prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import logging import numpy as np from sumolib import checkBinary import pandas as pd import traci import traci.constants as tc import xml.etree.cElementTree as ET ILD_LENGTH = 100 VER_LENGTH = 5 # N_LANES = 3 NEIGHBOR_MAP = {'I0':['I1', 'I3'], 'I1':['I0', 'I2', 'I4'], 'I2':['I1', 'I5'], 'I3':['I0', 'I4', 'I6'], 'I4':['I1', 'I3', 'I5', 'I7'], 'I5':['I2', 'I4', 'I8'], 'I6':['I3', 'I7'], 'I7':['I4', 'I6', 'I8'], 'I8':['I5', 'I7']} PHASE_MAP = {0:'GGGrrrrrGGGrrrrr', 1:'yyyrrrrryyyrrrrr', 2:'rrrGrrrrrrrGrrrr', 3:'rrryrrrrrrryrrrr', 4:'rrrrGGGrrrrrGGGr', 5:'rrrryyyrrrrryyyr', 6:'rrrrrrrGrrrrrrrG', 7:'rrrrrrryrrrrrrry'} WIND_MAP = {'I0':{'P0':0, 'I3':0, 'P6':3, 'I1':3}, 'I1':{'P1':0, 'I4':0, 'I0':3, 'I2':3}, 'I2':{'P2':0, 'I5':0, 'I1':3, 'P9':3}, 'I3':{'I0':0, 'I6':0, 'P7':3, 'I4':3}, 'I4':{'I1':0, 'I7':0, 'I3':3, 'I5':3}, 'I5':{'I2':0, 'I8':0, 'I4':3, 'P10':3}, 'I6':{'I3':0, 'P3':0, 'P8':3, 'I7':3}, 'I7':{'I4':0, 'P4':0, 'I6':3, 'I8':3}, 'I8':{'I5':0, 'P5':0, 'I7':3, 'P11':3}} class TrafficNode: def __init__(self, name, neighbor=[]): self.name = name self.neighbor = neighbor self.lanes_in = [] self.ilds_in = [] # self.phase_id = -1 class TrafficEnv: def __init__(self, cfg_sumo, output_path='./logs/', port=4343, gui=False): self.cfg_sumo = cfg_sumo self.port = port self.cur_episode = 0 self.margin = 13.6 self.neighbor_map = NEIGHBOR_MAP self.phase_map = PHASE_MAP self.ild_length = ILD_LENGTH self.ver_length = VER_LENGTH self.wind_map = WIND_MAP self.sim_seed = 42 self.name = 'Grid9' self.agent = 'ma2c' self.output_path = output_path self.control_interval_sec = 5 self.yellow_interval_sec = 2 self.episode_length_sec = 3600 self.coef_reward = 0.1 # self.T = np.ceil(self.episode_length_sec / self.control_interval_sec) # params need reset self.cur_step = 0 # if not os.path.exists(self.output_path+'/logs'): # os.makedirs(self.output_path+'./logs') self.metric_data = [] self.step_data = [] # self.metrics_file = self.output_path + 'metrics.csv' # with open(self.metrics_file, 'w') as f: # f.write('episode,time,step,number_total_car,number_departed_car,number_arrived_car,avg_wait_sec,avg_speed_mps,avg_queue\n') # self.step_file = self.output_path + 'step.csv' # with open(self.step_file, 'w') as f: # f.write('episode,time,step,action,reward_jam,reward_waiting,reward,total_reward\n') if gui: app = 'sumo-gui' else: app = 'sumo' command = [checkBinary(app), "--start", '-c', self.cfg_sumo] command += ['--seed', str(self.sim_seed)] command += ['--no-step-log', 'True'] command += ['--time-to-teleport', '300'] command += ['--no-warnings', 'True'] command += ['--duration-log.disable', 'True'] # command += ['--tripinfo-output', # self.output_path + ('%s_%s_trip.xml' % (self.name, self.agent))] traci.start(command, port=self.port) self.nodes = self._init_node() self.nodes_name = sorted(list(self.nodes.keys())) s = 'Env: init %d node information:\n' % len(self.nodes_name) for node_name in self.nodes_name: s += node_name + ':\n' s += '\tneigbor: %s\n' % str(self.nodes[node_name].neighbor) logging.info(s) for node_name in self.nodes_name: traci.junction.subscribeContext(node_name, tc.CMD_GET_VEHICLE_VARIABLE, self.ild_length, [tc.VAR_LANE_ID, tc.VAR_LANEPOSITION, tc.VAR_SPEED, tc.VAR_WAITING_TIME]) def _init_node(self): nodes = {} for node_name in traci.trafficlight.getIDList(): if node_name in self.neighbor_map: neighbor = self.neighbor_map[node_name] else: logging.info('node %s can not be found' % node_name) neighbor = [] nodes[node_name] = TrafficNode(node_name, neighbor) nodes[node_name].lanes_in = traci.trafficlight.getControlledLanes(node_name) nodes[node_name].ilds_in = nodes[node_name].lanes_in return nodes def _get_obs(self, cx_res): height = int(self.ild_length/self.ver_length) position, phase = {}, {} for node_name in self.nodes_name: width = int(len(self.nodes[node_name].lanes_in)/2) - 2 # print(self.nodes[node_name].lanes_in) position[node_name] = np.zeros(shape=(height, width)) phase[node_name] = np.zeros(shape=(int(len(self.phase_map)/2))) current_phase = int(traci.trafficlight.getPhase(node_name)/2) phase[node_name][current_phase] = 1 if not cx_res: return [position, phase] for node_name, res in cx_res.items(): if not res: continue for _, mes in res.items(): f_node, t_node, lane = mes[tc.VAR_LANE_ID].split('_') if t_node == node_name: wind = self._get_position_windex(f_node, t_node, lane) if f_node[0] == 'I': hind = int((500 - 2 * self.margin - mes[tc.VAR_LANEPOSITION]) / self.ver_length) elif f_node[0] == 'P': hind = int((200 - self.margin - mes[tc.VAR_LANEPOSITION]) / self.ver_length) if hind < 0 or hind >= height: logging.info(str(res)) raise ValueError(str(hind)+' h_ind is wrong') position[node_name][hind, wind] += 1 if np.amax(position[node_name]) > 2: raise ValueError('max value of position need <= 2') return [position, phase] def _get_position_windex(self, from_node, to_node, n_lane): return int(n_lane) + self.wind_map[to_node].get(from_node) def _get_reward(self, cx_res, action): reward = {} reward_jam = {} reward_waiting = {} for node_name in self.nodes_name: if not cx_res: reward[node_name], reward_jam[node_name], reward_waiting[node_name] = 0, 0, 0 continue res = cx_res.get(node_name) if res is None: reward[node_name], reward_jam[node_name], reward_waiting[node_name] = 0, 0, 0 continue jam_length, waitingtime = 0, 0 for ild in self.nodes[node_name].ilds_in: jam_length += traci.lanearea.getJamLengthVehicle(ild) for _, mes in res.items(): _, t_node, _ = mes[tc.VAR_LANE_ID].split('_') if t_node == node_name: waitingtime += mes[tc.VAR_WAITING_TIME] reward_jam[node_name] = -jam_length reward_waiting[node_name] = -waitingtime reward[node_name] = -jam_length - self.coef_reward * waitingtime return reward, reward_jam, reward_waiting def _measure_step(self): cars = traci.vehicle.getIDList() num_tot_car = len(cars) num_in_car = traci.simulation.getDepartedNumber() num_out_car = traci.simulation.getArrivedNumber() if num_tot_car > 0: avg_waiting_time = np.mean([traci.vehicle.getWaitingTime(car) for car in cars]) avg_speed = np.mean([traci.vehicle.getSpeed(car) for car in cars]) else: avg_speed = 0 avg_waiting_time = 0 # all trip-related measurements are not supported by traci, # need to read from outputfile afterwards queues = [] for node_name in self.nodes_name: for ild in self.nodes[node_name].ilds_in: queues.append(traci.lane.getLastStepHaltingNumber(ild)) avg_queue = np.mean(np.array(queues)) cur_traffic = {'episode': self.cur_episode, 'time_sec': self.cur_step, 'step': self.cur_step / self.control_interval_sec, 'number_total_car': num_tot_car, 'number_departed_car': num_in_car, 'number_arrived_car': num_out_car, 'avg_wait_sec': avg_waiting_time, 'avg_speed_mps': avg_speed, 'avg_queue': avg_queue} self.metric_data.append(cur_traffic) def _simulate(self, num_steps): for _ in range(num_steps): traci.simulationStep() self.cur_step += 1 def step(self, action): for node_name in self.nodes_name: a = action[node_name] current_phase = traci.trafficlight.getPhase(node_name) next_phase = (current_phase + a) % len(self.phase_map) traci.trafficlight.setPhase(node_name, next_phase) self._simulate(self.yellow_interval_sec) for node_name in self.nodes_name: a = action[node_name] current_phase = traci.trafficlight.getPhase(node_name) next_phase = (current_phase + a) % len(self.phase_map) traci.trafficlight.setPhase(node_name, next_phase) self._simulate(self.control_interval_sec-self.yellow_interval_sec) self._measure_step() cx_res = {node_name: traci.junction.getContextSubscriptionResults(node_name) \ for node_name in self.nodes_name} obs = self._get_obs(cx_res) reward, reward_jam, reward_waiting = self._get_reward(cx_res, action) done = True if self.cur_step >= self.episode_length_sec else False info = {'episode': self.cur_episode, 'time': self.cur_step, 'step': self.cur_step / self.control_interval_sec, 'action': [action[node_name] for node_name in self.nodes_name], 'reward_jam':[reward_jam[node_name] for node_name in self.nodes_name], 'reward_waiting':[reward_waiting[node_name] for node_name in self.nodes_name], 'reward': [reward[node_name] for node_name in self.nodes_name], 'total_reward': np.sum([reward[node_name] for node_name in self.nodes_name])} self.step_data.append(info) return obs, reward, done, info def reset(self, gui=False): # return obs # for node_name in self.nodes_name: # self.nodes[node_name].reset() self.cur_episode += 1 self.cur_step = 0 # self.close() if gui: app = 'sumo-gui' else: app = 'sumo' command = ['--start','-c', self.cfg_sumo] # command += ['--seed', str(self.sim_seed)] # command += ['--no-step-log', 'True'] # command += ['--time-to-teleport', '300'] # command += ['--no-warnings', 'True'] # command += ['--duration-log.disable', 'True'] # command += ['--tripinfo-output', # self.output_path + ('%s_%s_trip.xml' % (self.name, self.agent))] traci.load(command) s = 'Env: init %d node information:\n' % len(self.nodes_name) for node_name in self.nodes_name: s += node_name + ':\n' s += '\tneigbor: %s\n' % str(self.nodes[node_name].neighbor) logging.info(s) for node_name in self.nodes_name: traci.junction.subscribeContext(node_name, tc.CMD_GET_VEHICLE_VARIABLE, self.ild_length, [tc.VAR_LANE_ID, tc.VAR_LANEPOSITION, tc.VAR_SPEED, tc.VAR_WAITING_TIME]) cx_res = {node_name: traci.junction.getContextSubscriptionResults(node_name) \ for node_name in self.nodes_name} return self._get_obs(cx_res) def close(self): traci.close() def seed(self, seed=None): if seed: np.random.seed(seed) def output_data(self): step_data =
pd.DataFrame(self.step_data)
pandas.DataFrame
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from brightics.function.textanalytics.doc_summarize import doc_summarizer_eng, doc_summarizer_kor import unittest import numpy as np import pandas as pd import HtmlTestRunner import os class DocumentSummerizerKorean(unittest.TestCase): def setUp(self): print("*** Document Summerizer(Korean) UnitTest Start ***") self.testdata =
pd.DataFrame({'text':['이것은 우리 가족 이야기. 아버지가 방에 들어가신다. 어머니는 청소하신다. 우리는 행복하다.', '이것은 우리 가족 이야기이다. 아빠가 들어가신다. 엄마는 청소하신다. 우리는 행복한 가족이다.']})
pandas.DataFrame
#!/usr/bin/env -S python3 -u # -*- python -*- # imclust.py (c) R.Jaksa 2021 # imclust_dbscan.py - extended version of imclust.py (by <NAME>) import sys,os import time start_time = time.time() # -------------------------- parse command-line arguments: dirname and no. of clusters HELP = f""" NAME imclust_dbscan.py - image clustering demo USAGE imclust_dbscan.py [OPTIONS] DIRECTORY... DESCRIPTION Image clusteuring demo imclust_dbscan.py will cluster images in the DIRECTORY, and produce a html visualization of results. OPTIONS -h This help. -m Models of NN to provide a numerical representations of images. Accepted inputs: see documentation https://www.tensorflow.org/api_docs/python/tf/keras/applications - section 'functions'. -e The maximum distance between two samples for one to be considered as in the neighborhood of the other. VERSION imclust.py 0.1 (c) R.Jaksa 2021 imclust_dbscan.py - extended version of imclust.py (by <NAME>) """ import argparse parser = argparse.ArgumentParser(add_help=False) parser.add_argument("-h","--help",action="store_true") parser.add_argument("-e","--eps",type=str,default="0.5") parser.add_argument("-m","--models",type=str,default="ResNet50") parser.add_argument("path",type=str,nargs='*') args = parser.parse_args() if args.help or len(args.path)==0: print(HELP) exit(0) # ---------------------------------------------------------- get image names from dirs print(f"====================================") print(f"=Loading names of images from dirs.=") print(f"====================================") print(f"...") from glob import glob import random path = [] for dir in args.path: path += glob(dir+"/**/*.png",recursive=True) path += glob(dir+"/**/*.jpg",recursive=True) random.shuffle(path) print(f"=========================") print(f"=Names of images loaded.=") print(f"=========================") # ------------------------------------------------------------------------- load model print(f"====================") print(f"=Loading NN models.=") print(f"====================") print(f"...") os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf models = args.models models = models.split(",") # models_dict = {} models_names = [] models_list = [] # model = None # if args.model == 'DenseNet121': if 'DenseNet121' in models: model = tf.keras.applications.densenet.DenseNet121(include_top=False,weights="imagenet",input_shape=(224,224,3)) # models_dict.update({'DenseNet121': model}) models_names.append('DenseNet121') models_list.append(model) # elif args.model == 'DenseNet169': if 'DenseNet169' in models: model = tf.keras.applications.densenet.DenseNet169(include_top=False,weights="imagenet",input_shape=(224,224,3)) # models_dict.update({'DenseNet169': model}) models_names.append('DenseNet169') models_list.append(model) if 'DenseNet201' in models: model = tf.keras.applications.densenet.DenseNet201(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('DenseNet201') models_list.append(model) if 'EfficientNetB0' in models: model = tf.keras.applications.efficientnet.EfficientNetB0(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB0') models_list.append(model) if 'EfficientNetB1' in models: model = tf.keras.applications.efficientnet.EfficientNetB1(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB1') models_list.append(model) if 'EfficientNetB2' in models: model = tf.keras.applications.efficientnet.EfficientNetB2(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB2') models_list.append(model) if 'EfficientNetB3' in models: model = tf.keras.applications.efficientnet.EfficientNetB3(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB3') models_list.append(model) if 'EfficientNetB4' in models: model = tf.keras.applications.efficientnet.EfficientNetB4(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB4') models_list.append(model) if 'EfficientNetB5' in models: model = tf.keras.applications.efficientnet.EfficientNetB5(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB5') models_list.append(model) if 'EfficientNetB6' in models: model = tf.keras.applications.efficientnet.EfficientNetB6(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB6') models_list.append(model) if 'EfficientNetB7' in models: model = tf.keras.applications.efficientnet.EfficientNetB7(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('EfficientNetB7') models_list.append(model) if 'InceptionResNetV2' in models: model = tf.keras.applications.inception_resnet_v2.InceptionResNetV2(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('InceptionResNetV2') models_list.append(model) if 'InceptionV3' in models: model = tf.keras.applications.inception_v3.InceptionV3(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('InceptionV3') models_list.append(model) if 'MobileNet' in models: model = tf.keras.applications.mobilenet.MobileNet(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('MobileNet') models_list.append(model) if 'MobileNetV2' in models: model = tf.keras.applications.mobilenet_v2.MobileNetV2(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('MobileNetV2') models_list.append(model) if 'MobileNetV3Large' in models: model = tf.keras.applications.MobileNetV3Large(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('MobileNetV3Large') models_list.append(model) if 'MobileNetV3Small' in models: model = tf.keras.applications.MobileNetV3Small(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('MobileNetV3Small') models_list.append(model) # elif args.model == 'NASNetLarge': # model = tf.keras.applications.nasnet.NASNetLarge(include_top=False,weights="imagenet",input_shape=(331,331,3)) if 'NASNetMobile' in models: model = tf.keras.applications.nasnet.NASNetMobile(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('NASNetMobile') models_list.append(model) if 'ResNet101' in models: model = tf.keras.applications.ResNet101(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('ResNet101') models_list.append(model) if 'ResNet101V2' in models: model = tf.keras.applications.ResNet101V2(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('ResNet101V2') models_list.append(model) if 'ResNet152' in models: model = tf.keras.applications.ResNet152(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('ResNet152') models_list.append(model) if 'ResNet152V2' in models: model = tf.keras.applications.ResNet152V2(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('ResNet152V2') models_list.append(model) if 'ResNet50' in models: model = tf.keras.applications.resnet50.ResNet50(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('ResNet50') models_list.append(model) if 'ResNet50V2' in models: model = tf.keras.applications.ResNet50V2(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('ResNet50V2') models_list.append(model) if 'VGG16' in models: model = tf.keras.applications.VGG16(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('VGG16') models_list.append(model) if 'VGG19' in models: model = tf.keras.applications.VGG19(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('VGG19') models_list.append(model) if 'Xception' in models: model = tf.keras.applications.xception.Xception(include_top=False,weights="imagenet",input_shape=(224,224,3)) models_names.append('Xception') models_list.append(model) print(f"===================") print(f"=NN models loaded.=") print(f"===================") # ------------------------------------------------------------------------ load images print(f"=======================================") print(f"=Loading images and embedding vectors.=") print(f"=======================================") print(f"...") from imageio import imread from skimage.transform import resize import numpy as np from sklearn.decomposition import PCA from multiprocessing.pool import ThreadPool np.warnings.filterwarnings("ignore",category=np.VisibleDeprecationWarning) def loadresize(path): try: image = imread(str(path)) except: print(f"\nmalformed image: {path}\n") return image = resize(image,SIZE,anti_aliasing=True) return image SIZE = (224,224,3) # pca = PCA(n_components=256) pca_list = [] # vectors = np.empty([0,256],dtype=np.float32) vectors = [np.empty([0,256],dtype=np.float32)]*len(models) # images = np.empty([0,224,224,3],dtype=np.float32) n_imgs = 0 i=0 while i < len(path): i2 = i + 256 ## imgs = np.array([imread(str(p)).astype(np.float32) for p in path[i:i2]]) ## imgs = np.asarray([resize(image,SIZE,0) for image in imgs]) ## images = np.concatenate((images, imgs),0) imgs = np.empty([0,SIZE[0],SIZE[1],SIZE[2]],dtype=np.float32) pool = ThreadPool(os.cpu_count()) results = [] for p in path[i:i2]: results.append(pool.apply_async(loadresize,args=(p,))) pool.close() pool.join() imgs = np.array([r.get() for r in results]) n_imgs += len(imgs) # ------------------------------------------------------------- get embeddings vectors for j in range(len(models)): vector = models_list[j].predict(imgs) vector = vector.reshape(vector.shape[0],-1) if i == 0: pca = PCA(n_components=256) pca.fit(vector) pca_list.append(pca) vector = pca_list[j].transform(vector) vectors[j] = np.concatenate((vectors[j], vector),0) i += 256 print(f"======================================") print(f"=Images and embedding vectors loaded.=") print(f"======================================") # ----------------------------------------------------------------------- cluster them print(f"====================") print(f"=DBSCAN clustering.=") print(f"====================") print(f"...") from sklearn.cluster import DBSCAN eps = args.eps eps = eps.split(",") clusterings = [] for i in range(len(models)): clusterings.append([]) for j in range(len(eps)): clustering = DBSCAN(eps=float(eps[j])) # clustering.fit(vectors[i]) # cl = clustering.predict(vectors[i]) cl = clustering.fit_predict(vectors[i]) clusterings[i].append(cl) # print(f"clusters: {cl}") print(f"===========================") print(f"=DBSCAN clustering - DONE.=") print(f"===========================") # ------------------------------------------------ copy images according their cluster # import shutil # for i in range(len(images)): # if not os.path.exists(f"output/cluster{cluster[i]}"): os.makedirs(f"output/cluster{cluster[i]}") # print(f"cp {path[i]} output/cluster{cluster[i]}") # shutil.copy2(f"{path[i]}",f"output/cluster{cluster[i]}") # -------------------------------------------------------------------------- excluding outliers vectors_wo = [] clusterings_wo = [] for i in range(len(models)): vectors_wo.append([]) clusterings_wo.append([]) for j in range(len(eps)): vectors_wo[i].append([]) clusterings_wo[i].append([]) for k in range(len(clusterings[i][j])): if clusterings[i][j][k] != -1: vectors_wo[i][j].append(vectors[i][k]) clusterings_wo[i][j].append(clusterings[i][j][k]) print(f"================================") print(f"=Calculating indices (metrics).=") print(f"================================") print(f"...") # -------------------------------------------------------------------------- mean silhouette coefficient (plot + file) from sklearn.metrics import silhouette_score import pandas as pd import matplotlib.pyplot as plt # models_names = list(slovnik.keys()) MSC = [] MSC_wo = [] for i in range(len(models)): MSC.append([]) MSC_wo.append([]) for j in range(len(eps)): MSC[i].append(silhouette_score(vectors[i],clusterings[i][j])) MSC_wo[i].append(silhouette_score(vectors_wo[i][j],clusterings_wo[i][j])) frame = pd.DataFrame({'eps':eps, 'MSC':MSC[i]}) plt.figure(figsize=(12,6)) plt.plot(frame['eps'], frame['MSC'], marker='o') plt.xlabel('Epsilon') plt.ylabel('MSC') plt.title('DBSCAN: Mean Silhouette Coefficient (MSC) - ' + models_names[i]) plt.savefig('MSC_' + models_names[i] + '_dbscan.png') frame.to_csv(r'MSC_' + models_names[i] + '_dbscan.txt', index=None, sep='\t', mode='a') frame =
pd.DataFrame({'eps':eps, 'MSC_wo':MSC_wo[i]})
pandas.DataFrame
"""prosper.datareader.coins: utilities for looking up info on cryptocoins""" from enum import Enum import pandas as pd # TODO: Simplify import # import prosper.datareader.config as config import prosper.datareader.exceptions as exceptions import prosper.datareader.cryptocompare as cryptocompare import prosper.datareader.hitbtc as hitbtc class Sources(Enum): hitbtc = 'hitbtc' cc = 'cryptocompare' class OrderBook(Enum): """enumerator for handling order book info""" asks = 'asks' bids = 'bids' class OHLCfrequency(Enum): """enumerator for OHLC scopes""" minute = 'minute' hour = 'hour' day = 'day' def address(self): """help figure out which address to use""" if self == self.minute: return 'https://min-api.cryptocompare.com/data/histominute' elif self == self.hour: return 'https://min-api.cryptocompare.com/data/histohour' elif self == self.day: return 'https://min-api.cryptocompare.com/data/histoday' else: # pragma: no cover raise exceptions.InvalidEnum() def columns_to_yahoo( quote_df, source ): """recast column names to yahoo equivalent Args: quote_df (:obj:`pandas.DataFrame`): dataframe to update source (:obj:`Enum`): source info Returns: (:obj:`pandas.DataFrame`): updated dataframe cols """ if source == Sources.hitbtc: index_key = 'symbol' quote_df = quote_df.rename(index=quote_df[index_key]) elif source == Sources.cc: ## Remap column names ## index_key = 'Name' column_map = { 'CoinName': 'name', 'FullName': 'more_info', 'Name': 'symbol', 'TotalCoinSupply': 'shares_outstanding', 'TotalCoinsFreeFloat': 'float_shares', 'LASTVOLUME': 'volume', 'MKTCAP': 'market_capitalization', 'CHANGEPCT24HOUR': 'change_pct', 'MARKET': 'stock_exchange', 'OPEN24HOUR': 'open', 'HIGH24HOUR': 'high', 'LOW24HOUR': 'low', 'PRICE': 'last', 'LASTUPDATE': 'timestamp' } ## Trim unused data ## keep_keys = list(column_map.keys()) keep_keys.append(index_key) drop_keys = list(set(list(quote_df.columns.values)) - set(keep_keys)) quote_df = quote_df.drop(drop_keys, 1) ## Apply remap ## quote_df = quote_df.rename( columns=column_map, index=quote_df[index_key]) quote_df['change_pct'] = quote_df['change_pct'] / 100 else: # pragma: no cover raise exceptions.UnsupportedSource() ## reformat change_pct ## quote_df['change_pct'] = list(map( '{:+.2%}'.format, quote_df['change_pct'] )) ## Timestamp to datetime ## quote_df['datetime'] = pd.to_datetime( pd.to_numeric(quote_df['timestamp']), infer_datetime_format=True, #format='%Y-%m-%dT%H:%M:%S', errors='coerce' ) return quote_df def supported_symbol_info( key_name, source=Sources.hitbtc ): """find unique values for key_name in symbol feed Args: key_name (str): name of key to search source (:obj:`Enum`): source name Returns: (:obj:`list`): list of unique values """ if isinstance(source, str): source = Sources(source) if source == Sources.hitbtc: symbols_df = pd.DataFrame(hitbtc.quotes.get_supported_symbols_hitbtc()) elif source == Sources.cc: symbols_df = pd.DataFrame(cryptocompare.quotes.get_supported_symbols_cc()) else: # pragma: no cover raise exceptions.UnsupportedSource() unique_list = list(symbols_df[key_name].unique()) return unique_list def get_symbol_hitbtc( commodity_ticker, currency_ticker, logger=config.LOGGER ): """get valid ticker to look up Args: commodity_ticker (str): short-name for crypto coin currency_ticker (str): short-name for currency logger (:obj:`logging.logger`, optional): logging handle Returns: (str): valid ticker for HITBTC """ logger.info('--Fetching symbol list from API') symbols_df = pd.DataFrame(hitbtc.quotes.get_supported_symbols_hitbtc()) symbol = symbols_df.query( 'commodity==\'{commodity}\' & currency==\'{currency}\''.format( commodity=commodity_ticker.upper(), currency=currency_ticker.upper() )) if symbol.empty: raise exceptions.SymbolNotSupported() return symbol['symbol'].iloc[0] def get_quote_hitbtc( coin_list, currency='USD', to_yahoo=False, logger=config.LOGGER ): """fetch common summary data for crypto-coins Args: coin_list (:obj:`list`): list of tickers to look up' currency (str, optional): currency to FOREX against to_yahoo (bool, optional): convert names to yahoo analog logger (:obj:`logging.logger`, optional): logging handle Returns: (:obj:`pandas.DataFrame`): coin info for the day, JSONable """ logger.info('Generating quote for %s -- HitBTC', config._list_to_str(coin_list)) logger.info('--validating coin_list') ticker_list = hitbtc.quotes.coin_list_to_symbol_list( coin_list, currency=currency, strict=True ) logger.info('--fetching ticker data') raw_quote = hitbtc.quotes.get_ticker_hitbtc('') quote_df = pd.DataFrame(raw_quote) if to_yahoo: logger.info('--converting column names to yahoo style') quote_df = columns_to_yahoo(quote_df, Sources.hitbtc) logger.info('--filtering ticker data') quote_df = quote_df[quote_df['symbol'].isin(ticker_list)] quote_df = quote_df[list(quote_df.columns.values)].apply(pd.to_numeric, errors='ignore') quote_df['change_pct'] = (quote_df['last'] - quote_df['open']) / quote_df['open'] * 100 logger.debug(quote_df) return quote_df def get_orderbook_hitbtc( coin, which_book, currency='USD', logger=config.LOGGER ): """fetch current orderbook from hitBTC Args: coin (str): name of coin to fetch which_book (str): Enum, 'asks' or 'bids' currency (str, optional): currency to FOREX against logger (:obj:`logging.logger`, optional): logging handle Returns: (:obj:`pandas.DataFrame`): current coin order book """ logger.info('Generating orderbook for %s -- HitBTC', coin) order_enum = OrderBook(which_book) # validates which order book key to use logger.info('--validating coin') symbol = hitbtc.quotes.coin_list_to_symbol_list( [coin], currency=currency, strict=True )[0] logger.info('--fetching orderbook') raw_orderbook = hitbtc.quotes.get_order_book_hitbtc(symbol)[which_book] orderbook_df = pd.DataFrame(raw_orderbook, columns=['price', 'ammount']) orderbook_df['symbol'] = symbol orderbook_df['coin'] = coin orderbook_df['orderbook'] = which_book logger.debug(orderbook_df) return orderbook_df def get_quote_cc( coin_list, currency='USD', coin_info_df=None, to_yahoo=False, logger=config.LOGGER ): """fetch common summary data for crypto-coins Args: coin_list (:obj:`list`): list of tickers to look up' currency (str, optional): currency to FOREX against coin_info_df (:obj:`pandas.DataFrame`, optional): coin info (for caching) to_yahoo (bool, optional): convert names to yahoo analog logger (:obj:`logging.logger`, optional): logging handle Returns: (:obj:`pandas.DataFrame`): coin info for the day, JSONable """ logger.info('Generating quote for %s -- CryptoCompare', config._list_to_str(coin_list)) # TODO: only fetch symbol list when required? if coin_info_df is None: logger.info('--Gathering coin info') coin_info_df = pd.DataFrame(cryptocompare.quotes.get_supported_symbols_cc()) else: # make sure expected data is in there headers = list(coin_info_df.columns.values) assert 'Name' in headers # avoid merge issue logger.info('--Fetching ticker data') ticker_df = pd.DataFrame(cryptocompare.quotes.get_ticker_cc(coin_list, currency=currency)) logger.info('--combining dataframes') quote_df = pd.merge( ticker_df, coin_info_df, how='inner', left_on='FROMSYMBOL', right_on='Name' ) if to_yahoo: logger.info('--converting headers to yahoo format') quote_df = columns_to_yahoo( quote_df, Sources.cc ) quote_df = quote_df[list(quote_df.columns.values)].apply(pd.to_numeric, errors='ignore') logger.debug(quote_df) return quote_df def get_ohlc_cc( coin, limit, currency='USD', frequency=OHLCfrequency.day, logger=config.LOGGER ): """gather OHLC data for given coin Args: coin (str): name of coin to look up limit (int): total range for OHLC data (max 2000) currency (str, optional): currency to compare coin to frequency (:obj;`Enum`, optional): which range to use (minute, hour, day) logger (:obj:`logging.logger`, optional): logging handle Returns: (:obj:`pandas.DataFrame`): OHLC data """ if isinstance(frequency, str): frequency = OHLCfrequency(frequency) logger.info('Fetching OHLC data @%s for %s -- CryptoCompare', frequency.value, coin) data = cryptocompare.quotes.get_histo_day_cc( coin, limit, currency=currency, uri=frequency.address() ) ohlc_df = pd.DataFrame(data) ohlc_df['datetime'] =
pd.to_datetime(ohlc_df['time'], unit='s')
pandas.to_datetime
# -*- coding: utf-8 -*- """gender_detection.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1bu4brssep0L-q5nEmT9OBRykyBbvdu6S """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import feature_extraction, linear_model, model_selection, preprocessing from sklearn.preprocessing import StandardScaler import torch import torch.nn as nn import torch import librosa import librosa.display import os,glob from tqdm import tqdm_notebook import re import random from random import randint from sklearn.model_selection import train_test_split #!pip install wget #cd "/content/drive/My Drive/gender_detection/" from bs4 import BeautifulSoup from bs4.dammit import EncodingDetector import requests count=0 #79,80 for i in tqdm_notebook(range(83,84), total=1, unit="epoch"): print(i) parser = 'html.parser' # or 'lxml' (preferred) or 'html5lib', if installed resp = requests.get("https://www.openslr.org/"+str(i)+"/") http_encoding = resp.encoding if 'charset' in resp.headers.get('content-type', '').lower() else None html_encoding = EncodingDetector.find_declared_encoding(resp.content, is_html=True) encoding = html_encoding or http_encoding soup = BeautifulSoup(resp.content, parser, from_encoding=encoding) for link in soup.find_all('a', href=True): l=link["href"].split(".") if l[len(l)-1]=="zip" or l[len(l)-1]=="tgz": if l[1]=="openslr": count=count+1 name=l[len(l)-2].split("/") #print(link["href"],l[1],name[len(name)-1]) file_url = link["href"] #print(file_url) #!wget -c $file_url # r = requests.get(file_url, stream = True) # with open("/content/drive/My Drive/gender_detection/"+name[len(name)-1]+"."+l[len(l)-1], "wb") as file: # for block in r.iter_content(chunk_size = 1024): # if block: # file.write(block) #cd /content/drive/My Drive/gender_detection/female/ for filename in glob.glob(os.path.join("/content/drive/My Drive/gender_detection/female/", '*.zip')): print(filename) l=filename.split("/") l_1=l[len(l)-1].split("_") t=l[len(l)-1] l_2=l_1[len(l_1)-1].split(".") print(l_2[0]) #!unzip $t -d "/content/drive/My Drive/gender_detection/female_unzipped/" min=100000 count=0 count1=0 g=[] for filename in glob.glob(os.path.join("/content/drive/My Drive/gender_detection/male_unzipped/", '*.wav')): count1=count1+1 #print(filename) l=filename.split("/") l_1=l[len(l)-1].split("_") t=l_1[0] #print(t) if t not in g: g.append(t) #print(count1) print(g,count1) #!pip install soundfile import soundfile as sf ob = sf.SoundFile("/content/drive/My Drive/gender_detection/male_unzipped/clm_00610_00556859411.wav") print(ob.samplerate) for i in range(len(g)): g=['nom', 'wem', 'mim', 'som', 'irm', 'scm'] data_speech=pd.DataFrame(columns=["S1","sr","Gender"]) hop_length = 512 n_mels =128 n_fft = 2048 #count=0 for filename in glob.glob(os.path.join("/content/drive/My Drive/gender_detection/male_unzipped/", '*.wav')): l=filename.split("/") l_1=l[len(l)-1].split("_") t=l_1[0] if t == g[i]: y, sr = librosa.load(filename,sr=None) #print(librosa.load(filename,sr=None)) # trim silent edges speech, _ = librosa.effects.trim(y) #speech=speech[:100000] if speech.shape[0]>100000: #print(speech.shape[0]) speech=speech[:100000] #print(speech.shape[0]) S1=librosa.feature.mfcc(y=speech,sr=sr) #print(S1) gender="male" # if gender == "f": # gender="female" # if gender == "m": # gender = "male" temp=[] temp1=[] temp2=[] temp.append(np.array(S1)) temp1.append(gender) temp2.append(np.array(sr)) #print(temp) df_temp=pd.DataFrame(list(zip(temp,temp2,temp1)),columns=["S1","sr","Gender"]) data_speech=data_speech.append(df_temp) print(data_speech.shape) data_speech.to_pickle("/content/drive/My Drive/gender_speech_male_"+str(16+i)+".pkl") #cd /content/drive/My Drive/gender_detection/spanish #mkdir spanish for filename in glob.glob(os.path.join("/content/drive/My Drive/gender_detection/aida_tang_1/aidatatang_200zh/corpus/train", '*.tar.gz')): print(filename) l=filename.split("/") l_1=l[len(l)-1].split("_") t=l[len(l)-1] l_2=l_1[len(l_1)-1].split(".") print(t) #!tar -xvzf $t -C "/content/drive/My Drive/gender_detection/aida_tang/" #!tar -xvzf "/content/drive/My Drive/gender_detection/tedx_spanish_corpus.tgz" -C "/content/drive/My Drive/gender_detection/spanish/" for i in range(len(g)): data_speech=pd.DataFrame(columns=["S1","sr","Gender"]) hop_length = 512 n_mels =128 n_fft = 2048 #count=0 for filename in glob.glob(os.path.join("/content/drive/My Drive/gender_detection/female_1/", '*.wav')): l=filename.split("/") l_1=l[len(l)-1].split("_") t=l_1[0] if t == g[i]: y, sr = librosa.load(filename,sr=None) #print(librosa.load(filename,sr=None)) # trim silent edges speech, _ = librosa.effects.trim(y) #speech=speech[:100000] if speech.shape[0]>100000: #print(speech.shape[0]) speech=speech[:100000] #print(speech.shape[0]) S1=librosa.feature.mfcc(y=speech,sr=sr) #print(S1) gender="female" # if gender == "f": # gender="female" # if gender == "m": # gender = "male" temp=[] temp1=[] temp2=[] temp.append(np.array(S1)) temp1.append(gender) temp2.append(np.array(sr)) #print(temp) df_temp=pd.DataFrame(list(zip(temp,temp2,temp1)),columns=["S1","sr","Gender"]) data_speech=data_speech.append(df_temp) print(data_speech.shape) data_speech.to_pickle("/content/drive/My Drive/gender_speech_female_"+str(i+2)+".pkl") df_1=pd.read_pickle("/content/drive/My Drive/gender_speech_male_1.pkl") df_1.head() df_male=pd.DataFrame(columns=["S1","sr","Gender"]) for i in range(16,22): df_1=pd.read_pickle("/content/drive/My Drive/gender_speech_male_"+str(i)+".pkl") df_male=df_male.append(df_1) # train_inputs, test_inputs, train_labels, test_labels = train_test_split(df_male["S1"], df_male["Gender"],random_state=2018, test_size=0.1) # Scaler=StandardScaler() # train_inputs=Scaler.fit_transform(train_inputs) # test_inputs=Scaler.transform(test_inputs) # data_male_train = {"S1": train_inputs, # "Gender": train_labels} # df_male_train = pd.concat(data_male_train, # axis = 1) # data_male_test = {"S1": test_inputs, # "Gender": test_labels} # df_male_test = pd.concat(data_male_test, # axis = 1) df_female=pd.DataFrame(columns=["S1","sr","Gender"]) for i in range(19,24): df_1=pd.read_pickle("/content/drive/My Drive/gender_speech_female_"+str(i)+".pkl") df_female=df_female.append(df_1) # train_inputs, test_inputs, train_labels, test_labels = train_test_split(df_female["S1"], df_female["Gender"],random_state=2018, test_size=0.1) # Scaler=StandardScaler() # train_inputs=Scaler.fit_transform(train_inputs) # test_inputs=Scaler.transform(test_inputs) # data_female_train = {"S1": train_inputs, # "Gender": train_labels} # df_female_train = pd.concat(data_female_train, # axis = 1) # data_female_test = {"S1": test_inputs, # "Gender": test_labels} # df_female_test = pd.concat(data_female_test, # axis = 1) df=pd.DataFrame(columns=["S1","sr","Gender"]) df=df.append(df_male) df=df.append(df_female) df=df.sample(frac=1) # df_test=pd.DataFrame(columns=["S1","Gender"]) # df_test=df_test.append(df_male_test) # df_test=df_test.append(df_female_test) # df_test=df_test.sample(frac=1) df.to_pickle("/content/drive/My Drive/gender_detection/gender_speech_english.pkl") df_0=pd.read_pickle("/content/drive/My Drive/gender_detection/gender_speech.pkl") df_1=pd.read_pickle("/content/drive/My Drive/gender_detection/gender_speech_english.pkl") df=df_0.append(df_1) df.shape test=df["Gender"] train=df.drop("Gender",axis=1) train=train.drop("sr",axis=1) X_train,X_test,Y_train,Y_test=train_test_split(train,test,random_state=1,test_size=0.1) Y_1={"Gender":Y_train} Y_1=
pd.DataFrame(Y_1)
pandas.DataFrame
__all__=['xgrab_live', 'xgrab_rate'] import datetime as dt from parameters import interval, symbol from binance.client import Client from BinanceKeys import key, secretKey import pandas as pd import json # for parsing what binance sends back to us import numpy as np # numerical python, i usually need this somewhere import requests import traceback import time as tm client = Client(key(), secretKey()) def xgrab_rate(symbol, interval): """ Gets 500 last rates in a dataframe. Args: symbol (str): symbol of the coins (ex: BNBBUSD) interval (str): time interval (ex: 1h) Returns: dataframe: The dataframe containing the 500 last rates. """ root_url = "https://api.binance.com/api/v1/klines" # interval = '1h' url = root_url + "?symbol=" + symbol + "&interval=" + interval data = json.loads(requests.get(url).text) df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # *********************************************************************** # # V2W-BERT: A Python library for vulnerability classification # <NAME> (<EMAIL>) : Purdue University # <NAME> (<EMAIL>): Pacific Northwest National Laboratory # # *********************************************************************** # # # Copyright © 2022, Battelle Memorial Institute # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # # 1. Redistributions of source code must retain the above copyright notice, this # # list of conditions and the following disclaimer. # # # # 2. Redistributions in binary form must reproduce the above copyright notice, # # this list of conditions and the following disclaimer in the documentation # # and/or other materials provided with the distribution. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ## Download and Preprocess Latest Dataset # # In this script we first download all CVEs to-date. Use the NVD and Mitre hierarchy documents to prepare a train test validation set. # ## Import libraries # In[199]: import os import requests, zipfile, io import pickle import pandas as pd import numpy as np # Here, I have disabled a false alarm that would otherwise trip later in the project. pd.options.mode.chained_assignment = None # The datetime library will let me filter the data by reporting date. from datetime import datetime, timedelta # Since the NVD data is housed in JavaScript Object Notation (JSON) format, I will need the json_normalize function to access and manipulate the information. from pandas.io.json import json_normalize import sys import torch import re from ipynb.fs.full.Dataset import Data # In[200]: # Expanding view area to facilitate data manipulation. pd.set_option('display.max_rows', 20) pd.set_option('display.max_columns', 100) # In[201]: import argparse from argparse import ArgumentParser def get_configuration(): parser = ArgumentParser() parser.add_argument('--dir', type=str, default='Dataset') parser.add_argument('--from_year', type=int, default=2020) parser.add_argument('--to_year', type=int, default=2022) parser.add_argument('--from_train_year', type=int, default=1990) parser.add_argument('--to_train_year', type=int, default=2020) parser.add_argument('--from_test_year', type=int, default=2021) parser.add_argument('--to_test_year', type=int, default=2021) parser.add_argument('--from_val_year', type=int, default=2022) parser.add_argument('--to_val_year', type=int, default=2022) parser.add_argument('-f') ##dummy for jupyternotebook args = parser.parse_args() dict_args = vars(args) return args, dict_args args, dict_args=get_configuration() print(dict_args) print(args.dir) # In[ ]: # ### Configuration # In[202]: class DataPath(): def __init__(self, args, dataset_dir='',results_dir=''): #File locations self.PATH_TO_DATASETS_DIRECTORY = dataset_dir+'/NVD/raw/' self.PATH_TO_RESULTS_DIRECTORY = results_dir+'/NVD/processed/' self.NVD_CVE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CVE_data.csv' self.Graph_FILE=self.PATH_TO_RESULTS_DIRECTORY+'GRAPH_data' self.GRAPHVIZ_HIERARCHY=self.PATH_TO_RESULTS_DIRECTORY+'Hierarchy' self.MITRE_CWE_FILE=self.PATH_TO_DATASETS_DIRECTORY+'CWE_RC_1000.csv' self.NVD_CWE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CWE_data.csv' self.MASK_FILE = self.PATH_TO_RESULTS_DIRECTORY+'NVD_data' self.MERGED_NVD_CVE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CVE.csv' self.FILTERED_NVD_CWE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CWE.csv' self.YEARS=list(range(args.from_year,args.to_year+1)) self.TRAIN_YEARS=list(range(args.from_train_year,args.to_train_year+1)) self.VAL_YEARS=list(range(args.from_val_year,args.to_val_year+1)) self.TEST_YEARS=list(range(args.from_test_year,args.to_test_year+1)) if not os.path.exists(self.PATH_TO_DATASETS_DIRECTORY): print("Creating directory: ",self.PATH_TO_DATASETS_DIRECTORY) os.makedirs(self.PATH_TO_DATASETS_DIRECTORY) if not os.path.exists(self.PATH_TO_RESULTS_DIRECTORY): print("Creating directory: ",self.PATH_TO_RESULTS_DIRECTORY) os.makedirs(self.PATH_TO_RESULTS_DIRECTORY) class Config(DataPath): def __init__(self,args, dataset_dir='',results_dir=''): super(Config, self).__init__(args, dataset_dir, results_dir) self.CLUSTER_LABEL=0 self.download() def download(self): for year in self.YEARS: if not os.path.exists(self.PATH_TO_DATASETS_DIRECTORY+'nvdcve-1.1-'+str(year)+'.json'): url = 'https://nvd.nist.gov/feeds/json/cve/1.1/nvdcve-1.1-'+str(year)+'.json.zip' print("Downloading: ",url) r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(self.PATH_TO_DATASETS_DIRECTORY) print("CVEs downloaded") if not os.path.exists(self.MITRE_CWE_FILE): url = 'https://drive.google.com/uc?export=download&id=1-phSamb4RbxyoBc3AQ2xxKMSsK2DwPyn' print("Downloading: ",url) r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(self.PATH_TO_DATASETS_DIRECTORY) print("CWEs downloaded") config=Config(args,dataset_dir=args.dir,results_dir=args.dir) # ### ProfecessCVES # In[203]: def getDataFrame(config): df = [] counter=0 for year in config.YEARS: yearly_data = pd.read_json(config.PATH_TO_DATASETS_DIRECTORY+'nvdcve-1.1-'+str(year)+'.json') if counter == 0: df = yearly_data else: df = df.append(yearly_data) counter+=1 return df # In[204]: def removeREJECT(description): series=[] for x in description: try: if "REJECT" in (json_normalize(x)["value"])[0]: series.append(False) else: series.append(True) except: series.append(False) return pd.Series(series,index=description.index) # In[205]: def removeUnknownCWE(description): series=[] for x in description: try: if x == "UNKNOWN" or x == "NONE": series.append(False) else: series.append(True) except: series.append(False) return pd.Series(series,index=description.index) # In[206]: def getCVEDescription(df): CVE_entry = [] CVE_index = df["cve.description.description_data"].index for x in df["cve.description.description_data"]: try: raw_CVE_entry = json_normalize(x)["value"][0] clean_CVE_entry = str(raw_CVE_entry) CVE_entry.append(clean_CVE_entry) except: CVE_entry.append("NONE") CVE_entry = pd.Series(CVE_entry, index = CVE_index) return CVE_entry # In[207]: # Defining a function which I will use below def consolidate_unknowns(x): if x == "NVD-CWE-Other" or x == "NVD-CWE-noinfo": return "UNKNOWN" else: return x # In[208]: def getCWEs(df): CWE_entry = [] CWE_index = df["cve.problemtype.problemtype_data"].index for x in df["cve.problemtype.problemtype_data"]: try: CWE_normalized_json_step_1 = json_normalize(x) CWE_normalized_json_step_2 = CWE_normalized_json_step_1["description"][0] CWEs=[] #print(json_normalize(CWE_normalized_json_step_2)["value"]) for CWE in json_normalize(CWE_normalized_json_step_2)["value"]: #CWEs.append(consolidate_unknowns(str(CWE))) CWEs.append(str(CWE)) CWE_entry.append(CWEs) except: CWE_entry.append(['NONE']) CWE_entry = pd.Series(CWE_entry, index = CWE_index) return CWE_entry # In[209]: def ProcessDataset(config): print("Loading data from file---") df=getDataFrame(config) CVE_Items = json_normalize(df["CVE_Items"]) df = pd.concat([df.reset_index(), CVE_Items], axis=1) df = df.drop(["index", "CVE_Items"], axis=1) df = df.rename(columns={"cve.CVE_data_meta.ID": "CVE ID"}) CVE_ID = df["CVE ID"] df.drop(labels=["CVE ID"], axis=1,inplace = True) df.insert(0, "CVE ID", CVE_ID) ##remove description with REJECT print("Removing REJECTs---") df=df[removeREJECT(df["cve.description.description_data"])] ##Extract CVE description CVE_description=getCVEDescription(df) df.insert(1, "CVE Description", CVE_description) ##Extract CWEs print("Extracting CWEs---") CWE_entry=getCWEs(df) df.insert(2, "CWE Code", CWE_entry) # ##Remove CWEs we don't know true label # print("Removing Unknown CWEs---") # df=df[removeUnknownCWE(df["CWE Code 1"])] # Converting the data to pandas date-time format df["publishedDate"] = pd.to_datetime(df["publishedDate"]) return df # ### ProcessCWEs # In[210]: def processAndSaveCVE(config, LOAD_SAVED=True): if not os.path.exists(config.NVD_CVE_FILE) or LOAD_SAVED==False: df=ProcessDataset(config) df=df[['publishedDate', 'CVE ID', 'CVE Description', 'CWE Code']] df.to_csv(config.NVD_CVE_FILE,index=False) else: df=pd.read_csv(config.NVD_CVE_FILE) return df # In[211]: def ProcessCWE_NVD(config): # Importing BeautifulSoup and an xml parser to scrape the CWE definitions from the NVD web site from bs4 import BeautifulSoup import lxml.etree # loading the NVD CWE Definitions page and scraping it for the first table that appears NVD_CWE_description_url = requests.get("https://nvd.nist.gov/vuln/categories") CWE_definitions_page_soup = BeautifulSoup(NVD_CWE_description_url.content, "html.parser") table = CWE_definitions_page_soup.find_all('table')[0] df_CWE_definitions = pd.read_html(str(table))[0] return df_CWE_definitions # In[212]: def ProcessCWE_MITRE(config): print('Loading CWE file : {0}'.format(config.MITRE_CWE_FILE)) #df_CWE_definitions = pd.read_csv(config.MITRE_CWE_FILE, quotechar='"',delimiter=',', encoding='latin1',index_col=False) df_CWE_definitions = pd.read_csv(config.MITRE_CWE_FILE, delimiter=',', encoding='latin1',index_col=False) return df_CWE_definitions # In[213]: def processAndSaveCWE(config, LOAD_SAVED=True): if not os.path.exists(config.MITRE_CWE_FILE) or LOAD_SAVED==False: df_CWE_MITRE=ProcessCWE_MITRE(config) df_CWE_MITRE.to_csv(config.MITRE_CWE_FILE,index=False) else: df_CWE_MITRE=pd.read_csv(config.MITRE_CWE_FILE, index_col=False) if not os.path.exists(config.NVD_CWE_FILE) or LOAD_SAVED==False: df_CWE_NVD=ProcessCWE_NVD(config) df_CWE_NVD.to_csv(config.NVD_CWE_FILE,index=False) else: df_CWE_NVD=pd.read_csv(config.NVD_CWE_FILE,index_col=False) return df_CWE_MITRE, df_CWE_NVD # In[214]: #df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, True) # In[215]: #df_CWE_MITRE #df_CWE_NVD # In[216]: def load_preprocessed(config, LOAD_SAVED=True): df_CVE=processAndSaveCVE(config, LOAD_SAVED) df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, LOAD_SAVED=True) index1= np.argwhere(df_CWE_NVD['Name'].values == 'NVD-CWE-Other')[0][0] index2= np.argwhere(df_CWE_NVD['Name'].values == 'NVD-CWE-noinfo')[0][0] df_CWE_NVD.drop(index=[index1,index2], inplace = True) return df_CVE, df_CWE_NVD, df_CWE_MITRE # In[217]: #load_preprocessed(config, LOAD_SAVED=False) # ### Create Training and Test Dataset # In[218]: def getMask(config,df_CVE,df_CWE): n = len(df_CWE) m = len(df_CVE) #get date range train_start_date = pd.to_datetime(str(config.TRAIN_YEARS[0])+'-01-01').tz_localize('US/Eastern') train_end_date = pd.to_datetime(str(config.TRAIN_YEARS[-1])+'-01-01').tz_localize('US/Eastern') + timedelta(days=365) val_start_date = pd.to_datetime(str(config.VAL_YEARS[0])+'-01-01').tz_localize('US/Eastern') val_end_date = pd.to_datetime(str(config.VAL_YEARS[-1])+'-01-01').tz_localize('US/Eastern') + timedelta(days=365) test_start_date = pd.to_datetime(str(config.TEST_YEARS[0])+'-01-01').tz_localize('US/Eastern') test_end_date = pd.to_datetime(str(config.TEST_YEARS[-1])+'-01-01').tz_localize('US/Eastern') + timedelta(days=365) cwe_ids=df_CWE['Name'] cwe_map=dict(zip(cwe_ids, list(range(n)))) index_cwe_map = dict(zip(list(range(n)),cwe_ids)) #creating y and finding labeled y=torch.zeros((m,n),dtype=torch.long) labeled_mask= torch.zeros(m, dtype=torch.bool) train_index = torch.zeros(m, dtype=torch.bool) test_index = torch.zeros(m, dtype=torch.bool) val_index = torch.zeros(m, dtype=torch.bool) CWEs=df_CVE['CWE Code'] Dates=df_CVE['publishedDate'] for i,row in enumerate(zip(CWEs,Dates)): cwes=row[0] date=row[1] if(type(cwes) == str): cwes=[cwe for cwe in cwes.strip('[]').split("'") if not (cwe==',' or cwe==', ' or cwe=='''''')] if(type(date) == str): date=pd.to_datetime(date) for cwe in cwes: if cwe in cwe_map: y[i][cwe_map[cwe]]=1 if torch.sum(y[i])>0: labeled_mask[i]=True if(train_start_date<date and date<train_end_date): train_index[i]=True elif(val_start_date<date and date<val_end_date): val_index[i]=True elif(test_start_date<date and date<test_end_date): test_index[i]=True else: print(date,'-> not covered') ##convert to tensors data=Data(train_mask=train_index, val_mask=val_index, test_mask=test_index, y=y, num_nodes=m) return data # In[219]: def getPercent(data,df_CVE,df_CWE, max_data_inaclass=500): CWEs=df_CVE['CWE Code'] train_mask= (data.train_mask == True).nonzero().flatten().numpy() CWEs_train={} for key in train_mask: cwes=CWEs[key] if(type(cwes) == str): cwes=[cwe.strip() for cwe in cwes.strip('[]').split("'") if not (cwe==',' or cwe==', ' or cwe=='''''')] for cwe in cwes: if cwe in CWEs_train: CWEs_train[cwe].append(key) else: CWEs_train[cwe]=[key] required_train_mask = torch.zeros(len(data.train_mask), dtype=torch.bool) for key, values in CWEs_train.items(): if(len(values)<max_data_inaclass): required_train_mask[values]=True else: np.random.shuffle(values) takeamnt=max_data_inaclass required_train_mask[values[:takeamnt]]=True data.train_mask=required_train_mask return data # In[ ]: # In[220]: from collections import OrderedDict def CWE_description(row): return str(row['Name'])+" "+str(row['Description'])+" "+str(row['Extended Description'])+" "+str(row['Common Consequences']) def CWE_description_NVD(row,df_CWE_Mitre): cwe=row['Name'] cwe_id = int(re.findall("\d+", cwe)[0]) description = df_CWE_Mitre[df_CWE_Mitre['CWE-ID'].values==cwe_id]['CVE Description'].values if len(description)>0: return description[0] else: return '' def UpdateData(data, df_CVE, df_CWE_NVD, df_CWE_MITRE): df_CWE_MITRE['CVE Description']= df_CWE_MITRE.apply(lambda row: CWE_description(row), axis=1) for i, row in df_CWE_NVD.iterrows(): description=CWE_description_NVD(row, df_CWE_MITRE) #df_CWE_NVD.set_value(i,'CVE Description',description) df_CWE_NVD.at[i,'CVE Description']=description df_CWE_NVD['CWE Code']= df_CWE_NVD.apply(lambda row: [str(row['Name'])], axis=1) df_CWE_NVD=df_CWE_NVD[['CVE Description','CWE Code','Name']] df_CVE_updated =
pd.concat([df_CVE,df_CWE_NVD],ignore_index=True, sort=False)
pandas.concat
#%% import pandas as pd # %matplotlib inline import matplotlib.pyplot as plt csv_path = "C:\\Users\\jackm\\Documents\\Hands On ML\\handson-ml-master\\datasets\\housing\\housing.csv" import numpy as np import hashlib #%% def split_train_test(data, test_ratio): shuffled_indices = np.random.permutation(len(data)) test_set_size = int(len(data) * test_ratio) test_indices = shuffled_indices[:test_set_size] train_indices = shuffled_indices[test_set_size:] return data.iloc[train_indices], data.iloc[test_indices] def test_set_check(identifier, test_ratio, hash): return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio def split_train_test_by_id(data, test_ratio, id_column, hash=hashlib.md5): ids = data[id_column] in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio, hash)) return data.loc[~in_test_set], data.loc[in_test_set] #%% housing = pd.read_csv(csv_path) #%% display(housing) display(housing.info()) display(housing.describe()) #%% housing.hist(bins=50, figsize=(20, 15)) plt.show() #%% train_set, test_set = split_train_test(housing, 0.2) print("{:f} train + {:2f} test".format(len(train_set), len(test_set))) #%% housing_with_id = housing.reset_index() train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "index") #%% housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"] train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "id") #%% from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42) #%% housing["income_cat"] = np.ceil(housing["median_income"] / 1.5) housing["income_cat"].where(housing["income_cat"] < 5, 5.0, inplace=True) #%% from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing["income_cat"]): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] #%% housing["income_cat"].value_counts() / len(housing) #%% for set in (strat_train_set, strat_test_set): set.drop(["income_cat"], axis=1, inplace=True) #%% housing = strat_test_set.copy() housing.plot( kind="scatter", x="longitude", y="latitude", alpha=0.4, s=housing["population"] / 100, label="population", c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True, ) plt.legend() #%% corr_matrix = housing.corr() print(corr_matrix["median_house_value"].sort_values(ascending=False)) #%% from pandas.tools.plotting import scatter_matrix attributes = [ "median_house_value", "median_income", "total_rooms", "housing_median_age", ] scatter_matrix(housing[attributes], figsize=(12, 8)) #%% housing.plot(kind="scatter", x="median_income", y="median_house_value", alpha=0.1) #%% housing["rooms_per_household"] = housing["total_rooms"] / housing["households"] housing["bedrooms_per_room"] = housing["total_bedrooms"] / housing["total_rooms"] housing["population_per_household"] = housing["population"] / housing["households"] #%% housing = strat_train_set.drop("median_house_value", axis=1) housing_labels = strat_train_set["median_house_value"].copy() #%% housing.dropna(subset=["total_bedrooms"]) #%% from sklearn.preprocessing import Imputer imputer = Imputer(strategy="median") #%% housing_num = housing.drop("ocean_proximity", axis=1) #%% imputer.fit(housing_num) #%% X = imputer.transform(housing_num) display(X) #%% housing_tr =
pd.DataFrame(X, columns=housing_num.columns)
pandas.DataFrame
import numpy as np from numpy import where from flask import Flask, request, jsonify, render_template import pandas as pd from sklearn.ensemble import IsolationForest from pyod.models.knn import KNN import json from flask import send_from_directory from flask import current_app app = Flask(__name__) class Detect: def __init__(self, file, non_num): self.file = file self.non_num = non_num def IQR(self): # anomaly=pd.DataFrame() data = pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data.dropna(axis=0,inplace=True) # data=data.select_dtypes(include=['float64','int64']) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 IQR_Out = data[((data < (Q1 - 1.5 * IQR)) |(data > (Q3 + 1.5 * IQR))).any(axis=1)] IQR_Out = non_num.join(IQR_Out, how='inner') IQR_Out.to_csv(r'IQR_Outlier.csv') # IQR Method def isolation(self): anomaly=pd.DataFrame() data_n=pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data_n.dropna(axis=0,inplace=True) # data_n=data_n.select_dtypes(include=['float64','int64']) model = IsolationForest(n_estimators=50, max_samples=500, contamination=.01, bootstrap=False, n_jobs=1, random_state=1, verbose=0, warm_start=False).fit(data_n) data_n['anomaly_score'] = model.predict(data_n) anomaly=data_n[data_n['anomaly_score']==-1] anomaly = non_num.join(anomaly, how='inner') anomaly.to_csv("outlierss_isolation.csv") # Isolation forest Method def mcd(self): anomaly=pd.DataFrame() data=pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data.dropna(axis=0,inplace=True) # data=data.select_dtypes(include=['float64','int64']) from sklearn.covariance import EllipticEnvelope model = EllipticEnvelope(contamination=0.01).fit(data) data['anomaly_score'] = model.predict(data) anomaly=data[data['anomaly_score']==-1] anomaly = non_num.join(anomaly, how='inner') anomaly.to_csv("outlierss_mcd.csv") # Minimum covariance determinant Method def local(self): from numpy import quantile, where, random import pandas as pd anomaly = pd.DataFrame() df =
pd.DataFrame(self.file)
pandas.DataFrame
# this program breaks down into a csv where phosphosite orthologs could be lost in the PhosphositeOrthology program # PhosphositePlus is being used to verify that my orthologs are correct but PSP does not have everything which is the # reason for using dbPAF # we want to make sure that the UniprotIDs contained in BOTH PSP and dbPAF end up in the orthologs list (ID_in_dbPAF) # possible reasons why the candidates may not make it through are: # dbPAF-OMA conversion table does not contain uniprotID -- see about checking both rev & unrev ID (ID_in_dbPAF_OMA_conversion_table) # **** issues with having both reviewed and unreviewed ids in conversion table # OMA program does not actually identify ortholog that PSP does -- in this case no fix (in_OMA_orthologs) # or my alignment does not work well to identify phos orthologs (in_griffin_phos_orthologs) import pandas as pd from sqlalchemy import create_engine import os # Don't use excel file, interprets genes as dates dbPAF_df = pd.read_table('../TOTAL.elm', dtype=object) psp_df = pd.read_table('Phosphorylation_site_dataset.tab', dtype=object) psp_df = psp_df.loc[psp_df['ORGANISM'].isin(['human', 'mouse', 'rat', 'fruit fly'])] # filter out animals not in this list comparison_df = psp_df[['SITE_GRP_ID', 'ORGANISM', 'ACC_ID', 'PROTEIN', 'MOD_RSD']].copy() # copy only necessary columns comparison_df.rename(columns={'SITE_GRP_ID': 'PSP_SITE_GRP_ID', 'ACC_ID': 'Uniprot_ACC_ID'}, inplace=True) # give cols more specific names comparison_df['Position'] = comparison_df.MOD_RSD.str[1:-2] # 'S23-p' --> '23' # Position is also str in dbPAF_df comparison_df['Type'] = comparison_df.MOD_RSD.str[0] # 'S23-p' --> 'S' # check if the UniprotIDs in PhosphositePlus are also in dbPAF comparison_df['ID_in_dbPAF'] = comparison_df['Uniprot_ACC_ID'].isin(dbPAF_df['Uniprot']) # check if UniprotID, site, and amino acid type from PSP are also in dbPAF comparison_df['ID_and_site_in_dbPAF'] = comparison_df['Uniprot_ACC_ID'].isin(dbPAF_df['Uniprot']) \ & comparison_df['Position'].isin(dbPAF_df['Position']) \ & comparison_df['Type'].isin(dbPAF_df['Type']) # check if the UniprotIDs from PSP are in the dbPAF to OMA conversion table oma_uniprot_df = pd.read_table('oma-uniprot_clean.txt', dtype=object) comparison_df['ID_in_OMA-dbPAF_conversion_table'] = comparison_df['Uniprot_ACC_ID'].isin(oma_uniprot_df['uniprot']) # check if UniprotID in OMA orthologs file engine = create_engine('sqlite:///../phosphosite_orthology.db') # create db in outside directory table_iter = engine.execute("SELECT name FROM sqlite_master WHERE type='table';") ortholog_species_pairs = ['CAEEL-HUMAN_UniprotIDs', 'DROME-HUMAN_UniprotIDs', 'MOUSE-HUMAN_UniprotIDs', 'RATNO-HUMAN_UniprotIDs', 'SCHPO-HUMAN_UniprotIDs', 'YEAST-HUMAN_UniprotIDs'] oma_ortholog_df = pd.DataFrame() for i in ortholog_species_pairs: temp_oma_orth_df =
pd.read_sql_table(i, engine)
pandas.read_sql_table
#!/usr/bin/env python # cardinal_pythonlib/psychiatry/timeline.py """ =============================================================================== Original code copyright (C) 2009-2020 <NAME> (<EMAIL>). This file is part of cardinal_pythonlib. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =============================================================================== Timeline calculations. Primarily for a lithium/renal function project, Apr 2019. Code is in DRAFT. Usage from R: .. code-block:: r # ------------------------------------------------------------------------- # Load libraries # ------------------------------------------------------------------------- RUN_ONCE_ONLY <- ' library(devtools) devtools::install_github("rstudio/reticulate") # get latest version ' library(data.table) library(reticulate) # ------------------------------------------------------------------------- # Set up reticulate # ------------------------------------------------------------------------- VENV <- "~/dev/venvs/cardinal_pythonlib" # or your preferred virtualenv PYTHON_EXECUTABLE <- ifelse( .Platform$OS.type == "windows", file.path(VENV, "Scripts", "python.exe"), # Windows file.path(VENV, "bin", "python") # Linux ) reticulate::use_python(PYTHON_EXECUTABLE, required=TRUE) # ------------------------------------------------------------------------- # Import Python modules # ------------------------------------------------------------------------- cpl_version <- reticulate::import("cardinal_pythonlib.version") cpl_version$assert_version_eq("1.0.50") cpl_logs <- reticulate::import("cardinal_pythonlib.logs") cpl_logs$main_only_quicksetup_rootlogger() cpl_timeline <- reticulate::import("cardinal_pythonlib.psychiatry.timeline") # ------------------------------------------------------------------------- # Do something # ------------------------------------------------------------------------- testdata_drug_events <- data.table( patient_id=c( rep("Alice", 3), rep("Bob", 3) ), drug_event_datetime=as.Date(c( # Alice "2018-01-05", "2018-01-20", "2018-04-01", # Bob "2018-06-05", "2018-08-20", "2018-10-01" )) ) testdata_query_times <- data.table( patient_id=c( rep("Alice", 3), rep("Bob", 3) ), start=as.Date(c( # Alice rep("2017-01-01", 3), # Bob rep("2015-01-01", 3) )), when=as.Date(c( # Alice "2018-01-01", "2018-01-10", "2018-02-01", # Bob "2018-01-01", "2018-09-10", "2019-02-01" )) ) testresult <- data.table(cpl_timeline$cumulative_time_on_drug( drug_events_df=testdata_drug_events, event_lasts_for_quantity=3, event_lasts_for_units="days", query_times_df=testdata_query_times, patient_colname="patient_id", event_datetime_colname="drug_event_datetime", start_colname="start", when_colname="when", debug=TRUE )) print(testresult) The result should be: .. code-block:: none > print(testdata_drug_events) patient_id drug_event_datetime 1: Alice 2018-01-05 2: Alice 2018-01-20 3: Alice 2018-04-01 4: Bob 2018-06-05 5: Bob 2018-08-20 6: Bob 2018-10-01 > print(testdata_query_times) patient_id start when 1: Alice 2017-01-01 2018-01-01 2: Alice 2017-01-01 2018-01-10 3: Alice 2017-01-01 2018-02-01 4: Bob 2015-01-01 2018-01-01 5: Bob 2015-01-01 2018-09-10 6: Bob 2015-01-01 2019-02-01 > print(testresult) patient_id start t before_days during_days after_days 1: Alice 2017-01-01 2018-01-01 365 0 0 2: Alice 2017-01-01 2018-01-10 369 3 2 3: Alice 2017-01-01 2018-02-01 369 6 21 4: Bob 2015-01-01 2018-01-01 1096 0 0 5: Bob 2015-01-01 2018-09-10 1251 6 91 6: Bob 2015-01-01 2019-02-01 1251 9 232 However, there is a ``reticulate`` bug that can cause problems, by corrupting dates passed from R to Python: .. code-block:: r # PROBLEM on 2018-04-05, with reticulate 1.11.1: # - the R data.table is fine # - all the dates become the same date when it's seen by Python (the value # of the first row in each date column) # - when used without R, the Python code is fine # - therefore, a problem with reticulate converting data for Python # - same with data.frame() as with data.table() # - same with as.Date.POSIXct() and as.Date.POSIXlt() as with as.Date() # Further test: cpl_rfunc <- reticulate::import("cardinal_pythonlib.psychiatry.rfunc") cat(cpl_rfunc$get_python_repr(testdata_drug_events)) cat(cpl_rfunc$get_python_repr_of_type(testdata_drug_events)) print(testdata_drug_events) print(reticulate::r_to_py(testdata_drug_events)) # Minimum reproducible example: library(reticulate) testdata_drug_events <- data.frame( patient_id=c( rep("Alice", 3), rep("Bob", 3) ), drug_event_datetime=as.Date(c( # Alice "2018-01-05", "2018-01-20", "2018-04-01", # Bob "2018-06-05", "2018-08-20", "2018-10-01" )) ) print(testdata_drug_events) print(reticulate::r_to_py(testdata_drug_events)) # The R data is: # # patient_id drug_event_datetime # 1 Alice 2018-01-05 # 2 Alice 2018-01-20 # 3 Alice 2018-04-01 # 4 Bob 2018-06-05 # 5 Bob 2018-08-20 # 6 Bob 2018-10-01 # # Output from reticulate::r_to_py() in the buggy version is: # # patient_id drug_event_datetime # 0 Alice 2018-01-05 # 1 Alice 2018-01-05 # 2 Alice 2018-01-05 # 3 Bob 2018-01-05 # 4 Bob 2018-01-05 # 5 Bob 2018-01-05 # # Known bug: https://github.com/rstudio/reticulate/issues/454 # # Use remove.packages() then reinstall from github as above, giving # reticulate_1.11.1-9000 [see sessionInfo()]... # ... yes, that fixes it. """ from collections import defaultdict import datetime import logging import sys from typing import Any, Dict, List import unittest from numpy import array from pandas import DataFrame from cardinal_pythonlib.interval import Interval, IntervalList from cardinal_pythonlib.logs import ( BraceStyleAdapter, main_only_quicksetup_rootlogger, ) log = BraceStyleAdapter(logging.getLogger(__name__)) DEFAULT_PATIENT_COLNAME = "patient_id" DEFAULT_DRUG_EVENT_DATETIME_COLNAME = "drug_event_datetime" DEFAULT_START_DATETIME_COLNAME = "start" DEFAULT_QUERY_DATETIME_COLNAME = "when" def drug_timelines( drug_events_df: DataFrame, event_lasts_for: datetime.timedelta, patient_colname: str = DEFAULT_PATIENT_COLNAME, event_datetime_colname: str = DEFAULT_DRUG_EVENT_DATETIME_COLNAME) \ -> Dict[Any, IntervalList]: """ Takes a set of drug event start times (one or more per patient), plus a fixed time that each event is presumed to last for, and returns an :class:`IntervalList` for each patient representing the set of events (which may overlap, in which case they will be amalgamated). Args: drug_events_df: pandas :class:`DataFrame` containing the event data event_lasts_for: when an event occurs, how long is it assumed to last for? For example, if a prescription of lithium occurs on 2001-01-01, how long is the patient presumed to be taking lithium as a consequence (e.g. 1 day? 28 days? 6 months?) patient_colname: name of the column in ``drug_events_df`` containing the patient ID event_datetime_colname: name of the column in ``drug_events_df`` containing the date/time of each event Returns: dict: mapping patient ID to a :class:`IntervalList` object indicating the amalgamated intervals from the events """ sourcecolnum_pt = drug_events_df.columns.get_loc(patient_colname) sourcecolnum_when = drug_events_df.columns.get_loc(event_datetime_colname) timelines = defaultdict(IntervalList) nrows = len(drug_events_df) for rowidx in range(nrows): patient_id = drug_events_df.iat[rowidx, sourcecolnum_pt] event_when = drug_events_df.iat[rowidx, sourcecolnum_when] interval = Interval(event_when, event_when + event_lasts_for) ivlist = timelines[patient_id] # will create if unknown ivlist.add(interval) return timelines DTYPE_STRING = "<U255" # ... see treatment_resistant_depression.py DTYPE_DATETIME = "datetime64[s]" # ... https://docs.scipy.org/doc/numpy/reference/arrays.datetime.html DTYPE_FLOAT = "Float64" # ... https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html DTYPE_TIMEDELTA = "timedelta64" RCN_PATIENT_ID = "patient_id" # RCN: "result column name" RCN_START = "start" RCN_TIME = "t" RCN_BEFORE_TIMEDELTA = "before_timedelta" RCN_DURING_TIMEDELTA = "during_timedelta" RCN_AFTER_TIMEDELTA = "after_timedelta" RCN_BEFORE_DAYS = "before_days" RCN_DURING_DAYS = "during_days" RCN_AFTER_DAYS = "after_days" def cumulative_time_on_drug( drug_events_df: DataFrame, query_times_df: DataFrame, event_lasts_for_timedelta: datetime.timedelta = None, event_lasts_for_quantity: float = None, event_lasts_for_units: str = None, patient_colname: str = DEFAULT_PATIENT_COLNAME, event_datetime_colname: str = DEFAULT_DRUG_EVENT_DATETIME_COLNAME, start_colname: str = DEFAULT_START_DATETIME_COLNAME, when_colname: str = DEFAULT_QUERY_DATETIME_COLNAME, include_timedelta_in_output: bool = False, debug: bool = False) \ -> DataFrame: """ Args: drug_events_df: pandas :class:`DataFrame` containing the event data, with columns named according to ``patient_colname``, ``event_datetime_colname`` event_lasts_for_timedelta: when an event occurs, how long is it assumed to last for? For example, if a prescription of lithium occurs on 2001-01-01, how long is the patient presumed to be taking lithium as a consequence (e.g. 1 day? 28 days? 6 months?) event_lasts_for_quantity: as an alternative to ``event_lasts_for_timedelta``, particularly if you are calling from R to Python via ``reticulate`` (which doesn't convert R ``as.difftime()`` to Python ``datetime.timedelta``), you can specify ``event_lasts_for_quantity``, a number and ``event_lasts_for_units`` (q.v.). event_lasts_for_units: specify the units for ``event_lasts_for_quantity`` (q.v.), if used; e.g. ``"days"``. The string value must be the name of an argument to the Python ``datetime.timedelta`` constructor. query_times_df: times to query for, with columns named according to ``patient_colname``, ``start_colname``, and ``when_colname`` patient_colname: name of the column in ``drug_events_df`` and ``query_time_df`` containing the patient ID event_datetime_colname: name of the column in ``drug_events_df`` containing the date/time of each event start_colname: name of the column in ``query_time_df`` containing the date/time representing the overall start time for the relevant patient (from which cumulative times are calculated) when_colname: name of the column in ``query_time_df`` containing date/time values at which to query include_timedelta_in_output: include ``datetime.timedelta`` values in the output? The default is ``False`` as this isn't supported by R/``reticulate``. debug: print debugging information to the log? Returns: :class:`DataFrame` with the requested data """ if event_lasts_for_timedelta is None: assert event_lasts_for_quantity and event_lasts_for_units timedelta_dict = {event_lasts_for_units: event_lasts_for_quantity} event_lasts_for_timedelta = datetime.timedelta(**timedelta_dict) if debug: log.critical("drug_events_df:\n{!r}", drug_events_df) log.critical("event_lasts_for:\n{!r}", event_lasts_for_timedelta) log.critical("query_times_df:\n{!r}", query_times_df) timelines = drug_timelines( drug_events_df=drug_events_df, event_lasts_for=event_lasts_for_timedelta, patient_colname=patient_colname, event_datetime_colname=event_datetime_colname, ) query_nrow = len(query_times_df) ct_coldefs = [ # column definitions: (RCN_PATIENT_ID, DTYPE_STRING), (RCN_START, DTYPE_DATETIME), (RCN_TIME, DTYPE_DATETIME), (RCN_BEFORE_DAYS, DTYPE_FLOAT), (RCN_DURING_DAYS, DTYPE_FLOAT), (RCN_AFTER_DAYS, DTYPE_FLOAT), ] if include_timedelta_in_output: ct_coldefs.extend([ (RCN_BEFORE_TIMEDELTA, DTYPE_TIMEDELTA), (RCN_DURING_TIMEDELTA, DTYPE_TIMEDELTA), (RCN_AFTER_TIMEDELTA, DTYPE_TIMEDELTA), ]) ct_arr = array([None] * query_nrow, dtype=ct_coldefs) # log.debug("ct_arr:\n{!r}", ct_arr) cumulative_times = DataFrame(ct_arr, index=list(range(query_nrow))) # log.debug("cumulative_times:\n{!r}", cumulative_times) # So we can use the fast "iat" function. sourcecolnum_pt = query_times_df.columns.get_loc(patient_colname) sourcecolnum_start = query_times_df.columns.get_loc(start_colname) sourcecolnum_when = query_times_df.columns.get_loc(when_colname) dest_colnum_pt = cumulative_times.columns.get_loc(RCN_PATIENT_ID) dest_colnum_start = cumulative_times.columns.get_loc(RCN_START) dest_colnum_t = cumulative_times.columns.get_loc(RCN_TIME) dest_colnum_before_days = cumulative_times.columns.get_loc(RCN_BEFORE_DAYS) dest_colnum_during_days = cumulative_times.columns.get_loc(RCN_DURING_DAYS) dest_colnum_after_days = cumulative_times.columns.get_loc(RCN_AFTER_DAYS) if include_timedelta_in_output: dest_colnum_before_dt = cumulative_times.columns.get_loc(RCN_BEFORE_TIMEDELTA) # noqa dest_colnum_during_dt = cumulative_times.columns.get_loc(RCN_DURING_TIMEDELTA) # noqa dest_colnum_after_dt = cumulative_times.columns.get_loc(RCN_AFTER_TIMEDELTA) # noqa else: # for type checker dest_colnum_before_dt = 0 dest_colnum_during_dt = 0 dest_colnum_after_dt = 0 for rowidx in range(query_nrow): patient_id = query_times_df.iat[rowidx, sourcecolnum_pt] start = query_times_df.iat[rowidx, sourcecolnum_start] when = query_times_df.iat[rowidx, sourcecolnum_when] ivlist = timelines[patient_id] # log.critical("ivlist: {!r}", ivlist) before, during, after = ivlist.cumulative_before_during_after(start, when) # log.critical( # "{!r}.cumulative_before_during_after(start={!r}, when={!r}) " # "-> {!r}, {!r}, {!r}", # ivlist, start, when, # before, during, after # ) cumulative_times.iat[rowidx, dest_colnum_pt] = patient_id cumulative_times.iat[rowidx, dest_colnum_start] = start cumulative_times.iat[rowidx, dest_colnum_t] = when cumulative_times.iat[rowidx, dest_colnum_before_days] = before.days cumulative_times.iat[rowidx, dest_colnum_during_days] = during.days cumulative_times.iat[rowidx, dest_colnum_after_days] = after.days if include_timedelta_in_output: cumulative_times.iat[rowidx, dest_colnum_before_dt] = before cumulative_times.iat[rowidx, dest_colnum_during_dt] = during cumulative_times.iat[rowidx, dest_colnum_after_dt] = after return cumulative_times # ============================================================================= # Unit testing # ============================================================================= class TestTimeline(unittest.TestCase): """ Unit tests. """ DATEFORMAT = "%Y-%m-%d" DATETIMEFORMAT = "%Y-%m-%d %H:%M" DRUG_EVENT_TIME = " 00:00" # " 09:00" QUERY_EVENT_TIME = " 00:00" # " 12:00" @classmethod def dateseq(cls, first: str, last: str, time_suffix: str = "") -> List[datetime.datetime]: fmt = cls.DATETIMEFORMAT if time_suffix else cls.DATEFORMAT if time_suffix: first += time_suffix last += time_suffix dfirst = datetime.datetime.strptime(first, fmt) dlast = datetime.datetime.strptime(last, fmt) assert dfirst <= dlast dates = [] # type: List[datetime.datetime] d = dfirst while d <= dlast: dates.append(d) d += datetime.timedelta(days=1) return dates def test_timeline(self) -> None: event_lasts_for = datetime.timedelta(weeks=4) # event_lasts_for = datetime.timedelta(days=3) log.debug("event_lasts_for: {!r}", event_lasts_for) alice = "Alice" drug_events_arr = array( [ # Alice (alice, "2018-01-05" + self.DRUG_EVENT_TIME), (alice, "2018-01-20" + self.DRUG_EVENT_TIME), (alice, "2018-04-01" + self.DRUG_EVENT_TIME), ], dtype=[ (DEFAULT_PATIENT_COLNAME, DTYPE_STRING), (DEFAULT_DRUG_EVENT_DATETIME_COLNAME, DTYPE_DATETIME), ] ) drug_events_df = DataFrame.from_records(drug_events_arr) log.debug("drug_events_df:\n{!r}", drug_events_df) start = datetime.datetime.strptime("2017-01-01" + self.DRUG_EVENT_TIME, self.DATETIMEFORMAT) log.debug("start: {!r}", start) qdata_rows = [] for dt in self.dateseq("2018-01-01", "2018-05-30", time_suffix=self.QUERY_EVENT_TIME): qdata_rows.append((alice, start, dt)) query_times_arr = array( qdata_rows, dtype=[ (DEFAULT_PATIENT_COLNAME, DTYPE_STRING), (DEFAULT_START_DATETIME_COLNAME, DTYPE_DATETIME), (DEFAULT_QUERY_DATETIME_COLNAME, DTYPE_DATETIME), ] ) query_times_df =
DataFrame.from_records(query_times_arr)
pandas.DataFrame.from_records
import json import sys from functools import partial import numpy as np import pandas as pd if sys.version_info[0] < 3: pass else: pass from tqdm import tqdm def create_et_data(data, n_bins=5): data["et_data"] = data['et_data'] \ .apply(str) \ .str.replace('$', ',', regex=False) et_indices = data[(pd.notna(data['et_data'])) & ~(data['et_data'].isin(['"', '[]', 'nan']))].index index_bins = pd.cut(et_indices, bins=n_bins, labels=np.arange(n_bins)) data_et =
pd.DataFrame([], columns=['x', 'y', 't'])
pandas.DataFrame
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A") ) tm.assert_frame_equal(result, expected) result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]), ) tm.assert_frame_equal(result, expected) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_timedelta64_block(self): from pandas import to_timedelta rng = to_timedelta(np.arange(10), unit="s") df = DataFrame({"time": rng}) result = concat([df, df]) assert (result.iloc[:10]["time"] == rng).all() assert (result.iloc[10:]["time"] == rng).all() def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat(dict(a=None, b=df0, c=df0[:2], d=df0[:1], e=df0)) expected = concat(dict(b=df0, c=df0[:2], d=df0[:1], e=df0)) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result = concat([df1, df2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=[], dtype="int64") for how, expected in [("inner", df_expected), ("outer", df_a)]: result = pd.concat([df_a, df_empty], axis=1, join=how) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_same_names_ignore_index(self): dates = date_range("01-Jan-2013", "01-Jan-2014", freq="MS")[0:-1] s1 = Series(randn(len(dates)), index=dates, name="value") s2 = Series(randn(len(dates)), index=dates, name="value") result = concat([s1, s2], axis=1, ignore_index=True) expected = Index([0, 1]) tm.assert_index_equal(result.columns, expected) def test_concat_iterables(self): # GH8645 check concat works with tuples, list, generators, and weird # stuff like deque and custom iterables df1 = DataFrame([1, 2, 3]) df2 = DataFrame([4, 5, 6]) expected = DataFrame([1, 2, 3, 4, 5, 6]) tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected) tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected) tm.assert_frame_equal( concat((df for df in (df1, df2)), ignore_index=True), expected ) tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected) class CustomIterator1: def __len__(self) -> int: return 2 def __getitem__(self, index): try: return {0: df1, 1: df2}[index] except KeyError as err: raise IndexError from err tm.assert_frame_equal(pd.concat(CustomIterator1(), ignore_index=True), expected) class CustomIterator2(abc.Iterable): def __iter__(self): yield df1 yield df2 tm.assert_frame_equal(pd.concat(CustomIterator2(), ignore_index=True), expected) def test_concat_invalid(self): # trying to concat a ndframe with a non-ndframe df1 = tm.makeCustomDataframe(10, 2) for obj in [1, dict(), [1, 2], (1, 2)]: msg = ( f"cannot concatenate object of type '{type(obj)}'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): concat([df1, obj]) def test_concat_invalid_first_argument(self): df1 = tm.makeCustomDataframe(10, 2) df2 = tm.makeCustomDataframe(10, 2) msg = ( "first argument must be an iterable of pandas " 'objects, you passed an object of type "DataFrame"' ) with pytest.raises(TypeError, match=msg): concat(df1, df2) # generator ok though concat(DataFrame(np.random.rand(5, 5)) for _ in range(3)) # text reader ok # GH6583 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = read_csv(StringIO(data), chunksize=1) result =
concat(reader, ignore_index=True)
pandas.concat
import pandas as pd # Version 1.1.1 # %% region = ['Vermont', 'New Hampshire', 'Maine', 'Rhode Island', 'Massachusetts', 'Connecticut', 'New Jersey', 'Pennsylvania', 'Ohio', 'Maryland', 'District of Columbia', 'Delaware', 'Virginia', 'West Virginia', 'New York'] undetected_factor = 2.4 green = 1 yellow = 2 red = 3 # %% Defines the active case calculation prop = [1, 0.94594234, 0.8585381, 0.76322904, 0.66938185, 0.58139261, 0.50124929, 0.42963663, 0.36651186, 0.31143254, 0.26375154, 0.22273485, 0.18763259, 0.15772068, 0.1323241, 0.11082822, 0.09268291, 0.077402, 0.06456005, 0.0537877, 0.04476636, 0.03722264, 0.03092299, 0.02566868, 0.02129114, 0.0176478, 0.01461838, 0.01210161, 0.01001242, 0.00827947] prop = prop[::-1] def active_cases(x): tmp = [] for i, j in zip(prop, x): tmp.append(i * j) return sum(tmp) * undetected_factor def status_num(x): if x <= 400: return green elif x <= 800: return yellow else: return red # %% Takes population values from JHU, which in turn come from US Census # estimates for 2019 pops_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/'\ 'csse_covid_19_data/csse_covid_19_time_series/'\ 'time_series_covid19_deaths_US.csv' county_pops =
pd.read_csv(pops_url)
pandas.read_csv
import argparse, numpy as np, os, pandas as pd from scipy.optimize import curve_fit from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from saps2 import saps2_risk def tune_oasis(X, y): logreg = LogisticRegression(solver='lbfgs') logreg.fit(X[:, None], y) b0 = logreg.intercept_[0] b1 = logreg.coef_[0, 0] return b0, b1 def tune_saps2(X, y): popt, pcov = curve_fit(saps2_risk, X, y, p0=np.array([-7.7631, 0.0737, 0.9971])) return popt def tune_score(score_name, data, listfile): if score_name not in ['oasis', 'saps2']: raise Exception('ICU score is not recognized.') X_train = pd.read_csv(os.path.join(data, f'train_{score_name}_scores.csv')) X_train = X_train['score'].values stay_df = pd.read_csv(listfile).sort_values(by=['stay']) y_train = stay_df['y_true'].values if score_name == 'oasis': B = np.zeros((10, 2)) elif score_name == 'saps2': B = np.zeros((10, 3)) for i in range(10): X1, X2, y1, y2 = train_test_split(X_train, y_train, test_size=0.1, stratify=y_train, random_state=i) if score_name == 'oasis': b = tune_oasis(X1, y1) elif score_name == 'saps2': b = tune_saps2(X1, y1) B[i] = np.array(b) return B if __name__ == '__main__': parser = argparse.ArgumentParser(description='Tune ICU score.') parser.add_argument('score_name', type=str, help='ICU severity score') parser.add_argument('data', type=str, help='path to data directory') parser.add_argument('listfile', type=str, help='path to listfile') parser.add_argument('--coefs', type=str, default='coefs', help='path to coefficients directory') args = parser.parse_args() if not os.path.exists(args.coefs): os.makedirs(args.coefs) B = tune_score(args.score_name, args.data, args.listfile) if args.score_name == 'oasis': B =
pd.DataFrame(B, columns=['b0', 'b1'])
pandas.DataFrame
#! /usr/bin/env python #Note this file (model.py) is the same as that in Benchmarks/Pilot1/Uno/uno_baseline_keras2.py except with the following change:: # #- unoBmk = benchmark.BenchmarkUno(benchmark.file_path, 'uno_default_model.txt', 'keras', #+ #mymodel_common = candle.Benchmark(file_path,os.getenv("DEFAULT_PARAMS_FILE"),'keras',prog='myprog',desc='My model') #+ unoBmk = benchmark.BenchmarkUno(benchmark.file_path, os.getenv("DEFAULT_PARAMS_FILE"), 'keras', from __future__ import division, print_function import argparse import collections import logging import os import random import threading import numpy as np import pandas as pd import keras from keras import backend as K from keras import optimizers from keras.models import Model from keras.layers import Input, Dense, Dropout from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, TensorBoard from keras.utils import get_custom_objects from keras.utils.vis_utils import plot_model from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold from scipy.stats.stats import pearsonr # For non-interactive plotting import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import uno as benchmark import candle_keras as candle import uno_data from uno_data import CombinedDataLoader, CombinedDataGenerator logger = logging.getLogger(__name__) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def set_seed(seed): os.environ['PYTHONHASHSEED'] = '0' np.random.seed(seed) random.seed(seed) if K.backend() == 'tensorflow': import tensorflow as tf tf.set_random_seed(seed) # session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) # Uncommit when running on an optimized tensorflow where NUM_INTER_THREADS and # NUM_INTRA_THREADS env vars are set. # session_conf = tf.ConfigProto(inter_op_parallelism_threads=int(os.environ['NUM_INTER_THREADS']), # intra_op_parallelism_threads=int(os.environ['NUM_INTRA_THREADS'])) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) def verify_path(path): folder = os.path.dirname(path) if folder and not os.path.exists(folder): os.makedirs(folder) def set_up_logger(logfile, verbose): verify_path(logfile) fh = logging.FileHandler(logfile) fh.setFormatter(logging.Formatter("[%(asctime)s %(process)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) fh.setLevel(logging.DEBUG) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if verbose else logging.INFO) for log in [logger, uno_data.logger]: log.setLevel(logging.DEBUG) log.addHandler(fh) log.addHandler(sh) def extension_from_parameters(args): """Construct string for saving model with annotation of parameters""" ext = '' ext += '.A={}'.format(args.activation) ext += '.B={}'.format(args.batch_size) ext += '.E={}'.format(args.epochs) ext += '.O={}'.format(args.optimizer) # ext += '.LEN={}'.format(args.maxlen) ext += '.LR={}'.format(args.learning_rate) ext += '.CF={}'.format(''.join([x[0] for x in sorted(args.cell_features)])) ext += '.DF={}'.format(''.join([x[0] for x in sorted(args.drug_features)])) if args.feature_subsample > 0: ext += '.FS={}'.format(args.feature_subsample) if args.drop > 0: ext += '.DR={}'.format(args.drop) if args.warmup_lr: ext += '.wu_lr' if args.reduce_lr: ext += '.re_lr' if args.residual: ext += '.res' if args.use_landmark_genes: ext += '.L1000' if args.no_gen: ext += '.ng' for i, n in enumerate(args.dense): if n > 0: ext += '.D{}={}'.format(i+1, n) if args.dense_feature_layers != args.dense: for i, n in enumerate(args.dense): if n > 0: ext += '.FD{}={}'.format(i+1, n) return ext def discretize(y, bins=5): percentiles = [100 / bins * (i + 1) for i in range(bins - 1)] thresholds = [np.percentile(y, x) for x in percentiles] classes = np.digitize(y, thresholds) return classes def r2(y_true, y_pred): SS_res = K.sum(K.square(y_true - y_pred)) SS_tot = K.sum(K.square(y_true - K.mean(y_true))) return (1 - SS_res/(SS_tot + K.epsilon())) def mae(y_true, y_pred): return keras.metrics.mean_absolute_error(y_true, y_pred) def evaluate_prediction(y_true, y_pred): mse = mean_squared_error(y_true, y_pred) mae = mean_absolute_error(y_true, y_pred) r2 = r2_score(y_true, y_pred) corr, _ = pearsonr(y_true, y_pred) return {'mse': mse, 'mae': mae, 'r2': r2, 'corr': corr} def log_evaluation(metric_outputs, description='Comparing y_true and y_pred:'): logger.info(description) for metric, value in metric_outputs.items(): logger.info(' {}: {:.4f}'.format(metric, value)) def plot_history(out, history, metric='loss', title=None): title = title or 'model {}'.format(metric) val_metric = 'val_{}'.format(metric) plt.figure(figsize=(8, 6)) plt.plot(history.history[metric], marker='o') plt.plot(history.history[val_metric], marker='d') plt.title(title) plt.ylabel(metric) plt.xlabel('epoch') plt.legend(['train_{}'.format(metric), 'val_{}'.format(metric)], loc='upper center') png = '{}.plot.{}.png'.format(out, metric) plt.savefig(png, bbox_inches='tight') class LoggingCallback(Callback): def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn def on_epoch_end(self, epoch, logs={}): msg = "[Epoch: %i] %s" % (epoch, ", ".join("%s: %f" % (k, v) for k, v in sorted(logs.items()))) self.print_fcn(msg) class PermanentDropout(Dropout): def __init__(self, rate, **kwargs): super(PermanentDropout, self).__init__(rate, **kwargs) self.uses_learning_phase = False def call(self, x, mask=None): if 0. < self.rate < 1.: noise_shape = self._get_noise_shape(x) x = K.dropout(x, self.rate, noise_shape) return x class ModelRecorder(Callback): def __init__(self, save_all_models=False): Callback.__init__(self) self.save_all_models = save_all_models get_custom_objects()['PermanentDropout'] = PermanentDropout def on_train_begin(self, logs={}): self.val_losses = [] self.best_val_loss = np.Inf self.best_model = None def on_epoch_end(self, epoch, logs={}): val_loss = logs.get('val_loss') self.val_losses.append(val_loss) if val_loss < self.best_val_loss: self.best_model = keras.models.clone_model(self.model) self.best_val_loss = val_loss def build_feature_model(input_shape, name='', dense_layers=[1000, 1000], activation='relu', residual=False, dropout_rate=0, permanent_dropout=True): x_input = Input(shape=input_shape) h = x_input for i, layer in enumerate(dense_layers): x = h h = Dense(layer, activation=activation)(h) if dropout_rate > 0: if permanent_dropout: h = PermanentDropout(dropout_rate)(h) else: h = Dropout(dropout_rate)(h) if residual: try: h = keras.layers.add([h, x]) except ValueError: pass model = Model(x_input, h, name=name) return model def build_model(loader, args, permanent_dropout=True, silent=False): input_models = {} dropout_rate = args.drop for fea_type, shape in loader.feature_shapes.items(): base_type = fea_type.split('.')[0] if base_type in ['cell', 'drug']: box = build_feature_model(input_shape=shape, name=fea_type, dense_layers=args.dense_feature_layers, dropout_rate=dropout_rate, permanent_dropout=permanent_dropout) if not silent: logger.debug('Feature encoding submodel for %s:', fea_type) box.summary(print_fn=logger.debug) input_models[fea_type] = box inputs = [] encoded_inputs = [] for fea_name, fea_type in loader.input_features.items(): shape = loader.feature_shapes[fea_type] fea_input = Input(shape, name='input.'+fea_name) inputs.append(fea_input) if fea_type in input_models: input_model = input_models[fea_type] encoded = input_model(fea_input) else: encoded = fea_input encoded_inputs.append(encoded) merged = keras.layers.concatenate(encoded_inputs) h = merged for i, layer in enumerate(args.dense): x = h h = Dense(layer, activation=args.activation)(h) if dropout_rate > 0: if permanent_dropout: h = PermanentDropout(dropout_rate)(h) else: h = Dropout(dropout_rate)(h) if args.residual: try: h = keras.layers.add([h, x]) except ValueError: pass output = Dense(1)(h) return Model(inputs, output) def initialize_parameters(): # Build benchmark object #mymodel_common = candle.Benchmark(file_path,os.getenv("DEFAULT_PARAMS_FILE"),'keras',prog='myprog',desc='My model') unoBmk = benchmark.BenchmarkUno(benchmark.file_path, os.getenv("DEFAULT_PARAMS_FILE"), 'keras', prog='uno_baseline', desc='Build neural network based models to predict tumor response to single and paired drugs.') # Initialize parameters gParameters = candle.initialize_parameters(unoBmk) #benchmark.logger.info('Params: {}'.format(gParameters)) return gParameters class Struct: def __init__(self, **entries): self.__dict__.update(entries) def run(params): args = Struct(**params) set_seed(args.rng_seed) ext = extension_from_parameters(args) verify_path(args.save) prefix = args.save + ext logfile = args.logfile if args.logfile else prefix+'.log' set_up_logger(logfile, args.verbose) logger.info('Params: {}'.format(params)) loader = CombinedDataLoader(seed=args.rng_seed) loader.load(cache=args.cache, ncols=args.feature_subsample, cell_features=args.cell_features, drug_features=args.drug_features, drug_median_response_min=args.drug_median_response_min, drug_median_response_max=args.drug_median_response_max, use_landmark_genes=args.use_landmark_genes, use_filtered_genes=args.use_filtered_genes, preprocess_rnaseq=args.preprocess_rnaseq, single=args.single, train_sources=args.train_sources, test_sources=args.test_sources, embed_feature_source=not args.no_feature_source, encode_response_source=not args.no_response_source, ) val_split = args.validation_split train_split = 1 - val_split if args.export_data: fname = args.export_data loader.partition_data(cv_folds=args.cv, train_split=train_split, val_split=val_split, cell_types=args.cell_types, by_cell=args.by_cell, by_drug=args.by_drug) train_gen = CombinedDataGenerator(loader, batch_size=args.batch_size, shuffle=args.shuffle) val_gen = CombinedDataGenerator(loader, partition='val', batch_size=args.batch_size, shuffle=args.shuffle) x_train_list, y_train = train_gen.get_slice(size=train_gen.size, dataframe=True, single=args.single) x_val_list, y_val = val_gen.get_slice(size=val_gen.size, dataframe=True, single=args.single) df_train = pd.concat([y_train] + x_train_list, axis=1) df_val = pd.concat([y_val] + x_val_list, axis=1) df =
pd.concat([df_train, df_val])
pandas.concat
"""PatchSim: A system for doing metapopulation SEIR* models.""" import time import logging from datetime import datetime, timedelta import numpy as np import pandas as pd logger = logging.getLogger(__name__) def read_config(config_file): """Read configuration. Configuration files contain one key=value pair per line. The following is an example of the contents of a config file:: PatchFile=test_pop.txt NetworkFile=test_net.txt NetworkType=Static ExposureRate=0.65 InfectionRate=0.67 RecoveryRate=0.4 ScalingFactor=1 SeedFile=test_seed.txt VaxFile=test_vax.txt VaxDelay=4 VaxEfficacy=0.5 StartDate=1 Duration=30 LoadState=False SaveState=True SaveFile=checkpoint1.npy OutputFile=test1.out OutputFormat=Whole LogFile=test1.log Parameters ---------- config_file : str Path to the configuration file. Returns ------- dict (str -> str) The configuration key value pairs. """ config_df = pd.read_csv(config_file, delimiter="=", names=["key", "val"]) configs = dict(zip(config_df.key, config_df.val)) configs.setdefault("Model", "Mobility") return configs def load_patch(configs): """Load the patch file. A patch file contains the population size of a patch. The file has two space separated columns. Following is an example of a patch file:: A 10000 B 10000 C 10000 Parameters ---------- configs : dict The configuration dictionary. Must contain the "PatchFile" pointing to location of patch file. Returns ------- DataFrame (names=(id, pops), dtypes=(str, int)) A dataframe containing populations of patches. """ patch_df = pd.read_csv( configs["PatchFile"], names=["id", "pops"], delimiter=" ", dtype={"id": str, "pops": int}, ) patch_df.sort_values("id", inplace=True) logger.info("Loaded patch attributes") return patch_df def load_param_file(configs): """Load the parameter file. A parameter file contains one row per patch. Each row must have two or more columns. Following is an example of a paremter file:: B 0 0 0.54 0.54 0.54 0.54 0 0 0 0 A 0.72 Parameters ---------- configs : dict The configuration dictionary. Must contain the "ParamFile" pointing to location of parameter file. patch_df : DataFrame A dataframe containing populations of patches. Returns ------- DataFrame A dataframe with one column per patch. The column names are IDs of the patches. Each column contains the "beta" value of the patch over time. """ param_df = pd.read_csv( configs["ParamFile"], delimiter=" ", dtype={0: str}, header=None ) param_df = param_df.set_index(0) param_df = param_df.fillna(method="ffill", axis=1) param_df = param_df.T return param_df def load_params(configs, patch_df): """Load the simulation parameters. Parameters ---------- configs : dict The configuration key value pairs. patch_df : DataFrame A dataframe containing populations of patches. Returns ------- dict (str -> float or ndarray) A dictionary of model parameters. The "beta" parameter is a ndarray with shape=(NumPatches x NumTimesteps) and dtype=float. """ params = {} params["T"] = int(configs["Duration"]) beta = float(configs.get("ExposureRate", 0.0)) params["beta"] = np.full((len(patch_df), params["T"]), beta) params["alpha"] = float(configs.get("InfectionRate", 0.0)) params["gamma"] = float(configs.get("RecoveryRate", 0.0)) logger.info( "Parameter: alpha=%e, beta=%e, gamma=%e", params["alpha"], beta, params["gamma"] ) if "ParamFile" in configs: param_df = load_param_file(configs) for i, id_ in enumerate(patch_df["id"]): if id_ in param_df.columns: xs = param_df[id_] params["beta"][i, 0 : len(xs)] = xs logger.info("Loaded disease parameters from ParamFile") else: logger.info("No ParamFile loaded") ### Optional parameters params["scaling"] = float(configs.get("ScalingFactor", 1.0)) params["vaxeff"] = float(configs.get("VaxEfficacy", 1.0)) params["delta"] = float(configs.get("WaningRate", 0.0)) params["vaxdelta"] = float(configs.get("VaxWaningRate", 0.0)) params["kappa"] = float(configs.get("AsymptomaticReduction", 1.0)) params["symprob"] = float(configs.get("SymptomaticProbability", 1.0)) params["epsilon"] = float(configs.get("PresymptomaticReduction", 1.0)) # if params["delta"]: # logger.info("Found WaningRate. Running SEIRS model.") return params def load_seed(configs, params, patch_df): """Load the disease seeding schedule file. A seed file contains the disease seeding schedule. Following is an example of the contents of a seed file:: 0 A 20 0 B 20 1 C 20 2 C 30 Parameters ---------- configs : dict The configuration dictionary. params: dict (str -> float or ndarray) A dictionary of model parameters. patch_df : DataFrame A dataframe containing populations of patches. Returns ------- ndarray shape=(NumTimsteps x NumPatches) A seeding schedule matrix """ if "SeedFile" not in configs: logger.info("Continuing without seeding") return np.zeros((params["T"], len(patch_df))) seed_df = pd.read_csv( configs["SeedFile"], delimiter=" ", names=["Day", "Id", "Count"], dtype={"Id": str}, ) seed_mat = np.zeros((params["T"], len(patch_df))) seed_df = seed_df[seed_df.Day<params["T"]] ### Skipping seeds after end of simulation patch_idx = {id_: i for i, id_ in enumerate(patch_df["id"])} for day, id_, count in seed_df.itertuples(index=False, name=None): idx = patch_idx[id_] seed_mat[day, idx] = count logger.info("Loaded seeding schedule") return seed_mat def load_vax(configs, params, patch_df): """Load the vaccination schedule file. A vax file contains the vaccination schedule. Following is an example of the contents of the vax file:: 0 A 10 2 B 10 5 C 10 Parameters ---------- configs : dict The configuration dictionary. params: dict (str -> float or ndarray) A dictionary of model parameters. patch_df : DataFrame A dataframe containing populations of patches. Returns ------- ndarray shape=(NumTimsteps x NumPatches) A vaccination schedule matrix (NumTimsteps x NumPatches) """ vax_mat = np.zeros((params["T"], len(patch_df)), dtype=int) if "VaxFile" not in configs: return vax_mat vax_df = pd.read_csv( configs["VaxFile"], delimiter=" ", names=["Day", "Id", "Count"], dtype={"Id": str, "Count": int}, ) vax_delay = int(configs.get("VaxDelay", 0)) vax_df = vax_df[vax_df.Day<params["T"] - vax_delay] ### Skipping vaxs which get applied after end of simulation patch_idx = {id_: i for i, id_ in enumerate(patch_df["id"])} for day, id_, count in vax_df.itertuples(index=False, name=None): idx = patch_idx[id_] day = day + vax_delay vax_mat[day, idx] = count return vax_mat def load_Theta(configs, patch_df): """Load the patch connectivity network. This function loads the dynamic network connectity file. The following is an example of the network connectity file:: A A 0 1 B B 0 1 C C 0 1 Parameters ---------- configs : dict The configuration dictionary. Must contain keys "NetworkFile" and "NetworkType". patch_df : DataFrame A dataframe containing populations of patches. Returns ------- ndarray shape=(NumThetaIndices x NumPatches x NumPatches) The dynamic patch connectivity network """ theta_df = pd.read_csv( configs["NetworkFile"], names=["src_Id", "dest_Id", "theta_index", "flow"], delimiter=" ", dtype={"src_Id": str, "dest_Id": str}, ) if configs["NetworkType"] == "Static": if not np.all(theta_df.theta_index == 0): raise ValueError("Theta indices mismatch. Ensure NetworkType=Static.") elif configs["NetworkType"] == "Weekly": if not list(sorted(set(theta_df.theta_index))) == list(range(53)): raise ValueError("Theta indices mismatch. Ensure NetworkType=Weekly.") elif configs["NetworkType"] == "Monthly": if not list(sorted(set(theta_df.theta_index))) == list(range(12)): raise ValueError("Theta indices mismatch. Ensure NetworkType=Monthly.") else: raise ValueError("Unknown NetworkType=%s" % configs["NetworkType"]) Theta_indices = theta_df.theta_index.unique() Theta = np.zeros((len(Theta_indices), len(patch_df), len(patch_df))) patch_idx = {id_: i for i, id_ in enumerate(patch_df["id"])} for src_Id, dest_Id, theta_index, flow in theta_df.itertuples( index=False, name=None ): try: src_Idx = patch_idx[src_Id] dest_Idx = patch_idx[dest_Id] Theta[theta_index, src_Idx, dest_Idx] = flow except KeyError: logger.warning( "Ignoring flow entries for missing patches. Ensure all patches listed in PatchFile." ) logger.info("Loaded temporal travel matrix") return Theta def do_patchsim_stoch_mobility_step( State_Array, patch_df, params, theta, seeds, vaxs, t ): """Do step of the stochastic (mobility) simulation.""" # FIXME: This method doesn't work at all # as populate new_inf # which is what gets written out. S, E, I, R, V, new_inf = State_Array ## Aliases for the State Array ## seeding for day t (seeding implies S->I) actual_seed = np.minimum(seeds[t], S[t]) S[t] = S[t] - actual_seed I[t] = I[t] + actual_seed ## vaccination for day t max_SV = np.minimum(vaxs[t], S[t]) actual_SV = np.random.binomial(max_SV.astype(int), params["vaxeff"]) S[t] = S[t] - actual_SV V[t] = V[t] + actual_SV N = patch_df.pops.to_numpy() # Effective population after movement step N_eff = theta.T.dot(N) I_eff = theta.T.dot(I[t]) E_eff = theta.T.dot(E[t]) # Force of infection from symp/asymptomatic individuals beta_j_eff = I_eff beta_j_eff = beta_j_eff / N_eff beta_j_eff = beta_j_eff * params["beta"][:, t] beta_j_eff = beta_j_eff * ( (1 - params["kappa"]) * (1 - params["symprob"]) + params["symprob"] ) beta_j_eff = np.nan_to_num(beta_j_eff) # Force of infection from presymptomatic individuals E_beta_j_eff = E_eff E_beta_j_eff = E_beta_j_eff / N_eff E_beta_j_eff = E_beta_j_eff * params["beta"][:, t] E_beta_j_eff = E_beta_j_eff * (1 - params["epsilon"]) E_beta_j_eff = np.nan_to_num(E_beta_j_eff) # Infection force inf_force = theta.dot(beta_j_eff + E_beta_j_eff) # New exposures during day t actual_SE = np.random.binomial(S[t],inf_force) actual_EI = np.random.binomial(E[t], params["alpha"]) actual_IR = np.random.binomial(I[t], params["gamma"]) actual_RS = np.random.binomial(R[t], params["delta"]) actual_VS = np.random.binomial(V[t], params["vaxdelta"]) # Update to include presymptomatic and asymptomatic terms S[t + 1] = S[t] - actual_SE + actual_RS + actual_VS E[t + 1] = E[t] + actual_SE - actual_EI I[t + 1] = I[t] + actual_EI - actual_IR R[t + 1] = R[t] + actual_IR - actual_RS V[t + 1] = V[t] - actual_VS new_inf[t] = actual_SE ## Earlier computation of force of infection included network sampling. ## Now only implementing only disease progression stochasticity # N = patch_df.pops.values # S_edge = np.concatenate( # [ # np.random.multinomial( # S[t][x], theta[x] / (theta[x].sum() + 10 ** -12) # ).reshape(1, len(N)) # for x in range(len(N)) # ], # axis=0, # ) # E_edge = np.concatenate( # [ # np.random.multinomial( # E[t][x], theta[x] / (theta[x].sum() + 10 ** -12) # ).reshape(1, len(N)) # for x in range(len(N)) # ], # axis=0, # ) # I_edge = np.concatenate( # [ # np.random.multinomial( # I[t][x], theta[x] / (theta[x].sum() + 10 ** -12) # ).reshape(1, len(N)) # for x in range(len(N)) # ], # axis=0, # ) # R_edge = np.concatenate( # [ # np.random.multinomial( # R[t][x], theta[x] / (theta[x].sum() + 10 ** -12) # ).reshape(1, len(N)) # for x in range(len(N)) # ], # axis=0, # ) # V_edge = np.concatenate( # [ # np.random.multinomial( # V[t][x], theta[x] / (theta[x].sum() + 10 ** -12) # ).reshape(1, len(N)) # for x in range(len(N)) # ], # axis=0, # ) # N_edge = S_edge + E_edge + I_edge + R_edge + V_edge # N_eff = N_edge.sum(axis=0) # I_eff = I_edge.sum(axis=0) # beta_j_eff = np.nan_to_num(params["beta"][:, t] * (I_eff / N_eff)) # actual_SE = np.concatenate( # [ # np.random.binomial(S_edge[:, x], beta_j_eff[x]).reshape(len(N), 1) # for x in range(len(N)) # ], # axis=1, # ).sum(axis=1) # actual_EI = np.random.binomial(E[t], params["alpha"]) # actual_IR = np.random.binomial(I[t], params["gamma"]) # actual_RS = np.random.binomial(R[t], params["delta"]) # ### Update to include presymptomatic and asymptomatic terms # S[t + 1] = S[t] - actual_SE + actual_RS # E[t + 1] = E[t] + actual_SE - actual_EI # I[t + 1] = I[t] + actual_EI - actual_IR # R[t + 1] = R[t] + actual_IR - actual_RS # V[t + 1] = V[t] def do_patchsim_det_mobility_step(State_Array, patch_df, params, theta, seeds, vaxs, t): """Do step of the deterministic simulation.""" S, E, I, R, V, new_inf = State_Array ## Aliases for the State Array # seeding for day t (seeding implies S->I) actual_seed = np.minimum(seeds[t], S[t]) S[t] = S[t] - actual_seed I[t] = I[t] + actual_seed # vaccination for day t actual_vax = np.minimum(vaxs[t] * params["vaxeff"], S[t]) S[t] = S[t] - actual_vax V[t] = V[t] + actual_vax N = patch_df.pops.to_numpy() # Effective population after movement step N_eff = theta.T.dot(N) I_eff = theta.T.dot(I[t]) E_eff = theta.T.dot(E[t]) # Force of infection from symp/asymptomatic individuals beta_j_eff = I_eff beta_j_eff = beta_j_eff / N_eff beta_j_eff = beta_j_eff * params["beta"][:, t] beta_j_eff = beta_j_eff * ( (1 - params["kappa"]) * (1 - params["symprob"]) + params["symprob"] ) beta_j_eff = np.nan_to_num(beta_j_eff) # Force of infection from presymptomatic individuals E_beta_j_eff = E_eff E_beta_j_eff = E_beta_j_eff / N_eff E_beta_j_eff = E_beta_j_eff * params["beta"][:, t] E_beta_j_eff = E_beta_j_eff * (1 - params["epsilon"]) E_beta_j_eff = np.nan_to_num(E_beta_j_eff) # Infection force inf_force = theta.dot(beta_j_eff + E_beta_j_eff) # New exposures during day t new_inf[t] = inf_force * S[t] new_inf[t] = np.minimum(new_inf[t], S[t]) # Update to include presymptomatic and asymptomatic terms S[t + 1] = S[t] - new_inf[t] + params["delta"] * R[t] + params["vaxdelta"] * V[t] E[t + 1] = new_inf[t] + (1 - params["alpha"]) * E[t] I[t + 1] = params["alpha"] * E[t] + (1 - params["gamma"]) * I[t] R[t + 1] = params["gamma"] * I[t] + (1 - params["delta"]) * R[t] V[t + 1] = (1 - params["vaxdelta"]) * V[t] def do_patchsim_det_force_step(State_Array, patch_df, params, theta, seeds, vaxs, t): """Do step of the deterministic simulation.""" S, E, I, R, V, new_inf = State_Array ## Aliases for the State Array # seeding for day t (seeding implies S->I) actual_seed = np.minimum(seeds[t], S[t]) S[t] = S[t] - actual_seed I[t] = I[t] + actual_seed # vaccination for day t actual_vax = np.minimum(vaxs[t] * params["vaxeff"], S[t]) S[t] = S[t] - actual_vax V[t] = V[t] + actual_vax N = patch_df.pops.to_numpy() # Effective beta beta_j_eff = I[t] beta_j_eff = beta_j_eff / N beta_j_eff = beta_j_eff * params["beta"][:, t] beta_j_eff = np.nan_to_num(beta_j_eff) # Infection force inf_force = theta.T.dot(beta_j_eff) # New exposures during day t new_inf[t] = inf_force * S[t] new_inf[t] = np.minimum(new_inf[t], S[t]) # Update to include presymptomatic and asymptomatic terms S[t + 1] = S[t] - new_inf[t] + params["delta"] * R[t] + params["vaxdelta"] * V[t] E[t + 1] = new_inf[t] + (1 - params["alpha"]) * E[t] I[t + 1] = params["alpha"] * E[t] + (1 - params["gamma"]) * I[t] R[t + 1] = params["gamma"] * I[t] + (1 - params["delta"]) * R[t] V[t + 1] = (1 - params["vaxdelta"]) * V[t] def patchsim_step(State_Array, patch_df, configs, params, theta, seeds, vaxs, t, stoch): """Do step of the simulation.""" if stoch: if configs["Model"] == "Mobility": return do_patchsim_stoch_mobility_step( State_Array, patch_df, params, theta, seeds, vaxs, t ) else: raise ValueError( "Unknown Model %s for stochastic simulation" % configs["Model"] ) else: if configs["Model"] == "Mobility": return do_patchsim_det_mobility_step( State_Array, patch_df, params, theta, seeds, vaxs, t ) elif configs["Model"] == "Force": return do_patchsim_det_force_step( State_Array, patch_df, params, theta, seeds, vaxs, t ) else: raise ValueError( "Unknown Model %s for deterministic simulation" % configs["Model"] ) def epicurves_todf(configs, params, patch_df, State_Array): """Convert the epicurve (new infection over time) into a dataframe. Parameters ---------- configs : dict The configuration dictionary. params : dict A dictionary of model parameters. patch_df : dict A dataframe containing populations of patches. State_Array : 5 tuple A tuple of disease state information. Returns ------- DataFrame A dataframe containing the new infections. There is one row per patch. There is one column per timestep. """ new_inf = State_Array[-1] data = new_inf[:-1, :].T data = data * float(params["scaling"]) if configs["OutputFormat"] == "Whole": data = data.round().astype(int) index = patch_df.id columns = np.arange(int(configs["Duration"])) out_df =
pd.DataFrame(index=index, columns=columns, data=data)
pandas.DataFrame
from sklearn.metrics import confusion_matrix, f1_score, roc_curve import numpy as np import pandas as pd class analysis: def __init__(self): pass def _getComplexParams(self, abs=False): """ Function for extracting the data associated with the second component of the complex source. To call: _getComplexParams(abs) Parameters: abs Take the absolute value of the difference Postcondition: The flux of the second component, the difference in phases and depth between the two components, and the noise value are stored in the data frame "self.dfComplex_" The model's predicted probability that the source is complex is also stored. """ # =================================================== # Determine which sources are complex # =================================================== loc = np.where(self.testLabel_ == 1)[0] # =================================================== # Retrieve the model's prediction that # the complex source is complex # =================================================== prob = self.testProb_[loc] # =================================================== # Extract the flux of the second component # =================================================== flux = self.testFlux_[loc] flux = np.asarray([f[1] for f in flux]) # =================================================== # Compute the difference in phases # =================================================== chi = self.testChi_[loc] chi = np.asarray([c[1] - c[0] for c in chi]) if abs: chi = np.abs(chi) # =================================================== # Compute the difference in Faraday depths # =================================================== depth = self.testDepth_[loc] depth = np.asarray([d[1] - d[0] for d in depth]) if abs: depth = np.abs(depth) # =================================================== # Retrieve the noise parameter # =================================================== sig = self.testSig_[loc] # =================================================== # Convert to pandas series # =================================================== chi =
pd.Series(chi, name='chi')
pandas.Series
import os import sys import json import gzip import glob import pandas as pd import numpy as np from nameparser import HumanName import requests import ftplib from lxml import etree from io import BytesIO # determine if we are loading from a jupyter notebook (to make pretty progress bars) if 'ipykernel' in sys.modules: from tqdm.notebook import tqdm else: from tqdm import tqdm from pyscisci.datasource.readwrite import load_preprocessed_data, load_int, load_float, load_html_str, load_xml_text from pyscisci.database import BibDataBase class PubMed(BibDataBase): """ Base class for PubMed Medline interface. Notes ------- ~ PubMed comes as >1000 compressed XML files. ~ The PMID is renamed PublicationId to be consistent with the rest of pySciSci. ~ PubMed does not disambiguate Authors. ~ """ def __init__(self, path2database='', keep_in_memory=False, global_filter=None, show_progress=True): self._default_init(path2database, keep_in_memory, global_filter, show_progress) self.PublicationIdType = int self.AffiliationIdType = int self.AuthorIdType = str def _blank_pubmed_publication(self, PublicationId = 0): record = {} record['PublicationId'] = PublicationId record['Title'] = '' record['Year'] = 0 record['Volume'] = 0 record['Issue'] = '' record['Pages'] = '' record['JournalId'] = '' record['TeamSize'] = 0 record['Month'] = 1 record['Day'] = 1 record['ISSN'] = '' record['Doi'] = '' return record def _blank_pubmed_author(self): record = {} record['PublicationId'] = '' record['FullName'] = '' record['FirstName'] = '' record['LastName'] = '' record['Affiliations'] = '' record['AuthorSequence'] = 0 return record def _save_dataframes(self, ifile, publication_df, paa_df, pub2ref_df, pub2field_df): publication_df = pd.DataFrame(publication_df) publication_df['PublicationId'] = publication_df['PublicationId'].astype(int) publication_df['Year'] = publication_df['Year'].astype(int) publication_df['Month'] = publication_df['Month'].astype(int) publication_df['Day'] = publication_df['Day'].astype(int) publication_df['Volume'] = pd.to_numeric(publication_df['Volume']) publication_df['TeamSize'] = publication_df['TeamSize'].astype(int) publication_df.to_hdf( os.path.join(self.path2database, self.path2pub_df, 'publication{}.hdf'.format(ifile)), key = 'pub', mode='w') paa_df = pd.DataFrame(paa_df) paa_df['AuthorSequence'] = paa_df['AuthorSequence'].astype(int) paa_df.to_hdf( os.path.join(self.path2database, self.path2paa_df, 'publicationauthoraffiliation{}.hdf'.format(ifile)), key = 'paa', mode='w') pub2field_df = pd.DataFrame(pub2field_df, columns = ['PublicationId', 'FieldId'], dtype=int) pub2field_df.to_hdf( os.path.join(self.path2database, self.path2pub2field_df, 'pub2field{}.hdf'.format(ifile)), key = 'pub2field', mode='w') pub2ref_df = pd.DataFrame(pub2ref_df, columns = ['CitedPublicationId', 'CitingPublicationId', 'Citation'], dtype=int) pub2ref_df.to_hdf( os.path.join(self.path2database, self.path2pub2ref_df, 'pub2ref{}.hdf'.format(ifile)), key = 'pub2ref', mode='w') def preprocess(self, xml_directory = 'RawXML', process_name=True, num_file_lines=10**6, show_progress=True,rewrite_existing = False): """ Bulk preprocess of the PubMed raw data. Parameters ---------- process_name: bool, default True If True, then when processing the raw file, the package `NameParser <https://nameparser.readthedocs.io/en/latest/>`_ will be used to split author FullNames. num_file_lines: int, default 10**6 The processed data will be saved into smaller DataFrames, each with `num_file_lines` rows. show_progress: bool, default True Show progress with processing of the data. rewrite_existing: bool, default False If True, rewrites the files in the data directory """ if show_progress: print("Starting to preprocess the PubMed database.") for hier_dir_type in [self.path2pub_df, self.path2paa_df, self.path2pub2field_df, self.path2pub2ref_df, self.path2fieldinfo_df]: if not os.path.exists(os.path.join(self.path2database, hier_dir_type)): os.mkdir(os.path.join(self.path2database, hier_dir_type)) xmlfiles = sorted([fname for fname in os.listdir(os.path.join(self.path2database, xml_directory)) if '.xml' in fname]) # read dtd - this takes path2database = self.path2database # remove self to use inside of this class class DTDResolver(etree.Resolver): def resolve(self, system_url, public_id, context): return self.resolve_filename(os.path.join(path2database, system_url), context) parser = etree.XMLParser(load_dtd=True, resolve_entities=True) pub2year = {} fieldinfo = {} ifile = 0 for xml_file_name in tqdm(xmlfiles, desc='PubMed xml files', leave=True, disable=not show_progress): # check if the xml file was already parsed dest_file_name = os.path.join(self.path2database, self.path2pub_df,'publication{}.hdf'.format(ifile)) if not rewrite_existing and os.path.isfile(dest_file_name): ifile+=1 continue publication_df = [] paa_df = [] pub2field_df = [] pub2ref_df = [] xmltree = etree.parse(os.path.join(self.path2database, xml_directory, xml_file_name), parser) all_pubmed_articles = xmltree.findall("/PubmedArticle") for article_bucket in all_pubmed_articles: medline = article_bucket.find("MedlineCitation") # scrape the publication information PublicationId = load_int(load_xml_text(medline.find('PMID'))) pub_record = self._blank_pubmed_publication(PublicationId) article = medline.find("Article") pub_record['Title'] = load_html_str(load_xml_text(article.find('ArticleTitle'))) if article.find('Pagination') == None: pub_record['Pages'] = None else: pub_record['Pages'] = load_html_str(load_xml_text(article.find('Pagination').find("MedlinePgn"))) journal = article.find("Journal") pub_record['JournalId'] = load_html_str(load_xml_text(journal.find("Title"))) pub_record['Volume'] = load_int(load_xml_text(journal.find("JournalIssue").find("Volume"))) pub_record['Issue'] = load_int(load_xml_text(journal.find("JournalIssue").find("Issue"))) pub_record['ISSN'] = load_html_str(load_xml_text(journal.find("ISSN"))) history = article_bucket.find("PubmedData/History") if not history is None: pdate = history.find('PubMedPubDate') if not pdate is None: pub_record['Year'] = load_int(load_xml_text(pdate.find("Year"))) pub_record['Month'] = load_int(load_xml_text(pdate.find("Month"))) pub_record['Day'] = load_int(load_xml_text(pdate.find("Day"))) if pub_record['Year'] > 0: pub2year[PublicationId] = pub_record['Year'] article_ids = article_bucket.find("PubmedData/ArticleIdList") if article_ids is not None: doi = article_ids.find('ArticleId[@IdType="doi"]') pub_record['Doi'] = load_xml_text(doi) author_list = article.find('AuthorList') if not author_list is None: for seq, author in enumerate(author_list.findall('Author')): author_record = self._blank_pubmed_author() author_record['PublicationId'] = PublicationId author_record['FirstName'] = load_html_str(load_xml_text(author.find("ForeName"))) author_record['LastName'] = load_html_str(load_xml_text(author.find("LastName"))) author_record['FullName'] = author_record['FirstName'] + ' ' + author_record['LastName'] if author.find("AffiliationInfo/Affiliation") is not None: author_record['Affiliations'] = load_html_str(load_xml_text(author.find("AffiliationInfo/Affiliation"))) author_record['Affiliations'] = author_record['Affiliations'].replace("For a full list of the authors' affiliations please see the Acknowledgements section.","") author_record['AuthorSequence'] = seq+1 paa_df.append(author_record) pub_record['TeamSize'] = seq + 1 meshterms = medline.find("MeshHeadingList") if meshterms is not None: for term in meshterms.getchildren(): ui = term.find("DescriptorName").attrib.get("UI", "") if len(ui)>0: pub2field_df.append([PublicationId, ui]) fieldinfo[ui] = [load_xml_text(term.find("DescriptorName")), 'mesh'] chemicals = medline.find("ChemicalList") if chemicals is not None: for chemical in chemicals.findall("Chemical"): ui = chemical.find("NameOfSubstance").attrib.get("UI", "") if len(ui)>0: pub2field_df.append([PublicationId, ui]) fieldinfo[ui] = [load_xml_text(chemical.find("NameOfSubstance")), 'chem'] references = article_bucket.find("PubmedData/ReferenceList") if not references is None: for ref in references.findall("Reference"): citation = load_xml_text(ref.find("Citation")) if not ref.find('ArticleIdList') is None: pmid = load_int(load_xml_text(ref.find('ArticleIdList').find('ArticleId[@IdType="pubmed"]'))) else: pmid = "" pub2ref_df.append([PublicationId, pmid, citation]) publication_df.append(pub_record) self._save_dataframes(ifile, publication_df, paa_df, pub2ref_df, pub2field_df) ifile += 1 # if rewriting dest_file_name = os.path.join(self.path2database, self.path2fieldinfo,'fieldinfo.hdf') if rewrite_existing: # save field info dictionary mesh_id_df_list = list(fieldinfo.values()) for i, j in enumerate(fieldinfo.keys()): mesh_id_df_list[i].insert(0, j) fieldinfo = pd.DataFrame(mesh_id_df_list, columns = ['FieldId', 'FieldName', 'FieldType'], dtype=int) fieldinfo.to_hdf( os.path.join(self.path2database, self.path2fieldinfo, 'fieldinfo.hdf'), key = 'fieldinfo', mode='w') with gzip.open(os.path.join(self.path2database, 'pub2year.json.gz'), 'w') as outfile: outfile.write(json.dumps(pub2year).encode('utf8')) def download_from_source(self, source_url='ftp.ncbi.nlm.nih.gov', dtd_url = 'https://dtd.nlm.nih.gov/ncbi/pubmed/out/pubmed_190101.dtd', rewrite_existing = False, show_progress=True): """ Download the Pubmed raw xml files and the dtd formating information from [PubMed](https://www.nlm.nih.gov/databases/download/pubmed_medline.html). 1. pubmed/baseline - the directory containing the baseline compressed xml files 2. pubmed_190101.dtd - the dtd containing xml syntax The files will be saved to the path specified by `path2database` into RawXML. Parameters ---------- source_url: str, default 'ftp.ncbi.nlm.nih.gov' The base url for the ftp server from which to download. dtd_url: str, default 'pubmed_190101.dtd' The url for the dtd file. show_progress: bool, default True Show progress with processing of the data. """ FTP_USER = "anonymous" FTP_PASS = "" ftp = ftplib.FTP(source_url, FTP_USER, FTP_PASS) ftp.encoding = "utf-8" ftp.cwd("pubmed/baseline/") files2download = sorted([fname for fname in ftp.nlst() if '.xml.gz' in fname and not '.md5' in fname]) if not os.path.exists(os.path.join(self.path2database, 'RawXML')): os.mkdir(os.path.join(self.path2database, 'RawXML')) if not rewrite_existing: files_already_downloaded = os.listdir(os.path.join(self.path2database, 'RawXML')) files2download = [fname for fname in files2download if not fname in files_already_downloaded] for xml_file_name in tqdm(files2download, disable=not show_progress): with open(os.path.join(self.path2database, 'RawXML', xml_file_name), "wb") as outfile: ftp.retrbinary('RETR %s' % xml_file_name, outfile.write) with open(os.path.join(self.path2database, 'RawXML', 'pubmed_190101.dtd'), 'w') as outfile: outfile.write(requests.get(dtd_url).content.decode('utf-8')) ftp.quit() def parse_affiliations(self, preprocess = False): raise NotImplementedError("PubMed artciles are stored with all information in an xml file. Run preprocess to parse the file.") def parse_publications(self, xml_directory = 'RawXML',preprocess = True, num_file_lines=10**7,rewrite_existing = False): """ Parse the PubMed publication raw data. Parameters ---------- preprocess: bool, default True Save the processed data in new DataFrames. process_name: bool, default True If True, then when processing the raw file, the package `NameParser <https://nameparser.readthedocs.io/en/latest/>`_ will be used to split author FullNames. num_file_lines: int, default 5*10**6 The processed data will be saved into smaller DataFrames, each with `num_file_lines` rows. show_progress: bool, default True Show progress with processing of the data. Returns ---------- DataFrame Publication metadata DataFrame. """ # process publication files through xml if preprocess: if not os.path.exists(os.path.join(self.path2database, 'publication')): os.mkdir(os.path.join(self.path2database, 'publication')) xmlfiles = sorted([fname for fname in os.listdir(os.path.join(self.path2database, xml_directory)) if '.xml' in fname]) # read dtd - this takes path2database = self.path2database # remove self to use inside of this class class DTDResolver(etree.Resolver): def resolve(self, system_url, public_id, context): return self.resolve_filename(os.path.join(path2database, system_url), context) parser = etree.XMLParser(load_dtd=True, resolve_entities=True) ifile = 0 for xml_file_name in tqdm(xmlfiles, desc='PubMed publication xml files', leave=True, disable=not show_progress): # check if the xml file was already parsed dest_file_name = os.path.join(self.path2database, self.path2paa_df,'publication{}.hdf'.format(ifile)) if not rewrite_existing and os.path.isfile(dest_file_name): ifile+=1 continue publication_df = [] all_pubmed_articles = xmltree.findall("/PubmedArticle") for article_bucket in all_pubmed_articles: medline = article_bucket.find("MedlineCitation") # scrape the publication information PublicationId = load_int(load_xml_text(medline.find('PMID'))) pub_record = self._blank_pubmed_publication(PublicationId) article = medline.find("Article") pub_record['Title'] = load_html_str(load_xml_text(article.find('ArticleTitle'))) if article.find('Pagination') == None: pub_record['Pages'] = None else: pub_record['Pages'] = load_html_str(load_xml_text(article.find('Pagination').find("MedlinePgn"))) journal = article.find("Journal") pub_record['JournalId'] = load_html_str(load_xml_text(journal.find("Title"))) pub_record['Volume'] = load_int(load_xml_text(journal.find("JournalIssue").find("Volume"))) pub_record['Issue'] = load_int(load_xml_text(journal.find("JournalIssue").find("Issue"))) pub_record['ISSN'] = load_html_str(load_xml_text(journal.find("ISSN"))) history = article_bucket.find("PubmedData/History") if not history is None: pdate = history.find('PubMedPubDate') if not pdate is None: pub_record['Year'] = load_int(load_xml_text(pdate.find("Year"))) pub_record['Month'] = load_int(load_xml_text(pdate.find("Month"))) pub_record['Day'] = load_int(load_xml_text(pdate.find("Day"))) article_ids = article_bucket.find("PubmedData/ArticleIdList") if article_ids is not None: doi = article_ids.find('ArticleId[@IdType="doi"]') pub_record['Doi'] = load_xml_text(doi) author_list = article.find('AuthorList') if not author_list is None: pub_record['TeamSize'] = len(author_list.findall('Author')) publication_df.append(pub_record) # save publication dataframe publication_df = pd.DataFrame(publication_df) publication_df['PublicationId'] = publication_df['PublicationId'].astype(int) publication_df['Year'] = publication_df['Year'].astype(int) publication_df['Month'] = publication_df['Month'].astype(int) publication_df['Day'] = publication_df['Day'].astype(int) publication_df['Volume'] = pd.to_numeric(publication_df['Volume']) publication_df['TeamSize'] = publication_df['TeamSize'].astype(int) publication_df.to_hdf( os.path.join(self.path2database, self.path2pub_df, 'publication{}.hdf'.format(ifile)), key = 'pub', mode='w') ## load publication dataframe into a large file pub_files_list = glob.glob(os.path.join(self.path2database, self.path2pub_df) + 'publication*.hdf') pub_df = pd.DataFrame() print("Parsing files...") for tmp_pub_df in tqdm(paa_files_list, desc='PubMed author files', leave=True, disable=not show_progress): pub_df = pub_df.append(pd.read_hdf(tmp_pub_df), ignore_index = True) return pub_df def parse_references(self, xml_directory='RawXML',preprocess = True, num_file_lines=10**7, rewrite_existing=False,show_progress=True): """ Parse the PubMed References raw data. Parameters ---------- preprocess: bool, default True Save the processed data in new DataFrames. process_name: bool, default True If True, then when processing the raw file, the package `NameParser <https://nameparser.readthedocs.io/en/latest/>`_ will be used to split author FullNames. num_file_lines: int, default 5*10**6 The processed data will be saved into smaller DataFrames, each with `num_file_lines` rows. show_progress: bool, default True Show progress with processing of the data. Returns ---------- DataFrame Citations DataFrame. """ # process author files through xml if preprocess: if not os.path.exists(os.path.join(self.path2database, 'pub2ref')): os.mkdir(os.path.join(self.path2database, 'pub2ref')) xmlfiles = sorted([fname for fname in os.listdir(os.path.join(self.path2database, xml_directory)) if '.xml' in fname]) # read dtd - this takes path2database = self.path2database # remove self to use inside of this class class DTDResolver(etree.Resolver): def resolve(self, system_url, public_id, context): return self.resolve_filename(os.path.join(path2database, system_url), context) parser = etree.XMLParser(load_dtd=True, resolve_entities=True) ifile = 0 for xml_file_name in tqdm(xmlfiles, desc='PubMed reference xml files', leave=True, disable=not show_progress): xmltree = etree.parse(os.path.join(self.path2database, xml_directory, xml_file_name), parser) # check if the xml file was already parsed dest_file_name = os.path.join(self.path2database, self.path2pub2ref_df,'pub2ref{}.hdf'.format(ifile)) if not rewrite_existing and os.path.isfile(dest_file_name): ifile+=1 continue pub2ref_df = [] all_pubmed_articles = xmltree.findall("/PubmedArticle") for article_bucket in all_pubmed_articles: medline = article_bucket.find("MedlineCitation") # scrape the publication information PublicationId = load_int(load_xml_text(medline.find('PMID'))) references = article_bucket.find("PubmedData/ReferenceList") if not references is None: for ref in references.findall("Reference"): citation = load_xml_text(ref.find("Citation")) if not ref.find('ArticleIdList') is None: pmid = load_int(load_xml_text(ref.find('ArticleIdList').find('ArticleId[@IdType="pubmed"]'))) else: pmid = "" pub2ref_df.append([PublicationId, pmid, citation]) # save file pub2ref_df = pd.DataFrame(pub2ref_df, columns = ['CitedPublicationId', 'CitingPublicationId', 'Citation'], dtype=int) pub2ref_df.to_hdf( os.path.join(self.path2database, self.path2pub2ref_df, 'pub2ref{}.hdf'.format(ifile)), key = 'pub2ref', mode='w') # load the citations into a large dataframe pub2ref_files = glob.glob(os.path.join(self.path2database, self.path2pub2ref_df)+ 'pub2ref*.hdf') pub2ref_df = pd.DataFrame() print("parsing citation data...") for pub2ref_tmp in tqdm(pub2ref_files,desc='PubMed citation xml files', leave=True, disable=not show_progress): pub2ref_df = pub2ref_df.append(pd.read_hdf(pub2ref_tmp), ignore_indexTrue) return pub2ref_df def parse_publicationauthoraffiliation(self, xml_directory = 'RawXML',preprocess = True, num_file_lines=10**7, rewrite_existing = False): """ Parse the PubMed publication-author raw data. Parameters ---------- preprocess: bool, default True Save the processed data in new DataFrames. process_name: bool, default True If True, then when processing the raw file, the package `NameParser <https://nameparser.readthedocs.io/en/latest/>`_ will be used to split author FullNames. num_file_lines: int, default 5*10**6 The processed data will be saved into smaller DataFrames, each with `num_file_lines` rows. show_progress: bool, default True Show progress with processing of the data. Returns ---------- DataFrame Publication-Author DataFrame. """ # process author files through xml if preprocess: if not os.path.exists(os.path.join(self.path2database, 'publicationauthoraffiliation')): os.mkdir(os.path.join(self.path2database, 'publicationauthoraffiliation')) xmlfiles = sorted([fname for fname in os.listdir(os.path.join(self.path2database, xml_directory)) if '.xml' in fname]) # read dtd - this takes path2database = self.path2database # remove self to use inside of this class class DTDResolver(etree.Resolver): def resolve(self, system_url, public_id, context): return self.resolve_filename(os.path.join(path2database, system_url), context) parser = etree.XMLParser(load_dtd=True, resolve_entities=True) ifile = 0 for xml_file_name in tqdm(xmlfiles, desc='PubMed author xml files', leave=True, disable=not show_progress): # check if the xml file was already parsed dest_file_name = os.path.join(self.path2database, self.path2paa_df,'publicationauthoraffiliation{}.hdf'.format(ifile)) if not rewrite_existing and os.path.isfile(dest_file_name): ifile+=1 continue paa_df = [] all_pubmed_articles = xmltree.findall("/PubmedArticle") for article_bucket in all_pubmed_articles: medline = article_bucket.find("MedlineCitation") # scrape the publication information PublicationId = load_int(load_xml_text(medline.find('PMID'))) author_list = article.find('AuthorList') if not author_list is None: for seq, author in enumerate(author_list.findall('Author')): author_record = self._blank_pubmed_author() author_record['PublicationId'] = PublicationId author_record['FirstName'] = load_html_str(load_xml_text(author.find("ForeName"))) author_record['LastName'] = load_html_str(load_xml_text(author.find("LastName"))) author_record['FullName'] = author_record['FirstName'] + ' ' + author_record['LastName'] if author.find("AffiliationInfo/Affiliation") is not None: author_record['Affiliations'] = load_html_str(load_xml_text(author.find("AffiliationInfo/Affiliation"))) author_record['Affiliations'] = author_record['Affiliations'].replace("For a full list of the authors' affiliations please see the Acknowledgements section.","") author_record['AuthorSequence'] = seq+1 paa_df.append(author_record) paa_df = pd.DataFrame(paa_df) paa_df['AuthorSequence'] = paa_df['AuthorSequence'].astype(int) paa_df.to_hdf( os.path.join(self.path2database, self.path2paa_df, 'publicationauthoraffiliation{}.hdf'.format(ifile)), key = 'paa', mode='w') ## load publication author dataframe into a large file paa_files_list = glob.glob(os.path.join(self.path2database, self.path2paa_df) + 'publicationauthoraffiliation*.hdf') paa_df = pd.DataFrame() print("Parsing files...") for tmp_paa_df in tqdm(paa_files_list, desc='PubMed author files', leave=True, disable=not show_progress): paa_df = paa_df.append(
pd.read_hdf(tmp_paa_df)
pandas.read_hdf
from abc import ABCMeta from typing import Optional, List, Union, Dict, AnyStr import pandas as pd class Dataset(metaclass=ABCMeta): fixes: List = [] data: Optional[Union[Dict, pd.DataFrame, pd.Series]] = None sources: Union[AnyStr, Dict] = None def register_fixes(self): pass def get(self, **kwargs) -> 'Dataset': ... return self def clean(self) -> 'Dataset': ... return self def to_df(self) -> pd.DataFrame: if isinstance(pd.DataFrame, self.data): return self.data else: # assume it's something concatable return
pd.concat(self.data)
pandas.concat
from lifelines.datasets import load_waltons from lifelines import KaplanMeierFitter from lifelines.utils import median_survival_times from lifelines.statistics import logrank_test,multivariate_logrank_test from lifelines import CoxPHFitter #from lifelines.plotting import add_at_risk_counts from my_plotting import add_at_risk_counts import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys from matplotlib.backends.backend_pdf import PdfPages #from sksurv.linear_model import CoxPHSurvivalAnalysis as cpa #sys.exit() #%% cluster_result =
pd.read_csv("output/dna_rna_methy_cluster_result.csv")
pandas.read_csv
# -*- coding:utf-8 -*- ############################################################## # Created Date: Wednesday, September 2nd 2020 # Contact Info: <EMAIL> # Author/Copyright: Mr. <NAME> ############################################################## import random, urllib3, json, requests, math, plotly import pandas as pd import datetime as dt import numpy as np import plotly.figure_factory as ff from time import sleep from plotly import io as pio from deap import algorithms from datetime import datetime import random,datetime,plotly,math from itertools import combinations from deap import base, creator, tools import random, numpy,sys import time def generate3tables(): Table_SchedulingInfo_New = pd.DataFrame() Table_Changeovers_New = pd.DataFrame() Table_ShiftCalendar_New = pd.DataFrame() Table_SchedulingInfo_New_Extended = pd.DataFrame() LenOfSimulatedData = 100 DataRange_StartOfStart_EndOfStart = 10 DataDiff_StartDate_EndDate = 7 ProcessingTime_Max = 300 ProcessingTime_Min = 1 ChangeOverTime_Max = 30 ChangeOverTime_Min = 5 ProductionLine_Count = 4 Family_Count = 6 Priority_Count = 3 Families_List = [] ProductionLines_List = [] Priorities_List = [] start_date = [] end_date = [] processing_time = [] family_type = [] ProductionLine = [] workorder_num = [] changeover_time = [] Priority = [] Families_List = [np.append(Families_List,"Family_"+str(i+1)).tolist() for i in range (Family_Count )] ProductionLines_List = [np.append(ProductionLines_List, int(i+1)).tolist() for i in range (ProductionLine_Count)] Priorities_List = [np.append(Priorities_List, str(i+1)).tolist() for i in range (Priority_Count)] newFamily_List = [] for fly in Families_List: newFamily_List = np.append(newFamily_List, fly) Families_List = newFamily_List # Generate the Lists of Families_List and Production Lines start = datetime.datetime.strptime(datetime.datetime.today().strftime("%Y-%m-%d"), "%Y-%m-%d") date_list = [(start + datetime.timedelta(days=x)).strftime("%Y-%m-%d") for x in range(0, DataRange_StartOfStart_EndOfStart)] for i in range(LenOfSimulatedData): start_date = np.append(start_date, random.choice(date_list)) end_date = np.append(end_date,(datetime.datetime.strptime(random.choice(date_list), '%Y-%m-%d')+ datetime.timedelta(days=DataDiff_StartDate_EndDate)).strftime("%Y-%m-%d")) processing_time = np.append(processing_time,random.randint(ProcessingTime_Min,ProcessingTime_Max)) family_type = np.append(family_type, random.choice(Families_List)) ProductionLine = np.append(ProductionLine, random.choice(ProductionLines_List)) Priority = np.append(Priority, random.choice(Priorities_List)) workorder_num = np.append(workorder_num, i) for j in range(Family_Count): changeover_time = np.append(changeover_time, random.randint(ChangeOverTime_Min,ChangeOverTime_Max)) Table_SchedulingInfo_New["Start_date"] = start_date Table_SchedulingInfo_New["Due_date"] = end_date Table_SchedulingInfo_New["Processing_time"] = processing_time Table_SchedulingInfo_New["Family"] = family_type Table_SchedulingInfo_New["ProductionLine"] = ProductionLine Table_SchedulingInfo_New["Priority"] = Priority Table_SchedulingInfo_New["ChangeoverSort"] = Table_SchedulingInfo_New["Family"] Table_SchedulingInfo_New["WorkOrderNum"] = workorder_num Lines = [i+1 for i in range(ProductionLine_Count)] Possible_Com_Of_Lines = sum([list(map(list, combinations(Lines, i))) for i in range(len(Lines) + 1)], []) del Possible_Com_Of_Lines[0] WO_Num = 0 for index, row in Table_SchedulingInfo_New.iterrows(): OpLines = random.choice(Possible_Com_Of_Lines) Option_Lines_Len = len(OpLines) for i in range(Option_Lines_Len): Table_SchedulingInfo_New_Extended = Table_SchedulingInfo_New_Extended.append({'OptionalLine': OpLines[i], 'BasicStartDate': row.Start_date, 'DeliveryDate':row.Due_date, 'ProcessingTimeMins':row.Processing_time+i, 'FamilyName':row.Family, 'ProductionLine': row.ProductionLine, 'WorkOrderNum': row.WorkOrderNum, 'MaterialPriority': row.ProductionLine, 'ChangeoverSort':row.ChangeoverSort, 'Priority':Priority}, ignore_index=True) WO_Num += 1 Table_SchedulingInfo_New["Resource"] = Table_SchedulingInfo_New["Family"] Table_SchedulingInfo_New["Task"] = Table_SchedulingInfo_New["ProductionLine"] Table_SchedulingInfo_New["Start"] = Table_SchedulingInfo_New["Start_date"] Table_SchedulingInfo_New["Finish"] = Table_SchedulingInfo_New["Due_date"] color_dict = dict(zip(Table_SchedulingInfo_New.Resource.unique(),['rgb({},{},{})'.format(i[0],i[1],i[2]) for i in list(np.random.randint(255, size = (len(Table_SchedulingInfo_New.Resource.unique()),3)))])) fig = ff.create_gantt(Table_SchedulingInfo_New.to_dict('records'), colors = color_dict, index_col='Resource', show_colorbar=True, group_tasks=True) Table_Changeovers_New['ToChangeOver'] = Families_List Table_Changeovers_New['MaxChangeOverTimeMin'] = changeover_time # print(Table_Changeovers_New.ToChangeOver) for date in date_list: Table_ShiftCalendar_New = Table_ShiftCalendar_New.append({"ProductionDate":date,"ShiftAStart": "05:15:00", "ShiftAEnd":"15:20:00", "ShiftBStart":"15:30:00","ShiftBEnd":"01:35:00"}, ignore_index=True) # Table_SchedulingInfo_New_Extended.to_csv('Table_SchedulingInfo_New.csv',index=False) # Table_Changeovers_New.to_csv('Table_Changeovers_New.csv',index=False) # Table_ShiftCalendar_New.to_csv('Table_ShiftCalendar_New.csv',index=False) return Table_SchedulingInfo_New_Extended,Table_Changeovers_New,Table_ShiftCalendar_New class ClosedLoopScheduling: def __init__(self): # plotly.io.orca.config.executable = '/Users/roche/anaconda3/pkgs/plotly-orca-1.3.1-1/orca.cmd' # plotly.io.orca.config.save() self.__Import_And_CleanData() # This line would get the intial solution, and optional lines to chose for each WO self. HardConstraintPenalty = 150 def __len__(self): return self.WO_SIZE def __Import_And_CleanData(self): JobID = random.randint(1,1000) self.Table_SchedulingInfo,self.Table_ChangeOverInfo,self.Table_CalendarInfo = generate3tables() self.Table_SchedulingInfo['ProductionLineCode_Cap'] = self.Table_SchedulingInfo.OptionalLine#.apply(lambda x: x.split('')[-1]) self.Table_CalendarInfo["ProductionDate_ShiftA"] = pd.to_datetime(self.Table_CalendarInfo["ProductionDate"] +' '+ self.Table_CalendarInfo["ShiftAStart"]) self.Table_CalendarInfo['ShiftAStart'] = pd.to_datetime(self.Table_CalendarInfo['ShiftAStart'] ) self.Table_CalendarInfo['ShiftAEnd'] = pd.to_datetime(self.Table_CalendarInfo['ShiftAEnd'] ) self.Table_CalendarInfo["ShiftA_deltaT_minutes"] = ((self.Table_CalendarInfo["ShiftAEnd"] - self.Table_CalendarInfo["ShiftAStart"]).dt.total_seconds())/60 self.Table_CalendarInfo["ShiftB_deltaT_minutes"] = self.Table_CalendarInfo["ShiftA_deltaT_minutes"] FamilyGp_DupCount = self.Table_SchedulingInfo.groupby('FamilyName').size().sort_values(ascending=False).to_frame('DuplicateCount') # save the results in a dataframe [FamilyName, DuplicateCount] self.Schedule_Info =pd.DataFrame() for FamulyNameGroupItem, _ in FamilyGp_DupCount.iterrows(): df_grouped = self.Table_SchedulingInfo.loc[self.Table_SchedulingInfo.FamilyName == FamulyNameGroupItem] # df_grouped.loc[~df_grouped.ChangeoverSort.isin(self.Table_ChangeOverInfo.ToChangeOver.tolist()), 'ChangeoverSort'] = '1020Other' self.Schedule_Info = self.Schedule_Info.append(df_grouped, ignore_index = True) self.Schedule_Info.assign(MaxChangeOverTimeMin="") # 5.1. ACurrent_Start Maximum ChangeOver Time of each family to the self.Schedule_Info table for i, val in enumerate(self.Table_ChangeOverInfo.ToChangeOver.tolist()): self.Schedule_Info.loc[self.Schedule_Info.ChangeoverSort == val, 'MaxChangeOverTimeMin'] = self.Table_ChangeOverInfo.MaxChangeOverTimeMin.iloc[i] # ----------------------- 6. Create a completely new table to save the scheduled work (!!! 6.1. Sort WPT based on Family Group ) - # self.minor_ChangeOver_Mins = 2.53 ## print('#---------------- 6.1. Sort WPT based on Family Group ---------------#') self.Schedule_Info["Optional_Lines"] = self.Schedule_Info.ProductionLineCode_Cap # # ==================================== Objective Function Construction ======================================= # self.Unique_WO_Array = self.Schedule_Info['WorkOrderNum'].unique() self.WO_SIZE = len(self.Unique_WO_Array) Unique_WO_Df = pd.DataFrame({'WorkOrderNum':self.Unique_WO_Array}) ## print("# 2D Matrics for each work order:O_Lines,P_Times,WP_Times ") O_Lines = [list((self.Schedule_Info['Optional_Lines'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()] P_Times = [list((self.Schedule_Info['ProcessingTimeMins'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()] ## print("# 2D-1. Zaro paCurrent_Starting to make sure all optionals lines have same number of lines") self.O_Lines_Array = np.array([i + [0]*(len(max(O_Lines, key=len))-len(i)) for i in O_Lines]) self.P_Times_Array = np.array([i + [0]*(len(max(P_Times, key=len))-len(i)) for i in P_Times]) ## print("# 2D-2. If an element equalt to 0, relace with previous value in the row") for idx, item in np.ndenumerate(self.O_Lines_Array): if item == 0: self.O_Lines_Array[(idx[0],idx[1])] = self.O_Lines_Array[(idx[0],idx[1]-1)] self.P_Times_Array[(idx[0],idx[1])] = self.P_Times_Array[(idx[0],idx[1]-1)] ## print("# 1D Matrics for each work order:self.CV_Times, self.CV_Sorts, self.Fmily_T, self.BStart_Dates, self.Del_Dates") self.Schedule_Info['BasicEndDate'] = self.Schedule_Info['DeliveryDate'] self.CV_Times = np.array([list(set(self.Schedule_Info['MaxChangeOverTimeMin'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) self.CV_Sorts = np.array([list(set(self.Schedule_Info['ChangeoverSort'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) self.Fmily_T = np.array([list(set(self.Schedule_Info['FamilyName'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) self.BStart_Dates = np.array([list(set(self.Schedule_Info['BasicStartDate'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) def Run_ToGetAllLines_Objectives(self,Chromosome_Solution): Performances_df = pd.DataFrame() line_viol = self.CandidateViolation(Chromosome_Solution) for Line_Code in range(1,5): self.__Objectives_Of_Each_Line(Line_Code,Chromosome_Solution) Performances_df = Performances_df.append(pd.DataFrame({'LineName':'Line '+str(Line_Code), 'MakeSpanTime':(self.Line_Total_PT+self.Line_Total_CV_Times)/(60)}, index=[0]), ignore_index = True) MkSpan_Dif = round(Performances_df['MakeSpanTime'].max() - Performances_df['MakeSpanTime'].min(),2) return 150*line_viol+50*(MkSpan_Dif/24) def Final_Run(self,Chromosome_Solution): print(Chromosome_Solution) Performances_df = pd.DataFrame() PT_Mini = 0 line_viol = self.CandidateViolation(Chromosome_Solution) self.OutputData_Of_Lines =pd.DataFrame() OutputData =pd.DataFrame() Unique_Lines = self.Schedule_Info.Optional_Lines.nunique() for Line_Code in range(1,Unique_Lines+1): Schedule_Of_The_Line,Start,Finish = self.__FinalRun_Obj_Of_Each_Line_SaveData(Line_Code,Chromosome_Solution) self.OutputData_Of_Lines = self.OutputData_Of_Lines.append(Schedule_Of_The_Line) Schedule_Of_The_Line.Start = Start Schedule_Of_The_Line.Finish = Finish OutputData = OutputData.append(Schedule_Of_The_Line) Performances_df = Performances_df.append(pd.DataFrame({'LineName':'Line '+str(Line_Code), 'FamilyAtDayStartFactor':1, 'ProcessingTime':self.Line_Total_PT/(60), 'ChangeoverTime':self.Line_Total_CV_Times/(60), 'MakeSpanTime':(self.Line_Total_PT+self.Line_Total_CV_Times)/(60)}, index=[0]), ignore_index = True) MkSpan_Dif = round(Performances_df['MakeSpanTime'].max() - Performances_df['MakeSpanTime'].min(),2) PT_Mini =round(Performances_df['ProcessingTime'].sum(),2) CVTimes_Mini =round(Performances_df['ChangeoverTime'].sum(),2) Performances_df = Performances_df.append(pd.DataFrame({'LineName':'AllLines', 'FamilyAtDayStartFactor':1, 'ProcessingTime':PT_Mini, 'ChangeoverTime':CVTimes_Mini, 'MakeSpanTime':(PT_Mini+CVTimes_Mini)}, index=[0]), ignore_index = True) single_Objective = 150*line_viol+50*(MkSpan_Dif/24) OutputData = OutputData.rename(columns={"Task": "LineName", "Start":"BasicStartDate", "Finish":"BasicEndDate", "Resource":"Family"}) def Plot_Gantt_Chart(self): # ------------------------------- Ploting the results by using Plotly Gantt Chart ---------------------------------------------- # print(f'{"The shape of the OutputData_Of_Lines: "}{self.OutputData_Of_Lines.shape[0]}') color_dict = dict(zip(self.OutputData_Of_Lines.Resource.unique(),['rgb({},{},{})'.format(i[0],i[1],i[2]) for i in list(np.random.randint(255, size = (len(self.OutputData_Of_Lines.Resource.unique()),3)))])) fig = ff.create_gantt(self.OutputData_Of_Lines.to_dict(orient = 'records'), colors = color_dict, index_col = "Resource", title = "Genetic Algorithm based Optimization", show_colorbar = True, bar_width = 0.3, showgrid_x = False, showgrid_y = True, show_hover_fill=True) fig_html = pio.to_html(fig) # fig.show() # print(fig_html) # fig.write_image(r"CLS_GanttChart.png") return fig_html def CandidateViolation(self,Chromosome_Solution): line_viol = 0 for idx, item in np.ndenumerate(Chromosome_Solution): if item not in self.O_Lines_Array[idx[0]]: line_viol += 1 return line_viol def __Objectives_Of_Each_Line(self,Line_Code,Chromosome_Solution): ## print('#---------------- 6.2. Reset the initial start and end -------------#') Line_Curr_End = self.Table_CalendarInfo.ProductionDate_ShiftA + pd.to_timedelta(self.minor_ChangeOver_Mins*60, unit='s') Line_Curr_End = Line_Curr_End[0] Shift_AandB_Period = self.Table_CalendarInfo.ShiftA_deltaT_minutes.values[0] + self.Table_CalendarInfo.ShiftB_deltaT_minutes.values[0] ShiftBAPeriod = 220 # in mins (3 hours 40 minutes) self.Line_CumMakeSpan = 0 self.Line_Total_PT = 0 self.Line_Total_CV_Times = 0 Line_WO_Idxes = [] Chromosome_Solution = np.array(Chromosome_Solution) for ii, item in np.ndenumerate(np.array(np.where(Chromosome_Solution == Line_Code))): Line_WO_Idxes.append(item) # 2D Matrics Line_CV_Sorts = self.CV_Sorts[(Line_WO_Idxes),0] self.Line_Families = self.Fmily_T[(Line_WO_Idxes),0] Line_CV_Times = self.CV_Times[(Line_WO_Idxes),0] ## print("6.2. Use all lines WorkOrder indexes to find total CV time and Family Sort Change ") Previous_CV = Line_CV_Sorts[0] self.CV_Times_Each_Order = [] for CV_idx, CV_ele in np.ndenumerate(Line_CV_Sorts): if CV_ele != Previous_CV: self.Line_Total_CV_Times += Line_CV_Times[CV_idx] self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,Line_CV_Times[CV_idx]) else: self.Line_Total_CV_Times += self.minor_ChangeOver_Mins self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,self.minor_ChangeOver_Mins) Previous_CV = CV_ele ## print("6.3.=========== Use all lines WorkOrder indexes to find the total processing time ================= ") self.P_Times_Each_Order = [] self.Line_Late_Falg = [] curr_line_idx = 0 for _, WO_idx in np.ndenumerate(Line_WO_Idxes): for i in np.where(self.O_Lines_Array[WO_idx]==Line_Code): for j in i: curr_line_idx=j self.Line_Total_PT += self.P_Times_Array[(WO_idx,curr_line_idx)] self.P_Times_Each_Order = np.append(self.P_Times_Each_Order,self.P_Times_Array[(WO_idx,curr_line_idx)]) def __FinalRun_Obj_Of_Each_Line_SaveData(self,Line_Code,Chromosome_Solution): ## print('#---------------- 6.2. Reset the initial start and end -------------#') Line_Curr_End = self.Table_CalendarInfo.ProductionDate_ShiftA + pd.to_timedelta(self.minor_ChangeOver_Mins*60, unit='s') Line_Curr_End = Line_Curr_End[0] self.PlanStartTime = Line_Curr_End intial_start_date = Line_Curr_End Shift_AandB_Period = self.Table_CalendarInfo.ShiftA_deltaT_minutes.values[0] + self.Table_CalendarInfo.ShiftB_deltaT_minutes.values[0] Shift_A_Period = self.Table_CalendarInfo.ShiftA_deltaT_minutes.values[0] ShiftBAPeriod = 220 # in mins (3 hours 40 minutes) self.Line_CumMakeSpan = 0 self.Line_Total_PT = 0 self.Line_Total_CV_Times = 0 ## print("4. Obtain the line work order indexes for the line by determine at what positon line 1/2/3/4 is used") Line_WO_Idxes = [] Chromosome_Solution = np.array(Chromosome_Solution) for ii, item in np.ndenumerate(np.array(np.where(Chromosome_Solution == Line_Code))): Line_WO_Idxes.append(item) ## print("5. Find the processing time, setup time, CV sorts, families, line calendar start time and delivery time for each line") Line_WO_Num = self.Unique_WO_Array[(Line_WO_Idxes)] # 2D Matrics Line_CV_Sorts = self.CV_Sorts[(Line_WO_Idxes),0] self.Line_Families = self.Fmily_T[(Line_WO_Idxes),0] Line_CV_Times = self.CV_Times[(Line_WO_Idxes),0] Previous_CV = Line_CV_Sorts[0] self.CV_Times_Each_Order = [] for CV_idx, CV_ele in np.ndenumerate(Line_CV_Sorts): if CV_ele != Previous_CV: self.Line_Total_CV_Times += Line_CV_Times[CV_idx] self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,Line_CV_Times[CV_idx]) else: self.Line_Total_CV_Times += self.minor_ChangeOver_Mins self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,self.minor_ChangeOver_Mins) Previous_CV = CV_ele ## print("6.3. Use all lines WorkOrder indexes to find the total processing time ") self.P_Times_Each_Order = [] curr_line_idx = 0 for _, WO_idx in np.ndenumerate(Line_WO_Idxes): for i in np.where(self.O_Lines_Array[WO_idx]==Line_Code): for j in i: curr_line_idx=j self.Line_Total_PT += self.P_Times_Array[(WO_idx,curr_line_idx)] self.P_Times_Each_Order = np.append(self.P_Times_Each_Order,self.P_Times_Array[(WO_idx,curr_line_idx)]) ## print("# 6.3.1. Define a dataframe to save all results for plotting") LineSequence = 0 Schedule_Of_The_Line =pd.DataFrame() for P_Time_idx, P_Time_ele in np.ndenumerate(self.P_Times_Each_Order): Line_Remainder = self.Line_CumMakeSpan%(Shift_AandB_Period) Line_Curr_CV_Time = self.CV_Times_Each_Order[P_Time_idx] Line_Curr_P_Time = self.P_Times_Each_Order[P_Time_idx] self.Line_CumMakeSpan += Line_Curr_P_Time + Line_Curr_CV_Time if (Line_Remainder + Line_Curr_P_Time) > Shift_AandB_Period: SecondP_of_P_Time = Line_Remainder + Line_Curr_P_Time-Shift_AandB_Period FirstP_of_P_Time = Line_Curr_P_Time - SecondP_of_P_Time Line_Curr_Start = Line_Curr_End + pd.to_timedelta((Line_Curr_CV_Time)*60, unit='s') Line_Curr_End = Line_Curr_Start + pd.to_timedelta((FirstP_of_P_Time*60), unit='s') Schedule_Of_The_Line = Schedule_Of_The_Line.append(pd.DataFrame({'Task':'Line '+str(Line_Code), 'Start':Line_Curr_Start, 'Finish':Line_Curr_End, 'ProcessingTimeInMins':FirstP_of_P_Time, 'WorkOrderNum':str(Line_WO_Num[P_Time_idx]) , 'Resource': self.Line_Families[P_Time_idx], 'ChangeoverTimeInMins':Line_Curr_CV_Time, 'WorkOrderSplitCounter':0, }, index=[0]), ignore_index = True) Line_Curr_Start_b = Line_Curr_End + pd.to_timedelta((ShiftBAPeriod)*60, unit='s') Line_Curr_End = Line_Curr_Start_b + pd.to_timedelta(SecondP_of_P_Time*60, unit='s') Schedule_Of_The_Line = Schedule_Of_The_Line.append(pd.DataFrame({'Task':'Line '+str(Line_Code), 'Start':Line_Curr_Start_b, 'Finish':Line_Curr_End, 'ProcessingTimeInMins':Line_Curr_P_Time, 'WorkOrderNum':str(Line_WO_Num[P_Time_idx]) , 'Resource': self.Line_Families[P_Time_idx], 'ChangeoverTimeInMins':0, 'WorkOrderSplitCounter':0, }, index=[LineSequence]), ignore_index = True) else: Line_Curr_Start = Line_Curr_End + pd.to_timedelta(Line_Curr_CV_Time*60, unit='s') Line_Curr_End = Line_Curr_Start +
pd.to_timedelta((Line_Curr_P_Time*60), unit='s')
pandas.to_timedelta
""" Following functions are specific to the analysis of the data saved with BELLA control system """ import pandas as pd import matplotlib.pyplot as plt import os import glob import re from numpy import unravel_index import numpy as np from scipy import stats import json from functions.data_analysis import df_outlier2none def get_data(dir_date, nscan=None, para=None, trim_std=None): '''Get DataFrame dir_date: directory of a date where scan data is stored (str) nscan: list of scan number(int) para_list: list of parameters(str).No need to write the full name. ''' path = get_scan_path(dir_date, nscan) df = get_data_from_path(path, para) #parameters to consider getting rid of outliers...(don't consider scan) para_vals = list(df.columns) if 'scan' in para_vals: para_vals.remove('scan') if 'DateTime Timestamp' in para_vals: para_vals.remove('DateTime Timestamp') if 'Shotnumber' in para_vals: para_vals.remove('Shotnumber') #get rid of outliers if trim_std: df_new = df_outlier2none(df, std=trim_std, columns = para_vals ) return df def get_files_list(dirpath,f_format): """ get get path of all files with f_format in the directory dir_date: directory path f_format: ex) txt """ return sorted(glob.glob(dirpath+'/*.'+f_format)) def get_notebook_name(): """ Return the full path of the jupyter notebook. """ import ipykernel import requests from requests.compat import urljoin from notebook.notebookapp import list_running_servers kernel_id = re.search('kernel-(.*).json', ipykernel.connect.get_connection_file()).group(1) servers = list_running_servers() for ss in servers: response = requests.get(urljoin(ss['url'], 'api/sessions'), params={'token': ss.get('token', '')}) for nn in json.loads(response.text): if nn['kernel']['id'] == kernel_id: relative_path = nn['notebook']['path'] return os.path.join(ss['notebook_dir'], relative_path) def save_dataframe(df, name, ipynb = None): '''save dataframe under data/"current ipython name"/''' #get the file name of ipynb if ipynb == None: ipynb_fullpath = get_notebook_name() ipynb = os.path.splitext(os.path.basename(ipynb_fullpath))[0] #Open the data folder if doesnt exist if not os.path.exists('data_ipynb'): os.makedirs('data_ipynb') if not os.path.exists('data_ipynb/'+ipynb): os.makedirs('data_ipynb/'+ipynb) #Save data df.to_pickle('data_ipynb/'+ipynb+'/'+name+'.pkl') print(name+' saved') return None def load_dataframe(name, ipynb = None): """load dataframe which was saved using the function save_dataframe name: correspons to the name of the daframe you sppecified with save_dataframe ipynb: the ipynb name you are running. If None, it will be automatically aquired. (NOt working sometime). """ #get the file name of ipynb if ipynb == None: ipynb_fullpath = get_notebook_name() ipynb = os.path.splitext(os.path.basename(ipynb_fullpath))[0] load_path = 'data_ipynb/'+ipynb+'/'+name+'.pkl' df = pd.read_pickle(load_path) print(name+' loaded') return df def get_data_from_path(path_list, para_list = None): '''Get DataFrame from the file. path_list: a filename or list of multiple filenames. they will append all data sets. para_list: list of parameters (column names) you want to select from dataframe output: dataframe ''' data_list = [] for i in range(len(path_list)): data_i = pd.read_csv(path_list[i], sep='\t') if para_list: #get full name of the parameters para_list_full = [] for j in para_list: para_full = par_full(path_list[i], j) if para_full: para_list_full = para_list_full+[para_full] #If you can get all parameters, append the data of the scan if len(para_list_full) == len(para_list): data_i = data_i[para_list_full] data_list.append(data_i) else: print('Skip saving data from', os.path.basename(path_list[i])) else: #if there is no para_list, get all the parameters that are saved data_list.append(data_i) data = pd.concat(data_list, sort=False) #rename column names to alias if exists for col in data.columns: if 'Alias:' in col: alias = col.split('Alias:', 1)[1] data = data.rename(columns={col:alias}) return data def get_nscan_last(dir_date): '''Get the last scan number which is already done''' path = dir_date + '\\analysis' if not os.path.isdir(path): return 0 else: # get last scan info file name files = glob.glob(path + '\\s*info.txt') file_last = os.path.basename(files[-1]) # regexp. find number in the file name n_scans = int(re.findall(r"\d+", file_last)[0]) return n_scans def get_scan_path(dir_date, nscan=None): ''' Get a path of the scan file s**.txt in the analysis nscan: List or int of scan number. if None, creat a list of all scan text paths ''' #if nscan_list=None, make a list of all scan #s if not nscan: nscan_last = get_nscan_last(dir_date) nscan_list = range(1, nscan_last+1) elif isinstance(nscan, int): nscan_list = [nscan] else: nscan_list = nscan path_list = [] #make a list of all scan file paths for i in nscan_list: path = dir_date + '\\analysis\\s' + str(i) + '.txt' path_list = path_list + [path] return path_list def par_full(file, par): '''get a full name of the parameter''' data =
pd.read_csv(file, sep='\t')
pandas.read_csv
import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays.sparse import ( SparseArray, SparseDtype, ) arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) arr = SparseArray(arr_data) class TestGetitem: def test_getitem(self): dense = arr.to_dense() for i in range(len(arr)): tm.assert_almost_equal(arr[i], dense[i]) tm.assert_almost_equal(arr[-i], dense[-i]) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize( "slc", [ np.s_[:], np.s_[1:10], np.s_[1:100], np.s_[10:1], np.s_[:-3], np.s_[-5:-4], np.s_[:-12], np.s_[-12:], np.s_[2:], np.s_[2::3], np.s_[::2], np.s_[::-1], np.s_[::-2], np.s_[1:6:2], np.s_[:-6:-2], ], ) @pytest.mark.parametrize( "as_dense", [[np.nan] * 10, [1] * 10, [np.nan] * 5 + [1] * 5, []] ) def test_getslice(self, slc, as_dense): as_dense = np.array(as_dense) arr = SparseArray(as_dense) result = arr[slc] expected = SparseArray(as_dense[slc]) tm.assert_sp_array_equal(result, expected) def test_getslice_tuple(self): dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0]) sparse = SparseArray(dense) res = sparse[(slice(4, None),)] exp = SparseArray(dense[4:]) tm.assert_sp_array_equal(res, exp) sparse = SparseArray(dense, fill_value=0) res = sparse[(slice(4, None),)] exp = SparseArray(dense[4:], fill_value=0) tm.assert_sp_array_equal(res, exp) msg = "too many indices for array" with pytest.raises(IndexError, match=msg): sparse[4:, :] with pytest.raises(IndexError, match=msg): # check numpy compat dense[4:, :] def test_boolean_slice_empty(self): arr = SparseArray([0, 1, 2]) res = arr[[False, False, False]] assert res.dtype == arr.dtype def test_getitem_bool_sparse_array(self): # GH 23122 spar_bool = SparseArray([False, True] * 5, dtype=np.bool8, fill_value=True) exp = SparseArray([np.nan, 2, np.nan, 5, 6]) tm.assert_sp_array_equal(arr[spar_bool], exp) spar_bool = ~spar_bool res = arr[spar_bool] exp = SparseArray([np.nan, 1, 3, 4, np.nan]) tm.assert_sp_array_equal(res, exp) spar_bool = SparseArray( [False, True, np.nan] * 3, dtype=np.bool8, fill_value=np.nan ) res = arr[spar_bool] exp = SparseArray([np.nan, 3, 5])
tm.assert_sp_array_equal(res, exp)
pandas._testing.assert_sp_array_equal
import logging from collections import defaultdict from concurrent.futures import FIRST_EXCEPTION, wait from itertools import product from pathlib import Path from typing import Iterable, List, Optional, Tuple, Union import numpy as np import pandas as pd from hermes.typeo import typeo from rich.progress import Progress from bbhnet.analysis.analysis import integrate from bbhnet.analysis.distributions import DiscreteDistribution from bbhnet.analysis.normalizers import GaussianNormalizer from bbhnet.io.h5 import write_timeseries from bbhnet.io.timeslides import Segment, TimeSlide from bbhnet.logging import configure_logging from bbhnet.parallelize import AsyncExecutor, as_completed event_times = [1186302519.8, 1186741861.5, 1187058327.1, 1187529256.5] event_names = ["GW170809", "GW170814", "GW170818", "GW170823"] events = {name: time for name, time in zip(event_names, event_times)} def load_segment(segment: Segment): """ Quick utility function which just wraps a Segment's `load` method so that we can execute it in a process pool since methods aren't picklable. """ segment.load("out") return segment def get_write_dir( write_dir: Path, norm: Optional[float], shift: Union[str, Segment] ) -> Path: """ Quick utility function for getting the name of the directory to which to save the outputs from an analysis using a particular time-shift/norm-seconds combination """ if isinstance(shift, Segment): shift = shift.shift write_dir = write_dir / f"norm-seconds.{norm}" / shift write_dir.mkdir(parents=True, exist_ok=True) return write_dir def build_background( thread_ex: AsyncExecutor, process_ex: AsyncExecutor, pbar: Progress, background_segments: Iterable[Segment], data_dir: Path, write_dir: Path, max_tb: float, window_length: float = 1.0, norm_seconds: Optional[Iterable[float]] = None, num_bins: int = int(1e4), ): """ For a sequence of background segments, compute a discrete distribution of integrated neural network outputs using the indicated integration window length for each of the normalization window lengths specified. Iterates through the background segments in order and tries to find as many time-shifts available for each segment as possible in the specified data directory, stopping iteration through segments once a maximum number of seconds of bacgkround have been generated. As a warning, there's a fair amount of asynchronous execution going on in this function, and it may come off a bit complex. Args: thread_ex: An `AsyncExecutor` that maintains a thread pool for writing analyzed segments in parallel with the analysis processes themselves. process_ex: An `AsyncExecutor` that maintains a process pool for loading and integrating Segments of neural network outputs. pbar: A `rich.progress.Progress` object for keeping track of the progress of each of the various subtasks. background_segments: The `Segment` objects to use for building a background distribution. `data_dir` will be searched for all time-shifts of each segment for parallel analysis. Once `max_tb` seconds worth of background have been generated, iteration through this array will be terminated, so segments should be ordered by some level of "importance", since it's likely that segments near the back of the array won't be analyzed for lower values of `max_tb`. data_dir: Directory containing timeslide root directories, which will be mined for time-shifts of each `Segment` in `background_segments`. If a time-shift doesn't exist for a given `Segment`, the time-shift is ignored. write_dir: Root directory to which to write integrated NN outputs. For each time-shift analyzed and normalization window length specified in `norm_seconds`, results will be written to a subdirectory `write_dir / "norm-seconds.{norm}" / shift`, which will be created if it does not exist. max_tb: The maximum number of seconds of background data to analyze for each value of `norm_seconds` before new segments to shift and analyze are no longer sought. However, because we use _every_ time-shift for each segment we iterate through, its possible that each background distribution will utilize slightly more than this value. window_length: The length of the integration window to use for analysis in seconds. norm_seconds: An array of normalization window lengths to use to standardize the integrated neural network outputs. (i.e. the output timeseries is the integral over the previous `window_length` seconds, normalized by the mean and standard deviation of the previous `norm` seconds before that, where `norm` is each value in `norm_seconds`). A `norm` value of `None` in the `norm_seconds` iterable indicates no normalization, and if `norm_seconds` is left as `None` this will be the only value used. num_bins: The number of bins to use to initialize the discrete distribution used to characterize the background distribution. Returns: A dictionary mapping each value in `norm_seconds` to an associated `DiscreteDistribution` characterizing its background distribution. """ write_dir.mkdir(exist_ok=True) norm_seconds = norm_seconds or [norm_seconds] # keep track of the min and max values of each normalization # window's background and the corresponding filenames so # that we can fit a discrete distribution to it after the fact mins = defaultdict(lambda: float("inf")) maxs = defaultdict(lambda: -float("inf")) # keep track of all the files that we've written # for each normalization window size so that we # can iterate through them later and submit them # for reloading once we have our distributions initialized fname_futures = defaultdict(list) # iterate through timeshifts of our background segments # until we've generated enough background data. background_segments = iter(background_segments) main_task_id = pbar.add_task("[red]Building background", total=max_tb) while not pbar.tasks[main_task_id].finished: segment = next(background_segments) # since we're assuming here that the background # segments are being provided in reverse chronological # order (with segments closest to the event segment first), # exhaust all the time shifts we can of each segment before # going to the previous one to keep data as fresh as possible load_futures = {} for shift in data_dir.iterdir(): try: shifted = segment.make_shift(shift.name) except ValueError: # this segment doesn't have a shift # at this value, so just move on continue # load all the timeslides up front in a separate thread # TODO: O(1GB) memory means segment.length * N ~O(4M), # so for ~O(10k) long segments this means this should # be fine as long as N ~ O(100). Worth doing a check for? future = process_ex.submit(load_segment, shifted) load_futures[shift.name] = [future] # create progress bar tasks for each one # of the subprocesses involved for analyzing # this set of timeslides load_task_id = pbar.add_task( f"[cyan]Loading {len(load_futures)} {segment.length}s timeslides", total=len(load_futures), ) analyze_task_id = pbar.add_task( "[yelllow]Integrating timeslides", total=len(load_futures) * len(norm_seconds), ) write_task_id = pbar.add_task( "[green]Writing integrated timeslides", total=len(load_futures) * len(norm_seconds), ) # now once each segment is loaded, submit a job # to our process pool to integrate it using each # one of the specified normalization periods integration_futures = {} sample_rate = None for shift, seg in as_completed(load_futures): # get the sample rate of the NN output timeseries # dynamically from the first timeseries we load, # since we'll need it to initialize our normalizers if sample_rate is None: t = seg._cache["t"] sample_rate = 1 / (t[1] - t[0]) for norm in norm_seconds: # build a normalizer for the given normalization window length if norm is not None: normalizer = GaussianNormalizer(norm * sample_rate) else: normalizer = None # submit the integration job and have it update the # corresponding progress bar task once it completes future = process_ex.submit( integrate, seg, kernel_length=1.0, window_length=window_length, normalizer=normalizer, ) future.add_done_callback( lambda f: pbar.update(analyze_task_id, advance=1) ) integration_futures[(norm, shift)] = [future] # advance the task keeping track of how many files # we've loaded by one pbar.update(load_task_id, advance=1) # make sure we have the expected number of jobs submitted if len(integration_futures) < (len(norm_seconds) * len(load_futures)): raise ValueError( "Expected {} integration jobs submitted, " "but only found {}".format( len(norm_seconds) * len(load_futures), len(integration_futures), ) ) # as the integration jobs come back, write their # results using our thread pool and record the # min and max values for our discrete distribution segment_futures = [] for (norm, shift), (t, y, integrated) in as_completed( integration_futures ): # submit the writing job to our thread pool and # use a callback to keep track of all the filenames # for a given normalization window shift_dir = get_write_dir(write_dir, norm, shift) future = thread_ex.submit( write_timeseries, shift_dir, t=t, y=y, integrated=integrated, ) future.add_done_callback( lambda f: pbar.update(write_task_id, advance=1) ) fname_futures[norm].append(future) segment_futures.append(future) # keep track of the max and min values for each norm mins[norm] = min(mins[norm], integrated.min()) maxs[norm] = max(maxs[norm], integrated.max()) # wait for all the writing to finish before we # move on so that we don't overload our processes wait(segment_futures, return_when=FIRST_EXCEPTION) pbar.update(main_task_id, advance=len(load_futures) * segment.length) # now that we've analyzed enough background data, # we'll initialize background distributions using # the min and max bounds we found during analysis # and then load everything back in to bin them # within these bounds Tb = pbar.tasks[main_task_id].completed logging.info(f"Accumulated {Tb}s of background matched filter outputs.") # submit a bunch of jobs for loading these integrated # segments back in for discretization load_futures = defaultdict(list) for norm, fname in as_completed(fname_futures): future = process_ex.submit(load_segment, Segment(fname)) load_futures[norm].append(future) # create a task for each one of the normalization windows # tracking how far along the distribution fit is fit_task_ids = {} for norm in norm_seconds: norm_name = f"{norm}s" if norm is not None else "empty" task_id = pbar.add_task( "[purple]Fitting background using {} normalization window".format( norm_name ), total=len(load_futures[norm]), ) fit_task_ids[norm] = task_id # now discretized the analyzed segments as they're loaded back in backgrounds = {} for norm, segment in as_completed(load_futures): try: # if we already have a background distribution # for this event, grab it and fit it with a # "warm start" aka don't ditch the existing histogram background = backgrounds[norm] warm_start = True except KeyError: # otherwise create a new distribution # and fit it from scratch mn, mx = mins[norm], maxs[norm] background = DiscreteDistribution("integrated", mn, mx, num_bins) backgrounds[norm] = background warm_start = False # fit the distribution to the new data and then # update the corresponding task tracker background.fit(segment, warm_start=warm_start) pbar.update(fit_task_ids[norm], advance=1) return backgrounds def check_if_needs_analyzing( event_segment: Segment, norm_seconds: Iterable[Optional[float]], characterizations: pd.DataFrame, ) -> Iterable[Optional[float]]: times = [t for t in event_times if t in event_segment] names = [name for name in event_names if events[name] in times] combos = set(product(names, norm_seconds)) remaining = combos - set(characterizations.index) # only do analysis on those normalization # values that we haven't already done # (sorry, you'll still have to do it for all events, # but those are miniscule by comparison) norm_seconds = list(set([j for i, j in remaining])) return norm_seconds, names, times def analyze_event( thread_ex: AsyncExecutor, process_ex: AsyncExecutor, characterizations: pd.DataFrame, timeseries: pd.DataFrame, event_segment: Segment, background_segments: Iterable[Segment], data_dir: Path, write_dir: Path, results_dir: Path, max_tb: float, window_length: float = 1.0, norm_seconds: Optional[Iterable[float]] = None, num_bins: int = int(1e4), force: bool = False, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Use timeshifts of a set of previous segments to build a background distribution with which to analyze a segment containing an event and characterizing the false alaram rate of that event as a function of time from the event trigger. """ # first check if we can skip this analysis altogether # because we already have data on it and we're not # forcing ourselves to re-analyze norm_seconds = norm_seconds or [norm_seconds] if not force: norm_seconds, names, times = check_if_needs_analyzing( event_segment, norm_seconds, characterizations ) if len(norm_seconds) == 0: logging.info( f"Already analyzed events in segment {event_segment}, skipping" ) return with Progress() as pbar: # TODO: exclude segments with events? backgrounds = build_background( thread_ex, process_ex, pbar, background_segments=background_segments, data_dir=data_dir, write_dir=write_dir, window_length=window_length, norm_seconds=norm_seconds, max_tb=max_tb, num_bins=num_bins, ) # now use the fit background to characterize the # significance of BBHNet's detection around the event for norm, background in backgrounds.items(): if norm is not None: normalizer = GaussianNormalizer(norm) else: normalizer = None logging.info( "Characterizing events {} with normalization " "window length {}".format(", ".join(names), norm) ) t, y, integrated = integrate( event_segment, kernel_length=1, window_length=window_length, normalizer=normalizer, ) fname = write_timeseries( get_write_dir(write_dir, norm, event_segment), t=t, y=y, integrated=integrated, ) # create a segment and add the existing data to # its cache so that we don't try to load it again segment = Segment(fname) segment._cache = {"t": t, "integrated": integrated} fars, latencies = background.characterize_events( segment, times, window_length=window_length, metric="far" ) # for each one of the events in this segment, # record the false alarm rate as a function of # time and add it to our dataframe then checkpoint it. # Then isolate the timeseries of both the NN outputs and # the integrated values around the event and write those # to another dataframe and checkpoint that as well for far, latency, name, time in zip(fars, latencies, names, times): logging.info(f"\t{name}:") logging.info(f"\t\tFalse Alarm Rates: {list(far)}") logging.info(f"\t\tLatencies: {list(latency)}") df = pd.DataFrame( dict( event_name=[name] * len(far), norm_seconds=[norm] * len(far), far=far, latency=latency, ) ).set_index(["event_name", "norm_seconds"]) characterizations = pd.concat([characterizations, df]) characterizations.to_csv(results_dir / "characterizations.csv") # keep the one second before the trigger, # during the event after the trigger, and # after the event trigger has left the kernel mask = (time - 1 < t) & (t < time + 2) df = pd.DataFrame( dict( event_name=[name] * mask.sum(), norm_seconds=[norm] * mask.sum(), t=t[mask] - time, y=y[mask], integrated=integrated[mask], ) ).set_index(["event_name", "norm_seconds"]) timeseries =
pd.concat([timeseries, df])
pandas.concat
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from meterstick import metrics from meterstick import operations import mock import numpy as np import pandas as pd from pandas import testing import unittest class MetricTest(unittest.TestCase): """Tests general features of Metric.""" df = pd.DataFrame({'X': [0, 1, 2, 3], 'Y': [0, 1, 1, 2]}) def test_precompute(self): metric = metrics.Metric( 'foo', precompute=lambda df, split_by: df[split_by], compute=lambda x: x.sum().values[0]) output = metric.compute_on(self.df, 'Y') expected = pd.DataFrame({'foo': [0, 2, 2]}, index=range(3)) expected.index.name = 'Y' testing.assert_frame_equal(output, expected) def test_compute(self): metric = metrics.Metric('foo', compute=lambda x: x['X'].sum()) output = metric.compute_on(self.df) expected = metrics.Sum('X', 'foo').compute_on(self.df) testing.assert_frame_equal(output, expected) def test_postcompute(self): def postcompute(values, split_by): del split_by return values / values.sum() output = metrics.Sum('X', postcompute=postcompute).compute_on(self.df, 'Y') expected = operations.Distribution('Y', metrics.Sum('X')).compute_on(self.df) expected.columns = ['sum(X)'] testing.assert_frame_equal(output.astype(float), expected) def test_compute_slices(self): def _sum(df, split_by): if split_by: df = df.groupby(split_by) return df['X'].sum() metric = metrics.Metric('foo', compute_slices=_sum) output = metric.compute_on(self.df) expected = metrics.Sum('X', 'foo').compute_on(self.df) testing.assert_frame_equal(output, expected) def test_final_compute(self): metric = metrics.Metric( 'foo', compute=lambda x: x, final_compute=lambda *_: 2) output = metric.compute_on(None) self.assertEqual(output, 2) def test_pipeline_operator(self): m = metrics.Count('X') testing.assert_frame_equal( m.compute_on(self.df), m | metrics.compute_on(self.df)) class SimpleMetricTest(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 3, 4], 'Y': [3, 1, 1, 4, 4, 3, 5], 'grp': ['A'] * 3 + ['B'] * 4 }) def test_list_where(self): metric = metrics.Mean('X', where=['grp == "A"']) output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].mean() self.assertEqual(output, expected) def test_single_list_where(self): metric = metrics.Mean('X', where=['grp == "A"', 'Y < 2']) output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A" and Y < 2')['X'].mean() self.assertEqual(output, expected) def test_count_not_df(self): metric = metrics.Count('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 7) def test_count_split_by_not_df(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].count() expected.name = 'count(X)' testing.assert_series_equal(output, expected) def test_count_where(self): metric = metrics.Count('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 3) def test_count_with_nan(self): df = pd.DataFrame({'X': [1, 1, np.nan, 2, 2, 3, 4]}) metric = metrics.Count('X') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 6) def test_count_unmelted(self): metric = metrics.Count('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'count(X)': [7]}) testing.assert_frame_equal(output, expected) def test_count_melted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [7]}, index=['count(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_count_split_by_unmelted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'count(X)': [3, 4]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_count_split_by_melted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [3, 4], 'grp': ['A', 'B'] }, index=['count(X)', 'count(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_count_distinct(self): df = pd.DataFrame({'X': [1, 1, np.nan, 2, 2, 3]}) metric = metrics.Count('X', distinct=True) output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 3) def test_sum_not_df(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 14) def test_sum_split_by_not_df(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].sum() expected.name = 'sum(X)' testing.assert_series_equal(output, expected) def test_sum_where(self): metric = metrics.Sum('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].sum() self.assertEqual(output, expected) def test_sum_unmelted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'sum(X)': [14]}) testing.assert_frame_equal(output, expected) def test_sum_melted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [14]}, index=['sum(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_sum_split_by_unmelted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sum(X)': [3, 11]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_sum_split_by_melted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [3, 11], 'grp': ['A', 'B'] }, index=['sum(X)', 'sum(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_dot_not_df(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, sum(self.df.X * self.df.Y)) def test_dot_split_by_not_df(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) self.df['X * Y'] = self.df.X * self.df.Y expected = self.df.groupby('grp')['X * Y'].sum() expected.name = 'sum(X * Y)' testing.assert_series_equal(output, expected) def test_dot_where(self): metric = metrics.Dot('X', 'Y', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) d = self.df.query('grp == "A"') self.assertEqual(output, sum(d.X * d.Y)) def test_dot_unmelted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'sum(X * Y)': [sum(self.df.X * self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_dot_normalized(self): metric = metrics.Dot('X', 'Y', True) output = metric.compute_on(self.df) expected = pd.DataFrame({'mean(X * Y)': [(self.df.X * self.df.Y).mean()]}) testing.assert_frame_equal(output, expected) def test_dot_melted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [sum(self.df.X * self.df.Y)]}, index=['sum(X * Y)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_dot_split_by_unmelted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sum(X * Y)': [5, 45]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_dot_split_by_melted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [5, 45], 'grp': ['A', 'B'] }, index=['sum(X * Y)', 'sum(X * Y)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_mean_not_df(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_mean_split_by_not_df(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].mean() expected.name = 'mean(X)' testing.assert_series_equal(output, expected) def test_mean_where(self): metric = metrics.Mean('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].mean() self.assertEqual(output, expected) def test_mean_unmelted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'mean(X)': [2.]}) testing.assert_frame_equal(output, expected) def test_mean_melted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [2.]}, index=['mean(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_mean_split_by_unmelted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'mean(X)': [1, 2.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_mean_split_by_melted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [1, 2.75], 'grp': ['A', 'B'] }, index=['mean(X)', 'mean(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_max(self): metric = metrics.Max('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'max(X)': [4]}) testing.assert_frame_equal(output, expected) def test_min(self): metric = metrics.Min('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'min(X)': [1]}) testing.assert_frame_equal(output, expected) def test_weighted_mean_not_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1.25) def test_weighted_mean_split_by_not_df(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((1.25, 3.), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted mean(X)' testing.assert_series_equal(output, expected) def test_weighted_mean_unmelted(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted mean(X)': [1.25]}) testing.assert_frame_equal(output, expected) def test_weighted_mean_melted(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.25]}, index=['Y-weighted mean(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_mean_split_by_unmelted(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted mean(X)': [1.25, 3.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_mean_split_by_melted(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [1.25, 3.], 'grp': ['A', 'B'] }, index=['Y-weighted mean(X)', 'Y-weighted mean(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_quantile_raise(self): with self.assertRaises(ValueError) as cm: metrics.Quantile('X', 2) self.assertEqual(str(cm.exception), 'quantiles must be in [0, 1].') def test_quantile_multiple_quantiles_raise(self): with self.assertRaises(ValueError) as cm: metrics.Quantile('X', [0.1, 2]) self.assertEqual(str(cm.exception), 'quantiles must be in [0, 1].') def test_quantile_not_df(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_quantile_where(self): metric = metrics.Quantile('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2.5) def test_quantile_interpolation(self): metric = metrics.Quantile('X', 0.5, interpolation='lower') output = metric.compute_on( pd.DataFrame({'X': [1, 2]}), return_dataframe=False) self.assertEqual(output, 1) def test_quantile_split_by_not_df(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].quantile(0.5) expected.name = 'quantile(X, 0.5)' testing.assert_series_equal(output, expected) def test_quantile_unmelted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df) expected = pd.DataFrame({'quantile(X, 0.5)': [2.]}) testing.assert_frame_equal(output, expected) def test_quantile_melted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [2.]}, index=['quantile(X, 0.5)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_quantile_split_by_unmelted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'quantile(X, 0.5)': [1, 2.5]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_quantile_split_by_melted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [1, 2.5], 'grp': ['A', 'B'] }, index=['quantile(X, 0.5)'] * 2) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_quantile_multiple_quantiles(self): df = pd.DataFrame({'X': [0, 1]}) metric = metrics.MetricList( [metrics.Quantile('X', [0.1, 0.5]), metrics.Count('X')]) output = metric.compute_on(df) expected = pd.DataFrame( [[0.1, 0.5, 2]], columns=['quantile(X, 0.1)', 'quantile(X, 0.5)', 'count(X)']) testing.assert_frame_equal(output, expected) def test_quantile_multiple_quantiles_melted(self): df = pd.DataFrame({'X': [0, 1]}) metric = metrics.MetricList( [metrics.Quantile('X', [0.1, 0.5]), metrics.Count('X')]) output = metric.compute_on(df, melted=True) expected = pd.DataFrame( {'Value': [0.1, 0.5, 2]}, index=['quantile(X, 0.1)', 'quantile(X, 0.5)', 'count(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_quantile_not_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Quantile('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1.25) def test_weighted_quantile_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Quantile('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted quantile(X, 0.5)': [1.25]}) testing.assert_frame_equal(output, expected) def test_weighted_quantile_multiple_quantiles_split_by(self): df = pd.DataFrame({ 'X': [0, 1, 2, 1, 2, 3], 'Y': [1, 2, 2, 1, 1, 1], 'grp': ['B'] * 3 + ['A'] * 3 }) metric = metrics.MetricList( [metrics.Quantile('X', [0.25, 0.5], weight='Y'), metrics.Sum('X')]) output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame( { 'Y-weighted quantile(X, 0.25)': [1.25, 0.5], 'Y-weighted quantile(X, 0.5)': [2., 1.25], 'sum(X)': [6, 3] }, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_quantile_multiple_quantiles_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 1, 2, 1, 2, 3], 'Y': [1, 2, 2, 1, 1, 1], 'grp': ['B'] * 3 + ['A'] * 3 }) metric = metrics.MetricList( [metrics.Quantile('X', [0.25, 0.5], weight='Y'), metrics.Sum('X')]) output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level=['Metric', 'grp'], inplace=True) # For Py2 expected = pd.DataFrame({'Value': [1.25, 0.5, 2., 1.25, 6., 3.]}, index=pd.MultiIndex.from_product( ([ 'Y-weighted quantile(X, 0.25)', 'Y-weighted quantile(X, 0.5)', 'sum(X)' ], ['A', 'B']), names=['Metric', 'grp'])) testing.assert_frame_equal(output, expected) def test_variance_not_df(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.var()) def test_variance_biased(self): metric = metrics.Variance('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.var(ddof=0)) def test_variance_split_by_not_df(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].var() expected.name = 'var(X)' testing.assert_series_equal(output, expected) def test_variance_where(self): metric = metrics.Variance('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].var() self.assertEqual(output, expected) def test_variance_unmelted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'var(X)': [self.df.X.var()]}) testing.assert_frame_equal(output, expected) def test_variance_melted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [self.df.X.var()]}, index=['var(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_variance_split_by_unmelted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'var(X)': self.df.groupby('grp')['X'].var()}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_variance_split_by_melted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( { 'Value': self.df.groupby('grp')['X'].var().values, 'grp': ['A', 'B'] }, index=['var(X)', 'var(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_weighted_variance_not_df(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1) def test_weighted_variance_not_df_biased(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', False, 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 0.75) def test_weighted_variance_split_by_not_df(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((2., 1), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted var(X)' testing.assert_series_equal(output, expected) def test_weighted_variance_unmelted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted var(X)': [1.]}) testing.assert_frame_equal(output, expected) def test_weighted_variance_melted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.]}, index=['Y-weighted var(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_variance_split_by_unmelted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted var(X)': [2., 1]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_variance_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [2., 1], 'grp': ['A', 'B'] }, index=['Y-weighted var(X)', 'Y-weighted var(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_standard_deviation_not_df(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std()) def test_standard_deviation_biased(self): metric = metrics.StandardDeviation('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std(ddof=0)) def test_standard_deviation_split_by_not_df(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].std() expected.name = 'sd(X)' testing.assert_series_equal(output, expected) def test_standard_deviation_where(self): metric = metrics.StandardDeviation('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].std() self.assertEqual(output, expected) def test_standard_deviation_unmelted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'sd(X)': [self.df.X.std()]}) testing.assert_frame_equal(output, expected) def test_standard_deviation_melted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [self.df.X.std()]}, index=['sd(X)']) expected.index.name = 'Metric'
testing.assert_frame_equal(output, expected)
pandas.testing.assert_frame_equal
import re import numpy as np import pandas as pd import pytest from woodwork import DataTable from woodwork.logical_types import ( URL, Boolean, Categorical, CountryCode, Datetime, Double, Filepath, FullName, Integer, IPAddress, LatLong, NaturalLanguage, Ordinal, PhoneNumber, SubRegionCode, ZIPCode ) def test_datatable_physical_types(sample_df): dt = DataTable(sample_df) assert isinstance(dt.physical_types, dict) assert set(dt.physical_types.keys()) == set(sample_df.columns) for k, v in dt.physical_types.items(): assert isinstance(k, str) assert v == sample_df[k].dtype def test_sets_category_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series(['a', 'b', 'c'], name=column_name), pd.Series(['a', None, 'c'], name=column_name), pd.Series(['a', np.nan, 'c'], name=column_name), pd.Series(['a', pd.NA, 'c'], name=column_name), pd.Series(['a', pd.NaT, 'c'], name=column_name), ] logical_types = [ Categorical, CountryCode, Ordinal(order=['a', 'b', 'c']), SubRegionCode, ZIPCode, ] for series in series_list: series = series.astype('object') for logical_type in logical_types: ltypes = { column_name: logical_type, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_category_dtype_on_update(): column_name = 'test_series' series = pd.Series(['a', 'b', 'c'], name=column_name) series = series.astype('object') logical_types = [ Categorical, CountryCode, Ordinal(order=['a', 'b', 'c']), SubRegionCode, ZIPCode, ] for logical_type in logical_types: ltypes = { column_name: NaturalLanguage, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) dt = dt.set_types(logical_types={column_name: logical_type}) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_object_dtype_on_init(latlong_df): for column_name in latlong_df.columns: ltypes = { column_name: LatLong, } dt = DataTable(latlong_df.loc[:, [column_name]], logical_types=ltypes) assert dt.columns[column_name].logical_type == LatLong assert dt.columns[column_name].dtype == LatLong.pandas_dtype assert dt.to_dataframe()[column_name].dtype == LatLong.pandas_dtype def test_sets_object_dtype_on_update(latlong_df): for column_name in latlong_df.columns: ltypes = { column_name: NaturalLanguage } dt = DataTable(latlong_df.loc[:, [column_name]], logical_types=ltypes) dt = dt.set_types(logical_types={column_name: LatLong}) assert dt.columns[column_name].logical_type == LatLong assert dt.columns[column_name].dtype == LatLong.pandas_dtype assert dt.to_dataframe()[column_name].dtype == LatLong.pandas_dtype def test_sets_string_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series(['a', 'b', 'c'], name=column_name), pd.Series(['a', None, 'c'], name=column_name), pd.Series(['a', np.nan, 'c'], name=column_name), pd.Series(['a', pd.NA, 'c'], name=column_name), ] logical_types = [ Filepath, FullName, IPAddress, NaturalLanguage, PhoneNumber, URL, ] for series in series_list: series = series.astype('object') for logical_type in logical_types: ltypes = { column_name: logical_type, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_string_dtype_on_update(): column_name = 'test_series' series = pd.Series(['a', 'b', 'c'], name=column_name) series = series.astype('object') logical_types = [ Filepath, FullName, IPAddress, NaturalLanguage, PhoneNumber, URL, ] for logical_type in logical_types: ltypes = { column_name: Categorical, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) dt = dt.set_types(logical_types={column_name: logical_type}) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_boolean_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series([True, False, True], name=column_name), pd.Series([True, None, True], name=column_name), pd.Series([True, np.nan, True], name=column_name), pd.Series([True, pd.NA, True], name=column_name), ] logical_type = Boolean for series in series_list: series = series.astype('object') ltypes = { column_name: logical_type, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_boolean_dtype_on_update(): column_name = 'test_series' series = pd.Series([0, 1, 0], name=column_name) series = series.astype('object') ltypes = { column_name: Integer, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) dt = dt.set_types(logical_types={column_name: Boolean}) assert dt.columns[column_name].logical_type == Boolean assert dt.columns[column_name].dtype == Boolean.pandas_dtype assert dt.to_dataframe()[column_name].dtype == Boolean.pandas_dtype def test_sets_int64_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series([1, 2, 3], name=column_name), pd.Series([1, None, 3], name=column_name), pd.Series([1, np.nan, 3], name=column_name), pd.Series([1, pd.NA, 3], name=column_name), ] logical_types = [Integer] for series in series_list: series = series.astype('object') for logical_type in logical_types: ltypes = { column_name: logical_type, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_int64_dtype_on_update(): column_name = 'test_series' series = pd.Series([1.0, 2.0, 1.0], name=column_name) series = series.astype('object') logical_types = [Integer] for logical_type in logical_types: ltypes = { column_name: Double, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) dt = dt.set_types(logical_types={column_name: logical_type}) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_float64_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series([1.1, 2, 3], name=column_name), pd.Series([1.1, None, 3], name=column_name), pd.Series([1.1, np.nan, 3], name=column_name), ] logical_type = Double for series in series_list: series = series.astype('object') ltypes = { column_name: logical_type, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_float64_dtype_on_update(): column_name = 'test_series' series = pd.Series([0, 1, 0], name=column_name) series = series.astype('object') ltypes = { column_name: Integer, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) dt = dt.set_types(logical_types={column_name: Double}) assert dt.columns[column_name].logical_type == Double assert dt.columns[column_name].dtype == Double.pandas_dtype assert dt.to_dataframe()[column_name].dtype == Double.pandas_dtype def test_sets_datetime64_dtype_on_init(): column_name = 'test_series' series_list = [ pd.Series(['2020-01-01', '2020-01-02', '2020-01-03'], name=column_name), pd.Series(['2020-01-01', None, '2020-01-03'], name=column_name), pd.Series(['2020-01-01', np.nan, '2020-01-03'], name=column_name), pd.Series(['2020-01-01', pd.NA, '2020-01-03'], name=column_name), pd.Series(['2020-01-01', pd.NaT, '2020-01-03'], name=column_name), ] logical_type = Datetime for series in series_list: series = series.astype('object') ltypes = { column_name: logical_type, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) assert dt.columns[column_name].logical_type == logical_type assert dt.columns[column_name].dtype == logical_type.pandas_dtype assert dt.to_dataframe()[column_name].dtype == logical_type.pandas_dtype def test_sets_datetime_dtype_on_update(): column_name = 'test_series' series = pd.Series(['2020-01-01', '2020-01-02', '2020-01-03'], name=column_name) series = series.astype('object') ltypes = { column_name: NaturalLanguage, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) dt = dt.set_types(logical_types={column_name: Datetime}) assert dt.columns[column_name].logical_type == Datetime assert dt.columns[column_name].dtype == Datetime.pandas_dtype assert dt.to_dataframe()[column_name].dtype == Datetime.pandas_dtype def test_invalid_dtype_casting(): column_name = 'test_series' # Cannot cast a column with pd.NA to Double series = pd.Series([1.1, pd.NA, 3], name=column_name) ltypes = { column_name: Double, } err_msg = 'Error converting datatype for column test_series from type object to type ' \ 'float64. Please confirm the underlying data is consistent with logical type Double.' with pytest.raises(TypeError, match=err_msg): DataTable(pd.DataFrame(series), logical_types=ltypes) # Cannot cast Datetime to Double series = pd.Series(['2020-01-01', '2020-01-02', '2020-01-03'], name=column_name) ltypes = { column_name: Datetime, } dt = DataTable(pd.DataFrame(series), logical_types=ltypes) err_msg = 'Error converting datatype for column test_series from type datetime64[ns] to type ' \ 'float64. Please confirm the underlying data is consistent with logical type Double.' with pytest.raises(TypeError, match=re.escape(err_msg)): dt.set_types(logical_types={column_name: Double}) # Cannot cast invalid strings to integers series = pd.Series(['1', 'two', '3'], name=column_name) ltypes = { column_name: Integer, } err_msg = 'Error converting datatype for column test_series from type object to type ' \ 'Int64. Please confirm the underlying data is consistent with logical type Integer.' with pytest.raises(TypeError, match=err_msg): DataTable(pd.DataFrame(series), logical_types=ltypes) def test_int_dtype_inference_on_init(): df = pd.DataFrame({ 'ints_no_nans': pd.Series([1, 2]), 'ints_nan': pd.Series([1, np.nan]), 'ints_NA': pd.Series([1, pd.NA]), 'ints_NA_specified': pd.Series([1, pd.NA], dtype='Int64')}) df_from_dt = DataTable(df).to_dataframe() assert df_from_dt['ints_no_nans'].dtype == 'Int64' assert df_from_dt['ints_nan'].dtype == 'float64' assert df_from_dt['ints_NA'].dtype == 'category' assert df_from_dt['ints_NA_specified'].dtype == 'Int64' def test_bool_dtype_inference_on_init(): df = pd.DataFrame({ 'bools_no_nans': pd.Series([True, False]), 'bool_nan':
pd.Series([True, np.nan])
pandas.Series
''' This sample shows how to set Column Format with DataFrame and from_df, to_df functions. Make sure you've installed pandas. To install the module, open the Script Window (Shift+Alt+3), type the following and press Enter: pip install pandas The following will check and install: pip -chk pandas ''' import originpro as op import pandas as pd # Create a dataframe to fill the sheet df = pd.DataFrame({ 'Date': ['10/25/2018','02/21/2019','04/01/2020'], 'Gender':['Male','Male','Female'], 'Score': [75.5, 86.7, 91], }) df['Date'] = pd.to_datetime(df['Date']) df['Gender']=
pd.Categorical(df['Gender'])
pandas.Categorical
import sys sys.path.append("..") # ignore pandas futurewarning import warnings warnings.simplefilter(action="ignore", category=FutureWarning) import os import pytest import pandas as pd from heritageconnector.entity_matching import reconciler, lookup @pytest.fixture def fixt(): data =
pd.DataFrame.from_dict({"item_name": ["photograph", "camera", "model"]})
pandas.DataFrame.from_dict
import sys import math import pandas as pd import numpy as np num = 0 data1 = [] data2 = [] with open(sys.argv[1]) as fp: num = int(fp.readline()) for i in range(num): line = fp.readline() s = line.split() data1.append(float(s[0])) data2.append(float(s[1])) s1 =
pd.Series(data1)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- import polling2 import requests import json from web3 import Web3 import pandas as pd from decouple import config from datetime import datetime import logging from collections import defaultdict import time from sqlalchemy import create_engine, desc from sqlalchemy.orm import sessionmaker from models import EdenBlock, Epoch, Base, Distribution, DistributionBalance from apscheduler.schedulers.background import BackgroundScheduler INFURA_ENDPOINT = config('INFURA_ENDPOINT') PSQL_ENDPOINT = config('PSQL_ENDPOINT') engine = create_engine(PSQL_ENDPOINT) Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query_dict = { 'block': 'block.graphql', 'distribution': 'distribution.graphql', 'block_lookup': 'block_lookup.graphql', 'epoch_latest': 'epoch_latest.graphql', 'epoch': 'epoch.graphql' } eden_governance_api = 'https://api.thegraph.com/subgraphs/name/eden-network/governance' eden_distribution_api = 'https://api.thegraph.com/subgraphs/name/eden-network/distribution' eden_network_api = 'https://api.thegraph.com/subgraphs/name/eden-network/network' def query_to_dict(rset): result = defaultdict(list) for obj in rset: instance = inspect(obj) for key, x in instance.attrs.items(): result[key].append(x.value) return result def get_web3_provider(): infura_endpoint = INFURA_ENDPOINT my_provider = Web3.HTTPProvider(infura_endpoint) w3 = Web3(my_provider) return w3 def get_latest_eth_block(): eden_db_last_block = get_latest_eden_block_db() w3 = get_web3_provider() latest_eth_block = w3.eth.get_block('latest')['number'] if latest_eth_block > eden_db_last_block: return latest_eth_block else: return None def get_latest_eden_block_db(): eden_db_last_block = session.query(EdenBlock).order_by(desc(EdenBlock.block_number)).limit(1).all() if eden_db_last_block != []: eden_db_last_block = eden_db_last_block[0].block_number else: eden_db_last_block = 0 return eden_db_last_block def clean_epoch_entry(epoch_string): epoch_number = int(epoch_string.split('+')[1].replace('epoch', '')) return int(epoch_number) def get_latest_distribution_number(): eden_db_last_number_query = session.query(Distribution).order_by(desc(Distribution.distribution_number)).limit(1).all() if eden_db_last_number_query != []: eden_last_number = eden_db_last_number_query[0].distribution_number return eden_last_number else: return 0 def ipfs_link_cleanup(raw_uri): final_ipfs_link = "https://ipfs.io/ipfs/" + raw_uri.split('//')[1] return final_ipfs_link def graph_query_call(api, query, variables=None): request = requests.post(api, json={'query': query, 'variables': variables}) if request.status_code == 200: return request.json() else: Exception('Query failed. return code is {}. {}'.format(request.status_code, query)) def fetch_query(query): query_file = query_dict.get(query) with open(query_file, 'r') as file: data = file.read() return data def get_epoch_number(block_number): epoch_number_query = session.query(Epoch).filter(block_number >= Epoch.start_block_number, block_number <= Epoch.end_block_number).limit(1).all() if epoch_number_query != []: epoch_number = epoch_number_query[0].epoch_number return epoch_number else: latest_epoch = get_latest_epoch() return latest_epoch def get_latest_epoch(): query = fetch_query('epoch_latest') latest_epoch_result = graph_query_call(eden_governance_api, query) latest_epoch_id = latest_epoch_result['data']['epoches'][0]['id'] latest_epoch_number = clean_epoch_entry(latest_epoch_id) return latest_epoch_number def get_block_number_from_id(block_id): query = fetch_query('block_lookup') variables = {'block_id': block_id} block_result = graph_query_call(eden_governance_api, query, variables) eden_block_number = int(block_result['data']['block']['number']) return eden_block_number def eden_block_call(): last_block = 0 last_block_current = get_latest_eth_block() eden_blocks_df = pd.DataFrame() while True: query = fetch_query('block') variables = {'number_gt': last_block} block_result = graph_query_call(eden_governance_api, query, variables) eden_blocks_df_temp = pd.DataFrame.from_dict(block_result['data']['blocks']) eden_blocks_df = eden_blocks_df.append(eden_blocks_df_temp) last_block = int(eden_blocks_df.iloc[-1]['number']) if last_block >= last_block_current: break eden_blocks_df = eden_blocks_df.drop_duplicates() logging.info('Eden Blocks Pulled To DataFrame') logging.info('Adding Eden Blocks To Database Now') eden_last_block_db = get_latest_eden_block_db() eden_blocks_df = eden_blocks_df[pd.to_numeric(eden_blocks_df['number']) >= eden_last_block_db] for index, row in eden_blocks_df.iterrows(): block_id_query = session.query(EdenBlock).filter(EdenBlock.id==row['id']).limit(1).all() or None if block_id_query is None: epoch_number = get_epoch_number(row['number']) eden_block_entry = EdenBlock( id = row['id'], author = row['author'], difficulty = row['difficulty'], gas_limit = row['gasLimit'], gas_used = row['gasUsed'], block_hash = row['hash'], block_number = row['number'], parent_hash = row['parentHash'], uncle_hash = row['unclesHash'], size = row['size'], state_root = row['stateRoot'], timestamp = datetime.fromtimestamp(int(row['timestamp'])), total_difficulty = row['totalDifficulty'], transactions_root = row['transactionsRoot'], receipts_root = row['receiptsRoot'], epoch_number = epoch_number ) session.add(eden_block_entry) session.commit() logging.info('Eden Blocks Added To Database Now') def eden_epoch_call(): eden_epochs_df = pd.DataFrame() query = fetch_query('epoch') epoch_result = graph_query_call(eden_governance_api, query) eden_epochs_df =
pd.DataFrame.from_dict(epoch_result['data']['epoches'])
pandas.DataFrame.from_dict
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(line) for line in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df = DataFrame([[1, 2], [3, 4]]) fmt.set_option("display.show_dimensions", True) assert "2 rows" in df._repr_html_() fmt.set_option("display.show_dimensions", False) assert "2 rows" not in df._repr_html_() tm.reset_display_options() def test_repr_html_mathjax(self): df = DataFrame([[1, 2], [3, 4]]) assert "tex2jax_ignore" not in df._repr_html_() with option_context("display.html.use_mathjax", False): assert "tex2jax_ignore" in df._repr_html_() def test_repr_html_wide(self): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() wide_df = DataFrame(tm.rands_array(25, size=(10, max_cols + 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in wide_df._repr_html_() def test_repr_html_wide_multiindex_cols(self): max_cols = 20 mcols = MultiIndex.from_product( [np.arange(max_cols // 2), ["foo", "bar"]], names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) reg_repr = df._repr_html_() assert "..." not in reg_repr mcols = MultiIndex.from_product( (np.arange(1 + (max_cols // 2)), ["foo", "bar"]), names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_repr_html_long(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) reg_repr = df._repr_html_() assert ".." not in reg_repr assert str(41 + max_rows // 2) in reg_repr h = max_rows + 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) long_repr = df._repr_html_() assert ".." in long_repr assert str(41 + max_rows // 2) not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_float(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") reg_repr = df._repr_html_() assert ".." not in reg_repr assert f"<td>{40 + h}</td>" in reg_repr h = max_rows + 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") long_repr = df._repr_html_() assert ".." in long_repr assert "<td>31</td>" not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_long_multiindex(self): max_rows = 60 max_L1 = max_rows // 2 tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx, columns=["A", "B"]) with option_context("display.max_rows", 60, "display.max_columns", 20): reg_repr = df._repr_html_() assert "..." not in reg_repr tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame( np.random.randn((max_L1 + 1) * 2, 2), index=idx, columns=["A", "B"] ) long_repr = df._repr_html_() assert "..." in long_repr def test_repr_html_long_and_wide(self): max_cols = 20 max_rows = 60 h, w = max_rows - 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() h, w = max_rows + 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_info_repr(self): # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect # the terminal size to ensure that we try to print something "too big" term_width, term_height = get_terminal_size() max_rows = 60 max_cols = 20 + (max(term_width, 80) - 80) // 4 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_vertically_truncated_repr(df) with option_context("display.large_repr", "info"): assert has_info_repr(df) # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_horizontally_truncated_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert has_info_repr(df) def test_info_repr_max_cols(self): # GH #6939 df = DataFrame(np.random.randn(10, 5)) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 4, ): assert has_non_verbose_info_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 5, ): assert not has_non_verbose_info_repr(df) # test verbose overrides # fmt.set_option('display.max_info_columns', 4) # exceeded def test_info_repr_html(self): max_rows = 60 max_cols = 20 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert r"&lt;class" not in df._repr_html_() with option_context("display.large_repr", "info"): assert r"&lt;class" in df._repr_html_() # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert "<class" not in df._repr_html_() with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert "&lt;class" in df._repr_html_() def test_fake_qtconsole_repr_html(self, float_frame): df = float_frame def get_ipython(): return {"config": {"KernelApp": {"parent_appname": "ipython-qtconsole"}}} repstr = df._repr_html_() assert repstr is not None fmt.set_option("display.max_rows", 5, "display.max_columns", 2) repstr = df._repr_html_() assert "class" in repstr # info fallback tm.reset_display_options() def test_pprint_pathological_object(self): """ If the test fails, it at least won't hang. """ class A: def __getitem__(self, key): return 3 # obviously simplified df = DataFrame([A()]) repr(df) # just don't die def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] skip = True for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: if line.startswith("dtype:"): continue if _three_digit_exp(): assert ("+010" in line) or skip else: assert ("+10" in line) or skip skip = False @pytest.mark.parametrize( "data, expected", [ (["3.50"], "0 3.50\ndtype: object"), ([1.20, "1.00"], "0 1.2\n1 1.00\ndtype: object"), ([np.nan], "0 NaN\ndtype: float64"), ([None], "0 None\ndtype: object"), (["3.50", np.nan], "0 3.50\n1 NaN\ndtype: object"), ([3.50, np.nan], "0 3.5\n1 NaN\ndtype: float64"), ([3.50, np.nan, "3.50"], "0 3.5\n1 NaN\n2 3.50\ndtype: object"), ([3.50, None, "3.50"], "0 3.5\n1 None\n2 3.50\ndtype: object"), ], ) def test_repr_str_float_truncation(self, data, expected): # GH#38708 series = Series(data) result = repr(series) assert result == expected @pytest.mark.parametrize( "float_format,expected", [ ("{:,.0f}".format, "0 1,000\n1 test\ndtype: object"), ("{:.4f}".format, "0 1000.0000\n1 test\ndtype: object"), ], ) def test_repr_float_format_in_object_col(self, float_format, expected): # GH#40024 df = Series([1000.0, "test"]) with option_context("display.float_format", float_format): result = repr(df) assert result == expected def test_dict_entries(self): df = DataFrame({"A": [{"a": 1, "b": 2}]}) val = df.to_string() assert "'a': 1" in val assert "'b': 2" in val def test_categorical_columns(self): # GH35439 data = [[4, 2], [3, 2], [4, 3]] cols = ["aaaaaaaaa", "b"] df = DataFrame(data, columns=cols) df_cat_cols = DataFrame(data, columns=pd.CategoricalIndex(cols)) assert df.to_string() == df_cat_cols.to_string() def test_period(self): # GH 12615 df = DataFrame( { "A": pd.period_range("2013-01", periods=4, freq="M"), "B": [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), pd.Period("2011-04", freq="M"), ], "C": list("abcd"), } ) exp = ( " A B C\n" "0 2013-01 2011-01 a\n" "1 2013-02 2011-02-01 b\n" "2 2013-03 2011-03-01 09:00 c\n" "3 2013-04 2011-04 d" ) assert str(df) == exp @pytest.mark.parametrize( "length, max_rows, min_rows, expected", [ (10, 10, 10, 10), (10, 10, None, 10), (10, 8, None, 8), (20, 30, 10, 30), # max_rows > len(frame), hence max_rows (50, 30, 10, 10), # max_rows < len(frame), hence min_rows (100, 60, 10, 10), # same (60, 60, 10, 60), # edge case (61, 60, 10, 10), # edge case ], ) def test_max_rows_fitted(self, length, min_rows, max_rows, expected): """Check that display logic is correct. GH #37359 See description here: https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options """ formatter = fmt.DataFrameFormatter( DataFrame(np.random.rand(length, 3)), max_rows=max_rows, min_rows=min_rows, ) result = formatter.max_rows_fitted assert result == expected def gen_series_formatting(): s1 = Series(["a"] * 100) s2 = Series(["ab"] * 100) s3 = Series(["a", "ab", "abc", "abcd", "abcde", "abcdef"]) s4 = s3[::-1] test_sers = {"onel": s1, "twol": s2, "asc": s3, "desc": s4} return test_sers class TestSeriesFormatting: def setup_method(self, method): self.ts = tm.makeTimeSeries() def test_repr_unicode(self): s = Series(["\u03c3"] * 10) repr(s) a = Series(["\u05d0"] * 1000) a.name = "title1" repr(a) def test_to_string(self): buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) assert retval is None assert buf.getvalue().strip() == s # pass float_format format = "%.4f".__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split("\n")[:-1]] expected = [format(x) for x in self.ts] assert result == expected # empty string result = self.ts[:0].to_string() assert result == "Series([], Freq: B)" result = self.ts[:0].to_string(length=0) assert result == "Series([], Freq: B)" # name and length cp = self.ts.copy() cp.name = "foo" result = cp.to_string(length=True, name=True, dtype=True) last_line = result.split("\n")[-1].strip() assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64") def test_freq_name_separation(self): s = Series( np.random.randn(10), index=date_range("1/1/2000", periods=10), name=0 ) result = repr(s) assert "Freq: D, Name: 0" in result def test_to_string_mixed(self): s = Series(["foo", np.nan, -1.23, 4.56]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 -1.23\n" + "3 4.56" assert result == expected # but don't count NAs as floats s = Series(["foo", np.nan, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 bar\n" + "3 baz" assert result == expected s = Series(["foo", 5, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 5\n" + "2 bar\n" + "3 baz" assert result == expected def test_to_string_float_na_spacing(self): s = Series([0.0, 1.5678, 2.0, -3.0, 4.0]) s[::2] = np.nan result = s.to_string() expected = ( "0 NaN\n" + "1 1.5678\n" + "2 NaN\n" + "3 -3.0000\n" + "4 NaN" ) assert result == expected def test_to_string_without_index(self): # GH 11729 Test index=False option s = Series([1, 2, 3, 4]) result = s.to_string(index=False) expected = "1\n" + "2\n" + "3\n" + "4" assert result == expected def test_unicode_name_in_footer(self): s = Series([1, 2], name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf = fmt.SeriesFormatter(s, name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf._get_footer() # should not raise exception def test_east_asian_unicode_series(self): # not aligned properly because of east asian width # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = "あ a\nいい bb\nううう CCC\nええええ D\ndtype: object" assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = "a あ\nbb いい\nc ううう\nddd ええええ\ndtype: object" assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\nいいいい いい\nう ううう\nえええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお" ) expected = ( "ああ あ\nいいいい いい\nう ううう\n" "えええ ええええ\nName: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\nあああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"] ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = ( "あ a\nいい bb\nううう CCC\n" "ええええ D\ndtype: object" ) assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = ( "a あ\nbb いい\nc ううう\n" "ddd ええええ\ndtype: object" ) assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお", ) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\n" "Name: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\n" "dtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"], ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with
option_context("display.max_rows", 3)
pandas.option_context
# -*- coding: utf-8 -*- """ Created on Thu Jan 23 11:42:40 2014 @author: viktor plumy.SensorColumn - SensorColumn respresentation holding SensorBoard instances The SensorBoard class is the top link in our Object Oriented Data Model. After construction a SensorColumn instance holds 9 SensorBoard class instances. There are a total of 6 SensorColumns in the plumy setup. """ import numpy as np import pandas as pd import scipy as sp import os from .SensorBoard import SensorBoard from .base import base try: import zipfile have_zipfile = True except ImportError: have_zipfile = False class SensorColumn(base): def __init__(self, data_location, gas, loc, voltage, speed, trial, _args): """ data_location: URL-style path to the location of the data. Currently supported are the following: file://<path> - <path> points to the location of the desired file, i.e. the full path to the desired sensor column. hdf://<path> - <path> points to the location of the HDFcache with the data. The location of the desired data in the HDFcache is inferred from the gas, loc, voltage, speed, and trial params. zip://<path> - <path> contains the path to the WTD_upload.zip file, and continues with the path to the desired data in the zip file. E.g.: /User/enose/WTD_upload.zip/CO_1000/L2/1234.csv . """ self._init = False super(SensorColumn, self).__init__(gas=gas, loc=loc, voltage=voltage, speed=speed, trial=trial, _args=_args) if _args['use_HDFcache']: try: self.HDFcache = _args['HDF_cache_location'] except KeyError: raise Warning('Have been told to use the HDFcache, \n' +\ "but caller didn't disclose its location.\n" + \ 'Continuing without HDFcache.') self.HDFcache = None else: self.HDFcache = None self.load(data_location) self.set_name('Column %s' % loc) self.set_time(self.get_time()) self.set_filter() baseline = self.get_baseline() if baseline is None: # No readings from mfc sensor print('Warning:\n{}:'.format(data_location)) print("No readings from mass flow controller, don't expect useful data.") print("Assuming 10 s baseline.\n") baseline = (0,1000) self.set_baseline(baseline) if self._args['drop_duplicates']: self.drop_duplicates() if self._args['fill_gaps']: pass # self.fill_gaps(rate=20, window=150) if self._args['resample']: self.resample(rate=100) self.Board1 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 1', self._Time, [self._Data.B1S1, self._Data.B1S2, self._Data.B1S3, self._Data.B1S4, self._Data.B1S5, self._Data.B1S6, self._Data.B1S7, self._Data.B1S8], self._Baseline, self._Filter) self.Board2 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 2', self._Time, [self._Data.B2S1, self._Data.B2S2, self._Data.B2S3, self._Data.B2S4, self._Data.B2S5, self._Data.B2S6, self._Data.B2S7, self._Data.B2S8], self._Baseline, self._Filter) self.Board3 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 3', self._Time, [self._Data.B3S1, self._Data.B3S2, self._Data.B3S3, self._Data.B3S4, self._Data.B3S5, self._Data.B3S6, self._Data.B3S7, self._Data.B3S8], self._Baseline, self._Filter) self.Board4 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 4', self._Time, [self._Data.B4S1, self._Data.B4S2, self._Data.B4S3, self._Data.B4S4, self._Data.B4S5, self._Data.B4S6, self._Data.B4S7, self._Data.B4S8], self._Baseline, self._Filter) self.Board5 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 5', self._Time, [self._Data.B5S1, self._Data.B5S2, self._Data.B5S3, self._Data.B5S4, self._Data.B5S5, self._Data.B5S6, self._Data.B5S7, self._Data.B5S8], self._Baseline, self._Filter) self.Board6 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 6', self._Time, [self._Data.B6S1, self._Data.B6S2, self._Data.B6S3, self._Data.B6S4, self._Data.B6S5, self._Data.B6S6, self._Data.B6S7, self._Data.B6S8], self._Baseline, self._Filter) self.Board7 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 7', self._Time, [self._Data.B7S1, self._Data.B7S2, self._Data.B7S3, self._Data.B7S4, self._Data.B7S5, self._Data.B7S6, self._Data.B7S7, self._Data.B7S8], self._Baseline, self._Filter) self.Board8 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 8', self._Time, [self._Data.B8S1, self._Data.B8S2, self._Data.B8S3, self._Data.B8S4, self._Data.B8S5, self._Data.B8S6, self._Data.B8S7, self._Data.B8S8], self._Baseline, self._Filter) self.Board9 = SensorBoard(gas, loc, voltage, speed, trial, _args, 'Board 9', self._Time, [self._Data.B9S1, self._Data.B9S2, self._Data.B9S3, self._Data.B9S4, self._Data.B9S5, self._Data.B9S6, self._Data.B9S7, self._Data.B9S8], self._Baseline, self._Filter) if self.HDFcache is not None: # then save it in the cache self.save_hdf5(self.HDFcache, overwrite=False) self._init = True def __call__(self): if hasattr(self, '_Data'): return self.get_all print('\nNo data for'), print(self) def __str__(self): if self._init: return '\n\n %s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s \ \n\n\n \ Min. Resistance:\t\t%i Ohm (Sensor %d, Board %i)\n \ Max. Resistance:\t\t%i Ohm (Sensor %d, Board %i)\n \ Max. Variance:\t\t%d Ohm (Sensor %i, Board %i )\n \ Max. Average:\t\t%d Ohm (Sensor %i, Board %i)\n \ Sampling Rate:\t\t%f Hz' % \ (self.get_name(), self.Board1, self.Board2, self.Board3, self.Board4, self.Board5, self.Board6, self.Board7, self.Board8, self.get_min()[2], self.get_min()[1], self.get_min()[0], self.get_max()[2],self.get_max()[1], self.get_max()[0], self.get_var()[2], self.get_var()[1], self.get_var()[0], self.get_mean()[2], self.get_mean()[1], self.get_mean()[0], self.sample_rate) else: return '\n'+'_'*100+'\n\n %s:\n\n\t+ '\ '+ Gas: %s\n\t+ Location: %s\n\t+ SensorVoltage: %s\n\t' \ '+ FanSpeed: %s\n\t+ Verbose: %s' % \ (self.Type, self.Gas, self.Location, self.SensorVoltage, self.FanSpeed, self._args['verbose']) def load(self, data_location): """ Use pandas to load column-data from file. """ load_successful = False if data_location.startswith('hdf://'): # load from HDF HDF_location = data_location[6:] self.load_hdf5(HDF_location) load_successful = True return loaded_from_cache = False if self.HDFcache is not None: try: self.load_hdf5(self.HDFcache) loaded_from_cache = True load_successful = True except IOError as e: print( 'No HDFStore at {}.\n'.format(self.HDFcache) +\ 'Creating one for you.\n'.format(self.__class__) + \ 'Reverting to standard (slow) CSV parsing.') store = pd.HDFStore(self.HDFcache, complevel=9, complib='blosc') store.close() except KeyError: print('Data not found in HDF cache: \n' + \ '{}\n'.format(self._get_hd5_dataname()) + \ 'Trying to parse from original data.') if not loaded_from_cache: user_cols = list(range(92)) exclude = [11,20,29,38,47,56,65,74,83] for x in exclude: user_cols.remove(x) col_names = \ ['Time','FanSetPoint','FanReading','Mfc1_SetPoint', 'Mfc2_SetPoint','Mfc3_SetPoint','Mfc1_Read','Mfc2_Read', 'Mfc3_Read','Temp','RelHumid', 'B1S1','B1S2','B1S3','B1S4','B1S5','B1S6','B1S7','B1S8', 'B2S1','B2S2','B2S3','B2S4','B2S5','B2S6','B2S7','B2S8', 'B3S1','B3S2','B3S3','B3S4','B3S5','B3S6','B3S7','B3S8', 'B4S1','B4S2','B4S3','B4S4','B4S5','B4S6','B4S7','B4S8', 'B5S1','B5S2','B5S3','B5S4','B5S5','B5S6','B5S7','B5S8', 'B6S1','B6S2','B6S3','B6S4','B6S5','B6S6','B6S7','B6S8', 'B7S1','B7S2','B7S3','B7S4','B7S5','B7S6','B7S7','B7S8', 'B8S1','B8S2','B8S3','B8S4','B8S5','B8S6','B8S7','B8S8', 'B9S1','B9S2','B9S3','B9S4','B9S5','B9S6','B9S7','B9S8'] if data_location.startswith('zip://'): if not have_zipfile: raise Exception( 'Loading from zip file requires pyfilesysytem, but it ' + 'seems this is not installed. Either get pyfilesystem ' + 'or unpack the data zip file and work from there.') splitted = data_location[6:].split('.zip') if len(splitted) != 2: raise Warning('Zip location contains multiple .zip ' + 'extensions.\n Using the last .zip for parsing.') splitted = splitted[-2:] zippath = splitted[0] + '.zip' filepath = splitted[1] while filepath.startswith('/'): filepath = filepath[1:] with zipfile.ZipFile(zippath, 'r') as zf: with zf.open(filepath, 'r') as fp: self._Data = pd.read_table(fp, names=col_names, header=0, index_col='Time', usecols=user_cols) load_successful = True elif data_location.startswith('file://'): data_file = data_location[7:] if not os.path.exists(data_file): raise AssertionError( 'File {} not found.'.format(data_file)) self._Data = pd.read_table(data_file, names=col_names, header=0, index_col='Time', usecols=user_cols) load_successful = True else: raise Exception( "Couldn't parse data type from {}...".format( data_location[:10])) if not load_successful: raise(Warning("Didn't load anything from location \n{}".format( data_location))) return def save_hdf5(self, storepath, overwrite=True): """ Saves this SensorColumn as HDF5 object in fixed format, i.e. non-appendable and non-queryable, but fast. Parameters: storepath - the hdf5 store where to save the object. overwrite - replace existing data (default True). """ if self._Data is None: raise Exception('No data to save. Call {}.load() first.'.format(self.__class__)) dataname = self._get_hd5_dataname() with pd.HDFStore(storepath) as store: if not overwrite: node = store.get_node(dataname) if node is not None: return store.put(dataname, self._Data, format='table') def load_hdf5(self, storepath): """ Loads the Data from an HDFstore instead of parsing it. Parameters: storepath - the path to the HDFStore. """ if self._Data is not None: raise Exception('This {} already has data. \n'.format(self.__class__) + 'Refusing to overwrite it with data from HDF5 store.') return self._Data = pd.read_hdf(storepath, self._get_hd5_dataname()) def _get_hd5_dataname(self): return '{}/{}/Fan{}_{}_trial{}'.format(self.Gas, self.Location, self.FanSpeed, self.SensorVoltage, self.Trial) def find_duplicates(self): """ Return index of duplicated Timestamps. """ if not hasattr(self, '_Data'): raise AssertionError time = self._Time dupes_idx = np.where(time[1:] == time[:-1])[0] if dupes_idx.size == 0: if self._args['verbose']: print('No duplicates detected.') return None if self._args['verbose']: print('[%s] %s: Detected %i duplicate timestamps.' % (len(self.TimeStamp), self.get_name(), len(dupes_idx))) return dupes_idx def drop_duplicates(self): """ Searches for duplicate Timestamps and drops them by reindexing the pandas DataFrame. """ time = self._Time.copy() idx = self.find_duplicates() if idx is None: return self._Data = self._Data[~self._Data.index.duplicated(keep='first')] assert self._Data.index.is_unique self.set_time(time) if self._args['verbose']: print('[%s] %s: Removed %i duplicates.' % (self.TimeStamp, self.get_name(), idx.size)) def find_gaps(self, thresh = 100): """ Find periods of missing data ('gaps'). Returns arrays of Start_Idx, (Start_Time, Stop_Time)) Keyword arguments: thresh -- Gap threshold in ms. """ assert hasattr(self, '_Time') assert isinstance(thresh, (int, float)) time = self._Time diff = time[1:] - time[:-1] indx = np.where(diff > thresh)[0] start_time = time[indx] stop_time = time[(indx + 1)] return (indx, start_time, stop_time) def fill_gaps(self, rate = 20, window = 0): """ Try to find and fill large periods of the missing Signal ('gaps') with white-noise. The statistical properties of the generated noise is sampled from the right and left edges of the gap. The Method iterates over every Sensor of the SensorColumn. Keyword arguments: rate -- Sample rate to use window -- Size of sampling window. If zero use dynamic window size. """ assert isinstance(rate, int) assert isinstance(window, int) sample_rate = rate window_size = window nonuniform_x = self.get_time() (gap_indx, gap_start, gap_stop,) = self.find_gaps(100) board_names = [ 'B%iS%i' % (board, sensor) for board in range(1, 10) for sensor in range(1, 9) ] for n in board_names: unfiltered_y = getattr(self._Data, n).dropna().values for (i, indx,) in enumerate(gap_indx): if i == 0: fixed_x = nonuniform_x[:indx] fixed_y = unfiltered_y[:indx] else: win = slice(gap_indx[(i - 1)] + 1, indx) fixed_x = np.append(fixed_x, nonuniform_x[win]) fixed_y = np.append(fixed_y, unfiltered_y[win]) num_samples = (gap_stop[i] - gap_start[i]) / sample_rate if window_size == 0: window_size = num_samples win_left = slice(indx - window_size, indx) left_unfiltered_y = unfiltered_y[win_left] win_right = slice(indx + 1, indx + window_size + 1) right_unfiltered_y = unfiltered_y[win_right] spl_left = sp.interpolate.splrep(nonuniform_x[win_left], left_unfiltered_y) spl_right = sp.interpolate.splrep(nonuniform_x[win_right], right_unfiltered_y) newx = np.arange(gap_start[i], gap_stop[i], sample_rate) if len(newx) == num_samples + 1: newx = np.arange(gap_start[i], gap_stop[i] - sample_rate, sample_rate) (newx_left, newx_right,) = np.array_split(newx, 2) scopex_left = np.concatenate((nonuniform_x[win_left], newx_left)) scopex_right = np.concatenate((newx_right, nonuniform_x[win_right])) scopey_left = sp.interpolate.splev(scopex_left, spl_left) scopey_right = sp.interpolate.splev(scopex_right, spl_right) new_win_left = slice(len(nonuniform_x[win_left]), len(scopex_left)) new_win_right = slice(0, len(newx_right)) newy = np.concatenate((scopey_left[new_win_left], scopey_right[new_win_right])) fixed_x = np.append(fixed_x, newx) fixed_y = np.append(fixed_y, newy) win = slice(gap_indx[-1] + 1, len(nonuniform_x)) fixed_x = np.append(fixed_x, nonuniform_x[win]) fixed_y = np.append(fixed_y, unfiltered_y[win]) series = pd.Series(data=fixed_y, index=fixed_x) if n == 'B1S1': self._Data = self._Data.reindex(index=fixed_x) self._Data[n] = series if self._args['verbose']: print('%s: Reconstructed %i gaps.' % (self.get_name(), len(gap_indx))) def resample(self, rate=100): """ Resample the signal to sample rate parameter (like it should be). Step I : Create new time series (uniform sample rate). Step II : Interpolate old signal (Univariate Spline through all points) Step III: Update DataFrame (reindex, replace old Series with new ones) Keyword arguments: rate -- Target sample rate """ step = rate / float(10) uniform_x = np.arange(step, 260000 + step, step) _Data = self._Data.reindex(index=
pd.Index(uniform_x)
pandas.Index
import numbers from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Type, Union import warnings import numpy as np from pandas._libs import lib, missing as libmissing from pandas._typing import ArrayLike, DtypeObj from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import cache_readonly from pandas.core.dtypes.base import register_extension_dtype from pandas.core.dtypes.common import ( is_bool_dtype, is_datetime64_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_object_dtype, pandas_dtype, ) from pandas.core.dtypes.missing import isna from pandas.core import ops from pandas.core.array_algos import masked_reductions from pandas.core.ops import invalid_comparison from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.tools.numeric import to_numeric from .masked import BaseMaskedArray, BaseMaskedDtype if TYPE_CHECKING: import pyarrow class _IntegerDtype(BaseMaskedDtype): """ An ExtensionDtype to hold a single size & kind of integer dtype. These specific implementations are subclasses of the non-public _IntegerDtype. For example we have Int8Dtype to represent signed int 8s. The attributes name & type are set when these subclasses are created. """ name: str base = None type: Type def __repr__(self) -> str: sign = "U" if self.is_unsigned_integer else "" return f"{sign}Int{8 * self.itemsize}Dtype()" @cache_readonly def is_signed_integer(self) -> bool: return self.kind == "i" @cache_readonly def is_unsigned_integer(self) -> bool: return self.kind == "u" @property def _is_numeric(self) -> bool: return True @cache_readonly def numpy_dtype(self) -> np.dtype: """ Return an instance of our numpy dtype """ return np.dtype(self.type) @cache_readonly def kind(self) -> str: return self.numpy_dtype.kind @cache_readonly def itemsize(self) -> int: """ Return the number of bytes in this dtype """ return self.numpy_dtype.itemsize @classmethod def construct_array_type(cls) -> Type["IntegerArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return IntegerArray def _get_common_dtype(self, dtypes: List[DtypeObj]) -> Optional[DtypeObj]: # we only handle nullable EA dtypes and numeric numpy dtypes if not all( isinstance(t, BaseMaskedDtype) or ( isinstance(t, np.dtype) and (np.issubdtype(t, np.number) or np.issubdtype(t, np.bool_)) ) for t in dtypes ): return None np_dtype = np.find_common_type( [t.numpy_dtype if isinstance(t, BaseMaskedDtype) else t for t in dtypes], [] ) if np.issubdtype(np_dtype, np.integer): return STR_TO_DTYPE[str(np_dtype)] return None def __from_arrow__( self, array: Union["pyarrow.Array", "pyarrow.ChunkedArray"] ) -> "IntegerArray": """ Construct IntegerArray from pyarrow Array/ChunkedArray. """ import pyarrow from pandas.core.arrays._arrow_utils import pyarrow_array_to_numpy_and_mask pyarrow_type = pyarrow.from_numpy_dtype(self.type) if not array.type.equals(pyarrow_type): array = array.cast(pyarrow_type) if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: data, mask = pyarrow_array_to_numpy_and_mask(arr, dtype=self.type) int_arr = IntegerArray(data.copy(), ~mask, copy=False) results.append(int_arr) return IntegerArray._concat_same_type(results) def integer_array(values, dtype=None, copy: bool = False) -> "IntegerArray": """ Infer and return an integer array of the values. Parameters ---------- values : 1D list-like dtype : dtype, optional dtype to coerce copy : bool, default False Returns ------- IntegerArray Raises ------ TypeError if incompatible types """ values, mask = coerce_to_array(values, dtype=dtype, copy=copy) return IntegerArray(values, mask) def safe_cast(values, dtype, copy: bool): """ Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints. """ try: return values.astype(dtype, casting="safe", copy=copy) except TypeError as err: casted = values.astype(dtype, copy=copy) if (casted == values).all(): return casted raise TypeError( f"cannot safely cast non-equivalent {values.dtype} to {np.dtype(dtype)}" ) from err def coerce_to_array( values, dtype, mask=None, copy: bool = False ) -> Tuple[np.ndarray, np.ndarray]: """ Coerce the input values array to numpy arrays with a mask Parameters ---------- values : 1D list-like dtype : integer dtype mask : bool 1D array, optional copy : bool, default False if True, copy the input Returns ------- tuple of (values, mask) """ # if values is integer numpy array, preserve it's dtype if dtype is None and hasattr(values, "dtype"): if is_integer_dtype(values.dtype): dtype = values.dtype if dtype is not None: if isinstance(dtype, str) and ( dtype.startswith("Int") or dtype.startswith("UInt") ): # Avoid DeprecationWarning from NumPy about np.dtype("Int64") # https://github.com/numpy/numpy/pull/7476 dtype = dtype.lower() if not issubclass(type(dtype), _IntegerDtype): try: dtype = STR_TO_DTYPE[str(np.dtype(dtype))] except KeyError as err: raise ValueError(f"invalid dtype specified {dtype}") from err if isinstance(values, IntegerArray): values, mask = values._data, values._mask if dtype is not None: values = values.astype(dtype.numpy_dtype, copy=False) if copy: values = values.copy() mask = mask.copy() return values, mask values = np.array(values, copy=copy) if is_object_dtype(values): inferred_type = lib.infer_dtype(values, skipna=True) if inferred_type == "empty": values = np.empty(len(values)) values.fill(np.nan) elif inferred_type not in [ "floating", "integer", "mixed-integer", "integer-na", "mixed-integer-float", ]: raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") elif is_bool_dtype(values) and is_integer_dtype(dtype): values = np.array(values, dtype=int, copy=copy) elif not (
is_integer_dtype(values)
pandas.core.dtypes.common.is_integer_dtype
import numpy as np import numpy.testing as npt import pandas as pd import pytest from pandas.util import testing as pdt from .. import transition from ...utils import testing as ust @pytest.fixture def basic_df(): return pd.DataFrame( {'x': range(5), 'y': range(5, 10)}, index=range(100, 105)) @pytest.fixture def year(): return 2112 @pytest.fixture def totals_col(): return 'total' @pytest.fixture def rates_col(): return 'growth_rate' @pytest.fixture def grow_targets(year, totals_col): return pd.DataFrame({totals_col: [7]}, index=[year]) @pytest.fixture def grow_targets_filters(year, totals_col): return pd.DataFrame({'x_min': [0, 2, np.nan], 'y_max': [7, 9, np.nan], 'x': [np.nan, np.nan, 4], totals_col: [1, 4, 10]}, index=[year, year, year]) @pytest.fixture(scope='function') def random_df(request): """ Seed the numpy prng and return a data frame w/ predictable test inputs so that the tests will have consistent results across builds. """ old_state = np.random.get_state() def fin(): # tear down: reset the prng after the test to the pre-test state np.random.set_state(old_state) request.addfinalizer(fin) np.random.seed(1) return pd.DataFrame( {'some_count': np.random.randint(1, 8, 20)}, index=range(0, 20)) @pytest.fixture def growth_rates(rates_col, totals_col, grow_targets): del grow_targets[totals_col] grow_targets[rates_col] = [0.4] return grow_targets @pytest.fixture def growth_rates_filters(rates_col, totals_col, grow_targets_filters): del grow_targets_filters[totals_col] grow_targets_filters[rates_col] = [0.5, -0.5, 0] return grow_targets_filters def assert_empty_index(index): pdt.assert_index_equal(index, pd.Index([])) def assert_for_add(new, added): assert len(new) == 7 pdt.assert_index_equal(added, pd.Index([105, 106])) def assert_for_remove(new, added): assert len(new) == 3 assert_empty_index(added) def test_add_rows(basic_df): nrows = 2 new, added, copied = transition.add_rows(basic_df, nrows) assert_for_add(new, added) assert len(copied) == nrows assert copied.isin(basic_df.index).all() def test_add_rows_starting_index(basic_df): nrows = 2 starting_index = 1000 new, added, copied = transition.add_rows(basic_df, nrows, starting_index) assert len(new) == len(basic_df) + nrows pdt.assert_index_equal(added, pd.Index([1000, 1001])) assert len(copied) == nrows assert copied.isin(basic_df.index).all() def test_add_rows_zero(basic_df): nrows = 0 new, added, copied = transition.add_rows(basic_df, nrows) pdt.assert_frame_equal(new, basic_df) assert_empty_index(added) assert_empty_index(copied) def test_add_rows_with_accounting(random_df): control = 10 new, added, copied = transition.add_rows( random_df, control, accounting_column='some_count') assert control == new.loc[copied]['some_count'].sum() assert copied.isin(random_df.index).all() def test_remove_rows(basic_df): nrows = 2 new, removed_indexes = transition.remove_rows(basic_df, nrows) assert_for_remove(new, transition._empty_index()) assert len(removed_indexes) == nrows assert removed_indexes.isin(basic_df.index).all() def test_remove_rows_zero(basic_df): nrows = 0 new, removed = transition.remove_rows(basic_df, nrows) pdt.assert_frame_equal(new, basic_df) assert_empty_index(removed) def test_remove_rows_all(basic_df): nrows = len(basic_df) new, removed = transition.remove_rows(basic_df, nrows) pdt.assert_frame_equal(new, basic_df.loc[[]]) ust.assert_index_equal(removed, basic_df.index) def test_remove_rows_with_accounting(random_df): control = 10 new, removed = transition.remove_rows( random_df, control, accounting_column='some_count') assert control == random_df.loc[removed]['some_count'].sum() assert removed.isin(random_df.index).all() def test_remove_rows_raises(basic_df): # should raise ValueError if asked to remove more rows than # are in the table nrows = 25 with pytest.raises(ValueError): transition.remove_rows(basic_df, nrows) def test_add_or_remove_rows_add(basic_df): nrows = 2 new, added, copied, removed = \ transition.add_or_remove_rows(basic_df, nrows) assert_for_add(new, added) assert len(copied) == abs(nrows) assert copied.isin(basic_df.index).all() assert_empty_index(removed) def test_add_or_remove_rows_remove(basic_df): nrows = -2 new, added, copied, removed = \ transition.add_or_remove_rows(basic_df, nrows) assert_for_remove(new, added) assert len(removed) == abs(nrows) assert removed.isin(basic_df.index).all() assert_empty_index(copied) def test_add_or_remove_rows_zero(basic_df): nrows = 0 new, added, copied, removed = \ transition.add_or_remove_rows(basic_df, nrows) pdt.assert_frame_equal(new, basic_df) assert_empty_index(added) assert_empty_index(copied) assert_empty_index(removed) def test_grtransition_add(basic_df): growth_rate = 0.4 year = 2112 grt = transition.GrowthRateTransition(growth_rate) new, added, copied, removed = grt.transition(basic_df, year) assert_for_add(new, added) assert len(copied) == 2 assert copied.isin(basic_df.index).all() assert_empty_index(removed) def test_grtransition_add_with_accounting(random_df): growth_rate = .1 year = 2012 orig_total = random_df['some_count'].sum() growth = int(round(orig_total * growth_rate)) target = orig_total + growth grt = transition.GrowthRateTransition(growth_rate, 'some_count') new, added, copied, removed = grt(random_df, year) assert growth == new.loc[copied]['some_count'].sum() assert target == new['some_count'].sum() assert copied.isin(random_df.index).all() assert_empty_index(removed) def test_grtransition_remove(basic_df): growth_rate = -0.4 year = 2112 grt = transition.GrowthRateTransition(growth_rate) new, added, copied, removed = grt.transition(basic_df, year) assert_for_remove(new, added) assert_empty_index(copied) assert len(removed) == 2 assert removed.isin(basic_df.index).all() def test_grtransition_remove_with_accounting(random_df): growth_rate = -.1 year = 2012 orig_total = random_df['some_count'].sum() change = -1 * int(round(orig_total * growth_rate)) target = orig_total - change grt = transition.GrowthRateTransition(growth_rate, 'some_count') new, added, copied, removed = grt(random_df, year) assert change == random_df.loc[removed]['some_count'].sum() assert target == new['some_count'].sum() assert removed.isin(random_df.index).all() assert_empty_index(added) assert_empty_index(copied) def test_grtransition_remove_all(basic_df): growth_rate = -1 year = 2112 grt = transition.GrowthRateTransition(growth_rate) new, added, copied, removed = grt.transition(basic_df, year) pdt.assert_frame_equal(new, basic_df.loc[[]]) assert_empty_index(added) assert_empty_index(copied) ust.assert_index_equal(removed, basic_df.index) def test_grtransition_zero(basic_df): growth_rate = 0 year = 2112 grt = transition.GrowthRateTransition(growth_rate) new, added, copied, removed = grt.transition(basic_df, year) pdt.assert_frame_equal(new, basic_df) assert_empty_index(added) assert_empty_index(copied) assert_empty_index(removed) def test_tgrtransition_add(basic_df, growth_rates, year, rates_col): tgrt = transition.TabularGrowthRateTransition(growth_rates, rates_col) new, added, copied, removed = tgrt.transition(basic_df, year) assert len(new) == 7 bdf_imax = basic_df.index.values.max() assert pd.Series([bdf_imax + 1, bdf_imax + 2]).isin(new.index).all() assert len(copied) == 2 assert_empty_index(removed) def test_tgrtransition_remove(basic_df, growth_rates, year, rates_col): growth_rates[rates_col] = -0.4 tgrt = transition.TabularGrowthRateTransition(growth_rates, rates_col) new, added, copied, removed = tgrt.transition(basic_df, year) assert len(new) == 3 assert_empty_index(added) assert_empty_index(copied) assert len(removed) == 2 def test_tgrtransition_with_accounting(random_df): """ Test segmented growth rate transitions--with an accounting column--using 1 test w/ mixed growth rates trends: declining, growing and no growth. """ grp1 = random_df.copy() grp1['segment'] = 'a' grp2 = random_df.copy() grp2['segment'] = 'b' grp3 = random_df.copy() grp3['segment'] = 'c' test_df = pd.concat([grp1, grp2, grp3], axis=0, ignore_index=True) orig_total = random_df['some_count'].sum() year = 2012 growth_rates = pd.DataFrame( { 'grow_rate': [-0.1, 0.25, 0], 'segment': ['a', 'b', 'c'] }, index=[year, year, year]) tgrt = transition.TabularGrowthRateTransition( growth_rates, 'grow_rate', 'some_count') new, added, copied, removed = tgrt.transition(test_df, year) added_rows = new.loc[copied] removed_rows = test_df.loc[removed] # test a declining segment a_added_rows = added_rows[added_rows['segment'] == 'a'] a_removed_rows = removed_rows[removed_rows['segment'] == 'a'] a_change = int(round(orig_total * -0.1)) a_target = orig_total + a_change assert a_change * -1 == a_removed_rows['some_count'].sum() assert a_target == new[new['segment'] == 'a']['some_count'].sum() assert_empty_index(a_added_rows.index) # test a growing segment b_added_rows = added_rows[added_rows['segment'] == 'b'] b_removed_rows = removed_rows[removed_rows['segment'] == 'b'] b_change = int(round(orig_total * 0.25)) b_target = orig_total + b_change assert b_change == b_added_rows['some_count'].sum() assert b_target == new[new['segment'] == 'b']['some_count'].sum() assert_empty_index(b_removed_rows.index) # test a no change segment c_added_rows = added_rows[added_rows['segment'] == 'c'] c_removed_rows = removed_rows[removed_rows['segment'] == 'c'] assert orig_total == new[new['segment'] == 'c']['some_count'].sum() assert_empty_index(c_added_rows.index) assert_empty_index(c_removed_rows.index) def test_tgrtransition_remove_all(basic_df, growth_rates, year, rates_col): growth_rates[rates_col] = -1 tgrt = transition.TabularGrowthRateTransition(growth_rates, rates_col) new, added, copied, removed = tgrt.transition(basic_df, year) pdt.assert_frame_equal(new, basic_df.loc[[]]) assert_empty_index(added) assert_empty_index(copied) ust.assert_index_equal(removed, basic_df.index) def test_tgrtransition_zero(basic_df, growth_rates, year, rates_col): growth_rates[rates_col] = 0 tgrt = transition.TabularGrowthRateTransition(growth_rates, rates_col) new, added, copied, removed = tgrt.transition(basic_df, year) pdt.assert_frame_equal(new, basic_df) assert_empty_index(added) assert_empty_index(copied) assert_empty_index(removed) def test_tgrtransition_filters( basic_df, growth_rates_filters, year, rates_col): tgrt = transition.TabularGrowthRateTransition( growth_rates_filters, rates_col) new, added, copied, removed = tgrt.transition(basic_df, year) assert len(new) == 5 assert basic_df.index.values.max() + 1 in new.index assert len(copied) == 1 assert len(removed) == 1 def test_tabular_transition_add(basic_df, grow_targets, totals_col, year): tran = transition.TabularTotalsTransition(grow_targets, totals_col) new, added, copied, removed = tran.transition(basic_df, year) assert_for_add(new, added) bdf_imax = basic_df.index.values.max() assert pd.Series([bdf_imax + 1, bdf_imax + 2]).isin(new.index).all() assert len(copied) == 2 assert_empty_index(removed) def test_tabular_transition_remove(basic_df, grow_targets, totals_col, year): grow_targets[totals_col] = [3] tran = transition.TabularTotalsTransition(grow_targets, totals_col) new, added, copied, removed = tran.transition(basic_df, year) assert_for_remove(new, added) assert_empty_index(copied) assert len(removed) == 2 def test_tabular_transition_remove_all( basic_df, grow_targets, totals_col, year): grow_targets[totals_col] = [0] tran = transition.TabularTotalsTransition(grow_targets, totals_col) new, added, copied, removed = tran.transition(basic_df, year) pdt.assert_frame_equal(new, basic_df.loc[[]]) assert_empty_index(added) assert_empty_index(copied) ust.assert_index_equal(removed, basic_df.index) def test_tabular_transition_raises_on_bad_year( basic_df, grow_targets, totals_col, year): tran = transition.TabularTotalsTransition(grow_targets, totals_col) with pytest.raises(ValueError): tran.transition(basic_df, year + 100) def test_tabular_transition_add_filters( basic_df, grow_targets_filters, totals_col, year): tran = transition.TabularTotalsTransition(grow_targets_filters, totals_col) new, added, copied, removed = tran.transition(basic_df, year) assert len(new) == grow_targets_filters[totals_col].sum() assert basic_df.index.values.max() + 1 in new.index assert len(copied) == 11 assert len(removed) == 1 def test_update_linked_table(basic_df): col_name = 'x' added = pd.Index([5, 6, 7]) copied =
pd.Index([1, 3, 1])
pandas.Index
import logging import re from copy import copy from pathlib import PosixPath from typing import Dict, List, Tuple import pandas as pd from pandas import DataFrame, Series from omegaconf import DictConfig from .mortality_file_extractor import MortalityFileExtractor class MortalityXLSXExtractor(MortalityFileExtractor): """ Extracts mortality facts from Statistics Poland XLS files """ def __init__(self, file_path: PosixPath, cfg: DictConfig): self.file_path = file_path self.cfg = cfg self.mortality_facts = DataFrame() self.log = logging.getLogger(__name__) @property def reported_year(self) -> int: """ Returns the reported actuals year """ return int(self.file_path.stem.split('_')[-1]) @property def genders(self) -> Dict[str, int]: return self.cfg.raw_data.genders @property def fact_columns(self) -> List[str]: return self.cfg.raw_data.fact_columns @property def regions(self) -> Dict[str, int]: return self.cfg.raw_data.regions @property def age_groups(self) -> Dict[str, int]: return self.cfg.raw_data.age_groups @property def fact_year(self) -> int: return int(self.file_path.stem.split('_')[-1]) def extract_actuals(self) -> None: """ Extracts mortality data facts """ for gender_data in self.genders.items(): self._extract_gender_sheet(gender_data) if not self.mortality_facts.empty: self.log.info(f'Year: {self.fact_year} - {len(self.mortality_facts)} mortality facts extracted ({self.mortality_facts.deceased_actuals.sum():.0f} of deaths in total)') return self.mortality_facts def _extract_gender_sheet(self, gender_data: Tuple[str, int]) -> None: """ Exctracts mortality data facts from a given gender sheet """ gender_sheet = self._get_gender_sheet(gender_data) gender_sheet_facts = self._transform_gender_sheet_into_facts_table(gender_sheet) self.mortality_facts =
pd.concat((self.mortality_facts, gender_sheet_facts))
pandas.concat
import glob import pandas as pd import seaborn as sns import matplotlib.pyplot as plt #%% # Create ML of sites overlapped ([# replicates in set] + 1) def calcML(df): ML_df = df[df.filter(like="methRate").columns].stack() return ML_df #samples = ['G1' 'G2', 'G3', 'G4','MF_rep1','MF_rep2','SRR8170377', 'SRR8170378', 'SRR8170379','SRR8170380'] conditions = ["G","SRR"] # "MF","pMF", #%% #import all sites total_file = "allm5C_libraries_filteredDepthAnno.csv" total_df = pd.read_csv(total_file, low_memory=False) # file overlapped_site_ML = {} exclusive_site_ML = {} for set in conditions: print(set) ext = "_allOverlapRepDepth.csv" #ext = "_allUnion.csv" for file in glob.glob("**/"+set+ext, recursive=True): print(file) df_set = pd.read_csv(file, low_memory=False) name = "_"+set df = df_set[df_set.filter(like=name).columns] df['group'] = df_set['group'] df = df[df['group'].isin(total_df['group'])] # subset total site columns df by name df_exclusive = total_df[total_df.filter(like=name).columns] df_exclusive['group'] = total_df['group'] # Remove sites df_exclusive = df_exclusive[~df_exclusive['group'].isin(df_set['group'])] print("subset overlapped") overlapped_site_ML[set] = calcML(df) print("subset exlusive") exclusive_site_ML[set] = calcML(df_exclusive) overlapped_df = pd.DataFrame(overlapped_site_ML) exclusive_df =
pd.DataFrame(exclusive_site_ML)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ README: 環保署水質 API 多次下載打包工具 Logic: 1. CSV 多次下載成本地檔案 2. 讀檔成 pd, 合併成全部的 CSV Filename: WaterQuality_startdate_enddate[_offset].csv @author: wuulong """ import requests import os import pandas as pd from datetime import timedelta, datetime import time # date format: 2020-06-01 def water_quality(start_str, end_str): offset = 0 #global df_all df_all = None while True: #url = "https://opendata.epa.gov.tw/webapi/api/rest/datastore/355000000I-001255?filters=SampleDate ge '%s' and SampleDate lt '%s' &sort=SampleDate&offset=%i&limit=1000&format=csv" % (start_str, end_str, offset) #url = "http://opendata.epa.gov.tw/webapi/Data/WQXRiver/?$filter=ItemName%20eq%20%27%E6%B2%B3%E5%B7%9D%E6%B1%A1%E6%9F%93%E5%88%86%E9%A1%9E%E6%8C%87%E6%A8%99%27&$orderby=SampleDate%20desc&$skip=%i&$top=1000&format=csv" %(offset) url = "https://opendata.epa.gov.tw/webapi/api/rest/datastore/355000000I-001255?filters=ItemName eq '河川污染分類指標'&sort=SampleDate&offset=%i&limit=1000&format=csv" %(offset) file_datestr = "output/WaterQuality_%s_%s" %(start_str,end_str) filename = "%s_%04i.csv" %(file_datestr,offset) cont = True while cont: try: url_get(filename, url) df =
pd.read_csv(filename)
pandas.read_csv
import unittest import pandas as pd import numpy as np from ..timeseries import TimeSeries class TimeSeriesTestCase(unittest.TestCase): times = pd.date_range('20130101', '20130110') pd_series1 = pd.Series(range(10), index=times) pd_series2 = pd.Series(range(5, 15), index=times) pd_series3 = pd.Series(range(15, 25), index=times) series1: TimeSeries = TimeSeries(pd_series1) series2: TimeSeries = TimeSeries(pd_series1, pd_series2, pd_series3) series3: TimeSeries = TimeSeries(pd_series2) def test_creation(self): with self.assertRaises(ValueError): # Index is dateTimeIndex TimeSeries(pd.Series(range(10), range(10))) with self.assertRaises(ValueError): # Conf interval must be same length as main series pd_lo = pd.Series(range(5, 14), index=pd.date_range('20130101', '20130109')) TimeSeries(self.pd_series1, pd_lo) with self.assertRaises(ValueError): # Conf interval must have same time index as main series pd_lo = pd.Series(range(5, 15), index=pd.date_range('20130102', '20130111')) TimeSeries(self.pd_series1, pd_lo) with self.assertRaises(ValueError): # Conf interval must be same length as main series pd_hi = pd.Series(range(5, 14), index=pd.date_range('20130101', '20130109')) TimeSeries(self.pd_series1, None, pd_hi) with self.assertRaises(ValueError): # Conf interval must have same time index as main series pd_lo = pd.Series(range(5, 15), index=pd.date_range('20130102', '20130111')) TimeSeries(self.pd_series1, None, pd_lo) with self.assertRaises(ValueError): # Main series cannot have date holes range_ = pd.date_range('20130101', '20130104').append(pd.date_range('20130106', '20130110')) TimeSeries(pd.Series(range(9), index=range_)) series_test = TimeSeries(self.pd_series1, self.pd_series2, self.pd_series3) self.assertTrue(series_test.pd_series().equals(self.pd_series1)) self.assertTrue(series_test.conf_lo_pd_series().equals(self.pd_series2)) self.assertTrue(series_test.conf_hi_pd_series().equals(self.pd_series3)) def test_alt_creation(self): with self.assertRaises(ValueError): # Series cannot be lower than three index = pd.date_range('20130101', '20130102') TimeSeries.from_times_and_values(index, self.pd_series1.values[:2]) with self.assertRaises(ValueError): # all array must have same length TimeSeries.from_times_and_values(self.pd_series1.index, self.pd_series1.values[:-1], self.pd_series2[:-2], self.pd_series3[:-1]) # test if reordering is correct rand_perm = np.random.permutation(range(1, 11)) index = pd.to_datetime(['201301{:02d}'.format(i) for i in rand_perm]) series_test = TimeSeries.from_times_and_values(index, self.pd_series1.values[rand_perm-1], self.pd_series2[rand_perm-1], self.pd_series3[rand_perm-1].tolist()) self.assertTrue(series_test.start_time() == pd.to_datetime('20130101')) self.assertTrue(series_test.end_time() == pd.to_datetime('20130110')) self.assertTrue(series_test.pd_series().equals(self.pd_series1)) self.assertTrue(series_test.conf_lo_pd_series().equals(self.pd_series2)) self.assertTrue(series_test.conf_hi_pd_series().equals(self.pd_series3)) self.assertTrue(series_test.freq() == self.series1.freq()) # TODO test over to_dataframe when multiple features choice is decided def test_eq(self): seriesA: TimeSeries = TimeSeries(self.pd_series1) self.assertTrue(self.series1 == seriesA) # with a defined CI seriesB: TimeSeries = TimeSeries(self.pd_series1, confidence_hi=pd.Series(range(10, 20), index=pd.date_range('20130101', '20130110'))) self.assertFalse(self.series1 == seriesB) self.assertTrue(self.series1 != seriesB) # with different dates seriesC = TimeSeries(pd.Series(range(10), index=pd.date_range('20130102', '20130111'))) self.assertFalse(self.series1 == seriesC) # compare with both CI seriesD: TimeSeries = TimeSeries(self.pd_series1, self.pd_series2, self.pd_series3) seriesE: TimeSeries = TimeSeries(self.pd_series1, self.pd_series3, self.pd_series2) self.assertTrue(self.series2 == seriesD) self.assertFalse(self.series2 == seriesE) def test_dates(self): self.assertEqual(self.series1.start_time(), pd.Timestamp('20130101')) self.assertEqual(self.series1.end_time(), pd.Timestamp('20130110')) self.assertEqual(self.series1.duration(), pd.Timedelta(days=9)) def test_slice(self): # base case seriesA = self.series1.slice(pd.Timestamp('20130104'), pd.Timestamp('20130107')) self.assertEqual(seriesA.start_time(), pd.Timestamp('20130104')) self.assertEqual(seriesA.end_time(), pd.Timestamp('20130107')) # time stamp not in series seriesB = self.series1.slice(pd.Timestamp('20130104 12:00:00'), pd.Timestamp('20130107')) self.assertEqual(seriesB.start_time(), pd.Timestamp('20130105')) self.assertEqual(seriesB.end_time(), pd.Timestamp('20130107')) # end timestamp after series seriesC = self.series1.slice(pd.Timestamp('20130108'), pd.Timestamp('20130201')) self.assertEqual(seriesC.start_time(), pd.Timestamp('20130108')) self.assertEqual(seriesC.end_time(), pd.Timestamp('20130110')) # n points, base case seriesD = self.series1.slice_n_points_after(pd.Timestamp('20130102'), n=3) self.assertEqual(seriesD.start_time(), pd.Timestamp('20130102')) self.assertTrue(len(seriesD.values()) == 3) self.assertEqual(seriesD.end_time(), pd.Timestamp('20130104')) seriesE = self.series1.slice_n_points_after(pd.Timestamp('20130107 12:00:10'), n=10) self.assertEqual(seriesE.start_time(), pd.Timestamp('20130108')) self.assertEqual(seriesE.end_time(), pd.Timestamp('20130110')) seriesF = self.series1.slice_n_points_before(pd.Timestamp('20130105'), n=3) self.assertEqual(seriesF.end_time(), pd.Timestamp('20130105')) self.assertTrue(len(seriesF.values()) == 3) self.assertEqual(seriesF.start_time(), pd.Timestamp('20130103')) seriesG = self.series1.slice_n_points_before(pd.Timestamp('20130107 12:00:10'), n=10) self.assertEqual(seriesG.start_time(), pd.Timestamp('20130101')) self.assertEqual(seriesG.end_time(), pd.Timestamp('20130107')) # with CI seriesH = self.series2.slice(pd.Timestamp('20130104'), pd.Timestamp('20130107')) self.assertEqual(seriesH.conf_lo_pd_series().index[0],
pd.Timestamp('20130104')
pandas.Timestamp
#! env python import requests import re import os.path as path import time import datetime import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates import seaborn as sns #### # strikes and protests days: # * https://es.wikipedia.org/wiki/Protestas_en_Argentina_de_2020 # ### class Covid: def __init__(self, covid_data=None): self.covid_data = covid_data if covid_data is not None\ else 'https://en.wikipedia.org/wiki/Template:COVID-19_pandemic_data/Argentina_medical_cases' self.tmp_covid_data = './raw_data_tmp' self.special_dates = ['2020-03-23', '2020-03-24', '2020-03-31', '2020-04-09', '2020-04-10', '2020-04-24', '2020-05-01', '2020-05-25', '2020-06-15', '2020-07-09', '2020-07-10', '2020-08-17', '2020-10-12', '2020-11-23', '2020-12-07', '2020-12-08', '2020-12-25', '2020-06-20', '2020-08-26', '2020-09-02', '2020-09-13', '2020-09-19'] def proc(self): covid = dict() if not path.exists(self.tmp_covid_data) or (time.time() - int(path.getmtime(self.tmp_covid_data))) > 84600: raw_data = requests.get(self.covid_data) raw_data = raw_data.text with open(self.tmp_covid_data, 'w') as fd: fd.write(raw_data.encode('utf-8').decode('ascii', 'ignore')) else: with open(self.tmp_covid_data, 'r', encoding='utf-8') as fd: raw_data = "" for line in fd.readlines(): raw_data += line line_flag = False day_flag = False day_counter = 0 date_tmp = "" for line in raw_data.splitlines(): if re.search(r'Confirmed cumulative infections', line): line_flag = True if line_flag: if re.search(r'wikitable', line): line_flag = True if line_flag: rsearch = re.search(r'<th>(\d+ \w{3})\s*$', line) if rsearch: date_tmp = rsearch.group(1) date_tmp = re.sub(r'(\d \D{3})', r'\1', date_tmp) date_tmp = datetime.datetime.strptime(date_tmp + " 2020", "%d %b %Y").strftime("%Y-%m-%d") covid[date_tmp] = dict() day_flag = True day_counter = 0 if day_flag: day_counter += 1 if day_counter == 29: tmp = re.sub(r'\D+(\d+)\D*', r'\1', line) if not tmp.isdigit(): tmp = 0 covid[date_tmp]["C"] = tmp elif day_counter == 30: tmp = re.sub(r'\D+(\d+)\D*', r'\1', line) if not tmp.isdigit(): tmp = 0 covid[date_tmp]["D"] = tmp covid_dates = dict() for t in covid.keys(): #covid[t]["date"] = t if t in self.special_dates: covid_dates[t] = dict() covid_dates[t]["S"] = covid[t]['C'] covid_df = pd.DataFrame.from_dict(covid, dtype="int32") covid_df = covid_df.transpose() covid_df = covid_df.sort_index() covid_df = covid_df.astype(int) covid_df_dates =
pd.DataFrame.from_dict(covid_dates, dtype="int32")
pandas.DataFrame.from_dict
from __future__ import annotations import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_is_fitted from typing import Optional, Sequence, Union from ..logger import get_logger logger = get_logger(__name__) class HierarchicalEncoder(BaseEstimator, TransformerMixin): '''Hierarchical target encoding''' def __init__( self, cols: Optional[Sequence[str]] = None, sample_weight_col: Optional[str] = None, C: int = 30, disambiguate: bool = True, verbose: bool = False, ) -> None: self.C = C self.cols = cols self.sample_weight_col = sample_weight_col self.disambiguate = disambiguate self.verbose = verbose def _check_params(self, X: pd.DataFrame) -> None: if self.C <= 1: raise ValueError(f'C={self.C} must be > 1') def _disambiguate(self, X: pd.DataFrame, sep: str = '__') -> pd.DataFrame: ''' Disambiguate hierarchical categorical columns, f.e. distinguish Paris, US from Paris, France by concatenating the parent categories values with child categories values. Order of cols matters: the feature at the beginning of the cols list is considered to be the parent feature. F.e.: [country, city, street]. `sep` is used as a value separator in the concatenated values. ''' for i, col in enumerate(self.cols): if i > 0: X[col] = X[col].astype('str') + sep + X[self.cols[i - 1]].astype('str') return X def fit(self, X: pd.DataFrame, y: Union[pd.Series, np.ndarray]) -> HierarchicalEncoder: if self.cols is None: self.cols = [c for c in X.columns if not c == self.sample_weight_col] if self.sample_weight_col is None: sample_weight =
pd.Series(1, index=X.index)
pandas.Series
import pandas as pd from sklearn.model_selection import train_test_split from sklearn import preprocessing, tree from sklearn.pipeline import make_pipeline import os.path import os from sklearn.svm import SVC from sklearn.metrics import confusion_matrix from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics from sklearn.neural_network import MLPClassifier import pickle def svm(X_train, X_test, y_train, y_test, to_save_dir): clf = make_pipeline(preprocessing.StandardScaler(), SVC(gamma=0.01, degree=3, kernel='rbf')) clf.fit(X_train, y_train) predicted_y = clf.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel() precision_score = tp / (tp + fp) recall_score = tp / (tp + fn) print(metrics.confusion_matrix(y_test, predicted_y)) print(metrics.classification_report(y_test, predicted_y)) report = metrics.classification_report(y_test, predicted_y, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(to_save_dir, 'svm.csv')) pickle_dir = to_save_dir + "pickle_results\\" with open(os.path.join(pickle_dir, 'svm.pkl'), 'wb') as f: pickle.dump(clf, f) def random_forest(X_train, X_test, y_train, y_test, to_save_dir): clf = RandomForestClassifier(random_state=314) clf.fit(X_train, y_train) predicted_y = clf.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel() precision_score = tp / (tp + fp) recall_score = tp / (tp + fn) print(metrics.confusion_matrix(y_test, predicted_y)) print(metrics.classification_report(y_test, predicted_y)) report = metrics.classification_report(y_test, predicted_y, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(to_save_dir, 'random_forest.csv')) pickle_dir = to_save_dir + "pickle_results\\" with open(os.path.join(pickle_dir, 'random_forest.pkl'), 'wb') as f: pickle.dump(clf, f) def decision_tree(X_train, X_test, y_train, y_test, to_save_dir): clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) predicted_y = clf.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel() precision_score = tp / (tp + fp) recall_score = tp / (tp + fn) print(metrics.confusion_matrix(y_test, predicted_y)) print(metrics.classification_report(y_test, predicted_y)) report = metrics.classification_report(y_test, predicted_y, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(to_save_dir, 'decision_tree.csv')) pickle_dir = to_save_dir + "pickle_results\\" with open(os.path.join(pickle_dir, 'decision_tree.pkl'), 'wb') as f: pickle.dump(clf, f) def kNN(X_train, X_test, y_train, y_test, to_save_dir): clf = KNeighborsClassifier(n_neighbors=5) clf.fit(X_train, y_train) predicted_y = clf.predict(X_test) print(metrics.confusion_matrix(y_test, predicted_y)) print(metrics.classification_report(y_test, predicted_y)) report = metrics.classification_report(y_test, predicted_y, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(to_save_dir, 'kNN.csv')) pickle_dir = to_save_dir + "pickle_results\\" with open(os.path.join(pickle_dir, 'kNN.pkl'), 'wb') as f: pickle.dump(clf, f) def gradient_boost(X_train, X_test, y_train, y_test, to_save_dir): clf = GradientBoostingClassifier(n_estimators=25, learning_rate=1.0, max_depth=20, random_state=0) clf.fit(X_train, y_train) predicted_y = clf.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel() precision_score = tp / (tp + fp) recall_score = tp / (tp + fn) print(metrics.confusion_matrix(y_test, predicted_y)) print(metrics.classification_report(y_test, predicted_y)) report = metrics.classification_report(y_test, predicted_y, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(to_save_dir, 'gradient_boost.csv')) pickle_dir = to_save_dir + "pickle_results\\" with open(os.path.join(pickle_dir, 'gradient_boost.pkl'), 'wb') as f: pickle.dump(clf, f) def neural_net_mlp(X_train, X_test, y_train, y_test, to_save_dir): clf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(14, 10 ), random_state=1, max_iter=300, warm_start=True) clf.fit(X_train, y_train) predicted_y = clf.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, predicted_y).ravel() precision_score = tp / (tp + fp) recall_score = tp / (tp + fn) print(metrics.confusion_matrix(y_test, predicted_y)) print(metrics.classification_report(y_test, predicted_y)) report = metrics.classification_report(y_test, predicted_y, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv(os.path.join(to_save_dir, 'mlp.csv')) pickle_dir = to_save_dir + "pickle_results\\" with open(os.path.join(pickle_dir, 'mlp.pkl'), 'wb') as f: pickle.dump(clf, f) def encode_string_values(df): for f in df.columns: if df[f].dtype == 'object': lbl_enc = preprocessing.LabelEncoder() df[f] = lbl_enc.fit_transform(df[f].astype(str).values) return df def main(): trained_path = os.path.abspath(os.path.join(__file__, "../../..")) + "\\data\\trained\\" models_dir = os.path.abspath(os.path.join(__file__, "../../..")) + "\\models\\" dir = os.path.abspath(os.path.join(__file__, "../../..")) + "\\data\\datasets_with_features\\" frames = [] attacks = ["apt_sim", "kerberoasting", "brute_force", "dc_shadow", "dc_sync", "golden_ticket", "password_spraying", "remote_process_injection", "normal_events"] for attack in attacks: attack_path = dir + attack + ".csv" frames.append(pd.read_csv(attack_path)) result =
pd.concat(frames)
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) tm.assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) tm.assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box_df_fail): # GH#18849 box = box_df_fail box2 = Series if box in [pd.Index, tm.to_array] else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps: # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # TODO: Moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize("m", [1, 3, 10]) @pytest.mark.parametrize("unit", ['D', 'h', 'm', 's', 'ms', 'us', 'ns']) def test_timedelta64_conversions(self, m, unit): startdate = Series(pd.date_range('2013-01-01', '2013-01-03')) enddate = Series(pd.date_range('2013-03-01', '2013-03-03')) ser = enddate - startdate ser[2] = np.nan # op expected = Series([x / np.timedelta64(m, unit) for x in ser]) result = ser / np.timedelta64(m, unit) tm.assert_series_equal(result, expected) # reverse op expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in ser]) result = np.timedelta64(m, unit) / ser tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx
tm.assert_equal(result, idx)
pandas.util.testing.assert_equal
import codecs import datetime import json import numbers import warnings import dill import numpy as np import pandas as pd import pickle from pymongo import MongoClient import redis from tabulate import tabulate class Concordia(): def __init__(self, persistent_db_config=None, in_memory_db_config=None, default_row_id_field=None): print('Welcome to Concordia! We\'ll do our best to take a couple stressors off your plate and give you more confidence in your machine learning systems in production.') self.persistent_db_config = { 'host': 'localhost' , 'port': 27017 , 'db': '_concordia' } if persistent_db_config is not None: self.persistent_db_config.update(persistent_db_config) self.in_memory_db_config = { 'host': 'localhost' , 'port': 6379 , 'db': 0 } if in_memory_db_config is not None: self.in_memory_db_config.update(in_memory_db_config) self._create_db_connections() self.valid_prediction_types = set([str, int, float, list, 'int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64']) self.default_row_id_field = default_row_id_field params_to_save = { 'persistent_db_config': self.persistent_db_config , 'in_memory_db_config': self.in_memory_db_config , 'default_row_id_field': self.default_row_id_field } self.insert_into_persistent_db(val=params_to_save, val_type='concordia_config', row_id='_intentionally_blank', model_id='_intentionally_blank') def set_params(self, params_dict): for k, v in params_dict.items(): setattr(self, k, v) def _create_db_connections(self): host = self.in_memory_db_config['host'] port = self.in_memory_db_config['port'] db = self.in_memory_db_config['db'] self.rdb = redis.StrictRedis(host=host, port=port, db=db) host = self.persistent_db_config['host'] port = self.persistent_db_config['port'] db = self.persistent_db_config['db'] client = MongoClient(host=host, port=port) self.mdb = client[db] return self # feature_importances is a dict, with keys as feature names, and values being the importance of each feature. it doesn't matter how the imoprtances are calculated, we'll just sort by those values def add_model(self, model, model_id, feature_names=None, feature_importances=None, description=None, features_to_save='all'): print('One thing to keep in mind is that each model_id must be unique in each db configuration. So if two Concordia instances are using the same database configurations, you should make sure their model_ids do not overlap.') redis_key_model = self.make_redis_model_key(model_id) stringified_model = codecs.encode(dill.dumps(model), 'base64').decode() self.rdb.set(redis_key_model, stringified_model) redis_key_features = self.make_redis_key_features(model_id) stringified_features = json.dumps(features_to_save) self.rdb.set(redis_key_features, stringified_features) if feature_importances is not None: if not isinstance(feature_importances, dict): raise(TypeError('feature_importances must be a dict, where each key is a feature name, and each value is the importance of that feature')) for k, v in feature_importances.items(): if isinstance(v, np.generic): feature_importances[k] = np.asscalar(v) mdb_doc = { 'val_type': 'model_info' , 'model': stringified_model , 'model_id': model_id , 'feature_names': feature_names , 'feature_importances': json.dumps(feature_importances) , 'description': description , 'date_added': datetime.datetime.now() , 'features_to_save': stringified_features } self.insert_into_persistent_db(mdb_doc, val_type=mdb_doc['val_type'], row_id=mdb_doc['model_id'], model_id=mdb_doc['model_id']) return self def add_label(self, row_id, model_id, label): label_doc = { 'row_id': row_id , 'model_id': model_id , 'label': label } if not isinstance(row_id, numbers.Number) and not isinstance(row_id, np.generic) and not isinstance(row_id, str): if isinstance(model_id, str): label_doc['model_id'] = [model_id for x in range(len(row_id))] label_doc = pd.DataFrame(label_doc) self.insert_into_persistent_db(val=label_doc, val_type='live_labels', row_id=label_doc['row_id'], model_id=label_doc['model_id']) def list_all_models(self, verbose=True): live_models = self.retrieve_from_persistent_db(val_type='model_info') if verbose: print('Here are all the models that have been added to concordia for live predictions:') model_names = [x['model_id'] for x in live_models] print(model_names) for model_info in live_models: del model_info['model'] return live_models def retrieve_from_persistent_db(self, val_type, row_id=None, model_id=None, min_date=None, date_field=None): if min_date is not None and date_field is None and not (isinstance(min_date, datetime.datetime) or isinstance(min_date, datetime.date)): print('You have specified a min_date, but not a date_field') print('Without the date_field specified, Concordia will query against the "_concordia_created_at" field, which is of type datetime.datetime.') print('Therefore, your min_date must be of type datetime.datetime, but it is not right now. It is of type: '.format(type(min_date))) raise(TypeError('min_date must be of type datetime if date_field is unspecified')) query_params = { 'row_id': row_id , 'model_id': model_id } if row_id is None: del query_params['row_id'] if model_id is None: del query_params['model_id'] if min_date is not None: if date_field is None: query_params['_concordia_created_at'] = {'$gte': min_date} else: query_params[date_field] = {'$gte': min_date} result = self.mdb[val_type].find(query_params) # Handle the case where we have multiple predictions from the same row, or any other instances where we have multiple results for the same set of ids if isinstance(result, dict): result = [result] elif not isinstance(result, list): result = list(result) return result def check_row_id(self, val, row_id, idx=None): if row_id is None: calculated_row_id = val.get(self.default_row_id_field, None) if calculated_row_id is None: print('You must pass in a row_id for anything that gets saved to the db.') print('This input is missing a value for "row_id"') if self.default_row_id_field is not None: print('This input is also missing a value for "{}", the default_row_id_field'.format(self.default_row_id_field)) raise(ValueError('Missing "row_id" field')) else: row_id = calculated_row_id assert row_id is not None val['row_id'] = row_id return val def check_model_id(self, val, model_id, idx=None): if isinstance(model_id, list): model_id = model_id[idx] if model_id is None: calculated_model_id = val.get('model_id', None) if calculated_model_id is None: print('You must pass in a model_id for anything that gets saved to the db.') print('This input is missing a value for "model_id"') raise(ValueError('Missing "model_id" field')) else: model_id = calculated_model_id assert model_id is not None val['model_id'] = model_id return val def _insert_df_into_db(self, df, val_type, row_id, model_id): df_cols = set(df.columns) if 'row_id' not in df_cols: if row_id is not None: df['row_id'] = row_id else: if self.default_row_id_field not in df_cols: print('You must pass in a row_id for anything that gets saved to the db.') print('This input is missing a value for "row_id"') if self.default_row_id_field is not None: print('This input is also missing a value for "{}", the default_row_id_field'.format(self.default_row_id_field)) raise(ValueError('Missing "row_id" field')) if 'model_id' not in df_cols: if model_id is not None: df['model_id'] = model_id else: print('You must pass in a model_id for anything that gets saved to the db.') print('This input is missing a value for "model_id"') raise(ValueError('Missing "model_id" field')) chunk_min_idx = 0 chunk_size = 1000 while chunk_min_idx < df.shape[0]: max_idx = min(df.shape[0], chunk_min_idx + chunk_size) df_chunk = df.iloc[chunk_min_idx: max_idx] df_chunk = df_chunk.to_dict('records') self.mdb[val_type].insert_many(df_chunk) del df_chunk chunk_min_idx += chunk_size def insert_into_persistent_db(self, val, val_type, row_id=None, model_id=None): val = val.copy() if '_id' in val: del val['_id'] if '_id_' in val: del val['_id_'] val['_concordia_created_at'] = datetime.datetime.utcnow() if isinstance(val, dict): val = self.check_row_id(val=val, row_id=row_id) val = self.check_model_id(val=val, model_id=model_id) for k, v in val.items(): if isinstance(v, np.generic): val[k] = np.asscalar(v) self.mdb[val_type].insert_one(val) else: self._insert_df_into_db(df=val, val_type=val_type, row_id=row_id, model_id=model_id) return self def make_redis_model_key(self, model_id): return '_concordia_{}_{}'.format(model_id, 'model') def _get_model(self, model_id): redis_key_model = self.make_redis_model_key(model_id) redis_result = self.rdb.get(redis_key_model) if redis_result is 'None' or redis_result is None: # Try to get it from MongoDB mdb_result = self.retrieve_from_persistent_db(val_type='model_info', row_id=None, model_id=model_id) if mdb_result is None or len(mdb_result) == 0: print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') print('We could not find a corresponding model for model_id {}'.format(model_id)) print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') error_string = 'We could not find a corresponding model for model_id {}'.format(model_id) raise(ValueError(error_string)) else: model = mdb_result[0]['model'] self.rdb.set(redis_key_model, model) redis_result = self.rdb.get(redis_key_model) redis_result = dill.loads(codecs.decode(redis_result, 'base64')) return redis_result def _get_features_to_save(self, model_id): redis_key = self.make_redis_key_features(model_id) redis_result = self.rdb.get(redis_key) if redis_result is None or redis_result is 'None': mdb_result = self.retrieve_from_persistent_db(val_type='model_info', row_id=None, model_id=model_id) if mdb_result is None or len(mdb_result) == 0: return 'all' else: try: features = mdb_result[0]['features_to_save'] except KeyError: features = json.dumps('all') self.rdb.set(redis_key, features) redis_result = self.rdb.get(redis_key) if isinstance(redis_result, bytes): redis_result = redis_result.decode('utf-8') redis_result = json.loads(redis_result) return redis_result def make_redis_key_features(self, model_id): return '_concordia_{}_{}'.format(model_id, 'features_to_save') # This can handle both individual dictionaries and Pandas DataFrames as inputs def add_data_and_predictions(self, model_id, features, predictions, row_ids, actuals=None): if not isinstance(features, pd.DataFrame): print('Training features must be a pandas DataFrame, not a {}'.format(type(features))) raise(TypeError('Training features must be a pandas DataFrame')) features = features.copy() features['row_id'] = row_ids features['model_id'] = model_id features_to_save = self._get_features_to_save(model_id=model_id) concordia_features_to_save = ['row_id', 'model_id'] if features_to_save == 'all': features_to_save = list(features.columns) else: features_to_save = features_to_save + concordia_features_to_save prediction_docs = [] for idx, pred in enumerate(predictions): if type(pred) not in self.valid_prediction_types: pred = list(pred) pred_doc = { 'prediction': pred , 'row_id': row_ids.iloc[idx] , 'model_id': model_id } prediction_docs.append(pred_doc) predictions_df =
pd.DataFrame(prediction_docs)
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm class TestDataFrameInterpolate: def test_interpolate_inplace(self, frame_or_series, using_array_manager, request): # GH#44749 if using_array_manager and frame_or_series is DataFrame: mark = pytest.mark.xfail(reason=".values-based in-place check is invalid") request.node.add_marker(mark) obj = frame_or_series([1, np.nan, 2]) orig = obj.values obj.interpolate(inplace=True) expected = frame_or_series([1, 1.5, 2]) tm.assert_equal(obj, expected) # check we operated *actually* inplace assert np.shares_memory(orig, obj.values) assert orig.squeeze()[1] == 1.5 def test_interp_basic(self): df = DataFrame( { "A": [1, 2, np.nan, 4], "B": [1, 4, 9, np.nan], "C": [1, 2, 3, 5], "D": list("abcd"), } ) expected = DataFrame( { "A": [1.0, 2.0, 3.0, 4.0], "B": [1.0, 4.0, 9.0, 9.0], "C": [1, 2, 3, 5], "D": list("abcd"), } ) result = df.interpolate() tm.assert_frame_equal(result, expected) result = df.set_index("C").interpolate() expected = df.set_index("C") expected.loc[3, "A"] = 3 expected.loc[5, "B"] = 9 tm.assert_frame_equal(result, expected) def test_interp_empty(self): # https://github.com/pandas-dev/pandas/issues/35598 df = DataFrame() result = df.interpolate() assert result is not df expected = df
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # # Make the master table import os import sys import pybedtools as pbt import pandas as pd import numpy as np import subprocess as sp import json os.chdir('/mnt/BioHome/jreyna/jreyna/projects/dchallenge/') pbt.set_bedtools_path('/mnt/BioApps/bedtools/bin/') bgzip = '/mnt/BioApps/tabix/tabix-0.2.6/bgzip' tabix = '/mnt/BioApps/tabix/tabix-0.2.6/tabix' bedpe_6cols = ['chrA', 'startA', 'endA', 'chrB', 'startB', 'endB'] bedpe_10cols = ['chrA', 'startA', 'endA', 'chrB', 'startB', 'endB', 'name', 'score', 'strand1', 'strand2'] ## default values for the command line #sys.argv = [0] * 8 #sys.argv[1] = 'results/main/2021_Nikhil_eQTL/Results/Colocalization/T1D_34012112_Gaulton/' #sys.argv[1] += 'BLUEPRINT_eQTL_Monocyte/FINAL_Summary_Coloc_Gene_SNP_Pairs.bed' #sys.argv[2] = 'results/refs/ensembl/gencode.v19.annotation.bed' #sys.argv[3] = 'results/main/2021_Nikhil_eQTL/Data/FitHiChIP_Loops/CM/FitHiChIP_L/FitHiChIP.interactions_FitHiC_Q0.01.bed' #sys.argv[4] = 'results/refs/spp/SPP_D-Challenge_networks.xlsx' #sys.argv[5] = 'results/refs/hg19/hg19.chrom.sizes' #sys.argv[6] = 'results/main/2021_Nikhil_eQTL/Data/eqtl_sqtl_summ_stats/BLUEPRINT_eQTL/Monocyte.txt.gz' #sys.argv[7] = 'results/main/loop_analysis/washU/' # parsing the commandline arguments coloc_fn = sys.argv[1] genes_fn = sys.argv[2] loop_fn = sys.argv[3] spp_fn = sys.argv[4] gs_fn = sys.argv[5] eqtl_fn = sys.argv[6] outdir = sys.argv[7] # setting the output file names os.makedirs(outdir, exist_ok=True) # ## Load the colocalization data # load the colocalization data coloc = pd.read_table(coloc_fn) # extract the most significant according the H4 coloc_sig_df = coloc[coloc['pp_H4_Coloc_Summary'] > 0.75] coloc_sig_df.rename(columns={'pos': 'end'}, inplace=True) coloc_sig_df.loc[:, 'start'] = coloc_sig_df.loc[:, 'end'] - 1 coloc_sig_full = coloc_sig_df.copy(deep=True) coloc_sig_df = coloc_sig_df[['chr', 'start', 'end', 'rs_id', 'variant_id']] coloc_sig_df = coloc_sig_df.loc[~coloc_sig_df.duplicated(subset='rs_id'),] coloc_sig_pbt = pbt.BedTool.from_dataframe(coloc_sig_df.iloc[:, 0:4]).sort() #csnp_slop_pbt = coloc_sig_pbt.slop(b=500000, g=gs_fn) # ## Load the gene data # load the gencode coords cols = ['chrom', 'start', 'end', 'strand', 'type', 'gene_id', 'gene_name'] gencode = pd.read_table(genes_fn, header=None, names=cols) # extract just the genes genes_df = gencode.loc[gencode.type.isin(['gene'])] genes_df = genes_df.loc[~genes_df.duplicated(subset='gene_id'), :] genes_df.loc[:, 'chrom'] = genes_df['chrom'].astype(str) genes_df = genes_df.iloc[:, [0,1,2,6,5]] genes_pbt = pbt.BedTool.from_dataframe(genes_df).sort() # ## Find the closest gene closest_gene = coloc_sig_pbt.closest(genes_pbt, d=True) closest_gene = closest_gene.to_dataframe() closest_gene = closest_gene.iloc[:, [3,7,8,9]] closest_gene.columns = ['rs_id', 'cls_gname', 'cls_id', 'cls_dist'] closest_gene.head() uniq_cls_gname = closest_gene.groupby(['rs_id']).cls_gname.apply(lambda x: ','.join(x)) uniq_cls_ids = closest_gene.groupby(['rs_id']).cls_id.apply(lambda x: ','.join(x)) uniq_cls_dist = closest_gene.groupby(['rs_id']).cls_dist.apply(lambda x: ','.join([str(i) for i in x])) uniq_cls = pd.merge(uniq_cls_gname, uniq_cls_ids, left_index=True, right_index=True) uniq_cls =
pd.merge(uniq_cls, uniq_cls_dist, left_index=True, right_index=True)
pandas.merge
import numpy as np import os import seaborn as sns import pandas as pd import matplotlib.pyplot as plt from collections import defaultdict from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib import matplotlib.pyplot as plt def svd(M): u,s,vt = np.linalg.svd(M,full_matrices=False) V = vt.T S = np.diag(s) return np.dot(u[:,:2],np.dot(S[:2,:2],V[:,:2].T)) # def PCA(X,k=2): # mu = X.mean(axis=1) # C = np.dot(X.transpose(),X) / X.shape[0] - np.dot(mu.transpose(),mu) # w, v = np.linalg.eig(C) # idx = w.argsort()[::-1] # eigenVectors = v[:, idx] # return X @ eigenVectors[:,:k] def plot_pca_embedding(embedding,fname,labels): pca = PCA(n_components=2,) embedding_points = pca.fit_transform(embedding) x = embedding_points[:,0] y = embedding_points[:,1] new_x = [] new_y = [] z = [] for a,b,l in zip(x,y,labels): if l > 0: new_x.append(a) new_y.append(b) z.append(l) cmap = matplotlib.cm.get_cmap('viridis') z = np.log2(np.array(z)+1) normalize = matplotlib.colors.Normalize(vmin=min(z),vmax=max(z)) colors = [cmap(normalize(value)) for value in z] fig,ax = plt.subplots() ax.scatter(new_x,new_y,color=colors,s=1) cax,_ = matplotlib.colorbar.make_axes(ax) cbar = matplotlib.colorbar.ColorbarBase(cax,cmap=cmap,norm=normalize) plt.savefig(os.path.join(fname,'pca.png')) plt.clf() def plot_tsne_embedding(embedding,fname,labels): tsne = TSNE(n_components=2,init='pca') embedding_points = tsne.fit_transform(embedding) x = embedding_points[:,0] y = embedding_points[:,1] new_x = [] new_y = [] z = [] for a,b,l in zip(x,y,labels): if l > 0 : new_x.append(a) new_y.append(b) z.append(l) cmap = matplotlib.cm.get_cmap('viridis') z = np.log2(np.array(z)+1) normalize = matplotlib.colors.Normalize(vmin=min(z),vmax=max(z)) colors = [cmap(normalize(value)) for value in z] fig,ax = plt.subplots() ax.scatter(new_x,new_y,color=colors,s=1) cax,_ = matplotlib.colorbar.make_axes(ax) cbar = matplotlib.colorbar.ColorbarBase(cax,cmap=cmap,norm=normalize) plt.savefig(os.path.join(fname,'tsne.png')) plt.clf() def plot_density(pred,gold,density,seen_idxs,fname): gold_relation_length = defaultdict(lambda:0) tp = defaultdict(lambda:0) for p,g in zip(pred,gold): gold_relation_length[g] += 1 if p == g: tp[g] += 1 x = [] y = [] labels = [] for g in gold_relation_length: x.append(density[g]) y.append(tp[g]*1./gold_relation_length[g]) labels.append(1 if g in seen_idxs else 0) df =
pd.DataFrame()
pandas.DataFrame
""" General functions for plotting PV data """ import json from typing import List import numpy as np import pandas as pd import plotly.graph_objects as go from nowcasting_dataset.data_sources.gsp.eso import get_gsp_metadata_from_eso from nowcasting_dataset.data_sources.gsp.gsp_model import GSP from nowcasting_dataset.geospatial import osgb_to_lat_lon from plotly.subplots import make_subplots from nowcasting_utils.visualization.line import make_trace from nowcasting_utils.visualization.utils import make_buttons, make_slider WGS84_CRS = "EPSG:4326" def get_trace_centroid_gsp(gsp: GSP, example_index: int) -> go.Scatter: """Produce plot of centroid GSP""" y = gsp.power_normalized[example_index, :, 0] x = gsp.time[example_index] return make_trace(x, y, truth=True, name="GSP", color="Blue") def get_trace_all_gsps( gsp: GSP, example_index: int, plot_other_gsp: bool = False ) -> List[go.Scatter]: """Produce plot of centroid GSP""" traces = [] x = gsp.time[example_index] if plot_other_gsp: n_gsps = gsp.power_mw.shape[2] # make the lines a little bit see-through opacity = (1 / n_gsps) ** 0.25 for gsp_index in range(1, n_gsps): y = gsp.power_normalized[example_index, :, gsp_index] gsp_id = gsp.id[example_index, gsp_index].values truth = False if ~np.isnan(gsp_id): gsp_id = int(gsp_id) name = f"GSP {gsp_id}" traces.append( make_trace( x, y, truth=truth, name=name, color="Green", opacity=opacity, mode="lines" ) ) centroid_trace = get_trace_centroid_gsp(gsp=gsp, example_index=example_index) centroid_trace["legendrank"] = 1 traces.append(centroid_trace) return traces def get_traces_gsp_intensity(gsp: GSP, example_index: int): """Get traces of pv intenisty map""" time = gsp.time[example_index] traces = [] for t_index in range(len(time)): trace = get_trace_gsp_intensity_one_time_step( gsp=gsp, example_index=example_index, t_index=t_index ) traces.append(trace) return traces def get_trace_gsp_intensity_one_time_step(gsp: GSP, example_index: int, t_index: int): """Get trace of pv intensity map""" time = gsp.time[example_index] gsp_id = gsp.id[example_index, 0].values name = str(time[t_index].data) # get shape from eso gsp_shape = get_gsp_metadata_from_eso().to_crs("EPSG:4326") gsp_metadata = get_gsp_metadata_from_eso() # select first GSP system gsp_metadata = gsp_metadata[gsp_metadata["gsp_id"] == gsp_id] gsp_shape = gsp_shape[gsp_shape.RegionID.isin(gsp_metadata.region_id)] # add z axis for colour gsp_shape["Amount"] = gsp.power_normalized[example_index, t_index, 0].values # get json object shapes_dict = json.loads(gsp_shape.to_json()) trace = go.Choroplethmapbox( geojson=shapes_dict, locations=gsp_shape.index, z=gsp_shape.Amount, colorscale="Viridis", name=name, ) return trace def make_fig_of_animation_from_frames(traces, gsp: GSP, example_index: int): """Make animated fig form traces""" frames = [] for i, trace in enumerate(traces[1:]): frames.append(go.Frame(data=trace, name=f"frame{i+1}")) # make slider labels = [pd.to_datetime(time.data) for time in gsp.time[example_index]] sliders = make_slider(labels=labels) x = gsp.x_coords[example_index][gsp.x_coords[example_index] != 0].mean() y = gsp.y_coords[example_index][gsp.y_coords[example_index] != 0].mean() lat, lon = osgb_to_lat_lon(x=x, y=y) fig = go.Figure( data=traces[0], layout=go.Layout( title="Start Title", ), frames=frames, ) fig.update_layout(updatemenus=[make_buttons()]) fig.update_layout( mapbox_style="carto-positron", mapbox_zoom=8, mapbox_center={"lat": lat, "lon": lon} ) fig.update_layout(sliders=sliders) return fig def get_fig_gsp_combined(gsp: GSP, example_index: int): """ Create a combined plot 1. Plot the gsp intensity in time 2. Plot the gsp intensity with coords and animate in time """ traces_pv_intensity_in_time = get_trace_all_gsps(gsp=gsp, example_index=example_index) traces_pv_intensity_map = get_traces_gsp_intensity(gsp=gsp, example_index=example_index) x = gsp.x_coords[example_index][gsp.x_coords[example_index] != 0].mean() y = gsp.y_coords[example_index][gsp.y_coords[example_index] != 0].mean() lat, lon = osgb_to_lat_lon(x=x, y=y) fig = make_subplots( rows=1, cols=2, subplot_titles=("Map", "Time Series"), specs=[ [{"type": "choroplethmapbox"}, {"type": "xy"}], ], ) # add first animation plot fig.add_trace(trace=traces_pv_intensity_map[0], row=1, col=1) # add all time series plots for trace in traces_pv_intensity_in_time: fig.add_trace(trace, row=1, col=2) n_traces = len(fig.data) frames = [] static_traces = list(fig.data[1:]) for i, trace in enumerate(traces_pv_intensity_map): frames.append( dict(data=[trace] + static_traces, traces=list(range(n_traces)), name=f"frame{i}") ) # make slider labels = [
pd.to_datetime(time.data)
pandas.to_datetime
import pandas as pd import numpy as np import datetime class Durations(object): @classmethod def set(cls, X, extract_cols, dataset): print("... ... Durations") all_df = dataset["all_df"] # duration from first action to clickout dffac_df = all_df[["session_id", "timestamp", "timestamp_dt"]].groupby( "session_id").first().reset_index() dffac_df = dffac_df[["session_id", "timestamp_dt"]] dffac_df.columns = ["session_id", "first_timestamp_dt"] X = pd.merge(X, dffac_df, on="session_id", how="left") X["session_duration"] = X.apply(lambda x: (x.timestamp_dt - x.first_timestamp_dt).seconds, axis=1) extract_cols = extract_cols + ["session_duration"] del dffac_df # duration from last distination to clickout dflsc_df = all_df[["session_id", "_session_id", "timestamp", "timestamp_dt"]].groupby( "_session_id").first().reset_index() dflsc_df = dflsc_df[dflsc_df._session_id.isin(X._session_id)] dflsc_df = dflsc_df[["session_id", "timestamp_dt"]] dflsc_df.columns = ["session_id", "step_first_timestamp_dt"] X = pd.merge(X, dflsc_df, on="session_id", how="left") X["step_duration"] = X.apply(lambda x: (x.timestamp_dt - x.step_first_timestamp_dt).seconds, axis=1) extract_cols = extract_cols + ["step_duration"] del dflsc_df return (X, extract_cols) class JustClickout(object): @classmethod def set(cls, X, extract_cols): print("... ... JustClickout") # append current fillters def get_cf_features(x): sbp = 1 if "Sort by Price" in x.current_filters else 0 sbd = 1 if "Sort By Distance" in x.current_filters else 0 sbr = 1 if "Sort By Rating" in x.current_filters else 0 fod = 1 if "Focus on Distance" in x.current_filters else 0 fsr = 1 if "Focus on Rating" in x.current_filters else 0 bev = 1 if "Best Value" in x.current_filters else 0 return pd.Series({'cf_sbp': sbp , 'cf_sbd': sbd , 'cf_sbr': sbr , 'cf_fod': fod , 'cf_fsr': fsr , 'cf_bev': bev}) X["current_filters"] = X["current_filters"].fillna("") curf_df = X[["current_filters"]].apply(lambda x: get_cf_features(x), axis=1) X = pd.concat([X, curf_df], axis=1) extract_cols = extract_cols + list(curf_df.columns) del curf_df return (X, extract_cols) class JustBeforeClickout(object): @classmethod def set(cls, X, dataset): print("... ... JustBeforeClickout") all_df = dataset["all_df"] # last action_type lasttype_df = all_df[["session_id", "action_type", "is_y"]].copy() lasttype_df["lat"] = lasttype_df["action_type"].shift(1) lasttype_df["last_session_id"] = lasttype_df["session_id"].shift(1) lasttype_df = lasttype_df[lasttype_df.is_y == 1] lasttype_df = lasttype_df[lasttype_df.session_id == lasttype_df.last_session_id] lasttype_df = lasttype_df[["session_id", "lat"]] onehot_lat = pd.get_dummies(lasttype_df, columns=['lat']) X = pd.merge(X, onehot_lat, on="session_id", how="left") lat_cols = list(onehot_lat.columns) lat_cols.remove("session_id") for lat_col in lat_cols: X[lat_col] = X[lat_col].fillna(0) del lasttype_df del onehot_lat return X class Record2Impression(object): @classmethod def expand(cls, X, extract_cols, dataset): print("... ... Record2Impression") # create expanded X = X.reset_index() X["gid"] = X.index X["n_imps"] = X[["impressions"]].apply(lambda x: len(str(x.impressions).split("|")), axis=1) X["price_mean"] = X[["prices"]].apply(lambda x: np.mean(np.array(str(x.prices).split("|")).astype(int)), axis=1) X["price_std"] = X[["prices"]].apply(lambda x: np.std(np.array(str(x.prices).split("|")).astype(int)), axis=1) X["impression"] = X[["impressions"]].apply(lambda x: str(x.impressions).split("|"), axis=1) X["price"] = X[["prices"]].apply(lambda x: str(x.prices).split("|"), axis=1) X_impression = X[["gid", "impression"]].set_index('gid').impression.apply(pd.Series).stack().reset_index( level=0).rename(columns={0: 'impression'}) X_price = X[["gid", "price"]].set_index('gid').price.apply(pd.Series).stack().reset_index(level=0).rename( columns={0: 'price'}) X_position = X[["gid", "impression"]].set_index('gid').impression.apply( lambda x: pd.Series(range(len(x)))).stack().reset_index(level=0).rename(columns={0: 'position'}) X_expanded = pd.concat([X_impression, X_price], axis=1) X_expanded = pd.concat([X_expanded, X_position], axis=1) X_expanded.columns = ["gid", "impression", "gid2", "price", "gid3", "position"] X_expanded = X_expanded[["gid", "impression", "price", "position"]] # join expaned X = pd.merge(X_expanded, X[["gid", "n_imps", "price_mean", "price_std"] + extract_cols], on="gid", how="left") # to normalize position and price X["pos_rate"] = X["position"] / X["n_imps"] X["pos"] = X["position"] + 1 X["price_norm"] = (X["price"].astype(float) - X["price_mean"].astype(float)) / X["price_std"].astype(float) # join price_norm rank pnorm_rank_df = X[["session_id", "price_norm"]].copy() pnorm_rank_df = pnorm_rank_df[["session_id", "price_norm"]].groupby("session_id").rank(ascending=False) pnorm_rank_df.columns = ["price_norm_rank"] X = pd.concat([X, pnorm_rank_df], axis=1) del pnorm_rank_df # calc discount rate X["price"] = X["price"].astype(float) prices_df = X[["impression", "price"]].groupby("impression").agg({'price': np.mean}).reset_index() prices_df.columns = ["impression", "item_price_mean"] X = pd.merge(X, prices_df, on="impression", how="left") X["discount_rate"] = X["price"] / X["item_price_mean"] del prices_df # append some important props and other props with over 0.2 coverage sum_item_props_df = dataset["sum_item_props_df"] item_props = dataset["item_props"] prop_cols = ["pGood Rating" , "pVery Good Rating" , "pExcellent Rating" , "pSatisfactory Rating" , "p1 Star" , "p2 Star" , "p3 Star" , "p4 Star" , "p5 Star" , "pBusiness Centre" , "pBusiness Hotel" , "pConference Rooms"] c02over_prop_cols = sum_item_props_df[sum_item_props_df.coverage >= 0.2]["prop"].tolist() prop_cols = prop_cols + c02over_prop_cols prop_cols = list(set(prop_cols)) X = pd.merge(X, item_props[["item_id"] + prop_cols], left_on="impression", right_on="item_id", how="left") X[prop_cols] = X[prop_cols].fillna(0) return (X, extract_cols) class DecisionMakingProcess(object): @classmethod def detect(cls, X, dataset): print("... ... Decision Making Process") print("... ... ... Attention and Perceptual Encoding") print("... ... ... Information Acquisition and Evaluation") all_df = dataset["all_df"] # join pos stats" copos_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "reference", "impressions", "is_y"]].copy() copos_df = copos_df[copos_df.is_y == 0] copos_df["impression"] = copos_df[["impressions"]].apply(lambda x: str(x.impressions).split("|"), axis=1) copos_df["co_pos"] = copos_df[["impression", "reference"]].apply( lambda x: x.impression.index(x.reference) + 1 if x.reference in x.impression else 1, axis=1) copos_df_stats = copos_df[["session_id", "co_pos"]].groupby("session_id").agg( {'co_pos': [np.min, np.max, np.mean]}).reset_index() copos_df_stats.columns = ["session_id", "co_pos_min", "co_pos_max", "co_pos_mean"] X = pd.merge(X, copos_df_stats, on="session_id", how="left") X["co_pos_min"] = X["co_pos_min"].fillna(1) X["co_pos_mean"] = X["co_pos_mean"].fillna(1) X["co_pos_max"] = X["co_pos_max"].fillna(1) X["co_pos_min_diff"] = X["pos"] - X["co_pos_min"] X["co_pos_mean_diff"] = X["pos"] - X["co_pos_mean"] X["clickouted_pos_max_diff"] = X["co_pos_max"] - X["pos"] del copos_df del copos_df_stats # is_last and is_last_elapsed_time action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] lastref_df = all_df[["session_id", "action_type", "reference", "timestamp", "is_y"]].copy() lastref_df["is_target"] = 0 lastref_df.loc[lastref_df.is_y == 1, "is_target"] = 1 lastref_df = lastref_df[lastref_df.action_type.isin(action_types)] lastref_df["last_session_id"] = lastref_df["session_id"].shift(1) lastref_df["last_reference"] = lastref_df["reference"].shift(1) lastref_df["last_timestamp"] = lastref_df["timestamp"].shift(1) lastref_df = lastref_df[lastref_df.session_id == lastref_df.last_session_id] lastref_df = lastref_df[lastref_df.is_target == 1][["session_id", "last_reference", "last_timestamp"]] X = pd.merge(X, lastref_df, on="session_id", how="left") X[["last_reference"]] = X[["last_reference"]].fillna("-1") X[["last_timestamp"]] = X[["last_timestamp"]].fillna(-1) X["is_last"] = X[["impression", "last_reference"]].apply(lambda x: 1 if x.impression == x.last_reference else 0, axis=1) X["elapsed_time_between_is_last"] = X[["impression", "last_reference", "timestamp", "last_timestamp"]].apply( lambda x: int(x.timestamp) - int(x.last_timestamp) if x.impression == x.last_reference else np.nan, axis=1) lastdur_df = X[["session_id", "elapsed_time_between_is_last"]].copy() lastdur_df = lastdur_df.dropna(axis=0, how='any') X.drop("elapsed_time_between_is_last", axis=1, inplace=True) X = pd.merge(X, lastdur_df, on="session_id", how="left") del lastref_df del lastdur_df # join is_last_last lastref_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() lastref_df["last_last_session_id"] = lastref_df["session_id"].shift(2) lastref_df["last_last_reference"] = lastref_df["reference"].shift(2) lastref_df = lastref_df[lastref_df.is_y == 1] lastref_df = lastref_df[lastref_df.session_id == lastref_df.last_last_session_id] lastref_df = lastref_df[["session_id", "last_last_reference"]] lastref_df = lastref_df[~lastref_df.duplicated()] X = pd.merge(X, lastref_df, on="session_id", how="left") X[["last_last_reference"]] = X[["last_last_reference"]].fillna("-1") X["is_last_last"] = X[["impression", "last_last_reference"]].apply( lambda x: 1 if x.impression == x.last_last_reference else 0, axis=1) del lastref_df # elapsed next mean by item "it's kind of a future information." action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] isnext_df = all_df[["session_id", "action_type", "reference", "timestamp", "is_y"]].copy() isnext_df["next_session_id"] = isnext_df["session_id"].shift(-1) isnext_df["next_timestamp"] = isnext_df["timestamp"].shift(-1) isnext_df = isnext_df[isnext_df.session_id == isnext_df.next_session_id] isnext_df["elapsed_next"] = isnext_df["next_timestamp"] - isnext_df["timestamp"] isnext_df = isnext_df[isnext_df.action_type.isin(action_types)] isnext_df = isnext_df[isnext_df.is_y == 0] isnext_gp_df = isnext_df[["reference", "elapsed_next"]].groupby("reference").agg( {"elapsed_next": np.mean}).reset_index() isnext_gp_df.columns = ["impression", "next_elapsed_time"] X = pd.merge(X, isnext_gp_df, on="impression", how="left") del isnext_gp_df isnext_gp_df = isnext_df[isnext_df.action_type == "clickout item"][["reference", "elapsed_next"]].groupby( "reference").agg({"elapsed_next": np.mean}).reset_index() isnext_gp_df.columns = ["impression", "next_elapsed_time_byco"] X = pd.merge(X, isnext_gp_df, on="impression", how="left") del isnext_df del isnext_gp_df # clickouted item during session couted_df = all_df[["action_type", "session_id", "reference", "is_y"]].copy() couted_df = couted_df[couted_df.action_type == "clickout item"] couted_df = couted_df[couted_df.is_y == 0] # to prevent leakage couted_df = couted_df[["session_id", "reference"]] couted_df.columns = ["session_id", "impression"] couted_df = couted_df[~couted_df.duplicated()] couted_df["clickouted"] = 1 X = pd.merge(X, couted_df, on=["session_id", "impression"], how="left") X["clickouted"] = X["clickouted"].fillna(0) X["clickouted"] = X["clickouted"].astype(int) # diff between clickouted price mean co_price_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "reference", "prices", "impressions", "is_y"]].copy() co_price_df = co_price_df[co_price_df.is_y == 0] # to prevent leakage def get_price(reference, impressions, prices): imps = str(impressions).split("|") prs = str(prices).split("|") if reference in imps: return prs[imps.index(reference)] else: return 0 co_price_df["price"] = co_price_df.apply(lambda x: get_price(x.reference, x.impressions, x.prices), axis=1) co_price_df["price"] = co_price_df["price"].astype(float) co_price_df = co_price_df.groupby("session_id").agg({'price': np.mean}).reset_index() co_price_df.columns = ["session_id", "couted_price_mean"] X = pd.merge(X, co_price_df, on="session_id", how="left") X["couted_price_mean"] = X["couted_price_mean"].fillna(-1) X["clickouted_price_diff"] = X["price"].astype(float) / X["couted_price_mean"] X.loc[X.clickouted_price_diff < 0, "clickouted_price_diff"] = 0 del co_price_df # set two above displayed item and five below displayed item u_cols = [] def set_undert_the_clickouted_and_islast(X, target_col, nu=5): u_col = target_col + "_u" X[u_col] = X["session_id"] X.loc[X[target_col] != 1, u_col] = "" for u in [_ for _ in range(-2, nu + 1, 1) if _ != 0]: new_col = u_col + str(u).replace("-", "p") X[new_col] = X[u_col].shift(u) X[new_col] = X[new_col].fillna("") X.loc[X[new_col] == X["session_id"], new_col] = "1" X.loc[X[new_col] != "1", new_col] = 0 X.loc[X[new_col] == "1", new_col] = 1 u_cols.append(new_col) X.drop(u_col, axis=1, inplace=True) set_undert_the_clickouted_and_islast(X, "clickouted", 5) set_undert_the_clickouted_and_islast(X, "is_last", 5) # sum of number of above displayed item u_coted_cols = [col for col in u_cols if "clickouted" in col] u_islast_col = [col for col in u_cols if "is_last" in col] X["clickouted_sum"] = X[u_coted_cols].sum(axis=1) X["is_last_sum"] = X[u_islast_col].sum(axis=1) # step_elapsed_mean which represents velocity of user activities. selapsed_df = all_df[["session_id", "step", "timestamp", "timestamp_dt", "action_type", "reference"]].copy() selapsed_df["pre_timestamp"] = selapsed_df["timestamp"].shift(1) selapsed_df["pre_timestamp_dt"] = selapsed_df["timestamp_dt"].shift(1) selapsed_df["pre_session_id"] = selapsed_df["session_id"].shift(1) selapsed_df = selapsed_df[selapsed_df.session_id == selapsed_df.pre_session_id] selapsed_df["elapsed"] = selapsed_df["timestamp"] - selapsed_df["pre_timestamp"] selapsed_df = selapsed_df[["session_id", "elapsed"]] selapsed_df = selapsed_df[selapsed_df.elapsed.notna()] selapsed_df = selapsed_df[selapsed_df.elapsed > 0] selapsed_df = selapsed_df.groupby("session_id").agg({"elapsed": np.mean}).reset_index() selapsed_df.columns = ["session_id", "step_elapsed_mean"] X = pd.merge(X, selapsed_df, on="session_id", how="left") del selapsed_df # last duration all "is it same as is_last_elapsed_time?" lduration_all_df = all_df[["session_id", "action_type", "timestamp", "is_y"]].copy() lduration_all_df["pre_timestamp"] = lduration_all_df["timestamp"].shift(1) lduration_all_df["pre_session_id"] = lduration_all_df["session_id"].shift(1) lduration_all_df = lduration_all_df[lduration_all_df.session_id == lduration_all_df.pre_session_id] lduration_all_df["elapsed_time"] = lduration_all_df["timestamp"] - lduration_all_df["pre_timestamp"] lduration_all_df = lduration_all_df[lduration_all_df.is_y == 1] lduration_all_df = lduration_all_df[["session_id", "elapsed_time"]] X = pd.merge(X, lduration_all_df, on="session_id", how="left") del lduration_all_df # first action_type firsta_df = all_df[["session_id", "_session_id", "action_type", "is_y"]].copy() firsta_df = firsta_df[firsta_df.is_y == 0] # to prevent leakage firsta_df = firsta_df.groupby("_session_id").first().reset_index() firsta_df = firsta_df.groupby("session_id").last().reset_index() firsta_df.loc[firsta_df["action_type"] == "search for destination", "action_type"] = "fa_sfd" firsta_df.loc[firsta_df["action_type"] == "interaction item image", "action_type"] = "fa_iii" firsta_df.loc[firsta_df["action_type"] == "clickout item", "action_type"] = "fa_coi" firsta_df.loc[firsta_df["action_type"] == "search for item", "action_type"] = "fa_sfi" firsta_df.loc[firsta_df["action_type"] == "search for poi", "action_type"] = "fa_sfp" firsta_df.loc[firsta_df["action_type"] == "change of sort order", "action_type"] = "fa_coso" firsta_df.loc[firsta_df["action_type"] == "filter selection", "action_type"] = "fa_fis" firsta_df.loc[firsta_df["action_type"] == "interaction item info", "action_type"] = "fa_iiinfo" firsta_df.loc[firsta_df["action_type"] == "interaction item rating", "action_type"] = "fa_iirat" firsta_df.loc[firsta_df["action_type"] == "interaction item deals", "action_type"] = "fa_iidea" firsta_df = firsta_df[["session_id", "action_type"]] firsta_df.columns = ["session_id", "at"] onehot_firsta = pd.get_dummies(firsta_df, columns=['at']) firsta_cols = list(onehot_firsta.columns) firsta_cols.remove("session_id") X = pd.merge(X, onehot_firsta, on="session_id", how="left") for firsta_col in firsta_cols: X[firsta_col] = X[firsta_col].fillna(0) del firsta_df del onehot_firsta # price norm by item rating prop X["r6"] = 0 X["r7"] = 0 X["r8"] = 0 X["r9"] = 0 X.loc[X["pSatisfactory Rating"] == 1, "r6"] = 6 X.loc[X["pGood Rating"] == 1, "r7"] = 7 X.loc[X["pVery Good Rating"] == 1, "r8"] = 8 X.loc[X["pExcellent Rating"] == 1, "r9"] = 9 X["rating"] = X[["r6", "r7", "r8", "r9"]].apply( lambda x: np.mean(np.trim_zeros(np.array([x.r6, x.r7, x.r8, x.r9]))), axis=1) X["rating"] = X["rating"].fillna(-1) pns_df = X[["session_id", "rating", "price"]].groupby(["session_id", "rating"]).agg( {'price': [np.mean, np.std]}).reset_index() pns_df.columns = ["session_id", "rating", "r_price_mean", "r_price_std"] pns_df["r_price_std"] = pns_df["r_price_std"].fillna(1) X = pd.merge(X, pns_df, on=["session_id", "rating"], how="left") X["r_price_norm"] = (X["price"].astype(float) - X["r_price_mean"].astype(float)) / X["r_price_std"].astype( float) del pns_df # price norm by star X["star"] = -1 X.loc[X["p1 Star"] == 1, "star"] = 1 X.loc[X["p2 Star"] == 1, "star"] = 2 X.loc[X["p3 Star"] == 1, "star"] = 3 X.loc[X["p4 Star"] == 1, "star"] = 4 X.loc[X["p5 Star"] == 1, "star"] = 5 pns_df = X[["session_id", "star", "price"]].groupby(["session_id", "star"]).agg( {'price': [np.mean, np.std]}).reset_index() pns_df.columns = ["session_id", "star", "s_price_mean", "s_price_std"] pns_df["s_price_std"] = pns_df["s_price_std"].fillna(1) X = pd.merge(X, pns_df, on=["session_id", "star"], how="left") X["s_price_norm"] = (X["price"].astype(float) - X["s_price_mean"].astype(float)) / X["s_price_std"].astype( float) del pns_df return X class ByItem(object): @classmethod def set(cls, X, dataset): print("... ... ByItem") all_df = dataset["all_df"] # imps score impscore_df = dataset["impscore_df"] item_props = dataset["item_props"] X = pd.merge(X, impscore_df, on="impression", how="left") X["impsocre"] = X["impsocre"].fillna(0) # # append some important props and other props with over 0.2 coverage # sum_item_props_df = dataset["sum_item_props_df"] # prop_cols = ["pGood Rating" # , "pVery Good Rating" # , "pExcellent Rating" # , "pSatisfactory Rating" # , "p1 Star" # , "p2 Star" # , "p3 Star" # , "p4 Star" # , "p5 Star" # , "pBusiness Centre" # , "pBusiness Hotel" # , "pConference Rooms"] # c02over_prop_cols = sum_item_props_df[sum_item_props_df.coverage >= 0.2]["prop"].tolist() # prop_cols = prop_cols + c02over_prop_cols # prop_cols = list(set(prop_cols)) # X = pd.merge(X, item_props[["item_id"] + prop_cols], left_on="impression", right_on="item_id", how="left") # X[prop_cols] = X[prop_cols].fillna(0) # append item svd n_components=10 item_props_svd = dataset["item_props_svd"] prop_svd_cols = list(item_props_svd.columns) prop_svd_cols.remove("item_id") X = pd.merge(X, item_props_svd, left_on="impression", right_on="item_id", how="left") X[prop_svd_cols] = X[prop_svd_cols].fillna(0) # # price norm by item rating prop # X["r6"] = 0 # X["r7"] = 0 # X["r8"] = 0 # X["r9"] = 0 # X.loc[X["pSatisfactory Rating"] == 1, "r6"] = 6 # X.loc[X["pGood Rating"] == 1, "r7"] = 7 # X.loc[X["pVery Good Rating"] == 1, "r8"] = 8 # X.loc[X["pExcellent Rating"] == 1, "r9"] = 9 # X["rating"] = X[["r6", "r7", "r8", "r9"]].apply( # lambda x: np.mean(np.trim_zeros(np.array([x.r6, x.r7, x.r8, x.r9]))), axis=1) # X["rating"] = X["rating"].fillna(-1) # pns_df = X[["session_id", "rating", "price"]].groupby(["session_id", "rating"]).agg( # {'price': [np.mean, np.std]}).reset_index() # pns_df.columns = ["session_id", "rating", "r_price_mean", "r_price_std"] # pns_df["r_price_std"] = pns_df["r_price_std"].fillna(1) # X = pd.merge(X, pns_df, on=["session_id", "rating"], how="left") # X["r_price_norm"] = (X["price"].astype(float) - X["r_price_mean"].astype(float)) / X["r_price_std"].astype( # float) # del pns_df # # # price norm by star # X["star"] = -1 # X.loc[X["p1 Star"] == 1, "star"] = 1 # X.loc[X["p2 Star"] == 1, "star"] = 2 # X.loc[X["p3 Star"] == 1, "star"] = 3 # X.loc[X["p4 Star"] == 1, "star"] = 4 # X.loc[X["p5 Star"] == 1, "star"] = 5 # pns_df = X[["session_id", "star", "price"]].groupby(["session_id", "star"]).agg( # {'price': [np.mean, np.std]}).reset_index() # pns_df.columns = ["session_id", "star", "s_price_mean", "s_price_std"] # pns_df["s_price_std"] = pns_df["s_price_std"].fillna(1) # X = pd.merge(X, pns_df, on=["session_id", "star"], how="left") # X["s_price_norm"] = (X["price"].astype(float) - X["s_price_mean"].astype(float)) / X["s_price_std"].astype( # float) # del pns_df # item ctr ctrbyitem_df = all_df[all_df.action_type == "clickout item"][["session_id", "reference", "is_y"]].copy() ctrbyitem_df = ctrbyitem_df[ctrbyitem_df.is_y == 0] ref_df = ctrbyitem_df[["reference"]].groupby(["reference"]).size().reset_index() ref_df.columns = ["impression", "rcnt"] ref_df["ctrbyitem"] = ref_df["rcnt"].astype(float) / ref_df.shape[0] ref_df = ref_df[["impression", "ctrbyitem"]] X = pd.merge(X, ref_df, on="impression", how="left") X["ctrbyitem"] = X["ctrbyitem"].fillna(0) del ctrbyitem_df del ref_df # item ctr by city cr_tmp_df = all_df[all_df.action_type == "clickout item"].copy() cr_tmp_df = cr_tmp_df[cr_tmp_df.is_y == 0] # to prevent leakage city_df = cr_tmp_df[["city"]].groupby(["city"]).size().reset_index() city_df.columns = ["city", "ccnt"] cityref_df = cr_tmp_df[["city", "reference"]].groupby(["city", "reference"]).size().reset_index() cityref_df.columns = ["city", "impression", "rcnt"] cityref_df = pd.merge(cityref_df, city_df, on="city", how="left") cityref_df["ctrbycity"] = cityref_df["rcnt"].astype(float) / cityref_df["ccnt"].astype(float) cityref_df = cityref_df[["city", "impression", "ctrbycity"]] X = pd.merge(X, cityref_df, on=["city", "impression"], how="left") X["ctrbycity"] = X["ctrbycity"].fillna(0) del cr_tmp_df del city_df del cityref_df # item ctr by city rank ctrbycity_rank_df = X[["session_id", "ctrbycity"]].copy() ctrbycity_rank_df = ctrbycity_rank_df[["session_id", "ctrbycity"]].groupby("session_id").rank(ascending=False) ctrbycity_rank_df.columns = ["ctrbycity_rank"] X = pd.concat([X, ctrbycity_rank_df], axis=1) del ctrbycity_rank_df # bayes likelihood by item bayes_likelihood = dataset["bayes_likelihood"] X["rlr"] = X["impression"].astype(str) + X["last_reference"].astype(str) def set_bayes_li(rlr): if rlr in bayes_likelihood: return bayes_likelihood[rlr] return 0.0 X["bayes_li"] = X[["rlr"]].apply(lambda x: set_bayes_li(x.rlr), axis=1) # clickouted item 2 item during session v2v_counter = dataset["v2v_counter"] def extract_sv2v_counter(iids): v = {} for iid in iids: if iid in v2v_counter: for s in v2v_counter[iid]: if not s in v: v[s] = v2v_counter[iid][s] return v couted_df = all_df[["action_type", "session_id", "reference", "is_y"]].copy() couted_df = couted_df[couted_df.action_type == "clickout item"] couted_df = couted_df[couted_df.is_y == 0] # to prevent leakage couted_df = couted_df[["session_id", "reference"]] couted_df.columns = ["session_id", "impression"] couted_df = couted_df[~couted_df.duplicated()] couted_df["clickouted"] = 1 sv2v_df = couted_df.groupby("session_id").apply( lambda x: extract_sv2v_counter(list(x.impression))).reset_index() sv2v_df.columns = ["session_id", "sv2v"] X = pd.merge(X, sv2v_df, on="session_id", how="left") X["sv2v"] = X["sv2v"].fillna("{}") X["sv2v_score"] = X[["impression", "sv2v"]].apply( lambda x: x.sv2v[x.impression] if x.impression in x.sv2v else np.nan, axis=1) X.drop("sv2v", axis=1, inplace=True) sv2vs_stats = X.groupby("session_id").agg({"sv2v_score": [np.mean, np.std]}).reset_index() sv2vs_stats.columns = ["session_id", "sv2v_score_mean", "sv2v_score_std"] X = pd.merge(X, sv2vs_stats, on="session_id", how="left") X["sv2v_score_norm"] = X["sv2v_score"] - X["sv2v_score_mean"] / X["sv2v_score_std"] del couted_df del sv2v_df del sv2vs_stats # some action_types are already done by each item during each session couted_df = all_df[["action_type", "session_id", "reference"]].copy() action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item"] ated_cols = ["iired" , "iifed" , "iiied" , "iided" , "sfied"] for i, action_type in enumerate(action_types): at_df = couted_df[couted_df.action_type == action_type].copy() at_df = at_df[["session_id", "reference"]] at_df.columns = ["session_id", "impression"] at_df = at_df[~at_df.duplicated()] at_df[ated_cols[i]] = 1 X = pd.merge(X, at_df, on=["session_id", "impression"], how="left") X[ated_cols[i]] = X[ated_cols[i]].fillna(0) X[ated_cols[i]] = X[ated_cols[i]].astype(int) del at_df del couted_df # dropout rate by each item during each session dropout_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() dropout_df = dropout_df[dropout_df.action_type.isin(["interaction item image", "clickout item"])] dropout_df = dropout_df[dropout_df.is_y == 0] # to prevent leakage dropout_df.loc[dropout_df["action_type"] == "interaction item image", "iii"] = 1 dropout_df["iii"] = dropout_df["iii"].fillna(0) dropout_df.loc[dropout_df["action_type"] == "clickout item", "cko"] = 1 dropout_df["cko"] = dropout_df["cko"].fillna(0) def is_dropout(iii, cko): if iii != 0 and cko != 0: return 0 elif iii != 0 and cko == 0: return 1 else: return -1 dropout_df = dropout_df[["session_id", "reference", "iii", "cko"]].groupby(["session_id", "reference"]).apply( lambda x: is_dropout(np.sum(x.iii), np.sum(x.cko))).reset_index() dropout_df.columns = ["session_id", "reference", "dropout"] dropout_df = dropout_df[dropout_df != -1] dropout_df = dropout_df[["reference", "dropout"]].groupby("reference").apply( lambda x: np.sum(x.dropout).astype(float) / len(x.dropout)).reset_index() dropout_df.columns = ["impression", "dropout_rate"] X = pd.merge(X, dropout_df, on="impression", how="left") del dropout_df # dropout rate by each item during all sessions action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item"] dropout_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() dropout_df = dropout_df[dropout_df.action_type.isin(action_types + ["clickout item"])] dropout_df = dropout_df[dropout_df.is_y == 0] # to prevent leakage dropout_df.loc[dropout_df.action_type.isin(action_types), "iii"] = 1 dropout_df["iii"] = dropout_df["iii"].fillna(0) dropout_df.loc[dropout_df["action_type"] == "clickout item", "cko"] = 1 dropout_df["cko"] = dropout_df["cko"].fillna(0) dropout_df = dropout_df[["session_id", "reference", "iii", "cko"]].groupby(["session_id", "reference"]).apply( lambda x: is_dropout(np.sum(x.iii), np.sum(x.cko))).reset_index() dropout_df.columns = ["session_id", "reference", "dropout"] dropout_df = dropout_df[dropout_df != -1] dropout_df = dropout_df[["reference", "dropout"]].groupby("reference").apply( lambda x: np.sum(x.dropout).astype(float) / len(x.dropout)).reset_index() dropout_df.columns = ["impression", "all_dropout_rate"] X = pd.merge(X, dropout_df, on="impression", how="left") del dropout_df # action_type rate by each item action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] atstats_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() atstats_df = atstats_df[atstats_df.action_type.isin(action_types)] atstats_df = atstats_df[atstats_df.is_y == 0] # to prevent leakage atstats_df = atstats_df[["reference", "action_type"]].groupby(["reference", "action_type"]).size().reset_index() atstats_df.columns = ["reference", "action_type", "at_cnt"] atstats_refcnt_df = atstats_df[["reference", "at_cnt"]].groupby("reference").sum().reset_index() atstats_refcnt_df.columns = ["reference", "rf_cnt"] atstats_df = pd.merge(atstats_df, atstats_refcnt_df, on="reference", how="left") atstats_df["at_rate"] = atstats_df["at_cnt"].astype(float) / atstats_df["rf_cnt"] atstats_df = atstats_df.pivot(index='reference', columns='action_type', values='at_rate').reset_index() at_rate_cols = ["co_at_rate", "iid_at_rate", "iii_at_rate", "iif_at_rate", "iir_at_rate", "sfi_at_rate"] atstats_df.columns = ["impression"] + at_rate_cols atstats_df = atstats_df.fillna(0) X = pd.merge(X, atstats_df, on="impression", how="left") for at_rate_col in at_rate_cols: X[at_rate_col] = X[at_rate_col].fillna(0) del atstats_df # action_type rate in-session rank by each item at_rate_cols = ["co_at_rate" , "iid_at_rate" , "iii_at_rate" , "iif_at_rate" , "iir_at_rate" , "sfi_at_rate"] at_rank_cols = [] for at_rate_col in at_rate_cols: at_rank_col = at_rate_col + "_rank" at_rank_cols.append(at_rank_col) at_rank_df = X[["session_id", at_rate_col]].copy() at_rank_df = at_rank_df[["session_id", at_rate_col]].groupby("session_id").rank(ascending=False) at_rank_df.columns = [at_rank_col] X = pd.concat([X, at_rank_df], axis=1) del at_rank_df # reference_elapsed_mean and by action_type action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] relapsed_df = all_df[ ["session_id", "step", "timestamp", "timestamp_dt", "action_type", "reference", "is_y"]].copy() relapsed_df["pre_timestamp"] = relapsed_df["timestamp"].shift(1) relapsed_df["pre_timestamp_dt"] = relapsed_df["timestamp_dt"].shift(1) relapsed_df["pre_session_id"] = relapsed_df["session_id"].shift(1) relapsed_df = relapsed_df[relapsed_df.session_id == relapsed_df.pre_session_id] relapsed_df["elapsed"] = relapsed_df["timestamp"] - relapsed_df["pre_timestamp"] relapsed_df = relapsed_df[relapsed_df.action_type.isin(action_types)] relapsed_df = relapsed_df[relapsed_df.is_y == 0] # to prevent leakage relapsed_df = relapsed_df[relapsed_df.elapsed.notna()] relapsed_df = relapsed_df[relapsed_df.elapsed > 0] r_relapsed_df = relapsed_df[["reference", "elapsed"]].groupby("reference").agg( {"elapsed": np.mean}).reset_index() r_relapsed_rate_cols = ["ref_elapsed_mean"] r_relapsed_df.columns = ["impression"] + r_relapsed_rate_cols a_relapsed_df = relapsed_df[["reference", "action_type", "elapsed"]].groupby(["reference", "action_type"]).agg( {"elapsed": np.mean}).reset_index() a_relapsed_df.columns = ["reference", "action_type", "at_elapsed_mean"] a_relapsed_df = a_relapsed_df.pivot(index='reference', columns='action_type', values='at_elapsed_mean').reset_index() a_relapsed_rate_cols = ["co_ref_elapsed_mean", "iid_ref_elapsed_mean", "iii_ref_elapsed_mean", "iif_ref_elapsed_mean", "iir_ref_elapsed_mean", "sfi_ref_elapsed_mean"] a_relapsed_df.columns = ["impression"] + a_relapsed_rate_cols X = pd.merge(X, r_relapsed_df, on="impression", how="left") X = pd.merge(X, a_relapsed_df, on="impression", how="left") del relapsed_df del r_relapsed_df del a_relapsed_df # tsh "time split by hour" item ctr tsh_df = all_df[all_df.action_type == "clickout item"][ ["session_id", "action_type", "reference", "timestamp_dt", "is_y"]].copy() tsh_df["tsh24"] = -1 X["tsh24"] = -1 ts_min = tsh_df["timestamp_dt"].min() ts_max = tsh_df["timestamp_dt"].max() def set_tscol(hours): tscol = "tsh" + str(hours) ts_start = ts_min ts_end = ts_start + datetime.timedelta(hours=hours) ts_bin = 1 while True: tsh_df.loc[(tsh_df.timestamp_dt >= ts_start) & (tsh_df.timestamp_dt < ts_end), tscol] = ts_bin X.loc[(X.timestamp_dt >= ts_start) & (X.timestamp_dt < ts_end), tscol] = ts_bin ts_start = ts_end ts_end = ts_start + datetime.timedelta(hours=hours) if ts_start > ts_max: break ts_bin += 1 set_tscol(24) tsh_df = tsh_df[tsh_df.is_y == 0] tsh24_df = tsh_df[["tsh24"]].groupby(["tsh24"]).size().reset_index() tsh24_df.columns = ["tsh24", "allcnt"] tsh24ref_df = tsh_df[["tsh24", "reference"]].groupby(["tsh24", "reference"]).size().reset_index() tsh24ref_df.columns = ["tsh24", "impression", "rcnt"] tsh24ref_df = pd.merge(tsh24ref_df, tsh24_df, on="tsh24", how="left") tsh24ref_df["ctrbytsh24"] = tsh24ref_df["rcnt"].astype(float) / tsh24ref_df["allcnt"].astype(float) tsh24ref_df = tsh24ref_df[["tsh24", "impression", "ctrbytsh24"]] X = pd.merge(X, tsh24ref_df, on=["tsh24", "impression"], how="left") X["ctrbytsh24"] = X["ctrbytsh24"].fillna(0) del tsh_df del tsh24_df del tsh24ref_df # item ctr by some props ctrbyprops_df = all_df[all_df.action_type == "clickout item"][["session_id", "reference", "is_y"]].copy() ctrbyprops_df.columns = ["session_id", "item_id", "is_y"] star_cols = ["p1 Star", "p2 Star", "p3 Star", "p4 Star", "p5 Star"] rating_cols = ["pSatisfactory Rating", "pGood Rating", "pVery Good Rating", "pExcellent Rating"] ctrbyprops_df = pd.merge(ctrbyprops_df, item_props[["item_id"] + star_cols + rating_cols], on="item_id", how="left") ctrbyprops_df["star"] = -1 ctrbyprops_df.loc[ctrbyprops_df["p1 Star"] == 1, "star"] = 1 ctrbyprops_df.loc[ctrbyprops_df["p2 Star"] == 1, "star"] = 2 ctrbyprops_df.loc[ctrbyprops_df["p3 Star"] == 1, "star"] = 3 ctrbyprops_df.loc[ctrbyprops_df["p4 Star"] == 1, "star"] = 4 ctrbyprops_df.loc[ctrbyprops_df["p5 Star"] == 1, "star"] = 5 ctrbyprops_df["r6"] = 0 ctrbyprops_df["r7"] = 0 ctrbyprops_df["r8"] = 0 ctrbyprops_df["r9"] = 0 ctrbyprops_df.loc[ctrbyprops_df["pSatisfactory Rating"] == 1, "r6"] = 6 ctrbyprops_df.loc[ctrbyprops_df["pGood Rating"] == 1, "r7"] = 7 ctrbyprops_df.loc[ctrbyprops_df["pVery Good Rating"] == 1, "r8"] = 8 ctrbyprops_df.loc[ctrbyprops_df["pExcellent Rating"] == 1, "r9"] = 9 ctrbyprops_df["rating"] = ctrbyprops_df[["r6", "r7", "r8", "r9"]].apply( lambda x: np.mean(np.trim_zeros(np.array([x.r6, x.r7, x.r8, x.r9]))), axis=1) ctrbyprops_df["rating"] = ctrbyprops_df["rating"].fillna(-1) ctrbyprops_df["star_rating"] = "sr_" + ctrbyprops_df["star"].astype(str) + "_" + ctrbyprops_df["rating"].astype( str) ctrbyprops_df = ctrbyprops_df[["session_id", "star_rating", "item_id", "is_y"]] ctrbyprops_df = ctrbyprops_df[ctrbyprops_df.is_y == 0] # to prevent leakage ctrbyprops_df = ctrbyprops_df[["item_id", "star_rating"]] ctrbyprops_df.columns = ["impression", "star_rating"] prop_df = ctrbyprops_df[["star_rating"]].groupby(["star_rating"]).size().reset_index() prop_df.columns = ["star_rating", "allcnt"] propref_df = ctrbyprops_df[["star_rating", "impression"]].groupby( ["star_rating", "impression"]).size().reset_index() propref_df.columns = ["star_rating", "impression", "rcnt"] propref_df = pd.merge(propref_df, prop_df, on="star_rating", how="left") propref_df["ctrbyprops"] = propref_df["rcnt"].astype(float) / propref_df["allcnt"].astype(float) propref_df = propref_df[["star_rating", "impression", "ctrbyprops"]] X["star_rating"] = "sr_" + X["star"].astype(str) + "_" + X["rating"].astype(str) X = pd.merge(X, propref_df, on=["star_rating", "impression"], how="left") X["ctrbyprops"] = X["ctrbyprops"].fillna(0) del ctrbyprops_df del prop_df del propref_df # is no serach item action_types = ["clickout item"] is_nosi_df = all_df[["session_id", "action_type", "reference", "is_y"]].copy() is_nosi_df = is_nosi_df.groupby("session_id").first().reset_index() is_nosi_df = is_nosi_df[(is_nosi_df.action_type.isin(action_types)) & (is_nosi_df.is_y == 0)] is_nosi_df = is_nosi_df[["reference"]].groupby("reference").size().reset_index() is_nosi_df.columns = ["impression", "nosearch_cnt"] X = pd.merge(X, is_nosi_df, on="impression", how="left") X["nosearch_cnt"] = X["nosearch_cnt"].fillna(0) del is_nosi_df return X class BySession(object): @classmethod def set(cls, X, dataset): print("... ... BySession as Motivation") all_df = dataset["all_df"] # item ratio of appearance by each session def get_precnt_ratio(x): pre_references = str(x.pre_references).split("|") len_pre_ref = len(pre_references) if len_pre_ref != 0: return np.float(pre_references.count(x.impression)) / len_pre_ref return 0 preref_df = all_df[all_df.action_type != "clickout item"].groupby("session_id").apply( lambda x: "|".join([r for r in list(x.reference) if str.isnumeric(r)])).reset_index() preref_df.columns = ["session_id", "pre_references"] X = pd.merge(X, preref_df, on="session_id", how="left") X[["pre_references"]] = X[["pre_references"]].fillna("") X["precnt_ratio"] = X[["impression", "pre_references"]].apply(lambda x: get_precnt_ratio(x), axis=1) del preref_df # action_type ratio of appearance by each session atype_long_names = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] atype_short_names = ["interaction_item_rating_ratio" , "iif_ratio" , "iii_ratio" , "iid_ratio" , "sfi_ratio" , "co_ratio"] preref_df2 = all_df[all_df.action_type.isin(atype_long_names)][ ["session_id", "reference", "action_type", "is_y"]].copy() preref_df2 = preref_df2[preref_df2.is_y == 0] # to prevent leakage preref_df2 = preref_df2[["session_id", "reference", "action_type"]] preref_df3 = preref_df2[["session_id"]].groupby("session_id").size().reset_index() preref_df3.columns = ["session_id", "cnt"] preref_df2 = pd.get_dummies(preref_df2, columns=['action_type']) preref_df2 = preref_df2.groupby(["session_id", "reference"]).sum().reset_index() preref_df2.columns = ["session_id", "impression"] + atype_short_names preref_df2 = pd.merge(preref_df2, preref_df3, on="session_id", how="left") preref_df2[atype_short_names] = preref_df2[atype_short_names].astype(float) for atype_short_name in atype_short_names: preref_df2[atype_short_name] = preref_df2[atype_short_name] / preref_df2["cnt"] X = pd.merge(X, preref_df2, on=["session_id", "impression"], how="left") del preref_df2 del preref_df3 # # clickouted item 2 item during session # v2v_counter = dataset["v2v_counter"] # def extract_sv2v_counter(iids): # v = {} # for iid in iids: # if iid in v2v_counter: # for s in v2v_counter[iid]: # if not s in v: # v[s] = v2v_counter[iid][s] # return v # # couted_df = all_df[["action_type", "session_id", "reference", "is_y"]].copy() # couted_df = couted_df[couted_df.action_type == "clickout item"] # couted_df = couted_df[couted_df.is_y == 0] # to prevent leakage # couted_df = couted_df[["session_id", "reference"]] # couted_df.columns = ["session_id", "impression"] # couted_df = couted_df[~couted_df.duplicated()] # couted_df["clickouted"] = 1 # sv2v_df = couted_df.groupby("session_id").apply( # lambda x: extract_sv2v_counter(list(x.impression))).reset_index() # sv2v_df.columns = ["session_id", "sv2v"] # X = pd.merge(X, sv2v_df, on="session_id", how="left") # X["sv2v"] = X["sv2v"].fillna("{}") # X["sv2v_score"] = X[["impression", "sv2v"]].apply( # lambda x: x.sv2v[x.impression] if x.impression in x.sv2v else np.nan, axis=1) # X.drop("sv2v", axis=1, inplace=True) # sv2vs_stats = X.groupby("session_id").agg({"sv2v_score": [np.mean, np.std]}).reset_index() # sv2vs_stats.columns = ["session_id", "sv2v_score_mean", "sv2v_score_std"] # X = pd.merge(X, sv2vs_stats, on="session_id", how="left") # X["sv2v_score_norm"] = X["sv2v_score"] - X["sv2v_score_mean"] / X["sv2v_score_std"] # del couted_df # del sv2v_df # del sv2vs_stats # is zero interactions zeroit_df = all_df[["session_id"]].groupby("session_id").size().reset_index() zeroit_df.columns = ["session_id", "it_count"] zeroit_df["is_zeroit"] = zeroit_df[["it_count"]].apply(lambda x: 1 if x.it_count == 1 else 0, axis=1) X = pd.merge(X, zeroit_df, on="session_id", how="left") del zeroit_df # # first action_type # firsta_df = all_df[["session_id", "_session_id", "action_type", "is_y"]].copy() # firsta_df = firsta_df[firsta_df.is_y == 0] # to prevent leakage # firsta_df = firsta_df.groupby("_session_id").first().reset_index() # firsta_df = firsta_df.groupby("session_id").last().reset_index() # firsta_df.loc[firsta_df["action_type"] == "search for destination", "action_type"] = "fa_sfd" # firsta_df.loc[firsta_df["action_type"] == "interaction item image", "action_type"] = "fa_iii" # firsta_df.loc[firsta_df["action_type"] == "clickout item", "action_type"] = "fa_coi" # firsta_df.loc[firsta_df["action_type"] == "search for item", "action_type"] = "fa_sfi" # firsta_df.loc[firsta_df["action_type"] == "search for poi", "action_type"] = "fa_sfp" # firsta_df.loc[firsta_df["action_type"] == "change of sort order", "action_type"] = "fa_coso" # firsta_df.loc[firsta_df["action_type"] == "filter selection", "action_type"] = "fa_fis" # firsta_df.loc[firsta_df["action_type"] == "interaction item info", "action_type"] = "fa_iiinfo" # firsta_df.loc[firsta_df["action_type"] == "interaction item rating", "action_type"] = "fa_iirat" # firsta_df.loc[firsta_df["action_type"] == "interaction item deals", "action_type"] = "fa_iidea" # firsta_df = firsta_df[["session_id", "action_type"]] # firsta_df.columns = ["session_id", "at"] # onehot_firsta = pd.get_dummies(firsta_df, columns=['at']) # firsta_cols = list(onehot_firsta.columns) # firsta_cols.remove("session_id") # X = pd.merge(X, onehot_firsta, on="session_id", how="left") # for firsta_col in firsta_cols: # X[firsta_col] = X[firsta_col].fillna(0) # del firsta_df # del onehot_firsta # unique reference ratio during session uniqueref_df = all_df[["session_id", "reference", "action_type", "is_y"]].copy() action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] uniqueref_df = uniqueref_df[uniqueref_df.action_type.isin(action_types)] uniqueref_df = uniqueref_df[uniqueref_df.is_y == 0] # to prevent leakage uniqueref_df = uniqueref_df[["session_id", "reference"]].groupby("session_id").apply( lambda x: len(set(list(x.reference))) / len(list(x.reference))).reset_index() uniqueref_df.columns = ["session_id", "uniqueref_ratio"] X = pd.merge(X, uniqueref_df, on="session_id", how="left") del uniqueref_df # number of action_types during session action_types = ["interaction item rating" , "interaction item info" , "interaction item image" , "interaction item deals" , "search for item" , "clickout item"] atcnt_cols = ["iir_cnt" , "iif_cnt" , "iii_cnt" , "iid_cnt" , "sfi_cnt" , "co_cnt"] cocnt_df = all_df[all_df.action_type.isin(action_types)][["session_id", "action_type", "is_y"]].copy() cocnt_df = cocnt_df[cocnt_df.is_y == 0] # to prevent leakage for i, action_type in enumerate(action_types): cnt_df = cocnt_df[cocnt_df.action_type == action_type][["session_id"]].copy() cnt_df = cnt_df[["session_id"]].groupby("session_id").size().reset_index() cnt_df.columns = ["session_id", atcnt_cols[i]] X = pd.merge(X, cnt_df, on="session_id", how="left") X[atcnt_cols[i]] = X[atcnt_cols[i]].fillna(0) X[atcnt_cols[i]] = X[atcnt_cols[i]].astype(int) del cnt_df del cocnt_df # # last duration all "is it same as is_last_elapsed_time?" # lduration_all_df = all_df[["session_id", "action_type", "timestamp", "is_y"]].copy() # lduration_all_df["pre_timestamp"] = lduration_all_df["timestamp"].shift(1) # lduration_all_df["pre_session_id"] = lduration_all_df["session_id"].shift(1) # lduration_all_df = lduration_all_df[lduration_all_df.session_id == lduration_all_df.pre_session_id] # lduration_all_df["elapsed_time"] = lduration_all_df["timestamp"] - lduration_all_df["pre_timestamp"] # lduration_all_df = lduration_all_df[lduration_all_df.is_y == 1] # lduration_all_df = lduration_all_df[["session_id", "elapsed_time"]] # X = pd.merge(X, lduration_all_df, on="session_id", how="left") # del lduration_all_df # click out cnt by all and to summarize by session") cocntbyss_df = all_df[(all_df.action_type == "clickout item") & (all_df.is_y == 0)][["reference"]].copy() cocnt_df = cocntbyss_df.groupby(["reference"]).size().reset_index() cocnt_df.columns = ["impression", "cocntall"] X = pd.merge(X, cocnt_df, on="impression", how="left") X["cocntall"] = X["cocntall"].fillna(0) cocntbyday_stats_df = X[["session_id", "cocntall"]].groupby("session_id").agg( {'cocntall': [np.mean, np.std]}).reset_index() cocntbyday_stats_df.columns = ["session_id", "cocntall_mean", "cocntall_std"] X = pd.merge(X, cocntbyday_stats_df, on="session_id", how="left") X["cocntall_norm"] = (X["cocntall"] - X["cocntall_mean"]) / X["cocntall_std"] del cocntbyss_df del cocnt_df del cocntbyday_stats_df return X class EncodingForCategories(object): @classmethod def to_prob(cls, X, dataset): print("... ... EncodingForCategories") all_df = dataset["all_df"] # city prob city_df = all_df[["city"]].copy() city_vc_df = city_df["city"].value_counts().reset_index() city_vc_df.columns = ["city", "cnt"] city_vc_df["city_prob"] = city_vc_df["cnt"].astype(float) / city_df.shape[0] city_vc_df = city_vc_df[["city", "city_prob"]] X = pd.merge(X, city_vc_df, on="city", how="left") del city_df del city_vc_df # platform prob plt_df = all_df[["platform"]].copy() plt_vc_df = plt_df["platform"].value_counts().reset_index() plt_vc_df.columns = ["platform", "cnt"] plt_vc_df["platform_prob"] = plt_vc_df["cnt"].astype(float) / plt_df.shape[0] plt_vc_df = plt_vc_df[["platform", "platform_prob"]] X =
pd.merge(X, plt_vc_df, on="platform", how="left")
pandas.merge
# ! /usr/bin/env python3 # -*- coding: utf-8 -*- # AUTHOR: <NAME>, EMBL # converter.py # To further usage, use manual supplied together with CLEMSite import numpy as np from sklearn.manifold import TSNE import pylab as Plot import pandas as pd import glob from os import listdir from os.path import isfile, join import os, shutil import seaborn as sns from tqdm import tqdm import matplotlib.patches as mpatches import holoviews as hv from holoviews import streams hv.extension('bokeh') import cv2 import time from skimage import data, exposure, img_as_float ############################################## LOADING DATA ############################################ ### Set here treatment names _treatments = ["COPB2", "WDR75", "DNM1", "COPG1", "C1S", "DENND4C", "IPO8", "SRSF1", "Neg9", "FAM177B", "ACTR3", "PTBP1", "DNM1", "NT5C", "PTBP1", "ARHGAP44", "Neg9", "ACTR3", "SRSF1", "C1S", "IPO8", "WDR75", "NT5C", "FAM177B", "COPB1", "ARHGAP44", "Neg9", "GPT", "KIF11", "GPT", "DENND4C", "AURKB"] _features = ['Metadata_BaseFileName', 'FileName_ColorImage', 'Location_Center_X', 'Location_Center_Y', 'Mean_Golgi_AreaShape_Center_X', 'Mean_Golgi_AreaShape_Center_Y', 'Mean_Nuclei_AreaShape_Solidity', 'Metadata_U', 'Metadata_V', 'Metadata_X', 'Metadata_Y', 'ImageQuality_PowerLogLogSlope_Dna', 'Intensity_IntegratedIntensity_GolgiBGCorr', 'Mean_Nuclei_Math_CV', 'Math_Blobness', 'Math_Diffuseness', 'Children_Golgi_Count', 'Mean_MaxAreaGolgi_AreaShape_FormFactor'] treatment_column = 'Gene' treatment_index = 'Metadata_Y' numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] ######################################################################################################## def loadData(regenerate_crops=True, no_treatments=False, subfolder=None): """ regenerate_crops = rewrites crops. Put it to false to save computation time if you are reloading the data from a previous selection. no_treatment = if no treatments and there is a full population of cells. """ data_folder = os.getcwd() if subfolder: data_folder = os.path.join(data_folder, subfolder) df =
pd.DataFrame()
pandas.DataFrame
from typing import NoReturn, Dict, List, Iterator, Tuple import numpy as np import pandas as pd from qanom import utils from qanom.annotations.decode_encode_answers import Response, decode_response def normalize(lst): a = np.array(lst) return a / sum(a) def read_dir_of_csv(dir_path: str, prefix="", suffix="", sep=',') -> pd.DataFrame: """ Concatenate (all) csv files in directory into one DataFrame """ import os dfs, sections = zip(*[(read_csv(os.path.join(dir_path, fn), sep=sep), fn.rstrip(".csv")) for fn in os.listdir(dir_path) if fn.endswith(suffix+".csv") and fn.startswith(prefix)]) return pd.concat(dfs, ignore_index=True, keys=sections, sort=False) def read_dir_of_annot_csv(dir_path: str, prefix="", suffix="") -> pd.DataFrame: """ Concatenate (all) csv files in directory into one DataFrame """ import os dfs, sections = zip(*[(read_annot_csv(os.path.join(dir_path, fn)), fn.rstrip(".csv")) for fn in os.listdir(dir_path) if fn.endswith(suffix+".csv") and fn.startswith(prefix)]) return pd.concat(dfs, ignore_index=True, keys=sections, sort=False) def read_csv(file_path: str, sep=',') -> pd.DataFrame: try: df =
pd.read_csv(file_path, sep=sep)
pandas.read_csv
#CSTAT+ A GPU-accelerated spatial pattern analysis algorithm for high-resolution 2D/3D hydrologic connectivity using array vectorization and convolutional neural network #Author: <NAME>, <NAME> #Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907 USA. #Email: <EMAIL>; Alternative: <EMAIL> #This is the omnidirectional version: CSTAT+/OMNI import os from osgeo import gdal import numpy as np import copy as cp from numpy import genfromtxt as gft from scipy.ndimage.measurements import label from itertools import combinations_with_replacement,product from mxnet import nd,gpu from timeit import default_timer as timer import pandas as pd #Binarize pattern def prep(expe0,threshold,NoData): #Provide threshold for High/Low, usually the depth of shallow sheetflow expe1=cp.deepcopy(expe0) expe2=cp.deepcopy(expe0) expe1[(expe1>=threshold)]=1 expe1[(expe1<threshold)]=0 expe2[(expe2==NoData)]=-1 expe2[(expe2>0)]=0 connection_structure = np.array([[1,1,1],[1,1,1],[1,1,1]]) expela, num_features =label (expe1,structure=connection_structure) expe3=expe2+expela return (expe3) def itercontrol(regions,k,bins,dibins,dibins4,binnum): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin co0=nd.zeros(binnum-1,gpu(0),dtype="float32") codi0=nd.zeros((4,binnum-1),gpu(0),dtype="float32") count0=nd.zeros(binnum-1,gpu(0),dtype="float32") count4=nd.zeros((4,binnum-1),gpu(0),dtype="float32") co4=nd.zeros((4,binnum-1),gpu(0),dtype="float32") bins=nd.array(bins,gpu(0)) dibins=nd.array(dibins,gpu(0)) dibins4=nd.array(dibins4,gpu(0)) if k==2: #Create segment index for the input array to meet the memory requirement imax=list(range(int(regions.shape[0]/broadcdp)+(regions.shape[0]%broadcdp!=0))) #Combinations with repeated indicies iterator=list(combinations_with_replacement(imax,2)) for i in iterator: if i[0]==i[1]: vout=distanceAA2(regions,i,binnum,dibins,dibins4) co0+=vout[0] codi0+=vout[1] count0+=vout[2] co4+=vout[3] count4+=vout[4] else: vout=distanceAA1(regions,i,binnum,dibins,dibins4) co0+=vout[0] codi0+=vout[1] count0+=vout[2] co4+=vout[3] count4+=vout[4] return (co0.asnumpy(),codi0.asnumpy(),count0.asnumpy(),co4.asnumpy(),count4.asnumpy()) elif k==1: #Create segment index for the input array to meet the memory requirement imax=list(range(int(regions.shape[0]/broadcdp)+(regions.shape[0]%broadcdp!=0))) #Combinations with repeated indicies iterator=list(combinations_with_replacement(imax,2)) for i in iterator: if i[0]==i[1]: count0+=distance2(regions,i,binnum,bins) else: count0+=distance1(regions,i,binnum,bins) return (count0.asnumpy()) else: #Unpack the tuple regions_high,regions_low=regions #Create segment index for the input array to meet the memory requirement imax_high=list(range(int(regions_high.shape[0]/broadcdp)+(regions_high.shape[0]%broadcdp!=0))) imax_low=list(range(int(regions_low.shape[0]/broadcdp)+(regions_low.shape[0]%broadcdp!=0))) #Combinations with repeated indicies iterator=list(product(imax_high,imax_low)) for i in iterator: count0+=distance11(regions_high,regions_low,i,binnum,bins) return (count0.asnumpy()) def distanceAA1(regions,i,binnum,dibins,dibins4): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin co0=nd.zeros(binnum-1,gpu(0),dtype="float32") codi0=nd.zeros((5,binnum-1),gpu(0),dtype="float32") count0=nd.zeros(binnum-1,gpu(0),dtype="float32") count4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") co4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2)) x1_x2=a1_b1[:,0] y1_y2=a1_b1[:,1] labels=nd.zeros(x1_x2.shape[0],gpu(0),dtype="float32") sdi0=(nd.degrees(nd.arctan((y1_y2)/(x1_x2)))+90).reshape((-1,)) ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) #Change 0 to 180 so it can apply sum of boolean mask without losing values sdi0=nd.where(condition=(sdi0==0),x=labels+180,y=sdi0) #Store sum of distances co0 and histogram of directions in each range bin for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) co0[p]+=nd.nansum(ldis*booleanmask) #Exclue values not in distance range bin sdi1=nd.where(condition=(booleanmask==0),x=labels-1,y=sdi0) for q in range (0,5): booleanmaskdi=nd.equal((sdi1>=dibins[q]),(sdi1<dibins[q+1])) codi0[q,p]+=nd.nansum(booleanmaskdi) for k in range (0,5): booleanmaskdi=nd.equal((sdi0>=dibins4[k]),(sdi0<dibins4[k+1])) ldis0=ldis*booleanmaskdi for l in range (0,binnum-1): booleanmask=nd.equal((ldis0>=bins[l]),(ldis0<bins[l+1])) count4[k,l]+=nd.nansum(booleanmask) co4[k,l]+=nd.nansum(ldis0*booleanmask) codi0[0,:]+=codi0[4,:] codi0=codi0[0:4,:] count4[0,:]+=count4[4,:] count4=count4[0:4,:] co4[0,:]+=co4[4,:] co4=co4[0:4,:] return(co0,codi0,count0,co4,count4) def distanceAA2(regions,i,binnum,dibins,dibins4): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin co0=nd.zeros(binnum-1,gpu(0),dtype="float32") codi0=nd.zeros((5,binnum-1),gpu(0),dtype="float32") count0=nd.zeros(binnum-1,gpu(0),dtype="float32") count4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") co4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") seed=nd.zeros((1,2),gpu(0)) #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) # print ("a1",a1,"b1",b1) for ii in range (a1.shape[0]-1): a1_b1=(nd.expand_dims(a1[ii].reshape((1,2)),axis=1)-b1[ii+1:,:]).reshape((a1[ii+1:,:].shape[0],2)) seed=nd.concat(seed,a1_b1,dim=0) if seed.shape[0]>1: x1_x2=seed[1:,0] y1_y2=seed[1:,1] labels=nd.zeros(x1_x2.shape[0],gpu(0),dtype="float32") sdi0=(nd.degrees(nd.arctan((y1_y2)/(x1_x2)))+90).reshape((-1,)) ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) #Change 0 to 180 so it can apply sum of boolean mask without losing values sdi0=nd.where(condition=(sdi0==0),x=labels+180,y=sdi0) #Store sum of distances co0 and histogram of directions in each range bin for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) co0[p]+=nd.nansum(ldis*booleanmask) #Exclue values not in distance range bin sdi1=nd.where(condition=(booleanmask==0),x=labels-1,y=sdi0) for q in range (0,5): booleanmaskdi=nd.equal((sdi1>=dibins[q]),(sdi1<dibins[q+1])) codi0[q,p]+=nd.nansum(booleanmaskdi) for k in range (0,5): booleanmaskdi=nd.equal((sdi0>=dibins4[k]),(sdi0<dibins4[k+1])) ldis0=ldis*booleanmaskdi for l in range (0,binnum-1): booleanmask=nd.equal((ldis0>=bins[l]),(ldis0<bins[l+1])) count4[k,l]+=nd.nansum(booleanmask) co4[k,l]+=nd.nansum(ldis0*booleanmask) codi0[0,:]+=codi0[4,:] codi0=codi0[0:4,:] count4[0,:]+=count4[4,:] count4=count4[0:4,:] co4[0,:]+=co4[4,:] co4=co4[0:4,:] return(co0,codi0,count0,co4,count4) #Full permutation distance computation def distance1(regions,i,binnum,bins): #Initiate empty array for storing the number of counted pairs in each distance range bin count0=nd.zeros(binnum-1,gpu(0),dtype="float32") #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2)) x1_x2=a1_b1[:,0] y1_y2=a1_b1[:,1] ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) return(count0) #Full permutation distance computation between different regions: high and low def distance11(regions_high,regions_low,i,binnum,bins): #Initiate empty array for storing the number of counted pairs in each distance range bin count0=nd.zeros(binnum-1,gpu(0),dtype="float32") #Calculate index coordinates and directions by chuncks a=regions_high[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions_high.shape[0]),:] b=regions_low[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions_low.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2)) x1_x2=a1_b1[:,0] y1_y2=a1_b1[:,1] ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) return(count0) #Full combination distance computation def distance2(regions,i,binnum,bins): #Initiate empty array for storing the number of counted pairs in each distance range bin count0=nd.zeros(binnum-1,gpu(0),dtype="float32") seed=nd.zeros((1,2),gpu(0)) #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) for ii in range (a1.shape[0]-1): a1_b1=(nd.expand_dims(a1[ii].reshape((1,2)),axis=1)-b1[ii+1:,:]).reshape((a1[ii+1:,:].shape[0],2)) seed=nd.concat(seed,a1_b1,dim=0) if seed.shape[0]>1: x1_x2=seed[1:,0] y1_y2=seed[1:,1] ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) return(count0) def omni(taoh_W,mean_d,cardh_his,taoh_W4,mean_d4,binnum): #Compute OMNI OMNIW=np.zeros(binnum,dtype="float32") OMNIW4=np.zeros((4,binnum),dtype="float32") #Convert Nan to zero to avoid issues taoh_W1=np.nan_to_num(taoh_W) mean_d1=np.nan_to_num(mean_d) taoh_W41=np.nan_to_num(taoh_W4) mean_d41=np.nan_to_num(mean_d4) for j in range (binnum-1): if taoh_W1[j+1]!=0: OMNIW[0]+=(taoh_W1[j]+taoh_W1[j+1])*(mean_d1[j+1]-mean_d1[j])*0.5 for k in range (4): for l in range (binnum-1): if taoh_W41[k,l+1]!=0: OMNIW4[k,0]+=(taoh_W41[k,l]+taoh_W41[k,l+1])*(mean_d41[k,l+1]-mean_d41[k,l])*0.5 results=np.vstack((taoh_W1,mean_d1,OMNIW,cardh_his)) results4=np.vstack((taoh_W41,mean_d41,OMNIW4)) return (results,results4) def compu(flowpattern,bins,dibins,dibins4,binnum,gt): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin coAA=np.zeros((1,binnum-1),dtype="float32") codiAA=np.zeros((4,binnum-1),dtype="float32") countAA=np.zeros(binnum-1) countAZ=np.zeros(binnum-1) count4AA=np.zeros((4,binnum-1),dtype="float32") co4AA=np.zeros((4,binnum-1),dtype="float32") #Create coordinate arrays for each zone and compute distances and directions #All the domain area excluding NoData #Area of High k=1 regionA=np.asarray(np.where(flowpattern>0),dtype="int32").T if regionA.shape[0]!=0: countA=itercontrol(regionA,k,bins,dibins,dibins4,binnum) k=0 regionZ=np.asarray(np.where(flowpattern==0),dtype="int32").T if regionZ.shape[0]!=0: countAZ=itercontrol((regionA,regionZ),k,bins,dibins,dibins4,binnum) #Each connected region in High k=2#Switch for i in range (1,np.int32(np.amax(flowpattern)+1)): regionAA=np.asarray(np.where(flowpattern==i),dtype="int32").T outAA=itercontrol(regionAA,k,bins,dibins,dibins4,binnum) coAA+=outAA[0];codiAA+=outAA[1];countAA+=outAA[2];co4AA+=outAA[3];count4AA+=outAA[4] #Compute connectivity metrics if np.sum(countAZ)==0: taoh_W=np.append(1,(countAA/(countA+countAZ)))#;taoh_M=np.append((regionA.shape[0]/regionZ.shape[0]),(countAA/countZ)) else: taoh_W=np.append(1,(countAA*2/(countA+countAZ))) #Average connected distances in each range bin mean_d=np.append(0,(coAA*gt[1]/countAA)) #Histogram of connected directions (4 total fr om East) for each range bin cardh_his=np.append(np.zeros((4,1),dtype="float32")+regionA.shape[0],codiAA,axis=1) #Tao(h) and Average connected distances in each cardinal direction (4 total: W-E, NE-SW, N-S, NW-SE) taoh_W4=np.append(np.zeros((4,1),dtype="float32")+1,count4AA/(countA+countAZ),axis=1) mean_d4=np.append(np.zeros((4,1),dtype="float32"),co4AA*gt[1]/count4AA,axis=1) return (taoh_W,mean_d,cardh_his,taoh_W4,mean_d4) def prires(results,results4,bins,gt): #Print out results as Pandas dataframe and write to text files rowlabel=np.array(["taoh_W","mean_distance","OMNIW","CARD_Histogram_WE", "NE_SW","NS","NW_SE"]).reshape(7,1) colabel=np.empty(binnum,dtype="U30") binslabel=np.around(bins*gt[1], decimals=3) for i in range(binnum-1): colabel[i+1]="Lag "+str(binslabel[i])+"-"+str(binslabel[i+1]) colabel[0]="Lag 0" results_df=
pd.DataFrame(results,columns=colabel)
pandas.DataFrame
import sys,os #os.chdir("/Users/utkarshvirendranigam/Desktop/Homework/Project") # required_packages=["PyQt5","re", "scipy","itertools","random","matplotlib","pandas","numpy","sklearn","pydotplus","collections","warnings","seaborn"] #print(os.getcwd()) # for my_package in required_packages: # try: # command_string="conda install "+ my_package+ " --yes" # os.system(command_string) # except: # count=1 from PyQt5.QtWidgets import (QMainWindow, QApplication, QWidget, QPushButton, QAction, QComboBox, QLabel, QGridLayout, QCheckBox, QGroupBox, QVBoxLayout, QHBoxLayout, QLineEdit, QPlainTextEdit) from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot, QRect from PyQt5.QtCore import pyqtSignal from PyQt5.QtCore import Qt # from scipy import interp from itertools import cycle, combinations import random from PyQt5.QtWidgets import QDialog, QVBoxLayout, QSizePolicy, QFormLayout, QRadioButton, QScrollArea, QMessageBox from PyQt5.QtGui import QPixmap from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure import pandas as pd import numpy as np import pickle from numpy.polynomial.polynomial import polyfit from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split, cross_val_score from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.compose import make_column_transformer from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve, auc, log_loss, brier_score_loss from sklearn.calibration import calibration_curve from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier from sklearn import feature_selection from sklearn import metrics from sklearn.preprocessing import label_binarize from sklearn.model_selection import cross_val_predict # Libraries to display decision tree from pydotplus import graph_from_dot_data import collections from sklearn.tree import export_graphviz import webbrowser import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt from Preprocessing import PreProcessing import random import seaborn as sns #%%----------------------------------------------------------------------- import os os.environ["PATH"] += os.pathsep + 'C:\\Program Files (x86)\\graphviz-2.38\\release\\bin' #%%----------------------------------------------------------------------- #::-------------------------------- # Deafault font size for all the windows #::-------------------------------- font_size_window = 'font-size:18px' class DecisionTree(QMainWindow): #::-------------------------------------------------------------------------------- # Implementation of Random Forest Classifier using the happiness dataset # the methods in this class are # _init_ : initialize the class # initUi : creates the canvas and all the elements in the canvas # update : populates the elements of the canvas base on the parametes # chosen by the user #::--------------------------------------------------------------------------------- send_fig = pyqtSignal(str) def __init__(self): super(DecisionTree, self).__init__() self.Title = "Decision Tree Classifier" self.initUi() def initUi(self): #::----------------------------------------------------------------- # Create the canvas and all the element to create a dashboard with # all the necessary elements to present the results from the algorithm # The canvas is divided using a grid loyout to facilitate the drawing # of the elements #::----------------------------------------------------------------- self.setWindowTitle(self.Title) self.setStyleSheet(font_size_window) self.main_widget = QWidget(self) self.layout = QGridLayout(self.main_widget) self.groupBox1 = QGroupBox('Decision Tree Features') self.groupBox1Layout= QGridLayout() self.groupBox1.setLayout(self.groupBox1Layout) self.feature0 = QCheckBox(features_list[0],self) self.feature1 = QCheckBox(features_list[1],self) self.feature2 = QCheckBox(features_list[2], self) self.feature3 = QCheckBox(features_list[3], self) self.feature4 = QCheckBox(features_list[4],self) self.feature5 = QCheckBox(features_list[5],self) self.feature6 = QCheckBox(features_list[6], self) self.feature7 = QCheckBox(features_list[7], self) self.feature8 = QCheckBox(features_list[8], self) self.feature9 = QCheckBox(features_list[9], self) self.feature10 = QCheckBox(features_list[10], self) self.feature11 = QCheckBox(features_list[11], self) self.feature12 = QCheckBox(features_list[12], self) self.feature13 = QCheckBox(features_list[13], self) self.feature14 = QCheckBox(features_list[14], self) self.feature15 = QCheckBox(features_list[15], self) self.feature16 = QCheckBox(features_list[16], self) self.feature17 = QCheckBox(features_list[17], self) self.feature18 = QCheckBox(features_list[18], self) self.feature19 = QCheckBox(features_list[19], self) self.feature20 = QCheckBox(features_list[20], self) self.feature21 = QCheckBox(features_list[21], self) self.feature22 = QCheckBox(features_list[22], self) self.feature23 = QCheckBox(features_list[23], self) self.feature24 = QCheckBox(features_list[24], self) self.feature0.setChecked(True) self.feature1.setChecked(True) self.feature2.setChecked(True) self.feature3.setChecked(True) self.feature4.setChecked(True) self.feature5.setChecked(True) self.feature6.setChecked(True) self.feature7.setChecked(True) self.feature8.setChecked(True) self.feature9.setChecked(True) self.feature10.setChecked(True) self.feature11.setChecked(True) self.feature12.setChecked(True) self.feature13.setChecked(True) self.feature14.setChecked(True) self.feature15.setChecked(True) self.feature16.setChecked(True) self.feature17.setChecked(True) self.feature18.setChecked(True) self.feature19.setChecked(True) self.feature20.setChecked(True) self.feature21.setChecked(True) self.feature22.setChecked(True) self.feature23.setChecked(True) self.feature24.setChecked(True) self.lblPercentTest = QLabel('Percentage for Test :') self.lblPercentTest.adjustSize() self.txtPercentTest = QLineEdit(self) self.txtPercentTest.setText("30") self.lblMaxDepth = QLabel('Maximun Depth :') self.txtMaxDepth = QLineEdit(self) self.txtMaxDepth.setText("3") self.btnExecute = QPushButton("Run Model") self.btnExecute.setGeometry(QRect(60, 500, 75, 23)) self.btnExecute.clicked.connect(self.update) self.btnDTFigure = QPushButton("View Tree") self.btnDTFigure.setGeometry(QRect(60, 500, 75, 23)) self.btnDTFigure.clicked.connect(self.view_tree) # We create a checkbox for each feature self.groupBox1Layout.addWidget(self.feature0, 0, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature1, 0, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature2, 1, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature3, 1, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature4, 2, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature5, 2, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature6, 3, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature7, 3, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature8, 4, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature9, 4, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature10, 5, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature11, 5, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature12, 6, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature13, 6, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature14, 7, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature15, 7, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature16, 8, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature17, 8, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature18, 9, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature19, 9, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature20, 10, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature21, 10, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature22, 11, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature23, 11, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature24, 12, 0, 1, 1) self.groupBox1Layout.addWidget(self.lblPercentTest, 19, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtPercentTest, 19, 1, 1, 1) self.groupBox1Layout.addWidget(self.lblMaxDepth, 20, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtMaxDepth, 20, 1, 1, 1) self.groupBox1Layout.addWidget(self.btnExecute, 21, 0, 1, 1) self.groupBox1Layout.addWidget(self.btnDTFigure, 21, 1, 1, 1) self.groupBox2 = QGroupBox('Measurements:') self.groupBox2Layout = QVBoxLayout() self.groupBox2.setLayout(self.groupBox2Layout) # self.groupBox2.setMinimumSize(400, 100) self.current_model_summary = QWidget(self) self.current_model_summary.layout = QFormLayout(self.current_model_summary) self.txtCurrentAccuracy = QLineEdit() self.txtCurrentPrecision = QLineEdit() self.txtCurrentRecall = QLineEdit() self.txtCurrentF1score = QLineEdit() self.current_model_summary.layout.addRow('Accuracy:', self.txtCurrentAccuracy) self.current_model_summary.layout.addRow('Precision:', self.txtCurrentPrecision) self.current_model_summary.layout.addRow('Recall:', self.txtCurrentRecall) self.current_model_summary.layout.addRow('F1 Score:', self.txtCurrentF1score) self.groupBox2Layout.addWidget(self.current_model_summary) self.groupBox3 = QGroupBox('Other Models Accuracy:') self.groupBox3Layout = QVBoxLayout() self.groupBox3.setLayout(self.groupBox3Layout) self.other_models = QWidget(self) self.other_models.layout = QFormLayout(self.other_models) self.txtAccuracy_lr = QLineEdit() self.txtAccuracy_gb = QLineEdit() self.txtAccuracy_rf = QLineEdit() self.other_models.layout.addRow('Logistic:', self.txtAccuracy_lr) self.other_models.layout.addRow('Random Forest:', self.txtAccuracy_rf) self.other_models.layout.addRow('Gradient Boosting:', self.txtAccuracy_gb) self.groupBox3Layout.addWidget(self.other_models) #::------------------------------------- # Graphic 1 : Confusion Matrix #::------------------------------------- self.fig = Figure() self.ax1 = self.fig.add_subplot(111) self.axes=[self.ax1] self.canvas = FigureCanvas(self.fig) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas.updateGeometry() self.groupBoxG1 = QGroupBox('Confusion Matrix') self.groupBoxG1Layout= QVBoxLayout() self.groupBoxG1.setLayout(self.groupBoxG1Layout) self.groupBoxG1Layout.addWidget(self.canvas) #::--------------------------------------------- # Graphic 2 : ROC Curve #::--------------------------------------------- self.fig2 = Figure() self.ax2 = self.fig2.add_subplot(111) self.axes2 = [self.ax2] self.canvas2 = FigureCanvas(self.fig2) self.canvas2.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas2.updateGeometry() self.groupBoxG2 = QGroupBox('ROC Curve') self.groupBoxG2Layout = QVBoxLayout() self.groupBoxG2.setLayout(self.groupBoxG2Layout) self.groupBoxG2Layout.addWidget(self.canvas2) #::------------------------------------------- # Graphic 3 : Importance of Features #::------------------------------------------- self.fig3 = Figure() self.ax3 = self.fig3.add_subplot(111) self.axes3 = [self.ax3] self.canvas3 = FigureCanvas(self.fig3) self.canvas3.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas3.updateGeometry() self.groupBoxG3 = QGroupBox('Importance of Features') self.groupBoxG3Layout = QVBoxLayout() self.groupBoxG3.setLayout(self.groupBoxG3Layout) self.groupBoxG3Layout.addWidget(self.canvas3) #::-------------------------------------------- # Graphic 4 : ROC Curve by class #::-------------------------------------------- self.fig4 = Figure() self.ax4 = self.fig4.add_subplot(111) self.axes4 = [self.ax4] self.canvas4 = FigureCanvas(self.fig4) self.canvas4.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas4.updateGeometry() self.groupBoxG4 = QGroupBox('ROC Curve by Class') self.groupBoxG4Layout = QVBoxLayout() self.groupBoxG4.setLayout(self.groupBoxG4Layout) self.groupBoxG4Layout.addWidget(self.canvas4) #::------------------------------------------------- # End of graphs #::------------------------------------------------- self.layout.addWidget(self.groupBox1, 0, 0, 3, 2) self.layout.addWidget(self.groupBoxG1, 0, 2, 1, 1) self.layout.addWidget(self.groupBoxG3, 0, 3, 1, 1) self.layout.addWidget(self.groupBoxG2, 1, 2, 1, 1) self.layout.addWidget(self.groupBoxG4, 1, 3, 1, 1) self.layout.addWidget(self.groupBox2, 2, 2, 1, 1) self.layout.addWidget(self.groupBox3, 2, 3, 1, 1) self.setCentralWidget(self.main_widget) self.resize(1800, 1200) self.show() def update(self): ''' Random Forest Classifier We pupulate the dashboard using the parametres chosen by the user The parameters are processed to execute in the skit-learn Random Forest algorithm then the results are presented in graphics and reports in the canvas :return:None ''' # processing the parameters self.list_corr_features = pd.DataFrame([]) if self.feature0.isChecked(): if len(self.list_corr_features)==0: self.list_corr_features = df[features_list[0]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[0]]],axis=1) if self.feature1.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[1]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[1]]],axis=1) if self.feature2.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[2]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[2]]],axis=1) if self.feature3.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[3]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[3]]],axis=1) if self.feature4.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[4]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[4]]],axis=1) if self.feature5.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[5]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[5]]],axis=1) if self.feature6.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[6]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[6]]],axis=1) if self.feature7.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[7]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[7]]],axis=1) if self.feature8.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[8]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[8]]],axis=1) if self.feature9.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[9]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[9]]],axis=1) if self.feature10.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[10]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[10]]], axis=1) if self.feature11.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[11]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[11]]], axis=1) if self.feature12.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[12]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[12]]], axis=1) if self.feature13.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[13]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[13]]], axis=1) if self.feature14.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[14]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[14]]], axis=1) if self.feature15.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[15]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[15]]], axis=1) if self.feature16.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[16]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[16]]], axis=1) if self.feature17.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[17]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[17]]], axis=1) if self.feature18.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[18]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[18]]], axis=1) if self.feature19.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[19]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[19]]], axis=1) if self.feature20.isChecked(): if len(self.list_corr_features)==0: self.list_corr_features = df[features_list[20]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[20]]],axis=1) if self.feature21.isChecked(): if len(self.list_corr_features) == 20: self.list_corr_features = df[features_list[1]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[21]]],axis=1) if self.feature22.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[22]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[22]]],axis=1) if self.feature23.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[23]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[23]]],axis=1) if self.feature24.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[24]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[24]]],axis=1) vtest_per = float(self.txtPercentTest.text()) vmax_depth = float(self.txtMaxDepth.text()) # Clear the graphs to populate them with the new information self.ax1.clear() self.ax2.clear() self.ax3.clear() self.ax4.clear() # self.txtResults.clear() # self.txtResults.setUndoRedoEnabled(False) vtest_per = vtest_per / 100 # ----------------------------------------------------------------------- filename = 'dt_finalized_model.sav' self.clf_entropy = pickle.load(open(filename, 'rb')) y_test = y X_test= X[features_list] # predicton on test using entropy y_pred_entropy = self.clf_entropy.predict(X_test) # confusion matrix for RandomForest conf_matrix = confusion_matrix(y_test, y_pred_entropy) # accuracy score self.ff_accuracy_score = accuracy_score(y_test, y_pred_entropy) * 100 self.txtCurrentAccuracy.setText(str(self.ff_accuracy_score)) # precision score self.ff_precision_score = precision_score(y_test, y_pred_entropy) * 100 self.txtCurrentPrecision.setText(str(self.ff_precision_score)) # recall score self.ff_recall_score = recall_score(y_test, y_pred_entropy) * 100 self.txtCurrentRecall.setText(str(self.ff_recall_score)) # f1_score self.ff_f1_score = f1_score(y_test, y_pred_entropy) self.txtCurrentF1score.setText(str(self.ff_f1_score)) #::------------------------------------ ## Ghaph1 : ## Confusion Matrix #::------------------------------------ class_names1 = ['', 'No', 'Yes'] self.ax1.matshow(conf_matrix, cmap=plt.cm.get_cmap('Blues', 14)) self.ax1.set_yticklabels(class_names1) self.ax1.set_xticklabels(class_names1, rotation=90) self.ax1.set_xlabel('Predicted label') self.ax1.set_ylabel('True label') for i in range(len(class_names)): for j in range(len(class_names)): y_pred_score = self.clf_entropy.predict_proba(X_test) self.ax1.text(j, i, str(conf_matrix[i][j])) self.fig.tight_layout() self.fig.canvas.draw_idle() #::---------------------------------------- ## Graph 2 - ROC Curve #::---------------------------------------- y_test_bin = pd.get_dummies(y_test).to_numpy() n_classes = y_test_bin.shape[1] # From the sckict learn site # https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_pred_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) lw = 2 self.ax2.plot(fpr[1], tpr[1], color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[1]) self.ax2.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') self.ax2.set_xlim([0.0, 1.0]) self.ax2.set_ylim([0.0, 1.05]) self.ax2.set_xlabel('False Positive Rate') self.ax2.set_ylabel('True Positive Rate') self.ax2.set_title('ROC Curve Random Forest') self.ax2.legend(loc="lower right") self.fig2.tight_layout() self.fig2.canvas.draw_idle() ###################################### # Graph - 3 Feature Importances ##################################### # get feature importances importances = self.clf_entropy.feature_importances_ # convert the importances into one-dimensional 1darray with corresponding df column names as axis labels f_importances = pd.Series(importances, self.list_corr_features.columns) # sort the array in descending order of the importances, only show the first 10 f_importances.sort_values(ascending=False, inplace=True) f_importances = f_importances[0:10] X_Features = f_importances.index y_Importance = list(f_importances) self.ax3.barh(X_Features, y_Importance) self.ax3.set_aspect('auto') # show the plot self.fig3.tight_layout() self.fig3.canvas.draw_idle() #::----------------------------------------------------- # Graph 4 - ROC Curve by Class #::----------------------------------------------------- str_classes = ['No','Yes'] colors = cycle(['magenta', 'darkorange']) for i, color in zip(range(n_classes), colors): self.ax4.plot(fpr[i], tpr[i], color=color, lw=lw, label='{0} (area = {1:0.2f})' ''.format(str_classes[i], roc_auc[i])) self.ax4.plot([0, 1], [0, 1], 'k--', lw=lw) self.ax4.set_xlim([0.0, 1.0]) self.ax4.set_ylim([0.0, 1.05]) self.ax4.set_xlabel('False Positive Rate') self.ax4.set_ylabel('True Positive Rate') self.ax4.set_title('ROC Curve by Class') self.ax4.legend(loc="lower right") # show the plot self.fig4.tight_layout() self.fig4.canvas.draw_idle() #::----------------------------------------------------- # Other Models Comparison #::----------------------------------------------------- filename2 = 'lr_finalized_model.sav' self.other_clf_lr = pickle.load(open(filename2, 'rb')) y_pred_lr = self.other_clf_lr.predict(X_test) self.accuracy_lr = accuracy_score(y_test, y_pred_lr) * 100 self.txtAccuracy_lr.setText(str(self.accuracy_lr)) filename3 = 'rf_finalized_model.sav' self.other_clf_rf = pickle.load(open(filename3, 'rb')) y_pred_rf = self.other_clf_rf.predict(X_test) self.accuracy_rf = accuracy_score(y_test, y_pred_rf) * 100 self.txtAccuracy_rf.setText(str(self.accuracy_rf)) filename4 = 'gb_finalized_model.sav' self.other_clf_gb = pickle.load(open(filename4, 'rb')) y_pred_gb = self.other_clf_gb.predict(X_test) self.accuracy_gb = accuracy_score(y_test, y_pred_gb) * 100 self.txtAccuracy_gb.setText(str(self.accuracy_gb)) def view_tree(self): ''' Executes the graphviz to create a tree view of the information then it presents the graphic in a pdf formt using webbrowser :return:None ''' webbrowser.open_new(r'decision_tree_entropy.pdf') class RandomForest(QMainWindow): #::-------------------------------------------------------------------------------- # Implementation of Random Forest Classifier using the happiness dataset # the methods in this class are # _init_ : initialize the class # initUi : creates the canvas and all the elements in the canvas # update : populates the elements of the canvas base on the parametes # chosen by the user #::--------------------------------------------------------------------------------- send_fig = pyqtSignal(str) def __init__(self): super(RandomForest, self).__init__() self.Title = "Random Forest Classifier" self.initUi() def initUi(self): #::----------------------------------------------------------------- # Create the canvas and all the element to create a dashboard with # all the necessary elements to present the results from the algorithm # The canvas is divided using a grid loyout to facilitate the drawing # of the elements #::----------------------------------------------------------------- self.setWindowTitle(self.Title) self.setStyleSheet(font_size_window) self.main_widget = QWidget(self) self.layout = QGridLayout(self.main_widget) self.groupBox1 = QGroupBox('Random Forest Features') self.groupBox1Layout= QGridLayout() self.groupBox1.setLayout(self.groupBox1Layout) self.feature0 = QCheckBox(features_list[0],self) self.feature1 = QCheckBox(features_list[1],self) self.feature2 = QCheckBox(features_list[2], self) self.feature3 = QCheckBox(features_list[3], self) self.feature4 = QCheckBox(features_list[4],self) self.feature5 = QCheckBox(features_list[5],self) self.feature6 = QCheckBox(features_list[6], self) self.feature7 = QCheckBox(features_list[7], self) self.feature8 = QCheckBox(features_list[8], self) self.feature9 = QCheckBox(features_list[9], self) self.feature10 = QCheckBox(features_list[10], self) self.feature11 = QCheckBox(features_list[11], self) self.feature12 = QCheckBox(features_list[12], self) self.feature13 = QCheckBox(features_list[13], self) self.feature14 = QCheckBox(features_list[14], self) self.feature15 = QCheckBox(features_list[15], self) self.feature16 = QCheckBox(features_list[16], self) self.feature17 = QCheckBox(features_list[17], self) self.feature18 = QCheckBox(features_list[18], self) self.feature19 = QCheckBox(features_list[19], self) self.feature20 = QCheckBox(features_list[20], self) self.feature21 = QCheckBox(features_list[21], self) self.feature22 = QCheckBox(features_list[22], self) self.feature23 = QCheckBox(features_list[23], self) self.feature24 = QCheckBox(features_list[24], self) self.feature0.setChecked(True) self.feature1.setChecked(True) self.feature2.setChecked(True) self.feature3.setChecked(True) self.feature4.setChecked(True) self.feature5.setChecked(True) self.feature6.setChecked(True) self.feature7.setChecked(True) self.feature8.setChecked(True) self.feature9.setChecked(True) self.feature10.setChecked(True) self.feature11.setChecked(True) self.feature12.setChecked(True) self.feature13.setChecked(True) self.feature14.setChecked(True) self.feature15.setChecked(True) self.feature16.setChecked(True) self.feature17.setChecked(True) self.feature18.setChecked(True) self.feature19.setChecked(True) self.feature20.setChecked(True) self.feature21.setChecked(True) self.feature22.setChecked(True) self.feature23.setChecked(True) self.feature24.setChecked(True) self.lblPercentTest = QLabel('Percentage for Test :') self.lblPercentTest.adjustSize() self.txtPercentTest = QLineEdit(self) self.txtPercentTest.setText("30") self.lblMaxDepth = QLabel('Maximun Depth :') self.txtMaxDepth = QLineEdit(self) self.txtMaxDepth.setText("3") self.btnExecute = QPushButton("Run Model") self.btnExecute.setGeometry(QRect(60, 500, 75, 23)) self.btnExecute.clicked.connect(self.update) # We create a checkbox for each feature self.groupBox1Layout.addWidget(self.feature0, 0, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature1, 0, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature2, 1, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature3, 1, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature4, 2, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature5, 2, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature6, 3, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature7, 3, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature8, 4, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature9, 4, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature10, 5, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature11, 5, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature12, 6, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature13, 6, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature14, 7, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature15, 7, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature16, 8, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature17, 8, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature18, 9, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature19, 9, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature20, 10, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature21, 10, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature22, 11, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature23, 11, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature24, 12, 0, 1, 1) self.groupBox1Layout.addWidget(self.lblPercentTest, 19, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtPercentTest, 19, 1, 1, 1) self.groupBox1Layout.addWidget(self.lblMaxDepth, 20, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtMaxDepth, 20, 1, 1, 1) self.groupBox1Layout.addWidget(self.btnExecute, 21, 0, 1, 1) self.groupBox2 = QGroupBox('Measurements:') self.groupBox2Layout = QVBoxLayout() self.groupBox2.setLayout(self.groupBox2Layout) # self.groupBox2.setMinimumSize(400, 100) self.current_model_summary = QWidget(self) self.current_model_summary.layout = QFormLayout(self.current_model_summary) self.txtCurrentAccuracy = QLineEdit() self.txtCurrentPrecision = QLineEdit() self.txtCurrentRecall = QLineEdit() self.txtCurrentF1score = QLineEdit() self.current_model_summary.layout.addRow('Accuracy:', self.txtCurrentAccuracy) self.current_model_summary.layout.addRow('Precision:', self.txtCurrentPrecision) self.current_model_summary.layout.addRow('Recall:', self.txtCurrentRecall) self.current_model_summary.layout.addRow('F1 Score:', self.txtCurrentF1score) self.groupBox2Layout.addWidget(self.current_model_summary) self.groupBox3 = QGroupBox('Other Models Accuracy:') self.groupBox3Layout = QVBoxLayout() self.groupBox3.setLayout(self.groupBox3Layout) self.other_models = QWidget(self) self.other_models.layout = QFormLayout(self.other_models) self.txtAccuracy_lr = QLineEdit() self.txtAccuracy_gb = QLineEdit() self.txtAccuracy_dt = QLineEdit() self.other_models.layout.addRow('Logistic:', self.txtAccuracy_lr) self.other_models.layout.addRow('Gradient Boosting:', self.txtAccuracy_gb) self.other_models.layout.addRow('Decision tree:', self.txtAccuracy_dt) self.groupBox3Layout.addWidget(self.other_models) #::------------------------------------- # Graphic 1 : Confusion Matrix #::------------------------------------- self.fig = Figure() self.ax1 = self.fig.add_subplot(111) self.axes=[self.ax1] self.canvas = FigureCanvas(self.fig) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas.updateGeometry() self.groupBoxG1 = QGroupBox('Confusion Matrix') self.groupBoxG1Layout= QVBoxLayout() self.groupBoxG1.setLayout(self.groupBoxG1Layout) self.groupBoxG1Layout.addWidget(self.canvas) #::--------------------------------------------- # Graphic 2 : ROC Curve #::--------------------------------------------- self.fig2 = Figure() self.ax2 = self.fig2.add_subplot(111) self.axes2 = [self.ax2] self.canvas2 = FigureCanvas(self.fig2) self.canvas2.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas2.updateGeometry() self.groupBoxG2 = QGroupBox('ROC Curve') self.groupBoxG2Layout = QVBoxLayout() self.groupBoxG2.setLayout(self.groupBoxG2Layout) self.groupBoxG2Layout.addWidget(self.canvas2) #::------------------------------------------- # Graphic 3 : Importance of Features #::------------------------------------------- self.fig3 = Figure() self.ax3 = self.fig3.add_subplot(111) self.axes3 = [self.ax3] self.canvas3 = FigureCanvas(self.fig3) self.canvas3.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas3.updateGeometry() self.groupBoxG3 = QGroupBox('Importance of Features') self.groupBoxG3Layout = QVBoxLayout() self.groupBoxG3.setLayout(self.groupBoxG3Layout) self.groupBoxG3Layout.addWidget(self.canvas3) #::-------------------------------------------- # Graphic 4 : ROC Curve by class #::-------------------------------------------- self.fig4 = Figure() self.ax4 = self.fig4.add_subplot(111) self.axes4 = [self.ax4] self.canvas4 = FigureCanvas(self.fig4) self.canvas4.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas4.updateGeometry() self.groupBoxG4 = QGroupBox('ROC Curve by Class') self.groupBoxG4Layout = QVBoxLayout() self.groupBoxG4.setLayout(self.groupBoxG4Layout) self.groupBoxG4Layout.addWidget(self.canvas4) #::------------------------------------------------- # End of graphs #::------------------------------------------------- self.layout.addWidget(self.groupBox1, 0, 0, 3, 2) self.layout.addWidget(self.groupBoxG1, 0, 2, 1, 1) self.layout.addWidget(self.groupBoxG3, 0, 3, 1, 1) self.layout.addWidget(self.groupBoxG2, 1, 2, 1, 1) self.layout.addWidget(self.groupBoxG4, 1, 3, 1, 1) self.layout.addWidget(self.groupBox2, 2, 2, 1, 1) self.layout.addWidget(self.groupBox3, 2, 3, 1, 1) self.setCentralWidget(self.main_widget) self.resize(1800, 1200) self.show() def update(self): ''' Random Forest Classifier We pupulate the dashboard using the parametres chosen by the user The parameters are processed to execute in the skit-learn Random Forest algorithm then the results are presented in graphics and reports in the canvas :return:None ''' # processing the parameters self.list_corr_features = pd.DataFrame([]) if self.feature0.isChecked(): if len(self.list_corr_features)==0: self.list_corr_features = df[features_list[0]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[0]]],axis=1) if self.feature1.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[1]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[1]]],axis=1) if self.feature2.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[2]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[2]]],axis=1) if self.feature3.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[3]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[3]]],axis=1) if self.feature4.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[4]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[4]]],axis=1) if self.feature5.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[5]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[5]]],axis=1) if self.feature6.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[6]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[6]]],axis=1) if self.feature7.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[7]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[7]]],axis=1) if self.feature8.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[8]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[8]]],axis=1) if self.feature9.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[9]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[9]]],axis=1) if self.feature10.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[10]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[10]]], axis=1) if self.feature11.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[11]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[11]]], axis=1) if self.feature12.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[12]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[12]]], axis=1) if self.feature13.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[13]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[13]]], axis=1) if self.feature14.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[14]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[14]]], axis=1) if self.feature15.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[15]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[15]]], axis=1) if self.feature16.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[16]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[16]]], axis=1) if self.feature17.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[17]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[17]]], axis=1) if self.feature18.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[18]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[18]]], axis=1) if self.feature19.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[19]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[19]]], axis=1) if self.feature20.isChecked(): if len(self.list_corr_features)==0: self.list_corr_features = df[features_list[20]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[20]]],axis=1) if self.feature21.isChecked(): if len(self.list_corr_features) == 20: self.list_corr_features = df[features_list[1]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[21]]],axis=1) if self.feature22.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[22]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[22]]],axis=1) if self.feature23.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[23]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[23]]],axis=1) if self.feature24.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[24]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[24]]],axis=1) vtest_per = float(self.txtPercentTest.text()) vmax_depth = float(self.txtMaxDepth.text()) # Clear the graphs to populate them with the new information self.ax1.clear() self.ax2.clear() self.ax3.clear() self.ax4.clear() # self.txtResults.clear() # self.txtResults.setUndoRedoEnabled(False) vtest_per = vtest_per / 100 filename = 'rf_finalized_model.sav' self.clf_entropy = pickle.load(open(filename, 'rb')) y_test = y X_test = X[features_list] # ----------------------------------------------------------------------- # predicton on test using entropy y_pred_entropy = self.clf_entropy.predict(X_test) # confusion matrix for RandomForest conf_matrix = confusion_matrix(y_test, y_pred_entropy) # accuracy score self.ff_accuracy_score = accuracy_score(y_test, y_pred_entropy) * 100 self.txtCurrentAccuracy.setText(str(self.ff_accuracy_score)) # precision score self.ff_precision_score = precision_score(y_test, y_pred_entropy) * 100 self.txtCurrentPrecision.setText(str(self.ff_precision_score)) # recall score self.ff_recall_score = recall_score(y_test, y_pred_entropy) * 100 self.txtCurrentRecall.setText(str(self.ff_recall_score)) # f1_score self.ff_f1_score = f1_score(y_test, y_pred_entropy) self.txtCurrentF1score.setText(str(self.ff_f1_score)) #::------------------------------------ ## Ghaph1 : ## Confusion Matrix #::------------------------------------ class_names1 = ['', 'No', 'Yes'] self.ax1.matshow(conf_matrix, cmap=plt.cm.get_cmap('Blues', 14)) self.ax1.set_yticklabels(class_names1) self.ax1.set_xticklabels(class_names1, rotation=90) self.ax1.set_xlabel('Predicted label') self.ax1.set_ylabel('True label') for i in range(len(class_names)): for j in range(len(class_names)): y_pred_score = self.clf_entropy.predict_proba(X_test) self.ax1.text(j, i, str(conf_matrix[i][j])) self.fig.tight_layout() self.fig.canvas.draw_idle() #::---------------------------------------- ## Graph 2 - ROC Curve #::---------------------------------------- y_test_bin = pd.get_dummies(y_test).to_numpy() n_classes = y_test_bin.shape[1] # From the sckict learn site # https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_pred_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) lw = 2 self.ax2.plot(fpr[1], tpr[1], color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[1]) self.ax2.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') self.ax2.set_xlim([0.0, 1.0]) self.ax2.set_ylim([0.0, 1.05]) self.ax2.set_xlabel('False Positive Rate') self.ax2.set_ylabel('True Positive Rate') self.ax2.set_title('ROC Curve Random Forest') self.ax2.legend(loc="lower right") self.fig2.tight_layout() self.fig2.canvas.draw_idle() ###################################### # Graph - 3 Feature Importances ##################################### # get feature importances importances = self.clf_entropy.feature_importances_ # convert the importances into one-dimensional 1darray with corresponding df column names as axis labels f_importances = pd.Series(importances, self.list_corr_features.columns) # sort the array in descending order of the importances, only show the first 10 f_importances.sort_values(ascending=False, inplace=True) f_importances = f_importances[0:10] X_Features = f_importances.index y_Importance = list(f_importances) self.ax3.barh(X_Features, y_Importance) self.ax3.set_aspect('auto') # show the plot self.fig3.tight_layout() self.fig3.canvas.draw_idle() #::----------------------------------------------------- # Graph 4 - ROC Curve by Class #::----------------------------------------------------- str_classes = ['No','Yes'] colors = cycle(['magenta', 'darkorange']) for i, color in zip(range(n_classes), colors): self.ax4.plot(fpr[i], tpr[i], color=color, lw=lw, label='{0} (area = {1:0.2f})' ''.format(str_classes[i], roc_auc[i])) self.ax4.plot([0, 1], [0, 1], 'k--', lw=lw) self.ax4.set_xlim([0.0, 1.0]) self.ax4.set_ylim([0.0, 1.05]) self.ax4.set_xlabel('False Positive Rate') self.ax4.set_ylabel('True Positive Rate') self.ax4.set_title('ROC Curve by Class') self.ax4.legend(loc="lower right") # show the plot self.fig4.tight_layout() self.fig4.canvas.draw_idle() #::----------------------------------------------------- # Other Models Comparison #::----------------------------------------------------- filename2 = 'lr_finalized_model.sav' self.other_clf_lr = pickle.load(open(filename2, 'rb')) y_pred_lr = self.other_clf_lr.predict(X_test) self.accuracy_lr = accuracy_score(y_test, y_pred_lr) * 100 self.txtAccuracy_lr.setText(str(self.accuracy_lr)) filename3 = 'dt_finalized_model.sav' self.other_clf_dt = pickle.load(open(filename3, 'rb')) y_pred_dt = self.other_clf_dt.predict(X_test) self.accuracy_dt = accuracy_score(y_test, y_pred_dt) * 100 self.txtAccuracy_dt.setText(str(self.accuracy_dt)) filename4 = 'gb_finalized_model.sav' self.other_clf_gb = pickle.load(open(filename4, 'rb')) y_pred_gb = self.other_clf_gb.predict(X_test) self.accuracy_gb = accuracy_score(y_test, y_pred_gb) * 100 self.txtAccuracy_gb.setText(str(self.accuracy_gb)) class LogisticReg(QMainWindow): #::-------------------------------------------------------------------------------- # Implementation of Random Forest Classifier using the happiness dataset # the methods in this class are # _init_ : initialize the class # initUi : creates the canvas and all the elements in the canvas # update : populates the elements of the canvas base on the parametes # chosen by the user #::--------------------------------------------------------------------------------- send_fig = pyqtSignal(str) def __init__(self): super(LogisticReg, self).__init__() self.Title = "Logistic Regression Classifier" self.initUi() def initUi(self): #::----------------------------------------------------------------- # Create the canvas and all the element to create a dashboard with # all the necessary elements to present the results from the algorithm # The canvas is divided using a grid loyout to facilitate the drawing # of the elements #::----------------------------------------------------------------- self.setWindowTitle(self.Title) self.setStyleSheet(font_size_window) self.main_widget = QWidget(self) self.layout = QGridLayout(self.main_widget) self.groupBox1 = QGroupBox('Logistic Regression Features') self.groupBox1Layout= QGridLayout() self.groupBox1.setLayout(self.groupBox1Layout) self.feature0 = QCheckBox(features_list[0],self) self.feature1 = QCheckBox(features_list[1],self) self.feature2 = QCheckBox(features_list[2], self) self.feature3 = QCheckBox(features_list[3], self) self.feature4 = QCheckBox(features_list[4],self) self.feature5 = QCheckBox(features_list[5],self) self.feature6 = QCheckBox(features_list[6], self) self.feature7 = QCheckBox(features_list[7], self) self.feature8 = QCheckBox(features_list[8], self) self.feature9 = QCheckBox(features_list[9], self) self.feature10 = QCheckBox(features_list[10], self) self.feature11 = QCheckBox(features_list[11], self) self.feature12 = QCheckBox(features_list[12], self) self.feature13 = QCheckBox(features_list[13], self) self.feature14 = QCheckBox(features_list[14], self) self.feature15 = QCheckBox(features_list[15], self) self.feature16 = QCheckBox(features_list[16], self) self.feature17 = QCheckBox(features_list[17], self) self.feature18 = QCheckBox(features_list[18], self) self.feature19 = QCheckBox(features_list[19], self) self.feature20 = QCheckBox(features_list[20], self) self.feature21 = QCheckBox(features_list[21], self) self.feature22 = QCheckBox(features_list[22], self) self.feature23 = QCheckBox(features_list[23], self) self.feature24 = QCheckBox(features_list[24], self) self.feature0.setChecked(True) self.feature1.setChecked(True) self.feature2.setChecked(True) self.feature3.setChecked(True) self.feature4.setChecked(True) self.feature5.setChecked(True) self.feature6.setChecked(True) self.feature7.setChecked(True) self.feature8.setChecked(True) self.feature9.setChecked(True) self.feature10.setChecked(True) self.feature11.setChecked(True) self.feature12.setChecked(True) self.feature13.setChecked(True) self.feature14.setChecked(True) self.feature15.setChecked(True) self.feature16.setChecked(True) self.feature17.setChecked(True) self.feature18.setChecked(True) self.feature19.setChecked(True) self.feature20.setChecked(True) self.feature21.setChecked(True) self.feature22.setChecked(True) self.feature23.setChecked(True) self.feature24.setChecked(True) self.lblPercentTest = QLabel('Percentage for Test :') self.lblPercentTest.adjustSize() self.txtPercentTest = QLineEdit(self) self.txtPercentTest.setText("30") self.btnExecute = QPushButton("Run Model") self.btnExecute.setGeometry(QRect(60, 500, 75, 23)) self.btnExecute.clicked.connect(self.update) # We create a checkbox for each feature self.groupBox1Layout.addWidget(self.feature0, 0, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature1, 0, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature2, 1, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature3, 1, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature4, 2, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature5, 2, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature6, 3, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature7, 3, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature8, 4, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature9, 4, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature10, 5, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature11, 5, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature12, 6, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature13, 6, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature14, 7, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature15, 7, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature16, 8, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature17, 8, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature18, 9, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature19, 9, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature20, 10, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature21, 10, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature22, 11, 0, 1, 1) self.groupBox1Layout.addWidget(self.feature23, 11, 1, 1, 1) self.groupBox1Layout.addWidget(self.feature24, 12, 0, 1, 1) self.groupBox1Layout.addWidget(self.lblPercentTest, 19, 0, 1, 1) self.groupBox1Layout.addWidget(self.txtPercentTest, 19, 1, 1, 1) self.groupBox1Layout.addWidget(self.btnExecute, 21, 0, 1, 1) self.groupBox2 = QGroupBox('Measurements:') self.groupBox2Layout = QVBoxLayout() self.groupBox2.setLayout(self.groupBox2Layout) # self.groupBox2.setMinimumSize(400, 100) self.current_model_summary = QWidget(self) self.current_model_summary.layout = QFormLayout(self.current_model_summary) self.txtCurrentAccuracy = QLineEdit() self.txtCurrentPrecision = QLineEdit() self.txtCurrentRecall = QLineEdit() self.txtCurrentF1score = QLineEdit() self.current_model_summary.layout.addRow('Accuracy:', self.txtCurrentAccuracy) self.current_model_summary.layout.addRow('Precision:', self.txtCurrentPrecision) self.current_model_summary.layout.addRow('Recall:', self.txtCurrentRecall) self.current_model_summary.layout.addRow('F1 Score:', self.txtCurrentF1score) self.groupBox2Layout.addWidget(self.current_model_summary) self.groupBox3 = QGroupBox('Other Models Accuracy:') self.groupBox3Layout = QVBoxLayout() self.groupBox3.setLayout(self.groupBox3Layout) self.other_models = QWidget(self) self.other_models.layout = QFormLayout(self.other_models) self.txtAccuracy_dt = QLineEdit() self.txtAccuracy_gb = QLineEdit() self.txtAccuracy_rf = QLineEdit() self.other_models.layout.addRow('Decision Tree:', self.txtAccuracy_dt) self.other_models.layout.addRow('Gradient Boosting:', self.txtAccuracy_gb) self.other_models.layout.addRow('Random Forest:', self.txtAccuracy_rf) self.groupBox3Layout.addWidget(self.other_models) #::------------------------------------- # Graphic 1 : Confusion Matrix #::------------------------------------- self.fig = Figure() self.ax1 = self.fig.add_subplot(111) self.axes=[self.ax1] self.canvas = FigureCanvas(self.fig) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas.updateGeometry() self.groupBoxG1 = QGroupBox('Confusion Matrix') self.groupBoxG1Layout= QVBoxLayout() self.groupBoxG1.setLayout(self.groupBoxG1Layout) self.groupBoxG1Layout.addWidget(self.canvas) #::--------------------------------------------- # Graphic 2 : ROC Curve #::--------------------------------------------- self.fig2 = Figure() self.ax2 = self.fig2.add_subplot(111) self.axes2 = [self.ax2] self.canvas2 = FigureCanvas(self.fig2) self.canvas2.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas2.updateGeometry() self.groupBoxG2 = QGroupBox('ROC Curve') self.groupBoxG2Layout = QVBoxLayout() self.groupBoxG2.setLayout(self.groupBoxG2Layout) self.groupBoxG2Layout.addWidget(self.canvas2) #::------------------------------------------- # Graphic 3 : k-fold Cross validation #::------------------------------------------- self.fig3 = Figure() self.ax3 = self.fig3.add_subplot(111) self.axes3 = [self.ax3] self.canvas3 = FigureCanvas(self.fig3) self.canvas3.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas3.updateGeometry() self.groupBoxG3 = QGroupBox('K-fold cross validation') self.groupBoxG3Layout = QVBoxLayout() self.groupBoxG3.setLayout(self.groupBoxG3Layout) self.groupBoxG3Layout.addWidget(self.canvas3) #::-------------------------------------------- # Graphic 4 : ROC Curve by class #::-------------------------------------------- self.fig4 = Figure() self.ax4 = self.fig4.add_subplot(111) self.axes4 = [self.ax4] self.canvas4 = FigureCanvas(self.fig4) self.canvas4.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.canvas4.updateGeometry() self.groupBoxG4 = QGroupBox('ROC Curve by Class') self.groupBoxG4Layout = QVBoxLayout() self.groupBoxG4.setLayout(self.groupBoxG4Layout) self.groupBoxG4Layout.addWidget(self.canvas4) #::------------------------------------------------- # End of graphs #::------------------------------------------------- self.layout.addWidget(self.groupBox1, 0, 0, 3, 2) self.layout.addWidget(self.groupBoxG1, 0, 2, 1, 1) self.layout.addWidget(self.groupBoxG3, 0, 3, 1, 1) self.layout.addWidget(self.groupBoxG2, 1, 2, 1, 1) self.layout.addWidget(self.groupBoxG4, 1, 3, 1, 1) self.layout.addWidget(self.groupBox2, 2, 2, 1, 1) self.layout.addWidget(self.groupBox3, 2, 3, 1, 1) self.setCentralWidget(self.main_widget) self.resize(1800, 1200) self.show() def update(self): ''' Random Forest Classifier We pupulate the dashboard using the parametres chosen by the user The parameters are processed to execute in the skit-learn Random Forest algorithm then the results are presented in graphics and reports in the canvas :return:None ''' # processing the parameters self.list_corr_features = pd.DataFrame([]) if self.feature0.isChecked(): if len(self.list_corr_features)==0: self.list_corr_features = df[features_list[0]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[0]]],axis=1) if self.feature1.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[1]] else: self.list_corr_features = pd.concat([self.list_corr_features, df[features_list[1]]],axis=1) if self.feature2.isChecked(): if len(self.list_corr_features) == 0: self.list_corr_features = df[features_list[2]] else: self.list_corr_features =
pd.concat([self.list_corr_features, df[features_list[2]]],axis=1)
pandas.concat
import pandas as pd df = pd.DataFrame({'X': [0, 1, 2], 'Y': [3, 4, 5]}, index=['A', 'B', 'C']) print(df) # X Y # A 0 3 # B 1 4 # C 2 5 print(df.T) # A B C # X 0 1 2 # Y 3 4 5 print(df.transpose()) # A B C # X 0 1 2 # Y 3 4 5 df = df.T print(df) # A B C # X 0 1 2 # Y 3 4 5 df = pd.DataFrame({'X': [0, 1, 2], 'Y': [3, 4, 5]}, index=['A', 'B', 'C']) print(df) # X Y # A 0 3 # B 1 4 # C 2 5 print(df.dtypes) # X int64 # Y int64 # dtype: object print(df.T) # A B C # X 0 1 2 # Y 3 4 5 print(df.T.dtypes) # A int64 # B int64 # C int64 # dtype: object df_mix = pd.DataFrame({'col_int': [0, 1, 2], 'col_float': [0.1, 0.2, 0.3]}, index=['A', 'B', 'C']) print(df_mix) # col_int col_float # A 0 0.1 # B 1 0.2 # C 2 0.3 print(df_mix.dtypes) # col_int int64 # col_float float64 # dtype: object print(df_mix.T) # A B C # col_int 0.0 1.0 2.0 # col_float 0.1 0.2 0.3 print(df_mix.T.dtypes) # A float64 # B float64 # C float64 # dtype: object print(df_mix.T.T) # col_int col_float # A 0.0 0.1 # B 1.0 0.2 # C 2.0 0.3 print(df_mix.T.T.dtypes) # col_int float64 # col_float float64 # dtype: object df_mix2 = pd.DataFrame({'col_int': [0, 1, 2], 'col_float': [0.1, 0.2, 0.3], 'col_str': ['a', 'b', 'c']}, index=['A', 'B', 'C']) print(df_mix2) # col_int col_float col_str # A 0 0.1 a # B 1 0.2 b # C 2 0.3 c print(df_mix2.dtypes) # col_int int64 # col_float float64 # col_str object # dtype: object print(df_mix2.T) # A B C # col_int 0 1 2 # col_float 0.1 0.2 0.3 # col_str a b c print(df_mix2.T.dtypes) # A object # B object # C object # dtype: object print(df_mix2.T.T) # col_int col_float col_str # A 0 0.1 a # B 1 0.2 b # C 2 0.3 c print(df_mix2.T.T.dtypes) # col_int object # col_float object # col_str object # dtype: object df =
pd.DataFrame({'X': [0, 1, 2], 'Y': [3, 4, 5]}, index=['A', 'B', 'C'])
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np def plot_refinement_improvement(accuracy_df: pd.DataFrame, refinement_df: pd.DataFrame, reference_refinement_type: str="original"): grouped_df = (
pd.merge(refinement_df, accuracy_df, left_on="info_run_id", right_on="run_id")
pandas.merge
""" Backs up ToodleDo """ import sys import os import requests import yaml import pandas as pd from getpass import getpass from requests_oauthlib import OAuth2Session import requests import urllib import json import logging # TODO modify redirection URI? Localhost is a bit weird, there might be something running there. # So, just play around with possibilities and see what works. # TODO create a dummy user account and try to restore info there # TODO Add writing scope # TODO Commons with constants? Make sure the script is runnable form anywhere CUR_FILE_DIR = os.path.dirname(os.path.realpath(__file__))+os.path.sep API_URL_PREFIX = "http://api.toodledo.com/3/" GET_URL_POSTFIX = '/get.php' # Tasks: http://api.toodledo.com/3/tasks/index.php DEFAULT_TASK_FIELDS = ["id", "title", "modified", "completed"] OPTIONAL_TASK_FIELDS = ["folder", "context", "goal", "location", "tag", "startdate", "duedate", "duedatemod", "starttime", "duetime", "remind", "repeat", "status", "star", "priority", "length", "timer", "added", "note", "parent", "children", "order", "meta", "previous", "attachment", "shared", "addedby", "via", "attachments"] DEFAULT_FOLDER_FIELDS = ["id","name","private","archived","ord"] DEFAULT_CONTEXT_FIELDS = ["id","name","private"] DEFAULT_GOAL_FIELDS = ["id","name","level","archived","contributes","note"] DEFAULT_LOCATION_FIELDS = ["id","name","description","lat","lon"] DEFAULT_NOTES_FIELDS = ["id","title","modified","added","folder","private","text"] LIST_ROW_DEFAULT_FIELDS=["id","added","modified","version","list","cells"] LIST_COL_DEFAULT_FIELDS=["id","title","type","sort","width"] AUTHORIZATION_URL = "https://api.toodledo.com/3/account/authorize.php" TOKEN_URL = 'https://api.toodledo.com/3/account/token.php' TOKEN_FILENAME = CUR_FILE_DIR+"token.txt" CONFIG_FILENAME = CUR_FILE_DIR+"config.yaml" CLIENT_ID_FIELD = 'CLIENT_ID' CLIENT_SECRET_FIELD = 'CLIENT_SECRET' REDIRECT_URL_FIELD = 'REDIRECT_URL' BACKUP_FOLDER_FIELD = 'BACKUP_FOLDER' ALL_SCOPES = ["basic","folders", "tasks","notes","outlines","lists"] def get_token_response(request_body): access_token, refresh_token = None, None token_response = requests.post(TOKEN_URL, data = request_body) if token_response.status_code == 200: token_dict = json.loads(token_response.text) if "access_token" in token_dict: access_token = token_dict["access_token"] if "refresh_token" in token_dict: refresh_token = token_dict["refresh_token"] else: logging.warning("Failed to refresh. Status: %d. Result:\n%s", token_response.status_code, str(token_response.text)) return access_token, refresh_token def get_authorization_response(config, oauth): authorization_url, state = oauth.authorization_url(AUTHORIZATION_URL) # Here print is intended. We are working with console. print('Please go to thir URL and authorize access:') print(authorization_url) authorization_response = input('Enter the full callback URL: ') return authorization_response def refresh_tokens(config, access_token, refresh_token): # If failed to refresh, we'll be OK anyway body = {'client_id': config[CLIENT_ID_FIELD], 'client_secret': config[CLIENT_SECRET_FIELD], 'redirect_uri': config[REDIRECT_URL_FIELD], 'grant_type': 'refresh_token', 'refresh_token': refresh_token, } try: new_access_token, new_refresh_token = get_token_response(body) if new_access_token is None: new_access_token = access_token logging.info("Keeping old access token: %s", new_access_token) else: logging.info("New access token: %s", new_access_token) if new_refresh_token is None: new_refresh_token = refresh_token logging.info("Keeping old refresh token: %s", new_refresh_token) else: logging.info("New refresh token: %s", new_refresh_token) except Exception as e: logging.warning("Failed to refresh. Might still be OK with old token.", str(e)) new_access_token, new_refresh_token = access_token, refresh_token return new_access_token, new_refresh_token def get_tokens_from_scratch(config): oauth = OAuth2Session(config[CLIENT_ID_FIELD], redirect_uri=config[REDIRECT_URL_FIELD], scope=ALL_SCOPES) authorization_response = get_authorization_response(config, oauth) connection_success=False first_time = True while not connection_success: try: if not first_time: logging.info("Trying to reconnect...") authorization_response = get_authorization_response(config, oauth) first_time = False code = urllib.parse.parse_qs( urllib.parse.urlsplit(authorization_response).query )["code"][0] # Just could not get in OAuth. It kept throwing # "(missing_token) Missing access token parameter" # Well, let's just get it working manually then. body = {'client_id': config[CLIENT_ID_FIELD], 'client_secret': config[CLIENT_SECRET_FIELD], 'code': code, 'redirect_uri': config[REDIRECT_URL_FIELD], 'grant_type': 'authorization_code', 'authorization_response': authorization_response, } access_token, refresh_token = get_token_response(body) connection_success = (access_token is not None)and(refresh_token is not None) except Exception as e: logging.warning("Token fetch failed: %s", str(e)) # TODO prevent infinite loop here? Prompt after error? # Limit the number of retries? Parametrize? return access_token, refresh_token def save_tokens(access_token, refresh_token): with open(TOKEN_FILENAME,"wt") as f: f.write(access_token+"\n"+refresh_token) logging.info("Saved tokens") def get_tokens(config): access_token = None refresh_token = None if os.path.isfile(TOKEN_FILENAME): with open(TOKEN_FILENAME,"rt") as f: s = f.read().split('\n') if len(s) == 2: access_token, refresh_token = s[0], s[1] logging.info("Access token from file: %s", access_token) logging.info("Refresh token from file: %s",refresh_token) access_token, refresh_token = refresh_tokens(config, access_token, refresh_token) if access_token is None or refresh_token is None: access_token, refresh_token = get_tokens_from_scratch(config) logging.info("Obtained tokens successfully") logging.info("Final access token: %s", access_token) logging.info("Final refresh token: %s",refresh_token) return access_token, refresh_token def generic_get_and_backup(access_token: str, parameter_name: str, default_fields: list, optional_fields: list = [], filename: str=None, readable_table_name: str=None, url_additions: dict={}, start_from=0, return_json: bool=False): result_df = pd.DataFrame(columns=default_fields+optional_fields) readable_table_name = \ readable_table_name if readable_table_name is not None else parameter_name url = API_URL_PREFIX + parameter_name + GET_URL_POSTFIX try: # TODO consider parameters: after=1234567890&f=xml data = {'access_token': access_token} if len(optional_fields)>0: data['fields'] = ",".join(optional_fields) for i in url_additions: data[i] = url_additions[i] response = requests.post(url, data = data) if response.status_code == 200: result_json_parsed = json.loads(response.text) if type(result_json_parsed) == list: if len(result_json_parsed) > start_from: result_df = pd.DataFrame(result_json_parsed[start_from:]) # 0 is num and total logging.info("Read %s successfully", readable_table_name) else: logging.info("List of %s is empty", readable_table_name) else: logging.warning("Failed to read %s. Response body: %s", readable_table_name, result_json_parsed) else: logging.warning( "Failed to read %s. Response status code: %d.\n Detailed response: %s", readable_table_name, response.status_code, str(response.text)) except Exception as e: logging.warning("Failed to list %s: %s", readable_table_name, str(e)) if filename is not None: try: result_df.to_csv(filename, index=False) logging.info("Saved %s successfully", readable_table_name) except Exception as e: logging.warning("Failed to backup %s: %s", readable_table_name, str(e)) else: logging.info("No filename provided. Not saving %s.", readable_table_name) if return_json: return result_df, result_json_parsed return result_df def get_raw_tasks(access_token): """ Raw tasks contain some fields in human-unreadable form. For example, folder or context. """ return generic_get_and_backup(access_token=access_token, parameter_name='tasks', default_fields=DEFAULT_TASK_FIELDS, optional_fields=OPTIONAL_TASK_FIELDS, readable_table_name="raw tasks", start_from=1) def get_and_backup_folders(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='folders', default_fields=DEFAULT_FOLDER_FIELDS) def get_and_backup_contexts(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='contexts', default_fields=DEFAULT_CONTEXT_FIELDS) def get_and_backup_goals(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='goals', default_fields=DEFAULT_GOAL_FIELDS) def get_and_backup_locations(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='locations', default_fields=DEFAULT_LOCATION_FIELDS) def get_and_backup_notes(access_token, filename): return generic_get_and_backup(access_token=access_token, filename=filename, parameter_name='notes', default_fields=DEFAULT_NOTES_FIELDS) def backup_list_details(access_token, list_info, lists_path): list_col_df = pd.DataFrame(list_info["cols"]) try: list_col_df.to_csv(lists_path+"cols_list_"+str(list_info["id"])+".csv", index=False) logging.info("Saved list %s columns successfully", list_info["id"]) except Exception as e: logging.warning("Failed to backup list %s columns: %s", list_info["id"], str(e)) #http://api.toodledo.com/3/rows/get.php?access_token=yourtoken&after=1234567890&list=1234567890 list_row_df, row_json =generic_get_and_backup( access_token=access_token, parameter_name='rows', default_fields=LIST_ROW_DEFAULT_FIELDS, filename=lists_path+"rows_list_"+str(list_info["id"])+".csv", url_additions={"list": list_info["id"]}, return_json=True) row_ids = list() col_ids = list() values = list() if len(list_row_df) > 0: for i in range(len(row_json)): for j in range(len(row_json[i]["cells"])): if ("c"+str(j+1)) in row_json[i]["cells"]: values.append(row_json[i]["cells"]["c"+str(j+1)]) else: values.append(None) col_ids.append(list_info["cols"][j]["id"]) row_ids.append(row_json[i]["id"]) list_cell_df = pd.DataFrame({"value": values, "row_id": row_ids, "column_ids": col_ids}) else: list_cell_df = pd.DataFrame({"value": [], "row_id": [], "column_ids": []}) list_cell_df["list_id"] = list_info["id"] list_row_df["list_id"] = list_info["id"] list_col_df["list_id"] = list_info["id"] return list_row_df, list_col_df, list_cell_df def get_and_backup_lists(access_token, backup_path): result_df = pd.DataFrame(columns=["id","added","modified","title","version","note","keywords","rows"]) url = API_URL_PREFIX + "lists" + GET_URL_POSTFIX all_list_rows = None all_list_cols = None all_list_cells = None try: # TODO consider parameters: after=1234567890&f=xml data = {'access_token': access_token} response = requests.post(url, data = data) if response.status_code == 200: result_json_parsed = json.loads(response.text) lists_path = backup_path+"Lists"+os.path.sep if not os.path.isdir(lists_path): logging.info("Lists directory did not exist. Creating...") os.mkdir(lists_path) if type(result_json_parsed) == list: if len(result_json_parsed) > 0: for i in result_json_parsed: cur_list_rows, cur_list_cols, cur_list_cells = backup_list_details(access_token, i, lists_path) if all_list_rows is None: all_list_rows = cur_list_rows else: all_list_rows = all_list_rows.append(cur_list_rows, ignore_index=True) if all_list_cols is None: all_list_cols = cur_list_cols else: all_list_cols = all_list_cols.append(cur_list_cols, ignore_index=True) if all_list_cells is None: all_list_cells = cur_list_cells else: all_list_cells = all_list_cells.append(cur_list_cells, ignore_index=True) del i["cols"] result_df =
pd.DataFrame(result_json_parsed)
pandas.DataFrame
""" Main bokeh server module """ import os from math import pi import pandas as pd # Bokeh imports from bokeh.plotting import figure from bokeh.layouts import row, column, layout from bokeh.models import ( ColumnDataSource, DatetimeTickFormatter, ) from bokeh.palettes import Category20c from bokeh.transform import cumsum from bokeh.models.widgets import ( TextInput, DataTable, TableColumn, NumberFormatter, Div, DatePicker, Tabs, Panel, PreText, RadioButtonGroup, ) # azure_usage imports from .constants import ( CONST_COL_NAME_COST, CONST_COL_NAME_SERVICE, CONST_COL_NAME_ANGLE, CONST_COL_NAME_PERC, CONST_COL_NAME_DATE, DATA_FOLDER, README_FILE, UPDATES_FILE, URL_PARAM_REPORT, URL_PARAM_SUB_IDS, URL_PARAM_DT_FROM, URL_PARAM_DT_TO, CONST_RB_DEFAULT, CONST_RB_LABEL_0, CONST_RB_LABEL_1, CONST_RB_LABEL_2, CONST_RB_LABEL_3, CONST_ENCODING, DEFAULT_REPORT_NAME, TIMESTAMP_FILE, DEFAULT_TIMEZONE, ) from .subs import get_data_for_subid, get_top_services, calc_top_services_perc from .totals import group_day from .utilities import prep_sub_ids, parse_url_params, read_timestamp from .data_loader import create_dataframe # Global variables GLOBAL_RAW_USAGE = None GLOBAL_LAST_UPDATE = None GLOBAL_SUB_RAW_USAGE = None GLOBAL_SUB_SERVICE_GRP = None GLOBAL_TOTAL_SOURCE = None GLOBAL_WIDGET_SUBID = TextInput() GLOBAL_DATE_PICKER_FROM = None GLOBAL_DATE_PICKER_TO = None GLOBAL_WIDGET_SUBSCRIPTION_NAMES = None GLOBAL_WIDGET_TOTAL_TEXT = None GLOBAL_WIDGET_TOP_SERVICES_RB = None GLOBAL_S1 = None GLOBAL_S2 = None GLOBAL_TOP_SERVICE_SOURCE = None GLOBAL_PWD = os.path.dirname(os.path.realpath(__file__)) def readin_data(data_path=None): """Reads in raw Azure usage data. Returns: dataframe with the read in data """ if data_path is None: _data_path = os.path.join( os.path.join(GLOBAL_PWD, "..", ".."), DATA_FOLDER ) else: _data_path = data_path raw_usage = create_dataframe(_data_path) last_update = read_timestamp(os.path.join(_data_path, TIMESTAMP_FILE)) return raw_usage, last_update def get_url_params(doc): """Reads in url parameters. Arguments: doc: a bokeh document to which elements can be added. Returns: A dictionary with the parsed url parameters """ doc_args = doc.session_context.request.arguments return parse_url_params(doc_args) def create_updates_tab(): """ Creates updates tab """ file_path = os.path.join( os.path.join(GLOBAL_PWD, "..", ".."), UPDATES_FILE ) updates_text = "" with open(file_path, "r", encoding=CONST_ENCODING) as myfile: updates_text = myfile.read() widget_updates = PreText(text="""%s""" % (updates_text)) updates_widgets = column(children=[row(children=[widget_updates])]) return Panel(child=updates_widgets, title="Release notes") def create_about_tab(): """ Creates about tab """ file_path = os.path.join(os.path.join(GLOBAL_PWD, "..", ".."), README_FILE) # about widget about_text = "" line_cnt = 0 for line in open(file_path, "r", encoding=CONST_ENCODING): if not line.startswith("[!["): about_text += line line_cnt += 1 widget_about = Div(text="""%s""" % (about_text), width=800) about_widgets = column(children=[row(children=[widget_about])]) return Panel(child=about_widgets, title="About") def create_usage_bar_plot(): """Creates a bar plot to show daily usage""" bar_plot = figure( plot_height=400, plot_width=1200, title="", tools="pan, reset, save, wheel_zoom, crosshair, hover", x_axis_type="datetime", tooltips=[ (CONST_COL_NAME_DATE, "@Date_str"), (CONST_COL_NAME_COST, "@Cost{$0.2f}"), ], min_border_bottom=75, min_border_left=70, ) bar_plot.xaxis.formatter = DatetimeTickFormatter( hours=["%d %B %Y"], days=["%d %B %Y"], months=["%d %B %Y"], years=["%d %B %Y"], ) bar_plot.xaxis.major_label_orientation = pi / 4 bar_plot.yaxis.major_label_text_font_size = "12pt" return bar_plot def create_top_services_pie_plot(): """Creates top services pie plot""" pie_plot = figure( plot_height=500, plot_width=800, x_range=(-0.5, 1.0), tools="hover", tooltips=[ (CONST_COL_NAME_SERVICE, "@Service"), (CONST_COL_NAME_COST, "@Cost{$0.2f}"), (CONST_COL_NAME_PERC, "@Perc{%0.2f}"), ], ) return pie_plot # NO UNIT TESTS FOR ALL THE FOLLWING FUNCTIONS def modify_doc(doc): """Main method to create a bokeh document Arguments: doc: a bokeh document to which elements can be added. """ global GLOBAL_RAW_USAGE global GLOBAL_LAST_UPDATE # get the url parameters url_params = get_url_params(doc) # reads in the raw usage data GLOBAL_RAW_USAGE, GLOBAL_LAST_UPDATE = readin_data() # initialises data sources initiliase_data_sources() # sets the layout of the webapp _set_layout(doc, url_params) # plots the data _update_data(doc, url_params) # changing title doc.title = DEFAULT_REPORT_NAME def initiliase_data_sources(): """ Initialises data sources """ global GLOBAL_RAW_USAGE global GLOBAL_SUB_RAW_USAGE global GLOBAL_SUB_SERVICE_GRP global GLOBAL_TOTAL_SOURCE global GLOBAL_TOP_SERVICE_SOURCE default_subid = "" prep_sub_ids_list = prep_sub_ids(default_subid) GLOBAL_SUB_RAW_USAGE = get_data_for_subid( GLOBAL_RAW_USAGE, prep_sub_ids_list ) sub_raw_usage_grp = group_day(GLOBAL_SUB_RAW_USAGE, add_missing_days=True) GLOBAL_TOTAL_SOURCE = ColumnDataSource(data=sub_raw_usage_grp) # Generates a data frame of top services which costed more than min_cost, # rest of the costs added as Other GLOBAL_SUB_SERVICE_GRP = get_top_services(GLOBAL_SUB_RAW_USAGE) # calculate percentages for the top services GLOBAL_SUB_SERVICE_GRP = calc_top_services_perc(GLOBAL_SUB_SERVICE_GRP) # set the data source object GLOBAL_TOP_SERVICE_SOURCE = ColumnDataSource(data=GLOBAL_SUB_SERVICE_GRP) def _update_data(*_): """ Updates data """ global GLOBAL_RAW_USAGE global GLOBAL_TOTAL_SOURCE global GLOBAL_TOP_SERVICE_SOURCE global GLOBAL_WIDGET_SUBID global GLOBAL_DATE_PICKER_FROM global GLOBAL_DATE_PICKER_TO global GLOBAL_WIDGET_SUBSCRIPTION_NAMES global GLOBAL_WIDGET_TOTAL_TEXT global GLOBAL_WIDGET_TOP_SERVICES_RB all_mode = False if GLOBAL_WIDGET_SUBID.value.upper() == "ALLMODE": all_mode = True new_sub_raw_usage = GLOBAL_RAW_USAGE.copy(deep=True) prep_sub_ids_list = new_sub_raw_usage["SubscriptionGuid"].unique() else: prep_sub_ids_list = prep_sub_ids(GLOBAL_WIDGET_SUBID.value.upper()) new_sub_raw_usage = get_data_for_subid( GLOBAL_RAW_USAGE, prep_sub_ids_list ) # Adjusting date interval if not new_sub_raw_usage.empty: date_st = pd.Timestamp(GLOBAL_DATE_PICKER_FROM.value) date_end =
pd.Timestamp(GLOBAL_DATE_PICKER_TO.value)
pandas.Timestamp
import pandas as pd from glob import glob import numpy as np import matplotlib.pyplot as plt import scipy as sp from tensorpack import * import sys import os import tensorflow as tf from tensorpack.utils.viz import stack_patches import cv2 import tensorpack.utils.viz as viz from tensorpack.tfutils import get_tf_version_tuple from keras import backend as K from scipy.stats.stats import pearsonr from skimage.metrics import structural_similarity from sklearn.metrics import mean_absolute_error, mean_squared_error import sys import warnings warnings.simplefilter("ignore") def read_single_oct(fpath): with open(fpath, 'rb') as f: data = np.frombuffer(f.read(), 'uint8') cube = data.reshape((200, 1024, 200), order='C') if 'OS' in fpath: cube = cube[:, ::-1, ::-1] # plt.imshow(np.squeeze(np.sum(cube, axis=1)),cmap='gray') # plt.show() return cube def plot_training_perf(path): pd.options.plotting.backend = "plotly" files_list = glob(path) final_df =
pd.DataFrame()
pandas.DataFrame
import os import sys import warnings import glob import logging warnings.filterwarnings("ignore") logging.basicConfig(level=logging.INFO) import numpy as np import pandas as pd
pd.set_option('display.float_format', lambda x: '%.3f' % x)
pandas.set_option
import numpy as np import pandas import matplotlib.pyplot as pl import math import matplotlib as mpl from matplotlib import cm from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.utils import resample from sklearn.metrics import roc_curve as auc from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import LeaveOneOut from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import KernelPCA from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_classif from scipy.stats import pearsonr # Custom Script import aims_analysis as aims # Define some initial stuff and import analysis functions: #AA_key_old=['<KEY>','I','C','Y','H','R','N','D','T'] AA_key=['<KEY>'] # So we've got 46 orthogonal (or at least not super correlated) # dimensions. Add them in to the matrix # From "Hot spot prediction in protein-protein interactions by an ensemble system" # Liu et. al. BMC Systems Biology newnew=pandas.read_csv('app_data/new_props') oldold=pandas.read_csv('app_data/old_props') # Again, ugly to hard code in the number of properties (62) but # For now no harm no foul properties=np.zeros((62,20)) for i in np.arange(len(AA_key)): properties[0:16,i]=oldold[AA_key[i]] properties[16:,i]=newnew[AA_key[i]] AA_num_key_new=properties[1] AA_num_key=np.arange(20)+1 def apply_matrix(mono_PCA,max_diffs,mat_size=100,props=properties[1:],ridZero=False,win_size = 3): # Try to maximize differences across the properties by looking at patterning... # Re-normalize the properties for use in the matrix... for i in np.arange(len(props)): props[i] = props[i]-np.average(props[i]) props[i] = props[i]/np.linalg.norm(props[i]) # Since we'll be averaging shit, let's get rid of all the zeros... # However, that's going to result in bleed-over across the loops... Is this good or bad? # This is also going to have a strange effect based upon loop length... # WHATEVER, Try both if ridZero: mono_pca_NEW=np.transpose(mono_PCA)[~np.all(np.transpose(mono_PCA) == 0,axis=1)] mono_pca_NEW=np.transpose(mono_pca_NEW) else: mono_pca_NEW = mono_PCA # So this is where we should be able to do the averaging # Initialize the variable new_mat_mono=np.zeros((mat_size,len(mono_pca_NEW))) for j in np.arange(len(mono_pca_NEW)): # for every clone for k in np.arange(len(max_diffs)): for win_slide in np.arange(win_size): # This really shouldn't happen, but just in case... if max_diffs[k,2]+win_slide > len(mono_pca_NEW[0]): print('Weird error, look closer at your data') continue for m in AA_num_key: if mono_pca_NEW[j,int(max_diffs[k,2]+win_slide)]==m: # So I think that 0 and 1 should correspond to charge and hydrophobicity... new_mat_mono[k,j]=new_mat_mono[k,j] + props[int(max_diffs[k,1]),m-1] return(new_mat_mono/win_size) # CAN WE DO IT WITH ONE MATRIX??? def get_bigass_matrix(ALL_mono, OneChain = False, giveSize=[], onlyCen = False, manuscript_arrange=False,special='', alignment = 'center', norm = True): # THIS TERM IS ACTUALLY IRRELEVANT. NEED TO DEFINE A "GET MASK" function if OneChain: mono_PCA = aims.gen_1Chain_matrix(ALL_mono,key=AA_num_key_new/np.linalg.norm(AA_num_key_new),binary=False,giveSize=giveSize) mono_MI = aims.gen_1Chain_matrix(ALL_mono,key=AA_num_key,binary=False,giveSize=giveSize) else: if special =='peptide': mono_PCA = aims.gen_peptide_matrix(ALL_mono,key=AA_num_key_new/np.linalg.norm(AA_num_key_new), binary=False) mono_MI = aims.gen_peptide_matrix(ALL_mono,key=AA_num_key,binary=False) else: mono_PCA = aims.gen_tcr_matrix(ALL_mono,key=AA_num_key_new/np.linalg.norm(AA_num_key_new), binary=False,giveSize=giveSize,manuscript_arrange = manuscript_arrange, alignment = alignment) mono_MI = aims.gen_tcr_matrix(ALL_mono,key=AA_num_key,binary=False,giveSize=giveSize, manuscript_arrange=manuscript_arrange, alignment = alignment) if onlyCen: mono_PCAF = mono_PCA[:,4:-4] mono_MIF = mono_MI[:,4:-4] else: mono_PCAF = mono_PCA mono_MIF = mono_MI BIG_mono = aims.getBig(mono_MIF, norm = norm) amono,bmono,cmono = np.shape(BIG_mono) #SO WE CANT JUST USE NP.RESHAPE #BECAUSE THAT COMMAND IS AGNOSTIC TO THE #FACT THAT OUR DATA IS ARRANGED BY CLONE... BIG_mono_final = np.zeros((bmono,amono*cmono)) for i in np.arange(bmono): BIG_mono_final[i] = BIG_mono[:,i,:].reshape(amono*cmono) mono_pca_stack = np.hstack([mono_PCAF,BIG_mono_final]) return(mono_pca_stack) def do_classy_mda(ALL_mono, ALL_poly, matsize = 100, OneChain = False, special= '', xVal = 'kfold',ridCorr = False, feat_sel = 'none', classif = 'mda'): mono_dim=np.shape(ALL_mono)[1] poly_dim=np.shape(ALL_poly)[1] y_mono_all = np.ones(mono_dim) y_poly_all = 2*np.ones(poly_dim) y_all = np.hstack((y_mono_all,y_poly_all)) seqs_all = np.hstack((ALL_mono,ALL_poly)) # Stupid to recreate this matrix every single time... Should do it BEFORE, then splitting bigass_matrix = get_bigass_matrix(seqs_all, OneChain = OneChain, special = special) # Alright so here is where the data is actually split into the test/train/etc. if xVal == 'loo': crosser = LeaveOneOut() elif xVal == 'kfold': crosser = KFold(n_splits=10,shuffle=True) # Lets do 10x cross validation elif xVal == 'strat_kfold': # Random State can be defined if we want a reproducible shuffle crosser = StratifiedKFold(n_splits=10, random_state=None, shuffle=True) cycle = 0 for train, test in crosser.split(bigass_matrix, y_all): X_train_pre, X_test_pre, y_train, y_test = bigass_matrix[train,:], bigass_matrix[test,:], y_all[train], y_all[test] # REMOVE HIGHLY CORRELATED FEATURES if ridCorr: pandaMatTrain =
pandas.DataFrame(X_train_pre)
pandas.DataFrame
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import collections import numpy as np import re from numpy import array from statistics import mode import pandas as pd import warnings import copy from joblib import Memory from itertools import chain import ast import timeit from sklearn.neighbors import KNeighborsClassifier # 1 neighbors from sklearn.svm import SVC # 1 svm from sklearn.naive_bayes import GaussianNB # 1 naive bayes from sklearn.neural_network import MLPClassifier # 1 neural network from sklearn.linear_model import LogisticRegression # 1 linear model from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models from joblib import Parallel, delayed import multiprocessing from sklearn.pipeline import make_pipeline from sklearn import model_selection from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from imblearn.metrics import geometric_mean_score import umap from sklearn.metrics import classification_report from sklearn.preprocessing import scale import eli5 from eli5.sklearn import PermutationImportance from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import RFE from sklearn.decomposition import PCA from mlxtend.classifier import StackingCVClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit from scipy.spatial import procrustes # This block of code == for the connection between the server, the database, and the client (plus routing). # Access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def Reset(): global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global dataSpacePointsIDs dataSpacePointsIDs = [] global previousStateActive previousStateActive = [] global StanceTest StanceTest = False global status status = True global factors factors = [1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1] global KNNModelsCount global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount global keyData keyData = 0 KNNModelsCount = 0 SVCModelsCount = 576 GausNBModelsCount = 736 MLPModelsCount = 1236 LRModelsCount = 1356 LDAModelsCount = 1996 QDAModelsCount = 2196 RFModelsCount = 2446 ExtraTModelsCount = 2606 AdaBModelsCount = 2766 GradBModelsCount = 2926 global XData XData = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 5 # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] return 'The reset was done!' # Retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def RetrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global XData XData = [] global previousState previousState = [] global previousStateActive previousStateActive = [] global status status = True global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 # models global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels KNNModels = [] SVCModels = [] GausNBModels = [] MLPModels = [] LRModels = [] LDAModels = [] QDAModels = [] RFModels = [] ExtraTModels = [] AdaBModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() elif data['fileName'] == 'BiodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) DataSetSelection() return 'Everything is okay' def Convert(lst): it = iter(lst) res_dct = dict(zip(it, it)) return res_dct # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def SendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' # Sent data to client @app.route('/data/ClientRequest', methods=["GET", "POST"]) def CollectionData(): json.dumps(DataResultsRaw) response = { 'Collection': DataResultsRaw } return jsonify(response) def DataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' def callPreResults(): global XData global yData global target_names global impDataInst DataSpaceResMDS = FunMDS(XData) DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = DataSpaceResTSNE.tolist() DataSpaceUMAP = FunUMAP(XData) XDataJSONEntireSetRes = XData.to_json(orient='records') global preResults preResults = [] preResults.append(json.dumps(target_names)) # Position: 0 preResults.append(json.dumps(DataSpaceResMDS)) # Position: 1 preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2 preResults.append(json.dumps(yData)) # Position: 3 preResults.append(json.dumps(AllTargets)) # Position: 4 preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5 preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6 preResults.append(json.dumps(impDataInst)) # Position: 7 # Sending each model's results to frontend @app.route('/data/requestDataSpaceResults', methods=["GET", "POST"]) def SendDataSpaceResults(): global preResults callPreResults() response = { 'preDataResults': preResults, } return jsonify(response) # Main function if __name__ == '__main__': app.run() # Debugging and mirroring client @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): if app.debug: return requests.get('http://localhost:8080/{}'.format(path)).text return render_template("index.html") # This block of code is for server computations def column_index(df, query_cols): cols = df.columns.values sidx = np.argsort(cols) return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist() def class_feature_importance(X, Y, feature_importances): N, M = X.shape X = scale(X) out = {} for c in set(Y): out[c] = dict( zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances) ) return out @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/EnsembleMode', methods=["GET", "POST"]) def EnsembleMethod(): global crossValidation global RANDOM_SEED global XData RANDOM_SEED = 42 RetrievedStatus = request.get_data().decode('utf8').replace("'", '"') RetrievedStatus = json.loads(RetrievedStatus) modeMethod = RetrievedStatus['defaultModeMain'] if (modeMethod == 'blend'): crossValidation = ShuffleSplit(n_splits=1, test_size=.20, random_state=RANDOM_SEED) else: crossValidation = 5 return 'Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def RetrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] toggle = RetrievedModel['Toggle'] global crossValidation global XData global yData global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount # loop through the algorithms global allParametersPerformancePerModel start = timeit.default_timer() print('CVorTT', crossValidation) for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = 0 elif (eachAlgor) == 'SVC': clf = SVC(probability=True,random_state=RANDOM_SEED) params = {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']} AlgorithmsIDsEnd = SVCModelsCount elif (eachAlgor) == 'GauNB': clf = GaussianNB() params = {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))} AlgorithmsIDsEnd = GausNBModelsCount elif (eachAlgor) == 'MLP': clf = MLPClassifier(random_state=RANDOM_SEED) params = {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} AlgorithmsIDsEnd = MLPModelsCount elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} AlgorithmsIDsEnd = LRModelsCount elif (eachAlgor) == 'LDA': clf = LinearDiscriminantAnalysis() params = {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']} AlgorithmsIDsEnd = LDAModelsCount elif (eachAlgor) == 'QDA': clf = QuadraticDiscriminantAnalysis() params = {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))} AlgorithmsIDsEnd = QDAModelsCount elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = RFModelsCount elif (eachAlgor) == 'ExtraT': clf = ExtraTreesClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = ExtraTModelsCount elif (eachAlgor) == 'AdaB': clf = AdaBoostClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']} AlgorithmsIDsEnd = AdaBModelsCount else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} AlgorithmsIDsEnd = GradBModelsCount allParametersPerformancePerModel = GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossValidation) # New visualization - model space # header = "model_id,algorithm_id,mean_test_accuracy,mean_test_precision_micro,mean_test_precision_macro,mean_test_precision_weighted,mean_test_recall_micro,mean_test_recall_macro,mean_test_recall_weighted,mean_test_roc_auc_ovo_weighted,geometric_mean_score_micro,geometric_mean_score_macro,geometric_mean_score_weighted,matthews_corrcoef,f5_micro,f5_macro,f5_weighted,f1_micro,f1_macro,f1_weighted,f2_micro,f2_macro,f2_weighted,log_loss\n" # dataReceived = [] # counter = 0 # for indx, el in enumerate(allParametersPerformancePerModel): # dictFR = json.loads(el) # frame = pd.DataFrame.from_dict(dictFR) # for ind, elInside in frame.iterrows(): # counter = counter + 1 # dataReceived.append(str(counter)) # dataReceived.append(',') # dataReceived.append(str(indx+1)) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_accuracy'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_roc_auc_ovo_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['matthews_corrcoef'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['log_loss'])) # dataReceived.append("\n") # dataReceivedItems = ''.join(dataReceived) # csvString = header + dataReceivedItems # fw = open ("modelSpace.csv","w+",encoding="utf-8") # fw.write(csvString) # fw.close() # call the function that sends the results to the frontend stop = timeit.default_timer() print('Time GridSearch: ', stop - start) SendEachClassifiersPerformanceToVisualize() return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossVal): print('loop') # this is the grid we use to train the models grid = GridSearchCV( estimator=clf, param_grid=params, cv=crossVal, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities grid.fit(XData, yData) # process the results cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): modelsIDs.append(AlgorithmsIDsEnd+i) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersPerformancePerModel = parametersPerformancePerModel.to_json() parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(str(index)) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] PerClassMetric = [] perModelProb = [] perModelPrediction = [] resultsMicro = [] resultsMacro = [] resultsWeighted = [] resultsCorrCoef = [] resultsMicroBeta5 = [] resultsMacroBeta5 = [] resultsWeightedBeta5 = [] resultsMicroBeta1 = [] resultsMacroBeta1 = [] resultsWeightedBeta1 = [] resultsMicroBeta2 = [] resultsMacroBeta2 = [] resultsWeightedBeta2 = [] resultsLogLoss = [] resultsLogLossFinal = [] loop = 8 # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() #impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs) for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) if (toggle == 1): perm = PermutationImportance(clf, cv = None, refit = True, n_iter = 25).fit(XData, yData) permList.append(perm.feature_importances_) n_feats = XData.shape[1] PerFeatureAccuracy = [] for i in range(n_feats): scores = model_selection.cross_val_score(clf, XData.values[:, i].reshape(-1, 1), yData, cv=5) PerFeatureAccuracy.append(scores.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) else: permList.append(0) PerFeatureAccuracyAll.append(0) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) perModelPrediction.append(yPredict) # retrieve target names (class names) PerClassMetric.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True)) yPredictProb = clf.predict_proba(XData) yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro')) resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro')) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5)) resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5)) resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5)) resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1)) resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1)) resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1)) resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2)) resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2)) resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(loop,'geometric_mean_score_micro',resultsMicro) metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro) metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef) metrics.insert(loop+4,'f5_micro',resultsMicroBeta5) metrics.insert(loop+5,'f5_macro',resultsMacroBeta5) metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5) metrics.insert(loop+7,'f1_micro',resultsMicroBeta1) metrics.insert(loop+8,'f1_macro',resultsMacroBeta1) metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1) metrics.insert(loop+10,'f2_micro',resultsMicroBeta2) metrics.insert(loop+11,'f2_macro',resultsMacroBeta2) metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2) metrics.insert(loop+13,'log_loss',resultsLogLossFinal) perModelPredPandas = pd.DataFrame(perModelPrediction) perModelPredPandas = perModelPredPandas.to_json() perModelProbPandas = pd.DataFrame(perModelProb) perModelProbPandas = perModelProbPandas.to_json() PerClassMetricPandas = pd.DataFrame(PerClassMetric) del PerClassMetricPandas['accuracy'] del PerClassMetricPandas['macro avg'] del PerClassMetricPandas['weighted avg'] PerClassMetricPandas = PerClassMetricPandas.to_json() perm_imp_eli5PD = pd.DataFrame(permList) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=chi2, k='all') fit = bestfeatures.fit(XData,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(XData.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() # gather the results and send them back results.append(modelsIDs) # Position: 0 and so on results.append(parametersPerformancePerModel) # Position: 1 and so on results.append(PerClassMetricPandas) # Position: 2 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(featureScores) # Position: 5 and so on metrics = metrics.to_json() results.append(metrics) # Position: 6 and so on results.append(perModelProbPandas) # Position: 7 and so on results.append(json.dumps(perModelPredPandas)) # Position: 8 and so on return results # Sending each model's results to frontend @app.route('/data/PerformanceForEachModel', methods=["GET", "POST"]) def SendEachClassifiersPerformanceToVisualize(): response = { 'PerformancePerModel': allParametersPerformancePerModel, } return jsonify(response) def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: if (isinstance(num, float)): if np.isnan(num): pass else: final_list.append(float(num)) else: final_list.append(num) return final_list # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendBrushedParam', methods=["GET", "POST"]) def RetrieveModelsParam(): RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) counterKNN = 0 counterSVC = 0 counterGausNB = 0 counterMLP = 0 counterLR = 0 counterLDA = 0 counterQDA = 0 counterRF = 0 counterExtraT = 0 counterAdaB = 0 counterGradB = 0 global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels global algorithmsList algorithmsList = RetrieveModelsPar['algorithms'] for index, items in enumerate(algorithmsList): if (items == 'KNN'): counterKNN += 1 KNNModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'SVC'): counterSVC += 1 SVCModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'GauNB'): counterGausNB += 1 GausNBModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'MLP'): counterMLP += 1 MLPModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LR'): counterLR += 1 LRModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LDA'): counterLDA += 1 LDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'QDA'): counterQDA += 1 QDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'RF'): counterRF += 1 RFModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'ExtraT'): counterExtraT += 1 ExtraTModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'AdaB'): counterAdaB += 1 AdaBModels.append(int(RetrieveModelsPar['models'][index])) else: counterGradB += 1 GradBModels.append(int(RetrieveModelsPar['models'][index])) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] # this is if we want to change the factors before running the search #if (len(allParametersPerformancePerModel) == 0): # pass #else: global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew global metricsPerModel sumPerClassifierSel = [] sumPerClassifierSel = preProcsumPerMetric(factors) ModelSpaceMDSNew = [] ModelSpaceTSNENew = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) metricsPerModel = preProcMetricsAllAndSel() flagLocal = 0 countRemovals = 0 for l,el in enumerate(factors): if el == 0: loopThroughMetrics.drop(loopThroughMetrics.columns[[l-countRemovals]], axis=1, inplace=True) countRemovals = countRemovals + 1 flagLocal = 1 if flagLocal == 1: ModelSpaceMDSNew = FunMDS(loopThroughMetrics) ModelSpaceTSNENew = FunTsne(loopThroughMetrics) ModelSpaceTSNENew = ModelSpaceTSNENew.tolist() return 'Everything Okay' @app.route('/data/UpdateOverv', methods=["GET", "POST"]) def UpdateOverview(): ResultsUpdateOverview = [] ResultsUpdateOverview.append(sumPerClassifierSel) ResultsUpdateOverview.append(ModelSpaceMDSNew) ResultsUpdateOverview.append(ModelSpaceTSNENew) ResultsUpdateOverview.append(metricsPerModel) response = { 'Results': ResultsUpdateOverview } return jsonify(response) def PreprocessingMetrics(): dicKNN = json.loads(allParametersPerformancePerModel[6]) dicSVC = json.loads(allParametersPerformancePerModel[15]) dicGausNB = json.loads(allParametersPerformancePerModel[24]) dicMLP = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[42]) dicLDA = json.loads(allParametersPerformancePerModel[51]) dicQDA = json.loads(allParametersPerformancePerModel[60]) dicRF = json.loads(allParametersPerformancePerModel[69]) dicExtraT = json.loads(allParametersPerformancePerModel[78]) dicAdaB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[96]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatMetrics def PreprocessingPred(): dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return predictions def PreprocessingPredUpdate(Models): Models = json.loads(Models) ModelsList= [] for loop in Models['ClassifiersList']: ModelsList.append(loop) dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) listProbs = df_concatProbs.index.values.tolist() deletedElements = 0 for index, element in enumerate(listProbs): if element in ModelsList: index = index - deletedElements df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index]) deletedElements = deletedElements + 1 df_concatProbsCleared = df_concatProbs listIDsRemoved = df_concatProbsCleared.index.values.tolist() predictionsAll = PreprocessingPred() PredictionSpaceAll = FunMDS(predictionsAll) PredictionSpaceAllComb = [list(a) for a in zip(PredictionSpaceAll[0], PredictionSpaceAll[1])] predictionsSel = [] for column, content in df_concatProbsCleared.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsSel.append(el) PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])] mtx2PredFinal = [] mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb) a1, b1 = zip(*mtx2Pred) mtx2PredFinal.append(a1) mtx2PredFinal.append(b1) return [mtx2PredFinal,listIDsRemoved] def PreprocessingParam(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_params = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_params def PreprocessingParamSep(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] return [dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered] def preProcessPerClassM(): dicKNN = json.loads(allParametersPerformancePerModel[2]) dicSVC = json.loads(allParametersPerformancePerModel[11]) dicGausNB = json.loads(allParametersPerformancePerModel[20]) dicMLP = json.loads(allParametersPerformancePerModel[29]) dicLR = json.loads(allParametersPerformancePerModel[38]) dicLDA = json.loads(allParametersPerformancePerModel[47]) dicQDA = json.loads(allParametersPerformancePerModel[56]) dicRF = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[74]) dicAdaB = json.loads(allParametersPerformancePerModel[83]) dicGradB = json.loads(allParametersPerformancePerModel[92]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatParams = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatParams def preProcessFeatAcc(): dicKNN = json.loads(allParametersPerformancePerModel[3]) dicSVC = json.loads(allParametersPerformancePerModel[12]) dicGausNB = json.loads(allParametersPerformancePerModel[21]) dicMLP = json.loads(allParametersPerformancePerModel[30]) dicLR = json.loads(allParametersPerformancePerModel[39]) dicLDA = json.loads(allParametersPerformancePerModel[48]) dicQDA = json.loads(allParametersPerformancePerModel[57]) dicRF = json.loads(allParametersPerformancePerModel[66]) dicExtraT = json.loads(allParametersPerformancePerModel[75]) dicAdaB = json.loads(allParametersPerformancePerModel[84]) dicGradB = json.loads(allParametersPerformancePerModel[93]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_featAcc = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_featAcc def preProcessPerm(): dicKNN = json.loads(allParametersPerformancePerModel[4]) dicSVC = json.loads(allParametersPerformancePerModel[13]) dicGausNB = json.loads(allParametersPerformancePerModel[22]) dicMLP = json.loads(allParametersPerformancePerModel[31]) dicLR = json.loads(allParametersPerformancePerModel[40]) dicLDA = json.loads(allParametersPerformancePerModel[49]) dicQDA = json.loads(allParametersPerformancePerModel[58]) dicRF = json.loads(allParametersPerformancePerModel[67]) dicExtraT = json.loads(allParametersPerformancePerModel[76]) dicAdaB = json.loads(allParametersPerformancePerModel[85]) dicGradB = json.loads(allParametersPerformancePerModel[94]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_perm = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_perm def preProcessFeatSc(): dicKNN = json.loads(allParametersPerformancePerModel[5]) dfKNN = pd.DataFrame.from_dict(dicKNN) return dfKNN # remove that maybe! def preProcsumPerMetric(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) == 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSel(): loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_micro']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_micro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_micro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted']) metricsPerModelColl.append(loopThroughMetrics['f5_micro']) metricsPerModelColl.append(loopThroughMetrics['f5_macro']) metricsPerModelColl.append(loopThroughMetrics['f5_weighted']) metricsPerModelColl.append(loopThroughMetrics['f1_micro']) metricsPerModelColl.append(loopThroughMetrics['f1_macro']) metricsPerModelColl.append(loopThroughMetrics['f1_weighted']) metricsPerModelColl.append(loopThroughMetrics['f2_micro']) metricsPerModelColl.append(loopThroughMetrics['f2_macro']) metricsPerModelColl.append(loopThroughMetrics['f2_weighted']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 19): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 21): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def preProceModels(): models = KNNModels + SVCModels + GausNBModels + MLPModels + LRModels + LDAModels + QDAModels + RFModels + ExtraTModels + AdaBModels + GradBModels return models def FunMDS (data): mds = MDS(n_components=2, random_state=RANDOM_SEED) XTransformed = mds.fit_transform(data).T XTransformed = XTransformed.tolist() return XTransformed def FunTsne (data): tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data) tsne.shape return tsne def FunUMAP (data): trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data) Xpos = trans.embedding_[:, 0].tolist() Ypos = trans.embedding_[:, 1].tolist() return [Xpos,Ypos] def InitializeEnsemble(): XModels = PreprocessingMetrics() global ModelSpaceMDS global ModelSpaceTSNE global allParametersPerformancePerModel global impDataInst XModels = XModels.fillna(0) ModelSpaceMDS = FunMDS(XModels) ModelSpaceTSNE = FunTsne(XModels) ModelSpaceTSNE = ModelSpaceTSNE.tolist() ModelSpaceUMAP = FunUMAP(XModels) PredictionProbSel = PreprocessingPred() PredictionSpaceMDS = FunMDS(PredictionProbSel) PredictionSpaceTSNE = FunTsne(PredictionProbSel) PredictionSpaceTSNE = PredictionSpaceTSNE.tolist() PredictionSpaceUMAP = FunUMAP(PredictionProbSel) ModelsIDs = preProceModels() impDataInst = processDataInstance(ModelsIDs,allParametersPerformancePerModel) callPreResults() key = 0 EnsembleModel(ModelsIDs, key) ReturnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionSpaceMDS,PredictionSpaceTSNE,PredictionSpaceUMAP) def processDataInstance(ModelsIDs, allParametersPerformancePerModel): dicKNN = json.loads(allParametersPerformancePerModel[8]) dicKNN = json.loads(dicKNN) dicSVC = json.loads(allParametersPerformancePerModel[17]) dicSVC = json.loads(dicSVC) dicGausNB = json.loads(allParametersPerformancePerModel[26]) dicGausNB = json.loads(dicGausNB) dicMLP = json.loads(allParametersPerformancePerModel[35]) dicMLP = json.loads(dicMLP) dicLR = json.loads(allParametersPerformancePerModel[44]) dicLR = json.loads(dicLR) dicLDA = json.loads(allParametersPerformancePerModel[53]) dicLDA = json.loads(dicLDA) dicQDA = json.loads(allParametersPerformancePerModel[62]) dicQDA = json.loads(dicQDA) dicRF = json.loads(allParametersPerformancePerModel[71]) dicRF = json.loads(dicRF) dicExtraT = json.loads(allParametersPerformancePerModel[80]) dicExtraT = json.loads(dicExtraT) dicAdaB = json.loads(allParametersPerformancePerModel[89]) dicAdaB = json.loads(dicAdaB) dicGradB = json.loads(allParametersPerformancePerModel[98]) dicGradB = json.loads(dicGradB) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA =
pd.DataFrame.from_dict(dicQDA)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd from aristote.feature_extraction.tfidf import Tfidf class TestTfIdf(object): def test_transform(self): tfidf = Tfidf() docs = ['where you from', 'where are you'] tfidf.fit_model(documents=docs) data = tfidf.transform(document=docs) t_data = np.array( [[0., 0.70490949, 0.50154891, 0.50154891], [0.70490949, 0., 0.50154891, 0.50154891]] ) t_data = [[round(x, 3) for x in xx] for xx in t_data] data = [[round(x, 3) for x in xx] for xx in data] assert data == t_data def test_get_features_name(self): tfidf = Tfidf() docs = ['where you from', 'where are you'] tfidf.fit_model(documents=docs) columns = tfidf.get_features_name t_columns = ['are', 'from', 'where', 'you'] assert columns == t_columns def test_end_to_end(self): tfidf = Tfidf() docs = ['where you from', 'where are you'] tfidf.fit_model(documents=docs) data = tfidf.transform(document=docs) columns = tfidf.get_features_name data = [[round(x, 3) for x in xx] for xx in data] df = pd.DataFrame(data) df.columns = columns t_data = np.array( [[0., 0.70490949, 0.50154891, 0.50154891], [0.70490949, 0., 0.50154891, 0.50154891]] ) t_columns = ['are', 'from', 'where', 'you'] t_data = [[round(x, 3) for x in xx] for xx in t_data] t_df =
pd.DataFrame(t_data)
pandas.DataFrame
# -*- coding: utf-8 -*- """arima_btc_monthly.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1UD3t9q6t9vDNTdDfGC1NrS46XNE15xvi """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objects as go from matplotlib.pyplot import figure from datetime import datetime from google.colab import drive drive.mount('/content/drive') BTC_monthly = pd.read_csv('/content/drive/Shareddrives/Crypto SP500 /data for arima/BTC-USD-monthly.csv') BTC_monthly['Date'] = pd.to_datetime(BTC_monthly['Date'], infer_datetime_format=True) BTC_monthly line = plt.plot(BTC_monthly['Date'],BTC_monthly['Close'], 'green',label = 'BTC') plt.title('BTC-usd price') plt.legend() plt.xticks(rotation = -45) plt.xlabel("Date") plt.ylabel("BTC price") plt.show() """https://www.kaggle.com/freespirit08/time-series-for-beginners-with-arima reference """ # Commented out IPython magic to ensure Python compatibility. from datetime import datetime import numpy as np #for numerical computations like log,exp,sqrt etc import pandas as pd #for reading & storing data, pre-processing import matplotlib.pylab as plt #for visualization #for making sure matplotlib plots are generated in Jupyter notebook itself # %matplotlib inline from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import acf, pacf from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.arima_model import ARIMA from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 10, 6 BTC_monthly.drop(columns=(['Open','High','Low','Adj Close','Volume']),axis=1,inplace=True) indexedBTC_monthly=BTC_monthly.set_index(['Date']) indexedBTC_monthly #From the plot below, we can see that there is a Trend compoenent in th series. #Hence, we now check for stationarity of the data #Determine rolling statistics rolmean = indexedBTC_monthly.rolling(window=12).mean() #window size 12 denotes 12 months, giving rolling mean at yearly level rolstd = indexedBTC_monthly.rolling(window=12).std() print(rolmean,rolstd) #Plot rolling statistics orig = plt.plot(indexedBTC_monthly, color='blue', label='Original Price') mean = plt.plot(rolmean, color='red', label='Rolling Mean') std = plt.plot(rolstd, color='black', label='Rolling Std') plt.legend(loc='best') #upper left location plt.title('Rolling Mean & Standard Deviation') plt.show(block=False) ''' "From the above graph, we see that rolling mean itself has a trend component even though rolling standard deviation is fairly constant with time. For our time series to be stationary, we need to ensure that both the rolling statistics ie: mean & std. dev. remain time invariant or constant with time. Thus the curves for both of them have to be parallel to the x-axis, which in our case is not so. To further augment our hypothesis that the time series is not stationary, let us perform the ADCF test." ''' #Perform Augmented Dickey–Fuller test: print('Results of Dickey Fuller Test:') dftest = adfuller(indexedBTC_monthly['Close'], autolag='AIC') dfoutput =
pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
pandas.Series
import pandas as pd import pyomo.environ as pe import os import shutil class invsys: def __init__(self,inp_folder='',dshed_cost=1000000,rshed_cost=500,vmin=0.8,vmax=1.2,sbase=100,ref_bus=0): """Initialise the investment problem. :param str inp_folder: The input directory for the data. It expects to find several CSV files detailing the system input data (Default current folder) :param float dshed_cost: Demand Shedding Price (Default 1000000) :param float rshed_cost: Renewable Shedding Price (Default 500) :param float vmin: Minimum node voltage (Default 0.8) :param float vmax: Maximum node voltage (Default 1.2) :param float sbase: Base Apparent Power (default 100 MVA) :param int ref_bus: Reference node (Default 0) :Example: >>> import pyeplan >>> sys_inv = pyeplan.invsys("3bus_inv") """ self.cgen =
pd.read_csv(inp_folder+os.sep+'cgen_dist.csv')
pandas.read_csv
#! /usr/bin/python import json import altair import pandas import datetime import bs4 import os import csv import statistics import locale #define constants #TODO Clean up to removal duplicate calls for yesterday workingDir = os.getcwd() yesterdayDate = datetime.date.today() - datetime.timedelta(1) yesterday = yesterdayDate.strftime('%Y-%m-%d') yesterdayDay = yesterdayDate.day yesterdayDayName = yesterdayDate.strftime("%A") yesterdayMonth = yesterdayDate.month yesterdayMonthName = yesterdayDate.strftime("%B") yesterdayYear= yesterdayDate.year yesterdayYearName = yesterdayDate.strftime("%Y") locale.setlocale(locale.LC_ALL, 'en_CA') ordinal = lambda n: "%d%s" % (n,"tsnrhtdd"[(n//10%10!=1)*(n%10<4)*n%10::4]) #load weather data #weatherData = pandas.read_csv('weatherData'+counterList['VictoriaWeatherStation'][0]+'.csv',parse_dates=['Date']).set_index('Date') weatherData = pandas.read_csv('weatherData114.csv',parse_dates=['Date']).set_index('Date') #read in counters list counterList = pandas.read_csv('countersToVisualize.csv',parse_dates=['FirstDate','FirstFullYear'], dtype={'VictoriaWeatherStation': str}) for index,row in counterList.iterrows(): print(row[['CounterID']][0]) counterName = row[['CounterName']][0] counterStartDate = row[['FirstDate']][0] #load data countFile = "counts-" + str(row[['CounterID']][0]) + ".csv" countExportFile = "counts-" + str(row[['CounterID']][0]) + "-export.csv" countData = pandas.read_csv(countFile,parse_dates=['Date']) specialDateFile = "specialDates.csv" specialDateData = pandas.read_csv(specialDateFile,parse_dates=['Date']) #setup counter map mapHTML ="var countmap = L.map('counterMap').setView([" + row[['Location']][0] + "], 15);var marker = L.marker([" + row[['Location']][0] + "]).addTo(countmap);var background = L.tileLayer.provider('Stamen.Toner').addTo(countmap);" #resample to daily count dailyCount = countData.resample('D',on='Date').sum() #determine total rides totalRides = dailyCount['Count'].sum() #remove all data from partial years dailyCount = dailyCount.loc[dailyCount.index >= row[['FirstFullYear']][0]] #add columns for weekly, monthly, and yearly cumulative total, plus weekday and day of the year YearlyCumSum = dailyCount.groupby(dailyCount.index.to_period('y')).cumsum() YearlyCumSum.rename(columns={'Count':'YearlyCumSum'}, inplace=True) MonthlyCumSum = dailyCount.groupby(dailyCount.index.to_period('m')).cumsum() MonthlyCumSum.rename(columns={'Count':'MonthlyCumSum'}, inplace=True) WeeklyCumSum = dailyCount.groupby(dailyCount.index.strftime('%y%W')).cumsum() WeeklyCumSum.rename(columns={'Count':'WeeklyCumSum'}, inplace=True) dailyCount = pandas.merge(dailyCount,YearlyCumSum,on='Date') dailyCount = pandas.merge(dailyCount,MonthlyCumSum,on='Date') dailyCount = pandas.merge(dailyCount,WeeklyCumSum,on='Date') dailyCount['WeekNum']=dailyCount.index.strftime('%W') dailyCount['Weekday']=dailyCount.index.dayofweek dailyCount['DayOfYear'] = dailyCount.index.dayofyear #append weather data to dailyCount dailyCount = pandas.merge(dailyCount,weatherData,on=['Date']) #write that list out to a csv file dailyCount.to_csv(countExportFile) #get yesterdays count yesterdayCount = dailyCount.loc[dailyCount.index==yesterday]['Count'][0] yesterdayCountString = locale.format_string("%d",yesterdayCount, grouping=True) #determine daily rank dailyRankAll = dailyCount.loc[dailyCount['Count']>yesterdayCount]['Count'].size+1 dailyRankThisYear=dailyCount.loc[dailyCount.index.year==datetime.datetime.now().year].loc[dailyCount['Count']>yesterdayCount]['Count'].size+1 dailyRankDayOnly=dailyCount.loc[dailyCount.index.dayofweek==yesterdayDate.weekday()].loc[dailyCount['Count']>yesterdayCount]['Count'].size+1 dailyRankMonthOnly=dailyCount.loc[dailyCount.index.month==yesterdayMonth].loc[dailyCount['Count']>yesterdayCount]['Count'].size+1 #TODO = genericize if dailyRankAll==1: dailyRankAll=None else: dailyRankAll = str(ordinal(dailyRankAll)) + " " if dailyRankThisYear==1: dailyRankThisYear=None else: dailyRankThisYear = str(ordinal(dailyRankThisYear)) + " " if dailyRankDayOnly==1: dailyRankDayOnly=None else: dailyRankDayOnly = str(ordinal(dailyRankDayOnly)) + " " if dailyRankMonthOnly==1: dailyRankMonthOnly=None else: dailyRankMonthOnly = str(ordinal(dailyRankMonthOnly)) + " " #Check if yesterday was anything special try: specialDateStringYesterday = "Yesterday was " + specialDateData[specialDateData['Date']==yesterdayDate].Event.iloc[0] + "" except IndexError as error: specialDateStringYesterday = None #craft the string for yesterday countString ="Yesterday saw " + yesterdayCountString + " bike rides," countStringYearlyRank = "".join(filter(None,("...", dailyRankThisYear,"busiest day of ",yesterdayYearName))) countStringMonthlyRank = "".join(filter(None,("...", dailyRankMonthOnly,"busiest day in ",yesterdayMonthName))) countStringDayRank = "".join(filter(None,("...", dailyRankDayOnly,"busiest ",yesterdayDayName))) countStringOverallRank = "".join(filter(None,("...", dailyRankAll,"busiest day overall"))) #resample to monthly count monthlyCount = countData.resample('M',on='Date').sum() monthlyCount['Month'] = monthlyCount.index monthlyCount = monthlyCount.loc[monthlyCount['Month'] >= '2015-01-31'] #Pull out the current month currentMonth = pandas.DataFrame(dailyCount.loc[dailyCount.index.month==yesterdayMonth]) #check if we are ahead or behind the average monthly cumulative sum #TODO genericize the function to deal with both yearly & monthly yesterdayMonthCumSumMean=statistics.mean(dailyCount.loc[(dailyCount.index.month==yesterdayMonth) & (dailyCount.index.day==yesterdayDay)].MonthlyCumSum) yesterdayMonthlyCumSum=
pandas.DataFrame(dailyCount.loc[dailyCount.index==yesterday])
pandas.DataFrame
# input files: train_image.csv, train_label.csv, test_image.csv # output file: test_predictions.csv # training: 10000 images # Hyperparameters NUM_INPUT = 784 NUM_H1 = 256 NUM_H2 = 128 NUM_H3 = 64 NUM_OUTPUT = 10 LEARNING = 0.01 BATCH_SIZE = 30 NUM_EPOCH = 30 import numpy as np import pandas as pd import sys import matplotlib.pyplot as plt import time ''' Neural Network Model: Input Layer: 784 (every pixel in 28x28 input image) Hidden Layer1 (h1): NUM_H1 (relu activation function) Hidden Layer2 (h2): NUM_H2 (relu activation function) Hidden Layer2 (h3): NUM_H3 (relu activation function) Output Layer: 10 (softmax function) crossentropy error function SGD learning, lr = 0.3 ''' class NN: def __init__(self): # initialize and save weights using Xavier weight initialization self.w1, self.b1 = self._init_weights(NUM_INPUT, NUM_H1) self.w2, self.b2 = self._init_weights(NUM_H1, NUM_H2) self.w3, self.b3 = self._init_weights(NUM_H2, NUM_H3) self.w4, self.b4 = self._init_weights(NUM_H3, NUM_OUTPUT) def _init_weights(self, num_input, num_output): w = np.random.normal(0.0, 0.01, (num_input, num_output)) b = np.zeros([1,num_output]) return w,b # num_samples -> num_samples x num_output def one_hot_encoded(self, labels): n = len(labels) output = np.zeros((n, NUM_OUTPUT), dtype=float) for i in range(n): output[i][labels[i]] = 1.0 return output # apply the function to each element in a matrix def _sigmoid(self, x): return np.piecewise(x,[x > 0],[lambda i: 1. / (1. + np.exp(-i)), lambda i: np.exp(i) / (1. + np.exp(i))],) # 1d array def _d_sigmoid(self, sigma): return sigma * (1.0 - sigma) def _relu(self, x): return np.maximum(0.,x) def _d_relu(self,x,z): x[z<0] = 0.0 return x # apply softmax to each instance def _softmax(self, x): x_max = np.max(x, axis=1, keepdims=True) exp = np.exp(x-x_max) return exp / np.sum(exp, axis=1, keepdims=True) # average cross loss def cross_entropy_loss(self, a3, y): m = y.shape[0] a3 = np.clip(a3, 1e-12, None) return -(1.0 / m) * np.sum(y * np.log(a3)) # forward propagation def forward_propagation(self, X): z1 = np.matmul(X, self.w1) + self.b1 a1 = self._relu(z1) z2 = np.matmul(a1, self.w2) + self.b2 a2 = self._relu(z2) z3 = np.matmul(a2, self.w3) + self.b3 a3 = self._relu(z3) z4 = np.matmul(a3, self.w4) + self.b4 a4 = self._softmax(z4) a = [a1, a2, a3, a4] z = [z1, z2, z3, z4] return a4, a, z # back propagation def back_propagation(self, X, Y, a, z): m = X.shape[0] a1, a2, a3, a4 = a[0], a[1], a[2], a[3] z1, z2, z3, z4 = z[0], z[1], z[2], z[3] dz4 = (1.0 / m)*(a4 - Y) dw4 = np.dot(a3.T, dz4) db4 = np.sum(dz4, axis=0, keepdims = True) dz3 = np.dot(dz4, self.w4.T) dz3 = self._d_relu(dz3, z3) dw3 = np.dot(a2.T, dz3) db3 = np.sum(dz3, axis=0, keepdims = True) dz2 = np.dot(dz3, self.w3.T) dz2 = self._d_relu(dz2, z2) dw2 = np.dot(a1.T, dz2) db2 = np.sum(dz2, axis=0, keepdims = True) dz1 = np.dot(dz2, self.w2.T) dz1 = self._d_relu(dz1, z1) dw1 = np.dot(X.T, dz1) db1 = np.sum(dz1, axis=0, keepdims = True) dw = [dw1, dw2, dw3, dw4] db = [db1, db2, db3, db4] return dw, db # update weights def update(self, dw, db, learning_rate): self.w1 = self.w1 - learning_rate * dw[0] self.b1 = self.b1 - learning_rate* db[0] self.w2 = self.w2 - learning_rate * dw[1] self.b2 = self.b2 - learning_rate* db[1] self.w3 = self.w3 - learning_rate * dw[2] self.b3 = self.b3 - learning_rate* db[2] self.w4 = self.w4 - learning_rate * dw[3] self.b4 = self.b4 - learning_rate* db[3] return def train(self, inputs, labels, learning_rate=LEARNING, num_epoch=NUM_EPOCH, batch_size=BATCH_SIZE): targets = self.one_hot_encoded(labels) # normalize inputs # inputs = inputs/np.linalg.norm(inputs, ord=2, axis=1, keepdims=True) N = len(inputs) indexes = [i for i in range(N)] cost_list = [] for e in range(num_epoch): # shuffle training data np.random.shuffle(indexes) Y_hat_epoch = np.zeros_like(targets) predictions = np.zeros_like(labels) curr_start = 0 while curr_start < N: curr_end = min(curr_start + BATCH_SIZE, N) X = inputs[indexes[curr_start:curr_end]] Y = targets[indexes[curr_start:curr_end]] # forward y_hat, a, z = self.forward_propagation(X) Y_hat_epoch[curr_start:curr_end] = y_hat predictions[curr_start:curr_end] = self.output_class(y_hat).flatten() # back dw, db = self.back_propagation(X, Y, a, z) # update parameter with average gradients in a mini-batch self.update(dw, db, learning_rate) curr_start += BATCH_SIZE Y_epoch = targets[indexes] cost = self.cross_entropy_loss(Y_hat_epoch, Y_epoch) accurate = 0. for i in range(len(labels)): if labels[indexes[i]] == predictions[i]: accurate += 1. accuracy = accurate / len(labels) print("At {}th epoch, cost is {}, train accuracy is {}".format(e + 1, cost, accuracy)) return # num_output*10 --> num_output def output_class(self, nn_output): return np.argmax(nn_output, axis=1) # given list of inputs output list of predicted classes def test(self, X): # normalize inputs # X = inputs/np.linalg.norm(X, ord=2, axis=1, keepdims=True) nn_output, a,z = self.forward_propagation(X) return self.output_class(nn_output) # read image def read_image_file(filename): df = pd.read_csv(filename, header = None) return df.values #return df.to_numpy() # read labels def read_label_file(filename): df = pd.read_csv(filename, header = None) return df.values.flatten() #return df.to_numpy().flatten() # write output, output is an array of classes def write_output_file(filename, output): output_2d = output.reshape((len(output),-1)) df =
pd.DataFrame(output_2d)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Tanh Kernel Approximation """ import os import random import pandas as pd import math import datetime from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import mean_squared_error from scipy.stats import norm from QMC import halton def baseline_eval_third(x, G, m): """Calculate the result of baseline random feature mapping Parameters ---------- x: array, dimension = d The data point to input to the baseline mapping G: matrix, dimension = m*d The matrix in the baseline random feature mapping m: integer The number of dimension that we want to reduce to """ return (1/m**0.5) * np.tanh(np.dot(G, x)) def gram_schmidt_columns(X): ''' Using QR decomoposition to obtain orthogonal matrix. Parameters ---------- X : matrix, dimension = m * d, where m <= d Random feature matrix with l2 normalized row. Returns ------- Q : matrix, dimension = m * d, where m <= d Orthogonal random feature matrix with l2 normalized row. ''' Q, R = np.linalg.qr(X) return Q def orthgonalize(V): ''' Generate matrix with multiple orthogonal blocks Parameters ---------- V : matrix, dimension = m * d, where m > d Random feature matrix with l2 normalized row. Returns ------- V_ : TYPE Random feature matrix with l2 normalized row and multiple blocks. ''' N = V.shape[0] d = V.shape[1] turns = int(N/d) remainder = N%d V_ = np.zeros_like(V) for i in range(turns): v = gram_schmidt_columns(V[i*d:(i+1)*d, :].T).T V_[i*d:(i+1)*d, :] = v if remainder != 0: V_[turns*d+1:,:] = gram_schmidt_columns(V[turns*d+1:,:].T).T return V_ def find_sigma(random_sample): ''' Find an appropriate scaling parameter for the kernel value. Parameters ---------- random_sample : list Store some samples from the dataset. Returns ------- float Average of all 50th smallest distances. ''' all_distances = [] for i in range(len(random_sample)): #print(f'Calculating the distance of {i}th samples') distances = [] for j in range(len(random_sample)): if j!=i: distances.append(np.linalg.norm(random_sample[i] - random_sample[j])) distances.sort() all_distances.append(distances[50]) return np.mean(all_distances) def random_rotation(matrix, G_ortho): ''' Perform random rotation. Parameters ---------- matrix : matrix The matrix to rotate. G_ortho : matrix The matrix for . Returns ------- result : TYPE DESCRIPTION. ''' result = np.zeros_like(matrix) m = matrix.shape[0] d = matrix.shape[1] for i in range(m): result[i, :] = np.dot(G_ortho[:d], matrix[i, :]) return result def read_in_nomc_matrices(d, d_): ''' Read in pre-calculated near orthogonal random matrices. Parameters ---------- d : int Dimension of data features. d_ : int Number of multipliers. Returns ------- all_V : list A list of NOMC matrices. ''' all_V = [] for N in [d*i for i in range(1,d_+1)]: V_s = [] for m in range(500): try: with open(f'{os.getcwd()}/data Apr13/N={N}/V_d=10_N={N}_iter=20000_m={m}.npy', 'rb') as f: # The address above is subject to change V = np.load(f) V_s.append(V) except: pass all_V.append(V_s) return all_V def generate_data(d): ''' Data generator. Generate data for kernel approximation Parameters ---------- d : int Dimension of data features. Returns ------- data : list A list of features. ''' letters = pd.read_csv('letter-recognition.csv') letters = np.asarray(letters) data = np.zeros((letters.shape[0], d)) for i in range(letters.shape[0]): for j in range(1, data.shape[1]+1): data[i,j-1] = letters[i,j] data = list(data) return data def generate_halton_sequences(episode, epoch): ''' Generate halton sequences Parameters ---------- episode: int Number of outer experiments. epoch: int Number of inner experiments. Returns ------- all_halton : list A list of halton sequences. ''' all_halton = [] for i in tqdm(range(1, epoch * episode + 1), position = 0, leave = True): all_halton.append(halton(i, 10)) return all_halton def generate_qmc_features(d, d_, epoch, all_halton): ''' Generate random features using Quasi Monte Carlo, which leverages the halton sequences Parameters ---------- d : int Dimension of data features. d_ : int Number of multipliers. epoch : int Number of inner experiments. all_halton : list A list of halton sequences. Returns ------- None. ''' all_V_qmc = [] for n in [d*i for i in range(1,d_+1)]: V_qmc = [] for i in range(epoch): V_qmc.append(norm.ppf(all_halton[n*i: n*(i+1)])) all_V_qmc.append(V_qmc) return all_V_qmc def plot(episode, d_, MSE_iid_, MSE_qmc_, MSE_orthog_, MSE_max_ang_): ''' Plot the MSE at each multiplier of all methods. Parameters ---------- episode : int Number of outer experiments. d_ : int Number of multipliers. MSE_iid_ : list MSEs of MC in all experiments. MSE_qmc_ : list MSEs of QMC in all experiments. MSE_orthog_ : list MSEs of BOMC in all experiments. MSE_max_ang_ : list MSEs of NOMC in all experiments. Returns ------- None. ''' x1 = range(1, d_+1) x1 = x1 + np.zeros((episode, d_)) x1 = np.sort(x1.reshape(episode*d_,)) mse_iid_ = np.asarray(MSE_iid_).reshape(-1) category = ['iid' for i in range(episode*d_)] df1 = pd.DataFrame({'D/d': x1, 'MSE':mse_iid_, 'Category':category}) mse_qmc_ = np.asarray(MSE_qmc_).reshape(-1) category = ['QMC' for i in range(episode*d_)] df2 = pd.DataFrame({'D/d': x1, 'MSE':mse_qmc_, 'Category':category}) mse_ortho_ = np.asarray(MSE_orthog_).reshape(-1) category = ['OG' for i in range(episode*d_)] df3 =
pd.DataFrame({'D/d': x1, 'MSE':mse_ortho_, 'Category':category})
pandas.DataFrame
import math import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from opacus import PrivacyEngine, utils, autograd_grad_sample try: from .dpctgan import DPCTGAN from .patectgan import PATECTGAN except: import logging logger = logging.getLogger(__name__) logger.warning('Requires "pip install ctgan" for DPCTGAN') from .privacy_utils import weights_init, pate, moments_acc class Generator(nn.Module): def __init__(self, latent_dim, output_dim, binary=True): super(Generator, self).__init__() def block(in_, out, Activation): return nn.Sequential( nn.Linear(in_, out, bias=False), nn.LayerNorm(out), Activation(), ) self.layer_0 = block(latent_dim, latent_dim, nn.Tanh if binary else lambda: nn.LeakyReLU(0.2)) self.layer_1 = block(latent_dim, latent_dim, nn.Tanh if binary else lambda: nn.LeakyReLU(0.2)) self.layer_2 = block(latent_dim, output_dim, nn.Tanh if binary else lambda: nn.LeakyReLU(0.2)) def forward(self, noise): noise = self.layer_0(noise) + noise noise = self.layer_1(noise) + noise noise = self.layer_2(noise) return noise class Discriminator(nn.Module): def __init__(self, input_dim, wasserstein=False): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(input_dim, 2*input_dim // 3), nn.LeakyReLU(0.2), nn.Linear(2*input_dim // 3, input_dim // 3), nn.LeakyReLU(0.2), nn.Linear(input_dim // 3, 1) ) if not wasserstein: self.model.add_module("activation", nn.Sigmoid()) def forward(self, x): return self.model(x) class DPGAN: def __init__(self, binary=False, latent_dim=64, batch_size=64, epochs=1000, delta=1e-5, epsilon=1.0): self.binary = binary self.latent_dim = latent_dim self.batch_size = batch_size self.epochs = epochs self.delta = delta self.epsilon = epsilon self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.pd_cols = None self.pd_index = None def train(self, data, categorical_columns=None, ordinal_columns=None, update_epsilon=None): if update_epsilon: self.epsilon = update_epsilon if isinstance(data, pd.DataFrame): for col in data.columns: data[col] =
pd.to_numeric(data[col], errors='ignore')
pandas.to_numeric
# DGCNN classification of microbial correlation networks and # node importance calculation import stellargraph as sg try: sg.utils.validate_notebook_version("1.2.1") except AttributeError: raise ValueError( f"This notebook requires StellarGraph version 1.2.1, but a different version {sg.__version__} is installed. Please see <https://github.com/stellargraph/stellargraph/issues/1172>." ) from None import pandas as pd import numpy as np from stellargraph.mapper import PaddedGraphGenerator from stellargraph.layer import DeepGraphCNN from stellargraph import StellarGraph from sklearn import model_selection from tensorflow.keras import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Conv1D, MaxPool1D, Dropout, Flatten from tensorflow.keras.losses import binary_crossentropy, categorical_crossentropy from tensorflow.keras.metrics import Precision, Recall, AUC import tensorflow as tf import pickle def read_graphs2(W, node_features=None): """Read graphs into list of StellarGraph instances Args: W: dataframe of graphs with 4 columns: graph_id, source, target, weight node_features: node feature matrix, if None will use identity """ out = list() gid0 = W.iloc[0].at['graph_id'] g0 = W[W.graph_id == gid0] nodes = list(set(g0.source).union(set(g0.target))) if not node_features: node_features = sg.IndexedArray(np.identity(len(nodes)), index=list(nodes)) for _, g in W.groupby('graph_id'): out.append(StellarGraph(nodes=node_features, edges=g.drop(columns='graph_id'), node_type_default='microbe', edge_type_default='correlation')) # Check all graphs have the same number of nodes nn = [g.number_of_nodes() for g in out] if not all(nn[0] == x for x in nn): raise ValueError( "Not all graphs have same number of nodes." ) return out def train_dgcnn(graphs, graph_labels, n_epochs=50): """ Build and train DGCNN model """ generator = PaddedGraphGenerator(graphs=graphs) k = graphs[0].number_of_nodes() # the number of rows for the output tensor, no truncation # done here because all graphs have same number of nodes layer_sizes = [32, 32, 32, 1] dgcnn_model = DeepGraphCNN( layer_sizes=layer_sizes, activations=["tanh", "tanh", "tanh", "tanh"], k=k, bias=False, generator=generator, ) x_inp, x_out = dgcnn_model.in_out_tensors() x_out = Conv1D(filters=16, kernel_size=sum(layer_sizes), strides=sum(layer_sizes))(x_out) x_out = MaxPool1D(pool_size=2)(x_out) x_out = Conv1D(filters=32, kernel_size=5, strides=1)(x_out) x_out = Flatten()(x_out) x_out = Dense(units=128, activation="relu")(x_out) x_out = Dropout(rate=0.5)(x_out) predictions = Dense(units=1, activation="sigmoid")(x_out) model = Model(inputs=x_inp, outputs=predictions) model.compile( optimizer=Adam(learning_rate=0.0001), loss=binary_crossentropy, metrics=["accuracy", Precision(name='precision'), Recall(name='recall'), AUC(name='auc')], ) train_graphs, test_graphs = model_selection.train_test_split( graph_labels, train_size=0.8, test_size=None, stratify=graph_labels ) gen = PaddedGraphGenerator(graphs=graphs) # if use symmetric normalization, problem arise in negative degree values (because of negative correlations), # and so can't take square root of those. train_gen = gen.flow( list(train_graphs.index), targets=train_graphs.values, batch_size=50, symmetric_normalization=False, weighted=True, ) test_gen = gen.flow( list(test_graphs.index), targets=test_graphs.values, batch_size=1, symmetric_normalization=False, weighted=True, ) history = model.fit( train_gen, epochs=n_epochs, verbose=0, validation_data=test_gen, shuffle=True ) # Print test set metrics test_metrics = model.evaluate(test_gen, verbose=0) print(f'Test Set Metrics: ') for name, val in zip(model.metrics_names, test_metrics): print("\t{}: {:0.4f}".format(name, val)) return model, test_metrics, history class ImportanceDGCNN: def __init__(self, W, model, node_features=None): """Initialize object for computing importance in the DGCNN graph classification model Args: W: dataframe of graphs with 4 columns: graph_id, source, target, weight node_features: used to build StellarGraph graph instance, same as used in read_graphs model: the trained keras model of DGCNN """ # Take any graph from W to find its nodes and edges gid0 = W.iloc[0].at['graph_id'] g0 = W[W['graph_id'] == gid0] self.nodes = list(set(g0.source).union(set(g0.target))) self.edges = list(zip(g0.source, g0.target)) self.ngraphs = W.groupby('graph_id').ngroups self.model = model if not node_features: node_features = sg.IndexedArray(np.identity(len(self.nodes)), index=list(self.nodes)) self._W = W self._node_features = node_features # Check if all graphs have same set of edges for _, g in W.groupby('graph_id'): if set(zip(g.source, g.target)) != set(self.edges): raise ValueError("Not all graphs have the same set of edges. This case is not implemented.") def _null_edge_graphs(self, val=0): """ Generator of StellarGraph graphs with exactly one edge set to 'val' (default 0) """ for src, tar in self.edges: cond = (self._W['source'] == src) & (self._W['target'] == tar) W2 = self._W.copy() W2['weight'].mask(cond, val, inplace=True) # set weights corresonding to edge to 0 for _, g in W2.groupby('graph_id'): yield StellarGraph(nodes=self._node_features, edges=g.drop(columns='graph_id'), node_type_default='microbe', edge_type_default='correlation') def _null_node_graphs(self): """ Generator of StellarGraph graphs with all edges incident to a node set to 0 """ for n in self.nodes: cond = (self._W['source'] == n) | (self._W['target'] == n) W2 = self._W.copy() W2['weight'].mask(cond, 0, inplace=True) for _, g in W2.groupby('graph_id'): yield StellarGraph(nodes=self._node_features, edges=g.drop(columns='graph_id'), node_type_default='microbe', edge_type_default='correlation') def _null_2nodes_graphs(self): """Generator of StellarGraph graphs with all edges incident to two nodes set to 0 """ for n1, n2 in self.edges: cond1 = (self._W['source'] == n1) | (self._W['target'] == n1) cond2 = (self._W['source'] == n2) | (self._W['target'] == n2) W2 = self._W.copy() W2['weight'].mask(cond1 | cond2, 0, inplace=True) for _, g in W2.groupby('graph_id'): yield StellarGraph(nodes=self._node_features, edges=g.drop(columns='graph_id'), node_type_default='microbe', edge_type_default='correlation') def _null_nnodes_graphs(self, nlist): """ Generator of StellarGraph graphs with all edges incident to n nodes set to 0, Assume the first n-1 nodes are given as nlist, the generator then generates graphs where each of the remaining len(self.nodes) - len(nlist) is added to the given n-1 nodes, and edges linked to the resulting n nodes are set to 0. """ from functools import reduce import operator if not set(nlist).issubset(self.nodes): raise ValueError("Not all provided nodes are found in the graph") conds = [(self._W['source'] == nd) | (self._W['target'] == nd) for nd in nlist] for n in self.nodes: if n in nlist: continue combined_cond = conds + [(self._W['source'] == n) | (self._W['target'] == n)] reduced_cond = reduce(operator.or_, combined_cond) W2 = self._W.copy() W2['weight'].mask(reduced_cond, 0, inplace=True) for _, g in W2.groupby('graph_id'): yield StellarGraph(nodes=self._node_features, edges=g.drop(columns='graph_id'), node_type_default='microbe', edge_type_default='correlation') @staticmethod def _batch(iterable, n): """ Generate prediction batch of size n, using the grouper idiom """ iters = [iter(iterable)] * n return zip(*iters) @staticmethod def compute_lor(pred, P_new): """ Compute log-odds ratio between new and original predicted probs Args: pred: prediction on the original graphs, output of model.predict(), shape N-by-1, where N number of graph instances P_new: predicition on new graphs, shape N-by-K, where K = number of edges/nodes depending on edge or node importance Returns: numpy array same shape as P_new """ eps = 1e-6 lo1 = np.log(P_new+eps) - np.log(1-P_new+eps) lo2 = np.log(pred+eps) - np.log(1-pred+eps) return lo1 - lo2 def read_sg(self): """ Read graphs into list of StellarGraph instances """ out = list() for _,g in self._W.groupby('graph_id'): out.append(StellarGraph(nodes=self._node_features, edges=g.drop(columns='graph_id'), node_type_default='microbe', edge_type_default='correlation')) return out def predict_graph(self, graphs): """Use the model to predict the probability of positive class Args: graphs: list of StellarGraph graph instances """ fl = PaddedGraphGenerator(graphs=graphs).flow(range(len(graphs)), batch_size=len(graphs), symmetric_normalization=False, weighted=True) return self.model.predict(fl) def edge_imp(self, set_wt=0): """Calclate edge importance by change in log-odds between the original graph and one where an edge weight is set to 'set_wt' (default 0) """ sg = self.read_sg() pred = self.predict_graph(sg) P_new = np.empty((self.ngraphs, len(self.edges))) gen = self._null_edge_graphs(set_wt) for i, bch in enumerate(ImportanceDGCNN._batch(gen, self.ngraphs)): pred_new = self.predict_graph(list(bch)).reshape(-1) P_new[:,i] = pred_new print(f'{i}: EDGE {self.edges[i]} DONE.') LR = ImportanceDGCNN.compute_lor(pred, P_new) stats = self.summary_stats(LR, 'edge') self.LR_edge, self.LR_edge_stats = LR, stats return stats, LR def node_imp(self): """Calclate node importance by change in log-odds between the original graph and one where all edges linked to a node is set to 0. """ sg = self.read_sg() pred = self.predict_graph(sg) P_new = np.empty((self.ngraphs, len(self.nodes))) gen = self._null_node_graphs() for i, bch in enumerate(ImportanceDGCNN._batch(gen, self.ngraphs)): pred_new = self.predict_graph(list(bch)).reshape(-1) P_new[:,i] = pred_new print(f'{i}: NODE {self.nodes[i]} DONE.') LR = ImportanceDGCNN.compute_lor(pred, P_new) stats = self.summary_stats(LR, 'node') self.LR_node, self.LR_node_stats = LR, stats return stats, LR def node_pair_imp(self): """Calculate node pair importance by knocking out each pair of nodes """ sg = self.read_sg() pred = self.predict_graph(sg) P_new = np.empty((self.ngraphs, len(self.edges))) gen = self._null_2nodes_graphs() for i, bch in enumerate(ImportanceDGCNN._batch(gen, self.ngraphs)): pred_new = self.predict_graph(list(bch)).reshape(-1) P_new[:,i] = pred_new print(f'{i}: NODES {self.edges[i][0], self.edges[i][1]} DONE.') LR = ImportanceDGCNN.compute_lor(pred, P_new) stats = self.summary_stats(LR, 'node2') self.LR_node2, self.LR_node2_stats = LR, stats return stats, LR def nnode_imp(self, n): """Calculate n-node importance by knocking out n nodes, using a greedy search strategy where after the first node resulting in maximum change in log-odds is found, the node from the remaining node set resulting in maximun change in log-odds is added to form 2-node, and it continues until n nodes are added Returns: List of tuples. The first component is the names of knocked-out nodes, the second component is LR of shape (n_graphs, n_nodes-k+1), with n_nodes-k+1 equal to the length of the first component. Return all k-node importance from k = 1 to n """ sg = self.read_sg() pred = self.predict_graph(sg) n_full = list(self.nodes) nlist = [] out = [] for k in range(1, n+1): P_new = np.empty((self.ngraphs, len(self.nodes)-k+1)) if k == 1: gen = self._null_node_graphs() else: gen = self._null_nnodes_graphs(nlist) for i, bch in enumerate(ImportanceDGCNN._batch(gen, self.ngraphs)): pred_new = self.predict_graph(list(bch)).reshape(-1) P_new[:,i] = pred_new # Find which node to add to nlist LR = ImportanceDGCNN.compute_lor(pred, P_new) maxi = np.argmax(np.median(np.abs(LR), axis=0)) # index of node with max median absolute LR n_remain = [nn for nn in n_full if nn not in nlist] out.append(([tuple(nlist + [x]) for x in n_remain], LR)) nlist = nlist + [n_remain[maxi]] return out def summary_stats(self, LR, which): """ Get mean, median and std err of log-odds ratio """ lor_mean, lor_med = np.mean(LR, axis=0), np.median(LR, axis=0) lor_std = np.std(LR, axis=0) df = pd.DataFrame({'lor_mean': lor_mean, 'lor_med': lor_med, 'std_err': lor_std/np.sqrt(LR.shape[0])}) if which == 'edge': df['source'] = [e[0] for e in self.edges] df['target'] = [e[1] for e in self.edges] if which == 'node': df['node'] = self.nodes if which == 'node2': df['node1'] = [e[0] for e in self.edges] df['node2'] = [e[1] for e in self.edges] return df def save_imp_res(node_res, edge_res=None, runid='run'): with open('imp_' + runid + '.pkl', 'wb') as pickle_out: pickle.dump(node_res, pickle_out) # serialize node importance result if edge_res: pickle.dump(edge_res, pickle_out) # Main script def main(): K = 10 # number of DGCNN runs N_EPOCH = 100 # number of epochs per run IMP_SUBSAMPLE = 0.3 # fraction of graphs sampled per DGCNN run used to calculate importance, # decrease this if out-of-memory N = 21 # up to N-node importance W_ctrl = pd.read_csv('W_mbqc_ctrl.csv', dtype={'graph_id': 'int'}) W_case = pd.read_csv('W_mbqc_case.csv', dtype={'graph_id': 'int'}) g_ctrl = read_graphs2(W_ctrl) g_case = read_graphs2(W_case) graphs = g_ctrl + g_case graph_labels = pd.Series(len(g_ctrl) * ['0'] + len(g_case) * ['1']) graph_labels =
pd.get_dummies(graph_labels, drop_first=True)
pandas.get_dummies
# coding: utf-8 # ### Import # In[1]: from bs4 import BeautifulSoup import requests import numpy as np import pandas as pd import xgboost import xgboost as xgb from xgboost.sklearn import XGBClassifier from sklearn.metrics import * from IPython.core.display import Image from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix from sklearn.tree import export_graphviz import io from sklearn.preprocessing import Imputer import pydot from sklearn import preprocessing import lightgbm as lgb from scipy.stats import mode import re from datetime import datetime from lightgbm import plot_importance import warnings warnings.filterwarnings('ignore') # --- # ### Date read # In[12]: age_gender_bkts = pd.read_csv("age_gender_bkts.csv") countries = pd.read_csv("countries.csv") sessions = pd.read_csv("sessions.csv") test_users = pd.read_csv("test_users.csv") train_users_2 = pd.read_csv("train_users_2.csv") sample_submission_NDF =
pd.read_csv("sample_submission_NDF.csv")
pandas.read_csv
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import missingno as ms import re from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix,f1_score from sklearn.metrics import accuracy_score from nltk.corpus import stopwords from nltk.tokenize import word_tokenize train_data = pd.read_csv('dataset.csv') train_data.info() print(train_data['label'].value_counts()) def drop_features(features,data): data.drop(features,inplace=True,axis=1) a = re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])", " ","Hahahahahaa chal janu zaroor 😂😂😂😂😂") print(a) def process_text(text): return " ".join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])", " ", str(text).lower()).split()) train_data['processed_text'] = train_data['text'].apply(process_text) print(train_data.head(10)) drop_features(['id','text'],train_data) print(train_data.head(10)) train_data.info() file = open("rusp.txt","r") a = file.readlines() aa = [] for w in a: aa.append(process_text(w)) stop_words = set(aa) file.close() def process_stopwords(text): stop_words = set(aa) word_tokens = word_tokenize(text) filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) return " ".join(filtered_sentence) train_data['processed_text2'] = train_data['processed_text'].apply(process_stopwords) drop_features(['processed_text'],train_data) print(train_data.head(10)) train_data.info() x_train, x_test, y_train, y_test = train_test_split(train_data["processed_text2"],train_data["label"], test_size = 0.2, random_state = 42) count_vect = CountVectorizer() transformer = TfidfTransformer(norm='l2',sublinear_tf=True) x_train_counts = count_vect.fit_transform(x_train) x_train_tfidf = transformer.fit_transform(x_train_counts) print(x_train_counts.shape) print(x_train_tfidf.shape) x_test_counts = count_vect.transform(x_test) x_test_tfidf = transformer.transform(x_test_counts) print(x_test_counts.shape) print(x_test_tfidf.shape) model = RandomForestClassifier(n_estimators=200) model.fit(x_train_tfidf,y_train) predictions = model.predict(x_test_tfidf) print(confusion_matrix(y_test,predictions)) f1_score(y_test,predictions) print(accuracy_score(y_test,predictions)) #Preparing test data test_data =
pd.read_csv('test.csv')
pandas.read_csv
def count_used_modules_per_team(pipelines): from collections import defaultdict import pandas as pd team_module_count = defaultdict(lambda: defaultdict(int)) for pipeline in pipelines: source_name = pipeline['pipeline_source']['name'] for module in pipeline['steps']: module_id = '.'.join(module['primitive']['python_path'].split('.')[2:]) team_module_count[module_id][source_name] += 1 df = pd.DataFrame(team_module_count).fillna(0) df = df.reset_index().melt(id_vars="index") return df df = count_used_modules_per_team(pipelines_problem["185_baseball_problem_TRAIN"]) alt.Chart(df).mark_circle().encode(x = "variable", y="value", color='index', tooltip=['index','variable', 'value'] ).properties( title='Module usage per team' ) def count_hyperparameters_per_team(pipelines): from collections import defaultdict import pandas as pd team_module_param_count = defaultdict(lambda: defaultdict(int)) for pipeline in pipelines: source_name = pipeline['pipeline_source']['name'] for module in pipeline['steps']: module_id = '.'.join(module['primitive']['python_path'].split('.')[2:]) if ('hyperparams' in module): team_module_param_count[module_id][source_name] += 1 else: team_module_param_count[module_id][source_name] += 0 df =
pd.DataFrame(team_module_param_count)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import Dict, Tuple, List, Tuple, Union from typing import NewType, Callable, Iterable from typing import Mapping, Sequence, TypeVar, Generic, Any import multiprocessing as mp from subprocess import Popen, PIPE, call import fiona # type: ignore from lcmodel_typed import LC_Initialize, compute_simple_statistics import pandas as pd # type: ignore import numpy as np # type: ignore import logging import datetime from operator import itemgetter import sys import os log_level = logging.INFO # create logger logger = logging.getLogger(__name__) logger.setLevel(log_level) fh = logging.FileHandler('script_output-para_stats_forest_loss_no_class_single.log') console = logging.StreamHandler(sys.stdout) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') formatter = logging.Formatter('%(asctime)s - %(message)s') fh.setFormatter(formatter) # add the handlers to the logger # logger.addHandler(console) logger.addHandler(fh) # these are class/year based single_metrics = ['Edge density', 'Mean patch area', 'Median patch area', 'Euclidean Nearest-Neighbor Distance', 'Like adjacencies', 'Overall Core area', 'Patch cohesion index'] # these are landscape based without class land_metrics = ["LC_Mean", "LC_Min", "LC_Sum", "LC_Max", "LC_SD", "LC_LQua", "LC_Med", "LC_UQua", "DIV_SI"] def yield_features(filename) -> Iterable[str]: with fiona.open(path=filename) as fh: for feat in fh: # print(feat) if str(feat.get("id")) == "32956": pass yield str(feat.get("id")) def calculate_for_feature(featureid: str) -> Dict: # logger.info("run lcmodel stats over the tile and store result table") folder = "../forest_loss_all" raster = os.path.join( folder, "amz_prode_NA_utm_corrected_tile_{}.tif".format(featureid)) # initialise per tile values empty dict results_dict: Dict[str, Union[str, float]] = {} results_dict['tile_id'] = featureid try: lc_calc = LC_Initialize(raster) lc_calc.create_cl_array_for_class(None) lc_calc.f_ccl(lc_calc.cl_array) for smt in single_metrics: met_tup = lc_calc.execSingleMetric(smt, None) results_dict[smt] = met_tup[1] except Exception as ex: logger.error(ex) for smt in single_metrics: results_dict[smt] = 0.0 logger.info("For tile {} -> {}".format(featureid, results_dict)) return results_dict if __name__ == '__main__': mp.freeze_support() num_cores: int = int(mp.cpu_count()/4) start = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") logger.info( "initialising at ... {} with num cores: {}".format(start, num_cores)) fishnet = "calc_grid_10km_basic.shp" ######################################## # initialise empty dict for land metrics ######################################## # initialise empty dict data_dict: Dict[str, List] = {} data_dict['tile_id'] = [] for smt in single_metrics: data_dict[smt] = [] # Run processes for single metrics pool = mp.Pool(processes=num_cores) results: List[Dict] = [pool.apply( calculate_for_feature, args=(x, )) for x in yield_features(fishnet)] pool.close() sorted_results = sorted(results, key=itemgetter('tile_id')) for res in sorted_results: data_dict['tile_id'].append(res.get("tile_id")) for smt in single_metrics: data_dict[smt].append(res.get(smt)) # d = {'tile_id': [1, 2], 'patch_area': [3, 4]} ... df =
pd.DataFrame(data=data_dict)
pandas.DataFrame
import requests import pandas as pd import numpy as np import arviz as az idx = pd.IndexSlice def get_raw_covidtracking_data(): """ Gets the current daily CSV from COVIDTracking """ url = "https://covidtracking.com/api/v1/states/daily.csv" data = pd.read_csv(url) return data def process_covidtracking_data(data: pd.DataFrame, run_date: pd.Timestamp): """ Processes raw COVIDTracking data to be in a form for the GenerativeModel. In many cases, we need to correct data errors or obvious outliers.""" data = data.rename(columns={"state": "region"}) data["date"] = pd.to_datetime(data["date"], format="%Y%m%d") data = data.set_index(["region", "date"]).sort_index() data = data[["positive", "total"]] # Too little data or unreliable reporting in the data source. data = data.drop(["MP", "GU", "AS", "PR", "VI"]) # On Jun 5 Covidtracking started counting probable cases too # which increases the amount by 5014. # https://covidtracking.com/screenshots/MI/MI-20200605-184320.png data.loc[idx["MI", pd.Timestamp("2020-06-05") :], "positive"] -= 5014 # From CT: On June 19th, LDH removed 1666 duplicate and non resident cases # after implementing a new de-duplicaton process. data.loc[idx["LA", pd.Timestamp("2020-06-19") :], :] += 1666 # Now work with daily counts data = data.diff().dropna().clip(0, None).sort_index() # Michigan missed 6/18 totals and lumped them into 6/19 so we've # divided the totals in two and equally distributed to both days. data.loc[idx["MI", pd.Timestamp("2020-06-18")], "total"] = 14871 data.loc[idx["MI", pd.Timestamp("2020-06-19")], "total"] = 14871 # Note that when we set total to zero, the model ignores that date. See # the likelihood function in GenerativeModel.build # Huge outlier in NJ causing sampling issues. data.loc[idx["NJ", pd.Timestamp("2020-05-11")], :] = 0 # Huge outlier in CA causing sampling issues. data.loc[idx["CA", pd.Timestamp("2020-04-22")], :] = 0 # Huge outlier in CA causing sampling issues. # TODO: generally should handle when # tests == # positives and that # is not an indication of positive rate. data.loc[idx["SC", pd.Timestamp("2020-06-26")], :] = 0 # Two days of no new data then lumped sum on third day with lack of new total tests data.loc[idx["OR", pd.Timestamp("2020-06-26") : pd.Timestamp("2020-06-28")], 'positive'] = 174 data.loc[idx["OR", pd.Timestamp("2020-06-26") : pd.Timestamp("2020-06-28")], 'total'] = 3296 #https://twitter.com/OHdeptofhealth/status/1278768987292209154 data.loc[idx["OH", pd.Timestamp("2020-07-01")], :] = 0 # Nevada didn't report total tests this day data.loc[idx["NV", pd.Timestamp("2020-07-02")], :] = 0 # A bunch of incorrect values for WA data so nulling them out. data.loc[idx["WA", pd.Timestamp("2020-06-05") :
pd.Timestamp("2020-06-07")
pandas.Timestamp
from datetime import datetime from io import StringIO import itertools import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range, ) import pandas._testing as tm class TestDataFrameReshape: def test_stack_unstack(self, float_frame): df = float_frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({"foo": stacked, "bar": stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() tm.assert_frame_equal(unstacked, df) tm.assert_frame_equal(unstacked_df["bar"], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) tm.assert_frame_equal(unstacked_cols.T, df) tm.assert_frame_equal(unstacked_cols_df["bar"].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, "a", "b"], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) tm.assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame( 1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1] ) tm.assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[["a", "b"]].stack(1) expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_unstack_not_consolidated(self, using_array_manager): # Gh#34708 df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) df2 = df[["x"]] df2["y"] = df["y"] if not using_array_manager: assert len(df2._mgr.blocks) == 2 res = df2.unstack() expected = df.unstack() tm.assert_series_equal(res, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack(fill_value=-1) expected = DataFrame( {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16 ) tm.assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame( {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float ) tm.assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame( {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]} ).set_index(["x", "y", "z"]) unstacked = df.unstack(["x", "y"], fill_value=0) key = ("<KEY>") expected = unstacked[key] result = Series([0, 0, 2], index=unstacked.index, name=key) tm.assert_series_equal(result, expected) stacked = unstacked.stack(["x", "y"]) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] tm.assert_frame_equal(result, df) # From a series s = df["w"] result = s.unstack(["x", "y"], fill_value=0) expected = unstacked["w"] tm.assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list("AB"), dtype=np.int32) df.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list("xyz"), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) # From a mixed type dataframe df["A"] = df["A"].astype(np.int16) df["B"] = df["B"].astype(np.float64) result = df.unstack(fill_value=-1) expected["A"] = expected["A"].astype(np.int16) expected["B"] = expected["B"].astype(np.float64) tm.assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list("xyz"), dtype=float) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = date_range("2012-01-01", periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame( {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame( {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [ Period("2012-01"), Period("2012-02"), Period("2012-03"), Period("2012-04"), ] data = Series(periods) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame( { "a": [periods[0], periods[1], periods[3]], "b": [periods[1], periods[2], periods[1]], }, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = Series(["a", "b", "c", "a"], dtype="category") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( { "a": pd.Categorical(list("axa"), categories=list("abc")), "b": pd.Categorical(list("bcx"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) # Fill with non-category results in a ValueError msg = r"'fill_value=d' is not present in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value="d") # Fill with category value replaces missing values as expected result = data.unstack(fill_value="c") expected = DataFrame( { "a": pd.Categorical(list("aca"), categories=list("abc")), "b": pd.Categorical(list("bcc"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) def test_unstack_tuplename_in_multiindex(self): # GH 19966 idx = MultiIndex.from_product( [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] ) df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx) result = df.unstack(("A", "a")) expected = DataFrame( [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]], columns=MultiIndex.from_tuples( [ ("d", "a"), ("d", "b"), ("d", "c"), ("e", "a"), ("e", "b"), ("e", "c"), ], names=[None, ("A", "a")], ), index=Index([1, 2, 3], name=("B", "b")), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "unstack_idx, expected_values, expected_index, expected_columns", [ ( ("A", "a"), [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]], MultiIndex.from_tuples( [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"] ), MultiIndex.from_tuples( [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")], names=[None, ("A", "a")], ), ), ( (("A", "a"), "B"), [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]], Index([3, 4], name="C"), MultiIndex.from_tuples( [ ("d", "a", 1), ("d", "a", 2), ("d", "b", 1), ("d", "b", 2), ("e", "a", 1), ("e", "a", 2), ("e", "b", 1), ("e", "b", 2), ], names=[None, ("A", "a"), "B"], ), ), ], ) def test_unstack_mixed_type_name_in_multiindex( self, unstack_idx, expected_values, expected_index, expected_columns ): # GH 19966 idx = MultiIndex.from_product( [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] ) df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx) result = df.unstack(unstack_idx) expected = DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = DataFrame( { "state": ["IL", "MI", "NC"], "index": ["a", "b", "c"], "some_categories": Series(["a", "b", "c"]).astype("category"), "A": np.random.rand(3), "B": 1, "C": "foo", "D": pd.Timestamp("20010102"), "E": Series([1.0, 50.0, 100.0]).astype("float32"), "F": Series([3.0, 4.0, 5.0]).astype("float64"), "G": False, "H": Series([1, 200, 923442], dtype="int8"), } ) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) tm.assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(["state", "index"]) unstack_and_compare(df1, "index") df1 = df.set_index(["state", "some_categories"]) unstack_and_compare(df1, "some_categories") df1 = df.set_index(["F", "C"]) unstack_and_compare(df1, "F") df1 = df.set_index(["G", "B", "state"]) unstack_and_compare(df1, "B") df1 = df.set_index(["E", "A"]) unstack_and_compare(df1, "E") df1 = df.set_index(["state", "index"]) s = df1["A"] unstack_and_compare(s, "index") def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) tm.assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) tm.assert_frame_equal( df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1) ) df_named = df.copy() return_value = df_named.columns.set_names(range(3), inplace=True) assert return_value is None tm.assert_frame_equal( df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1) ) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ["exp", "animal", 1] tm.assert_frame_equal( df2.stack(level=["animal", 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=["exp", 1]), exp_hair_stacked, check_names=False ) # When mixed types are passed and the ints are not level # names, raise msg = ( "level should contain all level names or all level numbers, not " "a mixture of the two" ) with pytest.raises(ValueError, match=msg): df2.stack(level=["animal", 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ["exp", "animal", 0] tm.assert_frame_equal( df3.stack(level=["animal", 0]), animal_hair_stacked, check_names=False ) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=["exp", "animal"]) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) df2 = df.copy() df2.columns.names = [0, 1, 2] tm.assert_frame_equal( df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False ) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] tm.assert_frame_equal( df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False ) def test_unstack_bool(self): df = DataFrame( [False, False], index=MultiIndex.from_arrays([["a", "b"], ["c", "l"]]), columns=["col"], ) rs = df.unstack() xp = DataFrame( np.array([[False, np.nan], [np.nan, False]], dtype=object), index=["a", "b"], columns=MultiIndex.from_arrays([["col", "col"], ["c", "l"]]), ) tm.assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=["first", "second", "third"], ) s = Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=["first", "second"], ) expected = DataFrame( np.array( [[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64 ), index=expected_mi, columns=Index(["a", "b"], name="third"), ) tm.assert_frame_equal(result, expected) def test_unstack_to_series(self, float_frame): # check reversibility data = float_frame.unstack() assert isinstance(data, Series) undo = data.unstack().T tm.assert_frame_equal(undo, float_frame) # check NA handling data = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) data.index = Index(["a", "b", "c"]) result = data.unstack() midx = MultiIndex( levels=[["x", "y"], ["a", "b", "c"]], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], ) expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx) tm.assert_series_equal(result, expected) # check composability of unstack old_data = data.copy() for _ in range(4): data = data.unstack() tm.assert_frame_equal(old_data, data) def test_unstack_dtypes(self): # GH 2929 rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]] df = DataFrame(rows, columns=list("ABCD")) result = df.dtypes expected = Series([np.dtype("int64")] * 4, index=list("ABCD")) tm.assert_series_equal(result, expected) # single dtype df2 = df.set_index(["A", "B"]) df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("int64")] * 4, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # mixed df2 = df.set_index(["A", "B"]) df2["C"] = 3.0 df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("int64")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) df2["D"] = "foo" df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("object")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # GH7405 for c, d in ( (np.zeros(5), np.zeros(5)), (np.arange(5, dtype="f8"), np.arange(5, 10, dtype="f8")), ): df = DataFrame( { "A": ["a"] * 5, "C": c, "D": d, "B": date_range("2012-01-01", periods=5), } ) right = df.iloc[:3].copy(deep=True) df = df.set_index(["A", "B"]) df["D"] = df["D"].astype("int64") left = df.iloc[:3].unstack(0) right = right.set_index(["A", "B"]).unstack(0) right[("D", "a")] = right[("D", "a")].astype("int64") assert left.shape == (3, 2) tm.assert_frame_equal(left, right) def test_unstack_non_unique_index_names(self): idx = MultiIndex.from_tuples([("a", "b"), ("c", "d")], names=["c1", "c1"]) df = DataFrame([1, 2], index=idx) msg = "The name c1 occurs multiple times, use a level number" with pytest.raises(ValueError, match=msg): df.unstack("c1") with pytest.raises(ValueError, match=msg): df.T.stack("c1") def test_unstack_unused_levels(self): # GH 17845: unused codes in index make unstack() cast int to float idx = MultiIndex.from_product([["a"], ["A", "B", "C", "D"]])[:-1] df = DataFrame([[1, 0]] * 3, index=idx) result = df.unstack() exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]]) expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # Unused items on both levels levels = [[0, 1, 7], [0, 1, 2, 3]] codes = [[0, 0, 1, 1], [0, 2, 0, 2]] idx = MultiIndex(levels, codes) block = np.arange(4).reshape(2, 2) df = DataFrame(np.concatenate([block, block + 4]), index=idx) result = df.unstack() expected = DataFrame( np.concatenate([block * 2, block * 2 + 1], axis=1), columns=idx ) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # With mixed dtype and NaN levels = [["a", 2, "c"], [1, 3, 5, 7]] codes = [[0, -1, 1, 1], [0, 2, -1, 2]] idx = MultiIndex(levels, codes) data = np.arange(8) df = DataFrame(data.reshape(4, 2), index=idx) cases = ( (0, [13, 16, 6, 9, 2, 5, 8, 11], [np.nan, "a", 2], [np.nan, 5, 1]), (1, [8, 11, 1, 4, 12, 15, 13, 16], [np.nan, 5, 1], [np.nan, "a", 2]), ) for level, idces, col_level, idx_level in cases: result = df.unstack(level=level) exp_data = np.zeros(18) * np.nan exp_data[idces] = data cols = MultiIndex.from_product([[0, 1], col_level]) expected = DataFrame(exp_data.reshape(3, 6), index=idx_level, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("cols", [["A", "C"], slice(None)]) def test_unstack_unused_level(self, cols): # GH 18562 : unused codes on the unstacked level df = DataFrame([[2010, "a", "I"], [2011, "b", "II"]], columns=["A", "B", "C"]) ind = df.set_index(["A", "B", "C"], drop=False) selection = ind.loc[(slice(None), slice(None), "I"), cols] result = selection.unstack() expected = ind.iloc[[0]][cols] expected.columns = MultiIndex.from_product( [expected.columns, ["I"]], names=[None, "C"] ) expected.index = expected.index.droplevel("C") tm.assert_frame_equal(result, expected) def test_unstack_long_index(self): # PH 32624: Error when using a lot of indices to unstack. # The error occurred only, if a lot of indices are used. df = DataFrame( [[1]], columns=
MultiIndex.from_tuples([[0]], names=["c1"])
pandas.MultiIndex.from_tuples
import pandas as pd import time tic = time.time() fullpred1 = '/input/compare/recommend.csv' mapping_file_user = '/input/data_validation/userdict.csv' mapping_file_item = '/input/data_validation/itemdict.csv' top_count = 5 fullpred = pd.read_csv(fullpred1) mapping_item = pd.read_csv(mapping_file_item) mapping_user = pd.read_csv(mapping_file_user) def predict(data): # TODO: convert y to dataframe y = pd.DataFrame({'user_id': [data["user_id"]]}) #y = pd.DataFrame([y],columns=['user_id']) mapping_user['originaluser_id'] = mapping_user['originaluser_id'].astype( str) mapping_item['originalitem_id'] = mapping_item['originalitem_id'].astype( str) # convert input user ids to strings and rename the userid column to originaluser_id user_id_input = pd.DataFrame( list(y['user_id'].astype('str')), columns=['originaluser_id']) # convert user ids to internal ids converted_user_id = mapping_user.merge( user_id_input, on='originaluser_id', how='inner') # fullpred.dtypes # get all the predictions for all items for the users requested results = fullpred.merge(converted_user_id, on='user_id', how='inner') print(results.columns) groups = results.groupby('user_id', sort=True) finaloutput = pd.DataFrame(columns=['originaluser_id', 'originalitem_id']) for group in groups.groups.keys(): # get top k recommendations for a user in the results group_length = round(len(groups.get_group(group))*0.25) recommendations = groups.get_group(group).sort_values( 'score', ascending=False).head(group_length) # convert top k recommendations from internal to external recommendations = recommendations.merge(mapping_item, on='item_id', how='inner')[ ['originaluser_id', 'originalitem_id']] finaloutput = pd.concat( [finaloutput, recommendations], ignore_index=True) finaloutput = finaloutput.rename( {'originaluser_id': 'user_id', 'originalitem_id': 'item_id'}, axis=1) finaloutput_2 =
pd.DataFrame(columns=['user_id', 'item_id'])
pandas.DataFrame
from typing import Optional from dataclasses import dataclass import pandas as pd from poker.base import unique_values, native_mean, running_mean, running_std, running_median, running_percentile from poker.document_filter_class import DocumentFilter pd.set_option('use_inf_as_na', True) def _ts_concat(dic: dict, index_lst: list) -> pd.DataFrame: """Concat a dict of dicts or pd.DataFrames""" lst_df = [] for key, val in dic.items(): if type(val) != pd.DataFrame: val = pd.DataFrame(val, index=index_lst) val.columns = [key + ' ' + col if col != '' else key for col in val.columns] else: val.columns = [key] lst_df.append(val) final_df = pd.concat(lst_df, axis=1).reset_index() return final_df def _ts_hand(data: pd.DataFrame) -> pd.DataFrame: """Build Hand related data""" pos_dic = {'Pre Flop': 0.25, 'Post Flop': 0.50, 'Post Turn': 0.75, 'Post River': 1.0} # Game Id g_i_df = pd.DataFrame(data.groupby('Start Time')['Game Id'].last()) g_i_df.columns = [''] # Time in Hand t_h_df = pd.DataFrame(data.groupby('Start Time')['Seconds into Hand'].last()) t_h_df.columns = [''] # Last Position last_position = data.groupby('Start Time')['Position'].last().tolist() l_p_df = pd.DataFrame([pos_dic[item] for item in last_position], index=t_h_df.index, columns=['']) # Win r_w_p = data.groupby('Start Time')['Win'].last().tolist() r_w_p = [1 if item is True else 0 for item in r_w_p] r_w_p_df = pd.DataFrame(running_mean(data=r_w_p, num=5), index=t_h_df.index, columns=['']) ind_lst = data.groupby('Start Time').last().index.tolist() lst_dic = {'Seconds per Hand': t_h_df, 'Last Position in Hand': l_p_df, 'Rolling Win Percent': r_w_p_df, 'Game Id': g_i_df} return _ts_concat(dic=lst_dic, index_lst=ind_lst) def _ts_position(data: pd.DataFrame) -> pd.DataFrame: """Build position related data""" temp_df = data[(data['Class'] == 'Calls') | (data['Class'] == 'Raises') | (data['Class'] == 'Checks')] p_bet = {'Pre Flop': [], 'Post Flop': [], 'Post Turn': [], 'Post River': []} t_p_bet = {'Pre Flop': 0, 'Post Flop': 0, 'Post Turn': 0, 'Post River': 0} prev_ind, len_temp_df, game_id_lst = temp_df['Start Time'].iloc[0], len(temp_df), [] for ind, row in temp_df.iterrows(): if row['Start Time'] != prev_ind: prev_ind = row['Start Time'] game_id_lst.append(row['Game Id']) for key, val in t_p_bet.items(): p_bet[key].append(val) t_p_bet = {'Pre Flop': 0, 'Post Flop': 0, 'Post Turn': 0, 'Post River': 0} t_p_bet[row['Position']] += row['Bet Amount'] if ind == len_temp_df: game_id_lst.append(row['Game Id']) for key, val in t_p_bet.items(): p_bet[key].append(val) ind_lst = unique_values(data=temp_df['Start Time'].tolist()) lst_dic = {'Position Bet': p_bet, 'Game Id': {'': game_id_lst}} return _ts_concat(dic=lst_dic, index_lst=ind_lst) def _ts_class_counts_seconds(data: pd.DataFrame) -> pd.DataFrame: """Build class, counts, and seconds data""" # Bet, Count, and Time Per Position temp_df = data[(data['Class'] == 'Calls') | (data['Class'] == 'Raises') | (data['Class'] == 'Checks')] pos_lst = ['Pre Flop', 'Post Flop', 'Post Turn', 'Post River'] class_lst, short_class_lst = ['Checks', 'Calls', 'Raises'], ['Calls', 'Raises'] c_count = {item1 + ' ' + item: [] for item in class_lst for item1 in pos_lst} c_seconds = {item1 + ' ' + item: [] for item in class_lst for item1 in pos_lst} c_bet = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} c_bet_per_pot = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} c_bet_per_chips = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} t_c_count = {item1 + ' ' + item: 0 for item in class_lst for item1 in pos_lst} t_c_seconds = {item1 + ' ' + item: None for item in class_lst for item1 in pos_lst} t_c_bet = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_pot = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_chips = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} prev_ind, len_temp_df, game_id_lst = temp_df['Start Time'].iloc[0], len(temp_df), [] for ind, row in temp_df.iterrows(): if row['Start Time'] != prev_ind: prev_ind = row['Start Time'] game_id_lst.append(row['Game Id']) for item in class_lst: for item1 in pos_lst: c_count[item1 + ' ' + item].append(t_c_count[item1 + ' ' + item]) c_seconds[item1 + ' ' + item].append(t_c_seconds[item1 + ' ' + item]) if item != 'Checks': c_bet[item1 + ' ' + item].append(t_c_bet[item1 + ' ' + item]) c_bet_per_pot[item1 + ' ' + item].append(t_c_bet_per_pot[item1 + ' ' + item]) c_bet_per_chips[item1 + ' ' + item].append(t_c_bet_per_chips[item1 + ' ' + item]) t_c_count = {item1 + ' ' + item: 0 for item in class_lst for item1 in pos_lst} t_c_seconds = {item1 + ' ' + item: None for item in class_lst for item1 in pos_lst} t_c_bet = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_pot = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_chips = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_pos, t_bet, t_class, t_second = row['Position'], row['Bet Amount'], row['Class'], row['Seconds'] t_key = t_pos + ' ' + t_class t_c_count[t_key] += 1 if t_c_seconds[t_key] is not None: t_c_seconds[t_key] = native_mean(data=[t_c_seconds[t_key]] + [t_second]) else: t_c_seconds[t_key] = t_second if t_class != 'Checks': if t_c_bet[t_key] is not None: t_c_bet[t_key] = native_mean(data=[t_c_bet[t_key]] + [t_bet]) else: t_c_bet[t_key] = t_bet bet_pot_per = t_bet / (row['Pot Size'] - t_bet) if t_c_bet_per_pot[t_key] is not None: t_c_bet_per_pot[t_key] = native_mean(data=[t_c_bet_per_pot[t_key]] + [bet_pot_per]) else: t_c_bet_per_pot[t_key] = bet_pot_per bet_chip_per = t_bet / (row['Player Current Chips'] + t_bet) if t_c_bet_per_chips[t_key] is not None: t_c_bet_per_chips[t_key] = native_mean(data=[t_c_bet_per_chips[t_key]] + [bet_chip_per]) else: t_c_bet_per_chips[t_key] = bet_chip_per if ind == len_temp_df: game_id_lst.append(row['Game Id']) for item in class_lst: for item1 in pos_lst: c_count[item1 + ' ' + item].append(t_c_count[item1 + ' ' + item]) c_seconds[item1 + ' ' + item].append(t_c_seconds[item1 + ' ' + item]) if item != 'Checks': c_bet[item1 + ' ' + item].append(t_c_bet[item1 + ' ' + item]) c_bet_per_pot[item1 + ' ' + item].append(t_c_bet_per_pot[item1 + ' ' + item]) c_bet_per_chips[item1 + ' ' + item].append(t_c_bet_per_chips[item1 + ' ' + item]) ind_lst = unique_values(data=temp_df['Start Time'].tolist()) lst_dic = {'Class Count': c_count, 'Class Seconds': c_seconds, 'Class Bet': c_bet, 'Class Bet Percent of Pot': c_bet_per_pot, 'Class Bet Percent of Chips': c_bet_per_chips, 'Game Id': {'': game_id_lst}} return _ts_concat(dic=lst_dic, index_lst=ind_lst) @dataclass class TSanalysis: """ Calculate Time Series stats for a player. :param data: Input DocumentFilter. :type data: DocumentFilter :param upper_q: Upper Quantile percent, default is 0.841. *Optional* :type upper_q: float :param lower_q: Lower Quantile percent, default is 0.159. *Optional* :type lower_q: float :param window: Rolling window, default is 5. *Optional* :type window: int :example: >>> from poker.time_series_class import TSanalysis >>> docu_filter = DocumentFilter(data=poker, player_index_lst=['DZy-22KNBS']) >>> TSanalysis(data=docu_filter) :note: This class expects a DocumentFilter with only one player_index used. """ def __init__(self, data: DocumentFilter, upper_q: Optional[float] = 0.841, lower_q: Optional[float] = 0.159, window: Optional[int] = 5): self._docu_filter = data self._window = window self._upper_q = upper_q self._lower_q = lower_q self._df = data.df hand_df = _ts_hand(data=self._df) self._hand = hand_df.copy() position_df = _ts_position(data=self._df) self._position = position_df.copy() class_df = _ts_class_counts_seconds(data=self._df) self._class = class_df.copy() hand_cols, hand_ind = hand_df.columns, hand_df.index self._hand_mean = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_std = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_median = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_upper_q = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_lower_q = pd.DataFrame(columns=hand_cols, index=hand_ind) for col in hand_cols: if col not in ['Game Id', 'index', 'Start Time']: self._hand_mean[col] = running_mean(data=hand_df[col], num=self._window) self._hand_std[col] = running_std(data=hand_df[col], num=self._window) self._hand_median[col] = running_median(data=hand_df[col], num=self._window) self._hand_upper_q[col] = running_percentile(data=hand_df[col], num=self._window, q=upper_q) self._hand_lower_q[col] = running_percentile(data=hand_df[col], num=self._window, q=lower_q) pos_cols, pos_ind = position_df.columns, position_df.index self._position_mean = pd.DataFrame(columns=pos_cols, index=pos_ind) self._position_std =
pd.DataFrame(columns=pos_cols, index=pos_ind)
pandas.DataFrame
import numpy as np import pandas as pd from symuviapy.symfunc import updatelist DT = 0.1 # Sample time KC = 0.16 # CAV max density KH = 0.0896 # HDV max density VF = 25.0 # Speed free flow W = 6.25 # Congestion speed E = 25.0*0.3 # Speed drop for relaxation GCAV = 1/(KC*W) # Time headway CAV GHDV = 1/(KH*W) # Time headway HDV SCAV = VF/(KC*W)+1/KC # Desired space headway CAV SHDV = VF/(KH*W)+1/KH # Desired space headway HDV dveh_twy = {'CAV': GCAV, 'HDV': GHDV} dveh_dwy = {'CAV': 1/KC, 'HDV': 1/KH} U_MAX = 1.5 # Max. Acceleration U_MIN = -1.5 # Min. Acceleration # Imposed leadership dveh_ldr = {0: 0, 1: 0, 2: 1, 3: 2, 5: 3, 6: 5, 8: 6, 9: 8} dveh_idx = {0: 0, 1: 1, 2: 2, 3: 3, 5: 4, 6: 5, 8: 6, 9: 7} def reversedEnumerate(*args): """ Inverse enumeration iterator""" revArg = [np.flip(x, axis=0) for x in args] return zip(range(len(args[0])-1, -1, -1), *revArg) def find_idx_ldr(results): # , lPlatoon = None): # """ From dbQuery finds idx or leader for CAVs""" # Frozen network (A-priori) # if lPlatoon is not None: # key = lPlatoon # idx = list(range(len(key))) # ldr = [idx[0]]+idx[:-1] # dveh_ldr = dict(zip(key,ldr)) # dveh_idx = dict(zip(key,idx)) ldrl = [dveh_ldr[x[1]] for x in results if x[2] == 'CAV'] idx_ldr = [dveh_idx[x] for x in ldrl] return idx_ldr, ldrl def initial_setup_mpc(results, h_ref): """ Initialize variables for controller """ TGref = h_ref # format_reference(h_ref) h = TGref.shape[0] n_CAV = len([ty[2] for ty in results if ty[2] == 'CAV']) dCAVu = [h, n_CAV] # print(f'Dimensions control: {dCAVu}') Sref = np.zeros(dCAVu) S = np.zeros(dCAVu) V = np.zeros(dCAVu) DV = np.zeros(dCAVu) Lv = np.zeros(dCAVu) Ls = np.zeros(dCAVu) return (Sref, TGref, S, V, DV, Ls, Lv) def format_reference(h_ref): """ Convert query from a reference into a numpy array """ # Rearrange refDf =
pd.DataFrame(h_ref, columns=['ti', 'id', 'gapt'])
pandas.DataFrame
# -*- coding: UTF-8 -*- import os import time import numpy as np import pandas as pd import matplotlib.pyplot as plt from root_project import ROOT_DIR FONTSIZE = 20 if __name__ == "__main__": # Set the working directory to the root of the project print(os.getcwd()) os.chdir(ROOT_DIR) print(os.getcwd()) pv_solution = pd.read_csv('data1/uliege/uliege_15min.csv', index_col=0, parse_dates=True)['Pm'] pv_forecast = pd.read_csv('data1/uliege/uliege_pv_prediction_python_15min.csv', parse_dates=True, index_col=0) # day 1 -> moyen # day 2 -> sunny # day 3 -> cloudy day = "3" day_list = ['2019-08-24', '2019-11-16', '2019-12-02'] day_names = ['soleil_08-24-19', 'moyen_16-11-19', 'nuage_02-12-19'] df_quantiles = [] for name, day in zip(day_names, day_list): df_input = pd.read_csv('data1/uliege/quantiles/'+name+'.csv', index_col=0, parse_dates=True) time_range = pd.date_range(start=pd.Timestamp(day+' 03:30:00'), periods=63, freq='15T') df =
pd.DataFrame(data=df_input.values, index=time_range)
pandas.DataFrame
import matplotlib.pyplot as plt import csv from collections import defaultdict import numpy as np #from scipy.signal import * from numpy.fft import * #from scipy import * from pylab import * #import pywt import pandas as pd import statistics ###############----This function averages data points for each second----################## def data_processing(): chan = ['Timestamp','POW.AF3.Theta', 'POW.AF3.Alpha', 'POW.AF3.BetaL', 'POW.AF3.BetaH', 'POW.AF4.Theta', 'POW.AF4.Alpha', 'POW.AF4.BetaL', 'POW.AF4.BetaH'] time, af3_theta, af3_alpha, af3_betal, af3_betah, af4_theta, af4_alpha, af4_betal, af4_betah = ([] for i in range(9)) frequency=0 #counts the frequency count=0 #to let me know then the progtam will end. basically counts number of seconds in a video i=1 #for number of participants j=0 #for number of videos while i<=6: print("i", i) j=0 while j<4: print("j",j) # ====================================== YOUR PATH GOES HERE ================================================== path_out = "/Your Path/Project/datasets/intermediate_files/video"+str(j)+"_p"+str(i)+".csv" fout_data = open(path_out, 'w') # ====================================== YOUR PATH GOES HERE ================================================== path_in= "/Your Path/Project/datasets/p"+str(i)+"/p"+str(i)+"_vid_"+str(j)+".csv" df = pd.read_csv(path_in, header=1) df1=df[['Timestamp', 'POW.AF3.Theta', 'POW.AF3.Alpha', 'POW.AF3.BetaL', 'POW.AF3.BetaH', 'POW.AF4.Theta', 'POW.AF4.Alpha', 'POW.AF4.BetaL', 'POW.AF4.BetaH']] for ch in chan: if ch=="POW.AF4.BetaH": fout_data.write(ch) else: fout_data.write(ch+",") fout_data.write("\n") m=0 while m < (len(df1)): frequency=0 # print("m", m) # print("\n") for n in range(m, len(df1)): if int(df1.loc[m, "Timestamp"])== int(df1.loc[n, "Timestamp"]): frequency=frequency+1 time.append(df1.loc[n,"Timestamp"]) af3_theta.append(df1.loc[n, "POW.AF3.Theta"]) af3_alpha.append(df1.loc[n, "POW.AF3.Alpha"]) af3_betal.append(df1.loc[n, "POW.AF3.BetaL"]) af3_betah.append(df1.loc[n, "POW.AF3.BetaH"]) af4_theta.append(df1.loc[n, "POW.AF4.Theta"]) af4_alpha.append(df1.loc[n, "POW.AF4.Alpha"]) af4_betal.append(df1.loc[n, "POW.AF4.BetaL"]) af4_betah.append(df1.loc[n, "POW.AF4.BetaH"]) else: break count=count+1 time_m=statistics.mean(time) af3_theta_m=statistics.mean(af3_theta) af3_alpha_m=statistics.mean(af3_alpha) af3_betal_m=statistics.mean(af3_betal) af3_betah_m=statistics.mean(af3_betah) af4_theta_m=statistics.mean(af4_theta) af4_alpha_m=statistics.mean(af4_alpha) af4_betal_m=statistics.mean(af4_betal) af4_betah_m=statistics.mean(af4_betah) del time[:] del af3_theta[:] del af3_alpha[:] del af3_betal[:] del af3_betah[:] del af4_theta[:] del af4_alpha[:] del af4_betal[:] del af4_betah[:] fout_data.write(str(time_m)+",") fout_data.write(str(af3_theta_m)+",") fout_data.write(str(af3_alpha_m)+",") fout_data.write(str(af3_betal_m)+",") fout_data.write(str(af3_betah_m)+",") fout_data.write(str(af4_theta_m)+",") fout_data.write(str(af4_alpha_m)+",") fout_data.write(str(af4_betal_m)+",") fout_data.write(str(af4_betah_m)) fout_data.write("\n") m=m+frequency #print(count) fout_data.close() j=j+1 i=i+1 ###############----This function gives graphs for each video and for alpha calibration----################## def engagement_compositegraph(): i = 1 # for participants j = 0 # for videos s = 2 d = 5 c1 = 1 + (s / (1 + d)) c2 = 1 - (s / (1 + d)) ema_value = [] ema_time = [] l_norm=[] x_limit = [185, 185, 80, 160] df3 = pd.DataFrame(columns=["Time", "p1", "p2", "p3", "p4", "p5", "p6"]) while j < 4: print("j", j) i = 1 while i <= 6: print("i", i) # ====================================== YOUR PATH GOES HERE ================================================== path_in = "/Your Path/Project/datasets/intermediate_files/video" + str(j) + "_p" + str(i) + ".csv" df =
pd.read_csv(path_in, header=0)
pandas.read_csv
''' Script used to pull voting information from VoxCharta.org. Accessed via the tamu.voxcharta.org platform. Have added code accounting for the few posts that aren't searchable, but DO exist on VoxCharta. Also added code to choose the original post, should replacement posts also exist. ''' from selenium import webdriver from selenium.webdriver.common.keys import Keys from datetime import datetime import threading, time, getpass, sys, subprocess import pandas as pd import numpy as np from datetime import datetime as dt from datetime import timedelta __author__ = '<NAME>' __email__ = '<EMAIL>' # amount of time to wait timeit = input('\nTime before closing browser (in seconds): ') # seconds timeit = int(timeit) # ------------------------ # # -- creating dataframe -- # # ------------------------ # df_dtypes = {'order':int,'id':str,'date':str} main_df = pd.read_csv('arXiv_posts.txt',sep='\t',dtype=df_dtypes) # main table of data # total votes will be counted and, if possible, will track # of votes per day/week df = pd.DataFrame({'id':[],'total_votes':[],'vote_rate':[]}) # dataframe to be created in script # arXiv IDs to run through; note that you can query specific dates or other sorting criteria #arXiv_ids = main_df.id.values # runs through full list # unless uncommented above, will be specifying to only look at posts within the last 2 weeks times = [dt.strptime(t,'%d %b %y') for t in main_df.date.values] times = np.asarray(times) # useful for the sorting we'll do # reference date of 2 weeks ago ref_date = dt.now() - timedelta(days=14) # oof print(f"Looking at posts from {dt.strftime(ref_date,'%a, %d %b %y')} and onwards.",end='\n\n') indexing = np.arange(len(main_df)) indexing = indexing[times > ref_date] # only listing entries in the dataframe that are in the last 2 weeks arXiv_ids = main_df.loc[indexing,'id'].values # IDs of posts within the last 2 weeks! # ------------------------ # logmein = False # option to log into VoxCharta account (note: currently broken) # adding a timer to this to see how long it takes start_it = dt.now() print('Starting timer', start_it,end='\n\n') # opening browser & going to VoxCharta driver = webdriver.Firefox() if logmein == True: # pulling information to access arXiv account username = input('\nVoxCharta username: ') assert len(username) > 0, "Need to provide a username" password = input('<PASSWORD>: ') assert len(password) > 0, "Need to provide account password" driver.get("https://tamu.voxcharta.org/wp-login.php") assert "Log In" in driver.title # finding log in cells usern = driver.find_element_by_name("log") passw = driver.find_element_by_name("pwd") usern.clear() passw.clear() # adding log in info usern.send_keys(username) passw.send_keys(password) # locating "Log In" button login = driver.find_element_by_name("wp-submit") login.click() else: driver.get("https://tamu.voxcharta.org/") # not necessary but keeping anyway #otherints = driver.find_element_by_name("show_everyone") # so can see all upvotes #if otherints.is_selected() == False: # otherints.click() # print("Now showing votes from all institutions.") for arXiv_id in arXiv_ids: assert len(arXiv_id) == 10, f"Incorrect arXiv ID: {arXiv_id}." print(f'\nSearching for {arXiv_id}.') # now, finding the search bar and searching for paper title try: search = driver.find_element_by_id("searchbox") except: time.sleep(8); search = driver.find_element_by_id("searchbox") search.clear() search.send_keys(arXiv_id) submit = driver.find_element_by_class_name("go") submit.click() time.sleep(6) # have to pause so the code doesn't try to search on previous page # finding and clicking on result title try: results = driver.find_elements_by_tag_name("h3") # looks at all h3 tags (b/c replacement posts) except: time.sleep(5) # waiting a little longer for it to load results = driver.find_elements_by_tag_name("h3") # looks at all h3 tags (b/c replacement posts) if len(results) > 1: # if there's no search result, this will be length == 1 # choosing the first posted, corrects for [REPLACEMENT] posts that will be top of the search results result = results[-2] # This 2nd to last <h3> tag is the first post # first checking that there isn't just 1 post that is the replacement try: replacement_only = result.find_element_by_tag_name("a") except: # for some reason this has been failing recently try: time.sleep(5); replacement_only = result.find_element_by_tag_name("a") except: # if for some reason it decides it can't find it, we'll start over driver.get("https://tamu.voxcharta.org/") time.sleep(3) # locating search bar and inputting arXiv_id search = driver.find_element_by_id("searchbox") search.clear() search.send_keys(arXiv_id) submit = driver.find_element_by_class_name("go") submit.click() time.sleep(6) # have to pause so the code doesn't try to search on previous page results = driver.find_elements_by_tag_name("h3") # looks at all h3 tags (b/c replacement posts) if len(results) > 1: result = results[-2] replacement_only = result.find_element_by_tag_name("a") else: replacement_only = results[0].find_element_by_tag_name("a") if replacement_only.text[-13:] == '[Replacement]': print('Original post not searchable?') no_votes = -99 # so I know which ones don't come up in the search # new filler df to log total votes filler_df = pd.DataFrame({'id':[arXiv_id],'total_votes':[no_votes],\ 'vote_rate':[f'']}) df = df.append(filler_df,ignore_index=True) else: result.click() time.sleep(6) # have to pause so the code doesn't try to search on previous page # finding total votes try: votes = driver.find_element_by_class_name("votedon") total = votes.find_element_by_tag_name("b") total = total.text.split(" '")[0] print(f'Total votes: {total}') votes_df =
pd.DataFrame({'cast_date':[],'cast_time':[]})
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import uuid import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out =
pd.Series([False, False, False], name='b#c#d')
pandas.Series
#!/usr/bin/env python # -*- coding:utf-8 -*- # TODO(lpe): Include in package import pandas as pd import os from sklearn import preprocessing import numpy as np from scipy.stats import beta import pathlib import pickle from clonesig.estimator import Estimator from clonesig import mixin_init_parameters try: rows, columns = os.popen('stty size', 'r').read().split() pd.set_option('display.width', int(columns))
pd.set_option('display.max_columns', 200)
pandas.set_option
import numpy as np import pandas as pd import time def mean_user(x): user_count=np.bincount(x[0]) zeros_train = np.array(np.where(user_count[1:len(user_count)] == 0)) non_zero_train = np.array([np.where(user_count[1:len(user_count)] != 0)]) times_user_train_correct = np.delete(user_count[1:len(user_count)], zeros_train) mean_user = np.array(x.groupby([0])[2].mean()) full = np.repeat(mean_user,times_user_train_correct) return np.array(full) def user_avg(fn): df = pd.DataFrame(fn) ratings_user=pd.DataFrame(fn) ratings_user=ratings_user.append(ratings_user) user_average = df.groupby(by=0, as_index=False)[2].mean() user_average = user_average.append(user_average) global_average = np.mean(fn[:,2]) nfolds = 5 err_train=np.zeros(nfolds) err_test=np.zeros(nfolds) mae_train=np.zeros(nfolds) mae_test=np.zeros(nfolds) np.random.seed(1) seqs=[x%nfolds for x in range(len(fn))] np.random.shuffle(seqs) start_time = time.time() print ('Recommendations from all user averages:') for fold in range(nfolds): train_set=np.array([x!=fold for x in seqs]) test_set=np.array([x==fold for x in seqs]) train_user=
pd.DataFrame(ratings_user.iloc[train_set],columns=[0, 1, 2],dtype=int)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Mar 29 20:28:41 2021 @author: Gunardilin """ import pandas as pd from get_statement import open_in_excel from datetime import datetime def last_row(symbol, name): requirements = [symbol.lower()=="total", name.isdigit()] return all(requirements) def get_foreigncompanies_info(): df_list = [] links = ["https://stockmarketmba.com/nonuscompaniesonusexchanges.php", "https://stockmarketmba.com/listofadrs.php"] for i in links: df = pd.read_html(i)[0][['Symbol', 'Name', 'GICS Sector']] if last_row(df.iloc[-1]['Symbol'], df.iloc[-1]['Name']): df_list.append(df.iloc[:-1]) else: df_list.append(df) return
pd.concat(df_list)
pandas.concat
import math import gc import os import pickle from math import pi import numpy as np import pandas as pd import pytorch_lightning as pl from omegaconf import DictConfig from scipy.fft import fft from scipy.signal import blackman from scipy.signal import hilbert from sklearn.model_selection import GroupKFold from sklearn.preprocessing import RobustScaler from torch.utils.data import DataLoader from src.utils.technical_utils import load_obj class VentilatorDataModule(pl.LightningDataModule): def __init__(self, cfg: DictConfig): super().__init__() self.cfg = cfg def prepare_data(self): pass def make_features(self, data): if "pressure" not in data.columns: data['pressure'] = 0 data['RC_sum'] = data['R'] + data['C'] data['RC_div'] = data['R'] / data['C'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['RC'] = data['R'] + data['C'] data = pd.get_dummies(data) data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() # data['time_step_lag'] = data.groupby('breath_id')['time_step'].shift(1) data['time_step_lag'] = data.groupby('breath_id')['time_step'].shift(2) data['u_in_lag'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag'] = data.groupby('u_out')['u_in'].shift(1) return data.fillna(0) def make_features1(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data.drop(['id', 'breath_id'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data def make_features2(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data def make_features3(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index(level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0) def make_features32(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data =
pd.get_dummies(data)
pandas.get_dummies
import matplotlib.pyplot as plt import numpy as np import pandas as pd from fbprophet import Prophet from scipy import optimize, stats from sklearn import preprocessing, svm import statsmodels.api as sm import pmdarima import statsmodels.tsa.api as smt import arch ## for deep learning #from tensorflow.keras import models, layers, preprocessing as kprocessing pd.plotting.register_matplotlib_converters() ############################################################################### # TS ANALYSIS # ############################################################################### ''' Plot ts with rolling mean and 95% confidence interval with rolling std. :parameter :param ts: pandas Series :param window: num for rolling stats ''' def plot_ts(ts, plot_ma=True, plot_intervals=True, window=30, figsize=(15,5)): rolling_mean = ts.rolling(window=window).mean() rolling_std = ts.rolling(window=window).std() plt.figure(figsize=figsize) plt.title(ts.name) plt.plot(ts[window:], label='Actual values', color="black") if plot_ma: plt.plot(rolling_mean, 'g', label='MA'+str(window), color="red") if plot_intervals: lower_bound = rolling_mean - (1.96 * rolling_std) upper_bound = rolling_mean + (1.96 * rolling_std) plt.fill_between(x=ts.index, y1=lower_bound, y2=upper_bound, color='lightskyblue', alpha=0.4) plt.legend(loc='best') plt.grid(True) plt.show() ''' Test stationarity by: - running Augmented Dickey-Fuller test wiht 95% - plotting mean and variance of a sample from data - plottig autocorrelation and partial autocorrelation ''' def test_stationarity_acf_pacf(ts, sample=0.20, maxlag=30, figsize=(15,10)): with plt.style.context(style='bmh'): ## set figure fig = plt.figure(figsize=figsize) ts_ax = plt.subplot2grid(shape=(2,2), loc=(0,0), colspan=2) pacf_ax = plt.subplot2grid(shape=(2,2), loc=(1,0)) acf_ax = plt.subplot2grid(shape=(2,2), loc=(1,1)) ## plot ts with mean/std of a sample from the first x% dtf_ts = ts.to_frame(name="ts") sample_size = int(len(ts)*sample) dtf_ts["mean"] = dtf_ts["ts"].head(sample_size).mean() dtf_ts["lower"] = dtf_ts["ts"].head(sample_size).mean() + dtf_ts["ts"].head(sample_size).std() dtf_ts["upper"] = dtf_ts["ts"].head(sample_size).mean() - dtf_ts["ts"].head(sample_size).std() dtf_ts["ts"].plot(ax=ts_ax, color="black", legend=False) dtf_ts["mean"].plot(ax=ts_ax, legend=False, color="red", linestyle="--", linewidth=0.7) ts_ax.fill_between(x=dtf_ts.index, y1=dtf_ts['lower'], y2=dtf_ts['upper'], color='lightskyblue', alpha=0.4) dtf_ts["mean"].head(sample_size).plot(ax=ts_ax, legend=False, color="red", linewidth=0.9) ts_ax.fill_between(x=dtf_ts.head(sample_size).index, y1=dtf_ts['lower'].head(sample_size), y2=dtf_ts['upper'].head(sample_size), color='lightskyblue') ## test stationarity (Augmented Dickey-Fuller) adfuller_test = sm.tsa.stattools.adfuller(ts, maxlag=maxlag, autolag="AIC") adf, p, critical_value = adfuller_test[0], adfuller_test[1], adfuller_test[4]["5%"] p = round(p, 3) conclusion = "Stationary" if p < 0.05 else "Non-Stationary" ts_ax.set_title('Dickey-Fuller Test 95%: '+conclusion+' (p-value: '+str(p)+')') ## pacf (for AR) e acf (for MA) smt.graphics.plot_pacf(ts, lags=maxlag, ax=pacf_ax, title="Partial Autocorrelation (for AR component)") smt.graphics.plot_acf(ts, lags=maxlag, ax=acf_ax, title="Autocorrelation (for MA component)") plt.tight_layout() ''' Defferenciate ts. :parameter :param ts: pandas Series :param lag: num - diff[t] = y[t] - y[t-lag] :param order: num - how many times it has to differenciate: diff[t]^order = diff[t] - diff[t-lag] :param drop_na: logic - if True Na are dropped, else are filled with last observation ''' def diff_ts(ts, lag=1, order=1, drop_na=True): for i in range(order): ts = ts - ts.shift(lag) ts = ts[(pd.notnull(ts))] if drop_na is True else ts.fillna(method="bfill") return ts ''' ''' def undo_diff(ts, first_y, lag=1, order=1): for i in range(order): (24168.04468 - 18256.02366) + a.cumsum() ts = np.r_[ts, ts[lag:]].cumsum() return ts ''' Run Granger test on 2 series ''' def test_2ts_casuality(ts1, ts2, maxlag=30, figsize=(15,5)): ## prepare dtf = ts1.to_frame(name=ts1.name) dtf[ts2.name] = ts2 dtf.plot(figsize=figsize, grid=True, title=ts1.name+" vs "+ts2.name) plt.show() ## test casuality (Granger test) granger_test = sm.tsa.stattools.grangercausalitytests(dtf, maxlag=maxlag, verbose=False) for lag,tupla in granger_test.items(): p = np.mean([tupla[0][k][1] for k in tupla[0].keys()]) p = round(p, 3) if p < 0.05: conclusion = "Casuality with lag "+str(lag)+" (p-value: "+str(p)+")" print(conclusion) ''' Decompose ts into - trend component = moving avarage - seasonality - residuals = y - (trend + seasonality) :parameter :param s: num - number of observations per season (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) ''' def decompose_ts(ts, s=250, figsize=(20,13)): decomposition = smt.seasonal_decompose(ts, freq=s) trend = decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid fig, ax = plt.subplots(nrows=4, ncols=1, sharex=True, sharey=False, figsize=figsize) ax[0].plot(ts) ax[0].set_title('Original') ax[0].grid(True) ax[1].plot(trend) ax[1].set_title('Trend') ax[1].grid(True) ax[2].plot(seasonal) ax[2].set_title('Seasonality') ax[2].grid(True) ax[3].plot(residual) ax[3].set_title('Residuals') ax[3].grid(True) return {"trend":trend, "seasonal":seasonal, "residual":residual} ''' Find outliers using sklearn unsupervised support vetcor machine. :parameter :param ts: pandas Series :param perc: float - percentage of outliers to look for :return dtf with raw ts, outlier 1/0 (yes/no), numeric index ''' def find_outliers(ts, perc=0.01, figsize=(15,5)): ## fit svm scaler = preprocessing.StandardScaler() ts_scaled = scaler.fit_transform(ts.values.reshape(-1,1)) model = svm.OneClassSVM(nu=perc, kernel="rbf", gamma=0.01) model.fit(ts_scaled) ## dtf output dtf_outliers = ts.to_frame(name="ts") dtf_outliers["index"] = range(len(ts)) dtf_outliers["outlier"] = model.predict(ts_scaled) dtf_outliers["outlier"] = dtf_outliers["outlier"].apply(lambda x: 1 if x==-1 else 0) ## plot fig, ax = plt.subplots(figsize=figsize) ax.set(title="Outliers detection: found "+str(sum(dtf_outliers["outlier"]==1))) ax.plot(dtf_outliers["index"], dtf_outliers["ts"], color="black") ax.scatter(x=dtf_outliers[dtf_outliers["outlier"]==1]["index"], y=dtf_outliers[dtf_outliers["outlier"]==1]['ts'], color='red') ax.grid(True) plt.show() return dtf_outliers ''' Interpolate outliers in a ts. ''' def remove_outliers(ts, outliers_idx, figsize=(15,5)): ts_clean = ts.copy() ts_clean.loc[outliers_idx] = np.nan ts_clean = ts_clean.interpolate(method="linear") ax = ts.plot(figsize=figsize, color="red", alpha=0.5, title="Remove outliers", label="original", legend=True) ts_clean.plot(ax=ax, grid=True, color="black", label="interpolated", legend=True) plt.show() return ts_clean ############################################################################### # MODEL DESIGN & TESTING - FORECASTING # ############################################################################### ''' Split train/test from any given data point. :parameter :param ts: pandas Series :param exog: array len(ts) x n regressors :param test: num or str - test size (ex. 0.20) or index position (ex. "yyyy-mm-dd", 1000) :return ts_train, ts_test, exog_train, exog_test ''' def split_train_test(ts, exog=None, test=0.20, plot=True, figsize=(15,5)): ## define splitting point if type(test) is float: split = int(len(ts)*(1-test)) perc = test elif type(test) is str: split = ts.reset_index()[ts.reset_index().iloc[:,0]==test].index[0] perc = round(len(ts[split:])/len(ts), 2) else: split = test perc = round(len(ts[split:])/len(ts), 2) print("--- splitting at index: ", split, "|", ts.index[split], "| test size:", perc, " ---") ## split ts ts_train = ts.head(split) ts_test = ts.tail(len(ts)-split) if plot is True: fig, ax = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=True, figsize=figsize) ts_train.plot(ax=ax[0], grid=True, title="Train", color="black") ts_test.plot(ax=ax[1], grid=True, title="Test", color="black") ax[0].set(xlabel=None) ax[1].set(xlabel=None) plt.show() ## split exog if exog is not None: exog_train = exog[0:split] exog_test = exog[split:] return ts_train, ts_test, exog_train, exog_test else: return ts_train, ts_test ''' Compute the confidence interval for predictions: [y[t+h] +- (c*σ*√h)] :parameter :param lst_values: list or array :param error_std: σ (standard dev of residuals) :param conf: num - confidence level (90%, 95%, 99%) :return array with 2 columns (upper and lower bounds) ''' def utils_conf_int(lst_values, error_std, conf=0.95): lst_values = list(lst_values) if type(lst_values) != list else lst_values c = round( stats.norm.ppf(1-(1-conf)/2), 2) lst_ci = [] for x in lst_values: lst_x = lst_values[:lst_values.index(x)+1] h = len(lst_x) ci = [x - (c*error_std*np.sqrt(h)), x + (c*error_std*np.sqrt(h))] lst_ci.append(ci) return np.array(lst_ci) ''' Evaluation metrics for predictions. :parameter :param dtf: DataFrame with columns "ts", "model", "forecast", and "lower"/"upper" (if available) :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper", "error" ''' def utils_evaluate_ts_model(dtf, conf=0.95, title=None, plot=True, figsize=(20,13)): try: ## residuals from fitting ### add column dtf["residuals"] = dtf["ts"] - dtf["model"] ### kpi residuals_mean = dtf["residuals"].mean() residuals_std = dtf["residuals"].std() ## forecasting error ### add column dtf["error"] = dtf["ts"] - dtf["forecast"] dtf["error_pct"] = dtf["error"] / dtf["ts"] ### kpi error_mean = dtf["error"].mean() error_std = dtf["error"].std() mae = dtf["error"].apply(lambda x: np.abs(x)).mean() #mean absolute error mape = dtf["error_pct"].apply(lambda x: np.abs(x)).mean() #mean absolute error % mse = dtf["error"].apply(lambda x: x**2).mean() #mean squared error rmse = np.sqrt(mse) #root mean squared error ## interval if "upper" not in dtf.columns: print("--- computing confidence interval ---") dtf["lower"], dtf["upper"] = [np.nan, np.nan] dtf.loc[dtf["forecast"].notnull(), ["lower","upper"]] = utils_conf_int( dtf[dtf["forecast"].notnull()]["forecast"], residuals_std, conf) ## plot if plot is True: fig = plt.figure(figsize=figsize) fig.suptitle(title, fontsize=20) ax1 = fig.add_subplot(2,2, 1) ax2 = fig.add_subplot(2,2, 2, sharey=ax1) ax3 = fig.add_subplot(2,2, 3) ax4 = fig.add_subplot(2,2, 4) ### training dtf[pd.notnull(dtf["model"])][["ts","model"]].plot(color=["black","green"], title="Model", grid=True, ax=ax1) ax1.set(xlabel=None) ### test dtf[pd.isnull(dtf["model"])][["ts","forecast"]].plot(color=["black","red"], title="Forecast", grid=True, ax=ax2) ax2.fill_between(x=dtf.index, y1=dtf['lower'], y2=dtf['upper'], color='b', alpha=0.2) ax2.set(xlabel=None) ### residuals dtf[["residuals","error"]].plot(ax=ax3, color=["green","red"], title="Residuals", grid=True) ax3.set(xlabel=None) ### residuals distribution dtf[["residuals","error"]].plot(ax=ax4, color=["green","red"], kind='kde', title="Residuals Distribution", grid=True) ax4.set(ylabel=None) plt.show() print("Training --> Residuals mean:", np.round(residuals_mean), " | std:", np.round(residuals_std)) print("Test --> Error mean:", np.round(error_mean), " | std:", np.round(error_std), " | mae:",np.round(mae), " | mape:",np.round(mape*100), "% | mse:",np.round(mse), " | rmse:",np.round(rmse)) return dtf[["ts", "model", "residuals", "lower", "forecast", "upper", "error"]] except Exception as e: print("--- got error ---") print(e) ''' Generate dates to index predictions. :parameter :param start: str - "yyyy-mm-dd" :param end: str - "yyyy-mm-dd" :param n: num - length of index :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly ''' def utils_generate_indexdate(start, end=None, n=None, freq="D"): if end is not None: index = pd.date_range(start=start, end=end, freq=freq) else: index = pd.date_range(start=start, periods=n, freq=freq) index = index[1:] # print("start ", start) # print("end ", end) # print("index --", index) print("--- generating index date --> start:", index[0], "| end:", index[-1], "| len:", len(index), "---") return index ''' Plot unknown future forecast and produce conf_int with residual_std and pred_int if an error_std is given. :parameter :param dtf: DataFrame with columns "ts", "model", "forecast", and "lower"/"upper" (if available) :param conf: num - confidence level (90%, 95%, 99%) :param zoom: int - plots the focus on the last zoom days :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper" (No error) ''' def utils_add_forecast_int(dtf, conf=0.95, plot=True, zoom=30, figsize=(15,5)): ## residuals from fitting ### add column dtf["residuals"] = dtf["ts"] - dtf["model"] ### kpi residuals_std = dtf["residuals"].std() ## interval if "upper" not in dtf.columns: print("--- computing confidence interval ---") dtf["lower"], dtf["upper"] = [np.nan, np.nan] dtf.loc[dtf["forecast"].notnull(), ["lower","upper"]] = utils_conf_int( dtf[dtf["forecast"].notnull()]["forecast"], residuals_std, conf) ## plot if plot is True: fig, ax = plt.subplots(nrows=1, ncols=2, figsize=figsize) ### entire series dtf[["ts","forecast"]].plot(color=["black","red"], grid=True, ax=ax[0], title="History + Future") ax[0].fill_between(x=dtf.index, y1=dtf['lower'], y2=dtf['upper'], color='b', alpha=0.2) ### focus on last first_idx = dtf[pd.notnull(dtf["forecast"])].index[0] first_loc = dtf.index.tolist().index(first_idx) zoom_idx = dtf.index[first_loc-zoom] dtf.loc[zoom_idx:][["ts","forecast"]].plot(color=["black","red"], grid=True, ax=ax[1], title="Zoom on the last "+str(zoom)+" observations") ax[1].fill_between(x=dtf.loc[zoom_idx:].index, y1=dtf.loc[zoom_idx:]['lower'], y2=dtf.loc[zoom_idx:]['upper'], color='b', alpha=0.2) plt.show() return dtf[["ts", "model", "residuals", "lower", "forecast", "upper"]] ############################################################################### # RANDOM WALK # ############################################################################### ''' Generate a Random Walk process. :parameter :param y0: num - starting value :param n: num - length of process :param ymin: num - limit :param ymax: num - limit ''' def utils_generate_rw(y0, n, sigma, ymin=None, ymax=None): rw = [y0] for t in range(1, n): yt = rw[t-1] + np.random.normal(0,sigma) if (ymax is not None) and (yt > ymax): yt = rw[t-1] - abs(np.random.normal(0,sigma)) elif (ymin is not None) and (yt < ymin): yt = rw[t-1] + abs(np.random.normal(0,sigma)) rw.append(yt) return rw ''' Simulate Random Walk from params of a given ts: y[t+1] = y[t] + wn~(0,σ) :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper", "error" ''' def simulate_rw(ts_train, ts_test, conf=0.95, figsize=(15,10)): ## simulate train diff_ts = ts_train - ts_train.shift(1) rw = utils_generate_rw(y0=ts_train[0], n=len(ts_train), sigma=diff_ts.std(), ymin=ts_train.min(), ymax=ts_train.max()) dtf_train = ts_train.to_frame(name="ts").merge(pd.DataFrame(rw, index=ts_train.index, columns=["model"]), how='left', left_index=True, right_index=True) ## test rw = utils_generate_rw(y0=ts_train[-1], n=len(ts_test), sigma=diff_ts.std(), ymin=ts_train.min(), ymax=ts_train.max()) dtf_test = ts_test.to_frame(name="ts").merge(pd.DataFrame(rw, index=ts_test.index, columns=["forecast"]), how='left', left_index=True, right_index=True) ## evaluate dtf = dtf_train.append(dtf_test) dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title="Random Walk Simulation") return dtf ''' Forecast unknown future. :parameter :param ts: pandas series :param pred_ahead: number of observations to forecast (ex. pred_ahead=30) :param end: string - date to forecast (ex. end="2016-12-31") :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly :param zoom: for plotting :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper" (No error) ''' def forecast_rw(ts, pred_ahead=None, end=None, freq="D", conf=0.95, zoom=30, figsize=(15,5)): ## fit diff_ts = ts - ts.shift(1) sigma = diff_ts.std() rw = utils_generate_rw(y0=ts[0], n=len(ts), sigma=sigma, ymin=ts.min(), ymax=ts.max()) dtf = ts.to_frame(name="ts").merge(pd.DataFrame(rw, index=ts.index, columns=["model"]), how='left', left_index=True, right_index=True) ## index index = utils_generate_indexdate(start=ts.index[-1], end=end, n=pred_ahead, freq=freq) ## forecast preds = utils_generate_rw(y0=ts[-1], n=len(index), sigma=sigma, ymin=ts.min(), ymax=ts.max()) dtf = dtf.append(pd.DataFrame(data=preds, index=index, columns=["forecast"])) ## add intervals and plot dtf = utils_add_forecast_int(dtf, conf=conf, zoom=zoom) return dtf ############################################################################### # AUTOREGRESSIVE # ############################################################################### ''' Fits Holt-Winters Exponential Smoothing: y[t+i] = (level[t] + i*trend[t]) * seasonality[t] :parameter :param ts_train: pandas timeseries :param ts_test: pandas timeseries :param trend: str - "additive" (linear), "multiplicative" (non-linear) :param seasonal: str - "additive" (ex. +100 every 7 days), "multiplicative" (ex. x10 every 7 days) :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param alpha: num - the alpha value of the simple exponential smoothing (ex 0.94) :return dtf with predictons and the model ''' def fit_expsmooth(ts_train, ts_test, trend="additive", seasonal="multiplicative", s=None, alpha=0.94, conf=0.95, figsize=(15,10)): ## checks check_seasonality = "Seasonal parameters: No Seasonality" if (seasonal is None) & (s is None) else "Seasonal parameters: "+str(seasonal)+" Seasonality every "+str(s)+" observations" print(check_seasonality) ## train #alpha = alpha if s is None else 2/(s+1) model = smt.ExponentialSmoothing(ts_train, trend=trend, seasonal=seasonal, seasonal_periods=s).fit(smoothing_level=alpha) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.fittedvalues ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.predict(start=len(ts_train), end=len(ts_train)+len(ts_test)-1) ## evaluate dtf = dtf_train.append(dtf_test) dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title="Holt-Winters ("+str(alpha)+")") return dtf, model ''' Fits SARIMAX (Seasonal ARIMA with External Regressors): y[t+1] = (c + a0*y[t] + a1*y[t-1] +...+ ap*y[t-p]) + (e[t] + b1*e[t-1] + b2*e[t-2] +...+ bq*e[t-q]) + (B*X[t]) :parameter :param ts_train: pandas timeseries :param ts_test: pandas timeseries :param order: tuple - ARIMA(p,d,q) --> p: lag order (AR), d: degree of differencing (to remove trend), q: order of moving average (MA) :param seasonal_order: tuple - (P,D,Q,s) --> s: number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param exog_train: pandas dataframe or numpy array :param exog_test: pandas dataframe or numpy array :return dtf with predictons and the model ''' def fit_sarimax(ts_train, ts_test, order=(1,0,1), seasonal_order=(0,0,0,0), exog_train=None, exog_test=None, conf=0.95, figsize=(15,10)): ## checks check_trend = "Trend parameters: No differencing" if order[1] == 0 else "Trend parameters: d="+str(order[1]) print(check_trend) check_seasonality = "Seasonal parameters: No Seasonality" if (seasonal_order[3] == 0) & (np.sum(seasonal_order[0:3]) == 0) else "Seasonal parameters: Seasonality every "+str(seasonal_order[3])+" observations" print(check_seasonality) check_exog = "Exog parameters: Not given" if (exog_train is None) & (exog_test is None) else "Exog parameters: number of regressors="+str(exog_train.shape[1]) print(check_exog) ## train model = smt.SARIMAX(ts_train, order=order, seasonal_order=seasonal_order, exog=exog_train, enforce_stationarity=False, enforce_invertibility=False).fit() dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.fittedvalues ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.predict(start=len(ts_train), end=len(ts_train)+len(ts_test)-1, exog=exog_test) ## add conf_int ci = model.get_forecast(len(ts_test)).conf_int(1-conf).values dtf_test["lower"], dtf_test["upper"] = ci[:,0], ci[:,1] ## evaluate dtf = dtf_train.append(dtf_test) title = "ARIMA "+str(order) if exog_train is None else "ARIMAX "+str(order) title = "S"+title+" x "+str(seasonal_order) if np.sum(seasonal_order) > 0 else title dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title=title) return dtf, model ''' Find best Seasonal-ARIMAX parameters. :parameter :param ts: pandas timeseries :param exog: pandas dataframe or numpy array :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :return best model ''' def find_best_sarimax(ts, seasonal=True, stationary=False, s=1, exog=None, max_p=10, max_d=3, max_q=10, max_P=10, max_D=3, max_Q=10): best_model = pmdarima.auto_arima(ts, exogenous=exog, seasonal=seasonal, stationary=stationary, m=s, information_criterion='aic', max_order=20, max_p=max_p, max_d=max_d, max_q=max_q, max_P=max_P, max_D=max_D, max_Q=max_Q, error_action='ignore') print("best model --> (p, d, q):", best_model.order, " and (P, D, Q, s):", best_model.seasonal_order) return best_model.summary() ''' Fits GARCH (Generalized Autoregressive Conditional Heteroskedasticity): y[t+1] = m + e[t+1] e[t+1] = σ[t+1] * wn~(0,1) σ²[t+1] = c + (a0*σ²[t] + a1*σ²[t-1] +...+ ap*σ²[t-p]) + (b0*e²[t] + b1*e[t-1] + b2*e²[t-2] +...+ bq*e²[t-q]) :parameter :param ts: pandas timeseries :param order: tuple - ARIMA(p,d,q) --> p:lag order (AR), d:degree of differencing (to remove trend), q:order of moving average (MA) ''' def fit_garch(ts_train, ts_test, order=(1,0,1), seasonal_order=(0,0,0,0), exog_train=None, exog_test=None, figsize=(15,10)): ## train arima = smt.SARIMAX(ts_train, order=order, seasonal_order=seasonal_order, exog=exog_train, enforce_stationarity=False, enforce_invertibility=False).fit() garch = arch.arch_model(arima.resid, p=order[0], o=order[1], q=order[2], x=exog_train, dist='StudentsT', power=2.0, mean='Constant', vol='GARCH') model = garch.fit(update_freq=seasonal_order[3]) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.conditional_volatility ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.forecast(horizon=len(ts_test)) ## evaluate dtf = dtf_train.append(dtf_test) title = "GARCH ("+str(order[0])+","+str(order[2])+")" if order[0] != 0 else "ARCH ("+str(order[2])+")" dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title=title) return dtf, model ''' Forecast unknown future. :parameter :param ts: pandas series :param model: model object :param pred_ahead: number of observations to forecast (ex. pred_ahead=30) :param end: string - date to forecast (ex. end="2016-12-31") :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly :param zoom: for plotting ''' def forecast_arima(ts, model, pred_ahead=None, end=None, freq="D", conf=0.95, zoom=30, figsize=(15,5)): ## fit model = model.fit() dtf = ts.to_frame(name="ts") dtf["model"] = model.fittedvalues dtf["residuals"] = dtf["ts"] - dtf["model"] ## index index = utils_generate_indexdate(start=ts.index[-1], end=end, n=pred_ahead, freq=freq) ## forecast preds = model.get_forecast(len(index)) dtf_preds = preds.predicted_mean.to_frame(name="forecast") ## add conf_int ci = preds.conf_int(1-conf).values dtf_preds["lower"], dtf_preds["upper"] = ci[:,0], ci[:,1] ## add intervals and plot dtf = dtf.append(dtf_preds) dtf = utils_add_forecast_int(dtf, conf=conf, zoom=zoom) return dtf ############################################################################### # RNN # ############################################################################### ''' Plot loss and metrics of keras training. ''' def utils_plot_keras_training(training): metrics = [k for k in training.history.keys() if ("loss" not in k) and ("val" not in k)] fig, ax = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(15,3)) ## training ax[0].set(title="Training") ax11 = ax[0].twinx() ax[0].plot(training.history['loss'], color='black') ax[0].set_xlabel('Epochs') ax[0].set_ylabel('Loss', color='black') for metric in metrics: ax11.plot(training.history[metric], label=metric) ax11.set_ylabel("Score", color='steelblue') ax11.legend() ## validation ax[1].set(title="Validation") ax22 = ax[1].twinx() ax[1].plot(training.history['val_loss'], color='black') ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Loss', color='black') for metric in metrics: ax22.plot(training.history['val_'+metric], label=metric) ax22.set_ylabel("Score", color="steelblue") plt.show() ''' Preprocess a ts partitioning into X and y. :parameter :param ts: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param scaler: sklearn scaler object - if None is fitted :param exog: pandas dataframe or numpy array :return X, y, scaler ''' def utils_preprocess_ts(ts, s, scaler=None, exog=None): ## scale if scaler is None: scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) ts_preprocessed = scaler.fit_transform(ts.values.reshape(-1,1)).reshape(-1) ## create X,y for train ts_preprocessed = kprocessing.sequence.TimeseriesGenerator(data=ts_preprocessed, targets=ts_preprocessed, length=s, batch_size=1) lst_X, lst_y = [], [] for i in range(len(ts_preprocessed)): xi, yi = ts_preprocessed[i] lst_X.append(xi) lst_y.append(yi) X = np.array(lst_X) y = np.array(lst_y) return X, y, scaler ''' Get fitted values. ''' def utils_fitted_lstm(ts, model, scaler, exog=None): ## scale ts_preprocessed = scaler.fit_transform(ts.values.reshape(-1,1)).reshape(-1) ## create Xy, predict = fitted s = model.input_shape[-1] lst_fitted = [np.nan]*s for i in range(len(ts_preprocessed)): end_ix = i + s if end_ix > len(ts_preprocessed)-1: break X = ts_preprocessed[i:end_ix] X = np.array(X) X = np.reshape(X, (1,1,X.shape[0])) fit = model.predict(X) fit = scaler.inverse_transform(fit)[0][0] lst_fitted.append(fit) return np.array(lst_fitted) ''' Predict ts using previous predictions. ''' def utils_predict_lstm(ts, model, scaler, pred_ahead, exog=None): ## scale s = model.input_shape[-1] ts_preprocessed = list(scaler.fit_transform(ts[-s:].values.reshape(-1,1))) ## predict, append, re-predict lst_preds = [] for i in range(pred_ahead): X = np.array(ts_preprocessed[len(ts_preprocessed)-s:]) X = np.reshape(X, (1,1,X.shape[0])) pred = model.predict(X) ts_preprocessed.append(pred) pred = scaler.inverse_transform(pred)[0][0] lst_preds.append(pred) return np.array(lst_preds) ''' Fit Long short-term memory neural network. :parameter :param ts: pandas timeseries :param exog: pandas dataframe or numpy array :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :return generator, scaler ''' def fit_lstm(ts_train, ts_test, model, exog=None, s=20, epochs=100, conf=0.95, figsize=(15,5)): ## check print("Seasonality: using the last", s, "observations to predict the next 1") ## preprocess train X_train, y_train, scaler = utils_preprocess_ts(ts_train, scaler=None, exog=exog, s=s) ## lstm if model is None: model = models.Sequential() model.add( layers.LSTM(input_shape=X_train.shape[1:], units=50, activation='relu', return_sequences=False) ) model.add( layers.Dense(1) ) model.compile(optimizer='adam', loss='mean_absolute_error') print(model.summary()) ## train verbose = 0 if epochs > 1 else 1 training = model.fit(x=X_train, y=y_train, batch_size=1, epochs=epochs, shuffle=True, verbose=verbose, validation_split=0.3) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = utils_fitted_lstm(ts_train, training.model, scaler, exog) dtf_train["model"] = dtf_train["model"].fillna(method='bfill') ## test preds = utils_predict_lstm(ts_train[-s:], training.model, scaler, pred_ahead=len(ts_test), exog=None) dtf_test = ts_test.to_frame(name="ts").merge(
pd.DataFrame(data=preds, index=ts_test.index, columns=["forecast"])
pandas.DataFrame
######################################################## # <NAME> - drigols # # Last update: 21/09/2021 # ######################################################## if __name__ =="__main__": from matplotlib import pyplot as plt import pandas as pd students_dic = { 'Grade':[50, 50, 46, 95, 50, 5, 57, 42, 26, 72, 78, 60, 40, 17, 85], 'Salary':[50000, 54000, 50000, 189000, 55000, 40000, 59000, 42000, 47000, 78000, 119000, 95000, 49000, 29000, 130000] } df =
pd.DataFrame(students_dic)
pandas.DataFrame
import pandas as pd import numpy as np import fileinput import itertools from .PrintUtil import * from .KBaseObjUtil import * pd.set_option('display.max_rows', 100) pd.set_option('display.max_columns', 50) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth', 20) class HTMLBuilder: html_template_filepath = '/kb/module/lib/AD_VINA/util/index.html' TAG_L = [tag + '_TAG' for tag in ['PROTEIN', 'WARNINGS', 'CMDS', 'JSON', 'COLUMNS']] def __init__(self, ps: ProteinStructure, cs: CompoundSet, cmd_l: list): self.ps = ps self.cs = cs self.cmd_l = cmd_l # html dir and file self.html_dir = os.path.join(VarStash.shared_folder, 'html_dir' + VarStash.suffix) os.mkdir(self.html_dir) self.html_filepath = os.path.join(self.html_dir, os.path.basename(self.html_template_filepath)) shutil.copyfile(self.html_template_filepath, self.html_filepath) # html file content self._build() def _build(self): self.replacements = {} self._build_protein() self._build_cmds() self._build_table() self._build_warnings() for line in fileinput.input(self.html_filepath, inplace=True): tag_hit = None for tag in self.TAG_L: if tag in line and tag in self.replacements: tag_hit = tag if tag_hit: print(line.replace(tag_hit, self.replacements[tag_hit]), end='') else: print(line, end='') def _build_protein(self): self.replacements['PROTEIN_TAG'] = self.ps.name def _build_cmds(self): if len(self.cmd_l) > 0: self.replacements['CMDS_TAG'] = '\n'.join([f"<p><code>{cmd}</code></p>" for cmd in self.cmd_l]) else: self.replacements['CMDS_TAG'] = ( "<p><i>No <code>vina</code> commands were run. " "This could be because no MOL2 files were found in ZINC for any of the compounds, " "no MOL2 files successfully converted to PDBQT, " "or there are no compounds in the CompoundSet object.</i></p>" ) def _build_table(self): """ (1) Build docking table (2) Merge with compound table (3) Dump """ col_title_compound = ['(User Entered) Id', '(User Entered) Name', 'Formula', 'SMILES', 'InChIKey', 'Mass (g/mol)', 'Charge (C)', '&Delta;G<sub>f</sub>&deg; (kJ/mol)'] col_title_dock = ['Mode', 'Affinity (kcal/mol)', 'RMSD L.B.', 'RMSD U.B.'] #------------------------------------------------------------------------------------------- ## ## docking table attr_dock = ['mode', 'affinity', 'rmsd_lb', 'rmsd_ub'] df_l = [] for id, log_filepath in zip(self.cs.get_attr_l('id'), self.cs.get_attr_l('log_filepath')): if isinstance(log_filepath, float) and np.isnan(log_filepath): continue df = pd.DataFrame(columns=attr_dock) df = self._parse_log(log_filepath, df, id) df_l.append(df) df_dock =
pd.concat(df_l)
pandas.concat
import numpy as np from nodevectors import Node2Vec import gensim import csrgraph as cg import time import pandas as pd class Node2VecResizable(Node2Vec): def _deepwalk(self, G, node_names): # Adjacency matrix walks_t = time.time() if self.verbose: print("Making walks...", end=" ") self.walks = G.random_walks( walklen=self.walklen, epochs=self.epochs, return_weight=self.return_weight, neighbor_weight=self.neighbor_weight, ) if self.verbose: print(f"Done, T={time.time() - walks_t:.2f}") print("Mapping Walk Names...", end=" ") map_t = time.time() self.walks =
pd.DataFrame(self.walks)
pandas.DataFrame
# -*- coding: utf-8 -*- """ """ import os from datapackage import Package import json import pandas as pd from oemof.tabular.datapackage import building def _get_hydro_inflow(inflow_dir=None): """ Adapted from: https://github.com/FRESNA/vresutils/blob/master/vresutils/hydro.py """ def read_inflow(country): return pd.read_csv( os.path.join(inflow_dir, "Hydro_Inflow_{}.csv".format(country)), parse_dates={"date": [0, 1, 2]}, ).set_index("date")["Inflow [GWh]"] europe = [ "AT", "BA", "BE", "BG", "CH", "CZ", "DE", "ES", "FI", "FR", "HR", "HU", "IE", "IT", "KV", "LT", "LV", "ME", "MK", "NL", "NO", "PL", "PT", "RO", "RS", "SE", "SI", "SK", "UK", ] hyd = pd.DataFrame({cname: read_inflow(cname) for cname in europe}) hyd.rename(columns={"UK": "GB"}, inplace=True) # for ISO country code hydro = hyd.resample("H").interpolate("cubic") # add last day of the dataset that is missing from resampling last_day = pd.DataFrame( index=pd.DatetimeIndex(start="20121231", freq="H", periods=24), columns=hydro.columns, ) data = hyd.loc["2012-12-31"] for c in last_day: last_day.loc[:, c] = data[c] # need to drop last day because it comes in last day... hydro = pd.concat([hydro.drop(hydro.tail(1).index), last_day]) # remove last day in Feb for leap years hydro = hydro[~((hydro.index.month == 2) & (hydro.index.day == 29))] if True: # default norm normalization_factor = hydro.index.size / float( hyd.index.size ) # normalize to new sampling frequency # else: # # conserve total inflow for each country separately # normalization_factor = hydro.sum() / hyd.sum() hydro /= normalization_factor return hydro def generation(config, scenario_year, datapackage_dir, raw_data_path): """ """ countries, scenario_year = ( config["buses"]["electricity"], config["scenario"]["year"], ) building.download_data( "https://zenodo.org/record/804244/files/Hydro_Inflow.zip?download=1", directory=raw_data_path, unzip_file="Hydro_Inflow/", ) technologies = pd.DataFrame( Package( "https://raw.githubusercontent.com/ZNES-datapackages/" "angus-input-data/master/technology/datapackage.json" ) .get_resource("technology") .read(keyed=True) ).set_index(["year", "parameter", "carrier", "tech"]) hydro_data = pd.DataFrame( Package( "https://raw.githubusercontent.com/ZNES-datapackages/" "angus-input-data/master/hydro/datapackage.json" ) .get_resource("hydro") .read(keyed=True) ).set_index(["year", "country"]) hydro_data.rename(index={"UK": "GB"}, inplace=True) # for iso code inflows = _get_hydro_inflow( inflow_dir=os.path.join(raw_data_path, "Hydro_Inflow") ) inflows = inflows.loc[ inflows.index.year == config["scenario"]["weather_year"], : ] inflows["DK"], inflows["LU"] = 0, inflows["BE"] for c in hydro_data.columns: if c != "source": hydro_data[c] = hydro_data[c].astype(float) capacities = hydro_data.loc[scenario_year].loc[countries][ ["ror", "rsv", "phs"] ] ror_shares = hydro_data.loc[scenario_year].loc[countries]["ror-share"] max_hours = hydro_data.loc[scenario_year].loc[countries][ ["rsv-max-hours", "phs-max-hours"] ] rsv_factor = hydro_data.loc[scenario_year].loc[countries]["rsv-factor"] # ror elements = {} for country in countries: name = country + "-hydro-ror" capacity = capacities.loc[country, "ror"] # eta = technologies.loc[ # (scenario_year, "efficiency", "hydro", "ror"), "value" # ] if capacity > 0: elements[name] = { "type": "volatile", "tech": "ror", "carrier": "hydro", "bus": country + "-electricity", "capacity": capacity, "profile": country + "-ror-profile", "efficiency": 1, # as already included in inflow profile } building.write_elements( "ror.csv",
pd.DataFrame.from_dict(elements, orient="index")
pandas.DataFrame.from_dict
""" Copyright (c) 2018-2021 Qualcomm Technologies, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Qualcomm Technologies, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. * The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment is required by displaying the trademark/log as per the details provided here: https://www.qualcomm.com/documents/dirbs-logo-and-brand-guidelines * Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. * This notice may not be removed or altered from any source distribution. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import json import time import string import requests import pandas as pd from math import trunc from time import strftime from random import choice from celery import shared_task from django.core.mail import send_mail from device_notification_subsystem.settings import conf from .models import Sms, SmsContent, Email, EmailContent, UniqueEmail, UniqueMsisdn @shared_task() def celery_email(subject, content, sender, recipient): recipients = [recipient] send_mail(subject, content, sender, recipients, fail_silently=False) return "Email has been sent" @shared_task() def jasmine_sms(msisdn, content, sender_no, operator): url = conf['jasmine_single_sms_url'] sms_body = { "to": msisdn, "from": sender_no, # "coding": 0, "content": content } auth = jasmin_auth(operator) headers = {'content-type': 'application/json', 'Authorization': auth} response = requests.post(url=url, data=json.dumps(sms_body), headers=headers) if response: if response.status_code == 200: return "SMS sent to {m} : {c}".format(m=msisdn, c=content) else: return "SMS delivery to {m} is failed".format(m=msisdn) @shared_task def bulk_email_db(subject, content, subsystem, sender_email): t1 = time.time() qry = UniqueEmail.objects.order_by('email').values_list('email', flat=True).distinct() campaign_id = "Email_DB_" + strftime("%Y-%m-%d_%H-%M-%S") for q in qry: print(f"sending email to: {q}") celery_email.apply_async(args=[subject, content, sender_email, q], queue='email_que') # calling celery task write_email_db(q, sender_email, subsystem, subject, content, campaign_id) t2 = time.time() return "Email campaign completed in: {time} secs".format(time=(t2 - t1)) @shared_task def bulk_sms_db(content, operator, subsystem, sender_no, sms_rate): t1 = time.time() qry = UniqueMsisdn.objects.order_by('msisdn').values_list('msisdn', flat=True).distinct() start = 0 total_msisdns = len(qry) sms_batch_size = sms_rate total_chunks = (total_msisdns / sms_batch_size) if total_chunks.is_integer(): total_chunks = trunc(total_chunks) else: total_chunks = trunc(total_chunks) + 1 print("total chunks = ", total_chunks) end = sms_batch_size for chunk in range(0, total_chunks): if chunk != total_chunks - 1: msisdn_list = qry[start:end] start = end end = end + sms_batch_size else: msisdn_list = qry[start:] print("processing chunk-", chunk + 1) # res = send_sms_batch(msisdn_list, content) send_sms_batch(msisdn_list, operator, content) print("DB insertion started ") campaign_id = "SMS_DB_" + strftime("%Y-%m-%d_%H-%M-%S") # result = [write_sms_db(q, sender_no, operator, subsystem, content, campaign_id) for q in qry] [write_sms_db(q, sender_no, operator, subsystem, content, campaign_id) for q in qry] t2 = time.time() return "SMS campaign completed in: {time} sec".format(time=(t2 - t1)) # noinspection PyUnboundLocalVariable,PyUnusedLocal @shared_task def bulk_email_file(file, subject, content, subsystem, sender_email): """Function to create celery task of processing bulk file for sending Email campaigns """ t1 = time.time() # extracting file path & file name file_path, file_name = os.path.split(file) try: # read the file into DataFrame df_csv = pd.read_csv(file, usecols=range(2), dtype={"imei": str, "imsi": str, "email": str}, chunksize=conf['df_big_chunksize']) except Exception as e: if e: error = {"Error": "File content is not Correct"} return json.dumps(error) df = pd.concat(df_csv) # removing white spaces from Column 'email' df['email'] = df['email'].str.strip() # removing Email-IDs with wrong format df = df[(df.email.astype(str).str.match(conf['validation_regex']['email']))] rows, cols = df.shape print(rows, cols) start = 0 # generating random string for file-name all_char = string.ascii_letters + string.digits rand_str = "".join(choice(all_char) for x in range(8)) if rows >= 10: chunk_size = trunc(rows / 10) end = chunk_size email_files, all_files = [], [] for i in range(1, 11): print(start, end) f_all = "Email_" + rand_str + "_chunk_" + str(i) + ".csv" file_all = os.path.join(file_path, f_all) print(file_all) all_files.append(file_all) if i != 10: df[start:end].to_csv(file_all, index=False) start = end end = end + chunk_size else: df[start:].to_csv(file_all, index=False) else: return "File must contain more than 10 Email-IDs" for i in range(1, 11): print("Processing File-", i) all_file = all_files[i - 1] que = 'que' + str(i) process_email_file.apply_async(args=[all_file, subject, content, subsystem, file_name, sender_email], queue=que) t2 = time.time() return "File chunking completed in: {time} sec".format(time=(t2 - t1)) # noinspection PyUnboundLocalVariable,PyUnusedLocal @shared_task def bulk_sms_file(file, content, operator, subsystem, sender_no, sms_rate): """Function to create celery task of processing bulk file for sending SMS campaign """ t1 = time.time() # extracting file path & file name file_path, file_name = os.path.split(file) try: # read the file into DataFrame df_csv = pd.read_csv(file, usecols=range(5), dtype={"imei": str, "imsi": str, "msisdn": str, "block_date": str, "reasons": str}, chunksize=conf['df_big_chunksize']) except Exception as e: if e: error = {"Error": "File content is not Correct"} return json.dumps(error) df = pd.concat(df_csv) # removing white spaces from Column 'msisdn' df['msisdn'] = df['msisdn'].str.strip() # removing MSISDN with wrong format df = df[(df.msisdn.astype(str).str.match(conf['validation_regex']['msisdn']))] # Copying "MSISDN" column to new DataFrame df_new = pd.DataFrame() df_new['msisdn'] = df['msisdn'] rows, cols = df_new.shape print(rows, cols) start = 0 # generating random string for file-name all_char = string.ascii_letters + string.digits rand_str = "".join(choice(all_char) for x in range(8)) if rows >= 10: chunk_size = trunc(rows / 10) end = chunk_size msisdn_files, all_files = [], [] for i in range(1, 11): print(start, end) f_msisdn = "MSISDN_only_" + rand_str + "_chunk_" + str(i) + ".csv" f_all = "File_all_" + rand_str + "_chunk_" + str(i) + ".csv" file_msisdn = os.path.join(file_path, f_msisdn) file_all = os.path.join(file_path, f_all) print(file_msisdn) msisdn_files.append(file_msisdn) all_files.append(file_all) if i != 10: df_new[start:end].to_csv(file_msisdn, index=False) df[start:end].to_csv(file_all, index=False) start = end end = end + chunk_size else: df_new[start:].to_csv(file_msisdn, index=False) df[start:].to_csv(file_all, index=False) else: return "File must contain more than 10 MSISDNs" for i in range(1, 11): print("Processing File-", i) msisdn_file = msisdn_files[i-1] all_file = all_files[i-1] que = 'que' + str(i) process_sms_file.apply_async(args=[msisdn_file, all_file, content, operator, subsystem, file_name, sender_no, sms_rate], queue=que) t2 = time.time() return "File chunking completed in: {time} sec".format(time=(t2 - t1)) @shared_task def process_email_file(file_all, subject, content, subsystem, file_name, sender_email): t1 = time.time() df_t2 =
pd.read_csv(file_all, chunksize=conf['df_small_chunksize'])
pandas.read_csv
import pandas as pd def read_filter_lbmp(path): """ Read one csv file with pandas. Convert the Time Stamp field to pandas datetime format. Filter out non-NYC nodes and only keep required columns. Change column names to snake case for easier access. Parameters ---------- path : str or other object for read_csv filepath parameter Path to csv file with LBMP data Returns ------- DataFrame df with 3 columns (time stamp, name of node, LBMP) """ df =
pd.read_csv(path, parse_dates=['Time Stamp'])
pandas.read_csv
import sys import pandas as pd import numpy as np from sqlalchemy import create_engine import os class data: def __init__(self): self.categories=
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from pandas.compat import range import pandas.util.testing as tm from pandas import read_csv import os import nose with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): import pandas.tools.rplot as rplot def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def between(a, b, x): """Check if x is in the somewhere between a and b. Parameters: ----------- a: float, interval start b: float, interval end x: float, value to test for Returns: -------- True if x is between a and b, False otherwise """ if a < b: return x >= a and x <= b else: return x <= a and x >= b @tm.mplskip class TestUtilityFunctions(tm.TestCase): """ Tests for RPlot utility functions. """ def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') def test_make_aes1(self): aes = rplot.make_aes() self.assertTrue(aes['x'] is None) self.assertTrue(aes['y'] is None) self.assertTrue(aes['size'] is None) self.assertTrue(aes['colour'] is None) self.assertTrue(aes['shape'] is None) self.assertTrue(aes['alpha'] is None) self.assertTrue(isinstance(aes, dict)) def test_make_aes2(self): self.assertRaises(ValueError, rplot.make_aes, size=rplot.ScaleShape('test')) self.assertRaises(ValueError, rplot.make_aes, colour=rplot.ScaleShape('test')) self.assertRaises(ValueError, rplot.make_aes, shape=rplot.ScaleSize('test')) self.assertRaises(ValueError, rplot.make_aes, alpha=rplot.ScaleShape('test')) def test_dictionary_union(self): dict1 = {1 : 1, 2 : 2, 3 : 3} dict2 = {1 : 1, 2 : 2, 4 : 4} union = rplot.dictionary_union(dict1, dict2) self.assertEqual(len(union), 4) keys = list(union.keys()) self.assertTrue(1 in keys) self.assertTrue(2 in keys) self.assertTrue(3 in keys) self.assertTrue(4 in keys) self.assertEqual(rplot.dictionary_union(dict1, {}), dict1) self.assertEqual(rplot.dictionary_union({}, dict1), dict1) self.assertEqual(rplot.dictionary_union({}, {}), {}) def test_merge_aes(self): layer1 = rplot.Layer(size=rplot.ScaleSize('test')) layer2 = rplot.Layer(shape=rplot.ScaleShape('test')) rplot.merge_aes(layer1, layer2) self.assertTrue(isinstance(layer2.aes['size'], rplot.ScaleSize)) self.assertTrue(isinstance(layer2.aes['shape'], rplot.ScaleShape)) self.assertEqual(layer2.aes['size'], layer1.aes['size']) for key in layer2.aes.keys(): if key != 'size' and key != 'shape': self.assertTrue(layer2.aes[key] is None) def test_sequence_layers(self): layer1 = rplot.Layer(self.data) layer2 = rplot.GeomPoint(x='SepalLength', y='SepalWidth', size=rplot.ScaleSize('PetalLength')) layer3 = rplot.GeomPolyFit(2) result = rplot.sequence_layers([layer1, layer2, layer3]) self.assertEqual(len(result), 3) last = result[-1] self.assertEqual(last.aes['x'], 'SepalLength') self.assertEqual(last.aes['y'], 'SepalWidth') self.assertTrue(isinstance(last.aes['size'], rplot.ScaleSize)) self.assertTrue(self.data is last.data) self.assertTrue(rplot.sequence_layers([layer1])[0] is layer1) @tm.mplskip class TestTrellis(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/tips.csv') self.data = read_csv(path, sep=',') layer1 = rplot.Layer(self.data) layer2 = rplot.GeomPoint(x='total_bill', y='tip') layer3 = rplot.GeomPolyFit(2) self.layers = rplot.sequence_layers([layer1, layer2, layer3]) self.trellis1 = rplot.TrellisGrid(['sex', 'smoker']) self.trellis2 = rplot.TrellisGrid(['sex', '.']) self.trellis3 = rplot.TrellisGrid(['.', 'smoker']) self.trellised1 = self.trellis1.trellis(self.layers) self.trellised2 = self.trellis2.trellis(self.layers) self.trellised3 = self.trellis3.trellis(self.layers) def test_grid_sizes(self): self.assertEqual(len(self.trellised1), 3) self.assertEqual(len(self.trellised2), 3) self.assertEqual(len(self.trellised3), 3) self.assertEqual(len(self.trellised1[0]), 2) self.assertEqual(len(self.trellised1[0][0]), 2) self.assertEqual(len(self.trellised2[0]), 2) self.assertEqual(len(self.trellised2[0][0]), 1) self.assertEqual(len(self.trellised3[0]), 1) self.assertEqual(len(self.trellised3[0][0]), 2) self.assertEqual(len(self.trellised1[1]), 2) self.assertEqual(len(self.trellised1[1][0]), 2) self.assertEqual(len(self.trellised2[1]), 2) self.assertEqual(len(self.trellised2[1][0]), 1) self.assertEqual(len(self.trellised3[1]), 1) self.assertEqual(len(self.trellised3[1][0]), 2) self.assertEqual(len(self.trellised1[2]), 2) self.assertEqual(len(self.trellised1[2][0]), 2) self.assertEqual(len(self.trellised2[2]), 2) self.assertEqual(len(self.trellised2[2][0]), 1) self.assertEqual(len(self.trellised3[2]), 1) self.assertEqual(len(self.trellised3[2][0]), 2) def test_trellis_cols_rows(self): self.assertEqual(self.trellis1.cols, 2) self.assertEqual(self.trellis1.rows, 2) self.assertEqual(self.trellis2.cols, 1) self.assertEqual(self.trellis2.rows, 2) self.assertEqual(self.trellis3.cols, 2) self.assertEqual(self.trellis3.rows, 1) @tm.mplskip class TestScaleGradient(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.gradient = rplot.ScaleGradient("SepalLength", colour1=(0.2, 0.3, 0.4), colour2=(0.8, 0.7, 0.6)) def test_gradient(self): for index in range(len(self.data)): row = self.data.iloc[index] r, g, b = self.gradient(self.data, index) r1, g1, b1 = self.gradient.colour1 r2, g2, b2 = self.gradient.colour2 self.assertTrue(between(r1, r2, r)) self.assertTrue(between(g1, g2, g)) self.assertTrue(between(b1, b2, b)) @tm.mplskip class TestScaleGradient2(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.gradient = rplot.ScaleGradient2("SepalLength", colour1=(0.2, 0.3, 0.4), colour2=(0.8, 0.7, 0.6), colour3=(0.5, 0.5, 0.5)) def test_gradient2(self): for index in range(len(self.data)): row = self.data.iloc[index] r, g, b = self.gradient(self.data, index) r1, g1, b1 = self.gradient.colour1 r2, g2, b2 = self.gradient.colour2 r3, g3, b3 = self.gradient.colour3 value = row[self.gradient.column] a_ = min(self.data[self.gradient.column]) b_ = max(self.data[self.gradient.column]) scaled = (value - a_) / (b_ - a_) if scaled < 0.5: self.assertTrue(between(r1, r2, r)) self.assertTrue(between(g1, g2, g)) self.assertTrue(between(b1, b2, b)) else: self.assertTrue(between(r2, r3, r)) self.assertTrue(between(g2, g3, g)) self.assertTrue(between(b2, b3, b)) @tm.mplskip class TestScaleRandomColour(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.colour = rplot.ScaleRandomColour('SepalLength') def test_random_colour(self): for index in range(len(self.data)): colour = self.colour(self.data, index) self.assertEqual(len(colour), 3) r, g, b = colour self.assertTrue(r >= 0.0) self.assertTrue(g >= 0.0) self.assertTrue(b >= 0.0) self.assertTrue(r <= 1.0) self.assertTrue(g <= 1.0) self.assertTrue(b <= 1.0) @tm.mplskip class TestScaleConstant(tm.TestCase): def test_scale_constant(self): scale = rplot.ScaleConstant(1.0) self.assertEqual(scale(None, None), 1.0) scale = rplot.ScaleConstant("test") self.assertEqual(scale(None, None), "test") class TestScaleSize(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.scale1 = rplot.ScaleShape('Name') self.scale2 = rplot.ScaleShape('PetalLength') def test_scale_size(self): for index in range(len(self.data)): marker = self.scale1(self.data, index) self.assertTrue(marker in ['o', '+', 's', '*', '^', '<', '>', 'v', '|', 'x']) def test_scale_overflow(self): def f(): for index in range(len(self.data)): self.scale2(self.data, index) self.assertRaises(ValueError, f) @tm.mplskip class TestRPlot(tm.TestCase): def test_rplot1(self): import matplotlib.pyplot as plt path = os.path.join(curpath(), 'data/tips.csv') plt.figure() self.data = read_csv(path, sep=',') self.plot = rplot.RPlot(self.data, x='tip', y='total_bill') self.plot.add(rplot.TrellisGrid(['sex', 'smoker'])) self.plot.add(rplot.GeomPoint(colour=rplot.ScaleRandomColour('day'), shape=rplot.ScaleShape('size'))) self.fig = plt.gcf() self.plot.render(self.fig) def test_rplot2(self): import matplotlib.pyplot as plt path = os.path.join(curpath(), 'data/tips.csv') plt.figure() self.data = read_csv(path, sep=',') self.plot = rplot.RPlot(self.data, x='tip', y='total_bill') self.plot.add(rplot.TrellisGrid(['.', 'smoker'])) self.plot.add(rplot.GeomPoint(colour=
rplot.ScaleRandomColour('day')
pandas.tools.rplot.ScaleRandomColour
import time, datetime, os, collections from dateutil import relativedelta import numpy as np #数値計算用 import pandas as pd #データ処理用 import yfinance as yf import pandas_datareader #import requests #クローリング用 #import bs4 #スクレイピング用 pd.set_option('display.unicode.east_asian_width', True) #全角文字幅を考慮して表示 #銘柄情報を取得 def get_stock_code(stock_dict, data_type='list', show=False): database = stock_dict['database'] group_type = stock_dict['group_type'] group_name = stock_dict['group_name'] stock_list = [] #東証上場銘柄 if (database=='tosho_jpx'): file_name = 'https://www.jpx.co.jp/markets/statistics-equities/misc/tvdivq0000001vg2-att/data_j.xls' df_stock = pd.read_excel(file_name) df_stock['17業種区分'] = df_stock['17業種区分'].str.replace(' ', '') #余計な空白を削除 df_stock['コード'] = df_stock['コード'].astype(str).str[:4] +'.T' #TOPIXの構成銘柄 if (database=='topix_jpx'): file_name = 'https://www.jpx.co.jp/markets/indices/topix/tvdivq00000030ne-att/TOPIX_weight_jp.xlsx' df_stock = pd.read_excel(file_name) df_stock['日付'] = df_stock['日付'].replace(r'(.*/D.*)', np.nan, regex=True) #無効な値を置換 df_stock = df_stock.drop(['調整係数対象銘柄'], axis=1).dropna() #NaNを含む行を捨てる df_stock['日付'] = pd.to_datetime(df_stock['日付'], format='%Y%m%d') #型変換 df_stock['コード'] = df_stock['コード'].astype(str).str[:4] +'.T' #日経225の構成銘柄 if (database=='n225_nikkei'): file_name = 'https://indexes.nikkei.co.jp/nkave/archives/file/nikkei_stock_average_weight_jp.csv' df_stock = pd.read_csv(file_name, encoding='shift-jis').dropna() df_stock = df_stock.rename(columns={"社名":"銘柄名"}) #列名変更 df_stock['日付'] = pd.to_datetime(df_stock['日付'], format='%Y/%m/%d') #型変換 df_stock['コード'] = df_stock['コード'].astype(str).str[:4] +'.T' #ETFの構成銘柄 if (database=='tosho_etf'): file_name = 'https://www.jpx.co.jp/equities/products/etfs/investors/tvdivq0000005cdd-att/nlsgeu000000vx9t.xlsx' df_stock = pd.read_excel(file_name, header=3) df_stock = df_stock[['コード', '略称', '連動指標名', '連動対象カテゴリー', '売買単位\n(口)']] df_stock = df_stock.dropna() #NaNを含む行を捨てる df_stock = df_stock.rename(columns={"略称":"銘柄名", "売買単位\n(口)":"売買単位"}) #列名変更 df_stock['コード'] = df_stock['コード'].astype(str).str[:4] +'.T' if (group_type!='全銘柄'): if (show==True): print(df_stock) counter = collections.Counter(df_stock[group_type].values.tolist()) #単語の出現回数を取得 print(counter) #特定グループのデータだけ抽出 df_stock = df_stock[df_stock[group_type].isin(group_name)] #stock_list = list(set(df_stock['コード'].values.tolist())) #銘柄コード #貸借銘柄の情報 file_name = 'https://www.jpx.co.jp/listing/others/margin/tvdivq0000000od2-att/list.xls' df_margin_stock = pd.read_excel(file_name, sheet_name='一覧', header=1) df_margin_stock = df_margin_stock.rename(columns={"銘柄コード":"コード"}) #列名変更 df_margin_stock = df_margin_stock[df_margin_stock['貸借区分'].isin(['貸借銘柄'])] #空売りできる銘柄 df_margin_stock['コード'] = df_margin_stock['コード'].astype(str).str[:4] +'.T' #margin_stock_list = list(set(df_margin_stock['コード'].values.tolist())) #銘柄コード #stock_list = list(set(stock_list) & set(margin_stock_list)) df_stock = pd.merge(df_stock, df_margin_stock.drop(['銘柄名'], axis=1), on='コード', how='inner') stock_list = sorted(df_stock['コード'].values.tolist()) #銘柄コード if (show==True): print(stock_list) print() if(data_type=='dataframe'): return df_stock if(data_type=='list'): return stock_list #株価データ取得(学習用データは5年、テストデータは0.5年くらい) def get_stock_price(stock_list, date_min, date_max, show=False): if(datetime.datetime(2000, 4, 1)<date_min and date_max<datetime.datetime(2021, 1, 2)): df_price_all = pd.DataFrame() for code in stock_list: try: file_relative_path = os.path.dirname(__file__) csv_relative_path = r'../../../inout_data/price_data/' +code +r'.csv' df_price = pd.read_csv(os.path.join(file_relative_path, csv_relative_path), index_col=0) df_price_all['Open', code] = df_price['Open'] df_price_all['High', code] = df_price['High'] df_price_all['Low', code] = df_price['Low'] df_price_all['Close', code] = df_price['Close'] df_price_all['Adj Close', code] = df_price['Adj Close'] df_price_all['Volume', code] = df_price['Volume'] except Exception as e: #import traceback #print("エラー情報\n" + traceback.format_exc()) df_price_all['Open', code] = np.nan df_price_all['High', code] = np.nan df_price_all['Low', code] = np.nan df_price_all['Close', code] = np.nan df_price_all['Adj Close', code] = np.nan df_price_all['Volume', code] = np.nan df_price_all.columns = pd.MultiIndex.from_tuples(df_price_all.columns) #マルチカラム化 df_price_all.index =
pd.to_datetime(df_price_all.index, format='%Y-%m-%d')
pandas.to_datetime
#!/usr/bin/env python # -*- coding: utf-8 -*- import pymysql import pandas as pd import datetime import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import matplotlib.colors as colors import netCDF4 as nc from netCDF4 import Dataset #------------------------------------------------------------------------------ # Motivación codigo sección 1-------------------------------------------------- "Código para el dibujo y cálculo de los histogramas de frecuencias horarios de la lluvia en determinados puntos de medición. Se lee como" "un pandas los datos a dibujar de cada punto de medición para luego calcular el histograma de los acumulados y de las horas de acumulados." "Inicialmente, se crea con el propósito de estimar la distribucion de los acumulados en los puntos de medición de los paneles experimentales " "Se hace con los datos del 2018." Pluvio = 'si' ##--> Para que promedie la lluvia de los dos pluviometros debe ser 'si' #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ########################################################################## ## ----------------LECTURA DE LOS ARCHIVOS DE ACUMULADOS----------------## ########################################################################## df_Acum_JV = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Pluvio/AcumH211.csv', sep=',', index_col =0) df_Acum_CI = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Pluvio/AcumH206.csv', sep=',', index_col =0) df_Acum_TS = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Pluvio/AcumH201.csv', sep=',', index_col =0) df_Acum_JV.index = pd.to_datetime(df_Acum_JV.index, format="%Y-%m-%d %H:%M", errors='coerce') df_Acum_CI.index = pd.to_datetime(df_Acum_CI.index, format="%Y-%m-%d %H:%M", errors='coerce') df_Acum_TS.index = pd.to_datetime(df_Acum_TS.index, format="%Y-%m-%d %H:%M", errors='coerce') df_Acum_JV = df_Acum_JV.between_time('06:00', '17:59') df_Acum_CI = df_Acum_CI.between_time('06:00', '17:59') df_Acum_TS = df_Acum_TS.between_time('06:00', '17:59') ######################################################################## ## ----------------AJUSTE DE LOS DATOS DEL PLUVIÓMETRO----------------## ######################################################################## "Si uno de los archivos leidos tiene infomación de pluviometro, se deben promediar los acumulados horarios de P1 y P2 para tener un solo estimado." if Pluvio == 'si': df_Acum_JV['Precip'] = df_Acum_JV[['P1', 'P2']].mean(axis=1) df_Acum_JV = df_Acum_JV.drop(['P1', 'P2'], axis=1) ######################################################################## ## ----------------HISTOGRAMAS DE LA LLUVIA HORARIOS -----------------## ######################################################################## df_Acum_JV_rain = df_Acum_JV[df_Acum_JV['Precip']>0] df_Acum_CI_rain = df_Acum_CI[df_Acum_CI['Precip']>0] df_Acum_TS_rain = df_Acum_TS[df_Acum_TS['Precip']>0] ## -------------------------OBTENER LAS HORAS Y FECHAS LLUVIOSAS---------------------------- ## Hora_JV = df_Acum_JV_rain.index.hour Fecha_JV = df_Acum_JV_rain.index.date Hora_CI = df_Acum_CI_rain.index.hour Fecha_CI = df_Acum_CI_rain.index.date Hora_TS = df_Acum_TS_rain.index.hour Fecha_TS = df_Acum_TS_rain.index.date ## -----------------------------DIBUJAR LOS HISTOGRAMAS DE LAS HORAS ------ ----------------------- # fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Hora_JV, bins='auto', alpha = 0.5, color = 'orange', label = 'H_Lluvia') ax1.set_title(u'Distribución de horas lluviosas en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Horas', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Hora_CI, bins='auto', alpha = 0.5, color = 'orange', label = 'H_Lluvia') ax2.set_title(u'Distribución de horas lluviosas en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Horas', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Hora_TS, bins='auto', alpha = 0.5, color = 'orange', label = 'H_Lluvia') ax3.set_title(u'Distribución de horas lluviosas en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Horas', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoHorasLluvia_2018.png') plt.close('all') os.system('scp /home/nacorreasa/Escritorio/Figuras/HistoHorasLluvia_2018.png [email protected]:/var/www/nacorreasa/Graficas_Resultados/Estudio') #------------------------------------------------------------------------------ # Motivación codigo sección 2-------------------------------------------------- "En esta seccion del codigo se pretenda encontrar la correlación rezagada entre las horas de acuulados de precipitación y las las horas" "nubladas para poder verificar la información de los umbrales de GOES CH2 para nubes." ################################################################################################ ## -------------------------------LECTURA DE DATOS DE GOES CH02------------------------------ ## ################################################################################################ #ds = Dataset('/home/nacorreasa/Maestria/Datos_Tesis/GOES/GOES_nc_CREADOS/GOES_VA_C2_2019_0320_0822.nc') ds = Dataset('/home/nacorreasa/Maestria/Datos_Tesis/GOES/GOES_nc_CREADOS/GOES_VA_C22018.nc') ## ---------------------------------AJUSTE DE LOS DATOS DE GOES CH2----------------------------------------- ## lat = ds.variables['lat'][:, :] lon = ds.variables['lon'][:, :] Rad = ds.variables['Radiancias'][:, :, :] ## -- Obtener el tiempo para cada valor tiempo = ds.variables['time'] fechas_horas = nc.num2date(tiempo[:], units=tiempo.units) for i in range(len(fechas_horas)): fechas_horas[i] = pd.to_datetime(fechas_horas[i] , format="%Y-%m-%d %H:%M", errors='coerce') ################################################################################################ ##-------------------INCORPORANDO EL ARRAY DEL ZENITH PARA CADA HORA--------------------------## ################################################################################################ def Aclarado_visible(Path_Zenith, Path_Fechas, Rad, fechas_horas): Z = np.load(Path_Zenith) Fechas_Z = np.load(Path_Fechas) daily_hours = np.arange(5, 19, 1) Zenith = [] Fechas_Zenith = [] for i in range(len(Fechas_Z)): if Fechas_Z[i].hour in daily_hours: Zenith.append(Z[i, :, :]) Fechas_Zenith.append(Fechas_Z[i]) elif Fechas_Z[i].hour not in daily_hours: pass Zenith = np.array(Zenith) Rad_clear = [] for i in range(len(Fechas_Zenith)): for j in range(len(fechas_horas)): if Fechas_Zenith[i].hour == fechas_horas[j].hour and Fechas_Zenith[i].day == fechas_horas[j].day: Rad_clear.append(Rad[j, :, :]/np.cos(Zenith[i, :, :])) else: pass Rad_clear = np.array(Rad_clear) return Rad Rad_Z = Aclarado_visible('/home/nacorreasa/Maestria/Datos_Tesis/hourlyZenith2018.npy', '/home/nacorreasa/Maestria/Datos_Tesis/DatesZenith.npy', Rad, fechas_horas) del Rad Rad = Rad_Z ## -- Selección del pixel de la TS y creación de DF lat_index_975 = np.where((lat[:, 0] > 6.25) & (lat[:, 0] < 6.26))[0][0] lon_index_975 = np.where((lon[0, :] < -75.58) & (lon[0, :] > -75.59))[0][0] Rad_pixel_975 = Rad[:, lat_index_975, lon_index_975] Rad_df_975 = pd.DataFrame() Rad_df_975['Fecha_Hora'] = fechas_horas Rad_df_975['Radiacias'] = Rad_pixel_975 Rad_df_975['Fecha_Hora'] = pd.to_datetime(Rad_df_975['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_975.index = Rad_df_975['Fecha_Hora'] Rad_df_975 = Rad_df_975.drop(['Fecha_Hora'], axis=1) ## -- Selección del pixel de la CI lat_index_350 = np.where((lat[:, 0] > 6.16) & (lat[:, 0] < 6.17))[0][0] lon_index_350 = np.where((lon[0, :] < -75.64) & (lon[0, :] > -75.65))[0][0] Rad_pixel_350 = Rad[:, lat_index_350, lon_index_350] Rad_df_350 = pd.DataFrame() Rad_df_350['Fecha_Hora'] = fechas_horas Rad_df_350['Radiacias'] = Rad_pixel_350 Rad_df_350['Fecha_Hora'] = pd.to_datetime(Rad_df_350['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_350.index = Rad_df_350['Fecha_Hora'] Rad_df_350 = Rad_df_350.drop(['Fecha_Hora'], axis=1) ## -- Selección del pixel de la JV lat_index_348 = np.where((lat[:, 0] > 6.25) & (lat[:, 0] < 6.26))[0][0] lon_index_348 = np.where((lon[0, :] < -75.54) & (lon[0, :] > -75.55))[0][0] Rad_pixel_348 = Rad[:, lat_index_348, lon_index_348] Rad_df_348 = pd.DataFrame() Rad_df_348['Fecha_Hora'] = fechas_horas Rad_df_348['Radiacias'] = Rad_pixel_348 Rad_df_348['Fecha_Hora'] =
pd.to_datetime(Rad_df_348['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce')
pandas.to_datetime
import os import numpy as np import pandas as pd import pytest from janitor.testing_utils import date_data TEST_DATA_DIR = "tests/test_data" EXAMPLES_DIR = "examples/" @pytest.fixture def dataframe(): data = { "a": [1, 2, 3] * 3, "Bell__Chart": [1.234_523_45, 2.456_234, 3.234_612_5] * 3, "decorated-elephant": [1, 2, 3] * 3, "animals@#$%^": ["rabbit", "leopard", "lion"] * 3, "cities": ["Cambridge", "Shanghai", "Basel"] * 3, } df = pd.DataFrame(data) return df @pytest.fixture def date_dataframe(): df =
pd.DataFrame(date_data.date_list, columns=["AMOUNT", "DATE"])
pandas.DataFrame
import time import datetime as dt import pandas as pd import numpy as np import logging import coloredlogs import pytz from typing import List, Dict, Tuple, Any from polygon import RESTClient from trader.common.helpers import dateify class PolygonFinancials(): def __init__(self, financials: pd.DataFrame, dividends: pd.DataFrame, splits: pd.DataFrame): self.financials = financials self.splits = splits self.dividends = dividends class PolygonListener(): def __init__(self, key: str = '<KEY>', limit: int = 50000, request_sleep: int = 0): self.client: RESTClient = RESTClient(key) self.request_sleep = request_sleep self.limit = limit def date(self, date_time: dt.datetime) -> str: return dt.datetime.strftime(date_time, '%Y-%m-%d') def date_from_ts(self, unixtimestamp: int, zone: str = 'America/New_York') -> dt.datetime: return dt.datetime.fromtimestamp(unixtimestamp / 1000.0, tz=pytz.timezone(zone)) def date_from_nanots(self, unixtimestamp: int, zone: str = 'America/New_York') -> dt.datetime: return dt.datetime.fromtimestamp(unixtimestamp / 1000000000.0, tz=pytz.timezone(zone)) def round_to_second(self, unixtimestamp: int, zone: str = 'America/New_York') -> np.int64: d = self.date_from_nanots(unixtimestamp, zone) date_time = dt.datetime(d.year, d.month, d.day, d.hour, d.minute, d.second) return np.int64(date_time.timestamp()) def get_all_equity_symbols(self): yesterday = dt.datetime.now() - dt.timedelta(days=1) result = self.client.stocks_equities_grouped_daily('US', 'STOCKS', self.date(yesterday)) symbols = [r['T'] for r in result.results] # type: ignore return symbols def get_grouped_daily(self, market: str, date_time: dt.datetime) -> pd.DataFrame: resp = self.client.stocks_equities_grouped_daily('US', market, date=self.date(date_time)) columns = { 'T': 'symbol', 'v': 'volume', 'o': 'open', 'c': 'close', 'h': 'high', 'l': 'low', 't': 'date', 'vw': 'vwap', 'n': 'items' } df = pd.DataFrame(resp.results) # type: ignore df = df.rename(columns=columns) # type: ignore return df def get_aggregates(self, symbol: str, multiplier: int, timespan: str, start_date: dt.datetime, end_date: dt.datetime) -> pd.DataFrame: timespans = ['day', 'minute', 'hour', 'week', 'month', 'quarter', 'year'] if timespan not in timespans: raise ValueError('incorrect timespan, must be {}'.format(timespans)) start_date = dateify(start_date, timezone='America/New_York') end_date = dateify(end_date + dt.timedelta(days=1), timezone='America/New_York') logging.info('get_aggregates {} mul: {} timespan: {} {} {}'.format(symbol, multiplier, timespan, start_date, end_date)) result = self.client.stocks_equities_aggregates(symbol, multiplier, timespan, self.date(start_date), self.date(end_date), **{'limit': self.limit}) time.sleep(self.request_sleep) columns = { 'T': 'symbol', 'v': 'volume', 'o': 'open', 'c': 'close', 'h': 'high', 'l': 'low', 't': 'date', 'n': 'items', 'vw': 'vwap' } df = pd.DataFrame(result.results) # type: ignore df = df.rename(columns=columns) # type: ignore df['symbol'] = symbol df['date'] = df['date'].apply(self.date_from_ts) # convert to proper timezone df.index = df['date'] df.drop(columns=['date'], inplace=True) df['volume'] = df['volume'].astype(int) df = df.reindex(['symbol', 'open', 'close', 'high', 'low', 'volume', 'vwap', 'items'], axis=1) # we have more work to do if len(df) == 50000: last_date = df.index[-1].to_pydatetime() combined = df.append(self.get_aggregates(symbol, multiplier, timespan, last_date, end_date)) result = combined[~combined.index.duplicated()] return result[(result.index >= start_date) & (result.index <= end_date)] return df[(df.index >= start_date) & (df.index <= end_date)] def get_aggregates_as_ib(self, symbol: str, multiplier: int, timespan: str, start_date: dt.datetime, end_date: dt.datetime) -> pd.DataFrame: result = self.get_aggregates(symbol, multiplier, timespan, start_date, end_date) # interactive brokers history mapping mapping = { 'open_trades': 'open', 'high_trades': 'high', 'low_trades': 'low', 'close_trades': 'close', 'volume_trades': 'volume', 'average_trades': 'vwap', 'open_bid': 'open', 'high_bid': 'high', 'low_bid': 'low', 'close_bid': 'close', 'open_ask': 'open', 'high_ask': 'high', 'low_ask': 'low', 'close_ask': 'close', 'barCount_trades': 'items', } for key, value in mapping.items(): result[key] = result[value] result.rename_axis(None, inplace=True) result.drop(columns=['symbol', 'open', 'close', 'high', 'low', 'volume', 'vwap', 'items'], inplace=True) result = result.reindex( ['high_ask', 'high_trades', 'close_trades', 'low_bid', 'average_trades', 'open_trades', 'low_trades', 'barCount_trades', 'open_bid', 'volume_trades', 'low_ask', 'high_bid', 'close_ask', 'close_bid', 'open_ask'], axis=1) # type: ignore return result def get_financials(self, symbol: str) -> PolygonFinancials: financials = self.client.reference_stock_financials(symbol, **{'limit': self.limit}).results dividends = self.client.reference_stock_dividends(symbol, **{'limit': self.limit}).results splits = self.client.reference_stock_splits(symbol, **{'limit': self.limit}).results result = PolygonFinancials(pd.DataFrame(financials),
pd.DataFrame(dividends)
pandas.DataFrame
import random from pathlib import Path from urllib.parse import urljoin import pandas as pd import requests import pytest from dwdbulk.api import observations from dwdbulk.api.observations import ( __gather_resource_files, get_measurement_data_from_url, get_measurement_data_urls, get_measurement_parameters, get_resolutions, get_stations, get_stations_list_from_url, ) from dwdbulk.util import ( germany_climate_url, get_resource_index, get_stations_lookup, parse_htmllist, station_metadata, y2k_date_parser, ) measurement_parameters_10_minutes = [ "air_temperature", "extreme_temperature", "extreme_wind", "precipitation", "solar", "wind", ] measurement_parameters_hourly = [ "air_temperature", "cloud_type", "cloudiness", "dew_point", "precipitation", "pressure", "soil_temperature", "solar", "sun", "visibility", "wind", "wind_synop", ] measurement_parameters_daily = [ "kl", "more_precip", "soil_temperature", "solar", "water_equiv", "weather_phenomena", ] # TODO: Fill in measurement parameters for other resolutions resolution_and_measurement_standards = { "10_minutes": measurement_parameters_10_minutes, "1_minute": ["precipitation"], # TODO: Below data series have different format (zipped raw & metadata); need to adapt parser # "annual": ["more_precip", "weather_phenomena", "kl"], # "daily": measurement_parameters_daily, # "hourly": measurement_parameters_hourly, # "monthly": ["more_precip", "weather_phenomena", "kl"], # "multi_annual": [], # "subdaily": [], } @pytest.mark.parametrize( "resolution", [k for k, v in resolution_and_measurement_standards.items() if v != []], ) def test_parse_htmllist(resolution): url = urljoin( "https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/", resolution, ) r = requests.get(url) extracted_links = parse_htmllist(url, r.text) expected_links = resolution_and_measurement_standards[resolution] expected_links = [ urljoin(germany_climate_url, str(Path(resolution) / link) + "/") for link in expected_links ] assert sorted(extracted_links) == sorted(expected_links) def test_get_resource_index(): url = urljoin(germany_climate_url, "10_minutes/") extracted_links = get_resource_index(url, "/") expected_links = resolution_and_measurement_standards["10_minutes"] expected_links = [urljoin(url, link + "/") for link in expected_links] assert sorted(extracted_links) == sorted(expected_links) @pytest.mark.parametrize( "resolution,parameter", [(k, v_i) for k, v in resolution_and_measurement_standards.items() for v_i in v], ) def test_gather_resource_files_helper(resolution, parameter): files = __gather_resource_files(resolution, parameter) assert len([x for x in files if "Beschreibung_Stationen.txt" in x]) > 0 def test_get_resource_all(): """ Test that all links are returned when extension is not specified. """ extracted_links = get_resource_index(germany_climate_url) expected_links = [ urljoin(germany_climate_url, link + "/") for link in resolution_and_measurement_standards.keys() ] assert set(expected_links).issubset(extracted_links) def test_get_all_resolutions(): resolutions = get_resolutions() assert set(resolution_and_measurement_standards.keys()).issubset(resolutions) @pytest.mark.parametrize( "resolution,expected_measurement_parameters", [(k, v) for k, v in resolution_and_measurement_standards.items()], ) def test_get_measurement_parameters(resolution, expected_measurement_parameters): # If measurement parameters not currently specified, then skip test. if expected_measurement_parameters == []: return expected_measurement_parameters = [ {"resolution": resolution, "parameter": i} for i in expected_measurement_parameters ] extracted_measurement_parameters = get_measurement_parameters(resolution) for i in extracted_measurement_parameters: assert i in extracted_measurement_parameters for j in extracted_measurement_parameters: assert j in extracted_measurement_parameters @pytest.mark.parametrize( "resolution,parameter", [(k, v_i) for k, v in resolution_and_measurement_standards.items() for v_i in v], ) def test_get_stations(resolution, parameter): "Test fetching station data. Test randomly chooses a measurement parameter for each of the three supported time frames." # If measurement parameters not currently specified, then skip test. if parameter == []: return df = get_stations(resolution, parameter) assert df.date_start.min() > pd.Timestamp("1700-01-01", tz="UTC") assert df.date_start.max() < pd.Timestamp("2200-01-01", tz="UTC") states = [ "Baden-Württemberg", "Nordrhein-Westfalen", "Hessen", "Bayern", "Niedersachsen", "Sachsen-Anhalt", "Rheinland-Pfalz", "Sachsen", "Mecklenburg-Vorpommern", "Schleswig-Holstein", "Brandenburg", "Thüringen", "Saarland", "Berlin", "Bremen", "Hamburg", "Tirol", ] assert set(df.state.unique()).issubset(set(states)) assert df.height.min() >= 0 assert df.geo_lat.min() >= -90 assert df.geo_lat.max() <= 90 assert df.geo_lon.min() >= -180 assert df.geo_lon.max() <= 180 expected_colnames = [v["name"] for k, v in station_metadata.items()] assert sorted(df.columns) == sorted(expected_colnames) assert df.shape[0] > 5 @pytest.mark.parametrize( "resolution,parameter", [(k, v_i) for k, v in resolution_and_measurement_standards.items() for v_i in v], ) def test_get_measurement_data_urls_and_data(resolution, parameter): files = get_measurement_data_urls(resolution, parameter) assert len(files) > 0 files_sample = random.sample(files, 2) for url in files_sample: df = get_measurement_data_from_url(url) df.head() assert set(["station_id", "date_start"]).issubset(df.columns) assert df.date_start.min() > pd.Timestamp("1700-01-01", tz="UTC") assert df.date_start.max() < pd.Timestamp("2200-01-01", tz="UTC") def test_observations_stations_available_in_lookup(): """Test all stations available in lookup are also available in observations data.""" # NOTE: Different stations available for different resolutions and parameters; need to adjust this... resolution = "10_minutes" parameter = "air_temperature" df_stations = get_stations_lookup() df_stations.observations_station_id available_stations = ( get_stations(resolution, parameter)["station_id"].unique().tolist() ) assert set(df_stations.observations_station_id.unique().tolist()).issubset( set(available_stations) ) def test_observations_get_data_all(): """Test that get_data returns reasonable results for all data, for a single station.""" resolution = "10_minutes" parameter = "air_temperature" df_stations = get_stations_lookup() station_ids = df_stations.observations_station_id.head(1).tolist() df = observations.get_data( parameter, station_ids=station_ids, date_start=None, date_end=None, resolution=resolution, ) date_end = pd.Timestamp.now(tz="UTC").floor("h") - pd.Timedelta("1.5h") assert sorted(station_ids), sorted(df.station_id.unique().tolist()) assert df.duplicated(subset=["station_id", "date_start"]).sum() == 0 assert df.date_start.min() < pd.Timestamp("2000-01-01", tz="UTC") assert df.date_start.max() >= date_end def test_observations_get_data_recent(): """Test that get_data returns reasonable results for recent data, for a subset of stations.""" resolution = "10_minutes" parameter = "air_temperature" date_end = pd.Timestamp.now(tz="UTC").floor("h") date_start = date_end - pd.Timedelta("5 days") df_stations = get_stations_lookup() station_ids = df_stations.observations_station_id.sample(10).unique().tolist() df = observations.get_data( parameter, station_ids=station_ids, date_start=date_start, date_end=date_end, resolution=resolution, ) assert sorted(station_ids), sorted(df.station_id.unique().tolist()) assert df.duplicated(subset=["station_id", "date_start"]).sum() == 0 assert df.date_start.min() == date_start assert df.date_start.max() >= date_end -
pd.Timedelta("120 minutes")
pandas.Timedelta