, None, "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]", ), "TEST_NUM_INT": pd.Series([1, 1, 1, 1, 1, 1], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_aggregation(oracle_url: str) -> None: query = "select avg(test_int), test_char from test_table group by test_char" df = read_sql(oracle_url, query) df = df.sort_values("AVG(TEST_INT)").reset_index(drop=True) expected = pd.DataFrame( data={ "AVG(TEST_INT)": pd.Series([1, 2, 5, 1168.5], dtype="float64"), "TEST_CHAR": pd.Series(["str1 ", "str2 ", "str05", None], dtype="object"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_partition_on_aggregation(oracle_url: str) -> None: query = "select sum(test_int) cid, test_char from test_table group by test_char" df = read_sql(oracle_url, query, partition_on="cid", partition_num=3) df = df.sort_values("CID").reset_index(drop=True) expected = pd.DataFrame( index=range(4), data={ "CID": pd.Series([1, 2, 5, 2337], dtype="float64"), "TEST_CHAR": pd.Series(["str1 ", "str2 ", "str05", None], dtype="object"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_aggregation2(oracle_url: str) -> None: query = "select DISTINCT(test_char) from test_table" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_CHAR": pd.Series(["str05", "str1 ", "str2 ", None], dtype="object"), }, ) df.sort_values(by="TEST_CHAR", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_partition_on_aggregation2(oracle_url: str) -> None: query = "select MAX(test_int) MAX, MIN(test_int) MIN from test_table" df = read_sql(oracle_url, query, partition_on="MAX", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "MAX": pd.Series([2333], dtype="float64"), "MIN": pd.Series([1], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_manual_partition(oracle_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(oracle_url, query=queries) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 2333], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, "str05", None], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, -4.44, None, None], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_without_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 2333, 4, 5], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, None, "str05"], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, None, -4.44, None], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_limit_without_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table where rownum <= 3" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 2333], dtype="Int64"), "TEST_CHAR": pd.Series(["str1 ", "str2 ", None], dtype="object"), "TEST_FLOAT": pd.Series([1.1, 2.2, None], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_limit_large_without_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table where rownum < 10" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 2333, 4, 5], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, None, "str05"], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, None, -4.44, None], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql( oracle_url, query, partition_on="test_int", partition_range=(0, 5001), partition_num=3, ) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 2333], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, "str05", None], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, -4.44, None, None], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition_without_partition_range(oracle_url: str) -> None: query = "SELECT * FROM test_table where test_float > 1" df = read_sql( oracle_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2], dtype="Int64"), "TEST_CHAR": pd.Series(["str1 ", "str2 "], dtype="object"), "TEST_FLOAT": pd.Series([1.1, 2.2], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition_and_selection(oracle_url: str) -> None: query = "SELECT * FROM test_table WHERE 1 = 3 OR 2 = 2" df = read_sql( oracle_url, query, partition_on="test_int", partition_range=(1, 2333), partition_num=3, ) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 2333], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, "str05", None], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, -4.44, None, None], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition_and_spja(oracle_url: str) -> None: query = "select test_table.test_int cid, SUM(test_types.test_num_float) sfloat from test_table, test_types where test_table.test_int=test_types.test_num_int group by test_table.test_int" df = read_sql(oracle_url, query, partition_on="cid", partition_num=2) expected = pd.DataFrame( data={ "CID": pd.Series([1, 5], dtype="Int64"), "SFLOAT": pd.Series([2.3, -0.2], dtype="float64"), }, ) df.sort_values(by="CID", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_types(oracle_url: str) -> None: query = "SELECT * FROM test_types" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_NUM_INT": pd.Series([1, 5, 5, None], dtype="Int64"), "TEST_INT": pd.Series([-10, 22, 22, 100], dtype="Int64"), "TEST_NUM_FLOAT": pd.Series([2.3, -0.1, -0.1, None], dtype="float64"), "TEST_FLOAT": pd.Series([2.34, 123.455, 123.455, None], dtype="float64"), "TEST_BINARY_FLOAT": pd.Series( [-3.456, 3.1415926535, 3.1415926535, None], dtype="float64" ), "TEST_BINARY_DOUBLE": pd.Series( [9999.99991, -111111.2345, -111111.2345, None], dtype="float64" ), "TEST_CHAR": pd.Series(["char1", "char2", "char2", None], dtype="object"), "TEST_VARCHAR": pd.Series( ["varchar1", "varchar222", "varchar222", None], dtype="object" ), "TEST_NCHAR": pd.Series( ["y123 ", "aab123", "aab123", None], dtype="object" ), "TEST_NVARCHAR": pd.Series( ["aK>?KJ@#$%", ")>KDS)(F*&%J", ")>KDS)(F*&%J", None], dtype="object" ), "TEST_DATE": pd.Series( ["2019-05-21", "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]" ), "TEST_TIMESTAMP": pd.Series( [ "2019-05-21 01:02:33", "2020-05-21 01:02:33", "2020-05-21 01:02:33", None, ], dtype="datetime64[ns]", ), "TEST_TIMESTAMPTZ": pd.Series( [ "1999-12-01 11:00:00", "1899-12-01 11:00:00", "1899-12-01 11:00:00", None, ], dtype="datetime64[ns]", ), "TEST_CLOB": pd.Series( ["13ab", "13ab", "13ab", None], dtype="object" ), "TEST_BLOB": pd.Series( [ b'9\xaf', b'9\xaf', b'9\xaf', None], dtype="object" ), } ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_empty_result(oracle_url: str) -> None: query = "SELECT * FROM test_table where test_int < -100" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([], dtype="Int64"), "TEST_CHAR": pd.Series([], dtype="object"), "TEST_FLOAT":
pd.Series([], dtype="float64")
pandas.Series
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx) expected = IntervalIndex.from_breaks(idx.values) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self): index = self.index assert len(index) == 2 assert index.size == 2 assert index.shape == (2, ) tm.assert_index_equal(index.left, Index([0, 1])) tm.assert_index_equal(index.right, Index([1, 2])) tm.assert_index_equal(index.mid, Index([0.5, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.index_with_nan assert len(index) == 3 assert index.size == 3 assert index.shape == (3, ) tm.assert_index_equal(index.left, Index([0, np.nan, 1])) tm.assert_index_equal(index.right, Index([1, np.nan, 2])) tm.assert_index_equal(index.mid, Index([0.5, np.nan, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), np.nan, Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self): index = self.index assert not index.hasnans tm.assert_numpy_array_equal(index.isna(), np.array([False, False])) tm.assert_numpy_array_equal(index.notna(), np.array([True, True])) index = self.index_with_nan assert index.hasnans tm.assert_numpy_array_equal(index.notna(), np.array([True, False, True])) tm.assert_numpy_array_equal(index.isna(), np.array([False, True, False])) def test_copy(self): actual = self.index.copy() assert actual.equals(self.index) actual = self.index.copy(deep=True) assert actual.equals(self.index) assert actual.left is not self.index.left def test_ensure_copied_data(self): # exercise the copy flag in the constructor # not copying index = self.index result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self): idx = self.index assert idx.equals(idx) assert idx.equals(idx.copy()) assert not idx.equals(idx.astype(object)) assert not idx.equals(np.array(idx)) assert not idx.equals(list(idx)) assert not idx.equals([1, 2]) assert not idx.equals(np.array([1, 2])) assert not idx.equals(pd.date_range('20130101', periods=2)) def test_astype(self): idx = self.index for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval')
tm.assert_index_equal(result, idx)
pandas.util.testing.assert_index_equal
# python3 GeneratorSales.py # -*- coding: utf-8 -*- # =========================================================================================== # Created by: <NAME> # Description: # # Generates sales data and writes it into a json document. # # This json document is located in ../Datasets/Sales/sales.json # =========================================================================================== import json import pandas as pd import random import time import DataProcessing.DataGenerators.Configuration.Season as seas # Print iterations progress def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Print total progess in console :param iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print(f'\r{prefix} |{bar}| {percent}% {suffix}', end = printEnd) # Print New Line on Complete if iteration == total: print() def generateSalesData(hasToBeGenerated=False, numberOfDataToGenerate=10000): ''' Generates articles data, saves them to csv file and returns dataframe :param hasToBeGenerated: (bool) true: articles data gets freshly generated, default false: use generated .json :param numberOfDataToGenerate: (int) defines number of sales to generate, default: 10000 :return: salesDataFrame: (pandas.dataframe) dataframe with date and soldArticles list ''' if hasToBeGenerated: # Read all articles as dataframe from articles.csv df = pd.read_csv("../Datasets/Articles/articles.csv") # List to contain the dictionaries. Will be the json to save in a file later. finalJSON = [] # Generating dataframe with columns date and soldArticles columns = ['date', 'soldArticles'] salesDataFrame = pd.DataFrame(columns=columns) # Generates a list of dateTime. Converts them then into dates. # Starts a 01. January 2016 and ends at 31. Oktober 2021 dates =
pd.date_range(start="2016-01-01", end="2021-09-30")
pandas.date_range
#!/usr/bin/env python from __future__ import print_function, division import os import tarfile import pandas as pd import numpy as np import gzip import shutil import itertools import multiprocessing as mp import astropy.units as u from astropy.table import Table from astropy.coordinates import SkyCoord from astropy.io import ascii, fits from astropy import utils, io from astroquery.vizier import Vizier from astroquery.irsa import Irsa from astroquery.vsa import Vsa from astroquery.ukidss import Ukidss from astroquery.sdss import SDSS from dl import queryClient as qc try: from urllib2 import urlopen #python2 from httplib import IncompleteRead from urllib2 import HTTPError except ImportError: from urllib.request import urlopen #python3 from urllib.error import HTTPError from http.client import IncompleteRead #SIA from pyvo.dal import sia import pyvo from qso_toolbox import utils as ut from qso_toolbox import vlass_quicklook # ------------------------------------------------------------------------------ # Supported surveys, data releases, bands # ------------------------------------------------------------------------------ astroquery_dict = { 'tmass': {'service': 'irsa', 'catalog': 'fp_psc', 'ra': 'ra', 'dec': 'dec', 'mag_name': 'TMASS_J', 'mag': 'j_m', 'distance': 'dist', 'data_release': None}, 'nomad': {'service': 'vizier', 'catalog': 'NOMAD', 'ra': 'RAJ2000', 'dec': 'DECJ2000', 'mag_name': 'R', 'mag': 'Rmag', 'distance': 'distance', 'data_release': None}, 'vhsdr6': {'service': 'vsa', 'catalog': 'VHS', 'ra': 'ra', 'dec': 'dec', 'data_release': 'VHSDR6', 'mag_name': 'VHS_J', 'mag': 'jAperMag3', 'distance': 'distance'}, # new, needs to be tested! 'vikingdr5': {'service': 'vsa', 'catalog': 'VIKING', 'ra': 'ra', 'dec': 'dec', 'data_release': 'VIKINGDR5', 'mag_name': 'VHS_J', 'mag': 'jAperMag3', 'distance': 'distance'} # , # 'sdss': {'service': 'sdss', 'catalog': 'VIKING', # 'ra': 'ra', 'dec': 'dec', # 'data_release': 'VIKINGDR5', 'mag_name': 'VHS_J', # 'mag': 'jAperMag3', 'distance': 'distance'} } datalab_offset_dict = {'des_dr1.main': {'ra': 'ra', 'dec': 'dec', 'mag': 'mag_auto_z', 'mag_name': 'mag_auto_z'}} # To add more surveys from the VISTA Science Archive, this dictionary can be # expanded: vsa_info_dict = {'vhsdr6': ('VHS', 'VHSDR6', 'tilestack'), # new, needs to be tested 'vikingdr5': ('VIKING', 'VIKINGDR5', 'tilestack')} # Surveys as serviced by VSA, append list if necessary (see VSA dictionary # above) vsa_survey_list = ['vhsdr6', 'vikingdr5'] # all surveys that directly allow to download fits files unzipped_download_list = ['desdr1', 'desdr2', 'ps1', 'vhsdr6', 'vikingdr5', '2MASS', 'DSS2', 'skymapper', 'ukidss'] # ------------------------------------------------------------------------------ # Input table manipulation # ------------------------------------------------------------------------------ # copied from http://docs.astropy.org/en/stable/_modules/astropy/io/fits/column.html # L: Logical (Boolean) # B: Unsigned Byte # I: 16-bit Integer # J: 32-bit Integer # K: 64-bit Integer # E: Single-precision Floating Point # D: Double-precision Floating Point # C: Single-precision Complex # M: Double-precision Complex # A: Character fits_to_numpy = {'L': 'i1', 'B': 'u1', 'I': 'i2', 'J': 'i4', 'K': 'i8', 'E': 'f4', 'D': 'f8', 'C': 'c8', 'M': 'c16', 'A': 'a'} def fits_to_hdf(filename): """ Convert fits data table to hdf5 data table. :param filename: :return: """ hdu = fits.open(filename) filename = os.path.splitext(filename)[0] df = pd.DataFrame() format_list = ['D', 'J'] dtype_dict = {} # Cycle through all columns in the fits file for idx, column in enumerate(hdu[1].data.columns): # Check whether the column is in a multi-column format if len(column.format) > 1 and column.format[-1] in format_list: n_columns = int(column.format[:-1]) # unWISE specific solution if column.name[:6] == 'unwise' and n_columns == 2: passbands = ['w1', 'w2'] for jdx, passband in enumerate(passbands): new_column_name = column.name + '_' + passband print(new_column_name) df[new_column_name] = hdu[1].data[column.name][:, jdx] numpy_type = fits_to_numpy[column.format[-1]] dtype_dict.update({new_column_name: numpy_type}) # SOLUTIONS FOR OTHER SURVEYS MAY BE APPENDED HERE # else for single columns else: print(column.name) df[column.name] = hdu[1].data[column.name] numpy_type = fits_to_numpy[column.format[-1]] dtype_dict.update({column.name: numpy_type}) # update the dtype for the DataFrame print(dtype_dict) # df = df.astype(dtype_dict) df.to_hdf(filename+'.hdf5', 'data', format='table') def check_if_table_is_pandas_dataframe(table): """ Check whether the supplied table is a pandas Dataframe and convert to it if necessary. This function also returns the original file type. Current file types implemented include: - astropy tables - fits record arrays :param table: object :return: pd.DataFrame, string """ if type(table) == pd.DataFrame: return table, 'pandas_dataframe' elif type(table) == Table: return table.to_pandas(), 'astropy_table' elif type(table) == fits.fitsrec.FITS_rec: return Table(table).to_pandas(), 'fits_rec' def convert_table_to_format(table, format): """ Convert a pandas Dataframe back to an original format. Conversions to the following file types are possible: -astropy table :param table: pd.DataFrame :param format: string :return: object """ if format == 'astropy_table': return Table.from_pandas(table) elif format == 'fits_rec': print('Warning: You entered a fits record array. However, this code ' 'does not support this data type. Your table is returned as an' 'astropy table!') return Table.from_pandas(table) else: return table def convert_urltable_to_pandas(data, sep=',', header=0, skip_header=1, skip_footer=1, linesep='\n'): """ :param data: :param sep: :param header: :param skip_header: :param skip_footer: :param linesep: :return: """ data_string = data.read().decode('utf-8').split(linesep) if data_string[0] == 'no rows found': return None else: df = pd.DataFrame(columns=data_string[header].split(sep)) for dat in data_string[skip_header:-skip_footer]: df = df.append(pd.Series(dat.split(sep), index=data_string[0].split(sep)), ignore_index=True) return df # ------------------------------------------------------------------------------ # Download catalog data / Offset star queries # ------------------------------------------------------------------------------ def query_region_astroquery(ra, dec, radius, service, catalog, data_release=None): """ Returns the catalog data of sources within a given radius of a defined position using astroquery. :param ra: float Right ascension :param dec: float Declination :param radius: float Region search radius in arcseconds :param service: string Astroquery class used to query the catalog of choice :param catalog: string Catalog to query :param data_release: If needed by astroquery the specified data release (e.g. needed for VSA) :return: pandas.core.frame.DataFrame Returns the dataframe with the returned matches """ target_coord = SkyCoord(ra=ra, dec=dec, unit=(u.deg, u.deg), frame='icrs') if service == 'vizier': result = Vizier.query_region(target_coord, radius=radius * u.arcsecond, catalog=catalog, spatial='Cone') result = result[0] elif service == 'irsa': result = Irsa.query_region(target_coord, radius=radius * u.arcsecond, catalog=catalog, spatial='Cone') elif service == 'vsa': result = Vsa.query_region(target_coord, radius=radius * u.arcsecond, programme_id=catalog, database=data_release) # elif service == 'sdss': # result = SDSS.query_region(target_coord, radius=radius * u.arcsecond, # programme_id=catalog, database=data_release) else: raise KeyError('Astroquery class not recognized. Implemented classes ' 'are: Vizier, Irsa, VSA') return result.to_pandas() def get_astroquery_offset(target_name, target_ra, target_dec, radius, catalog, quality_query=None, n=3, verbosity=0): """Return the n nearest offset stars specified by the quality criteria around a given target using astroquery. :param target_name: string Identifier for the target :param target_ra: float Target right ascension :param target_dec: Target Declination :param radius: float Maximum search radius in arcseconds :param catalog: string Catalog (and data release) to retrieve the offset star data from. See astroquery_dict for implemented catalogs. :param quality_query: string A string written in pandas query syntax to apply quality criteria on potential offset stars around the target. :param n: int Number of offset stars to retrieve. (Maximum: n=5) :param verbosity: Verbosity > 0 will print verbose statements during the execution. :return: pandas.core.frame.DataFrame Returns the dataframe with the retrieved offset stars for the given target. """ service = astroquery_dict[catalog]['service'] cat = astroquery_dict[catalog]['catalog'] ra = astroquery_dict[catalog]['ra'] dec = astroquery_dict[catalog]['dec'] mag = astroquery_dict[catalog]['mag'] mag_name = astroquery_dict[catalog]['mag_name'] distance = astroquery_dict[catalog]['distance'] dr = astroquery_dict[catalog]['data_release'] df = query_region_astroquery(target_ra, target_dec, radius, service, cat, dr).copy() if quality_query is not None: df.query(quality_query, inplace=True) if df.shape[0] > 0: # Sort DataFrame by match distance df.sort_values(distance, ascending=True, inplace=True) # Keep only the first three entries offset_df = df[:n] # Build the offset DataFrame offset_df.loc[:, 'target_name'] = target_name offset_df.loc[:, 'target_ra'] = target_ra offset_df.loc[:, 'target_dec'] = target_dec offset_df.loc[:, 'offset_ra'] = df[ra] offset_df.loc[:, 'offset_dec'] = df[dec] for jdx, idx in enumerate(offset_df.index): abc_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4:'E'} letter = abc_dict[jdx] offset_df.loc[idx, 'offset_name'] = target_name + '_offset_' + \ letter offset_df.loc[ idx, 'offset_shortname'] = target_name + '_offset_' + letter offset_df.loc[:, mag_name] = df[mag] # GET THIS INTO A SEPARATE FUNCTION target_coords = SkyCoord(ra=target_ra, dec=target_dec, unit=(u.deg, u.deg), frame='icrs') offset_coords = SkyCoord(ra=offset_df.offset_ra.values, dec=offset_df.offset_dec, unit=(u.deg, u.deg), frame='icrs') # Calculate position angles and separations (East of North) pos_angles = offset_coords.position_angle(target_coords).to(u.deg) separations = offset_coords.separation(target_coords).to(u.arcsecond) dra, ddec = offset_coords.spherical_offsets_to(target_coords) # UNTIL HERE if verbosity > 1: print('Offset delta ra: {}'.format(dra)) print('Offset delta dec: {}'.format(ddec)) print('Offset separation: {}'.format(separations)) print('Offset position angle: {}'.format(pos_angles)) offset_df.loc[:, 'separation'] = separations.value offset_df.loc[:, 'pos_angle'] = pos_angles.value offset_df.loc[:, 'dra_offset'] = dra.to(u.arcsecond).value offset_df.loc[:, 'ddec_offset'] = ddec.to(u.arcsecond).value return offset_df[ ['target_name', 'target_ra', 'target_dec', 'offset_name', 'offset_shortname', 'offset_ra', 'offset_dec', mag, 'separation', 'pos_angle', 'dra_offset', 'ddec_offset']] else: print("Offset star for {} not found.".format(target_name)) return pd.DataFrame() def get_offset_stars_astroquery(df, target_name_column, target_ra_column, target_dec_column, radius, catalog='tmass', n=3, quality_query=None, verbosity=0): """Get offset stars for all targets in the input DataFrame using astroquery. :param df: pandas.core.frame.DataFrame Dataframe with targets to retrieve offset stars for :param target_name_column: string Name of the target identifier column :param target_ra_column: string Right ascension column name :param target_dec_column: string Declination column name :param radius: float Maximum search radius in arcseconds :param catalog: string Catalog (and data release) to retrieve the offset star data from. See astroquery_dict for implemented catalogs. :param n: int Number of offset stars to retrieve. (Maximum: n=5) :param quality_query: string A string written in pandas query syntax to apply quality criteria on potential offset stars around the target. :param verbosity: Verbosity > 0 will print verbose statements during the execution. :return: pandas.core.frame.DataFrame Returns the dataframe with the retrieved offset stars for all targets in the input dataframe. """ offset_df = pd.DataFrame() for idx in df.index: target_name = df.loc[idx, target_name_column] target_ra = df.loc[idx, target_ra_column] target_dec = df.loc[idx, target_dec_column] temp_df = get_astroquery_offset(target_name, target_ra, target_dec, radius, catalog, quality_query=quality_query, n=n, verbosity=verbosity) offset_df = offset_df.append(temp_df, ignore_index=True) offset_df.to_csv('temp_offset_df.csv', index=False) return offset_df def get_offset_stars_datalab(df, target_name_column, target_ra_column, target_dec_column, radius, survey='des_dr1', table='main', n=3, where=None, verbosity=0): """Get offset stars for all targets in the input DataFrame using the NOAO datalab. :param df: pandas.core.frame.DataFrame Dataframe with targets to retrieve offset stars for :param target_name_column: string Name of the target identifier column :param target_ra_column: string Right ascension column name :param target_dec_column: string Declination column name :param radius: float Maximum search radius in arcseconds :param survey: string Survey keyword for the datalab query. :param table: string Table keyword for the datalab query. :param n: int Number of offset stars to retrieve. (Maximum: n=5) :param where: string A string written in ADQL syntax to apply quality criteria on potential offset stars around the target. :param verbosity: Verbosity > 0 will print verbose statements during the execution. :return: pandas.core.frame.DataFrame Returns the dataframe with the retrieved offset stars for all targets in the input dataframe. """ offset_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import click import logging from pathlib import Path # from dotenv import find_dotenv, load_dotenv import requests from bs4 import BeautifulSoup import numpy as np import pandas as pd import datetime import yfinance as yf from pandas_datareader import data as pdr from flask import current_app from stk_predictor.extensions import db @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') def get_ticker_from_yahoo(ticker, start_date, end_date): yf.pdr_override() try: new_trading_df = pdr.get_data_yahoo( ticker, start_date, end_date, interval='1d') new_trading_df = new_trading_df.drop( ['Open', 'High', 'Low', 'Adj Close'], axis=1) new_trading_df = new_trading_df.dropna('index') new_trading_df = new_trading_df.reset_index() new_trading_df.columns = ['trading_date', 'intraday_close', 'intraday_volumes'] his_trading_df = pd.read_sql('aapl', db.engine, index_col='id') df = pd.concat([his_trading_df, new_trading_df] ).drop_duplicates('trading_date') df = df.sort_values(by='trading_date') df = df.reset_index(drop=True) if len(df) > 0: df.to_sql("aapl", db.engine, if_exists='replace', index_label='id') return df else: # t = pd.read_sql('aapl', db.engine, index_col='id') return None except Exception as ex: raise RuntimeError( "Catch Excetion when retrieve data from Yahoo...", ex) return None def get_news_from_finviz(ticker): """Request news headline from finviz, according to company ticker's name Parameters ----------- ticker: str the stock ticker name Return ---------- df : pd.DataFrame return the latest 2 days news healines. """ current_app.logger.info("Job >> Enter Finviz news scrape step...") base_url = 'https://finviz.com/quote.ashx?t={}'.format(ticker) headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/50.0.2661.102 Safari/537.36' } parsed_news = [] try: res = requests.get(base_url, headers=headers) if res.status_code == 200: texts = res.text soup = BeautifulSoup(texts) news_tables = soup.find(id="news-table") for x in news_tables.findAll('tr'): text = x.a.get_text() date_scrape = x.td.text.split() if len(date_scrape) == 1: time = date_scrape[0] else: date = date_scrape[0] time = date_scrape[1] parsed_news.append([date, time, text]) # filter the recent day news df = pd.DataFrame(parsed_news, columns=['date', 'time', 'texts']) df['date'] = pd.to_datetime(df.date).dt.date one_day_period = (datetime.datetime.today() - datetime.timedelta(days=1)).date() df_sub = df[df.date >= one_day_period] return df_sub else: raise RuntimeError("HTTP response Error {}".format( res.status_code)) from None except Exception as ex: current_app.logger.info("Exception in scrape Finviz.", ex) raise RuntimeError("Exception in scrape Finviz.") from ex def prepare_trading_dataset(df): """Prepare the trading data set. Time series analysis incoporate previous data for future prediction, We need to retrieve historical data to generate features. Parameters ----------- df: DataFrame the stock ticker trading data, including trading-date, close-price, volumes window: int, default = 400 feature engineer windows size. Using at most 400 trading days to construct features. Return ---------- array_lstm : np.array return the array with 3 dimensions shape -> [samples, 1, features] """ if len(df) == 0: raise RuntimeError( "Encounter Error in >>make_dataset.prepare_trading_dataset<<... \ Did not catch any news.") from None else: df['log_ret_1d'] = np.log(df['intraday_close'] / df['intraday_close'].shift(1)) df['log_ret_1w'] = pd.Series(df['log_ret_1d']).rolling(window=5).sum() df['log_ret_2w'] = pd.Series(df['log_ret_1d']).rolling(window=10).sum() df['log_ret_3w'] = pd.Series(df['log_ret_1d']).rolling(window=15).sum() df['log_ret_4w'] = pd.Series(df['log_ret_1d']).rolling(window=20).sum() df['log_ret_8w'] = pd.Series(df['log_ret_1d']).rolling(window=40).sum() df['log_ret_12w'] = pd.Series(df['log_ret_1d']).rolling(window=60).sum() df['log_ret_16w'] = pd.Series(df['log_ret_1d']).rolling(window=80).sum() df['log_ret_20w'] = pd.Series(df['log_ret_1d']).rolling(window=100).sum() df['log_ret_24w'] = pd.Series(df['log_ret_1d']).rolling(window=120).sum() df['log_ret_28w'] = pd.Series(df['log_ret_1d']).rolling(window=140).sum() df['log_ret_32w'] = pd.Series(df['log_ret_1d']).rolling(window=160).sum() df['log_ret_36w'] = pd.Series(df['log_ret_1d']).rolling(window=180).sum() df['log_ret_40w'] = pd.Series(df['log_ret_1d']).rolling(window=200).sum() df['log_ret_44w'] = pd.Series(df['log_ret_1d']).rolling(window=220).sum() df['log_ret_48w'] = pd.Series(df['log_ret_1d']).rolling(window=240).sum() df['log_ret_52w'] = pd.Series(df['log_ret_1d']).rolling(window=260).sum() df['log_ret_56w'] = pd.Series(df['log_ret_1d']).rolling(window=280).sum() df['log_ret_60w'] = pd.Series(df['log_ret_1d']).rolling(window=300).sum() df['log_ret_64w'] = pd.Series(df['log_ret_1d']).rolling(window=320).sum() df['log_ret_68w'] = pd.Series(df['log_ret_1d']).rolling(window=340).sum() df['log_ret_72w'] = pd.Series(df['log_ret_1d']).rolling(window=360).sum() df['log_ret_76w'] = pd.Series(df['log_ret_1d']).rolling(window=380).sum() df['log_ret_80w'] = pd.Series(df['log_ret_1d']).rolling(window=400).sum() df['vol_1w'] = pd.Series(df['log_ret_1d']).rolling(window=5).std()*np.sqrt(5) df['vol_2w'] = pd.Series(df['log_ret_1d']).rolling(window=10).std()*np.sqrt(10) df['vol_3w'] = pd.Series(df['log_ret_1d']).rolling(window=15).std()*np.sqrt(15) df['vol_4w'] = pd.Series(df['log_ret_1d']).rolling(window=20).std()*np.sqrt(20) df['vol_8w'] = pd.Series(df['log_ret_1d']).rolling(window=40).std()*np.sqrt(40) df['vol_12w'] =
pd.Series(df['log_ret_1d'])
pandas.Series
import numpy as np from datetime import timedelta import pandas as pd import pandas.tslib as tslib import pandas.util.testing as tm import pandas.tseries.period as period from pandas import (DatetimeIndex, PeriodIndex, period_range, Series, Period, _np_version_under1p10, Index, Timedelta, offsets) from pandas.tests.test_base import Ops class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub(self): rng = period_range('2007-01', periods=50) result = rng - 5 exp = rng + (-5) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_comp_nat(self): left = pd.PeriodIndex([pd.Period('2011-01-01'), pd.NaT, pd.Period('2011-01-03')]) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)), freq='H') exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00', '2011-01-01 16:00', '2011-01-01 15:00', '2011-01-01 14:00', '2011-01-01 13:00', '2011-01-01 12:00', '2011-01-01 11:00', '2011-01-01 10:00', '2011-01-01 09:00'], freq='H') expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.period_range('2011-01-01 09:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], freq='H') exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'], freq='H') expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], freq='H') expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) # freq will not be reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_order_compat(self): def _check_freq(index, expected_index): if isinstance(index, PeriodIndex): self.assertEqual(index.freq, expected_index.freq) pidx = PeriodIndex(['2011', '2012', '2013'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2012, 2013], name='idx') for idx in [pidx, iidx]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, idx[::-1]) _check_freq(ordered, idx[::-1]) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) _check_freq(ordered, idx[::-1]) pidx = PeriodIndex(['2011', '2013', '2015', '2012', '2011'], name='pidx', freq='A') pexpected = PeriodIndex( ['2011', '2011', '2012', '2013', '2015'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2013, 2015, 2012, 2011], name='idx') iexpected = Index([2011, 2011, 2012, 2013, 2015], name='idx') for idx, expected in [(pidx, pexpected), (iidx, iexpected)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) pidx = PeriodIndex(['2011', '2013', 'NaT', '2011'], name='pidx', freq='D') result = pidx.sort_values() expected = PeriodIndex(['NaT', '2011', '2011', '2013'], name='pidx', freq='D') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') result = pidx.sort_values(ascending=False) expected = PeriodIndex( ['2013', '2011', '2011', 'NaT'], name='pidx', freq='D') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') def test_order(self): for freq in ['D', '2D', '4D']: idx = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq=freq, name='idx') ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq, freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) self.assertEqual(ordered.freq, freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq, freq) idx1 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], freq='D', name='idx1') exp1 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx1') idx2 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], freq='D', name='idx2') exp2 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx2') idx3 = PeriodIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], freq='D', name='idx3') exp3 = PeriodIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, 'D') ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertEqual(ordered.freq, 'D') ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertEqual(ordered.freq, 'D') ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertEqual(ordered.freq, 'D') def test_nat_new(self): idx = pd.period_range('2011-01', freq='M', periods=5, name='x') result = idx._nat_new() exp = pd.PeriodIndex([pd.NaT] * 5, freq='M', name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.PeriodIndex([], name='xxx', freq='H') with tm.assertRaises(TypeError): # period shift doesn't accept freq idx.shift(1, freq='H') tm.assert_index_equal(idx.shift(0), idx) tm.assert_index_equal(idx.shift(3), idx) idx = pd.PeriodIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(0), idx) exp = pd.PeriodIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(3), exp) exp = pd.PeriodIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(-3), exp) def test_repeat(self): index = pd.period_range('2001-01-01', periods=2, freq='D') exp = pd.PeriodIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], freq='D') for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) index = pd.period_range('2001-01-01', periods=2, freq='2D') exp = pd.PeriodIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], freq='2D') for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) index = pd.PeriodIndex(['2001-01', 'NaT', '2003-01'], freq='M') exp = pd.PeriodIndex(['2001-01', '2001-01', '2001-01', 'NaT', 'NaT', 'NaT', '2003-01', '2003-01', '2003-01'], freq='M') for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) def test_nat(self): self.assertIs(pd.PeriodIndex._na_value, pd.NaT) self.assertIs(pd.PeriodIndex([], freq='M')._na_value, pd.NaT) idx = pd.PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.PeriodIndex(['2011-01-01', 'NaT'], freq='D') self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for freq in ['D', 'M']: idx = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'], freq=freq) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'], freq='H') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.PeriodIndex._simple_new(idx.asi8, freq='H') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestPeriodIndexSeriesMethods(tm.TestCase): """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) if isinstance(expected, pd.Index): tm.assert_index_equal(result, expected) else: # comp op results in bool tm.assert_numpy_array_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', '2011-05', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period('2011-01', freq='M') exp = pd.Index([0, 1, 2, 3], name='idx') tm.assert_index_equal(result, exp) result = Period('2011-01', freq='M') - idx exp = pd.Index([0, -1, -2, -3], name='idx') tm.assert_index_equal(result, exp) def test_pi_ops_errors(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') s = pd.Series(idx) msg = r"unsupported operand type\(s\)" for obj in [idx, s]: for ng in ["str", 1.5]: with tm.assertRaisesRegexp(TypeError, msg): obj + ng with tm.assertRaises(TypeError): # error message differs between PY2 and 3 ng + obj with tm.assertRaisesRegexp(TypeError, msg): obj - ng with tm.assertRaises(TypeError): np.add(obj, ng) if _np_version_under1p10: self.assertIs(np.add(ng, obj), NotImplemented) else: with tm.assertRaises(TypeError): np.add(ng, obj) with tm.assertRaises(TypeError): np.subtract(obj, ng) if _np_version_under1p10: self.assertIs(np.subtract(ng, obj), NotImplemented) else: with tm.assertRaises(TypeError): np.subtract(ng, obj) def test_pi_ops_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx, lambda x: np.add(x, 2), expected) self._check(idx + 2, lambda x: x - 2, idx) self._check(idx + 2, lambda x: np.subtract(x, 2), idx) # freq with mult idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='2M', name='idx') expected = PeriodIndex(['2011-07', '2011-08', 'NaT', '2011-10'], freq='2M', name='idx') self._check(idx, lambda x: x + 3, expected) self._check(idx, lambda x: 3 + x, expected) self._check(idx, lambda x: np.add(x, 3), expected) self._check(idx + 3, lambda x: x - 3, idx) self._check(idx + 3, lambda x: np.subtract(x, 3), idx) def test_pi_ops_array_int(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') f = lambda x: x + np.array([1, 2, 3, 4]) exp = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.add(x, np.array([4, -1, 1, 2])) exp = PeriodIndex(['2011-05', '2011-01', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: x - np.array([1, 2, 3, 4]) exp = PeriodIndex(['2010-12', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.subtract(x, np.array([3, 2, 3, -2])) exp = PeriodIndex(['2010-10', '2010-12', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) def test_pi_ops_offset(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') f = lambda x: x + offsets.Day() exp = PeriodIndex(['2011-01-02', '2011-02-02', '2011-03-02', '2011-04-02'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x + offsets.Day(2) exp = PeriodIndex(['2011-01-03', '2011-02-03', '2011-03-03', '2011-04-03'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x - offsets.Day(2) exp = PeriodIndex(['2010-12-30', '2011-01-30', '2011-02-27', '2011-03-30'], freq='D', name='idx') self._check(idx, f, exp) def test_pi_offset_errors(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') s = pd.Series(idx) # Series op is applied per Period instance, thus error is raised # from Period msg_idx = r"Input has different freq from PeriodIndex\(freq=D\)" msg_s = r"Input cannot be converted to Period\(freq=D\)" for obj, msg in [(idx, msg_idx), (s, msg_s)]: with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): obj + offsets.Hour(2) with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): offsets.Hour(2) + obj with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): obj - offsets.Hour(2) def test_pi_sub_period(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, -11, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(idx, pd.Period('2012-01', freq='M')) tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp = pd.Index([12, 11, 10, 9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(pd.Period('2012-01', freq='M'), idx) if _np_version_under1p10: self.assertIs(result, NotImplemented) else: tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name='idx') tm.assert_index_equal(idx - pd.Period('NaT', freq='M'), exp) tm.assert_index_equal(pd.Period('NaT', freq='M') - idx, exp) def test_pi_sub_pdnat(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') exp = pd.TimedeltaIndex([pd.NaT] * 4, name='idx') tm.assert_index_equal(pd.NaT - idx, exp) tm.assert_index_equal(idx - pd.NaT, exp) def test_pi_sub_period_nat(self): # GH 13071 idx = PeriodIndex(['2011-01', 'NaT', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, np.nan, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp = pd.Index([12, np.nan, 10, 9], name='idx') tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name='idx') tm.assert_index_equal(idx - pd.Period('NaT', freq='M'), exp) tm.assert_index_equal(pd.Period('NaT', freq='M') - idx, exp) def test_pi_comp_period(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') f = lambda x: x == pd.Period('2011-03', freq='M') exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') == x self._check(idx, f, exp) f = lambda x: x != pd.Period('2011-03', freq='M') exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') != x self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period('2011-03', freq='M') exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex(['2011-01', 'NaT', '2011-03', '2011-04'], freq='M', name='idx') f = lambda x: x == pd.Period('2011-03', freq='M') exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') == x self._check(idx, f, exp) f = lambda x: x == tslib.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: tslib.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period('2011-03', freq='M') exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') != x self._check(idx, f, exp) f = lambda x: x != tslib.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: tslib.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period('2011-03', freq='M') >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period('2011-03', freq='M') exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > tslib.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: tslib.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) class TestSeriesPeriod(tm.TestCase): def setUp(self): self.series = Series(period_range('2000-01-01', periods=10, freq='D')) def test_ops_series_timedelta(self): # GH 13043 s = pd.Series([pd.Period('2015-01-01', freq='D'), pd.Period('2015-01-02', freq='D')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Period('2015-01-02', freq='D'), pd.Period('2015-01-03', freq='D')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) tm.assert_series_equal(s + pd.tseries.offsets.Day(), exp) tm.assert_series_equal(pd.tseries.offsets.Day() + s, exp) def test_ops_series_period(self): # GH 13043 s = pd.Series([pd.Period('2015-01-01', freq='D'), pd.Period('2015-01-02', freq='D')], name='xxx') self.assertEqual(s.dtype, object) p = pd.Period('2015-01-10', freq='D') # dtype will be object because of original dtype exp = pd.Series([9, 8], name='xxx', dtype=object) tm.assert_series_equal(p - s, exp) tm.assert_series_equal(s - p, -exp) s2 = pd.Series([pd.Period('2015-01-05', freq='D'), pd.Period('2015-01-04', freq='D')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([4, 2], name='xxx', dtype=object) tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) class TestFramePeriod(tm.TestCase): def test_ops_frame_period(self): # GH 13043 df = pd.DataFrame({'A': [pd.Period('2015-01', freq='M'), pd.Period('2015-02', freq='M')], 'B': [pd.Period('2014-01', freq='M'), pd.Period('2014-02', freq='M')]}) self.assertEqual(df['A'].dtype, object) self.assertEqual(df['B'].dtype, object) p = pd.Period('2015-03', freq='M') # dtype will be object because of original dtype exp = pd.DataFrame({'A': np.array([2, 1], dtype=object), 'B': np.array([14, 13], dtype=object)}) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -exp) df2 = pd.DataFrame({'A': [pd.Period('2015-05', freq='M'), pd.Period('2015-06', freq='M')], 'B': [pd.Period('2015-05', freq='M'), pd.Period('2015-06', freq='M')]}) self.assertEqual(df2['A'].dtype, object) self.assertEqual(df2['B'].dtype, object) exp = pd.DataFrame({'A': np.array([4, 4], dtype=object), 'B': np.array([16, 16], dtype=object)}) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -exp) class TestPeriodIndexComparisons(tm.TestCase): def test_pi_pi_comp(self): for freq in ['M', '2M', '3M']: base = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq=freq) p = Period('2011-02', freq=freq) exp = np.array([False, True, False, False]) self.assert_numpy_array_equal(base == p, exp) self.assert_numpy_array_equal(p == base, exp) exp = np.array([True, False, True, True]) self.assert_numpy_array_equal(base != p, exp) self.assert_numpy_array_equal(p != base, exp) exp = np.array([False, False, True, True]) self.assert_numpy_array_equal(base > p, exp) self.assert_numpy_array_equal(p < base, exp) exp = np.array([True, False, False, False]) self.assert_numpy_array_equal(base < p, exp) self.assert_numpy_array_equal(p > base, exp) exp = np.array([False, True, True, True]) self.assert_numpy_array_equal(base >= p, exp) self.assert_numpy_array_equal(p <= base, exp) exp = np.array([True, True, False, False]) self.assert_numpy_array_equal(base <= p, exp) self.assert_numpy_array_equal(p >= base, exp) idx = PeriodIndex(['2011-02', '2011-01', '2011-03', '2011-05'], freq=freq) exp = np.array([False, False, True, False]) self.assert_numpy_array_equal(base == idx, exp) exp = np.array([True, True, False, True]) self.assert_numpy_array_equal(base != idx, exp) exp = np.array([False, True, False, False]) self.assert_numpy_array_equal(base > idx, exp) exp = np.array([True, False, False, True]) self.assert_numpy_array_equal(base < idx, exp) exp = np.array([False, True, True, False]) self.assert_numpy_array_equal(base >= idx, exp) exp = np.array([True, False, True, True]) self.assert_numpy_array_equal(base <= idx, exp) # different base freq msg = "Input has different freq=A-DEC from PeriodIndex" with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): base <= Period('2011', freq='A') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): Period('2011', freq='A') >= base with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): idx = PeriodIndex(['2011', '2012', '2013', '2014'], freq='A') base <= idx # different mult msg = "Input has different freq=4M from PeriodIndex" with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): base <= Period('2011', freq='4M') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): Period('2011', freq='4M') >= base with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): idx = PeriodIndex(['2011', '2012', '2013', '2014'], freq='4M') base <= idx def test_pi_nat_comp(self): for freq in ['M', '2M', '3M']: idx1 = PeriodIndex( ['2011-01', '2011-02', 'NaT', '2011-05'], freq=freq) result = idx1 > Period('2011-02', freq=freq) exp = np.array([False, False, False, True]) self.assert_numpy_array_equal(result, exp) result =
Period('2011-02', freq=freq)
pandas.Period
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QFileDialog import os import sys import traceback from itertools import groupby import pandas as pd import numpy as np sys.path.append("..") from idw import idw from cfm import cfm from knncad import knn class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args): super().__init__(*args) self.ui = Ui_MainWindow() self.ui.setupUi(self) # Set up progress bar with cancel button self.progressbar = QtWidgets.QProgressBar() self.statusBar().showMessage("Ready") self.statusBar().addPermanentWidget(self.progressbar) self.progressbar.setGeometry(30, 40, 200, 20) self.progressbar.setValue(0) self.progressbar.hide() self.cancelBtn = QtWidgets.QPushButton("Cancel") self.cancelBtn.clicked.connect(self.cancel_pressed) self.statusBar().addPermanentWidget(self.cancelBtn) self.cancelBtn.hide() self.cancelling = False # Set up connections for IDW self.stations = {} self.files = [] self.ui.browseBtn.clicked.connect(self.idw_set_input_folder) self.ui.outBrowseBtn.clicked.connect(self.idw_set_output_folder) self.ui.resetBtn.clicked.connect(self.idw_reset_input) self.ui.runBtn.clicked.connect(self.idw_run) # Set up Connections for CFM self.ui.observedFileBrowse.clicked.connect(self.cfm_get_obs_file) self.ui.historicalFileBrowse.clicked.connect(self.cfm_get_his_file) self.ui.futureFileBrowse.clicked.connect(self.cfm_get_fut_file) self.ui.runButton.clicked.connect(self.cfm_run) self.ui.outBrowse.clicked.connect(self.cfm_get_out_path) self.ui.cfmResetBtn.clicked.connect(self.cfm_reset_input) # Set up Connections for KNN self.ui.knnBrowse.clicked.connect(self.knn_get_input_file) self.ui.knnAddFile.clicked.connect(self.knn_add_file) self.ui.knnRemoveFile.clicked.connect(self.knn_remove_file) self.ui.knnOutputBrowse.clicked.connect(self.knn_set_output_folder) self.ui.knnRun.clicked.connect(self.knn_run) self.ui.knnResetInput.clicked.connect(self.knn_reset_input) tableHHeader = self.ui.knnTableWidget.horizontalHeader() tableHHeader.setSectionResizeMode(1, QtWidgets.QHeaderView.Stretch) tableHHeader.setVisible(True) def cancel_pressed(self): self.cancelling = True self.statusBar().showMessage("Cancelling...") def idw_set_input_folder(self): path = QFileDialog.getExistingDirectory(None, "Select Directory") self.ui.pathLineEdit.setText(path) def idw_set_output_folder(self): path = QFileDialog.getExistingDirectory(None, "Select Directory") self.ui.outputLineEdit.setText(path) def idw_reset_input(self): self.files = [] self.stations = {} self.ui.pathLineEdit.setText("") self.ui.outputLineEdit.setText("") self.ui.varEdit.setText("") self.ui.alphaSpin.setValue(2) self.ui.pointsSpin.setValue(4) self.ui.extraLineEdit.setText("") self.ui.startDateEdit.setDate(QtCore.QDate(1975, 1, 1)) self.ui.endDateEdit.setDate(QtCore.QDate(2005, 1, 1)) self.ui.northSpin.setValue(0) self.ui.eastSpin.setValue(0) self.ui.southSpin.setValue(0) self.ui.westSpin.setValue(0) self.ui.timeGroupBox.setChecked(False) self.ui.spatialGroupBox.setChecked(False) R = self.ui.stationTable.rowCount() C = self.ui.stationTable.columnCount() for r in range(R): for c in range(C): cell = self.ui.stationTable.item(r, c) if cell: cell.setText("") def idw_get_stations(self): stations = {} R = self.ui.stationTable.rowCount() for i in range(R): name_cell = self.ui.stationTable.item(i, 0) lat_cell = self.ui.stationTable.item(i, 1) lon_cell = self.ui.stationTable.item(i, 2) if not name_cell: break elif not name_cell.text(): break name = name_cell.text() try: lat = float(lat_cell.text()) lon = float(lon_cell.text()) stations[name] = (lat, lon) except ValueError as e: QtWidgets.QMessageBox.warning(self, "Input Error", e) return stations def idw_get_input(self): path = self.ui.pathLineEdit.text() out = self.ui.outputLineEdit.text() varname = self.ui.varEdit.text() stations = self.idw_get_stations() alpha = self.ui.alphaSpin.value() points = self.ui.pointsSpin.value() options = self.ui.extraLineEdit.text() files = [] for fl in os.listdir(path): if fl.endswith('.nc') and varname + '_' in fl: files.append(fl) if self.ui.spatialGroupBox.isChecked(): n = self.ui.northSpin.value() e = self.ui.eastSpin.value() s = self.ui.southSpin.value() w = self.ui.westSpin.value() extent = [n, e, s, w] else: extent = None if self.ui.timeGroupBox.isChecked(): sDate = self.ui.startDateEdit.date().toPyDate() eDate = self.ui.endDateEdit.date().toPyDate() period = [(sDate.year, sDate.month, sDate.day), (eDate.year, eDate.month, eDate.day)] else: period = None kwargs = {} if options: for o in options.split(','): k, v = o.split('=') kwargs[k.strip()] = int(v) return (path, out, varname, stations, alpha, points, kwargs, files, extent, period) def idw_run(self): pars = self.idw_get_input() (path, out, varname, stations, alpha, points, kwargs, files, extent, period) = pars def file_splitter(fname): *first, _ = fname.split('_') return first self.statusBar().showMessage("Interpolating...") self.progressbar.setRange(0, len(files)) self.progressbar.setValue(0) self.progressbar.show() self.cancelBtn.show() try: for k, group in groupby(files, key=file_splitter): if self.cancelling: self.cancelling = False break grouped_files = [os.path.join(path, g) for g in group] df = idw.idw(grouped_files, varname, stations, extent=extent, period=period, alpha=alpha, k=points, **kwargs) df.to_csv(os.path.join(out, 'idw_' + '_'.join(k)) + '.csv') new = self.progressbar.value() + len(grouped_files) self.progressbar.setValue(new) except Exception as e: msg = traceback.format_exc(5) QtWidgets.QMessageBox.critical(self, "Error", msg) finally: self.statusBar().showMessage("Ready") self.progressbar.reset() self.progressbar.hide() self.cancelBtn.hide() def cfm_reset_input(self): self.ui.cfmVarNameEdit.setText("") self.ui.observedFileEdit.setText("") self.ui.historicalFileEdit.setText("") self.ui.futureFileEdit.setText("") self.ui.outLineEdit.setText("") self.ui.scalingComboBox.setCurrentIndex(0) self.ui.binsSpinBox.setValue(25) def cfm_get_obs_file(self): fl, _ = QFileDialog.getOpenFileName(self, "Select Observed File", filter="CSV files (*.csv)") self.ui.observedFileEdit.setText(fl) def cfm_get_his_file(self): fl, _ = QFileDialog.getOpenFileName(self, "Select Historical GCM File", filter="CSV files (*.csv)") self.ui.historicalFileEdit.setText(fl) def cfm_get_fut_file(self): fl, _ = QFileDialog.getOpenFileName(self, "Select Future GCM File", filter="CSV files (*.csv)") self.ui.futureFileEdit.setText(fl) def cfm_get_out_path(self): fl = QFileDialog.getExistingDirectory(self, "Select Output Folder") self.ui.outLineEdit.setText(fl) def cfm_run(self): self.statusBar().showMessage("Loading Files...") self.progressbar.setRange(0, 4) self.progressbar.show() self.cancelBtn.show() try: varname = self.ui.cfmVarNameEdit.text() obs_fl = self.ui.observedFileEdit.text() obs =
pd.read_csv(obs_fl, index_col=[0, 1, 2], header=[0, 1])
pandas.read_csv