prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import os import locale import codecs import sys from uuid import uuid4 from collections import OrderedDict import pytest from pandas.compat import intern from pandas.util._move import move_into_mutable_buffer, BadMove, stolenbuf from pandas.util._decorators import deprecate_kwarg from pandas.util._validators import (validate_args, validate_kwargs, validate_args_and_kwargs, validate_bool_kwarg) import pandas.util.testing as tm CURRENT_LOCALE = locale.getlocale() LOCALE_OVERRIDE = os.environ.get('LOCALE_OVERRIDE', None) class TestDecorators(object): def setup_method(self, method): @deprecate_kwarg('old', 'new') def _f1(new=False): return new @deprecate_kwarg('old', 'new', {'yes': True, 'no': False}) def _f2(new=False): return new @deprecate_kwarg('old', 'new', lambda x: x + 1) def _f3(new=0): return new self.f1 = _f1 self.f2 = _f2 self.f3 = _f3 def test_deprecate_kwarg(self): x = 78 with tm.assert_produces_warning(FutureWarning): result = self.f1(old=x) assert result is x with tm.assert_produces_warning(None): self.f1(new=x) def test_dict_deprecate_kwarg(self): x = 'yes' with tm.assert_produces_warning(FutureWarning): result = self.f2(old=x) assert result def test_missing_deprecate_kwarg(self): x = 'bogus' with tm.assert_produces_warning(FutureWarning): result = self.f2(old=x) assert result == 'bogus' def test_callable_deprecate_kwarg(self): x = 5 with tm.assert_produces_warning(FutureWarning): result = self.f3(old=x) assert result == x + 1 with pytest.raises(TypeError): self.f3(old='hello') def test_bad_deprecate_kwarg(self): with pytest.raises(TypeError): @deprecate_kwarg('old', 'new', 0) def f4(new=None): pass def test_rands(): r =
tm.rands(10)
pandas.util.testing.rands
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from validada.slicers import iloc import validada.functions.raising as ck import validada.decorators.raising as dc import datetime as dt def _add_one(df): return df + 1 def _safe_add_one(df): return df.fillna(0.0) + 1 def _noop(df): return df def test_is_in_index(): dr = pd.date_range(start='2015-01-01', periods=6, freq='D') df = pd.DataFrame(data = list(range(6)), index=dr) d = dt.date(2015,1,3) result = ck.has_in_index(df, obj=d) tm.assert_frame_equal(df, result) result = dc.has_in_index(obj=d)(_add_one)(df) tm.assert_frame_equal(result, df + 1) result = ck.has_in_index(df, obj=d, try_ix=True) result = ck.has_in_index(df, obj=d, try_ix=True, try_strftime="%Y-%m") result = ck.has_in_index(df, obj=d, check_na=True) def test_is_in_index_raises(): dr = pd.date_range(start='2015-01-01', periods=6, freq='D') da = list(range(6)) da[2] = pd.np.nan df = pd.DataFrame(data = da, index=dr) d = dt.date(2015,1,12) with pytest.raises(AssertionError): ck.has_in_index(df, obj=d) with pytest.raises(AssertionError): dc.has_in_index(obj=d)(_add_one)(df) with pytest.raises(AssertionError): ck.has_in_index(df, obj=d, try_ix=True) ck.has_in_index(df, obj=d, try_ix=True, try_strftime="%Y-%m") d = dt.datetime(2015,1,3) ck.has_in_index(df, obj=d) ck.has_in_index(df, obj=d, check_na=False) with pytest.raises(AssertionError): ck.has_in_index(df, obj=d, check_na=True) def test_equal_columns_sum(): df = pd.DataFrame({'A': [1,2,3,4,5], 'B': [1,2,3,4,5]}) result = ck.equal_columns_sum(df) tm.assert_frame_equal(df, result) result = dc.equal_columns_sum()(_add_one)(df) tm.assert_frame_equal(result, df + 1) def test_equal_columns_sum_raises_slice(): df = pd.DataFrame({'A': [None,2,3,4,0], 'B': [1,2,3,4,None]}) with pytest.raises(AssertionError): ck.equal_columns_sum(df) with pytest.raises(AssertionError): dc.equal_columns_sum()(_add_one)(df) s = iloc[-3:] result = ck.equal_columns_sum(df, s) tm.assert_frame_equal(df, result) result = dc.equal_columns_sum(s)(_safe_add_one)(df) tm.assert_frame_equal(result, _safe_add_one(df)) def test_none_missing(): df = pd.DataFrame(np.random.randn(5, 3)) result = ck.none_missing(df) tm.assert_frame_equal(df, result) result = dc.none_missing()(_add_one)(df)
tm.assert_frame_equal(result, df + 1)
pandas.util.testing.assert_frame_equal
# Correr desde HOME import re from apiclient import discovery from oauth2client import client from oauth2client import tools from oauth2client.file import Storage import pandas as pd import os import httplib2 from geopy.geocoders import GoogleV3 from Dicc_Tipo_Danhos import camb_tipos import tqdm import datetime try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None # If modifying these scopes, delete your previously saved credentials # at ~/.credentials/sheets.googleapis.com-python-quickstart.json SCOPES = 'https://www.googleapis.com/auth/spreadsheets.readonly' CLIENT_SECRET_FILE = 'creds/secreto_cliente.json' APPLICATION_NAME = 'Temblor' geolocator = GoogleV3(api_key=os.environ.get('GM_KEY')) # Dirección debe ser de la forma "Num Calle Ciudad" def dir_correct(calle, numero, ciudad, estado): k = [] k.append('Calle ' + calle + ' ' + numero) k.append(ciudad) k.append(estado + ', ' + 'MX') dirr = ', '.join(k) return dirr def obtain_latlong(dirr): try: location = geolocator.geocode(dirr, region='MX') lat = location.latitude lon = location.longitude except: lat = '' lon = '' return lat, lon def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join( credential_dir, 'sheets.googleapis.com-python-quickstart.json') store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials def get_Data_temblor(): """Shows basic usage of the Sheets API. Creates a Sheets API service object and prints the names and majors of students in a sample spreadsheet: https://docs.google.com/spreadsheets/d/1BxiMVs0XRA5nFMdKvBdBZjgmUUqptlbs74OgvE2upms/edit """ credentials = get_credentials() http = credentials.authorize(httplib2.Http()) discoveryUrl = ('https://sheets.googleapis.com/$discovery/rest?' 'version=v4') service = discovery.build('sheets', 'v4', http=http, discoveryServiceUrl=discoveryUrl) # DAÑOS Y DERRUMBES VERIFICADOS # Para descargar otras páginas cambiar el onmbre en el campo range result = service.spreadsheets().values().get( spreadsheetId='1i__c44wIg760LmxZcM8oTjDR0cGFVdL9YrjbCcb9Op0', range='Form Responses 1!A1:AH10000').execute() values = result.get('values', []) if not values: print('No data found.') else: return values def insert_Data_temblor(datos): """Shows basic usage of the Sheets API. Creates a Sheets API service object and prints the names and majors of students in a sample spreadsheet: https://docs.google.com/spreadsheets/d/1BxiMVs0XRA5nFMdKvBdBZjgmUUqptlbs74OgvE2upms/edit """ credentials = get_credentials() http = credentials.authorize(httplib2.Http()) discoveryUrl = ('https://sheets.googleapis.com/$discovery/rest?' 'version=v4') service = discovery.build('sheets', 'v4', http=http, discoveryServiceUrl=discoveryUrl) result = service.spreadsheets().values().get( spreadsheetId='1wLHf5ITtTsfErWoPHwhu7Vfy-96eQKKxZO2AmZbP9XY', range='Datos!A1:H1000').execute() values = result.get('values', []) if not values: print('No data found.') else: print(values) def estructura_sheet(listas): columnas = listas[0] info =
pd.DataFrame()
pandas.DataFrame
import pytest from pandas import DataFrame import pandas._testing as tm class TestCopy: @pytest.mark.parametrize("attr", ["index", "columns"]) def test_copy_index_name_checking(self, float_frame, attr): # don't want to be able to modify the index stored elsewhere after # making a copy ind = getattr(float_frame, attr) ind.name = None cp = float_frame.copy() getattr(cp, attr).name = "foo" assert getattr(float_frame, attr).name is None def test_copy_cache(self): # GH#31784 _item_cache not cleared on copy causes incorrect reads after updates df = DataFrame({"a": [1]}) df["x"] = [0] df["a"] df.copy() df["a"].values[0] = -1 tm.assert_frame_equal(df, DataFrame({"a": [-1], "x": [0]})) df["y"] = [0] assert df["a"].values[0] == -1 tm.assert_frame_equal(df,
DataFrame({"a": [-1], "x": [0], "y": [0]})
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0
assert_series_equal(cp, exp)
pandas.util.testing.assert_series_equal
import pytest import pandas as pd from pandas import Series import pandas._testing as tm @pytest.mark.parametrize( "data, index, drop_labels, axis, expected_data, expected_index", [ # Unique Index ([1, 2], ["one", "two"], ["two"], 0, [1], ["one"]), ([1, 2], ["one", "two"], ["two"], "rows", [1], ["one"]), ([1, 1, 2], ["one", "two", "one"], ["two"], 0, [1, 2], ["one", "one"]), # GH 5248 Non-Unique Index ([1, 1, 2], ["one", "two", "one"], "two", 0, [1, 2], ["one", "one"]), ([1, 1, 2], ["one", "two", "one"], ["one"], 0, [1], ["two"]), ([1, 1, 2], ["one", "two", "one"], "one", 0, [1], ["two"]), ], ) def test_drop_unique_and_non_unique_index( data, index, axis, drop_labels, expected_data, expected_index ): s = Series(data=data, index=index) result = s.drop(drop_labels, axis=axis) expected = Series(data=expected_data, index=expected_index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data, index, drop_labels, axis, error_type, error_desc", [ # single string/tuple-like (range(3), list("abc"), "bc", 0, KeyError, "not found in axis"), # bad axis (range(3), list("abc"), ("a",), 0, KeyError, "not found in axis"), (range(3), list("abc"), "one", "columns", ValueError, "No axis named columns"), ], ) def test_drop_exception_raised(data, index, drop_labels, axis, error_type, error_desc): ser = Series(data, index=index) with pytest.raises(error_type, match=error_desc): ser.drop(drop_labels, axis=axis) def test_drop_with_ignore_errors(): # errors='ignore' s = Series(range(3), index=list("abc")) result = s.drop("bc", errors="ignore") tm.assert_series_equal(result, s) result = s.drop(["a", "d"], errors="ignore") expected = s.iloc[1:] tm.assert_series_equal(result, expected) # GH 8522 s = Series([2, 3], index=[True, False]) assert s.index.is_object() result = s.drop(True) expected = Series([3], index=[False]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("index", [[1, 2, 3], [1, 1, 3]]) @pytest.mark.parametrize("drop_labels", [[], [1], [3]]) def test_drop_empty_list(index, drop_labels): # GH 21494 expected_index = [i for i in index if i not in drop_labels] series = pd.Series(index=index, dtype=object).drop(drop_labels) expected = pd.Series(index=expected_index, dtype=object) tm.assert_series_equal(series, expected) @pytest.mark.parametrize( "data, index, drop_labels", [ (None, [1, 2, 3], [1, 4]), (None, [1, 2, 2], [1, 4]), ([2, 3], [0, 1], [False, True]), ], ) def test_drop_non_empty_list(data, index, drop_labels): # GH 21494 and GH 16877 dtype = object if data is None else None ser =
pd.Series(data=data, index=index, dtype=dtype)
pandas.Series
from itertools import product import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.validation import quality_mapping def test_ok_user_flagged(): assert quality_mapping.DESCRIPTION_MASK_MAPPING['OK'] == 0 assert quality_mapping.DESCRIPTION_MASK_MAPPING['USER FLAGGED'] == 1 def test_description_dict_version_compatibility(): for dict_ in quality_mapping.BITMASK_DESCRIPTION_DICT.values(): assert dict_['VERSION IDENTIFIER 0'] == 1 << 1 assert dict_['VERSION IDENTIFIER 1'] == 1 << 2 assert dict_['VERSION IDENTIFIER 2'] == 1 << 3 def test_latest_version_flag(): # test valid while only identifiers 0 - 2 present last_identifier = max( int(vi.split(' ')[-1]) for vi in quality_mapping.DESCRIPTION_MASK_MAPPING.keys() if vi.startswith('VERSION IDENTIFIER')) assert last_identifier == 2 assert (quality_mapping.LATEST_VERSION_FLAG == quality_mapping.LATEST_VERSION << 1) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask(flag_val): flag, mask = flag_val mask |= quality_mapping.LATEST_VERSION_FLAG ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([ mask, mask, quality_mapping.LATEST_VERSION_FLAG, mask, quality_mapping.LATEST_VERSION_FLAG])) @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_none(flag_invert): assert quality_mapping.convert_bool_flags_to_flag_mask( None, *flag_invert) is None @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_adds_latest_version(flag_invert): ser = pd.Series([0, 0, 0, 1, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask( ser, *flag_invert) assert (flags & quality_mapping.LATEST_VERSION_FLAG).all() @pytest.fixture() def ignore_latest_version(mocker): mocker.patch( 'solarforecastarbiter.validation.quality_mapping.LATEST_VERSION_FLAG', 0) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([mask, mask, 0, mask, 0])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_no_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, False) assert_series_equal(flags, pd.Series([0, 0, mask, 0, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return
pd.Series([True, True, False, False])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # Predictions based off mean probabilities by zone # In[1]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Read input data files labels = pd.read_csv('../input/stage1_labels.csv') # split the Id to create a column for zones and person ('subject') new_list = [] for i,r in labels.iterrows(): subject = r['Id'].split('_')[0] zone = r['Id'].split('_')[1][4:] prob = r['Probability'] new_list.append({'Id': r['Id'], 'subject': subject, 'zone': zone, 'prob':prob}) df = pd.DataFrame(new_list) # In[2]: # get mean probabilitys by zone zone_means = df.groupby(['zone'])['prob'].mean() zone_means.plot.bar() # write the csv sample = pd.read_csv('../input/stage1_sample_submission.csv') output = [] for i,r in sample.iterrows(): zone = r['Id'].split('_')[1][4:] prob = zone_means[zone] output.append({'Id': r['Id'],'Probability':prob}) op_csv =
pd.DataFrame(output)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This function creates kymographs from a stack of images. By <NAME> 2020 """ from skimage import io, measure import matplotlib.pyplot as plt import numpy as np from cell_segmentation import cell_seg_no_cell_crop import statistics from matplotlib import gridspec import pandas as pd import os def kymo_generator(image, fname, save_data, interval, pixel_size, bit_depth, small_obj = 1000, save_destination = os.path.dirname(__file__)): """ This function takes an image, generates four kymographs, and analyze them. Parameters ---------- image : array An input image. fname : string The filename. save_data : boolean Whether to save the data. interval : integer The interval at which images were acquired (e.g. every 5 seconds) pixel_size : integer The pixel size of the image. bit_depth : integer The bit depth of the image. small_obj : integer, optional The smallest object allowed. The default is 1000 pixels. save_destination : string, optional The saving directory. The default is os.path.dirname(__file__). Returns ------- A confirmation note "done". """ all_cell_masks, all_cell_props = cell_seg_no_cell_crop(image, filename = fname, DEPTH = bit_depth, small_obj = small_obj, show_img = False, save_contour = False) y, x = all_cell_props[0][-1].centroid y = int(y) x = int(x) kymo_1 = np.empty((y+1,all_cell_masks[0].shape[0])) kymo_2 = np.empty((all_cell_masks[0].shape[1]-y,all_cell_masks[0].shape[0])) kymo_3 = np.empty((x+1,all_cell_masks[0].shape[0])) kymo_4 = np.empty((all_cell_masks[0].shape[2]-x,all_cell_masks[0].shape[0])) width = 3 all_kymos = [] for slice_number in range (all_cell_masks[0].shape[0]): profile_line_1 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(0, x), linewidth=width, mode='constant') kymo_1[:,slice_number] = np.flip(profile_line_1, axis=0) profile_line_2 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(all_cell_masks[0][slice_number, :, :].shape[0]-1, x), linewidth=width, mode='constant') kymo_2[:,slice_number] = np.flip(profile_line_2, axis=0) profile_line_3 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(y, 0), linewidth=width, mode='constant') kymo_3[:,slice_number] = np.flip(profile_line_3, axis=0) profile_line_4 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(y, all_cell_masks[0][slice_number, :, :].shape[1]-1), linewidth=width, mode='constant') kymo_4[:,slice_number] = np.flip(profile_line_4, axis=0) all_kymos.append(kymo_1) all_kymos.append(kymo_2) all_kymos.append(kymo_3) all_kymos.append(kymo_4) del kymo_1, kymo_2, kymo_3, kymo_4 # to save memory from kymo_to_coords import kymo_to_coords all_normalized_coords = [] all_filtered_coords = [] for n in range(len(all_kymos)): normalized, filtered_coords = kymo_to_coords(all_kymos[n], thres=15, pixel_length = 0.1833333) all_normalized_coords.append(normalized) all_filtered_coords.append(filtered_coords) ################################dividing line########################################### from measure_protrusions import measure_protrusions all_plateau_idx = [] all_minimas = [] all_retraction_rate = [] all_avg_speed = [] all_lowest_point_idx = [] print(fname + ' results') print('----------------------------------------') for n in range(len(all_normalized_coords)): lowest_point_idx, plateau_idx, minima, retraction_rate, avg_speed = measure_protrusions(normalized_coords = all_normalized_coords[n], frame_rate = interval) all_plateau_idx.append(plateau_idx) all_minimas.append(minima) all_retraction_rate.append(retraction_rate) all_avg_speed.append(avg_speed) all_lowest_point_idx.append(lowest_point_idx) all_avg_speed_avg = statistics.mean(all_avg_speed) all_avg_speed_stdev = statistics.stdev(all_avg_speed) all_retraction_rate_avg = statistics.mean(all_retraction_rate) all_retraction_rate_stdev = statistics.stdev(all_retraction_rate) print('----------------------------------------') print('Average retraction rate of all kymos = ' + str(round(all_retraction_rate_avg, 3))+ ' ± ' + str(round(all_retraction_rate_stdev,2))) print('Average protrusion speed of all kymos = ' + str(round(all_avg_speed_avg, 2))+ ' ± ' + str(round(all_avg_speed_stdev,2))) ################################dividing line########################################### color_1 = '#003f5c' color_2 = '#7a5195' color_3 = '#ef5675' color_4 = '#ffa600' fig = plt.figure(figsize=(20, 10)) # 20 in x and 10 in y gs = gridspec.GridSpec(2, 4) # 2 in x and 4 in y axes0 = plt.subplot(gs[:,0:2]) axes0.imshow(image[-1,:,:], cmap='Greys') axes0.plot([x, x], [y, 0], color_1, [x, x], [y, all_cell_masks[0][slice_number, :, :].shape[0]-1], color_2, [x, 0], [y, y], color_3, [x, all_cell_masks[0][slice_number, :, :].shape[1]-1], [y, y], color_4, linewidth = width, linestyle='dashed') axes0.axis('off') ################### axes1 = plt.subplot(gs[0,2]) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[0])-1)*interval), num = len(all_normalized_coords[0])) axes1.plot(x_axis, all_normalized_coords[0], 'k') last_slope_point_0 = x_axis[all_plateau_idx[0]] axes1.plot([x_axis[all_lowest_point_idx[0]], last_slope_point_0], [all_normalized_coords[0][all_lowest_point_idx[0]], all_normalized_coords[0][all_plateau_idx[0]]], color_1, linewidth = width/2, linestyle='dashed', label='Protrusion speed') # plot retraction points axes1.scatter(all_minimas[0]*interval, [all_normalized_coords[0][n] for n in all_minimas[0]], s=20, c='r', label='Retraction') axes1.legend(loc="lower right") for spine in axes1.spines.values(): spine.set_edgecolor(color_1) spine.set_linewidth(3) axes1.set_ylabel('Distance ‎(µm)') axes1.set_ylim(top = int(np.max(all_normalized_coords)+2)) #limit y axis to be the maximum of all the numbers ################### axes2 = plt.subplot(gs[0,3], sharex=axes1, sharey=axes1) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[1])-1)*interval), num = len(all_normalized_coords[1])) axes2.plot(x_axis, all_normalized_coords[1], 'k') last_slope_point_1 = x_axis[all_plateau_idx[1]] axes2.plot([x_axis[all_lowest_point_idx[1]], last_slope_point_1], [all_normalized_coords[1][all_lowest_point_idx[1]], all_normalized_coords[1][all_plateau_idx[1]]], color_2, linewidth = width/2, linestyle='dashed', label='Protrusion speed') axes2.scatter(all_minimas[1]*interval, [all_normalized_coords[1][n] for n in all_minimas[1]], s=20, c='r', label='Retraction') axes2.legend(loc="lower right") for spine in axes2.spines.values(): spine.set_edgecolor(color_2) spine.set_linewidth(3) ################### axes3 = plt.subplot(gs[1,2], sharex=axes1, sharey=axes1) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[2])-1)*interval), num = len(all_normalized_coords[2])) axes3.plot(x_axis, all_normalized_coords[2], 'k') last_slope_point_2 = x_axis[all_plateau_idx[2]] axes3.plot([x_axis[all_lowest_point_idx[2]], last_slope_point_2], [all_normalized_coords[2][all_lowest_point_idx[2]], all_normalized_coords[2][all_plateau_idx[2]]], color_3, linewidth = width/2, linestyle='dashed', label='Protrusion speed') axes3.scatter(all_minimas[2]*interval, [all_normalized_coords[2][n] for n in all_minimas[2]], s=20, c='r', label='Retraction') axes3.legend(loc="lower right") for spine in axes3.spines.values(): spine.set_edgecolor(color_3) spine.set_linewidth(3) axes3.set_xlabel('Time (s)') axes3.set_ylabel('Distance ‎(µm)') ################### axes4 = plt.subplot(gs[1,3], sharex=axes1, sharey=axes1) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[3])-1)*interval), num = len(all_normalized_coords[3])) axes4.plot(x_axis, all_normalized_coords[3], 'k') last_slope_point_3 = x_axis[all_plateau_idx[3]] axes4.plot([x_axis[all_lowest_point_idx[3]], last_slope_point_3], [all_normalized_coords[3][all_lowest_point_idx[3]], all_normalized_coords[3][all_plateau_idx[3]]], color_4, linewidth = width/2, linestyle='dashed', label='Protrusion speed') axes4.scatter(all_minimas[3]*interval, [all_normalized_coords[3][n] for n in all_minimas[3]], s=20, c='r', label='Retraction') axes4.legend(loc="lower right") for spine in axes4.spines.values(): spine.set_edgecolor(color_4) spine.set_linewidth(3) axes4.set_xlabel('Time (s)') plt.show() ################################dividing line########################################### if save_data: df = pd.DataFrame() df[fname + ' Kymo_1'] = pd.Series(all_normalized_coords[0]) df[fname + ' Kymo_1' + ' retraction pts'] = pd.Series(all_minimas[0]*interval) df[fname + ' Kymo_1' + ' plateau idx'] =
pd.Series(all_plateau_idx[0])
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.finance as mpf ''' 计算收益率 输入:V, C 输出:收益率 ''' def returnRatio(V, C=100000.0): return V/C-1.0 ''' 计算收益率 输入:V数组, C 输出:收益率数组 ''' def returnRatioArr(VArr, C=100000.0): arr = [] for v in VArr: arr.append(v/C-1.0) return arr ''' 计算有效投资天数 输入:买入df, 卖出df, 模拟投资结果perf(df的索引为时间) 输出:收益率 ''' def validInvestDays(buys, sells, perf): days = 0 for i in range(len(sells)): days += (sells.index[i]-buys.index[i]).days if len(buys)>len(sells): days += (perf.index[-1]-buys.index[-1]).days return days ''' 计算年化收益率 输入:收益率数组, T, D 输出:年化收益率 ''' def annualizedReturnRatio(returnRatioArr, T=250.0, D=250.0): import math tmp = 1 for r in returnRatioArr: tmp *= (r+1) return math.pow(tmp, D/T)-1 ''' 计算MA 输入: 输出:DataFrame ''' def MA(closeSeries, shortWin=5, longWin=20): shortMA = pd.rolling_mean(closeSeries, window=shortWin) longMA = pd.rolling_mean(closeSeries, window=longWin) return pd.DataFrame({'Close': closeSeries, str(shortWin)+'MA':shortMA, str(longWin)+'MA': longMA}) ''' 计算Bollinger bands布林带 输入: 输出:DataFrame ''' def BollingerBand(closeSeries, win=20): MA =
pd.rolling_mean(closeSeries, window=win)
pandas.rolling_mean
from collections import deque import pandas as pd import datetime import os import numpy as np from torch_rl.utils import Parameters, prRed, Callback, timestamp import glob import shutil class TrainingStatsCallback(Callback): """ Keeps training statistics, writes them to a file and loads them. """ def __init__(self, episode_window=10, step_window=10, sample_rate_episodes=1, sample_rate_steps=None, save_rate=10, save_destination=None, hyperparameters=None, stepwise=False, episodewise=True): super(TrainingStatsCallback, self).__init__(episodewise=episodewise, stepwise=stepwise) self.episode_window = episode_window self.episode_reward_buffer = deque(maxlen=episode_window) self.step_rewards = [] self.episode_rewards = [] self.sample_rate_episodes=sample_rate_episodes self.sample_rate_steps = sample_rate_steps self.rewards = [] self.moving_average_rewards = [] self.save_rate = save_rate self.hyperparameters = hyperparameters if save_destination is None: self.save_destination = 'training_stats_' + timestamp() else: self.save_destination = os.path.join(save_destination, "training_stats") if os.path.isdir(self.save_destination): prRed(self.save_destination + " is a directory already, delete for new training data? y/n") res = input() res = res.lower() if res == 'y': shutil.rmtree(self.save_destination) else: raise Exception("Start training with another save destination name.") os.makedirs(self.save_destination) # Save hyperparameters to a file self.save_hyperparameters() # Pandas data frames self.episode_data = None self.step_data = None def save_hyperparameters(self): if self.hyperparameters: if not isinstance(self.hyperparameters, Parameters): raise Exception("User Parameters from torch_rl.utils.Parameters to store parameters") df = pd.DataFrame.from_records(self.hyperparameters.__dict__) df.to_pickle(os.path.join(self.save_destination, "parameters.cfg")) def _step(self, episode, step, reward,**kwargs): kwargs["reward"] = reward kwargs['episode'] = episode kwargs['step'] = step df = pd.DataFrame.from_records([kwargs], index=['step']) if not self.step_data is None: self.step_data = pd.concat([self.step_data, df]) else: self.step_data = df if episode % self.save_rate == 0: self.save() def _episode_step(self, **kwargs): self.episode_reward_buffer.append(kwargs['episode_reward']) episode = kwargs['episode'] kwargs["mvavg_reward"] = np.mean(self.episode_reward_buffer) df = pd.DataFrame.from_records([kwargs], index=['episode']) if not self.episode_data is None: self.episode_data = pd.concat([self.episode_data, df]) else: self.episode_data = df if episode % self.save_rate == 0: self.save() def save(self): time_stamp = str(datetime.datetime.now()) path = self.save_destination print(" #Saving data to", path) if not self.episode_data is None: name = time_stamp + "_episode.stats" self.episode_data.to_pickle(os.path.join(path, name)) if not self.step_data is None: name = time_stamp + "_step.stats" self.step_data.to_pickle(os.path.join(path, name)) self.step_data = None self.episode_data = None @staticmethod def load(path="./training_stats"): files = glob.glob(path + "/*.stats") files = sorted(files) data = pd.read_pickle(os.path.join(path, files[0])) if len(files) > 1: for f in files[1:]: d = pd.read_pickle(os.path.join(path, f)) data =
pd.concat([data, d])
pandas.concat
import pandas as pd from abc import ABC, abstractmethod from .tempstate import TempState class UtilizationMetric: """ Keeps, updates, and aggregates a particular utilization metric in a time series format. """ def __init__(self, metric_name : str, utilization : dict = None): self.metric_name = metric_name self.utilization = {'datetime': list(), 'value': list()} if utilization is None else utilization self.tmp_state = TempState() def __add__(self, other : 'UtilizationMetric'): df_1 = pd.DataFrame({'datetime': self.utilization['datetime'], 'value': self.utilization['value']}).set_index('datetime') df_2 = pd.DataFrame({'datetime': other.utilization['datetime'], 'value': other.utilization['value']}).set_index('datetime') df_res = df_1.add(df_2, fill_value = 0) / 2 result = self.__class__(self.metric_name, {'datetime': df_res.index.to_list(), 'value': df_res.value.to_list()}) result.tmp_state += other.tmp_state return result def update(self, cur_ts : pd.Timestamp, cur_val : float, averaging_interval : pd.Timedelta): """ Updates the utilization metric with help of the temporary state. The temporary state bufferizes observations to aggregate them later on using the moving average. """ util = self.tmp_state.update_and_get(cur_ts, cur_val, averaging_interval) self.utilization['datetime'].append(cur_ts) self.utilization['value'].append(util) def get(self, interval : pd.Timedelta): """ Returns the most recent utilization metric values that fall into the specified interval. If interval is 0, returns all the values. """ utilization =
pd.DataFrame(self.utilization)
pandas.DataFrame
#!/usr/bin/env python3 # Author: <NAME> <<EMAIL>> """Describes global network structure and computes centralities for all nodes of a given network. """ from glob import glob from operator import itemgetter from os.path import basename, splitext import networkx as nx import pandas as pd from scipy.stats import spearmanr from _200_build_networks import year_name, write_stats NETWORK_FOLDER = "./200_yearly_networks/" TARGET_FOLDER = "./205_centralities/" OUTPUT_FOLDER = "./990_output/" def compute_centralities(H, G): """Return DataFrame with node-wise network measures.""" df = pd.DataFrame(index=sorted(H.nodes())) df['giant'] = df.index.map(lambda x: int(str(x) in G)) try: df["in_degree"] = pd.Series(dict(H.in_degree)) df["out_degree"] = pd.Series(dict(H.out_degree)) except AttributeError: # Undirected network df["degree"] = pd.Series(dict(H.degree)) df["num_2nd_neighbors"] = pd.Series( {n: num_sec_neigh(n, H) for n in H.nodes()}) df["betweenness"] = pd.Series( nx.betweenness_centrality(G.to_undirected(), weight="weight")) df['closeness'] = pd.Series(nx.closeness_centrality(G)) df["eigenvector"] = pd.Series( nx.eigenvector_centrality_numpy(G, weight="weight")) return df def giant(H): """Return giant component of a network.""" try: components = nx.connected_components(H) except nx.NetworkXNotImplemented: # Directed network components = nx.weakly_connected_components(H) return H.subgraph(sorted(components, key=len, reverse=True)[0]) def p_to_stars(p, thres=(0.1, 0.05, 0.01)): """Return stars for significance values.""" stars = [] for t in thres: if p < t: stars.append("*") return "".join(stars) def global_analysis(H, G): """Return Series with network descriptives.""" s = pd.Series() G = G.to_undirected() s["Nodes"] = nx.number_of_nodes(H) s["Links"] = nx.number_of_edges(H) s['Avg. clustering'] = round(nx.average_clustering(H.to_undirected()), 3) try: s["Components"] = nx.number_weakly_connected_components(H) except nx.NetworkXNotImplemented: # Undirected network s["Components"] = nx.number_connected_components(H) s["Giant"] = nx.number_of_nodes(G) s["Density"] = round(nx.density(G), 4) s["Avg. path length"] = nx.average_shortest_path_length(G) s["Diameter"] = nx.diameter(G) return s def num_sec_neigh(node, G): """Return number of unique second-order neighbors.""" neigh_sec_order = nx.single_source_shortest_path_length(G, node, cutoff=2) return sum(1 for x in neigh_sec_order.values() if x == 2) def main(): auth = pd.DataFrame(columns=['index', 'centrality']) com = pd.DataFrame(columns=['index', 'centrality']) global_auth =
pd.DataFrame()
pandas.DataFrame
from . import column from . import load from . import null from . import row from . import save from . import series from . import stat from . import value import pandas as __pd from sklearn.preprocessing import MinMaxScaler as __minmax from sklearn.preprocessing import StandardScaler as __standard from imblearn.over_sampling import SMOTE as __smote import anoapycore as __ap def array_to_df (a_array,b_as_column='') : """ This will convert array to pandas dataframe use [] for b_as_column """ if b_as_column == '' : loc_result = __pd.DataFrame(data=a_array) else : loc_result =
__pd.DataFrame(data=a_array,columns=b_as_column)
pandas.DataFrame
from qfengine.data.price.price_source import MySQLPriceDataSource as SQLTable from qfengine.asset import assetClasses import pandas as pd from typing import Union, List, Dict import os import numpy as np import logging import functools from qfengine import settings import concurrent.futures logger = logging.getLogger(__name__) # todo: MOVE THESE TO RESPECTIVE DIR MODULE class DataVendorMySQL(SQLTable): create_schema = ( ''' CREATE TABLE `%s` ( `id` int NOT NULL AUTO_INCREMENT, `name` varchar(64) NOT NULL, `website_url` varchar(255) NULL, `api_endpoint_url` varchar(255) NULL, `api_key_id` varchar(255) NULL, `api_key` varchar(255) NULL, `created_date` datetime NULL DEFAULT CURRENT_TIMESTAMP(), `last_updated_date` datetime NULL DEFAULT CURRENT_TIMESTAMP() ON UPDATE CURRENT_TIMESTAMP(), PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ''' ) def __init__( self, db_credentials:Dict=None, name:str = 'data_vendor', **kwargs ): super().__init__( (db_credentials if db_credentials is not None else settings.MYSQL_CREDENTIALS), name, (DataVendorMySQL.create_schema %name), **kwargs ) from qfengine.data import vendor_api import pandas as pd #---| init all availables _vendorAPIs = {api:getattr(vendor_api,api) for api in vendor_api.__all__} currentInfo = [] _to_pop = [] for api_name, API in _vendorAPIs.items(): _i = {'name':api_name} for f in self.all_accepted_columns: try: f_dat = getattr(API,f) except: pass else: if callable(f_dat): f_dat = f_dat() _i[f] = f_dat missing_required = [c for c in self.required_columns if c not in _i] if len(missing_required) != 0: _to_pop.append(api_name) else: currentInfo.append(_i) currentInfo = pd.DataFrame.from_dict(currentInfo) currentInfo = currentInfo.where(pd.notnull(currentInfo),None) upserted = self.upsertDF(currentInfo,["name"]) for p in _to_pop: _vendorAPIs.pop(p) self._APIs = {API.name: API for _,API in _vendorAPIs.items()} #---| check all init for essential funcs def get_vendor_API(self,vendor:str): assert vendor in self.List return self._APIs[vendor]() @property def DF(self): return self._fullDF().set_index("name").reindex(list(self._APIs.keys())) @property def List(self): return list(self._APIs.keys()) class ExchangeMySQL(SQLTable): create_schema = ( ''' CREATE TABLE `%s` ( `id` int NOT NULL AUTO_INCREMENT, `ref_id` varchar(32) NOT NULL, `name` varchar(255) NOT NULL, `currency` varchar(64) NULL, `region` varchar(255) NULL, `created_date` datetime NULL DEFAULT CURRENT_TIMESTAMP(), `last_updated_date` datetime NULL DEFAULT CURRENT_TIMESTAMP() ON UPDATE CURRENT_TIMESTAMP(), PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ''' ) def __init__( self, db_credentials:Dict = None, vendors:DataVendorMySQL = None, name:str = 'exchange', **kwargs ): super().__init__( (db_credentials if db_credentials is not None else settings.MYSQL_CREDENTIALS), name, (ExchangeMySQL.create_schema %name), **kwargs ) self.vendors = vendors or DataVendorMySQL(db_credentials,mdb_conn = self._conn) def UPDATE(self, vendor:str = 'IEX', DF:pd.DataFrame=None): if DF is None: DF = self.vendors.get_vendor_API(vendor).exchangesDF() upserted = self.upsertDF(DF,['ref_id']) for i,_count in upserted.items(): if _count > 0: logger.warning("%s %s Exchanges" %(str(i).upper(), str(_count))) @property def DF(self): return self._fullDF().set_index("ref_id") @property def List(self): return [e[0] for e in self.executeSQL("select ref_id from %s" %self._name)] class SecurityMySQL(SQLTable): create_schema = ( ''' CREATE TABLE `%s` ( `id` int NOT NULL AUTO_INCREMENT, `exchange_id` int NOT NULL, `symbol` varchar(10) NOT NULL, `type` varchar(10) NULL, `name` varchar(255) NULL, `sector` varchar(255) NULL, `industry` varchar(255) NULL, `currency` varchar(32) NULL, `region` varchar(32) NULL, `figi` varchar(255) NULL, `created_date` datetime NULL DEFAULT CURRENT_TIMESTAMP(), `last_updated_date` datetime NULL DEFAULT CURRENT_TIMESTAMP() ON UPDATE CURRENT_TIMESTAMP(), PRIMARY KEY (`id`), KEY `exchange_id` (`exchange_id` ASC), KEY `symbol` (`symbol` ASC), CONSTRAINT `fk_exchange_id` FOREIGN KEY (`exchange_id`) REFERENCES `exchange` (`id`) ON DELETE NO ACTION ON UPDATE NO ACTION ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ''' ) def __init__( self, db_credentials:Dict = None, exchanges:ExchangeMySQL=None, vendors:DataVendorMySQL=None, name:str = 'security', **kwargs ): super().__init__( (db_credentials if db_credentials is not None else settings.MYSQL_CREDENTIALS), name, (SecurityMySQL.create_schema %name), **kwargs ) self.exchanges = exchanges or ExchangeMySQL(db_credentials, mdb_conn = self._conn) self.vendors = vendors or self.exchanges.vendors def UPDATE(self, vendor:str = 'IEX', DF:pd.DataFrame = None,): if DF is None: DF = self.vendors.get_vendor_API(vendor).symbolsDF() if 'exchange_id' not in DF.columns: potential_exch_cols = [c for c in DF.columns if 'exchange' in c.lower()] db_exch_id = self.exchanges.DF['id'] for c in potential_exch_cols: db_exch = db_exch_id.reindex(DF[c].unique()) if len(db_exch.dropna()) == len(db_exch): db_exch = db_exch.where(pd.notnull(db_exch),None) DF['exchange_id'] = [db_exch[i] for i in DF[c].values] break assert 'exchange_id' in DF.columns, ("unidentified exchange(s) in DF") DF = DF.drop(columns=potential_exch_cols) if not isinstance(DF.index, pd.RangeIndex): DF.reset_index(inplace=True) assert set(DF.columns).issubset(set(self.all_accepted_columns)), "Unrecognized column(s): %s" %str([c for c in DF.columns if c not in self.all_accepted_columns]) upserted = self.upsertDF(DF,['symbol','exchange_id']) for i,_count in upserted.items(): if _count > 0: logger.warning("%s %s Security Symbols" %(str(i).upper(), str(_count))) @property def DF(self): return self._fullDF().set_index("symbol") @property def List(self): return [e[0] for e in self.executeSQL("select symbol from %s" %self._name)] class DailyPriceMySQL(SQLTable): create_schema = ( ''' CREATE TABLE `%s` ( `id` int NOT NULL AUTO_INCREMENT, `data_vendor_id` int NOT NULL, `symbol_id` int NOT NULL, `price_date` date NOT NULL, `open` decimal(19,4) NULL, `high` decimal(19,4) NULL, `low` decimal(19,4) NULL, `close` decimal(19,4) NULL, `volume` bigint NULL, `created_date` datetime NULL DEFAULT CURRENT_TIMESTAMP(), `last_updated_date` datetime NULL DEFAULT CURRENT_TIMESTAMP() ON UPDATE CURRENT_TIMESTAMP(), PRIMARY KEY (`id`), KEY `price_date` (`price_date` ASC), KEY `data_vendor_id` (`data_vendor_id`), KEY `symbol_id` (`symbol_id`), CONSTRAINT `fk_symbol_id ` FOREIGN KEY (`symbol_id`) REFERENCES `security` (`id`) ON DELETE NO ACTION ON UPDATE NO ACTION, CONSTRAINT `fk_data_vendor_id` FOREIGN KEY (`data_vendor_id`) REFERENCES `data_vendor` (`id`) ON DELETE NO ACTION ON UPDATE NO ACTION ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ''' ) def __init__( self, asset_type:assetClasses, db_credentials:Dict=None, symbols:SecurityMySQL=None, vendors:DataVendorMySQL=None, name:str = 'daily_price', by_vendor:str = None, symbols_list:List[str] = None, **kwargs ): super().__init__( db_credentials = (db_credentials if db_credentials is not None else settings.MYSQL_CREDENTIALS), price_table_name = name, price_table_schema = (DailyPriceMySQL.create_schema %name), **kwargs ) self.symbols = symbols or SecurityMySQL(db_credentials, mdb_conn = self._conn) self.vendors = vendors or self.symbols.vendors self.asset_type = asset_type self.symbols_list = symbols_list self.by_vendor = by_vendor if self.by_vendor: assert self.by_vendor in self.vendors.List self.symbols_list = self._query_available_symbols_in_database_by_vendor(self.by_vendor) if settings.PRINT_EVENTS: print("Initialized DailyPriceMySQL DataSource From Vendor '%s' | Available Symbols Count = %s" %(str(self.by_vendor), str(len(self.symbols_list)))) self._cached_copies = [] #!----------| ABSTRACTED METHODS OF A PRICE DATA SOURCE |------------# #---| Self-Copy def create_price_source_copy(self, cache_copy:bool = False, ): copy = DailyPriceMySQL( asset_type = self.asset_type, db_credentials = self._db_credentials.copy(), name = self._full_credentials['table_name'], by_vendor = None, ) copy.by_vendor = self.by_vendor #--| skip SQL vetting copy.symbols_list = (self.symbols_list.copy() if self.symbols_list else self.symbols_list) if cache_copy: self._cached_copies.append(copy) return copy #---------------------------| #------| Assets/Universe def assetsDF(self, **kwargs )->pd.DataFrame: df = self.symbols.DF.astype(str) if self.symbols_list: df = df.reindex(self.symbols_list) if 'sector' in kwargs: assert isinstance(kwargs['sector'],str) df = df[df.sector == kwargs['sector']] return df def assetsList(self, **kwargs )->list: return list(self.assetsDF(**kwargs).index.values) @property def sectorsList(self)->list: return self.symbols.DF.sector.dropna().unique() #---------------------------| #-----------| Price def get_assets_bid_ask_dfs(self, asset:str, *assets:str, start_dt=None, end_dt=None, )->pd.DataFrame: return self._price_dfs_to_bid_ask_dfs( self.get_assets_historical_price_dfs(asset, *assets, start_dt = start_dt, end_dt = end_dt ) ) def get_assets_historical_price_dfs(self, asset:str, *assets:str, price:str = None, start_dt = None, end_dt = None, adjusted = None, **kwargs )->pd.DataFrame: if price: assert price in [ "open", "high", "low", "close","volume" ] #--| parallelizing queries for performance symbols = [asset] + [s for s in assets] result = self._assets_daily_price_DF(*symbols) if price: result = result[ [col for col in result.columns if price in col] ] result.columns = result.columns.get_level_values('symbols') if start_dt: result = result[result.index >= self._format_dt(start_dt)] if end_dt: result = result[result.index <= self._format_dt(end_dt)] return result #---------------------------| #----| Price Date Ranges @functools.lru_cache(maxsize = 1024 * 1024) def get_assets_price_date_ranges_df(self, asset:str, *assets:str, )->pd.DataFrame: symbols = [asset] + [s for s in assets] if self.symbols_list: assert set(symbols).issubset(self.symbols_list) def _get_result(source, symbol, vendor): return { 'symbol': symbol, 'start_dt': self._format_dt(source._asset_symbol_min_price_date_by_vendor(symbol, vendor)), 'end_dt': self._format_dt(source._asset_symbol_max_price_date_by_vendor(symbol,vendor)), } final_df = pd.DataFrame() for vendor in self.vendorsList: result = pd.DataFrame.from_dict( list( concurrent.futures.ThreadPoolExecutor().map( _get_result, *zip(*( ( self.create_price_source_copy(cache_copy = True), symbol, vendor, ) for symbol in symbols )) ) ) ).set_index('symbol').dropna() self._close_cached_copies() final_df = final_df.append(result) symbols = [s for s in symbols if s not in final_df.index] if len(symbols) == 0: break return final_df def get_assets_minimum_start_dt(self, asset:str, *assets:str, )->pd.Timestamp: return self._format_dt(max( self.get_assets_price_date_ranges_df( asset, *assets ).start_dt.values )) def get_assets_maximum_end_dt(self, asset:str, *assets:str, )->pd.Timestamp: return self._format_dt(min( self.get_assets_price_date_ranges_df( asset, *assets ).end_dt.values )) #---------------------------| #!----------------------------------------------------------------# def update_assets_daily_price(self, vendor:str, batch_size:int=100, symbols_to_update:List[str] = None, skip_empty_update:bool = True, DF:pd.DataFrame=None, ): assert vendor in self.vendors.List vendor_id = self.vendors.DF.id[vendor] symbols_id = self.symbols.DF['id'] inserted_count = 0 updated_count = 0 t0 = pd.Timestamp.now() if DF is not None: #---| UPSERT ONCE WITH GIVEN DATAFRAME (NO API CALLS WILL BE MADE) self._upsert_daily_price_DF(DF,['price_date', 'symbol_id', 'data_vendor_id']) else: #---| PERFORM UPSERT IN BATCHES OF SYMBOLS BY MAKING API CALLS if symbols_to_update is not None: omitted = [s for s in symbols_to_update if s not in symbols_id.index] if len(omitted) > 0: logger.warning("Omitting %s given symbols that are not in database universe" %str(len(omitted))) logger.warning(str(omitted)) symbols_id = symbols_id.reindex([s for s in symbols_to_update if s not in omitted]) symbols_id = dict(symbols_id) assert len(symbols_id) != 0, "No symbols in Symbol table, code out schematic or manually prepare it (symbol.csv)" logger.warning("----------------------------------------------------------------") logger.warning("---------------| Updating Equities Daily Prices |---------------") logger.warning("----------------------------------------------------------------") logger.warning("Checking database for latest available price_date from '%s' of %s symbols..." %(vendor,str(len(symbols_id)))) #!---| Query for all symbols to get their max price_dates from SQL Database symbols_by_max_dates = {} for s in symbols_id: d = self._asset_symbol_max_price_date_by_vendor(s,vendor) if d not in symbols_by_max_dates: symbols_by_max_dates[d] = [] if s not in symbols_by_max_dates[d]: symbols_by_max_dates[d].append(s) #!---| Download latest daily price for symbols with their respective start dates & process for upsert to Database logger.warning("Performing Update in batches of %s" %str(batch_size)) for start_date,symbols in symbols_by_max_dates.items(): logger.warning("For %s symbols with '%s' as start_date:" %(str(len(symbols)),str(start_date))) i = 0 batch_number = 1 while True: symbols_batch = symbols[i:i+batch_size] batch_data = self.vendors.get_vendor_API(vendor).get_barset(symbols_batch,"1D",start_date) try: batch_data = self._transform_DF_for_daily_price_upsert(batch_data, vendor = vendor, start_date=start_date) except Exception: logger.warning("Cannot transform, skipping this batch of symbols: %s" %str(symbols_batch)) pass else: upserted = self.upsertDF(batch_data,no_filter=True) for a,_count in upserted.items(): if _count > 0: if a == 'inserted': logger.warning(" Batch #%s : %s New Data Points Inserted" %(str(batch_number),_count)) inserted_count += _count elif a == 'updated': logger.warning(" Batch #%s : %s Existing Data Points Updated" %(str(batch_number),_count)) updated_count += _count if (upserted['inserted'] == upserted['updated'] == 0) and skip_empty_update: logger.warning(" No New Data Upserted. Skipping remaining symbols (set skip_empty_update=False for otherwise)") break #---| Loop Breaker if symbols_batch[-1] == symbols[-1]: break else: i += batch_size batch_number += 1 print("Update Completed:") print("--Total Data Points Inserted: %s" %(str(inserted_count))) print("--Total Data Points Updated: %s" %(str(updated_count))) print("--Total Time Elapsed: %s" %(str(pd.Timestamp.now() - t0))) @property def vendorsDF(self,)->pd.DataFrame: return self.vendors.DF.reindex(self.vendorsList) @property def vendorsList(self,)->list: return self.vendors.List if self.by_vendor is None else [self.by_vendor] #!---| BACKEND def _transform_DF_for_daily_price_upsert(self, upsert_df:pd.DataFrame, **kwargs ): df = upsert_df.copy() #---| Case I: Basic DF with no MultiIndex columns if not isinstance(df.columns,pd.MultiIndex): assert 'symbol_id' in df.columns if 'price_date' not in df.columns: assert not isinstance(df.index, pd.RangeIndex) df.index = pd.DatetimeIndex(df.index) df['price_date'] = df.index.values df.index = range(len(df)) if 'data_vendor_id' not in df.columns: vendor_id = int(self.vendors.DF.id[kwargs['vendor']]) if 'vendor' in kwargs else ( int(kwargs['vendor_id']) if 'vendor_id' in kwargs else None ) assert isinstance(vendor_id, int) df['data_vendor_id'] = vendor_id return df.where(pd.notnull(df), None) #---| Case II: MultiIndex Columns of (symbols, columns) else: assert not isinstance(df.index, pd.RangeIndex) df.index = pd.DatetimeIndex(df.index) symbols_id = dict(kwargs['symbols_id']) if 'symbols_id' in kwargs else dict(self.symbols.DF['id']) vendor_id = int(self.vendors.DF.id[kwargs['vendor']]) if 'vendor' in kwargs else ( int(kwargs['vendor_id']) if 'vendor_id' in kwargs else None ) assert isinstance(vendor_id, int) assert isinstance(symbols_id, dict) try: df_symbols = list(df.columns.get_level_values('symbols').unique()) except KeyError: if settings.PRINT_EVENTS: print("Daily Price columns does not contain 'symbols' as name. " "Attempting to grab the first index locations..." ) df_symbols = list(pd.Series([i[0] for i in df.columns]).unique()) assert set(df_symbols).issubset(set(symbols_id.keys())), ( "Daily Price data contains unidentified symbol(s) without id(s): %s" %( str([ s for s in df_symbols if s not in symbols_id ]) ) ) start_date = pd.Timestamp(kwargs['start_date']) if ('start_date' in kwargs) else None transformed_df =
pd.DataFrame()
pandas.DataFrame
import h2o from h2o.estimators.glm import H2OGeneralizedLinearEstimator import numpy as np import pandas as pd import xgboost as xgb class LIMEExplainer(object): """ Basic framework for building Local, Interpretable, Model-agnostic Explanations (LIMEs) for XGBoost models. Supports regression, binomial, and multinomial classification. :ivar training_frame: Pandas DataFrame containing the row to be explained, mandatory. :ivar X: List of XGBoost model inputs. Inputs must be numeric, mandatory. :ivar model: Trained XGBoost booster to be explained, mandatory. :ivar N: Size of LIME local, perturbed sample. Integer, default 10000. :ivar discretize: Numeric variables to discretize. List, default `X`. :ivar quantiles: Number of bins to create in numeric variables. Integer, default 4. :ivar intercept: Whether local linear models should include an intercept. Boolean, default True. (EXPERIMENTAL) :ivar seed: Random seed for enhanced reproducibility. Integer, default 12345. :ivar print_: Whether to print a table of local contributions (reason codes) and plot `top_n` local contributions (reason codes). Boolean, default True. :ivar top_n: Number of highest and lowest Local contributions (reason codes) to plot. Integer, default 5. :ivar reason_code_values: Pandas DataFrame containing local contributions (reason codes) for `model` and row to be explained. :ivar lime_r2: R\ :sup:`2` statistic for trained local linear model, float. :ivar lime_pred: Prediction of trained local linear model for row of interest. :ivar lime: Trained local linear model, H2OGeneralizedLinearEstimator. :ivar bins_dict: Dictionary of bins used to discretize the LIME sample. :ivar multinomial: Whether the model is a multinomial model Reference: https://arxiv.org/abs/1602.04938 """ def __init__(self, training_frame=None, X=None, model=None, N=None, discretize=None, quantiles=None, seed=None, print_=None, top_n=None, intercept=None, multinomial=False): # mandatory if training_frame is not None: self.training_frame = training_frame else: raise ValueError('Parameter training_frame must be defined.') if X is not None: self.X = X else: raise ValueError('Parameter X must be defined.') if model is not None: self.model = model else: raise ValueError('Parameter model must be defined.') # defaults if N is not None: self.N = N else: self.N = 10000 if discretize is not None: self.discretize = discretize else: self.discretize = None if quantiles is not None: self.quantiles = quantiles else: self.quantiles = 4 if seed is not None: self.seed = seed else: self.seed = 12345 if print_ is not None: self.print_ = print_ else: self.print_ = True if top_n is not None: self.top_n = top_n else: self.top_n = 5 if intercept is not None: self.intercept = intercept else: self.intercept = True # internal storage self.reason_code_values = None self.lime_r2 = None self.lime = None self.lime_pred = None self.bins_dict = {} self.multinomial = multinomial h2o.no_progress() # do not show h2o progress bars def _generate_local_sample(self, row): """ Generates a perturbed, local sample around a row of interest. :param row: Row of Pandas DataFrame to be explained. :return: Pandas DataFrame containing perturbed, local sample. """ # initialize Pandas DataFrame sample_frame = pd.DataFrame(data=np.zeros(shape=(self.N, len(self.X))), columns=self.X) # generate column vectors of # normally distributed numeric values around mean of numeric variables # with std. dev. of original numeric variables for key, val in self.training_frame[self.X].dtypes.items(): rs = np.random.RandomState(self.seed) loc = row[key] sd = self.training_frame[key].std() draw = rs.normal(loc, sd, (self.N, 1)) sample_frame[key] = draw return sample_frame def _score_local_sample(self, local_sample, row): """ Scores the perturbed, local sample with the user-supplied XGBoost `model`. :param local_sample: perturbed, local sample generated by `_generate_local_sample`. :param row: Row of Pandas DataFrame to be explained. :return: Pandas DataFrame containing scored, perturbed, local sample. """ dlocal_sample = xgb.DMatrix(local_sample) if not self.multinomial: scored_local_sample = pd.DataFrame(self.model.predict(dlocal_sample)) else: scored_local_sample = pd.DataFrame(self.model.predict(dlocal_sample)).max(axis=1) #For multinomial -> .max(axis=1)) scored_local_sample = scored_local_sample.to_frame() scored_local_sample.columns = ['predict'] if not self.multinomial: print('\nModel Prediction: %.2f' % self.model.predict(xgb.DMatrix(pd.DataFrame(pd.to_numeric(row)).T))[0]) else: pred_row = row.to_frame().T print("Row:\n") print(pred_row) print("\n") print("Multinomial Model Prediction:\n") print(pd.DataFrame(self.model.predict(xgb.DMatrix(pred_row)))) print("\n") return pd.concat([local_sample, scored_local_sample], axis=1) def _calculate_distance_weights(self, row_id, scored_local_sample): """ Adds inverse distance weighting from row of interest to perturbed local sample. :param row_id: Row index of row to be explained in `training_frame`. :param scored_local_sample: Scored, perturbed, local sample generated by `_score_local_sample`. :return: Pandas DataFrame containing weighted, scored perturbed local sample. """ # scaling for calculating Euclidian distance # for the row of interest scaled_training_frame = (self.training_frame[self.X] - self.training_frame[self.X].mean()) \ / self.training_frame[self.X].std() row = scaled_training_frame.iloc[row_id, :][self.X] # scaling for calculating Euclidian distance # for the perturbed local sample scaled_scored_local_sample = scored_local_sample[self.X].copy(deep=True) scaled_scored_local_sample = (scaled_scored_local_sample - scaled_scored_local_sample.mean()) \ / scaled_scored_local_sample.std() # convert to h2o and calculate distance row_h2o = h2o.H2OFrame(pd.DataFrame(row).T) scaled_scored_local_sample_h2o = \ h2o.H2OFrame(scaled_scored_local_sample) distance = row_h2o.distance(scaled_scored_local_sample_h2o, measure='l2').transpose() distance.columns = ['distance'] # lower distances, higher weight in LIME distance = distance.max() - distance return pd.concat([scored_local_sample, distance.as_data_frame()], axis=1) def _discretize_numeric(self, weighted_local_sample): """ Conditionally discretize the inputs in the weighted, scored, perturbed, local sample generated by `_calculate_distance_weights` into `quantiles` bins. :param weighted_local_sample: Weighted, scored, perturbed, local sample generated by `_calculate_distance_weights`. :return: Pandas DataFrame containing discretized, weighted, scored, perturbed, local sample. """ # initialize empty dataframe to be returned columns = self.X + ['predict', 'distance'] discretized_weighted_local_sample = \ pd.DataFrame(np.zeros((self.N, len(columns))), columns=columns) # save bins for later use and apply to current sample for name in self.discretize: ser, bins = pd.qcut(weighted_local_sample.loc[:, name], self.quantiles, retbins=True) discretized_weighted_local_sample.loc[:, name] = ser self.bins_dict[name] = bins # fill in remaining columns not_in = list(set(columns)-set(self.discretize)) discretized_weighted_local_sample.loc[:, not_in] = \ weighted_local_sample.loc[:, not_in] return discretized_weighted_local_sample def _regress(self, weighted_local_sample, row_h2o): """ Train local linear model using h2o and calculate local contributions (reason codes). :param weighted_local_sample: Weighted, scored, perturbed local sample generated by `_calculate_distance_weights` OR weighted, scored, perturbed, and discretized local sample generated by `_discretize_numeric`. :param row_h2o: Row to be explained as H2OFrame. :return: Trained local linear model as H2OGeneralizedLinearEstimator. """ # convert to h2o and split weighted_local_sample_h2o = h2o.H2OFrame(weighted_local_sample) # initialize lime = H2OGeneralizedLinearEstimator(lambda_search=True, weights_column='distance', intercept=self.intercept, seed=self.seed) # train lime.train(x=self.X, y='predict', training_frame=weighted_local_sample_h2o) # output self.lime_r2 = lime.r2() self.lime_pred = lime.predict(row_h2o)[0, 0] print('Local GLM Prediction: %.2f' % self.lime_pred) print('Local GLM R-square: %.2f' % self.lime_r2) print('Local GLM Intercept: %.2f\n' % lime.coef()['Intercept']) # initialize Pandas DataFrame to store results self.reason_code_values = pd.DataFrame(columns=['Input', 'Local Contribution']) # multiply values in row by local glm coefficients to local # contributions (reason codes) for key, val in row_h2o[self.X].types.items(): contrib = 0 if val == 'enum': level = row_h2o[key][0, 0] name = '.'.join([str(key), str(level)]) if name in lime.coef(): contrib = lime.coef()[name] else: name = key if name in lime.coef(): contrib = row_h2o[name][0, 0] * lime.coef()[name] # save only non-zero values if np.abs(contrib) > 0.0: self.reason_code_values = \ self.reason_code_values.append({'Input': name, 'Local Contribution': contrib}, ignore_index=True) # sort self.reason_code_values.sort_values(by='Local Contribution', inplace=True) self.reason_code_values.reset_index(inplace=True, drop=True) return lime def _plot_local_contrib(self): """ Plots local contributions (reason codes) in a bar chart. """ local_contrib_plot_frame = self.reason_code_values if local_contrib_plot_frame.shape[0] > self.top_n * 2: # plot top and bottom local contribs local_contrib_plot_frame = \ self.reason_code_values.iloc[:self.top_n, :].\ append(self.reason_code_values.iloc[-self.top_n:, :]) _ = local_contrib_plot_frame.plot(x='Input', y='Local Contribution', kind='bar', title='Reason Codes', legend=False, color='b') def explain(self, row_id): """ Executes lime process. :param row_id: The row index of the row in `training_frame` to be explained. """ row = self.training_frame.iloc[row_id, :] local_sample = self._generate_local_sample(row) scored_local_sample = \ self._score_local_sample(local_sample, row[local_sample.columns]) weighted_scored_local_sample = \ self._calculate_distance_weights(row_id, scored_local_sample) if self.discretize is not None: discretized_weighted_local_sampled = \ self._discretize_numeric(weighted_scored_local_sample) disc_row = pd.DataFrame(columns=self.X) for name in self.discretize: disc_row[name] = pd.cut(
pd.Series(row[name])
pandas.Series
import pandas as pd import src.variables as var
pd.set_option('display.max_rows', 500)
pandas.set_option
from os.path import exists, join import pandas as pd import torch import logging from transformers import AutoModelForSequenceClassification from train_bert import compute_negative_entropy, LMForSequenceClassification from dataset import get_dataset_by_name, TokenizerDataModule from torch.utils.data import DataLoader from tqdm import tqdm import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme() import glob import numpy as np from IPython.display import display import os from os.path import join import re import torch from collections import namedtuple import pdb logging.basicConfig( format="%(levelname)s:%(asctime)s:%(module)s:%(message)s", level=logging.INFO ) logger = logging.getLogger(__name__) class ScoreHandler: """Standardize how scores are saved and loaded for a given model & dataset.""" def __init__(self, dataset: torch.utils.data.Dataset): self.dataset = dataset def save_scores(self, scores, root_dir: str, column_name: str, dataset: str): """Save the scores for a model on a dataset. It uses a single csv file per dataset. Each column refers to the scores of a single dataset. Return: (datafram with scores, epath of the file containing the scores) """ file_name = f"scores_{dataset}.csv" file_path = join(root_dir, file_name) df = pd.read_csv(file_path) if exists(file_path) else self.dataset.data.copy() if column_name in df.columns: logging.info(f"Scores for {column_name} are present. Overriding them...") df[column_name] = scores df.to_csv(file_path, index=False) return df, file_path def load_model_from_folder(model_dir, pattern=None): if pattern: ckpt = glob.glob(join(model_dir, f"*{pattern}*"))[0] else: ckpt = glob.glob(f"{model_dir}/*.ckpt")[0] print("Loading", ckpt) if pattern: model = LMForSequenceClassification.load_from_checkpoint(ckpt) else: model = AutoModelForSequenceClassification.from_pretrained(model_dir) return model def join_subwords(tokens): span_start_idx = -1 spans = list() for i, t in enumerate(tokens): if t.startswith("#") and span_start_idx == -1: span_start_idx = i - 1 continue if not t.startswith("#") and span_start_idx != -1: spans.append((span_start_idx, i)) span_start_idx = -1 #  span open at the end if span_start_idx != -1: spans.append((span_start_idx, len(tokens))) merged_tkns = list() pop_idxs = list() for span in spans: merged = "".join([t.strip("#") for t in tokens[span[0] : span[1]]]) merged_tkns.append(merged) #  indexes to remove in the final sequence for pop_idx in range(span[0] + 1, span[1]): pop_idxs.append(pop_idx) new_tokens = tokens.copy() for i, (span, merged) in enumerate(zip(spans, merged_tkns)): new_tokens[span[0]] = merged #  substitue with whole word mask = np.ones(len(tokens)) mask[pop_idxs] = 0 new_tokens = np.array(new_tokens)[mask == 1] assert len(new_tokens) == len(tokens) - len(pop_idxs) return new_tokens, pop_idxs, spans def average_2d_over_spans(tensor, spans, reduce_fn="mean"): #  print("Spans #", spans) slices = list() last_span = None for span in spans: # first slice if last_span is None: slices.append(tensor[:, : span[0]]) else: slices.append(tensor[:, last_span[1] : span[0]]) # average over the subwords if reduce_fn == "mean": slices.append(tensor[:, span[0] : span[1]].mean(-1).unsqueeze(-1)) else: slices.append(tensor[:, span[0] : span[1]].sum(-1).unsqueeze(-1)) last_span = span #  last slice if spans[-1][1] != tensor.shape[1]: slices.append(tensor[:, last_span[1] :]) res = torch.cat(slices, dim=1) #  print("After average:", res.shape) return res def get_scores(y_true, scores_path): scores = torch.load(scores_path) y_pred = torch.zeros(scores.shape[0]).masked_fill(scores >= 0.5, 1) fp_mask = (y_true == 0) & (y_pred == 1) fp = torch.zeros(scores.shape[0]).masked_fill(fp_mask, 1) fp_indexes = torch.nonzero(fp).squeeze(-1) print(f"Found {fp_indexes.shape[0]} FPs") return {"scores": scores, "y_pred": y_pred, "fp_indexes": fp_indexes} #### VISUALIZATION: ENTROPY #### def show_entropy( models, tokenizer, max_sequence_length, data, names, n_samples=2, idxs=None, regularization="entropy", join=False, layers_mean=False, prompt=None, exp=False, remove_special=False, labelsize=15, titlesize=15, set_figsize=True, set_tightlayout=True, ): def process_text(idx, text): with torch.no_grad(): print(text) encoding = tokenizer( text, add_special_tokens=True, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", ) tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"][0]) if remove_special: tokens = tokens[1:-1] #  print("Len:", len(tokens), "tokens:", tokens) if join: # join subwords for better visualization new_tokens, pop_idxs, spans = join_subwords(tokens) #  print("Len new tokens", len(new_tokens)) tokens = new_tokens heatmap_list = list() final_entropies = list() y_scores = list() for i, (model, name) in enumerate(zip(models, names)): if regularization == "entropy": output = model(**encoding, output_attentions=True) reg_target = output["attentions"] else: output = model(**encoding, output_norms=True) norms = output["norms"] afx_norms = [t[1] for t in norms] reg_target = afx_norms logits = output["logits"] y_score = logits.softmax(-1)[0, 1] print(y_score) neg_entropy, entropies = compute_negative_entropy( reg_target, encoding["attention_mask"], return_values=True ) #  print("Entropies shape:", entropies[0].shape) #  join_subwords(entropies, tokens) #  print(name, "Final entropy: ", -neg_entropy.item()) entropies = -entropies[0] # take positive entropy entropies = torch.flipud(entropies) #  top layers are placed to the top # average subwords if join and len(spans) > 0: entropies = average_2d_over_spans(entropies, spans) if layers_mean: entropies = entropies.mean(0).unsqueeze(0) if exp: entropies = (1 / entropies).log() if remove_special: entropies = entropies[:, 1:-1] heatmap_list.append(entropies) final_entropies.append(-neg_entropy.item()) y_scores.append(y_score) #### VISUALIZATION #### if layers_mean: figsize = (12, 2 * len(models)) else: figsize = (6 * len(models), 6) if set_figsize: fig = plt.figure(constrained_layout=False, figsize=figsize) else: fig = plt.figure(constrained_layout=False) if regularization == "entropy": fig.suptitle( f"H: Entropy on Attention (a), ID:{idx}" ) # , {data[idx]}") else: fig.suptitle( f"Entropy on Norm (||a*f(zx)||), ID:{idx}" ) # , {data[idx]}") if set_tightlayout: fig.tight_layout() # compute global min and global max heatmap_tensor = torch.stack(heatmap_list) glob_min = heatmap_tensor.min().item() glob_max = heatmap_tensor.max().item() #  print("Glob max:", glob_max, "Glob min", glob_min) for i, name in enumerate(names): if layers_mean: gspec = fig.add_gridspec( len(models), 2, width_ratios=[20, 1], wspace=0.1, hspace=0.1 ) splot = fig.add_subplot(gspec[i, 0]) if i == (len(names) - 1): cbar_ax = fig.add_subplot(gspec[:, 1]) sns.heatmap( heatmap_list[i], ax=splot, cbar=True, cbar_ax=cbar_ax, square=True, vmin=glob_min, vmax=glob_max, ) splot.set_xticks(np.arange(heatmap_list[i].shape[-1]) + 0.5) splot.set_xticklabels(tokens, rotation=90, fontsize=labelsize) [t.set_fontsize(labelsize) for t in cbar_ax.get_yticklabels()] # title to colorbar cbar_ax.set_title( "log(1/H)", fontsize=titlesize ) if exp else cbar_ax.set_title("H", fontsize=titlesize) else: sns.heatmap( heatmap_list[i], ax=splot, cbar=False, square=True, vmin=glob_min, vmax=glob_max, ) splot.set_xticklabels([]) splot.set_yticklabels([]) splot.set_title( f"{name}, p(1|x)={y_scores[i]:.3f}, H={final_entropies[i]:.3f}", fontsize=titlesize, ) else: width_ratios = [10] * len(models) width_ratios += [1] gspec = fig.add_gridspec( 1, len(models) + 1, width_ratios=width_ratios, wspace=0.2 ) splot = fig.add_subplot(gspec[0, i]) if i == (len(names) - 1): cbar_ax = fig.add_subplot(gspec[0, -1]) sns.heatmap( heatmap_list[i], ax=splot, cbar=True, cbar_ax=cbar_ax, square=True, vmin=glob_min, vmax=glob_max, ) [t.set_fontsize(labelsize) for t in cbar_ax.get_yticklabels()] # title to colorbar cbar_ax.set_title( "log(1/H)", fontsize=titlesize ) if exp else cbar_ax.set_title("H", fontsize=titlesize) else: sns.heatmap(heatmap_list[i], ax=splot, cbar=False, square=True) if i == 0: splot.set_ylabel("Layer", fontsize=labelsize) splot.set_yticklabels(np.arange(11, -1, -1), fontsize=labelsize) else: splot.set_yticklabels([]) splot.set_xticks(np.arange(heatmap_list[i].shape[-1]) + 0.5) splot.set_xticklabels(tokens, rotation=90, fontsize=labelsize) splot.set_title( f"{name}, p(1|x)={y_scores[i]:.3f}, H={final_entropies[i]:.3f}", fontsize=titlesize, ) #  print(len(tokens), len(axes[i].get_xticklabels())) #  print(entropies.shape) #  axes[i].set_xticks(np.arange(heatmap_list[i].shape[-1])) # axes[i].set_xticklabels(tokens, rotation=90) # axes[i].set_title(f"{name}, p(1|x)={y_scores[i]:.3f}, e={final_entropies[i]:.3f}") # axes[i].set_yticklabels([]) return fig if prompt: idx = "custom" text = prompt print("ID: ", idx, text) return process_text(idx, text) if idxs is None: #  pick random samples to show idxs = np.random.randint(len(data), size=n_samples) print(idxs) for idx in idxs: print("ID: ", idx, data[idx]) process_text(idx, data[idx]["text"]) def compare_sentences( model, tokenizer, sentences, max_sequence_length=120, remove_special=True, join=True, show_log=True, labelsize=15, titlesize=15, figsize=(12, 12), ): processed = list() with torch.no_grad(): for text in sentences: encoding = tokenizer( text, add_special_tokens=True, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", ) tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"][0]) if remove_special: tokens = tokens[1:-1] if join: # join subwords for better visualization new_tokens, pop_idxs, spans = join_subwords(tokens) #  print("Len new tokens", len(new_tokens)) tokens = new_tokens output = model(**encoding, output_attentions=True) logits = output["logits"] y_score = logits.softmax(-1)[0, 1] neg_entropy, entropies = compute_negative_entropy( output["attentions"], encoding["attention_mask"], return_values=True ) #  print("Entropies shape:", entropies[0].shape) #  print(name, "Final entropy: ", -neg_entropy.item()) entropies = -entropies[0] # take positive entropy # average subwords if join and len(spans) > 0: entropies = average_2d_over_spans(entropies, spans) entropies = entropies.mean(0).unsqueeze(0) if show_log: entropies = (1 / entropies).log() if remove_special: entropies = entropies[:, 1:-1] processed.append((tokens, y_score, entropies)) # print(processed) fig = plt.figure(constrained_layout=False, figsize=figsize) gspec = fig.add_gridspec(len(sentences) * 2, 1, hspace=2, wspace=5) vmin = torch.stack([p[2] for p in processed]).min().item() vmax = torch.stack([p[2] for p in processed]).max().item() print(vmin, vmax) for i, (tokens, y_score, entropies) in enumerate(processed): splot = fig.add_subplot(gspec[i, 0]) #  cbar_ax = fig.add_subplot(gspec[:, 1]) sns.heatmap( entropies, ax=splot, cbar=False, # cbar_ax=cbar_ax, square=True, # cmap="Reds", annot=False, vmin=vmin, vmax=vmax, ) splot.set_xticks(np.arange(entropies.shape[-1]) + 0.5) splot.set_xticklabels(tokens, rotation=90, fontsize=labelsize) splot.set_yticklabels([]) splot.set_title( f"p(1|x)={y_score:.3f}", fontsize=titlesize, ) # [t.set_fontsize(labelsize) for t in cbar_ax.get_yticklabels()] # title to colorbar # cbar_ax.set_title( # "log(1/H)", fontsize=titlesize # ) if exp else cbar_ax.set_title("H", fontsize=titlesize) # fig.tight_layout() #### BIAS_ANALYSIS: parsing results and bias analysis def match_pattern_concat(main_dir, pattern, verbose=True): """Find all files that match a patter in main_dir. Then concatenate their content into a pandas df.""" versions = glob.glob(join(main_dir, pattern)) if verbose: print(f"Found {len(versions)} versions") res = list() for version in versions: df =
pd.read_csv(version)
pandas.read_csv
import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_html_components as html from dash.dependencies import Input, Output import pandas as pds from datetime import datetime as dt import datetime import plotly.graph_objs as go import plotly.express as px from app import app, template update_date = dt(2020, 3, 31) d_trust = pds.read_csv('assets/d_trust.csv') d_trust['hospitaladmissiondate'] = pds.to_datetime(d_trust['hospitaladmissiondate'], errors='coerce') icu_forecast = pds.read_csv('assets/icu_risk_forecast.csv') icu_forecast['hospitaladmissiondate'] = pds.to_datetime(icu_forecast['hospitaladmissiondate'], errors='coerce') death_forecast = pds.read_csv('assets/death_risk_forecast.csv') death_forecast['hospitaladmissiondate'] =
pds.to_datetime(death_forecast['hospitaladmissiondate'], errors='coerce')
pandas.to_datetime
import sys import unittest import subprocess import time import logging import numpy as np import pandas as pd import swifter from tqdm.auto import tqdm from psutil import cpu_count LOG = logging.getLogger(__name__) LOG.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)-8s.%(msecs)03d %(levelname)-8s %(name)s:%(lineno)-3s %(message)s") ch.setFormatter(formatter) LOG.addHandler(ch) def math_vec_square(x): return x ** 2 def math_foo(x, compare_to=1): return x ** 2 if x < compare_to else x ** (1 / 2) def math_vec_multiply(row): return row["x"] * row["y"] def math_agg_foo(row): return row.sum() - row.min() def text_foo(row): if row["letter"] == "A": return row["value"] * 3 elif row["letter"] == "B": return row["value"] ** 3 elif row["letter"] == "C": return row["value"] / 3 elif row["letter"] == "D": return row["value"] ** (1 / 3) elif row["letter"] == "E": return row["value"] class TestSwifter(unittest.TestCase): def assertSeriesEqual(self, a, b, msg): try: pd.testing.assert_series_equal(a, b) except AssertionError as e: raise self.failureException(msg) from e def assertDataFrameEqual(self, a, b, msg): try: pd.testing.assert_frame_equal(a, b) except AssertionError as e: raise self.failureException(msg) from e def setUp(self): LOG.info(f"Version {swifter.__version__}") self.addTypeEqualityFunc(pd.Series, self.assertSeriesEqual) self.addTypeEqualityFunc(pd.DataFrame, self.assertDataFrameEqual) self.ncores = cpu_count() def test_set_npartitions(self): LOG.info("test_set_npartitions") for swifter_df, set_npartitions, expected in zip( [ pd.DataFrame().swifter, pd.Series().swifter, pd.DataFrame( {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10) ).swifter.rolling("1d"), pd.DataFrame( {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10) ).swifter.resample("3T"), ], [None, 1000, 1001, 1002], [cpu_count() * 2, 1000, 1001, 1002], ): before = swifter_df._npartitions swifter_df.set_npartitions(set_npartitions) actual = swifter_df._npartitions self.assertEqual(actual, expected) if set_npartitions is not None: self.assertNotEqual(before, actual) def test_set_dask_threshold(self): LOG.info("test_set_dask_threshold") expected = 1000 for swifter_df in [ pd.DataFrame().swifter, pd.Series().swifter, pd.DataFrame( {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10) ).swifter.rolling("1d"), pd.DataFrame( {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10) ).swifter.resample("3T"), ]: before = swifter_df._dask_threshold swifter_df.set_dask_threshold(expected) actual = swifter_df._dask_threshold self.assertEqual(actual, expected) self.assertNotEqual(before, actual) def test_set_dask_scheduler(self): LOG.info("test_set_dask_scheduler") expected = "my-scheduler" for swifter_df in [ pd.DataFrame().swifter, pd.Series().swifter, pd.DataFrame( {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10) ).swifter.rolling("1d"), pd.DataFrame( {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10) ).swifter.resample("3T"), ]: before = swifter_df._scheduler swifter_df.set_dask_scheduler(expected) actual = swifter_df._scheduler self.assertEqual(actual, expected) self.assertNotEqual(before, actual) def test_disable_progress_bar(self): LOG.info("test_disable_progress_bar") expected = False for swifter_df in [ pd.DataFrame().swifter, pd.Series().swifter, pd.DataFrame( {"x": np.arange(0, 10)}, index=
pd.date_range("2019-01-1", "2020-01-1", periods=10)
pandas.date_range
import pandas as pd # ====================== level 0: basic input ======================= def read_bas_ecp(fmol): from qharv.reel import ascii_out mm = ascii_out.read(fmol) # skip comment lines for iline in range(3): line = mm.readline() lines = [] for iline in range(3): line = mm.readline().decode() lines.append(line) symm_line = lines[0] if not symm_line.startswith('C'): msg = 'need Cartesian expansion for ECP run\n' msg += symm_line raise RuntimeError(msg) atom_line = lines[1] toks = list(map(float, atom_line.split())) if len(toks) > 2: msg = 'can handle only 1 species for now' raise NotImplementedError(msg) pos_line = lines[2] elem = pos_line.split()[0] # convert basis string to PySCF format dbas_str = ascii_out.block_text(mm, 'LARGE EXPLICIT', 'ECP') ang_moms = ['S', 'P', 'D', 'F', 'G', 'H'] nang_avail = len(ang_moms) bas_fmt = '%16.8f %20.8f\n' # expo, c iang = -1 nbas1 = None bas_str = '' for line in dbas_str.split('\n'): toks = line.split() if len(toks) < 1: continue if line.startswith('f'): iang += 1 if iang > nang_avail-1: msg = 'iang = %d not available from %s' % (iang, ang_moms) raise RuntimeError(msg) ang = ang_moms[iang] if nbas1 is not None: ifmatch = nbas1 == nbas0 if not ifmatch: msg = 'expected %d basis, got %d' % (nbas0, nbas1) raise RuntimeError(msg) nbas0 = int(toks[1]) nbas1 = 0 else: expo = float(toks[0]) new1 = '%2s %s\n' % (elem, ang) new1 += bas_fmt % (expo, 1.0) bas_str += new1 nbas1 += 1 # convert ECP string to PySCF format ang_moms += ['ul'] # fake local channel as last ang_mom decp_str = ascii_out.block_text(mm, 'ECP', 'FINISH', skip_header=False) lines = decp_str.split('\n') header = lines[0] nelec = int(header.split()[1]) ecp_str = '%s nelec %d\n' % (elem, nelec) iang = -1 nbas1 = None for line in lines[1:]: toks = line.split() if len(toks) < 1: continue if len(toks) == 1: if iang > nang_avail-1: msg = 'iang = %d not available from %s' % (iang, ang_moms) raise RuntimeError(msg) ang = ang_moms[iang] iang += 1 if nbas1 is not None: ifmatch = nbas1 == nbas0 if not ifmatch: msg = 'expected %d ecp basis, got %d' % (nbas0, nbas1) raise RuntimeError(msg) nbas1 = 0 nbas0 = int(toks[0]) ecp_str += '%s %s\n' % (elem, ang) else: nbas1 += 1 ecp_str += line + '\n' bas = {elem: bas_str} ecp = {elem: ecp_str} return bas, ecp # ====================== level 0: basic output ====================== def read(fout, vp_kwargs=None, mp_kwargs=None): from qharv.reel import ascii_out if vp_kwargs is None: vp_kwargs = dict() if mp_kwargs is None: mp_kwargs = dict() mm = ascii_out.read(fout) etot = ascii_out.name_sep_val(mm, 'Total energy', ':') ehomo = ascii_out.name_sep_val(mm, 'E(HOMO)', ':') elumo = ascii_out.name_sep_val(mm, 'E(LUMO)', ':') data = { 'etot': etot, 'ehomo': ehomo, 'elumo': elumo, } if mm.find(b'* Vector print *') > 0: data['vectors'] = parse_vector_print(mm, **vp_kwargs) if mm.find(b'* Mulliken population analysis *') > 0: data['populations'] = parse_mulliken(mm, **mp_kwargs) mm.close() return data def parse_basis_line(line): # eg. '1 L W 1 s -1.1034620201 0.0000000000' assert len(line) == 80 ibas = int(line[:8]) sl = line[8:11].strip() # large or small component elem = line[11:14].strip() ie = int(line[14:17]) symm = line[17:24].strip() istart = 24 nspan = 14 cupr = float(line[istart:istart+nspan]) istart += nspan cupi = float(line[istart:istart+nspan]) istart += nspan cdnr = float(line[istart:istart+nspan]) istart += nspan cdni = float(line[istart:istart+nspan]) cup = cupr + 1j*cupi cdn = cdnr + 1j*cdni entry = {'elem': elem, 'ibas': ibas, 'ao_symm': symm, 'cup': cup, 'cdn': cdn} return entry def parse_ev_text(text): lines = text.split('\n') entryl = [] for line in lines: if len(line) != 80: continue entry = parse_basis_line(line) entryl.append(entry) df = pd.DataFrame(entryl) return df def parse_eigenvectors(mm, idxl): """Parse eigenvectors from DIRAC 'Vector print' .PRIVEC output Args: mm (mmap.mmap): memory map of outputfile idxl (list): a list of starting memory locations for eigenvectors Return: pd.DataFrame: eigenvector information Example: >>> from qharv.reel import ascii_out >>> mm = ascii_out.read('inp_mol.out') >>> idx = mm.find(b'* Vector print *') >>> mm.seek(idx) >>> header = 'Electronic eigenvalue no.' >>> idxl = ascii_out.all_lines_with_tag(mm, header) >>> df = parse_eigenvectors(mm, idxl[:2]) # first two vectors """ from qharv.reel import ascii_out header = '====================================================' trailer = 'Electronic eigenvalue no' dfl = [] for i in idxl: mm.seek(i) line = mm.readline().decode() # eg. 'eigenvalue no. 2: -0.2364785578899' left, right = line.split(':') iev = int(left.split()[-1]) ev = float(right) meta = {'iev': iev, 'ev': ev} # read body i0, i1 = ascii_out.locate_block(mm, header, trailer, force_tail=True, skip_trailer=True) if i1 < 0: i0, i1 = ascii_out.locate_block(mm, header, '*********') # parse text = mm[i0:i1].decode() df1 = parse_ev_text(text) for key, val in meta.items(): df1[key] = val dfl.append(df1) df = pd.concat(dfl, axis=0).reset_index(drop=True) return df def parse_vector_print(mm, header='* Vector print *', mid_tag='Fermion ircop E1u', end_tag='* Mulliken population analysis *', ): from qharv.reel import ascii_out # seek to header idx = mm.find(header.encode()) mm.seek(idx) # find all potential vectors to read idxl = ascii_out.all_lines_with_tag(mm, 'Electronic eigenvalue no.') # exclude population analysis iend = mm.find(end_tag.encode()) if iend > 0: idxl = [i for i in idxl if i < iend] # partition into even and odd imid = mm.find(mid_tag.encode()) idxg = [i for i in idxl if i < imid] idxu = [i for i in idxl if i >= imid] gdf = parse_eigenvectors(mm, idxg) gdf['mo_symm'] = 'E1g' udf = parse_eigenvectors(mm, idxu) udf['mo_symm'] = 'E1u' df = pd.concat([gdf, udf], sort=False).reset_index(drop=True) return df def parse_populations(mm, idxl): """Parse population from DIRAC 'Mulliken' .MULPOP output modified from parse_eigenvectors Args: mm (mmap.mmap): memory map of outputfile idxl (list): a list of starting memory locations for eigenvectors Return: pd.DataFrame: population information """ from qharv.reel import ascii_out header = '--------------------------------------' trailer = 'Electronic eigenvalue no' entryl = [] for i in idxl: mm.seek(i) line = mm.readline().decode() # eg. 'eigenvalue no. 2: -0.2364785578899 (' toks = line.split(':') left = toks[0] right = toks[1].split()[0] iev = int(left.split()[-1]) ev = float(right) meta = {'iev': iev, 'ev': ev} # read body i0, i1 = ascii_out.locate_block(mm, header, trailer, force_tail=True, skip_trailer=True) if i1 < 0: i0, i1 = ascii_out.locate_block(mm, header, '**') # parse text = mm[i0:i1].decode() # e.g. # alpha 1.0000 | 1.0000 # beta 0.0000 | 0.0000 lines = text.split('\n') aline = lines[0] bline = lines[1] assert 'alpha' in aline assert 'beta' in bline atot = float(aline.split()[1]) btot = float(bline.split()[1]) entry = {'a_tot': atot, 'b_tot': btot} entry.update(meta) entryl.append(entry) df =
pd.DataFrame(entryl)
pandas.DataFrame
from __future__ import division import os import argparse from ruamel import yaml import tqdm from os.path import join import csv import numpy as np import pandas as pd import librosa import logging from parakeet.data import DatasetMixin class LJSpeechMetaData(DatasetMixin): def __init__(self, root): self.root = root self._wav_dir = join(root, "wavs") csv_path = join(root, "metadata.csv") self._table = pd.read_csv( csv_path, sep="|", encoding="utf-8", header=None, quoting=csv.QUOTE_NONE, names=["fname", "raw_text", "normalized_text"]) def get_example(self, i): fname, raw_text, normalized_text = self._table.iloc[i] abs_fname = join(self._wav_dir, fname + ".wav") return fname, abs_fname, raw_text, normalized_text def __len__(self): return len(self._table) class Transform(object): def __init__(self, sample_rate, n_fft, hop_length, win_length, n_mels, reduction_factor): self.sample_rate = sample_rate self.n_fft = n_fft self.win_length = win_length self.hop_length = hop_length self.n_mels = n_mels self.reduction_factor = reduction_factor def __call__(self, fname): # wave processing audio, _ = librosa.load(fname, sr=self.sample_rate) # Pad the data to the right size to have a whole number of timesteps, # accounting properly for the model reduction factor. frames = audio.size // (self.reduction_factor * self.hop_length) + 1 # librosa's stft extract frame of n_fft size, so we should pad n_fft // 2 on both sidess desired_length = (frames * self.reduction_factor - 1) * self.hop_length + self.n_fft pad_amount = (desired_length - audio.size) // 2 # we pad mannually to control the number of generated frames if audio.size % 2 == 0: audio = np.pad(audio, (pad_amount, pad_amount), mode='reflect') else: audio = np.pad(audio, (pad_amount, pad_amount + 1), mode='reflect') # STFT D = librosa.stft(audio, self.n_fft, self.hop_length, self.win_length, center=False) S = np.abs(D) S_mel = librosa.feature.melspectrogram(sr=self.sample_rate, S=S, n_mels=self.n_mels, fmax=8000.0) # log magnitude log_spectrogram = np.log(np.clip(S, a_min=1e-5, a_max=None)) log_mel_spectrogram = np.log(np.clip(S_mel, a_min=1e-5, a_max=None)) num_frames = log_spectrogram.shape[-1] assert num_frames % self.reduction_factor == 0, "num_frames is wrong" return (log_spectrogram.T, log_mel_spectrogram.T, num_frames) def save(output_path, dataset, transform): if not os.path.exists(output_path): os.makedirs(output_path) records = [] for example in tqdm.tqdm(dataset): fname, abs_fname, _, normalized_text = example log_spec, log_mel_spec, num_frames = transform(abs_fname) records.append((num_frames, fname + "_spec.npy", fname + "_mel.npy", normalized_text)) np.save(join(output_path, fname + "_spec"), log_spec) np.save(join(output_path, fname + "_mel"), log_mel_spec) meta_data =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
#!python3 import os import argparse import pandas as pd import numpy as np import statsmodels.api as sm from plot_module import * def print_b(text): print('\033[34m' + '\033[1m' + text + '\033[0m') def grec_letter(s): if s == "beta" or s == "chi" or s == "omega": return '\\' + s elif s == "gamma": return "\\Delta \\Delta G" elif s == "alpha": return "\\Delta G_{\\mathrm{min}}" elif s == "pop_size": return "N_{\\mathrm{e}}" elif s == "gamma_std": return "\\sigma ( \\gamma )" elif s == "gamma_distribution_shape": return "k" elif s == "exon_size": return "n" elif s == "expression_level": return "y" elif s == "sub-ΔG-mean": return "\\Delta G" else: return s if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-o', '--output', required=True, type=str, dest="output") parser.add_argument('-i', '--input', required=True, type=str, nargs='+', dest="input") parser.add_argument('-f', '--node', required=False, default=False, type=bool, dest="node") args = parser.parse_args() array_values = dict() li = [] for filepath in args.input: if not os.path.isfile(filepath): continue x, y = float(filepath.split("_")[-3]), float(filepath.split("_")[-2]) li.append(pd.read_csv(filepath.replace(".tsv", ".parameters.tsv"), sep='\t').assign(x=x, y=y)) for param, vals in pd.read_csv(filepath, sep='\t').items(): if (args.node and "Node" not in param) or (("dnd" not in param) and ("sub-ΔG-mean" not in param)): continue if param not in array_values: array_values[param] = dict() array_values[param][(x, y)] = vals df_p = pd.concat(li, axis=0, ignore_index=True) uniq = df_p.apply(pd.Series.nunique) df = df_p.drop(uniq[uniq == 1].index, axis=1) x_uniq = df[df["x"] == df["x"].values[0]].apply(pd.Series.nunique) df_x = df.drop(x_uniq[x_uniq != 1].index, axis=1).drop_duplicates() col_x = [c for c in df_x if c != "x"][0] x_axis = sorted(df_x["x"].values) x_range = np.array([df_x[df_x["x"] == x][col_x].values[0] for x in x_axis]) csv_output = [] plt.figure(figsize=(1920 / my_dpi, 1080 / my_dpi), dpi=my_dpi) for param, x_y_z in array_values.items(): if len(x_axis) < 2: continue name = param.replace("/", "").replace("|", "") y_axis = sorted(set([k[1] for k in x_y_z.keys()])) for (j, y) in enumerate(y_axis): label_dict = dict() if "chi" in df_p and "dnd" in param: label_dict["chi"] = df_p[df_p["y"] == y]["chi"].values[0] if len(y_axis) > 1: df_y = df[df["y"] == y] y_uniq = df_y.apply(pd.Series.nunique) df_y = df_y.drop(y_uniq[y_uniq != 1].index, axis=1).drop_duplicates() for col in df_y: if col == "y" or col == "chi": continue label_dict[col] = df_y[col].values[0] mean_z = [np.mean(x_y_z[(x, y)]) for x in x_axis] label = ("$" + ", \\ ".join( ["{0}={1:.3g}".format(grec_letter(k), v) for k, v in label_dict.items()]) + "$") if len( label_dict) > 0 else None base_line, = plt.plot(x_range, mean_z, linewidth=2, label=label) plt.fill_between(x_range, [np.percentile(x_y_z[(x, y)], 5) for x in x_axis], [np.percentile(x_y_z[(x, y)], 95) for x in x_axis], alpha=0.3) if ('SimuStab' not in args.output) and ('SimuFold' not in args.output): continue results = sm.OLS(mean_z, sm.add_constant(np.log(x_range))).fit() b, a = results.params[0:2] idf = np.logspace(np.log(min(x_range)), np.log(max(x_range)), 30, base=np.exp(1)) linear = a * np.log(idf) + b reg = '$\\hat{\\chi}' + '={0:.4g}\\ (r^2={1:.3g})$'.format(float(a), results.rsquared) print(reg) csv_output.append({"name": name, "mean": True, "a": a, "b": b, "r2:": results.rsquared, "label": label}) plt.plot(idf, linear, '-', linewidth=4, color=base_line.get_color(), linestyle="--", label=reg) if len(y_axis) > 1: continue for i, x in enumerate(x_axis): plt.scatter([x_range[i]] * len(x_y_z[(x, y)]), x_y_z[(x, y)], color=base_line.get_color(), alpha=0.05) plt.xscale("log") plt.xlabel("$" + grec_letter(col_x) + "$", fontsize=label_size) if "dnd" in param: param = 'omega' plt.ylabel("$" + grec_letter(param) + "$", fontsize=label_size) # plt.ylim((0.3, 0.4)) plt.legend(fontsize=legend_size) if len([c for c in df_x]) > 2: plt.title("Scaling also $" + ", ".join( [grec_letter(c) for c in df_x if (c != "x" and c != col_x)]) + "$ on the x-axis.") plt.tight_layout() plt.savefig("{0}/{1}.pdf".format(args.output, name), format="pdf", dpi=my_dpi) plt.savefig("{0}/{1}.png".format(args.output, name), format="png", dpi=my_dpi) plt.clf() plt.close('all')
pd.DataFrame(csv_output)
pandas.DataFrame
from datetime import datetime import pandas as pd from featuretools.primitives import IsNull, Max from featuretools.primitives.base import PrimitiveBase, make_agg_primitive from featuretools.variable_types import DatetimeTimeIndex, Numeric def test_call_agg(): primitive = Max() # the assert is run twice on purpose assert 5 == primitive(range(6)) assert 5 == primitive(range(6)) def test_call_trans(): primitive = IsNull() assert pd.Series([False for i in range(6)]).equals(primitive(range(6))) assert pd.Series([False for i in range(6)]).equals(primitive(range(6))) def test_uses_calc_time(): def time_since_last(values, time=None): time_since = time - values.iloc[0] return time_since.total_seconds() TimeSinceLast = make_agg_primitive(time_since_last, [DatetimeTimeIndex], Numeric, name="time_since_last", uses_calc_time=True) primitive = TimeSinceLast() datetimes = pd.Series([datetime(2015, 6, 7), datetime(2015, 6, 6)]) answer = 86400.0 assert answer == primitive(datetimes, time=datetime(2015, 6, 8)) def test_call_multiple_args(): class TestPrimitive(PrimitiveBase): def get_function(self): def test(x, y): return y return test primitive = TestPrimitive() assert
pd.Series([0, 1])
pandas.Series
"""Monkey-patch data frame formatter to 1. add dtypes next to column names when printing 2. collapse data frames when they are elements of a parent data frame. """ from pandas import DataFrame from pandas.io.formats.html import ( HTMLFormatter, NotebookFormatter, Mapping, MultiIndex, get_level_lengths, ) from pandas.io.formats.format import ( DataFrameFormatter, GenericArrayFormatter, partial, List, QUOTE_NONE, get_option, NA, NaT, np, PandasObject, extract_array, lib, notna, is_float, format_array, ) from pandas.io.formats.string import StringFormatter from pandas.io.formats.printing import pprint_thing from pandas.core.dtypes.common import is_scalar from pandas.core.dtypes.missing import isna # patch more formatters? # pandas 1.2.0 doesn't have this function def _trim_zeros_single_float(str_float: str) -> str: # pragma: no cover """ Trims trailing zeros after a decimal point, leaving just one if necessary. """ str_float = str_float.rstrip("0") if str_float.endswith("."): str_float += "0" return str_float class PdtypesDataFrameFormatter(DataFrameFormatter): """Custom formatter for DataFrame""" def get_strcols(self) -> List[List[str]]: """ Render a DataFrame to a list of columns (as lists of strings). """ strcols = self._get_strcols_without_index() if self.index: # dtype str_index = [""] + self._get_formatted_index(self.tr_frame) strcols.insert(0, str_index) return strcols def format_col(self, i: int) -> List[str]: """Format column, add dtype ahead""" frame = self.tr_frame formatter = self._get_formatter(i) dtype = frame.iloc[:, i].dtype.name return [f"<{dtype}>"] + format_array( frame.iloc[:, i]._values, formatter, float_format=self.float_format, na_rep=self.na_rep, space=self.col_space.get(frame.columns[i]), decimal=self.decimal, leading_space=self.index, ) class PdtypesGenericArrayFormatter(GenericArrayFormatter): """Generic Array Formatter to show DataFrame element in a cell in a collpased representation """ def _format_strings(self) -> List[str]: if self.float_format is None: float_format = get_option("display.float_format") if float_format is None: precision = get_option("display.precision") # previous pandas # float_format = lambda x: f"{x: .{precision:d}f}" # pandas 1.4 float_format = lambda x: _trim_zeros_single_float( f"{x: .{precision:d}f}" ) else: # pragma: no cover float_format = self.float_format if self.formatter is not None: # pragma: no cover formatter = self.formatter else: quote_strings = ( self.quoting is not None and self.quoting != QUOTE_NONE ) formatter = partial( pprint_thing, escape_chars=("\t", "\r", "\n"), quote_strings=quote_strings, ) def _format(x): if ( self.na_rep is not None and is_scalar(x) and
isna(x)
pandas.core.dtypes.missing.isna
import nose import unittest from numpy import nan from pandas.core.daterange import DateRange from pandas.core.index import Index, MultiIndex from pandas.core.common import rands, groupby from pandas.core.frame import DataFrame from pandas.core.series import Series from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal) from pandas.core.panel import WidePanel from collections import defaultdict import pandas.core.datetools as dt import numpy as np import pandas.util.testing as tm # unittest.TestCase def commonSetUp(self): self.dateRange = DateRange('1/1/2005', periods=250, offset=dt.bday) self.stringIndex = Index([rands(8).upper() for x in xrange(250)]) self.groupId = Series([x[0] for x in self.stringIndex], index=self.stringIndex) self.groupDict = dict((k, v) for k, v in self.groupId.iteritems()) self.columnIndex = Index(['A', 'B', 'C', 'D', 'E']) randMat = np.random.randn(250, 5) self.stringMatrix = DataFrame(randMat, columns=self.columnIndex, index=self.stringIndex) self.timeMatrix = DataFrame(randMat, columns=self.columnIndex, index=self.dateRange) class GroupByTestCase(unittest.TestCase): setUp = commonSetUp def test_python_grouper(self): groupFunc = self.groupDict.get groups = groupby(self.stringIndex, groupFunc) setDict = dict((k, set(v)) for k, v in groups.iteritems()) for idx in self.stringIndex: key = groupFunc(idx) groupSet = setDict[key] assert(idx in groupSet) class TestGroupBy(unittest.TestCase): def setUp(self): self.ts = tm.makeTimeSeries() self.seriesd = tm.getSeriesData() self.tsd = tm.getTimeSeriesData() self.frame = DataFrame(self.seriesd) self.tsframe = DataFrame(self.tsd) self.df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C' : np.random.randn(8), 'D' : np.random.randn(8)}) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]]) self.mframe = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) def test_basic(self): data = Series(np.arange(9) / 3, index=np.arange(9)) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: self.assertEqual(len(v), 3) agged = grouped.aggregate(np.mean) self.assertEqual(agged[1], 1) assert_series_equal(agged, grouped.agg(np.mean)) # shorthand assert_series_equal(agged, grouped.mean()) # Cython only returning floating point for now... assert_series_equal(grouped.agg(np.sum).astype(float), grouped.sum()) transformed = grouped.transform(lambda x: x * x.sum()) self.assertEqual(transformed[7], 12) value_grouped = data.groupby(data) assert_series_equal(value_grouped.aggregate(np.mean), agged) # complex agg agged = grouped.aggregate([np.mean, np.std]) agged = grouped.aggregate({'one' : np.mean, 'two' : np.std}) group_constants = { 0 : 10, 1 : 20, 2 : 30 } agged = grouped.agg(lambda x: group_constants[x.groupName] + x.mean()) self.assertEqual(agged[1], 21) # corner cases self.assertRaises(Exception, grouped.aggregate, lambda x: x * 2) def test_series_agg_corner(self): # nothing to group, all NA result = self.ts.groupby(self.ts * np.nan).sum() assert_series_equal(result, Series([])) def test_aggregate_str_func(self): def _check_results(grouped): # single series result = grouped['A'].agg('std') expected = grouped['A'].std() assert_series_equal(result, expected) # group frame by function name result = grouped.aggregate('var') expected = grouped.var() assert_frame_equal(result, expected) # group frame by function dict result = grouped.agg({'A' : 'var', 'B' : 'std', 'C' : 'mean'}) expected = DataFrame({'A' : grouped['A'].var(), 'B' : grouped['B'].std(), 'C' : grouped['C'].mean()}) assert_frame_equal(result, expected) by_weekday = self.tsframe.groupby(lambda x: x.weekday()) _check_results(by_weekday) by_mwkday = self.tsframe.groupby([lambda x: x.month, lambda x: x.weekday()]) _check_results(by_mwkday) def test_basic_regression(self): # regression T = [1.0*x for x in range(1,10) *10][:1095] result = Series(T, range(0, len(T))) groupings = np.random.random((1100,)) groupings = Series(groupings, range(0, len(groupings))) * 10. grouped = result.groupby(groupings) grouped.mean() def test_transform(self): data = Series(np.arange(9) / 3, index=np.arange(9)) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) transformed = grouped.transform(lambda x: x * x.sum()) self.assertEqual(transformed[7], 12) transformed = grouped.transform(np.mean) for name, group in grouped: mean = group.mean() for idx in group.index: self.assertEqual(transformed[idx], mean) def test_dispatch_transform(self): df = self.tsframe[::5].reindex(self.tsframe.index) filled = df.groupby(lambda x: x.month).fillna(method='pad') fillit = lambda x: x.fillna(method='pad') expected = df.groupby(lambda x: x.month).transform(fillit) assert_frame_equal(filled, expected) def test_with_na(self): index = Index(np.arange(10)) values = Series(np.ones(10), index) labels = Series([nan, 'foo', 'bar', 'bar', nan, nan, 'bar', 'bar', nan, 'foo'], index=index) grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=['bar', 'foo']) assert_series_equal(agged, expected) def test_attr_wrapper(self): grouped = self.ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {} for name, gp in grouped: expected[name] = gp.describe() expected = DataFrame(expected).T assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error self.assertRaises(AttributeError, getattr, grouped, 'foo') def test_series_describe_multikey(self): raise nose.SkipTest ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) grouped.describe() def test_frame_groupby(self): grouped = self.tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) self.assertEqual(len(aggregated), 5) self.assertEqual(len(aggregated.columns), 4) # by string tscopy = self.tsframe.copy() tscopy['weekday'] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby('weekday').aggregate(np.mean) assert_frame_equal(stragged, aggregated) # transform transformed = grouped.transform(lambda x: x - x.mean()) self.assertEqual(len(transformed), 30) self.assertEqual(len(transformed.columns), 4) # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: assert_almost_equal(transformed.xs(idx), mean) # iterate for weekday, group in grouped: self.assert_(group.index[0].weekday() == weekday) # groups / group_indices groups = grouped.primary.groups indices = grouped.primary.indices for k, v in groups.iteritems(): samething = self.tsframe.index.take(indices[k]) self.assert_(np.array_equal(v, samething)) def test_frame_groupby_columns(self): mapping = { 'A' : 0, 'B' : 0, 'C' : 1, 'D' : 1 } grouped = self.tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) self.assertEqual(len(aggregated), len(self.tsframe)) self.assertEqual(len(aggregated.columns), 2) # transform tf = lambda x: x - x.mean() groupedT = self.tsframe.T.groupby(mapping, axis=0) assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: self.assertEqual(len(v.columns), 2) # tgroupby grouping = { 'A' : 0, 'B' : 1, 'C' : 0, 'D' : 1 } grouped = self.frame.tgroupby(grouping.get, np.mean) self.assertEqual(len(grouped), len(self.frame.index)) self.assertEqual(len(grouped.columns), 2) def test_multi_iter(self): s = Series(np.arange(6)) k1 = np.array(['a', 'a', 'a', 'b', 'b', 'b']) k2 = np.array(['1', '2', '1', '2', '1', '2']) grouped = s.groupby([k1, k2]) iterated = list(grouped) expected = [('a', '1', s[[0, 2]]), ('a', '2', s[[1]]), ('b', '1', s[[4]]), ('b', '2', s[[3, 5]])] for i, (one, two, three) in enumerate(iterated): e1, e2, e3 = expected[i] self.assert_(e1 == one) self.assert_(e2 == two) assert_series_equal(three, e3) def test_multi_iter_frame(self): k1 = np.array(['b', 'b', 'b', 'a', 'a', 'a']) k2 = np.array(['1', '2', '1', '2', '1', '2']) df = DataFrame({'v1' : np.random.randn(6), 'v2' : np.random.randn(6), 'k1' : k1, 'k2' : k2}, index=['one', 'two', 'three', 'four', 'five', 'six']) grouped = df.groupby(['k1', 'k2']) # things get sorted! iterated = list(grouped) idx = df.index expected = [('a', '1', df.ix[idx[[4]]]), ('a', '2', df.ix[idx[[3, 5]]]), ('b', '1', df.ix[idx[[0, 2]]]), ('b', '2', df.ix[idx[[1]]])] for i, (one, two, three) in enumerate(iterated): e1, e2, e3 = expected[i] self.assert_(e1 == one) self.assert_(e2 == two) assert_frame_equal(three, e3) # don't iterate through groups with no data df['k1'] = np.array(['b', 'b', 'b', 'a', 'a', 'a']) df['k2'] = np.array(['1', '1', '1', '2', '2', '2']) grouped = df.groupby(['k1', 'k2']) groups = {} for a, b, gp in grouped: groups[a, b] = gp self.assertEquals(len(groups), 2) def test_multi_func(self): col1 = self.df['A'] col2 = self.df['B'] grouped = self.df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = self.df.groupby(['A', 'B']).mean() assert_frame_equal(agged.ix[:, ['C', 'D']], expected.ix[:, ['C', 'D']]) # some "groups" with no data df = DataFrame({'v1' : np.random.randn(6), 'v2' : np.random.randn(6), 'k1' : np.array(['b', 'b', 'b', 'a', 'a', 'a']), 'k2' : np.array(['1', '1', '1', '2', '2', '2'])}, index=['one', 'two', 'three', 'four', 'five', 'six']) # only verify that it works for now grouped = df.groupby(['k1', 'k2']) grouped.agg(np.sum) def test_groupby_multiple_columns(self): data = self.df grouped = data.groupby(['A', 'B']) def _check_op(op): result1 = op(grouped) expected = defaultdict(dict) for n1, gp1 in data.groupby('A'): for n2, gp2 in gp1.groupby('B'): expected[n1][n2] = op(gp2.ix[:, ['C', 'D']]) expected = dict((k, DataFrame(v)) for k, v in expected.iteritems()) expected = WidePanel.fromDict(expected).swapaxes(0, 1) # a little bit crude for col in ['C', 'D']: result_col = op(grouped[col]) exp = expected[col] pivoted = result1[col].unstack() pivoted2 = result_col.unstack() assert_frame_equal(pivoted.reindex_like(exp), exp) assert_frame_equal(pivoted2.reindex_like(exp), exp) _check_op(lambda x: x.sum()) _check_op(lambda x: x.mean()) # test single series works the same result = data['C'].groupby([data['A'], data['B']]).mean() expected = data.groupby(['A', 'B']).mean()['C'] assert_series_equal(result, expected) def test_groupby_multiple_key(self): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() assert_almost_equal(df.values, agged.values) grouped = df.T.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1) agged = grouped.agg(lambda x: x.sum(1)) assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum(1)) assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(self): # test that having an all-NA column doesn't mess you up df = self.df.copy() df['bad'] = np.nan agged = df.groupby(['A', 'B']).mean() expected = self.df.groupby(['A', 'B']).mean() expected['bad'] = np.nan assert_frame_equal(agged, expected) def test_omit_nuisance(self): grouped = self.df.groupby('A') result = grouped.mean() expected = self.df.ix[:, ['A', 'C', 'D']].groupby('A').mean()
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
"""Unit tests for the reading functionality in dframeio.parquet""" # pylint: disable=redefined-outer-name from pathlib import Path import pandas as pd import pandera as pa import pandera.typing import pytest from pandas.testing import assert_frame_equal import dframeio class SampleDataSchema(pa.SchemaModel): """pandera schema of the parquet test dataset""" registration_dttm: pa.typing.Series[pa.typing.DateTime] id: pa.typing.Series[pd.Int64Dtype] = pa.Field(nullable=True, coerce=True) first_name: pa.typing.Series[pa.typing.String] last_name: pa.typing.Series[pa.typing.String] email: pa.typing.Series[pa.typing.String] gender: pa.typing.Series[pa.typing.String] = pa.Field(coerce=True) ip_address: pa.typing.Series[pa.typing.String] cc: pa.typing.Series[pa.typing.String] country: pa.typing.Series[pa.typing.String] birthdate: pa.typing.Series[pa.typing.String] salary: pa.typing.Series[pa.typing.Float64] = pa.Field(nullable=True) title: pa.typing.Series[pa.typing.String] comments: pa.typing.Series[pa.typing.String] = pa.Field(nullable=True) @staticmethod def length(): """Known length of the data""" return 5000 @staticmethod def n_salary_over_150000(): """Number of rows with salary > 150000""" return 2384 @pytest.fixture(params=["multifile", "singlefile.parquet", "multifolder"]) def sample_data_path(request): """Path of a parquet dataset for testing""" return Path(__file__).parent / "data" / "parquet" / request.param def read_sample_dataframe(): """Read the sample dataframe to pandas and return a cached copy""" if not hasattr(read_sample_dataframe, "df"): parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) read_sample_dataframe.df = backend.read_to_pandas(parquet_file.name) return read_sample_dataframe.df.copy() @pytest.fixture(scope="function") def sample_dataframe(): """Provide the sample dataframe""" return read_sample_dataframe() @pytest.fixture(scope="function") def sample_dataframe_dict(): """Provide the sample dataframe""" parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) return backend.read_to_dict(parquet_file.name) @pytest.mark.parametrize( "kwargs, exception", [ ({"base_path": "/some/dir", "partitions": -1}, TypeError), ({"base_path": "/some/dir", "partitions": 2.2}, TypeError), ({"base_path": "/some/dir", "partitions": "abc"}, TypeError), ({"base_path": "/some/dir", "partitions": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": 1.1}, TypeError), ({"base_path": "/some/dir", "rows_per_file": -5}, ValueError), ], ) def test_init_argchecks(kwargs, exception): """Challenge the argument validation of the constructor""" with pytest.raises(exception): dframeio.ParquetBackend(**kwargs) def test_read_to_pandas(sample_data_path): """Read a sample dataset into a pandas dataframe""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_columns(sample_data_path): """Read a sample dataset into a pandas dataframe, selecting some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, columns=["id", "first_name"]) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_rows(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, row_filter="salary > 150000") SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_pandas_sample(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, sample=10) SampleDataSchema.to_schema().validate(df) assert len(df) == 10 @pytest.mark.parametrize("limit", [0, 10]) def test_read_to_pandas_limit(sample_data_path, limit): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, limit=limit) SampleDataSchema.to_schema().validate(df) assert len(df) == limit def test_read_to_pandas_base_path_check(sample_data_path): """Try if it isn't possible to read from outside the base path""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) with pytest.raises(ValueError): backend.read_to_pandas("/tmp") def test_read_to_dict(sample_data_path): """Read a sample dataset into a dictionary""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_dict_some_columns(sample_data_path): """Read a sample dataset into a dictionary, filtering some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, columns=["id", "first_name"]) assert isinstance(df, dict) assert set(df.keys()) == {"id", "first_name"} df = pd.DataFrame(df) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_dict_some_rows(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, row_filter="salary > 150000") assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_dict_limit(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, columns=["id", "first_name"], limit=10) assert isinstance(df, dict) assert set(df.keys()) == {"id", "first_name"} df = pd.DataFrame(df) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == 10 def test_read_to_dict_sample(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, sample=10) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == 10 def test_read_to_dict_base_path_check(sample_data_path): """Try if it isn't possible to read from outside the base path""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) with pytest.raises(ValueError): backend.read_to_dict("/tmp") @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_df(sample_dataframe, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir)) backend.write_replace("data.parquet", sample_dataframe) backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_pandas("data.parquet") assert_frame_equal(dataframe_after, sample_dataframe) @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_df_multifile(sample_dataframe, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data").mkdir() (tempdir / "data" / "old.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir), rows_per_file=1000) backend.write_replace("data", sample_dataframe) assert sum(1 for _ in (tempdir / "data").glob("*")) == 5, "There should be 5 files" if old_content: assert not (tempdir / "data" / "old.parquet").exists() backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_pandas("data")
assert_frame_equal(dataframe_after, sample_dataframe)
pandas.testing.assert_frame_equal
import sys import pandas as pd import numpy as np import os import pickle from sqlalchemy import create_engine import re import nltk nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger']) from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.metrics import make_scorer, accuracy_score, f1_score, fbeta_score, classification_report import warnings def load_data(database_filepath): """ - Loads data from SQL Database Args: database_filepath: SQL database file Returns: X pandas_dataframe: Features dataframe Y pandas_dataframe: Target dataframe category_names list: Target labels """ engine = create_engine('sqlite:///' + database_filepath) df = pd.read_sql_table('clean_dataset', engine) X = df["message"] Y = df[df.columns[4:]] category_names = df.columns[4:] return X, Y, category_names def tokenize(text): """ - Remove capitalization and special characters and lemmatize texts Args: messages as text file Returns: Processed text after normalizing, tokenizing and lemmatizing """ url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens class StartingVerbExtractor(BaseEstimator, TransformerMixin): """ - Initialize Verb Extractor class This class extract the starting verb of a sentence, creating a new feature for the ML classifier. It has been integrated from Machine Learning Pipeline - Solution: GridSearch """ def starting_verb(self, text): sentence_list = nltk.sent_tokenize(text) for sentence in sentence_list: pos_tags = nltk.pos_tag(tokenize(sentence)) first_word, first_tag = pos_tags[0] if first_tag in ['VB', 'VBP'] or first_word == 'RT': return True return False def fit(self, x, y=None): return self def transform(self, X): X_tagged = pd.Series(X).apply(self.starting_verb) return
pd.DataFrame(X_tagged)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Aug 14 13:52:36 2020 @author: diego """ import os import sqlite3 import numpy as np import pandas as pd import plots as _plots import update_prices import update_companies_info pd.set_option("display.width", 400) pd.set_option("display.max_columns", 10) pd.options.mode.chained_assignment = None update_prices.update_prices() update_companies_info.update_db() cwd = os.getcwd() conn = sqlite3.connect(os.path.join(cwd, "data", "finance.db")) cur = conn.cursor() # %% Functions class Ticker: """ Attributes and Methods to analyse stocks traded in B3 -BOLSA BRASIL BALCÃO """ def __init__(self, ticker, group="consolidated"): """ Creates a Ticker Class Object Args: ticker: string string of the ticker group: string Financial statements group. Can be 'consolidated' or 'individual' """ self.ticker = ticker.upper() df = pd.read_sql( f"""SELECT cnpj, type, sector, subsector, segment, denom_comerc FROM tickers WHERE ticker = '{self.ticker}'""", conn, ) if len(df) == 0: print('unknown ticker') return self.cnpj = df["cnpj"][0] self.type = df["type"][0] self.sector = df["sector"][0] self.subsector = df["subsector"][0] self.segment = df["segment"][0] self.denom_comerc = df["denom_comerc"][0] Ticker.set_group(self, group) on_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'ON'", conn, ) on_ticker = on_ticker[on_ticker["ticker"].str[-1] == "3"] self.on_ticker = on_ticker.values[0][0] try: self.pn_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'PN'", conn, ).values[0][0] except: pass def set_group(self, new_group): """ To change the financial statement group attribute of a object Args: new_group: string can be 'consolidated' or 'individual' """ if new_group in ["individual", "consolidado", "consolidated"]: if new_group == "individual": self.grupo = "Individual" else: self.grupo = "Consolidado" # Infer the frequency of the reports dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) if len(dates) == 0: self.grupo = "Individual" print( f"The group of {self.ticker} was automatically switched to individual due to the lack of consolidated statements." ) dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) try: freq = pd.infer_freq(dates["date"]) self.freq = freq[0] except ValueError: self.freq = "Q" except TypeError: dates["date"] = pd.to_datetime(dates["date"]) number_of_observations = len(dates) period_of_time = ( dates.iloc[-1, 0] - dates.iloc[0, 0] ) / np.timedelta64(1, "Y") if number_of_observations / period_of_time > 1: self.freq = "Q" else: self.freq = "A" if self.freq == "A": print( f""" The {self.grupo} statements of {self.ticker} are only available on an annual basis. Only YTD values will be available in the functions and many functions will not work. Try setting the financial statements to individual: Ticker.set_group(Ticker object, 'individual') """ ) else: print("new_group needs to be 'consolidated' or 'individual'.") def get_begin_period(self, function, start_period): """ Support method for other methods of the Class """ if start_period == "all": begin_period = pd.to_datetime("1900-01-01") return begin_period.date() elif start_period not in ["all", "last"]: try: pd.to_datetime(start_period) except: print( "start_period must be 'last', 'all', or date formated as 'YYYY-MM-DD'." ) return if start_period == "last": if function in ["prices", "total_shares", "market_value"]: last_date = pd.read_sql( f"SELECT date FROM prices WHERE ticker = '{self.ticker}' ORDER BY date DESC LIMIT(1)", conn, ) else: last_date = pd.read_sql( f"SELECT dt_fim_exerc FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc DESC LIMIT(1)", conn, ) begin_period = pd.to_datetime(last_date.values[0][0]) else: begin_period = pd.to_datetime(start_period) return begin_period.date() def create_pivot_table(df): """ Support method for other methods of the Class """ ##### Creates a pivot table and add % change columns ##### # create columns with % change of the values # value_types: ytd, quarter_value, ttm_value first_type = df.columns.get_loc('ds_conta') + 1 value_types = list(df.columns[first_type:]) new_columns = [i + " % change" for i in value_types] df[new_columns] = df[value_types].div( df.groupby("cd_conta")[value_types].shift(1)) # the calculation of %change from ytd is different: if 'ytd' in value_types: shifted_values = df[['dt_fim_exerc', 'cd_conta', 'ytd']] shifted_values = shifted_values.set_index( [(pd.to_datetime(shifted_values['dt_fim_exerc']) + pd.DateOffset(years=1)), shifted_values['cd_conta']]) df = df.set_index([df['dt_fim_exerc'], df['cd_conta']]) df['ytd % change'] = df['ytd'] / shifted_values['ytd'] df[new_columns] = (df[new_columns] - 1) * 100 # reshape df = df.pivot( index=["cd_conta", "ds_conta"], columns=["dt_fim_exerc"], values=value_types + new_columns ) # rename multiIndex column levels df.columns = df.columns.rename("value", level=0) df.columns = df.columns.rename("date", level=1) # sort columns by date df = df.sort_values([("date"), ("value")], axis=1, ascending=False) # So times, the description of the accounts have small differences for the # same account in different periods, as punctuation. The purpose of the df_index # is to keep only one description to each account, avoiding duplicated rows. df_index = df.reset_index().iloc[:, 0:2] df_index.columns = df_index.columns.droplevel(1) df_index = df_index.groupby("cd_conta").first() # This groupby adds the duplicated rows df = df.groupby(level=0, axis=0).sum() # The next two lines add the account description to the dataframe multiIndex df["ds_conta"] = df_index["ds_conta"] df = df.set_index("ds_conta", append=True) # Reorder the multiIndex column levels df = df.reorder_levels(order=[1, 0], axis=1) # Due to the command line 'df = df.sort_values([('dt_fim_exerc'), ('value')], # axis=1, ascending=False)' # the columns are ordered by date descending, and value descending. The pupose # here is to set the order as: date descending and value ascending df_columns = df.columns.to_native_types() new_order = [] for i in range(1, len(df_columns), 2): new_order.append(df_columns[i]) new_order.append(df_columns[i - 1]) new_order = pd.MultiIndex.from_tuples( new_order, names=("date", "value")) df = df[new_order] return df def income_statement(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the income statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="income_statement", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if quarter == False: df = df.drop(["quarter_value"], axis=1) if ytd == False: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def balance_sheet(self, start_period="all", plot=False): """ Creates a dataframe with the balance sheet statement of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="bp", start_period=start_period ) query = f"""SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpa WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' UNION ALL SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpp WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, parse_dates=['dt_fim_exerc']) df = Ticker.create_pivot_table(df) if plot: _plots.bs_plot(df, self.ticker, self.grupo) return df def cash_flow(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the cash flow statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="dfc", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dfc WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if not quarter: df = df.drop(["quarter_value"], axis=1) if not ytd: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def prices(self, start_period="all"): """ Support method for other methods of the Class """ begin_period = Ticker.get_begin_period( self, function="prices", start_period=start_period ) prices = pd.read_sql( f"""SELECT date, preult AS price FROM prices WHERE ticker = '{self.ticker}' AND date >= '{begin_period}' ORDER BY date""", conn, index_col="date", parse_dates=['date'] ) return prices def total_shares(self, start_period="all"): """ Support method for other methods of the Class """ begin_period = Ticker.get_begin_period( self, function="total_shares", start_period=start_period ) query = f"""SELECT date, number_shares AS on_shares FROM prices WHERE ticker = '{self.on_ticker}' AND date >= '{begin_period}' ORDER BY date""" nshares_on = pd.read_sql(query, conn) try: query = f"""SELECT date, number_shares AS pn_shares FROM prices WHERE ticker = '{self.pn_ticker}' AND date >= '{begin_period}' ORDER BY date""" nshares_pn = pd.read_sql(query, conn) shares = nshares_on.merge(nshares_pn, how="left") shares["total_shares"] = shares["on_shares"] + \ shares["pn_shares"].fillna(0) except: shares = nshares_on.rename({"on_shares": "total_shares"}, axis=1) shares.index = shares["date"] shares.index = pd.to_datetime(shares.index) return shares[["total_shares"]] def net_income(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the net income information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="net_income", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, ds_conta, vl_conta AS ytd_net_income FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' AND (ds_conta = 'Resultado Líquido das Operações Continuadas' OR ds_conta = 'Lucro/Prejuízo do Período') ORDER BY dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Líquido das Operações Continuadas" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Lucro/Prejuízo do Período" ] df = df.drop(["ds_conta"], axis=1) df["quarter_net_income"] = df["ytd_net_income"] - \ df["ytd_net_income"].shift(1) df["quarter_net_income"][df["fiscal_quarter"] == 1] = df["ytd_net_income"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_net_income"] = ( df["quarter_net_income"].rolling(window=4, min_periods=4).sum() ) if quarter == False: df = df.drop(["quarter_net_income"], axis=1) if ytd == False: df = df.drop(["ytd_net_income"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' Net Income (R$,000) ') return df def ebit(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the ebit information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="ebit", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, ds_conta, vl_conta AS ytd_ebit FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' AND (ds_conta = 'Resultado Antes do Resultado Financeiro e dos Tributos' OR ds_conta = 'Resultado Operacional') ORDER BY dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Antes do Resultado Financeiro e dos Tributos" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Resultado Operacional" ] df = df.drop(["ds_conta"], axis=1) df["quarter_ebit"] = df["ytd_ebit"] - df["ytd_ebit"].shift(1) df["quarter_ebit"][df["fiscal_quarter"] == 1] = df["ytd_ebit"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_ebit"] = df["quarter_ebit"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_ebit"], axis=1) if ytd == False: df = df.drop(["ytd_ebit"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' EBIT (R$,000) ') return df def depre_amort(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the depreciationa and amortization information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="depre_amort", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, vl_conta AS ytd_d_a FROM dva WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND ds_conta = 'Depreciação, Amortização e Exaustão' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, index_col="date", parse_dates=['date']) df["quarter_d_a"] = df["ytd_d_a"] - df["ytd_d_a"].shift(1) df["quarter_d_a"][df["fiscal_quarter"] == 1] = df["ytd_d_a"][df["fiscal_quarter"] == 1] if ttm == True: df["ttm_d_a"] = df["quarter_d_a"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_d_a"], axis=1) if ytd == False: df = df.drop(["ytd_d_a"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' D&A (R$,000)') return df def ebitda(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the ebitda information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="ebitda", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dre.dt_fim_exerc AS date, dre.fiscal_quarter, dre.ds_conta, dre.vl_conta AS ytd_ebit, dva.vl_conta AS ytd_d_a FROM dre LEFT JOIN dva ON (dre.dt_fim_exerc=dva.dt_fim_exerc AND dre.grupo_dfp=dva.grupo_dfp AND dre.cnpj=dva.cnpj) WHERE dre.cnpj = '{self.cnpj}' AND dre.grupo_dfp = '{self.grupo}' AND dre.dt_fim_exerc >= '{begin_period.date()}' AND (dre.ds_conta = 'Resultado Antes do Resultado Financeiro e dos Tributos' OR dre.ds_conta = 'Resultado Operacional') AND dva.ds_conta = 'Depreciação, Amortização e Exaustão' ORDER BY dre.dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Antes do Resultado Financeiro e dos Tributos" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Resultado Operacional" ] df["ebit"] = df["ytd_ebit"] - df["ytd_ebit"].shift(1) df["ebit"][df["fiscal_quarter"] == 1] = df["ytd_ebit"][ df["fiscal_quarter"] == 1 ] df["d_a"] = df["ytd_d_a"] - df["ytd_d_a"].shift(1) df["d_a"][df["fiscal_quarter"] == 1] = df["ytd_d_a"][df["fiscal_quarter"] == 1] df["quarter_ebitda"] = df["ebit"] - df["d_a"] if ttm == True: df["ttm_ebitda"] = df["quarter_ebitda"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_ebitda"], axis=1) if ytd == True: df["ytd_ebitda"] = df["ytd_ebit"] - df["ytd_d_a"] df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop( columns=["fiscal_quarter", "ds_conta", "ytd_ebit", "ytd_d_a", "d_a", "ebit"] ) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' EBITDA (R$,000) ') return df def revenue(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the revenue information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="revenue", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, vl_conta AS ytd_revenue FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' AND cd_conta = '3.01' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, index_col="date", parse_dates=['date']) df["quarter_revenue"] = df["ytd_revenue"] - df["ytd_revenue"].shift(1) df["quarter_revenue"][df["fiscal_quarter"] == 1] = df["ytd_revenue"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_revenue"] = df["quarter_revenue"].rolling( window=4, min_periods=4).sum() if quarter == False: df = df.drop(["quarter_revenue"], axis=1) if ytd == False: df = df.drop(["ytd_revenue"], axis=1) df = df[df.index >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' Revenue (R$,000) ') return df def cash_equi(self, start_period="all", plot=False): """ Creates a dataframe with the cash and cash equivalents information of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="cash_equi", start_period=start_period ) query = f"""SELECT dt_fim_exerc AS date, SUM(vl_conta) AS cash_equi FROM bpa WHERE (cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}') AND (ds_conta = 'Caixa e Equivalentes de Caixa' OR ds_conta = 'Aplicações Financeiras' ) AND (cd_conta != '1.02.01.03.01') AND dt_fim_exerc >= '{begin_period}' GROUP BY dt_fim_exerc ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, index_col="date", parse_dates=['date']) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' Cash & Equivalents (R$,000) ') return df def total_debt(self, start_period="all", plot=False): """ Creates a dataframe with the total debt information of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="total_debt", start_period=start_period ) query = f"""SELECT dt_fim_exerc AS date, SUM(vl_conta) AS total_debt FROM bpp WHERE (cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND ds_conta = 'Empréstimos e Financiamentos') AND (cd_conta = '2.01.04' OR cd_conta = '2.02.01') AND dt_fim_exerc >= '{begin_period}' GROUP BY dt_fim_exerc ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, index_col="date", parse_dates=['date']) if plot: _plots.bar_plot(df, self.ticker, self.grupo, bars=' Total Debt (R$,000) ') return df def market_value(self, start_period="all", plot=False): """ Creates a dataframe with the market value information of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="market_value", start_period=start_period ) try: self.pn_ticker except: query = f"""SELECT date, (preult * number_shares) AS market_value FROM prices WHERE ticker = '{self.on_ticker}' AND date >= '{begin_period}' ORDER BY date""" else: query = f"""SELECT date, SUM(preult * number_shares) AS market_value FROM prices WHERE (ticker = '{self.on_ticker}' OR ticker ='{self.pn_ticker}') AND date >= '{begin_period}' GROUP BY date ORDER BY date""" df = pd.read_sql(query, conn, index_col="date", parse_dates=['date']) if plot: _plots.line_plot(df, self.ticker, self.grupo, line=' Market Value (R$,000) ') return df def net_debt(self, start_period="all", plot=False): """ Creates a dataframe with the net debt information of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ total_debt = Ticker.total_debt(self, start_period=start_period) cash = Ticker.cash_equi(self, start_period=start_period) net_debt = total_debt["total_debt"] - cash["cash_equi"] net_debt.rename("net_debt", axis=1, inplace=True) if plot: _plots.bar_plot(
pd.DataFrame(net_debt)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from .plan_losses import PPC, PlanCost,get_leading_hint from .cost_model import * from query_representation.utils import deterministic_hash,make_dir from query_representation.viz import * from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import multiprocessing as mp import random from collections import defaultdict import pandas as pd import networkx as nx import os import wandb import pickle import pdb TIMEOUT_CARD = 15000100000 def get_eval_fn(loss_name): if loss_name == "qerr": return QError() elif loss_name == "qerr_joinkey": return QErrorJoinKey() elif loss_name == "abs": return AbsError() elif loss_name == "rel": return RelativeError() elif loss_name == "ppc": return PostgresPlanCost(cost_model="C") elif loss_name == "ppc2": return PostgresPlanCost(cost_model="C2") elif loss_name == "plancost": return SimplePlanCost() elif loss_name == "flowloss": return FlowLoss() elif loss_name == "constraints": return LogicalConstraints() else: assert False class EvalFunc(): def __init__(self, **kwargs): pass def save_logs(self, qreps, errors, **kwargs): result_dir = kwargs["result_dir"] if result_dir is None: return if "samples_type" in kwargs: samples_type = kwargs["samples_type"] else: samples_type = "" resfn = os.path.join(result_dir, self.__str__() + ".csv") res = pd.DataFrame(data=errors, columns=["errors"]) res["samples_type"] = samples_type # TODO: add other data? if os.path.exists(resfn): res.to_csv(resfn, mode="a",header=False) else: res.to_csv(resfn, header=True) def eval(self, qreps, preds, **kwargs): ''' @qreps: [qrep_1, ...qrep_N] @preds: [{},...,{}] @ret: [qerror_1, ..., qerror_{num_subplans}] Each query has multiple subplans; the returned list flattens it into a single array. The subplans of a query are sorted alphabetically (see _get_all_cardinalities) ''' pass def __str__(self): return self.__class__.__name__ # TODO: stuff for saving logs def fix_query(query): # these conditions were needed due to some edge cases while generating the # queries on the movie_info_idx table, but crashes pyscopg2 somewhere. # Removing them shouldn't effect the queries. bad_str1 = "mii2.info ~ '^(?:[1-9]\d*|0)?(?:\.\d+)?$' AND" bad_str2 = "mii1.info ~ '^(?:[1-9]\d*|0)?(?:\.\d+)?$' AND" if bad_str1 in query: query = query.replace(bad_str1, "") if bad_str2 in query: query = query.replace(bad_str2, "") return query def _get_all_cardinalities(qreps, preds): ytrue = [] yhat = [] for i, pred_subsets in enumerate(preds): qrep = qreps[i]["subset_graph"].nodes() keys = list(pred_subsets.keys()) keys.sort() for alias in keys: pred = pred_subsets[alias] actual = qrep[alias]["cardinality"]["actual"] if actual == 0: actual += 1 ytrue.append(float(actual)) yhat.append(float(pred)) return np.array(ytrue), np.array(yhat) def _get_all_joinkeys(qreps, preds): ytrue = [] yhat = [] for i, joinkeys in enumerate(preds): einfos = qreps[i]["subset_graph"].edges() keys = list(joinkeys.keys()) keys.sort() for curkey in keys: pred = joinkeys[curkey] # actual = einfos[curkey]["actual"] jcards = einfos[curkey]["join_key_cardinality"] actual = list(jcards.values())[0]["actual"] if actual == 0: actual += 1 if pred == 0: pred += 1 ytrue.append(float(actual)) yhat.append(float(pred)) return np.array(ytrue), np.array(yhat) class LogicalConstraints(EvalFunc): def __init__(self, **kwargs): pass def save_logs(self, qreps, errors, **kwargs): pass # result_dir = kwargs["result_dir"] # if result_dir is None: # return # if "samples_type" in kwargs: # samples_type = kwargs["samples_type"] # else: # samples_type = "" # resfn = os.path.join(result_dir, self.__str__() + ".csv") # res = pd.DataFrame(data=errors, columns=["errors"]) # res["samples_type"] = samples_type # # TODO: add other data? # if os.path.exists(resfn): # res.to_csv(resfn, mode="a",header=False) # else: # res.to_csv(resfn, header=True) def eval(self, qreps, preds, **kwargs): ''' @qreps: [qrep_1, ...qrep_N] @preds: [{},...,{}] @ret: [qerror_1, ..., qerror_{num_subplans}] Each query has multiple subplans; the returned list flattens it into a single array. The subplans of a query are sorted alphabetically (see _get_all_cardinalities) ''' errors = [] id_errs = [] fkey_errs = [] featurizer = kwargs["featurizer"] for qi, qrep in enumerate(qreps): cur_errs = [] cur_preds = preds[qi] sg = qrep["subset_graph"] jg = qrep["join_graph"] for node in sg.nodes(): if node == SOURCE_NODE: continue edges = sg.out_edges(node) nodepred = cur_preds[node] # calculating error per node instead of per edge error = 0 for edge in edges: prev_node = edge[1] newt = list(set(edge[0]) - set(edge[1]))[0] tab_pred = cur_preds[(newt,)] for alias in edge[1]: if (alias,newt) in jg.edges(): jdata = jg.edges[(alias,newt)] elif (newt,alias) in jg.edges(): jdata = jg.edges[(newt,alias)] else: continue if newt not in jdata or alias not in jdata: continue newjkey = jdata[newt] otherjkey = jdata[alias] if not featurizer.feat_separate_alias: newjkey = ''.join([ck for ck in newjkey if not ck.isdigit()]) otherjkey = ''.join([ck for ck in otherjkey if not ck.isdigit()]) stats1 = featurizer.join_key_stats[newjkey] stats2 = featurizer.join_key_stats[otherjkey] newjcol = newjkey[newjkey.find(".")+1:] if newjcol == "id": card1 = cur_preds[(newt,)] maxfkey = stats2["max_key"] maxcard1 = maxfkey*card1 ## FIXME: not fully accurate if cur_preds[node] > maxcard1: fkey_errs.append(1.0) else: fkey_errs.append(0.0) # could not have got bigger if cur_preds[prev_node] < cur_preds[node]: error = 1 id_errs.append(1) else: id_errs.append(0) # else: # # new table was a foreign key # maxfkey = stats1["max_key"] # card_prev = cur_preds[prev_node] # maxcurcard = card_prev * maxfkey # if maxcurcard < cur_preds[node]: # print("BAD") # pdb.set_trace() cur_errs.append(error) errors.append(np.mean(cur_errs)) print("pkey x fkey errors: ", np.mean(fkey_errs), np.sum(fkey_errs)) print("primary key id errors: ", np.mean(id_errs)) return errors def __str__(self): return self.__class__.__name__ # TODO: stuff for saving logs class QErrorJoinKey(EvalFunc): def eval(self, qreps, preds, **kwargs): ''' ''' assert len(preds) == len(qreps) assert isinstance(preds[0], dict) ytrue, yhat = _get_all_joinkeys(qreps, preds) assert len(ytrue) == len(yhat) # assert 0.00 not in ytrue # assert 0.00 not in yhat errors = np.maximum((ytrue / yhat), (yhat / ytrue)) num_table_errs = defaultdict(list) didx = 0 for i, qrep in enumerate(qreps): edges = list(qrep["subset_graph"].edges()) # if SOURCE_NODE in nodes: # nodes.remove(SOURCE_NODE) edges.sort(key = lambda x: str(x)) for qi, edge in enumerate(edges): assert len(edge[1]) < len(edge[0]) numt = len(edge[1]) curerr = errors[didx] num_table_errs[numt].append(curerr) didx += 1 nts = list(num_table_errs.keys()) nts.sort() for nt in nts: print("{} Tables, JoinKey-QError mean: {}, 99p: {}".format( nt, np.mean(num_table_errs[nt]), np.percentile(num_table_errs[nt], 99))) # self.save_logs(qreps, errors, **kwargs) return errors class QError(EvalFunc): def eval(self, qreps, preds, **kwargs): ''' ''' assert len(preds) == len(qreps) assert isinstance(preds[0], dict) ytrue, yhat = _get_all_cardinalities(qreps, preds) assert len(ytrue) == len(yhat) assert 0.00 not in ytrue assert 0.00 not in yhat errors = np.maximum((ytrue / yhat), (yhat / ytrue)) num_table_errs = defaultdict(list) didx = 0 for i, qrep in enumerate(qreps): nodes = list(qrep["subset_graph"].nodes()) if SOURCE_NODE in nodes: nodes.remove(SOURCE_NODE) nodes.sort() # qidx = 0 for qi, node in enumerate(nodes): numt = len(node) curerr = errors[didx] ## debug code! # if numt <= 2 and curerr > 100: # if ytrue[didx] >= TIMEOUT_CARD: # continue # print(node, ytrue[didx], yhat[didx], curerr) # pdb.set_trace() num_table_errs[numt].append(curerr) didx += 1 nts = list(num_table_errs.keys()) nts.sort() for nt in nts: if nt <= 3: print("{} Tables, QError mean: {}, 99p: {}".format( nt, np.mean(num_table_errs[nt]), np.percentile(num_table_errs[nt], 99))) self.save_logs(qreps, errors, **kwargs) return errors class AbsError(EvalFunc): def eval(self, qreps, preds, **kwargs): ''' ''' assert len(preds) == len(qreps) assert isinstance(preds[0], dict) ytrue, yhat = _get_all_cardinalities(qreps, preds) errors = np.abs(yhat - ytrue) return errors class RelativeError(EvalFunc): def eval(self, qreps, preds, **kwargs): ''' ''' assert len(preds) == len(qreps) assert isinstance(preds[0], dict) ytrue, yhat = _get_all_cardinalities(qreps, preds) # TODO: may want to choose a minimum estimate # epsilons = np.array([1]*len(yhat)) # ytrue = np.maximum(ytrue, epsilons) errors = np.abs(ytrue - yhat) / ytrue return errors class PostgresPlanCost(EvalFunc): def __init__(self, cost_model="C"): self.cost_model = cost_model def __str__(self): return self.__class__.__name__ + "-" + self.cost_model def save_logs(self, qreps, errors, **kwargs): if "result_dir" not in kwargs: return use_wandb = kwargs["use_wandb"] result_dir = kwargs["result_dir"] if result_dir is None and not use_wandb: return save_pdf_plans = kwargs["save_pdf_plans"] sqls = kwargs["sqls"] plans = kwargs["plans"] opt_costs = kwargs["opt_costs"] pg_costs = kwargs["pg_costs"] true_cardinalities = kwargs["true_cardinalities"] est_cardinalities = kwargs["est_cardinalities"] costs = errors if "samples_type" in kwargs: samples_type = kwargs["samples_type"] else: samples_type = "" if "alg_name" in kwargs: alg_name = kwargs["alg_name"] else: alg_name = "Est" if result_dir is not None: costs_fn = os.path.join(result_dir, self.__str__() + ".csv") if os.path.exists(costs_fn): costs_df = pd.read_csv(costs_fn) else: columns = ["qname", "join_order", "exec_sql", "cost"] costs_df = pd.DataFrame(columns=columns) cur_costs = defaultdict(list) for i, qrep in enumerate(qreps): # sql_key = str(deterministic_hash(qrep["sql"])) # cur_costs["sql_key"].append(sql_key) qname = os.path.basename(qrep["name"]) cur_costs["qname"].append(qname) joinorder = get_leading_hint(qrep["join_graph"], plans[i]) cur_costs["join_order"].append(joinorder) cur_costs["exec_sql"].append(sqls[i]) cur_costs["cost"].append(costs[i]) cur_df = pd.DataFrame(cur_costs) combined_df =
pd.concat([costs_df, cur_df], ignore_index=True)
pandas.concat
import pandas as pd import requests base_url = "https://www.datos.gov.co/resource/gt2j-8ykr.json" def get_json_response(base_url, params): r = requests.get(url=base_url, params=params) data = r.json() return data def get_total_casos(): df = get_total_acumulado() penultimate_day, last_day = df.tail(2).acumulado.values return last_day, penultimate_day def get_total_recuperados(): df = get_acumulado_recuperados() penultimate_day, last_day = df.tail(2).acumulado.values return last_day, penultimate_day def get_total_fallecidos(): df = get_acumulado_fallecidos() penultimate_day, last_day = df.tail(2).acumulado.values return last_day, penultimate_day def get_total_casos_activos(): params = { "$select": "COUNT(*) as total_casos_confirmados", "$where": "Recuperado = 'Activo'", } casos_activos = get_json_response(base_url, params)[ 0]["total_casos_confirmados"] casos_activos = int(casos_activos) return casos_activos def get_distribucion_por_genero(): params = { "$select": "UPPER(sexo) as Sexo, COUNT(id_de_caso) as cantidad", "$group": "UPPER(sexo)", } casos_activos = get_json_response(base_url, params) df = pd.DataFrame.from_records(casos_activos) return df def get_edades(): params = { "$select": "edad, COUNT(id_de_caso) as cantidad", "$group": "edad", } casos = get_json_response(base_url, params) df = pd.DataFrame.from_records(casos) return df def get_distribucion_por_departamento(): params = { "$select": "departamento as codigo, departamento_nom as nombre, COUNT(id_de_caso) as cantidad", "$group": "codigo, nombre", "$order": "cantidad DESC", } casos = get_json_response(base_url, params) df =
pd.DataFrame.from_records(casos)
pandas.DataFrame.from_records
""" This script is for running inference on the VOiCES dataset using JasperInference class. It takes in the following command line arguments -r : The absolute path to the root of the dataset -i : The absolute path to the VOiCES index file (.csv) that indexes all the files for inference -e : The path to the weights for the Japser/Quartznet encoder -d : The path to the weights for the Japser/Quartznet decoder -c : The path to the Jasper/Quartznet config file (.yml) -o : The filepath that the inference results should be put out, includes .csv extension -b : The inference batch size, larger values will take advantage of GPU acceleration better --use_cpu : boolean. If enabled, NeMo computations will be done on CPU The output is a csv file with a row for each file and the following columns query_name: The VOiCES filename with the path info removed (string), can be used for joining the inference results table with other tables ground_truth: The ground truth transcript for the recording noisy_transcript: The predicted transcript when running jasper on the VOiCES recording clean_transcript: The predicted transcript when running jasper on the original librispeech recording noisy wer: The word error rate of the noisy transcript with respect to the ground truth clean wer: The word error rate of the clean transcript with respect to the ground truth """ import numpy as np import os import argparse import pandas as pd from JasperModels import JasperInference from ruamel.yaml import YAML import pesq import librosa from nemo_asr.helpers import post_process_predictions, word_error_rate import tqdm def batch(iterable, n=1): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] def process_batch(item_batch,dataset_root,jasper_model,sample_rate=16000): """ Perform inference on and post-process a batch of VOiCES recordings Arguments: item_batch: A list of dictionaries, corresponding to entries in a VOiCES index. dataset_root: The absolute path to the root of the dataset jasper_model: An instance of the JasperInference class sample_rate: The sample rate of the recordings Returns: result_batch: A list of dictionaries, with one for each item in item_batch. """ result_batch = [] noisy_waveform_list = [] clean_waveform_list = [] for item in item_batch: result_dict = {'query_name':item['query_name']} result_dict['ground_truth']=item['transcript'] noisy_filepath = os.path.join(dataset_root,item['filename']) clean_filepath = os.path.join(dataset_root,item['source']) noisy_waveform,_ = librosa.load(noisy_filepath,sr=sample_rate) noisy_waveform_list.append(noisy_waveform) clean_waveform,_ = librosa.load(clean_filepath,sr=sample_rate) clean_waveform_list.append(clean_waveform) #pesq_nb = pesq.pesq(16000,clean_waveform,noisy_waveform,'nb') #pesq_wb = pesq.pesq(16000,clean_waveform,noisy_waveform,'wb') #result_dict['pesq nb'] = pesq_nb #result_dict['pesq wb'] = pesq_wb result_batch.append(result_dict) noisy_result = jasper_model.infer(waveforms=noisy_waveform_list) clean_result = jasper_model.infer(waveforms=clean_waveform_list) for i in range(len(item_batch)): result_batch[i]['noisy transcript'] = noisy_result['greedy transcript'][i] result_batch[i]['clean transcript'] = clean_result['greedy transcript'][i] result_batch[i]['noisy wer'] = word_error_rate([result_batch[i]['noisy transcript']],[result_batch[i]['ground_truth']]) result_batch[i]['clean wer'] = word_error_rate([result_batch[i]['clean transcript']],[result_batch[i]['ground_truth']]) return result_batch if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-r',dest='DATASET_ROOT',help='VOiCES dataset root', default='none',type=str) parser.add_argument('-i',dest='INDEX_PATH',help='Target directory for index files', default='none',type=str) parser.add_argument('-e',dest='ENCODER_PATH',help='path to encoder weights', default='none',type=str) parser.add_argument('-d',dest='DECODER_PATH',help='path to decoder weights', default='none',type=str) parser.add_argument('-c',dest='CONFIG',help='path to config yaml', default='none',type=str) parser.add_argument('-o',dest='OUTPUT',help='out filepath', default='none',type=str) parser.add_argument('-b',dest='BATCH_SIZE',help='batch size', default=8,type=int) parser.add_argument('--use_cpu',dest='USE_CPU',action='store_true', help='use the cpu') args = parser.parse_args() #load up the dataset df =
pd.read_csv(args.INDEX_PATH)
pandas.read_csv
import os import pandas as pd # read recent recombinaitons fastGear_recent = pd.read_csv(snakemake.input[0],sep="\s+",header=1) fastGear_recent_out = fastGear_recent[["StrainName", "Start", "End"]] # format in bed file # every ancestral recombination involves multiple strains from two lineages (donor and recipient) # we will list all the strains in these two lineages with the ancestral recombination region detected # this is a rowwise function def mask_strains_in_lineage(row, lineage): lineage1 = row["Lineage1"] # lineage 1 lineage2 = row["Lineage2"] # lineage 2 start = row["Start"] # start position end = row["End"] # end position lineages = lineage[lineage["Lineage"].isin([lineage1, lineage2])]["Name"] # strains in both lineage 1 and 2 current_ances_row_bed=pd.DataFrame({"StrainName" : lineages.to_list(), "Start" : [int(start)] * len(lineages), "End" : [int(end)] * len(lineages)}) # format involved strains with their recombined regions return current_ances_row_bed # read in ancstral recombinaition files fastGear_ances = pd.read_csv(snakemake.input[1],sep="\s+",header=1) lineage_file=
pd.read_csv(snakemake.input[2],sep="\s+",header=0)
pandas.read_csv
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ from datetime import datetime from inspect import signature from io import StringIO import os from pathlib import Path import sys import numpy as np import pytest from pandas.compat import PY310 from pandas.errors import ( EmptyDataError, ParserError, ParserWarning, ) from pandas import ( DataFrame, Index, Series, Timestamp, compat, ) import pandas._testing as tm from pandas.io.parsers import TextFileReader from pandas.io.parsers.c_parser_wrapper import CParserWrapper xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail") skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip") def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self) -> None: self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = { "usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ",", } parser.engine = "c" parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({"A": [1, 10], "B": [2334, 13], "C": [5, 10.0]}) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("squeeze", [True, False]) def test_squeeze(all_parsers, squeeze): data = """\ a,1 b,2 c,3 """ parser = all_parsers index = Index(["a", "b", "c"], name=0) expected = Series([1, 2, 3], name=1, index=index) result = parser.read_csv_check_warnings( FutureWarning, "The squeeze argument has been deprecated " "and will be removed in a future version. " 'Append .squeeze\\("columns"\\) to the call to squeeze.\n\n', StringIO(data), index_col=0, header=None, squeeze=squeeze, ) if not squeeze: expected = DataFrame(expected) tm.assert_frame_equal(result, expected) else: tm.assert_series_equal(result, expected) # see gh-8217 # # Series should not be a view. assert not result._is_view @xfail_pyarrow def test_unnamed_columns(all_parsers): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ parser = all_parsers expected = DataFrame( [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64, columns=["A", "B", "C", "Unnamed: 3", "Unnamed: 4"], ) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_csv_mixed_type(all_parsers): data = """A,B,C a,1,2 b,3,4 c,4,5 """ parser = all_parsers expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_read_csv_low_memory_no_rows_with_index(all_parsers): # see gh-21141 parser = all_parsers if not parser.low_memory: pytest.skip("This is a low-memory specific test") data = """A,B,C 1,1,1,2 2,2,3,4 3,3,4,5 """ result = parser.read_csv(StringIO(data), low_memory=True, index_col=0, nrows=0) expected = DataFrame(columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_read_csv_dataframe(all_parsers, csv1): parser = all_parsers result = parser.read_csv(csv1, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", [3, 3.0]) def test_read_nrows(all_parsers, nrows): # see gh-10476 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame( [["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"], ) parser = all_parsers result = parser.read_csv(StringIO(data), nrows=nrows) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", [1.2, "foo", -1]) def test_read_nrows_bad(all_parsers, nrows): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = r"'nrows' must be an integer >=0" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), nrows=nrows) def test_nrows_skipfooter_errors(all_parsers): msg = "'skipfooter' not supported with 'nrows'" data = "a\n1\n2\n3\n4\n5\n6" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=1, nrows=5) @xfail_pyarrow def test_missing_trailing_delimiters(all_parsers): parser = all_parsers data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = parser.read_csv(StringIO(data)) expected = DataFrame( [[1, 2, 3, 4], [1, 3, 3, np.nan], [1, 4, 5, np.nan]], columns=["A", "B", "C", "D"], ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_skip_initial_space(all_parsers): data = ( '"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' "1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, " "314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, " "70.06056, 344.98370, 1, 1, -0.689265, -0.692787, " "0.212036, 14.7674, 41.605, -9999.0, -9999.0, " "-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128" ) parser = all_parsers result = parser.read_csv( StringIO(data), names=list(range(33)), header=None, na_values=["-9999.0"], skipinitialspace=True, ) expected = DataFrame( [ [ "09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, 1.00361, 1.12551, 330.65659, 355626618.16711, 73.48821, 314.11625, 1917.09447, 179.71425, 80.0, 240.0, -350, 70.06056, 344.9837, 1, 1, -0.689265, -0.692787, 0.212036, 14.7674, 41.605, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0, 12, 128, ] ] ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_trailing_delimiters(all_parsers): # see gh-2442 data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=False) expected = DataFrame({"A": [1, 4, 7], "B": [2, 5, 8], "C": [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(all_parsers): # https://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv board","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals series","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa:E501 parser = all_parsers result = parser.read_csv( StringIO(data), escapechar="\\", quotechar='"', encoding="utf-8" ) assert result["SEARCH_TERM"][2] == 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals series' tm.assert_index_equal(result.columns, Index(["SEARCH_TERM", "ACTUAL_URL"])) @xfail_pyarrow def test_ignore_leading_whitespace(all_parsers): # see gh-3374, gh-6607 parser = all_parsers data = " a b c\n 1 2 3\n 4 5 6\n 7 8 9" result = parser.read_csv(StringIO(data), sep=r"\s+") expected = DataFrame({"a": [1, 4, 7], "b": [2, 5, 8], "c": [3, 6, 9]}) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("usecols", [None, [0, 1], ["a", "b"]]) def test_uneven_lines_with_usecols(all_parsers, usecols): # see gh-12203 parser = all_parsers data = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10""" if usecols is None: # Make sure that an error is still raised # when the "usecols" parameter is not provided. msg = r"Expected \d+ fields in line \d+, saw \d+" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) else: expected = DataFrame({"a": [0, 3, 8], "b": [1, 4, 9]}) result = parser.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "data,kwargs,expected", [ # First, check to see that the response of parser when faced with no # provided columns raises the correct error, with or without usecols. ("", {}, None), ("", {"usecols": ["X"]}, None), ( ",,", {"names": ["Dummy", "X", "Dummy_2"], "usecols": ["X"]}, DataFrame(columns=["X"], index=[0], dtype=np.float64), ), ( "", {"names": ["Dummy", "X", "Dummy_2"], "usecols": ["X"]}, DataFrame(columns=["X"]), ), ], ) def test_read_empty_with_usecols(all_parsers, data, kwargs, expected): # see gh-12493 parser = all_parsers if expected is None: msg = "No columns to parse from file" with pytest.raises(EmptyDataError, match=msg): parser.read_csv(StringIO(data), **kwargs) else: result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "kwargs,expected", [ # gh-8661, gh-8679: this should ignore six lines, including # lines with trailing whitespace and blank lines. ( { "header": None, "delim_whitespace": True, "skiprows": [0, 1, 2, 3, 5, 6], "skip_blank_lines": True, }, DataFrame([[1.0, 2.0, 4.0], [5.1, np.nan, 10.0]]), ), # gh-8983: test skipping set of rows after a row with trailing spaces. ( { "delim_whitespace": True, "skiprows": [1, 2, 3, 5, 6], "skip_blank_lines": True, }, DataFrame({"A": [1.0, 5.1], "B": [2.0, np.nan], "C": [4.0, 10]}), ), ], ) def test_trailing_spaces(all_parsers, kwargs, expected): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa:E501 parser = all_parsers result = parser.read_csv(StringIO(data.replace(",", " ")), **kwargs) tm.assert_frame_equal(result, expected) def test_raise_on_sep_with_delim_whitespace(all_parsers): # see gh-6607 data = "a b c\n1 2 3" parser = all_parsers with pytest.raises(ValueError, match="you can only specify one"): parser.read_csv(StringIO(data), sep=r"\s", delim_whitespace=True) def test_read_filepath_or_buffer(all_parsers): # see gh-43366 parser = all_parsers with pytest.raises(TypeError, match="Expected file path name or file-like"): parser.read_csv(filepath_or_buffer=b"input") @xfail_pyarrow @pytest.mark.parametrize("delim_whitespace", [True, False]) def test_single_char_leading_whitespace(all_parsers, delim_whitespace): # see gh-9710 parser = all_parsers data = """\ MyColumn a b a b\n""" expected = DataFrame({"MyColumn": list("abab")}) result = parser.read_csv( StringIO(data), skipinitialspace=True, delim_whitespace=delim_whitespace ) tm.assert_frame_equal(result, expected) # Skip for now, actually only one test fails though, but its tricky to xfail @skip_pyarrow @pytest.mark.parametrize( "sep,skip_blank_lines,exp_data", [ (",", True, [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0], [-70.0, 0.4, 1.0]]), (r"\s+", True, [[1.0, 2.0, 4.0], [5.0, np.nan, 10.0], [-70.0, 0.4, 1.0]]), ( ",", False, [ [1.0, 2.0, 4.0], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5.0, np.nan, 10.0], [np.nan, np.nan, np.nan], [-70.0, 0.4, 1.0], ], ), ], ) def test_empty_lines(all_parsers, sep, skip_blank_lines, exp_data): parser = all_parsers data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ if sep == r"\s+": data = data.replace(",", " ") result = parser.read_csv(StringIO(data), sep=sep, skip_blank_lines=skip_blank_lines) expected = DataFrame(exp_data, columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_whitespace_lines(all_parsers): parser = all_parsers data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = DataFrame([[1, 2.0, 4.0], [5.0, np.nan, 10.0]], columns=["A", "B", "C"]) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize( "data,expected", [ ( """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """, DataFrame( [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]], columns=["A", "B", "C", "D"], index=["a", "b", "c"], ), ), ( " a b c\n1 2 3 \n4 5 6\n 7 8 9", DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["a", "b", "c"]), ), ], ) def test_whitespace_regex_separator(all_parsers, data, expected): # see gh-6607 parser = all_parsers result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) def test_sub_character(all_parsers, csv_dir_path): # see gh-16893 filename = os.path.join(csv_dir_path, "sub_char.csv") expected = DataFrame([[1, 2, 3]], columns=["a", "\x1ab", "c"]) parser = all_parsers result = parser.read_csv(filename) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("filename", ["sé-es-vé.csv", "ru-sй.csv", "中文文件名.csv"]) def test_filename_with_special_chars(all_parsers, filename): # see gh-15086. parser = all_parsers df = DataFrame({"a": [1, 2, 3]}) with tm.ensure_clean(filename) as path: df.to_csv(path, index=False) result = parser.read_csv(path) tm.assert_frame_equal(result, df) def test_read_table_same_signature_as_read_csv(all_parsers): # GH-34976 parser = all_parsers table_sign = signature(parser.read_table) csv_sign = signature(parser.read_csv) assert table_sign.parameters.keys() == csv_sign.parameters.keys() assert table_sign.return_annotation == csv_sign.return_annotation for key, csv_param in csv_sign.parameters.items(): table_param = table_sign.parameters[key] if key == "sep": assert csv_param.default == "," assert table_param.default == "\t" assert table_param.annotation == csv_param.annotation assert table_param.kind == csv_param.kind continue else: assert table_param == csv_param def test_read_table_equivalency_to_read_csv(all_parsers): # see gh-21948 # As of 0.25.0, read_table is undeprecated parser = all_parsers data = "a\tb\n1\t2\n3\t4" expected = parser.read_csv(StringIO(data), sep="\t") result = parser.read_table(StringIO(data)) tm.assert_frame_equal(result, expected) @pytest.mark.skipif( PY310, reason="GH41935 This test is leaking only on Python 3.10," "causing other tests to fail with a cryptic error.", ) @pytest.mark.parametrize("read_func", ["read_csv", "read_table"]) def test_read_csv_and_table_sys_setprofile(all_parsers, read_func): # GH#41069 parser = all_parsers data = "a b\n0 1" sys.setprofile(lambda *a, **k: None) result = getattr(parser, read_func)(StringIO(data)) sys.setprofile(None) expected = DataFrame({"a b": ["0 1"]}) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_first_row_bom(all_parsers): # see gh-26545 parser = all_parsers data = '''\ufeff"Head1"\t"Head2"\t"Head3"''' result = parser.read_csv(StringIO(data), delimiter="\t") expected = DataFrame(columns=["Head1", "Head2", "Head3"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_first_row_bom_unquoted(all_parsers): # see gh-36343 parser = all_parsers data = """\ufeffHead1\tHead2\tHead3""" result = parser.read_csv(StringIO(data), delimiter="\t") expected = DataFrame(columns=["Head1", "Head2", "Head3"]) tm.assert_frame_equal(result, expected) @xfail_pyarrow @pytest.mark.parametrize("nrows", range(1, 6)) def test_blank_lines_between_header_and_data_rows(all_parsers, nrows): # GH 28071 ref = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [1, 2], [np.nan, np.nan], [3, 4]], columns=list("ab"), ) csv = "\nheader\n\na,b\n\n\n1,2\n\n3,4" parser = all_parsers df = parser.read_csv(StringIO(csv), header=3, nrows=nrows, skip_blank_lines=False) tm.assert_frame_equal(df, ref[:nrows]) @xfail_pyarrow def test_no_header_two_extra_columns(all_parsers): # GH 26218 column_names = ["one", "two", "three"] ref = DataFrame([["foo", "bar", "baz"]], columns=column_names) stream = StringIO("foo,bar,baz,bam,blah") parser = all_parsers with tm.assert_produces_warning(ParserWarning): df = parser.read_csv(stream, header=None, names=column_names, index_col=False) tm.assert_frame_equal(df, ref) def test_read_csv_names_not_accepting_sets(all_parsers): # GH 34946 data = """\ 1,2,3 4,5,6\n""" parser = all_parsers with pytest.raises(ValueError, match="Names should be an ordered collection."): parser.read_csv(StringIO(data), names=set("QAZ")) @xfail_pyarrow def test_read_table_delim_whitespace_default_sep(all_parsers): # GH: 35958 f = StringIO("a b c\n1 -2 -3\n4 5 6") parser = all_parsers result = parser.read_table(f, delim_whitespace=True) expected = DataFrame({"a": [1, 4], "b": [-2, 5], "c": [-3, 6]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("delimiter", [",", "\t"]) def test_read_csv_delim_whitespace_non_default_sep(all_parsers, delimiter): # GH: 35958 f = StringIO("a b c\n1 -2 -3\n4 5 6") parser = all_parsers msg = ( "Specified a delimiter with both sep and " "delim_whitespace=True; you can only specify one." ) with pytest.raises(ValueError, match=msg): parser.read_csv(f, delim_whitespace=True, sep=delimiter) with pytest.raises(ValueError, match=msg): parser.read_csv(f, delim_whitespace=True, delimiter=delimiter) def test_read_csv_delimiter_and_sep_no_default(all_parsers): # GH#39823 f = StringIO("a,b\n1,2") parser = all_parsers msg = "Specified a sep and a delimiter; you can only specify one." with pytest.raises(ValueError, match=msg): parser.read_csv(f, sep=" ", delimiter=".") @pytest.mark.parametrize("kwargs", [{"delimiter": "\n"}, {"sep": "\n"}]) def test_read_csv_line_break_as_separator(kwargs, all_parsers): # GH#43528 parser = all_parsers data = """a,b,c 1,2,3 """ msg = ( r"Specified \\n as separator or delimiter. This forces the python engine " r"which does not accept a line terminator. Hence it is not allowed to use " r"the line terminator as separator." ) with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), **kwargs) def test_read_csv_posargs_deprecation(all_parsers): # GH 41485 f = StringIO("a,b\n1,2") parser = all_parsers msg = ( "In a future version of pandas all arguments of read_csv " "except for the argument 'filepath_or_buffer' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): parser.read_csv(f, " ") @pytest.mark.parametrize("delimiter", [",", "\t"]) def test_read_table_delim_whitespace_non_default_sep(all_parsers, delimiter): # GH: 35958 f = StringIO("a b c\n1 -2 -3\n4 5 6") parser = all_parsers msg = ( "Specified a delimiter with both sep and " "delim_whitespace=True; you can only specify one." ) with pytest.raises(ValueError, match=msg): parser.read_table(f, delim_whitespace=True, sep=delimiter) with pytest.raises(ValueError, match=msg): parser.read_table(f, delim_whitespace=True, delimiter=delimiter) @pytest.mark.parametrize("func", ["read_csv", "read_table"]) def test_names_and_prefix_not_None_raises(all_parsers, func): # GH#39123 f = StringIO("a,b\n1,2") parser = all_parsers msg = "Specified named and prefix; you can only specify one." with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning): getattr(parser, func)(f, names=["a", "b"], prefix="x") @pytest.mark.parametrize("func", ["read_csv", "read_table"]) @pytest.mark.parametrize("prefix, names", [(None, ["x0", "x1"]), ("x", None)]) def test_names_and_prefix_explicit_None(all_parsers, names, prefix, func): # GH42387 f = StringIO("a,b\n1,2") expected = DataFrame({"x0": ["a", "1"], "x1": ["b", "2"]}) parser = all_parsers if prefix is not None: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = getattr(parser, func)( f, names=names, sep=",", prefix=prefix, header=None ) else: result = getattr(parser, func)( f, names=names, sep=",", prefix=prefix, header=None ) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_dict_keys_as_names(all_parsers): # GH: 36928 data = "1,2" keys = {"a": int, "b": int}.keys() parser = all_parsers result = parser.read_csv(StringIO(data), names=keys) expected = DataFrame({"a": [1], "b": [2]}) tm.assert_frame_equal(result, expected) @xfail_pyarrow def test_encoding_surrogatepass(all_parsers): # GH39017 parser = all_parsers content = b"\xed\xbd\xbf" decoded = content.decode("utf-8", errors="surrogatepass") expected = DataFrame({decoded: [decoded]}, index=[decoded * 2]) expected.index.name = decoded * 2 with tm.ensure_clean() as path: Path(path).write_bytes( content * 2 + b"," + content + b"\n" + content * 2 + b"," + content ) df = parser.read_csv(path, encoding_errors="surrogatepass", index_col=0)
tm.assert_frame_equal(df, expected)
pandas._testing.assert_frame_equal
import configparser import importlib import os import os.path as osp import sqlite3 as sq import warnings import yaml as ya from io import StringIO from pandas import concat, DataFrame, Series, read_sql_query, read_csv from sqlite3 import Error import numpy as np from numba import jit ############################################################################### #Non-Standard Imports ############################################################################### try: from .model_checker import check_model_terms from .model_coder import model_to_code except: from model_checker import check_model_terms from model_coder import model_to_code ############################################################################### #Globals ############################################################################### MBase = None UBase = None _dir = osp.dirname(osp.abspath(__file__)) userid = 'usr' table_sql = ''' CREATE TABLE IF NOT EXISTS "models" ( "id" TEXT, "system_type" TEXT, "states" TEXT, "parameters" TEXT, "inputs" TEXT, "equations" TEXT, "ia" TEXT, "descriptions" TEXT, "active" INTEGER DEFAULT 1, UNIQUE(system_type) ); ''' all_model_funcs = {'np' : np, 'log' : np.log10, 'ln' : np.log, 'exp' : np.exp, 'jit' : jit } ############################################################################### #Database and Table Construction ############################################################################### def create_connection(db_file): ''' Creates database specified by db_file. ''' db = sq.connect(db_file) return db def create_table(db, *args): ''' Creates table. Use args to add additional sql commands. ''' try: c = db.cursor() for arg in args: c.execute(arg) except Error as e: raise e ############################################################################### #Constructor ############################################################################### def make_core_model(system_type, states, parameters, inputs, equations, descriptions=None, ia='', **kwargs): '''Returns a dictionary with the keys id, system_type, states, parameters, inputs, equations, ia. Otherwise referred to as a core_model in the BMSS2 documentation. Redundant states, parameters and inputs are disallowed. :param system_type: A string of keywords serving as a unique identifier for the core_model separated by commas, will be formatted so there is one space after each comma, keywords should be in CamelCase :type system_type: str :param states: A list of strings corresponding to state names used in the core_model :type states: list :param parameters: A list of strings corresponding to parameter names used in the core_model :type parameters: list :param inputs: A list of strings corresponding to input names used in the core_model :type inputs: list :param equations: A list of strings corresponding to lines of equations used in the core_model where the lines form coherent Python code when joined by '\n'.join :type equations: list :param descriptions: A description of the model. :type descriptions: dict, optional :param ia: For IA results as a string that can be read into csv format. Avoid using this argument. :type ia: string, optional :kwargs: Will be ignored ''' if type(system_type) == str: system_type1 = ', '.join([s.strip() for s in system_type.split(',')]) else: system_type1 = ', '.join(system_type) return make_core_model(system_type1, states, parameters, inputs, equations, descriptions, ia='') states1 = list(states) parameters1 = list(parameters) inputs1 = list(inputs) equations1 = list(equations) descriptions1 = descriptions if descriptions else {} core_model = {'id' : '', 'system_type' : system_type1, 'states' : states1, 'parameters' : parameters1, 'inputs' : inputs1, 'equations' : equations1, 'ia' : ia, 'descriptions' : descriptions1, } for key in ['states', 'parameters', 'inputs', 'equations']: if not all([type(x)==str for x in core_model[key]]): raise Exception('Invalid name in ' + key + '. Only strings are allowed.') if type(core_model['ia']) != str: raise Exception('Invalid name in ia. Only strings are allowed.') is_valid, text = check_model_terms(core_model) if not is_valid: warnings.warn('Error in ' + str(system_type1) + ' when checking terms: ' + text) model_to_code(core_model, local=False) get_model_function(system_type, local=False) return core_model def copy_core_model(core_model): keys = ['id', 'system_type', 'states' , 'parameters', 'inputs', 'equations', 'ia', 'descriptions'] new_core_model = {} for key in keys: try: value = core_model[key].copy() except: value = core_model[key] new_core_model[key] = value return new_core_model ############################################################################### #Model Storage ############################################################################### def add_to_database(core_model, dialog=True): '''Accepts a core_model and adds it to UBase. ''' if 'BMSS' in core_model['system_type']: raise Exception('system_type cannot contain "BMSS" as keyword.') return backend_add_to_database(core_model, database=UBase, dialog=dialog) ############################################################################### #Supporting Functions ############################################################################### def backend_add_to_database(core_model, database, dialog=False): '''Supporting function for add_to_database. Do not run. :meta private: ''' global MBase global UBase global userid system_type = core_model['system_type'] make_new_id = True existing_model = quick_search(system_type, error_if_no_result=False, active_only=False) is_active = existing_model['system_type'] in list_models(UBase) if existing_model else False d = 'Mbase' if database == MBase else 'UBase' if existing_model: existing_db = MBase if system_type in list_models(MBase) else UBase if database != existing_db: a = 'MBase' if database == MBase else 'UBase' b = 'UBase' if database == UBase else 'MBase' raise Exception(f'The model already exists in {a}. You cannot add it to {b}.') if is_active and dialog: #Break and continue if overwrite else return immediately while True: x = input('Overwrite existing model? (y/n): ') if x.lower() == 'y': break return existing_model['id'] #Check existing model and edit if it matches if system_type == existing_model['system_type']: core_model['id'] = existing_model['id'] make_new_id = False row = string_dict_values(core_model) row_id = add_row('models', row, database) #Update id based on row number if the model is new if make_new_id: model_id = 'bmss' + str(row_id) if database == MBase else userid + str(row_id) update_value_by_rowid(row_id, 'id', model_id, database) else: model_id = core_model['id'] o = 'Added model ' if make_new_id else 'Modified model ' if is_active else 'Added model ' n = model_id if make_new_id else core_model['id'] print(o + n + ' to '+ d) model_to_code(core_model, local=False) return model_id def string_dict_values(core_model): '''Converts core_model to string :meta private: ''' model_dict = {key: str(core_model[key]) for key in core_model} return model_dict def update_value_by_rowid(row_id, column_id, value, database): '''Supporting function for backend_add_to_database. Do not run. :meta private: ''' with database as db: comm = "UPDATE models SET " + column_id + " = '" + str(value) + "' WHERE rowid = " + str(row_id) cur = db.cursor() cur.execute(comm) def add_row(table, row, database): '''Supporting function for backend_add_to_database. Do not run. :meta private: ''' row_ = '(' + ', '.join([k for k in row.keys()]) + ', active)' values = tuple(row.values()) + ('1',) with database as db: comm = 'REPLACE INTO ' + table + str(row_) + ' VALUES(' + ','.join(['?']*len(values))+ ')' cur = db.cursor() cur.execute(comm, values) return cur.lastrowid ############################################################################### #Search ############################################################################### def search_database(keyword, search_type='system_type', database=None, active_only=True): '''Searches database for core_model data structure based on a keyword and a key(field) in the core_model. Returns a list of core_model dictionaries. :param keyword: A string that will be matched against entries in the database :type keyword: str :param search_type: A string corresponding to any key in the core_model, will be used for matching :type search_type: str :param database: Can be either MBase or UBase, if None, this function will search both databases, defaults to None :type database: SQL Connection, optional :param active_only: A boolean for backend use, if True, this limits the search to rows where the value of active is True, defaults to True :type active_only: bool, optional ''' global MBase global UBase keyword1 = keyword if type(keyword) == str else ', '.join(keyword) comm = 'SELECT id, system_type, states, parameters, inputs, equations, ia, descriptions FROM models WHERE ' + search_type + ' LIKE "%' + keyword1 result = [] if active_only: comm += '%" AND active = 1;' else: comm += '%";' databases = [database] if database else [MBase, UBase] for database in databases: with database as db: cursor = db.execute(comm) models = cursor.fetchall() columns = database.execute('PRAGMA table_info(models);') columns = columns.fetchall() columns = [column[1] for column in columns if column[1]!='active'] models = [dict(zip(columns, model)) for model in models] models = [process_model(model) for model in models] result += models return result def process_model(model): ''' :meta private: ''' result = {} for key, value in model.items(): if key in ['id', 'system_type', 'ia']: result[key] = value else: try: result[key] = eval(value) except Exception as e: system_type = model['system_type'] msg = 'An error occurred when calling eval on {} for {}'.format(key, system_type) raise Exception(msg, *e.args) return result def quick_search(system_type, error_if_no_result=True, **kwargs): '''Searches both system_type/id and returns an exact match in system_type/id. Raises an error when no matches are found if error_if_no_result is set to True. ''' core_models = search_database(system_type, search_type='system_type', **kwargs) for core_model in core_models: if core_model['system_type'] == system_type: return core_model if error_if_no_result: raise Exception('Could not retrieve model with system_type ' + str(system_type)) else: return def list_models(database=None): '''Returns a list of system_types ''' global MBase global UBase if database: with database as db: comm = 'SELECT system_type FROM models WHERE active = 1;' cursor = db.execute(comm) models = [m[0] for m in cursor.fetchall()] return models else: return list_models(MBase) + list_models(UBase) def get_model_function(system_type, local=False): global all_model_funcs model_name = system_type.replace(', ', '_') func_name = 'model_'+ model_name if func_name in all_model_funcs: return all_model_funcs[func_name] if local: filename = f'{model_name}.py' else: filename = osp.join(osp.dirname(__file__), 'model_functions', f'{model_name}.py') if not osp.isfile(filename): raise Exception(f'Could not find file for model function: {filename}') with open(filename, 'r') as file: code = file.read() code = 'def' + code.split('def')[1] exec(code, all_model_funcs) return all_model_funcs[func_name] ############################################################################### #Interfacing with Pandas ############################################################################### def to_df(database=None): '''Returns a copy of the databases as a pandas DataFrame. :param database: The database to be read, if None, both databases will be read, defaults to None :type database: SQL Connection ''' if database: with database as db: df = read_sql_query("SELECT * from models", db) return df else: global MBase global UBase df = to_df(MBase), to_df(UBase) df = concat(df, ignore_index=True) return df def backend_from_df(df, database): '''For backend maintenance only. :meta private: ''' with database as db: return df.to_sql('models', db, if_exists='replace', index=False) ############################################################################### #Interfacing with Configparser ############################################################################### def from_config(filename): '''Reads a file and returns a core_model data structure. :param filename: The name of the file to read. :type filename: str ''' config = configparser.ConfigParser() config.optionxform = lambda option: option model = {'system_type' : [], 'states' : [], 'parameters' : [], 'inputs' : [], 'equations' : [], 'ia' : '', 'descriptions' : {} } with open(filename, 'r') as file: config.read_file(file) for key in config.sections(): if key not in model: continue if key == 'ia': line = config[key][key].strip() elif key == 'equations': # line = config[key][key].replace('\n', ',').split(',') line = split_at_top_level(config[key][key].replace('\n', ',')) line = [s.strip() if s else '' for s in line] line = line if line[0] else line[1:] elif key == 'descriptions': temp = config[key] line = {k: temp[k] for k in temp} else: line = config[key][key].replace('\n', ',').split(',') line = [s.strip() for s in line if s] model[key] = line return make_core_model(**model) def split_at_top_level(string, delimiter=','): ''' Use this for nested lists. This is also a helper function for string_to_dict. ''' nested = [] buffer = '' result = [] matching_bracket = {'(':')', '[':']', '{':'}'} for char in string: if char in ['[', '(', '{']: nested.append(char) buffer += char elif char in [']', ')', '}']: if char == matching_bracket.get(nested[-1]): nested = nested[:-1] buffer += char else: raise Exception('Mismatched brackets.' ) elif char == delimiter and not nested: if buffer: result.append(buffer) buffer = '' else: buffer += char if buffer: result.append(buffer) return result def to_config(core_model, filename): '''Exports a core_model data structure to a config file. :param core_model: The core_model to be exported :type core_model: dict :param filename: The name of the file to write to :type filename: str ''' config = configparser.ConfigParser() for key in core_model: if not core_model[key]: continue if type(core_model[key]) == str: line = core_model[key] elif type(core_model[key]) == dict: config[key] = core_model[key] continue elif key == 'equations': line = '\n' + '\n'.join(core_model[key]) else: line = ', '.join(core_model[key]) config[key] = {key:line} with open(filename, 'w') as configfile: config.write(configfile) return config ############################################################################### #Direct Config to Database ############################################################################### def config_to_database(filename, dialog=True): '''Reads a config file containing information for a core_model data structure and adds the core_model to the database. :param filename: Name of the file to be read :type filename: str :param dialog: For backend use, defaults to True :type dialog: bool, optional ''' global UBase return backend_config_to_database(filename, database=UBase, dialog=dialog) def backend_config_to_database(filename, database, dialog=False): '''For backend maintenance. Do not run. :meta private: ''' core_model = from_config(filename) backend_add_to_database(core_model, database, dialog=dialog) return core_model['system_type'] ############################################################################### #Updateing IA ############################################################################### def update_ia(core_model, new_row, save=True): ''' Appends new_row to the core_model['ia'] where new_row can be a dict or Series. If save is True and the core_model is in the database, the changes will be applied to database. ''' global MBase global UBase s = new_row if type(new_row) in [Series, DataFrame] else Series(new_row) if core_model['ia']: df = read_ia(core_model) try: s = s[df.columns] except: raise Exception('Mismatch in column names. \nExpected: ' + str(df.columns) + '\nReceived: ' + str(s.index)) #Check if inputs are duplicated try: row_num = df['input'][s['input'] == df['input']].index[0] df.iloc[row_num] = s print('Updated row ' + str(row_num) + ' in ' + str(core_model['system_type'])) except: df = df.append(s, ignore_index=True) print('Added row to ' + str(core_model['system_type'])) else: df =
DataFrame(s)
pandas.DataFrame
from perceptron import Perceptron from pandas import DataFrame def run_perceptron(): print('\n\n********************** AND **********************\n\n') p = Perceptron(2) df =
DataFrame([[0, 0], [0, 1], [1, 0], [1, 1]])
pandas.DataFrame
import warnings from onecodex.lib.enums import AlphaDiversityMetric, Rank, BaseEnum from onecodex.exceptions import OneCodexException, PlottingException, PlottingWarning from onecodex.viz._primitives import prepare_props, sort_helper, get_base_classification_url class PlotType(BaseEnum): Auto = "auto" BoxPlot = "boxplot" Scatter = "scatter" class VizMetadataMixin(object): def plot_metadata( self, rank=Rank.Auto, haxis="Label", vaxis=AlphaDiversityMetric.Shannon, title=None, xlabel=None, ylabel=None, return_chart=False, plot_type=PlotType.Auto, label=None, sort_x=None, width=200, height=400, facet_by=None, ): """Plot an arbitrary metadata field versus an arbitrary quantity as a boxplot or scatter plot. Parameters ---------- rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional Analysis will be restricted to abundances of taxa at the specified level. haxis : `string`, optional The metadata field (or tuple containing multiple categorical fields) to be plotted on the horizontal axis. vaxis : `string`, optional Data to be plotted on the vertical axis. Can be any one of the following: - A metadata field: the name of a metadata field containing numerical data - {'simpson', 'observed_taxa', 'shannon'}: an alpha diversity statistic to calculate for each sample - A taxon name: the name of a taxon in the analysis - A taxon ID: the ID of a taxon in the analysis title : `string`, optional Text label at the top of the plot. xlabel : `string`, optional Text label along the horizontal axis. ylabel : `string`, optional Text label along the vertical axis. plot_type : {'auto', 'boxplot', 'scatter'} By default, will determine plot type automatically based on the data. Otherwise, specify one of 'boxplot' or 'scatter' to set the type of plot manually. label : `string` or `callable`, optional A metadata field (or function) used to label each analysis. If passing a function, a dict containing the metadata for each analysis is passed as the first and only positional argument. The callable function must return a string. sort_x : `list` or `callable`, optional Either a list of sorted labels or a function that will be called with a list of x-axis labels as the only argument, and must return the same list in a user-specified order. facet_by : `string`, optional The metadata field used to facet samples by (i.e. to create a separate subplot for each group of samples). Examples -------- Generate a boxplot of the abundance of Bacteroides (genus) of samples grouped by whether the individuals are allergic to dogs, cats, both, or neither. >>> plot_metadata(haxis=('allergy_dogs', 'allergy_cats'), vaxis='Bacteroides') """ # Deferred imports import altair as alt import pandas as pd if rank is None: raise OneCodexException("Please specify a rank or 'auto' to choose automatically") if not PlotType.has_value(plot_type): raise OneCodexException("Plot type must be one of: auto, boxplot, scatter") if len(self._results) < 1: raise PlottingException( "There are too few samples for metadata plots after filtering. Please select 1 or " "more samples to plot." ) # alpha diversity is only allowed on vertical axis--horizontal can be magically mapped metadata_fields = [haxis, "Label"] if facet_by: metadata_fields.append(facet_by) df, magic_fields = self._metadata_fetch(metadata_fields, label=label) if AlphaDiversityMetric.has_value(vaxis): df.loc[:, vaxis] = self.alpha_diversity(vaxis, rank=rank) magic_fields[vaxis] = vaxis df.dropna(subset=[magic_fields[vaxis]], inplace=True) else: # if it's not alpha diversity, vertical axis can also be magically mapped vert_df, vert_magic_fields = self._metadata_fetch([vaxis]) # we require the vertical axis to be numerical otherwise plots get weird if ( pd.api.types.is_bool_dtype(vert_df[vert_magic_fields[vaxis]]) or pd.api.types.is_categorical_dtype(vert_df[vert_magic_fields[vaxis]]) or
pd.api.types.is_object_dtype(vert_df[vert_magic_fields[vaxis]])
pandas.api.types.is_object_dtype
import numpy as np import pandas as pd from tqdm import tqdm tqdm.pandas() from numpy.linalg import norm from sklearn.neighbors import NearestNeighbors def rgb(value): minimum, maximum = float(0), float(255) ratio = 2 * (value-minimum) / (maximum - minimum) b = int(max(0, 255*(1 - ratio))) r = int(max(0, 255*(ratio - 1))) g = 255 - b - r return (r, g, b) def dist_latlon(lat1, lon1, lat2, lon2): return norm([lat1 - lat2, lon1 - lon2]) def add_poswork_target(x): lat1, lon1, lat2, lon2 = x[['pos_lat', 'pos_lon', 'work_lat', 'work_lon']] d = dist_latlon(lat1, lon1, lat2, lon2) return int(d < 0.02) def add_poshome_target(x): lat1, lon1, lat2, lon2 = x[['pos_lat', 'pos_lon', 'home_lat', 'home_lon']] d = dist_latlon(lat1, lon1, lat2, lon2) return int(d < 0.02) def add_dist_to_neighbours(df): df_point_dup = df.groupby(['pos_lat', 'pos_lon']).agg('size').reset_index() df_point_dup.columns = ['pos_lat', 'pos_lon', 'pos_customer_freq'] df =
pd.merge(df, df_point_dup, on=['pos_lat', 'pos_lon'], how='left')
pandas.merge
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/03_ACS_Download.ipynb (unless otherwise specified). __all__ = ['retrieve_acs_data'] # Cell import pandas as pd from urllib.parse import urlencode import csv # quoting=csv.QUOTE_ALL # Cell # @ title Run: Create retrieve_acs_data() #File: retrieveAcsData.py #Author: <NAME> #Date: 1/9/19 #Section: Bnia #Email: <EMAIL> #Description: #This file returns ACS data given an ID and Year # The county total is given a tract of '010000' #def retrieve_acs_data(): #purpose: Retrieves ACS data from the web #input: # state (required) # county (required) # tract (required) # tableId (required) # year (required) # includeCountyAgg (True)(todo) # replaceColumnNames (False)(todo) # save (required) #output: # Acs Data. # Prints to ../../data/2_cleaned/acs/ def retrieve_acs_data(state, county, tract, tableId, year): dictionary = '' keys = [] vals = [] header = [] keys1=keys2=keys3=keys4=keys5=keys6=keys7=keys8='' keyCount = 0 # Called in addKeys(), Will create the final URL for readIn() # These are parameters used in the API URL Query # This query will retrieve the census tracts def getParams(keys): return { 'get': 'NAME'+keys, 'for': 'tract:'+tract, 'in': 'state:'+state+' county:'+county, 'key': '<KEY>' } # Aggregate City data is best retrieved seperatly rather than as an aggregate of its constituent tracts def getCityParams(keys): return { 'get': 'NAME'+keys, 'for': 'county:'+county, 'in': 'state:'+state, 'key': '<KEY>' } # Called in AddKeys(). Requests data by url and preformats it. def readIn( url ): tbl = pd.read_json(url, orient='records') tbl.columns = tbl.iloc[0] return tbl # Called by retrieveAcsData. # Creates a url and retrieve the data # Then appends the city values as tract '010000' # Finaly it merges and returns the tract and city totals. def addKeys( table, params): # Get Tract and City Records For Specific Columns table2 = readIn( base+urlencode(getParams(params)) ) table3 = readIn( base+urlencode(getCityParams(params)) ) table3['tract'] = '010000' # Concatenate the Records table2.append([table2, table3], sort=False) table2 = pd.concat([table2, table3], ignore_index=True) # Merge to Master Table table = pd.merge(table, table2, how='left', left_on=["NAME","state","county","tract"], right_on = ["NAME","state","county","tract"]) return table #~~~~~~~~~~~~~~~ # Step 1) # Retrieve a Meta Data Table Describing the Content of the Table #~~~~~~~~~~~~~~~ url = 'https://api.census.gov/data/20'+year+'/acs/acs5/groups/'+tableId+'.json' metaDataTable =
pd.read_json(url, orient='records')
pandas.read_json
import scipy import time import matplotlib.pyplot as plt from hydroDL.post import axplot, figplot from hydroDL.master import basins from hydroDL.data import gageII, usgs, gridMET from hydroDL import kPath, utils import os import pandas as pd import numpy as np from hydroDL import kPath fileSiteNo = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteNoLst-1979') siteNoLstAll = pd.read_csv(fileSiteNo, header=None, dtype=str)[0].tolist() # all gages dirInv = os.path.join(kPath.dirData, 'USGS', 'inventory') fileSiteNo = os.path.join(dirInv, 'siteNoLst-1979') siteNoLstAll = pd.read_csv(fileSiteNo, header=None, dtype=str)[0].tolist() codeLst = sorted(usgs.newC) dfCrd = gageII.readData( varLst=['LAT_GAGE', 'LNG_GAGE', 'CLASS'], siteNoLst=siteNoLstAll) dfCrd = gageII.updateCode(dfCrd) sd = np.datetime64('1979-01-01') # load all data dictC = dict() dictCF = dict() for k, siteNo in enumerate(siteNoLstAll): print(k, siteNo) dfC, dfCF = usgs.readSample(siteNo, codeLst=codeLst, startDate=sd, flag=2) dictC[siteNo] = dfC dictCF[siteNo] = dfCF dictQ = dict() for k, siteNo in enumerate(siteNoLstAll): print(k, siteNo) dfQ = usgs.readStreamflow(siteNo, startDate=sd) dfQ = dfQ.rename(columns={'00060_00003': '00060'}) dictQ[siteNo] = dfQ # app\waterQual\stableSites\countSiteYear.py # calculate interval intMatC = np.full([len(siteNoLstAll), len(codeLst), 4], np.nan) for k, siteNo in enumerate(siteNoLstAll): dfC = dictC[siteNo] print('\t {}/{}'.format(k, len(siteNoLstAll)), end='\r') for j, code in enumerate(codeLst): tt = dfC[code].dropna().index.values if len(tt) > 1: dt = tt[1:]-tt[:-1] dd = dt.astype('timedelta64[D]').astype(int) intMatC[k, j, 0] = len(tt) intMatC[k, j, 1] = np.percentile(dd, 25) intMatC[k, j, 2] = np.percentile(dd, 50) intMatC[k, j, 3] = np.percentile(dd, 75) fig, ax = plt.subplots(1, 1) for code in codeLst: ic = codeLst.index(code) v = intMatC[:, ic, 2] vv = np.sort(v[~np.isnan(v)]) x = np.arange(len(vv)) ax.plot(x, vv, label=code) ax.set_ylim([0, 100]) ax.set_xlim([0, 1000]) ax.legend() fig.show() [indS, indC] = np.where((intMatC[:, :, 0] > 150) & (intMatC[:, :, 2] < 40)) len(np.unique(indS)) # use convolve to count # samples within one year siteNo = siteNoLstAll[0] code = '00915' df = dictC[siteNo][code].dropna() sd = np.datetime64('1979-01-01') ed = np.datetime64('2019-12-31') td =
pd.date_range(sd, ed)
pandas.date_range
import pandas as pd import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 import numpy as np import seaborn as sns; sns.set() import csv from scipy.stats import ranksums """ Load data song data """ # load in song data data_path = "C:/Users/abiga/Box " \ "Sync/Abigail_Nicole/ChippiesTimeOfDay" \ "/FinalChippiesDataReExportedAs44100Hz_LogTransformed_forTOD.csv" log_song_data =
pd.DataFrame.from_csv(data_path, header=0, index_col=None)
pandas.DataFrame.from_csv
import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from IPython.display import display, Markdown from utils import load_pickle, log, dump_pickle, remove_all_files_from_dir from config.config import DEFAULT_FILES_NAMES, DEFAULT_END_DATE, DEFAULT_START_DATE class DataHandler: """ DataHandler aims to: - Constructs features that will be used later - Builds labels using returns thresholds and volatility - Build long / hold / short strategies - Transform stock data with time series into images - Pickles dataframes on disk with keys/values """ def __init__(self, encoding_method='GADF', window_len=42, image_size=42, retrain_freq=5, threshold_ret = (-0.014,0.014), start_date: int = DEFAULT_START_DATE, end_date: int = DEFAULT_END_DATE, frac_of_stocks=1., minimum_volume=1e6, stock_data_dir_path: str = 'data/2019_2010_stock_data', dir_for_samples='data/cnn_samples/regular', nb_of_stocks_by_file=50, nb_files_to_read: int = 34, ): """ :param encoding_method: including GADF, GASF, MTF :param window_len: length of moving window :param image_size: size of image :param retrain_freq: frequency of retrain :param start_date: start date to consider for the stock data :param end_date: last date to consider for the stock data :param frac_of_stocks: fraction of data to utlize which ranges from start_date to end_date :param minimum_volume: minimum average daily volume for small stock filtering :param stock_data_dir_path: path to fetch stock data :param dir_for_samples: path to store transformed images :param nb_of_stocks_by_file: number of files to dump :param nb_files_to_read: number of files to read """ self._window_len = window_len self._image_size = image_size self._retrain_freq = retrain_freq self._threshold_ret = threshold_ret self._encoding_method = encoding_method self._features = ['date', 'RET', 'ASKHI', 'BIDLO', 'VOL', 'sprtrn'] self._min_volume = minimum_volume self._start_date = start_date self._end_date = end_date self._frac_of_stocks_to_get = frac_of_stocks self._nb_of_stocks_by_file = nb_of_stocks_by_file self._directory_for_samples = dir_for_samples self._stock_data_dir_path = stock_data_dir_path self._N_FILES_CRSP = nb_files_to_read self._LOGGER_ENV = 'image_encoding' self.df_data = None self._df_raw_data = None self._stocks_list = None def get_df_data(self): """ - Identifies how many files it must read (randomly) according to self._frac_of_stocks_to_get. Reads all the files if self._frac_of_stocks_to_get is 1. Use a value <1 for testing purposes - Filters data on Volume/dates - Constructs features that will be used later in our model :instanciates: * self.df_data: dataframe of all data with dates as index * self._stocks_list: all the unique permnos (stock identifiers) present in the data * self._df_raw_data: dataframe of the data as extracted from the database :return: Nothing """ nb_files_to_get = max(round(self._frac_of_stocks_to_get * self._N_FILES_CRSP), 1) choices = np.random.choice(np.arange(1, self._N_FILES_CRSP + 1), nb_files_to_get, replace=False) file_names = ['stockdata_{}'.format(i) for i in choices] df_data = self._load_stock_data(file_names, data_dir_path=self._stock_data_dir_path, logger_env=self._LOGGER_ENV) self._df_raw_data = df_data df_data = self._filter_data(df_data) df_data = self.__rectify_prices(df_data) df_data = self._extract_features(df_data) self._stocks_list = np.unique(df_data.index) self.log('Data finalized in handler.df_data, number of stocks {}'.format(len(self._stocks_list))) self.df_data = self._get_data_between(df_data, self._start_date, self._end_date, self._LOGGER_ENV) def build_and_dump_images_and_targets(self): """ * Builds images with the time series * Builds labels using returns thresholds and volatility * Pickles dataframes on disk with keys/values : - date as index - PERMNO: stock identifier - RET: returns that will be used for the backtest - samples: used for training and backtesting - close: one-hot encoded elements, Example [1,0,0] stands for the class 'long' """ nb_stocks = len(self._stocks_list) n_files_to_dump = nb_stocks // self._nb_of_stocks_by_file + ((nb_stocks % self._nb_of_stocks_by_file) != 0) df_data_multi_index = self.df_data.reset_index(drop=False).set_index(['PERMNO', 'date']) self.log('***** Dumping data in {} different files'.format(n_files_to_dump)) # Removing existing files in the folder remove_all_files_from_dir(self._directory_for_samples, logger_env=self._LOGGER_ENV) for batch in range(n_files_to_dump): btch_name = 'image_data_{}'.format(batch + 1) btch_stocks = self._stocks_list[batch * self._nb_of_stocks_by_file:(batch + 1) * self._nb_of_stocks_by_file] df_batch_data = self._extract_data_for_stocks(df_data_multi_index, btch_stocks) # Build Images and targets df_res = self._build_images_one_batch(df_batch_data, btch_name) # Sort by dates df_res = df_res.set_index('date').sort_index() # Dumping the pickle dataframe dump_pickle(df_res, os.path.join(self._directory_for_samples, btch_name), logger_env=self._LOGGER_ENV) @staticmethod def _build_close_returns(df, window_len=64, retrain_freq=5, up_return=0.0125, down_return=-0.0125, buy_on_last_date=True): """ :param up_return: threshold for long strategy :param down_return: threshold for short strategy :param buy_on_last_date: whether to buy on last date :return: strategy target list, backtesting dataframe, price return list, date list """ n_sample = len(df) targets, prc_list, dates_list = [], [], [] # Strategy of long / hold / short # Hold stands for a state that model can't make decision between long and short _long, _hold, _short = [1, 0, 0], [0, 1, 0], [0, 0, 1] rebalance_indexes = [] df_rolling_ret = np.exp(np.log(df.RET).rolling(window=retrain_freq).sum()) # product of returns # print(df_rolling_ret) df_rolling_std = df.RET.rolling(window=window_len).std() * np.sqrt(252.) for i in range(window_len, n_sample, retrain_freq): j = i - 1 if buy_on_last_date else i price_return = df_rolling_ret.iloc[np.min([n_sample - 1, i - 1 + retrain_freq])] dates_list.append(df.index[j]) prc_list.append(price_return) vol = df_rolling_std.iloc[j] if price_return - 1. > up_return * vol * 4: targets.append(_long) elif price_return - 1. < down_return * vol * 4: targets.append(_short) else: targets.append(_hold) # we keep the indexes of the dates when there will be a rebalance in the portfolio rebalance_indexes.append(j) df_for_backtest = df_rolling_ret.iloc[rebalance_indexes] return np.asarray(targets), df_for_backtest, prc_list, dates_list @staticmethod def _build_images_one_stock(df_one_permno, window_len, retrain_freq, encoding_method, image_size): """ Encodes images as timeseries for one stock :param df_one_permno: dataframe of the timeseries of all data for one particular stock :param window_len: number of observations to consider (42 for 2 months) :param retrain_freq: lag to consider between making two samples :param encoding_method: method to encode the images :param image_size: final size of the image (using window_len*window_len will avoid any averaging) :return: np.ndarray of the samples of shape (N,window_len,window_len,M) where: - M is the number of features - N is the number of final samples ~ len(df_one_permno)/retrain_freq """ n_days = df_one_permno.T.shape[-1] samples_list, dates_list, prc_list = [], [], [] for i in range(window_len, n_days, retrain_freq): window_data = df_one_permno.T.iloc[:, i - window_len:i] # Use GADF algorithm to transform data if encoding_method == 'GADF': try: from pyts.image import GADF gadf = GADF(image_size) except: from pyts.image import GramianAngularField gadf = GramianAngularField(image_size, method='difference') samples_list.append(gadf.fit_transform(window_data).T) # Use GASF algorithm to transform data elif encoding_method == 'GASF': try: from pyts.image import GASF gasf = GASF(image_size) except: from pyts.image import GramianAngularField gasf = GramianAngularField(image_size, method='summation') samples_list.append(gasf.fit_transform(window_data).T) # Use MTF algorithm to transform data elif encoding_method == 'MTF': try: from pyts.image import MTF mtf = MTF(image_size) except: from pyts.image import MarkovTransitionField mtf = MarkovTransitionField(image_size) samples_list.append(mtf.fit_transform(window_data).T) else: raise BaseException('Method must be either GADF, GASF or MTF not {}'.format(encoding_method)) samples_list = np.asarray(samples_list) return samples_list def _build_images_one_batch(self, df_batch_data, batch_name): """ :param df_batch_data: dataframe of the timeseries of all data for a batch of stocks :param batch_name: name of the batch :return: pd.DataFrame with columns ['sample', 'date', 'RET', 'close'] """ self.log('Building Targets and Images for batch {}'.format(batch_name), ) df_batch_data = df_batch_data.reset_index(drop=False).set_index(['PERMNO', 'date']) all_permnos = df_batch_data.index.levels[0] # The empty dataframe initialized columns_df_res = ['sample', 'date', 'RET', 'close'] df_res =
pd.DataFrame(columns=columns_df_res)
pandas.DataFrame
""" This script includes several modules for the validation purpose, including treecover_masking, validation polygon masking, roc_analysis... ---------------------------- The available modules are listed below: burnpixel_masking(data): for masking burned pixel treecover_masking(year,data,prctg=60): for masking forest and none forest pixel validation_dataset_config(State,Validation_period,BurnPixel): for validation dataset configuration CreateValidatedBurnMask(BurnPixel,State, Validation_period): for validation mask generation validate(Test_Array = None, Validated_Array = None, plot=False): for roc analysis _forward_fill(Input_DataArray = None): for missing value filling _identify_burned_area(Input_DataArray,lag0_threshold = -0.50, lag1_threshold = -0.3): for NBR differencing method transform_from_latlon(lat, lon): for rasterising the shapefile rasterize(shapes, coords, fill=np.nan, **kwargs): rasterize a list of (geometry, fill_value) tuples """ import xarray as xr import numpy as np import pandas as pd import geopandas from rasterio import features from affine import Affine import matplotlib.pyplot as plt from pylab import rcParams pd.set_option('display.max_colwidth', 200)
pd.set_option('display.max_rows', None)
pandas.set_option
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, time from numpy import nan from numpy.random import randn import numpy as np from pandas import (DataFrame, Series, Index, Timestamp, DatetimeIndex, to_datetime, date_range) import pandas as pd import pandas.tseries.offsets as offsets from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.compat import product from pandas.tests.frame.common import TestData class TestDataFrameTimeSeriesMethods(tm.TestCase, TestData): def test_diff(self): the_diff = self.tsframe.diff(1) assert_series_equal(the_diff['A'], self.tsframe['A'] - self.tsframe['A'].shift(1)) # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = DataFrame({'s': s}).diff() self.assertEqual(rs.s[1], 1) # mixed numeric tf = self.tsframe.astype('float32') the_diff = tf.diff(1) assert_series_equal(the_diff['A'], tf['A'] - tf['A'].shift(1)) # issue 10907 df = pd.DataFrame({'y': pd.Series([2]), 'z': pd.Series([3])}) df.insert(0, 'x', 1) result = df.diff(axis=1) expected = pd.DataFrame({'x': np.nan, 'y': pd.Series( 1), 'z': pd.Series(1)}).astype('float64') assert_frame_equal(result, expected) def test_diff_timedelta(self): # GH 4533 df = DataFrame(dict(time=[Timestamp('20130101 9:01'), Timestamp('20130101 9:02')], value=[1.0, 2.0])) res = df.diff() exp = DataFrame([[pd.NaT, np.nan], [pd.Timedelta('00:01:00'), 1]], columns=['time', 'value']) assert_frame_equal(res, exp) def test_diff_mixed_dtype(self): df = DataFrame(np.random.randn(5, 3)) df['A'] = np.array([1, 2, 3, 4, 5], dtype=object) result = df.diff() self.assertEqual(result[0].dtype, np.float64) def test_diff_neg_n(self): rs = self.tsframe.diff(-1) xp = self.tsframe - self.tsframe.shift(-1) assert_frame_equal(rs, xp) def test_diff_float_n(self): rs = self.tsframe.diff(1.) xp = self.tsframe.diff(1) assert_frame_equal(rs, xp) def test_diff_axis(self): # GH 9727 df = DataFrame([[1., 2.], [3., 4.]]) assert_frame_equal(df.diff(axis=1), DataFrame( [[np.nan, 1.], [np.nan, 1.]])) assert_frame_equal(df.diff(axis=0), DataFrame( [[np.nan, np.nan], [2., 2.]])) def test_pct_change(self): rs = self.tsframe.pct_change(fill_method=None) assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1) rs = self.tsframe.pct_change(2) filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = self.tsframe.pct_change(fill_method='bfill', limit=1) filled = self.tsframe.fillna(method='bfill', limit=1) assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = self.tsframe.pct_change(freq='5D') filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(freq='5D') - 1) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) df = DataFrame({'a': s, 'b': s}) chg = df.pct_change() expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2]) edf = DataFrame({'a': expected, 'b': expected}) assert_frame_equal(chg, edf) def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')).values self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')).values self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_shift(self): # naive shift shiftedFrame = self.tsframe.shift(5) self.assert_index_equal(shiftedFrame.index, self.tsframe.index) shiftedSeries = self.tsframe['A'].shift(5) assert_series_equal(shiftedFrame['A'], shiftedSeries) shiftedFrame = self.tsframe.shift(-5) self.assert_index_equal(shiftedFrame.index, self.tsframe.index) shiftedSeries = self.tsframe['A'].shift(-5) assert_series_equal(shiftedFrame['A'], shiftedSeries) # shift by 0 unshifted = self.tsframe.shift(0) assert_frame_equal(unshifted, self.tsframe) # shift by DateOffset shiftedFrame = self.tsframe.shift(5, freq=offsets.BDay()) self.assertEqual(len(shiftedFrame), len(self.tsframe)) shiftedFrame2 = self.tsframe.shift(5, freq='B') assert_frame_equal(shiftedFrame, shiftedFrame2) d = self.tsframe.index[0] shifted_d = d + offsets.BDay(5) assert_series_equal(self.tsframe.xs(d), shiftedFrame.xs(shifted_d), check_names=False) # shift int frame int_shifted = self.intframe.shift(1) # noqa # Shifting with PeriodIndex ps = tm.makePeriodFrame() shifted = ps.shift(1) unshifted = shifted.shift(-1) self.assert_index_equal(shifted.index, ps.index) self.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal(unshifted.iloc[:, 0].valid().values, ps.iloc[:-1, 0].values) shifted2 = ps.shift(1, 'B') shifted3 = ps.shift(1, offsets.BDay()) assert_frame_equal(shifted2, shifted3) assert_frame_equal(ps, shifted2.shift(-1, 'B')) assertRaisesRegexp(ValueError, 'does not match PeriodIndex freq', ps.shift, freq='D') # shift other axis # GH 6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat([DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1) result = df.shift(1, axis=1) assert_frame_equal(result, expected) # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat([DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1) result = df.shift(1, axis='columns') assert_frame_equal(result, expected) def test_shift_bool(self): df = DataFrame({'high': [True, False], 'low': [False, False]}) rs = df.shift(1) xp = DataFrame(np.array([[np.nan, np.nan], [True, False]], dtype=object), columns=['high', 'low']) assert_frame_equal(rs, xp) def test_shift_categorical(self): # GH 9416 s1 = pd.Series(['a', 'b', 'c'], dtype='category') s2 = pd.Series(['A', 'B', 'C'], dtype='category') df = DataFrame({'one': s1, 'two': s2}) rs = df.shift(1) xp = DataFrame({'one': s1.shift(1), 'two': s2.shift(1)}) assert_frame_equal(rs, xp) def test_shift_empty(self): # Regression test for #8019 df = DataFrame({'foo': []}) rs = df.shift(-1) assert_frame_equal(df, rs) def test_tshift(self): # PeriodIndex ps = tm.makePeriodFrame() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_frame_equal(shifted, shifted2) shifted3 = ps.tshift(freq=offsets.BDay()) assert_frame_equal(shifted, shifted3) assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex shifted = self.tsframe.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(self.tsframe, unshifted) shifted2 = self.tsframe.tshift(freq=self.tsframe.index.freq) assert_frame_equal(shifted, shifted2) inferred_ts = DataFrame(self.tsframe.values, Index(np.asarray(self.tsframe.index)), columns=self.tsframe.columns) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(shifted, self.tsframe.tshift(1)) assert_frame_equal(unshifted, inferred_ts) no_freq = self.tsframe.iloc[[0, 5, 7], :] self.assertRaises(ValueError, no_freq.tshift) def test_truncate(self): ts = self.tsframe[::3] start, end = self.tsframe.index[3], self.tsframe.index[6] start_missing = self.tsframe.index[2] end_missing = self.tsframe.index[7] # neither specified truncated = ts.truncate() assert_frame_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_frame_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_frame_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_frame_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_frame_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_frame_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_frame_equal(truncated, expected) self.assertRaises(ValueError, ts.truncate, before=ts.index[-1] - 1, after=ts.index[0] + 1) def test_truncate_copy(self): index = self.tsframe.index truncated = self.tsframe.truncate(index[5], index[10]) truncated.values[:] = 5. self.assertFalse((self.tsframe.values[5:11] == 5).any()) def test_asfreq(self): offset_monthly = self.tsframe.asfreq(offsets.BMonthEnd()) rule_monthly = self.tsframe.asfreq('BM') assert_almost_equal(offset_monthly['A'], rule_monthly['A']) filled = rule_monthly.asfreq('B', method='pad') # noqa # TODO: actually check that this worked. # don't forget! filled_dep = rule_monthly.asfreq('B', method='pad') # noqa # test does not blow up on length-0 DataFrame zero_length = self.tsframe.reindex([]) result = zero_length.asfreq('BM') self.assertIsNot(result, zero_length) def test_asfreq_datetimeindex(self): df = DataFrame({'A': [1, 2, 3]}, index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)]) df = df.asfreq('B') tm.assertIsInstance(df.index, DatetimeIndex) ts = df['A'].asfreq('B') tm.assertIsInstance(ts.index, DatetimeIndex) def test_asfreq_fillvalue(self): # test for fill value during upsampling, related to issue 3715 # setup rng = pd.date_range('1/1/2016', periods=10, freq='2S') ts = pd.Series(np.arange(len(rng)), index=rng) df = pd.DataFrame({'one': ts}) # insert pre-existing missing value df.loc['2016-01-01 00:00:08', 'one'] = None actual_df = df.asfreq(freq='1S', fill_value=9.0) expected_df = df.asfreq(freq='1S').fillna(9.0) expected_df.loc['2016-01-01 00:00:08', 'one'] = None assert_frame_equal(expected_df, actual_df) expected_series = ts.asfreq(freq='1S').fillna(9.0) actual_series = ts.asfreq(freq='1S', fill_value=9.0) assert_series_equal(expected_series, actual_series) def test_first_last_valid(self): N = len(self.frame.index) mat = randn(N) mat[:5] = nan mat[-5:] = nan frame =
DataFrame({'foo': mat}, index=self.frame.index)
pandas.DataFrame
"""created by <NAME> (https://github.com/M-earnest) feedback questionnaire for ansl pilot """ from psychopy import locale_setup, sound, gui, visual, core, data, event, logging import os # handy system and path functions import sys reload(sys) sys.setdefaultencoding('utf8') import pandas as pd def update(list_1,firsttrial,check): # function to display Dialogue # assign gui to variable and define title if check == 0: #gUI_1 #added and list_1[] == '' in red condition --> resolved print(str(firsttrial)+'trial') myDlg1 = gui.Dlg(title="Nachbefragung") # quest 1 myDlg1.addField('Which tones were audible?:',choices= ['low','high','both','none'],initial=list_1[0]) # quest 2 myDlg1.addField('Which tones were not audible?:', choices=['low','high','both','none'],initial=list_1[1]) # quest 3 and 4 myDlg1.addField('Do you were distracted during the audiometry / could you not concentrate?' ,choices= ['J','N'],initial=list_1[2]) if list_1[2] == '' and firsttrial==0: myDlg1.addField('If yes: why?:',initial=list_1[3]) elif list_1[2] == 'y' and list_1[3] == '' and firsttrial==1: myDlg1.addField('If yes: why?:',initial=list_1[3], color='red') elif list_1[2] == 'N' and firsttrial==1: myDlg1.addField('If yes: why?:',initial=list_1[3]) elif list_1[2] == 'Y' and not list_1[3] == ''and firsttrial==1: myDlg1.addField('If yes: why?:',initial=list_1[3]) # quest 5 and 6 myDlg1.addField('Konntest du deine Konzentration gut auf das Hoeren der Toene richten?',choices= ['J','N'],initial=list_1[4]) if list_1[4] == '' and firsttrial==0: myDlg1.addField('Wenn Nein: Warum?:',initial=list_1[5]) elif list_1[4] == 'N' and list_1[5] == '' and firsttrial==1: myDlg1.addField('Wenn Nein: Warum?:',initial=list_1[5], color='red') elif list_1[4] == 'J' and firsttrial==1: myDlg1.addField('Wenn Nein: Warum?:',initial=list_1[5]) elif list_1[4] == 'N' and not list_1[5] == '' and firsttrial==1: myDlg1.addField('Wenn Nein: Warum?:',initial=list_1[5]) # quest 6 and 7 myDlg1.addField('Hattest du bestimmte Strategien, um die Toene besser wahrzunehmen?',choices= ['J','N'],initial=list_1[6]) if list_1[6] == '' or firsttrial==0: myDlg1.addField('Wenn Ja: Welche?',initial=list_1[7]) elif list_1[6] == 'J' and list_1[7] == '' and firsttrial==1: myDlg1.addField('Wenn Ja: Welche?',initial=list_1[7], color='red') elif list_1[6] == 'N' and firsttrial==1: myDlg1.addField('Wenn Ja: Welche?',initial=list_1[7]) elif list_1[6] == 'J' and not list_1[7] == '' and firsttrial==1: myDlg1.addField('Wenn Ja: Welche?',initial=list_1[7]) # quest 8 if list_1[8] == '' or firsttrial==1: myDlg1.addField('Zusaetzlichen Anmerkungen zum Experiment?',initial=list_1[8]) elif not list_1[8] == '' and firsttrial == 1: myDlg1.addField('Zusaetzlichen Anmerkungen zum Experiment?',initial=list_1[8]) myDlg1.show() myDlg1 = myDlg1.data return list_1, myDlg1 def savecsv(list_1,filename): # function to add data to experiment handler and save as csv # add column + data print('list') data = {'gut_hoerbar': list_1[0], 'schlecht_hoerbar': list_1[1], 'aufmerksamkeit': list_1[2], 'problematik_aufmerksamkeit': list_1[3], 'konzentartion_toene': list_1[4], 'problematik_konzentration': list_1[5], 'strategienutzung': list_1[6], 'genutzte Strategie': list_1[7], 'zusaetzliche_anmerkungen': list_1[8]} df =
pd.Series(data)
pandas.Series
from unittest import TestCase import numpy as np import pandas as pd import pandas.util.testing as tm import ts_charting.formatter as formatter plot_index = pd.date_range(start="2000-1-1", freq="B", periods=10000) class TestTimestampLocator(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def runTest(self): pass def setUp(self): pass def test_inferred_freq(self): """ inferred freqs are based off of min_ticks """ plot_index = pd.date_range(start="2000-1-1", freq="B", periods=10000) tl = formatter.TimestampLocator(plot_index) # showing only the first 10 should give us days xticks = tl._process(1, 10) assert tl.gen_freq == 'D' # showing only the first 70 should give us weeks xticks = tl._process(1, 6 * 7 + 1) assert tl.gen_freq == 'W' # months should trigger at around 6 * 31 xticks = tl._process(1, 6 * 31 ) assert tl.gen_freq == 'MS' # year should trigger at around 6 *366 xticks = tl._process(1, 6 * 366 + 1) assert tl.gen_freq == 'AS' def test_fixed_freq(self): """ Test passing in a fixed freq. This will allow len(xticks) less than min_ticks """ plot_index = pd.date_range(start="2000-1-1", freq="D", periods=10000) tl = formatter.TimestampLocator(plot_index, 'MS') xticks = tl._process(0, 30*3) assert len(xticks) == 3 tl = formatter.TimestampLocator(plot_index, 'MS') xticks = tl._process(0, 30*6) assert len(xticks) == 6 tl = formatter.TimestampLocator(plot_index, 'W') xticks = tl._process(0, 10*7) assert len(xticks) == 10 tl = formatter.TimestampLocator(plot_index, 'AS') xticks = tl._process(0, 10 * 365) assert len(xticks) == 10 def test_bool_xticks(self): """ ability to set ticks with a bool series where True == tick """ plot_index = pd.date_range(start="2000-1-1", freq="D", periods=10000) freq = 'M' ds =
pd.Series(1, index=plot_index)
pandas.Series
#!/bin/python import os import numpy as np import pandas as pd from collections import OrderedDict from Bio import Seq, SeqIO import argparse from straintables import PrimerEngine, InputFile, OutputFile, Definitions from straintables.Database import annotationManager, genomeManager def writeFastaFile(outputPath, locusName, locusSequences): fastaSequences = [] for genome in locusSequences.keys(): sequence = SeqIO.SeqRecord(Seq.Seq(locusSequences[genome]), id=genome, name=genome, description="") fastaSequences.append(sequence) with open(outputPath, "w") as output_handle: SeqIO.write(fastaSequences, output_handle, "fasta") def Execute(options): # CHECK DECLARATION OF PRIMER FILE; if not options.PrimerFile: print("FATAL: No primer file specified.") exit(1) print("\nAnnotation feature type for automatic primer search is |%s|." % options.wantedFeatureType) print("\t (allowed options: CDS, gene, mRNA)") # -- CHECK ANNOTATED FEATURES; -- useles step maybe featureFolderPath =\ os.path.join(options.SourceDataDirectory, "annotations") if os.path.isdir(featureFolderPath): genomeFeatureFiles = [ os.path.join(featureFolderPath, File) for File in os.listdir(featureFolderPath) if not File.startswith(".") ] else: genomeFeatureFiles = [] # CHECK GENOME FEATURES FILE EXISTENCE; if not genomeFeatureFiles: print("Fatal: No genbank features file found.") exit(1) # -- LOAD USER DEFINED PRIMERS; lociPrimerList = InputFile.loadPrimerList(options.PrimerFile) # LOAD GENOMES; genomeFilePaths = genomeManager.readGenomeFolder( os.path.join(options.SourceDataDirectory, "genomes") ) genomes = [PrimerEngine.GeneticEntities.Genome(genomeFilePath) for genomeFilePath in genomeFilePaths] print("Loaded %i genomes." % len(genomes)) maxGenomes = 100 if len(genomes) > maxGenomes: print("Discarding genomes, max is %i!" % maxGenomes) genomes = genomes[:maxGenomes] if not genomes: print("Fatal: No genomes found!") exit(1) if len(genomes) < 4: print("Fatal: need at least 4 genomes to proper execute the analysis,") print("\tgot only %i." % len(genomes)) exit(1) # Avoid repeating genome names; genomeNames = [] for genome in genomes: while genome.name in genomeNames: genome.name += "+" genomeNames.append(genome.name) # Initialize brute force prime searcher on top of chosen annotation file; annotationFilePath, genomeFeatures =\ annotationManager.loadAnnotation(featureFolderPath) if annotationFilePath: bruteForceSearcher =\ PrimerEngine.PrimerDesign.BruteForcePrimerSearcher( genomeFeatures, genomeFilePaths, wantedFeatureType=options.wantedFeatureType, FindPCRViablePrimers=options.RealPrimers, PrimerLength=options.PrimerLength, AmpliconMinimumLength=options.MinAmpliconLength, AmpliconMaximumLength=options.MaxAmpliconLength, PrimerAllowedUncertainty=options.PrimerUncertainty ) if not annotationFilePath: # or not bruteForceSearcher.matchedGenome:(matchedGenome is deprecated) bruteForceSearcher = None # -- SETUP OUTPUT DATA STRUCTURES; AllLociPrimerSet = OrderedDict() matchedPrimerSequences = [] print("\n") GenomeFailureReport =\ OutputFile.DockFailureReport(options.WorkingDirectory) # ITERATE LOCI: Main Loop; for i in range(lociPrimerList.shape[0]): locus_info = lociPrimerList.iloc[i] locus_name = locus_info["LocusName"] # ASSIGN OUTPUT FASTA FILE NAME AND CHECK IF EXISTS; outputFastaName = "%s%s.fasta" % ( Definitions.FastaRegionPrefix, locus_name) outputFastaPath = os.path.join( options.WorkingDirectory, outputFastaName) print("Fasta file: %s" % outputFastaPath) if os.path.isfile(outputFastaPath): print("Skipping locus %s. Already exists..." % locus_name) continue # MAYBE WE WANT TO SKIP GIVEN LOCUS? if options.WantedLoci: WantedLoci = options.WantedLoci.split(',') WantedLoci = [l.strip() for l in WantedLoci] if locus_name not in WantedLoci: continue overallProgress = (i + 1, lociPrimerList.shape[0]) RegionMatchResult =\ PrimerEngine.PrimerDock.matchLocusOnGenomes( locus_name, locus_info, genomes, overallProgress, rebootTolerance=options.rebootTolerance, allowN=options.AllowUnknownBaseInAmplicon, bruteForceSearcher=bruteForceSearcher ) FailureType = PrimerEngine.PrimerDock.RegionMatchFailure if type(RegionMatchResult) == FailureType: GenomeFailureReport.content[locus_name] =\ RegionMatchResult.FailedGenomes continue # -- Additional region statistics; if RegionMatchResult.LocusAmpliconSet is not None: # AlignmentHealth. score = PrimerEngine.ampliconSanity.evaluateSetOfAmplicons( RegionMatchResult.LocusAmpliconSet) print("\tAlignment Health = %.2f%%" % score) print() # record amplicon and primer data; writeFastaFile(outputFastaPath, locus_name, RegionMatchResult.LocusAmpliconSet) primerPair = { P.label: P.sequence for P in RegionMatchResult.MatchedPrimers } primerPair["LocusName"] = locus_name primerPair["AlignmentHealth"] = score RegionLengths = [ len(r) for r in RegionMatchResult.LocusAmpliconSet ] primerPair["MeanLength"] = np.mean(RegionLengths) primerPair["StdLength"] = np.std(RegionLengths) primerPair["Chromosome"] = RegionMatchResult.chr_identifier primerPair["StartPosition"] =\ RegionMatchResult.MatchedPrimers[0].position.start() # Append region data; matchedPrimerSequences.append(primerPair) AllLociPrimerSet[locus_name] = RegionMatchResult.MatchedPrimers # print("Bad Amplicon set for %s! Ignoring...." % locus_name) else: print("WARNING: PrimerDock failure.") if matchedPrimerSequences: # SHOW AMPLICON DATABASE; # BUILD MATCHED PRIMER DATABASE; MatchedRegions = OutputFile.MatchedRegions(options.WorkingDirectory) MatchedRegions.add(matchedPrimerSequences) MatchedRegions.write() # Primer Maps on Guide Genome: PrimerData = [] allPrimers = [] for Locus in AllLociPrimerSet.keys(): for Primer in AllLociPrimerSet[Locus]: row = Primer.to_dict(Locus) del row["Chromosome"] PrimerData.append(row) allPrimers.append(Primer) # -- SAVE PRIMER DATA FILE; fPrimerData = OutputFile.PrimerData(options.WorkingDirectory) fPrimerData.content =
pd.DataFrame(PrimerData)
pandas.DataFrame
# @author <NAME> (<EMAIL>) # @time 2021/5/31 9:40 # @desc [script description] """ tmc2gmns This script aims to transform tmc file into gmns format. Then after map-matching program of MapMatching4GMNS, the link file generated from tmc file is matched to the underlying network (here is gmns format of osm map). In the end, the link performance file of underlying network is generated with tmc file and the corresponding reading file. """ #!/usr/bin/python # coding:utf-8 import os import datetime import numpy as np import pandas as pd import os.path import MapMatching4GMNS '''step 1 Convert TMC Data into GMNS Format Convert TMC Data into GMNS Format ''' def create_folder(path): if not os.path.exists(path): os.makedirs(path) def Convert_TMC(tmc_path): '''build node_tmc.csv''' print('reading tmc data...') files= os.listdir(tmc_path) for file in files: if file[:18] == 'TMC_Identification': tmc = pd.read_csv(tmc_path + os.sep + file) break '''build node.csv''' print('converting tmc data into gmns format...') node_tmc = pd.DataFrame() node_tmc['name'] = None node_tmc['x_coord'] = None node_tmc['y_coord'] = None node_tmc['z_coord'] = None node_tmc['node_type'] = None node_tmc['ctrl_type'] = None node_tmc['zone_id'] = None node_tmc['parent_node_id'] = None node_tmc['geometry'] = None for i in range(0,len(tmc)-1): if tmc.loc[i+1,'road_order'] > tmc.loc[i,'road_order']: node_tmc = node_tmc.append({'name': tmc.loc[i,'tmc'],\ 'x_coord': tmc.loc[i,'start_longitude'], \ 'y_coord': tmc.loc[i,'start_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_start',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i,'start_longitude'].astype(str) + " " + tmc.loc[i,'start_latitude'].astype(str) +")"}, ignore_index=True) else: node_tmc = node_tmc.append({'name': tmc.loc[i,'tmc'],\ 'x_coord': tmc.loc[i,'start_longitude'], \ 'y_coord': tmc.loc[i,'start_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_start',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i,'start_longitude'].astype(str) + " " + tmc.loc[i,'start_latitude'].astype(str) +")"}, ignore_index=True) node_tmc = node_tmc.append({'name': tmc.loc[i,'tmc']+'END',\ 'x_coord': tmc.loc[i,'end_longitude'], \ 'y_coord': tmc.loc[i,'end_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_end',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i,'end_longitude'].astype(str) + " " + tmc.loc[i,'end_latitude'].astype(str) +")"}, ignore_index=True) node_tmc = node_tmc.append({'name': tmc.loc[i+1,'tmc'],\ 'x_coord': tmc.loc[i+1,'start_longitude'], \ 'y_coord': tmc.loc[i+1,'start_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_start',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i+1,'start_longitude'].astype(str) + " " + tmc.loc[i+1,'start_latitude'].astype(str) +")"}, ignore_index=True) node_tmc = node_tmc.append({'name': tmc.loc[i+1,'tmc']+'END',\ 'x_coord': tmc.loc[i+1,'end_longitude'], \ 'y_coord': tmc.loc[i+1,'end_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_end',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i+1,'end_longitude'].astype(str) + " " + tmc.loc[i+1,'end_latitude'].astype(str) +")"}, ignore_index=True) node_tmc.index.name = 'node_id' node_tmc.index += 100000001 #index from 0 node_tmc.to_csv(tmc_path + os.sep + '/node_tmc.csv') print('node_tmc.csv generated!') '''build link_tmc.csv''' link_tmc = pd.DataFrame() link_tmc['name'] = None link_tmc['corridor_id'] = None link_tmc['corridor_link_order'] = None link_tmc['from_node_id'] = None link_tmc['to_node_id'] = None link_tmc['directed'] = None link_tmc['geometry_id'] = None link_tmc['geometry'] = None link_tmc['dir_flag'] = None link_tmc['parent_link_id'] = None link_tmc['length'] = None link_tmc['grade'] = None link_tmc['facility_type'] = None link_tmc['capacity'] = None link_tmc['free_speed'] = None link_tmc['lanes'] = None for i in range(0,len(tmc)): link_tmc = link_tmc.append({'name': tmc.loc[i,'tmc'],\ 'corridor_id': tmc.loc[i,'road']+'_'+tmc.loc[i,'direction'],\ 'corridor_link_order' : tmc.loc[i,'road_order'],\ 'from_node_id': node_tmc[(node_tmc['x_coord']==tmc.loc[i,'start_longitude']) & (node_tmc['y_coord']==tmc.loc[i,'start_latitude'])].index.values[0], \ 'to_node_id': node_tmc[(node_tmc['x_coord']==tmc.loc[i,'end_longitude']) & (node_tmc['y_coord']==tmc.loc[i,'end_latitude'])].index.values[0],\ 'directed': 1,\ 'geometry_id': None,\ 'geometry': "LINESTRING (" + tmc.loc[i,'start_longitude'].astype(str) + " " + tmc.loc[i,'start_latitude'].astype(str) + "," +\ tmc.loc[i,'end_longitude'].astype(str) +" "+ tmc.loc[i,'end_latitude'].astype(str) + ")",\ 'dir_flag': 1,\ 'parent_link_id': None,\ 'length': tmc.loc[i,'miles'],\ 'grade': None,\ 'facility_type': 'interstate' if tmc.loc[i,'road'][0] == 'I'else None ,\ 'capacity':None,\ 'free_speed':None,\ 'lanes': None}, ignore_index=True) link_tmc.index.name = 'link_id' link_tmc.index += 100000001 link_tmc.to_csv(tmc_path + os.sep + '/link_tmc.csv') print('link_tmc.csv generated!') '''build link_performance_tmc.csv''' reading = pd.read_csv(tmc_path + os.sep + 'Reading_VA.csv') # reading = reading[pd.to_datetime(reading['measurement_tstamp'], format='%Y-%m-%d %H:%M:%S')<datetime.datetime.strptime('2015-04-01 02:00:00', '%Y-%m-%d %H:%M:%S')] reading = reading.loc[0:2000] link_performance_tmc = pd.DataFrame() link_performance_tmc['name'] = None link_performance_tmc['corridor_id'] = None link_performance_tmc['corridor_link_order'] = None link_performance_tmc['from_node_id'] = None link_performance_tmc['to_node_id'] = None link_performance_tmc['timestamp'] = None link_performance_tmc['volume'] = None link_performance_tmc['travel_time'] = None link_performance_tmc['speed'] = None link_performance_tmc['reference_speed'] = None link_performance_tmc['density'] = None link_performance_tmc['queue'] = None link_performance_tmc['notes'] = None gp = reading.groupby('measurement_tstamp') for key, form in gp: # print(key) for i in link_tmc.index: form_selected = form[form['_vatmc_code']==link_tmc['name'][i]] if len(form_selected)>0: # break link_performance_tmc = link_performance_tmc.append({'name': link_tmc['name'][i],\ 'corridor_id': link_tmc['corridor_id'][i],\ 'corridor_link_order' : link_tmc['corridor_link_order'][i],\ 'from_node_id': link_tmc.loc[i,'from_node_id'], \ 'to_node_id': link_tmc.loc[i,'to_node_id'], \ 'timestamp': form_selected['measurement_tstamp'].values[0][0:10]+'T'+form_selected['measurement_tstamp'].values[0][11:13]+':'+form_selected['measurement_tstamp'].values[0][14:16],\ 'volume': None,\ 'travel_time': link_tmc['length'][i]/form_selected['speed'].values[0],\ 'speed': form_selected['speed'].values[0],\ 'reference_speed': form_selected['reference_speed'].values[0],\ 'density': None,\ 'queue': None,\ 'notes': None }, ignore_index=True) else: link_performance_tmc = link_performance_tmc.append({'name': link_tmc['name'][i],\ 'corridor_id': link_tmc['corridor_id'][i],\ 'corridor_link_order' : link_tmc['corridor_link_order'][i],\ 'from_node_id': link_tmc.loc[i,'from_node_id'], \ 'to_node_id': link_tmc.loc[i,'to_node_id'], \ 'timestamp': None,\ 'volume': None,\ 'travel_time': None,\ 'speed': None,\ 'reference_speed': None,\ 'density': None,\ 'queue': None,\ 'notes': None }, ignore_index=True) link_performance_tmc.to_csv(tmc_path + os.sep +'/link_performance_tmc.csv',index = False) print('link_performance_tmc.csv generated!') '''build trace.csv''' '''trace_id is numeric''' trace = pd.DataFrame() trace['corridor_id'] = None trace['agent_id'] = None trace['date'] = None trace['tmc'] = None trace['trace_id'] = None trace['hh'] = None trace['mm'] = None trace['ss'] = None trace['y_coord'] = None trace['x_coord'] = None agent_id = 1 trace_id = 0 for i in range(0,len(tmc)-1): if tmc.loc[i+1,'road_order'] > tmc.loc[i,'road_order']: trace = trace.append({'corridor_id': tmc.loc[i,'road'] + '_' + tmc.loc[i,'direction'],\ 'agent_id': agent_id,\ 'date': None, \ 'tmc': tmc.loc[i,'tmc'],\ 'trace_id': trace_id,\ 'hh': None,\ 'mm': 'None',\ 'ss': None,\ 'y_coord': tmc.loc[i,'start_latitude'],\ 'x_coord': tmc.loc[i,'start_longitude']}, ignore_index=True) trace_id +=1 else: trace = trace.append({'corridor_id': tmc.loc[i,'road'] + '_' + tmc.loc[i,'direction'],\ 'agent_id': agent_id,\ 'date': None, \ 'tmc': tmc.loc[i,'tmc'],\ 'trace_id': trace_id,\ 'hh': None,\ 'mm': 'None',\ 'ss': None,\ 'y_coord': tmc.loc[i,'start_latitude'],\ 'x_coord': tmc.loc[i,'start_longitude']}, ignore_index=True) trace_id += 1 trace = trace.append({'corridor_id': tmc.loc[i,'road'] + '_' + tmc.loc[i,'direction'],\ 'agent_id': agent_id,\ 'date': None, \ 'tmc': tmc.loc[i,'tmc'],\ 'trace_id': trace_id,\ 'hh': None,\ 'mm': 'None',\ 'ss': None,\ 'y_coord': tmc.loc[i,'end_latitude'],\ 'x_coord': tmc.loc[i,'end_longitude']}, ignore_index=True) agent_id += 1 trace_id = 0 trace = trace.append({'corridor_id': tmc.loc[i+1,'road'] + '_' + tmc.loc[i+1,'direction'],\ 'agent_id': agent_id,\ 'date': None, \ 'tmc': tmc.loc[i+1,'tmc'],\ 'trace_id': trace_id,\ 'hh': None,\ 'mm': 'None',\ 'ss': None,\ 'y_coord': tmc.loc[i+1,'start_latitude'],\ 'x_coord': tmc.loc[i+1,'start_longitude']}, ignore_index=True) trace_id +=1 trace = trace.append({'corridor_id': tmc.loc[i+1,'road'] + '_' + tmc.loc[i+1,'direction'],\ 'agent_id': agent_id,\ 'date': None, \ 'tmc': tmc.loc[i+1,'tmc'],\ 'trace_id': trace_id,\ 'hh': None,\ 'mm': 'None',\ 'ss': None,\ 'y_coord': tmc.loc[i+1,'end_latitude'],\ 'x_coord': tmc.loc[i+1,'end_longitude']}, ignore_index=True) trace.to_csv(tmc_path + os.sep +'/trace.csv') print('trace.csv generated!') '''step 2 map matching ''' def mapmatch(tmc_path,osm_path): "Get the OSM Network" import osm2gmns as og files= os.listdir(osm_path) for file in files: if file[-3:] == 'osm': net = og.getNetFromOSMFile(osm_path + os.sep + file,network_type=('auto'), default_lanes=True, default_speed=True) og.consolidateComplexIntersections(net) og.outputNetToCSV(net, output_folder=osm_path) break create_folder(os.path.join(os.path.dirname(os.path.realpath('__file__')), 'data/testdata'))#to local import shutil source_link_osm = os.path.join(os.path.join(os.path.dirname(os.path.realpath('__file__')),osm_path),'link.csv') source_node_osm = os.path.join(os.path.join(os.path.dirname(os.path.realpath('__file__')),osm_path),'node.csv') source_trace = os.path.join(os.path.join(os.path.dirname(os.path.realpath('__file__')),tmc_path),'trace.csv') source_list = [source_link_osm,source_node_osm,source_trace] destination_1 = os.path.join(os.path.dirname(os.path.realpath('__file__')), 'data/testdata') destination_2 = os.path.dirname(os.path.realpath('__file__')) destination_list = [destination_1,destination_2] for i in range(len(source_list)): for j in range(len(destination_list)): shutil.copy(source_list[i], destination_list[j]) MapMatching4GMNS.map_match() print("Map matching is completed!") '''step 3 link performance of osm ''' def osm_link_performance(tmc_path,osm_path): link_road = pd.read_csv(osm_path + os.sep +'/link.csv', encoding='gbk',low_memory=False,index_col=None) trace =
pd.read_csv(tmc_path + os.sep +'/trace.csv', encoding='gbk',low_memory=False,index_col=None)
pandas.read_csv
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty =
Series([])
pandas.Series
""" 本地数据查询及预处理,适用于zipline ingest写入 读取本地数据 1. 元数据所涉及的时间列 其tz为UTC 2. 数据框datetime-index.tz为None 注:只选A股股票。注意股票总体在`ingest`及`fundamental`必须保持一致。 """ import re import warnings from concurrent.futures.thread import ThreadPoolExecutor from functools import lru_cache, partial from trading_calendars import get_calendar import numpy as np import pandas as pd from cnswd.mongodb import get_db from cnswd.setting.constants import MAX_WORKER from cnswd.utils import sanitize_dates import akshare as ak warnings.filterwarnings('ignore') WY_DAILY_COL_MAPS = { '日期': 'date', '股票代码': 'symbol', '收盘价': 'close', '最高价': 'high', '最低价': 'low', '开盘价': 'open', '前收盘': 'prev_close', '涨跌幅': 'change_pct', '换手率': 'turnover', '成交量': 'volume', '成交金额': 'amount', '总市值': 'total_cap', '流通市值': 'market_cap', } WY_ADJUSTMENT_COLS = { '股票代码': 'symbol', '分红年度': 'date', '送股(每10股)': 's_ratio', '转增(每10股)': 'z_ratio', '派息(每10股)': 'amount', '公告日期': 'declared_date', '股权登记日': 'record_date', '除权除息日': 'ex_date', '红股上市日': 'pay_date' } def encode_index_code(x, offset=1000000): i = int(x) + offset return str(i).zfill(7) def decode_index_code(x, offset=1000000): i = int(x) - offset return str(i).zfill(6) def get_exchange(code): """股票所在交易所编码""" # https://www.iso20022.org/10383/iso-10383-market-identifier-codes if len(code) == 7: return '指数' if code.startswith('688'): return "上交所科创板" elif code.startswith('002'): return "深交所中小板" elif code.startswith('6'): return "上交所" elif code.startswith('3'): return "深交所创业板" elif code.startswith('0'): return "深交所主板" elif code.startswith('2'): return "深证B股" elif code.startswith('9'): return "上海B股" else: raise ValueError(f'股票代码:{code}错误') def _select_only_a(df, code_col): """选择A股数据 Arguments: df {DataFrame} -- 数据框 code_col {str} -- 代表股票代码的列名称 Returns: DataFrame -- 筛选出来的a股数据 """ cond1 = df[code_col].str.startswith('2') cond2 = df[code_col].str.startswith('9') df = df.loc[~(cond1 | cond2), :] return df def _gen_index_metadata(db, code): collection = db[code] name = collection.find_one(projection={ '_id': 0, '名称': 1, }, sort=[('日期', -1)]) if name is None: return pd.DataFrame() first = collection.find_one(projection={ '_id': 0, '日期': 1, }, sort=[('日期', 1)]) last = collection.find_one(projection={ '_id': 0, '日期': 1, }, sort=[('日期', -1)]) start_date = pd.Timestamp(first['日期'], tz='UTC') end_date = pd.Timestamp(last['日期'], tz='UTC') return pd.DataFrame( { 'symbol': encode_index_code(code), 'exchange': '指数', 'asset_name': name['名称'], # 简称 'start_date': start_date, 'end_date': end_date, 'first_traded': start_date, # 适应于分钟级别的数据 'last_traded': end_date, 'auto_close_date': end_date + pd.Timedelta(days=1), }, index=[0]) def gen_index_metadata(): db = get_db('wy_index_daily') codes = db.list_collection_names() dfs = [_gen_index_metadata(db, code) for code in codes] return pd.concat(dfs) def _stock_first_and_last(code, db=None): """ 日线交易数据开始交易及结束交易日期 Examples -------- >>> _stock_first_and_last('000333') symbol asset_name first_traded last_traded 0 000333 美的集团 2020-04-02 00:00:00+00:00 2020-04-04 00:00:00+00:00 """ if db is None: db = get_db('wy_stock_daily') if code not in db.list_collection_names(): return pd.DataFrame() collection = db[code] # 空表 if collection.count_documents({}) == 0: return pd.DataFrame() first = collection.find_one(projection={ '_id': 0, '日期': 1, '名称': 1, }, sort=[('日期', 1)]) last = collection.find_one(projection={ '_id': 0, '日期': 1, '名称': 1, }, sort=[('日期', -1)]) return pd.DataFrame( { 'symbol': code, 'asset_name': last['名称'], # 最新简称 'first_traded': pd.Timestamp(first['日期'], tz='UTC'), # 适应于分钟级别的数据 'last_traded': pd.Timestamp(last['日期'], tz='UTC') + pd.Timedelta(days=1), }, index=[0]) def get_delist_stock_dates(): """退市日期字典""" sz_delist_df = ak.stock_info_sz_delist(indicator="终止上市公司") sh_delist_df = ak.stock_info_sh_delist(indicator="终止上市公司") res = {} for c, d in zip(sz_delist_df['证券代码'].values, sz_delist_df['终止上市日期'].values): if not pd.isnull(d): res[c] = pd.to_datetime(d).floor('D').tz_localize('UTC') for c, d in zip(sh_delist_df['COMPANY_CODE'].values, sh_delist_df['QIANYI_DATE'].values): if not pd.isnull(d): res[c] = pd.to_datetime(d).floor('D').tz_localize('UTC') return res def gen_asset_metadata(only_in=True, only_A=True, include_index=True): """ 生成符号元数据 Paras ----- only_in : bool 是否仅仅包含当前在市的股票,默认为真。 only_A : bool 是否仅仅为A股股票(即:不包含B股股票),默认为不包含。 include_index : bool 是否包含指数,默认包含指数。 Examples -------- >>> df = gen_asset_metadata() >>> df.head() symbol start_date end_date exchange asset_name first_traded last_traded auto_close_date 0 000001 1991-04-03 2018-12-21 深交所主板 平安银行 1991-04-03 2018-12-21 2018-12-22 1 000002 1991-01-29 2018-12-21 深交所主板 万 科A 1991-01-29 2018-12-21 2018-12-22 2 000004 1991-01-14 2018-12-21 深交所主板 国农科技 1991-01-02 2018-12-21 2018-12-22 3 000005 1990-12-10 2018-12-21 深交所主板 世纪星源 1991-01-02 2018-12-21 2018-12-22 4 000006 1992-04-27 2018-12-21 深交所主板 深振业A 1992-04-27 2018-12-21 2018-12-22 """ db = get_db('wy_stock_daily') codes = db.list_collection_names() delisted = get_delist_stock_dates() if only_in: codes = [code for code in codes if code not in delisted.keys()] # 股票数量 >3900 # 设置max_workers=8,用时 67s 股票 4565 用时 110s # 设置max_workers=4,用时 54s func = partial(_stock_first_and_last, db=db) with ThreadPoolExecutor(MAX_WORKER) as pool: r = pool.map(func, codes) df = pd.concat(r) df.sort_values('symbol', inplace=True) df['exchange'] = df['symbol'].map(get_exchange) df['start_date'] = df['first_traded'] df['end_date'] = df['last_traded'] df['auto_close_date'] = df['last_traded'].map( lambda x: x +
pd.Timedelta(days=1)
pandas.Timedelta
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT,
Timestamp('2011-01-02')
pandas.Timestamp
import pytest from numpy import ma, array import numpy import pandas as pd from pymc3_ext import Model, Normal, sample_prior_predictive, sample, ImputationWarning def test_missing(): data = ma.masked_values([1, 2, -1, 4, -1], value=-1) with Model() as model: x = Normal('x', 1, 1) with pytest.warns(ImputationWarning): Normal('y', x, 1, observed=data) y_missing, = model.missing_values assert y_missing.tag.test_value.shape == (2,) model.logp(model.test_point) with model: prior_trace = sample_prior_predictive() assert set(['x', 'y']) <= set(prior_trace.keys()) def test_missing_pandas(): data =
pd.DataFrame([1, 2, numpy.nan, 4, numpy.nan])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import mock import pytest import collections import json import pandas as pd from pandas.util.testing import assert_frame_equal from nbformat.v4 import new_notebook, new_code_cell, new_markdown_cell, new_output from . import get_notebook_path, get_notebook_dir from .. import read_notebook, utils from ..models import Notebook from ..exceptions import ScrapbookException try: FileNotFoundError except NameError: FileNotFoundError = IOError @pytest.fixture(scope='session', autouse=True) def kernel_mock(): """Mocks the kernel to capture warnings during testing""" with mock.patch.object(utils, 'is_kernel') as _fixture: yield _fixture class AnyDict(object): def __eq__(self, other): return isinstance(other, dict) @pytest.fixture def notebook_result(): path = get_notebook_path("collection/result1.ipynb") return read_notebook(path) @pytest.fixture def notebook_backwards_result(): path = get_notebook_path("record.ipynb") return read_notebook(path) def test_bad_path(): with pytest.raises(FileNotFoundError): Notebook("not/a/valid/path.ipynb") def test_bad_ext(): with pytest.raises(Warning): Notebook("not/a/valid/extension.py") @mock.patch("papermill.iorw.papermill_io.read") def test_good_ext_for_url(mock_read): sample_output = { "cells": [{ "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [] }] } mock_read.return_value = json.dumps(sample_output) params = "?sig=some-unique-secret-token" url = "abs://mystorage.blob.core.windows.net/my-actual-notebook.ipynb" + params Notebook(url) mock_read.assert_called_once() def test_bad_ext_for_url(): with pytest.raises(Warning): params = "?sig=some-unique-secret-token" url = "abs://mystorage.blob.core.windows.net/my-actual-notebook.txt" + params Notebook(url) def test_filename(notebook_result): assert notebook_result.filename == "result1.ipynb" def test_directory(notebook_result): assert notebook_result.directory == get_notebook_dir("collection/result1.ipynb") def test_parameters(notebook_result): assert notebook_result.parameters == dict(foo=1, bar="hello") def test_data_scraps(notebook_result): assert notebook_result.scraps.data_dict == { "dict": {u"a": 1, u"b": 2}, "list": [1, 2, 3], "number": 1, "one": 1, } def test_display_scraps(notebook_result): assert notebook_result.scraps.display_dict == { "output": { "data": {"text/plain": "'Hello World!'"}, "metadata": { "scrapbook": { "name": "output", "data": False, "display": True, } }, "output_type": "display_data", }, "one_only": { "data": {"text/plain": "'Just here!'"}, "metadata": { "scrapbook": {"name": "one_only", "data": False, "display": True} }, "output_type": "display_data", }, } def test_scraps_collection_dataframe(notebook_result): expected_df = pd.DataFrame( [ ("one", 1, "json", None), ("number", 1, "json", None), ("list", [1, 2, 3], "json", None), ("dict", {u"a": 1, u"b": 2}, "json", None), ("output", None, "display", AnyDict()), ("one_only", None, "display", AnyDict()), ], columns=["name", "data", "encoder", "display"], ) assert_frame_equal(notebook_result.scraps.dataframe, expected_df, check_exact=True) def test_record_scraps_collection_dataframe(notebook_backwards_result): expected_df = pd.DataFrame( [ ("hello", "world", "json", None), ("number", 123, "json", None), ("some_list", [1, 3, 5], "json", None), ("some_dict", {u"a": 1, u"b": 2}, "json", None), ("some_display", None, "display", AnyDict()), ], columns=["name", "data", "encoder", "display"], ) print(notebook_backwards_result.scraps.dataframe) assert_frame_equal(notebook_backwards_result.scraps.dataframe, expected_df, check_exact=True) @mock.patch("scrapbook.models.ip_display") def test_reglue_display(mock_display, notebook_result): notebook_result.reglue("output") mock_display.assert_called_once_with( {"text/plain": "'Hello World!'"}, metadata={"scrapbook": {"name": "output", "data": False, "display": True}}, raw=True, ) @mock.patch("scrapbook.models.ip_display") def test_reglue_scrap(mock_display, notebook_result): notebook_result.reglue("one") mock_display.assert_called_once_with( { "application/scrapbook.scrap.json+json": { "name": "one", "data": 1, "encoder": "json", "version": 1, } }, metadata={"scrapbook": {"name": "one", "data": True, "display": False}}, raw=True, ) @mock.patch("scrapbook.models.ip_display") def test_reglue_display_unattached(mock_display, notebook_result): notebook_result.reglue("output", unattached=True) mock_display.assert_called_once_with( {"text/plain": "'Hello World!'"}, metadata={}, raw=True ) @mock.patch("scrapbook.models.ip_display") def test_reglue_scrap_unattached(mock_display, notebook_result): notebook_result.reglue("one", unattached=True) mock_display.assert_called_once_with( { "application/scrapbook.scrap.json+json": { "name": "one", "data": 1, "encoder": "json", "version": 1, } }, metadata={}, raw=True, ) def test_missing_reglue(notebook_result): with pytest.raises(ScrapbookException): notebook_result.reglue("foo") @mock.patch("scrapbook.models.ip_display") def test_missing_reglue_no_error(mock_display, notebook_result): notebook_result.reglue("foo", raise_on_missing=False) mock_display.assert_called_once_with( "No scrap found with name 'foo' in this notebook" ) @mock.patch("scrapbook.models.ip_display") def test_reglue_rename(mock_display, notebook_result): notebook_result.reglue("output", "new_output") mock_display.assert_called_once_with( {"text/plain": "'Hello World!'"}, metadata={"scrapbook": {"name": "new_output", "data": False, "display": True}}, raw=True, ) @pytest.fixture def no_exec_result(): path = get_notebook_path("result_no_exec.ipynb") return read_notebook(path) def test_cell_timing(notebook_result): assert notebook_result.cell_timing == [0.0, 0.123] def test_malformed_cell_timing(no_exec_result): assert no_exec_result.cell_timing == [None] def test_execution_counts(notebook_result): assert notebook_result.execution_counts == [1, 2] def test_malformed_execution_counts(no_exec_result): assert no_exec_result.execution_counts == [None] def test_papermill_metrics(notebook_result): expected_df = pd.DataFrame( [ ("result1.ipynb", "Out [1]", 0.000, "time (s)"), ("result1.ipynb", "Out [2]", 0.123, "time (s)"), ], columns=["filename", "cell", "value", "type"], ) assert_frame_equal(notebook_result.papermill_metrics, expected_df) def test_malformed_execution_metrics(no_exec_result): expected_df =
pd.DataFrame([], columns=["filename", "cell", "value", "type"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ This module contains the ReadSets class that is in charge of reading the sets files, reshaping them to be used in the build class, creating and reading the parameter files and checking the errors in the definition of the sets and parameters """ import itertools as it from openpyxl import load_workbook import pandas as pd from hypatia.error_log.Checks import ( check_nan, check_index, check_index_data, check_table_name, check_mapping_values, check_mapping_ctgry, check_sheet_name, check_tech_category, check_carrier_type, check_years_mode_consistency, ) from hypatia.error_log.Exceptions import WrongInputMode import numpy as np from hypatia.utility.constants import ( global_set_ids, regional_set_ids, technology_categories, carrier_types, ) from hypatia.utility.constants import take_trade_ids, take_ids, take_global_ids MODES = ["Planning", "Operation"] class ReadSets: """ Class that reads the sets of the model, creates the parameter files with default values and reads the filled parameter files Attributes ------------ mode: The mode of optimization including the operation and planning mode path: The path of the set files given by the user glob_mapping : dict A dictionary of the global set tables given by the user in the global.xlsx file mapping : dict A dictionary of the regional set tables given by the user in the regional set files connection_sheet_ids: dict A nested dictionary that defines the sheet names of the parameter file of the inter-regional links with their default values, indices and columns global_sheet_ids : dict A nested dictionary that defines the sheet names of the global parameter file with their default values, indices and columns regional_sheets_ids : dict A nested dictionary that defines the sheet names of the regional parameter files with their default values, indices and columns trade_data : dict A nested dictionary for storing the inter-regional link data global_data : dict A nested dictionary for storing the global data data : dict A nested dictionary for storing the regional data """ def __init__(self, path, mode="Planning"): self.mode = mode self.path = path self._init_by_xlsx() def _init_by_xlsx(self,): """ Reads and organizes the global and regional sets """ glob_mapping = {} wb_glob = load_workbook(r"{}/global.xlsx".format(self.path)) sets_glob = wb_glob["Sets"] set_glob_category = {key: value for key, value in sets_glob.tables.items()} for entry, data_boundary in sets_glob.tables.items(): data_glob = sets_glob[data_boundary] content = [[cell.value for cell in ent] for ent in data_glob] header = content[0] rest = content[1:] df = pd.DataFrame(rest, columns=header) glob_mapping[entry] = df self.glob_mapping = glob_mapping check_years_mode_consistency( mode=self.mode, main_years=list(self.glob_mapping["Years"]["Year"]) ) for key, value in self.glob_mapping.items(): check_table_name( file_name="global", allowed_names=list(global_set_ids.keys()), table_name=key, ) check_index(value.columns, key, "global", pd.Index(global_set_ids[key])) check_nan(key, value, "global") if key == "Technologies": check_tech_category(value, technology_categories, "global") if key == "Carriers": check_carrier_type(value, carrier_types, "global") self.regions = list(self.glob_mapping["Regions"]["Region"]) self.main_years = list(self.glob_mapping["Years"]["Year"]) if "Timesteps" in self.glob_mapping.keys(): self.time_steps = list(self.glob_mapping["Timesteps"]["Timeslice"]) self.timeslice_fraction = self.glob_mapping["Timesteps"][ "Timeslice_fraction" ].values else: self.time_steps = ["Annual"] self.timeslice_fraction = np.ones((1, 1)) # possible connections among the regions if len(self.regions) > 1: lines_obj = it.permutations(self.regions, r=2) self.lines_list = [] for item in lines_obj: if item[0] < item[1]: self.lines_list.append("{}-{}".format(item[0], item[1])) mapping = {} for reg in self.regions: wb = load_workbook(r"{}/{}.xlsx".format(self.path, reg)) sets = wb["Sets"] self._setbase_reg = [ "Technologies", "Carriers", "Carrier_input", "Carrier_output", ] set_category = {key: value for key, value in sets.tables.items()} reg_mapping = {} for entry, data_boundary in sets.tables.items(): data = sets[data_boundary] content = [[cell.value for cell in ent] for ent in data] header = content[0] rest = content[1:] df = pd.DataFrame(rest, columns=header) reg_mapping[entry] = df mapping[reg] = reg_mapping for key, value in mapping[reg].items(): check_table_name( file_name=reg, allowed_names=list(regional_set_ids.keys()), table_name=key, ) check_index(value.columns, key, reg, pd.Index(regional_set_ids[key])) check_nan(key, value, reg) if key == "Technologies": check_tech_category(value, technology_categories, reg) if key == "Carriers": check_carrier_type(value, carrier_types, reg) if key == "Carrier_input" or key == "Carrier_output": check_mapping_values( value, key, mapping[reg]["Technologies"], "Technologies", "Technology", "Technology", reg, ) check_mapping_values( mapping[reg]["Carrier_input"], "Carrier_input", mapping[reg]["Carriers"], "Carriers", "Carrier_in", "Carrier", reg, ) check_mapping_values( mapping[reg]["Carrier_output"], "Carrier_output", mapping[reg]["Carriers"], "Carriers", "Carrier_out", "Carrier", reg, ) check_mapping_ctgry( mapping[reg]["Carrier_input"], "Carrier_input", mapping[reg]["Technologies"], "Supply", reg, ) check_mapping_ctgry( mapping[reg]["Carrier_output"], "Carrier_output", mapping[reg]["Technologies"], "Demand", reg, ) self.mapping = mapping Technologies = {} for reg in self.regions: regional_tech = {} for key in list(self.mapping[reg]["Technologies"]["Tech_category"]): regional_tech[key] = list( self.mapping[reg]["Technologies"].loc[ self.mapping[reg]["Technologies"]["Tech_category"] == key ]["Technology"] ) Technologies[reg] = regional_tech self.Technologies = Technologies self._create_input_data() def _create_input_data(self): """ Defines the sheets, indices and columns of the parameter files """ if len(self.regions) > 1: # Create the columns of inter-regional links as a multi-index of the # pairs of regions and the transmitted carriers indexer = pd.MultiIndex.from_product( [self.lines_list, self.glob_mapping["Carriers_glob"]["Carrier"]], names=["Line", "Transmitted Carrier"], ) self.connection_sheet_ids = { "F_OM": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "V_OM": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Residual_capacity": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Capacity_factor_line": { "value": 1, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Line_efficiency": { "value": 1, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "AnnualProd_perunit_capacity": { "value": 1, "index": pd.Index( ["AnnualProd_Per_UnitCapacity"], name="Performance Parameter" ), "columns": indexer, }, } self.global_sheet_ids = { "Max_production_global": { "value": 1e30, "index": pd.Index(self.main_years, name="Years"), "columns": self.glob_mapping["Technologies_glob"].loc[ ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Demand" ) & ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Storage" ) ]["Technology"], }, "Min_production_global": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": self.glob_mapping["Technologies_glob"].loc[ ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Demand" ) & ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Storage" ) ]["Technology"], }, "Glob_emission_cap_annual": { "value": 1e30, "index": pd.Index(self.main_years, name="Years"), "columns": ["Global Emission Cap"], }, } if self.mode == "Planning": self.connection_sheet_ids.update( { "INV": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Decom_cost": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Min_totalcap": { "value": 0, "index":
pd.Index(self.main_years, name="Years")
pandas.Index
# tagifai/data.py # Data processing operations. import itertools import json import re from argparse import Namespace from collections import Counter from pathlib import Path from typing import List, Sequence, Tuple import numpy as np import pandas as pd import torch from nltk.stem import PorterStemmer from skmultilearn.model_selection import IterativeStratification from config import config from tagifai import utils def filter_items(items: List, include: List = [], exclude: List = []) -> List: """Filter a list using inclusion and exclusion lists of items. Args: items (List): List of items to apply filters. include (List, optional): List of items to include. Defaults to []. exclude (List, optional): List of items to filter out. Defaults to []. Returns: Filtered list of items. Usage: ```python # Filter tags for each project df.tags = df.tags.apply( filter_items, include=list(tags_dict.keys()), exclude=config.EXCLDUE, ) ``` """ # Filter filtered = [item for item in items if item in include and item not in exclude] return filtered def prepare( df: pd.DataFrame, include: List = [], exclude: List = [], min_tag_freq: int = 30 ) -> Tuple: """Prepare the raw data. Args: df (pd.DataFrame): Pandas DataFrame with data. include (List): list of tags to include. exclude (List): list of tags to exclude. min_tag_freq (int, optional): Minimum frequency of tags required. Defaults to 30. Returns: A cleaned dataframe and dictionary of tags and counts above the frequency threshold. """ # Filter tags for each project df.tags = df.tags.apply(filter_items, include=include, exclude=exclude) tags = Counter(itertools.chain.from_iterable(df.tags.values)) # Filter tags that have fewer than `min_tag_freq` occurrences tags_above_freq = Counter(tag for tag in tags.elements() if tags[tag] >= min_tag_freq) tags_below_freq = Counter(tag for tag in tags.elements() if tags[tag] < min_tag_freq) df.tags = df.tags.apply(filter_items, include=list(tags_above_freq.keys())) # Remove projects with no more remaining relevant tags df = df[df.tags.map(len) > 0] return df, tags_above_freq, tags_below_freq class Stemmer(PorterStemmer): def stem(self, word): if self.mode == self.NLTK_EXTENSIONS and word in self.pool: # pragma: no cover, nltk return self.pool[word] if self.mode != self.ORIGINAL_ALGORITHM and len(word) <= 2: # pragma: no cover, nltk # With this line, strings of length 1 or 2 don't go through # the stemming process, although no mention is made of this # in the published algorithm. return word stem = self._step1a(word) stem = self._step1b(stem) stem = self._step1c(stem) stem = self._step2(stem) stem = self._step3(stem) stem = self._step4(stem) stem = self._step5a(stem) stem = self._step5b(stem) return stem def preprocess( text: str, lower: bool = True, stem: bool = False, stopwords: List = config.STOPWORDS, ) -> str: """Conditional preprocessing on text. Usage: ```python preprocess(text="Transfer learning with BERT!", lower=True, stem=True) ``` <pre> 'transfer learn bert' </pre> Args: text (str): String to preprocess. lower (bool, optional): Lower the text. Defaults to True. stem (bool, optional): Stem the text. Defaults to False. filters (str, optional): Filters to apply on text. stopwords (List, optional): List of words to filter out. Defaults to STOPWORDS. Returns: Preprocessed string. """ # Lower if lower: text = text.lower() # Remove stopwords if len(stopwords): pattern = re.compile(r"\b(" + r"|".join(stopwords) + r")\b\s*") text = pattern.sub("", text) # Spacing and filters text = re.sub( r"([!\"'#$%&()*\+,-./:;<=>?@\\\[\]^_`{|}~])", r" \1 ", text ) # add spacing between objects to be filtered text = re.sub("[^A-Za-z0-9]+", " ", text) # remove non alphanumeric chars text = re.sub(" +", " ", text) # remove multiple spaces text = text.strip() # Remove links text = re.sub(r"http\S+", "", text) # Stemming if stem: stemmer = Stemmer() text = " ".join([stemmer.stem(word) for word in text.split(" ")]) return text class LabelEncoder: """Encode labels into unique indices. Usage: ```python # Encode labels label_encoder = LabelEncoder() label_encoder.fit(labels) y = label_encoder.encode(labels) ``` """ def __init__(self, class_to_index: dict = {}): self.class_to_index = class_to_index or {} # mutable defaults ;) self.index_to_class = {v: k for k, v in self.class_to_index.items()} self.classes = list(self.class_to_index.keys()) def __len__(self): return len(self.class_to_index) def save(self, fp: str): with open(fp, "w") as fp: contents = {"class_to_index": self.class_to_index} json.dump(contents, fp, indent=4, sort_keys=False) @classmethod def load(cls, fp: str): with open(fp) as fp: kwargs = json.load(fp=fp) return cls(**kwargs) class MultiClassLabelEncoder(LabelEncoder): """Encode labels into unique indices for multi-class classification. """ def __str__(self): return f"<MultiClassLabelEncoder(num_classes={len(self)})>" def fit(self, y: Sequence): """Learn label mappings from a series of class labels. Args: y (Sequence): Collection of labels as a pandas Series object. """ classes = np.unique(y) for i, class_ in enumerate(classes): self.class_to_index[class_] = i self.index_to_class = {v: k for k, v in self.class_to_index.items()} self.classes = list(self.class_to_index.keys()) return self def encode(self, y: pd.Series) -> np.ndarray: """Encode a collection of classes. Args: y (pd.Series): Collection of labels as a pandas Series object. Returns: Labels as (multilabel) one-hot encodings """ encoded = np.zeros((len(y)), dtype=int) for i, item in enumerate(y): encoded[i] = self.class_to_index[item] return encoded def decode(self, y: np.ndarray) -> List[List[str]]: """Decode a collection of class indices. Args: y (np.ndarray): Labels as (multilabel) one-hot encodings Returns: List of original labels for each output. """ classes = [] for i, item in enumerate(y): classes.append(self.index_to_class[item]) return classes class MultiLabelLabelEncoder(LabelEncoder): """Encode labels into unique indices for multi-label classification. """ def __str__(self): return f"<MultiLabelLabelEncoder(num_classes={len(self)})>" def fit(self, y: Sequence): """Learn label mappings from a series of class labels. Args: y (Sequence): Collection of labels as a pandas Series object. """ classes = np.unique(list(itertools.chain.from_iterable(y))) for i, class_ in enumerate(classes): self.class_to_index[class_] = i self.index_to_class = {v: k for k, v in self.class_to_index.items()} self.classes = list(self.class_to_index.keys()) return self def encode(self, y: pd.Series) -> np.ndarray: """Encode a collection of labels using (multilabel) one-hot encoding. Args: y (pd.Series): Collection of labels as a pandas Series object. Returns: Labels as (multilabel) one-hot encodings """ y_one_hot = np.zeros((len(y), len(self.class_to_index)), dtype=int) for i, item in enumerate(y): for class_ in item: y_one_hot[i][self.class_to_index[class_]] = 1 return y_one_hot def decode(self, y: np.ndarray) -> List[List[str]]: """Decode a (multilabel) one-hot encoding into corresponding labels. Args: y (np.ndarray): Labels as (multilabel) one-hot encodings Returns: List of original labels for each output. """ classes = [] for i, item in enumerate(y): indices = np.where(np.asarray(item) == 1)[0] classes.append([self.index_to_class[index] for index in indices]) return classes def iterative_train_test_split(X: pd.Series, y: np.ndarray, train_size: float = 0.7) -> Tuple: """Custom iterative train test split which 'maintains balanced representation with respect to order-th label combinations.' Args: X (pd.Series): Input features as a pandas Series object. y (np.ndarray): One-hot encoded labels. train_size (float, optional): Proportion of data for first split. Defaults to 0.7. Returns: Two stratified splits based on specified proportions. """ stratifier = IterativeStratification( n_splits=2, order=1, sample_distribution_per_fold=[ 1.0 - train_size, train_size, ], ) train_indices, test_indices = next(stratifier.split(X, y)) X_train, y_train = X[train_indices], y[train_indices] X_test, y_test = X[test_indices], y[test_indices] return X_train, X_test, y_train, y_test class Tokenizer: """Tokenize a feature using a built vocabulary. Usage: ```python tokenizer = Tokenizer(char_level=char_level) tokenizer.fit_on_texts(texts=X) X = np.array(tokenizer.texts_to_sequences(X), dtype=object) ``` """ def __init__( self, char_level: bool, num_tokens: int = None, pad_token: str = "<PAD>", oov_token: str = "<UNK>", token_to_index: dict = None, ): self.char_level = char_level self.separator = "" if self.char_level else " " if num_tokens: num_tokens -= 2 # pad + unk tokens self.num_tokens = num_tokens self.pad_token = pad_token self.oov_token = oov_token if not token_to_index: token_to_index = {pad_token: 0, oov_token: 1} self.token_to_index = token_to_index self.index_to_token = {v: k for k, v in self.token_to_index.items()} def __len__(self): return len(self.token_to_index) def __str__(self): return f"<Tokenizer(num_tokens={len(self)})>" def fit_on_texts(self, texts: List): """Learn token mappings from a list of texts. Args: texts (List): List of texts made of tokens. """ if not self.char_level: texts = [text.split(" ") for text in texts] all_tokens = [token for text in texts for token in text] counts = Counter(all_tokens).most_common(self.num_tokens) self.min_token_freq = counts[-1][1] for token, count in counts: index = len(self) self.token_to_index[token] = index self.index_to_token[index] = token return self def texts_to_sequences(self, texts: List) -> List[List]: """Convert a list of texts to a lists of arrays of indices. Args: texts (List): List of texts to tokenize and map to indices. Returns: A list of mapped sequences (list of indices). """ sequences = [] for text in texts: if not self.char_level: text = text.split(" ") sequence = [] for token in text: sequence.append(self.token_to_index.get(token, self.token_to_index[self.oov_token])) sequences.append(sequence) return sequences def sequences_to_texts(self, sequences: List) -> List: """Convert a lists of arrays of indices to a list of texts. Args: sequences (List): list of mapped tokens to convert back to text. Returns: Mapped text from index tokens. """ texts = [] for sequence in sequences: text = [] for index in sequence: text.append(self.index_to_token.get(index, self.oov_token)) texts.append(self.separator.join([token for token in text])) return texts def save(self, fp: str): with open(fp, "w") as fp: contents = { "char_level": self.char_level, "oov_token": self.oov_token, "token_to_index": self.token_to_index, } json.dump(contents, fp, indent=4, sort_keys=False) @classmethod def load(cls, fp: str): with open(fp) as fp: kwargs = json.load(fp=fp) return cls(**kwargs) def pad_sequences(sequences: np.ndarray, max_seq_len: int = 0) -> np.ndarray: """Zero pad sequences to a specified `max_seq_len` or to the length of the largest sequence in `sequences`. Usage: ```python # Pad inputs seq = np.array([[1, 2, 3], [1, 2]], dtype=object) padded_seq = pad_sequences(sequences=seq, max_seq_len=5) print (padded_seq) ``` <pre> [[1. 2. 3. 0. 0.] [1. 2. 0. 0. 0.]] </pre> Note: Input `sequences` must be 2D. Check out this [implemention](https://madewithml.com/courses/foundations/convolutional-neural-networks/#padding){:target="_blank"} for a more generalized approach. Args: sequences (np.ndarray): 2D array of data to be padded. max_seq_len (int, optional): Length to pad sequences to. Defaults to 0. Raises: ValueError: Input sequences are not two-dimensional. Returns: An array with the zero padded sequences. """ # Get max sequence length max_seq_len = max(max_seq_len, max(len(sequence) for sequence in sequences)) # Pad padded_sequences = np.zeros((len(sequences), max_seq_len)) for i, sequence in enumerate(sequences): padded_sequences[i][: len(sequence)] = sequence return padded_sequences class CNNTextDataset(torch.utils.data.Dataset): """Create `torch.utils.data.Dataset` objects to use for efficiently feeding data into our models. Usage: ```python # Create dataset X, y = data dataset = CNNTextDataset(X=X, y=y, max_filter_size=max_filter_size) # Create dataloaders dataloader = dataset.create_dataloader(batch_size=batch_size) ``` """ def __init__(self, X, y, max_filter_size): self.X = X self.y = y self.max_filter_size = max_filter_size def __len__(self): return len(self.y) def __str__(self): return f"<Dataset(N={len(self)})>" def __getitem__(self, index: int) -> List: X = self.X[index] y = self.y[index] return [X, y] def collate_fn(self, batch: List) -> Tuple: """Processing on a batch. It's used to override the default `collate_fn` in `torch.utils.data.DataLoader`. Args: batch (List): List of inputs and outputs. Returns: Processed inputs and outputs. """ # Get inputs batch = np.array(batch, dtype=object) X = batch[:, 0] y = np.stack(batch[:, 1], axis=0) # Pad inputs X = pad_sequences(sequences=X, max_seq_len=self.max_filter_size) # Cast X = torch.LongTensor(X.astype(np.int32)) y = torch.FloatTensor(y.astype(np.int32)) return X, y def create_dataloader( self, batch_size: int, shuffle: bool = False, drop_last: bool = False ) -> torch.utils.data.DataLoader: """Create dataloaders to load batches with. Usage: ```python # Create dataset X, y = data dataset = CNNTextDataset(X=X, y=y, max_filter_size=max_filter_size) # Create dataloaders dataloader = dataset.create_dataloader(batch_size=batch_size) ``` Args: batch_size (int): Number of samples per batch. shuffle (bool, optional): Shuffle each batch. Defaults to False. drop_last (bool, optional): Drop the last batch if it's less than `batch_size`. Defaults to False. Returns: Torch dataloader to load batches with. """ return torch.utils.data.DataLoader( dataset=self, batch_size=batch_size, collate_fn=self.collate_fn, shuffle=shuffle, drop_last=drop_last, pin_memory=True, ) def compute_features(params: Namespace) -> None: """Compute features to use for training. Args: params (Namespace): Input parameters for operations. """ # Set up utils.set_seed(seed=params.seed) # Load data projects_url = ( "https://raw.githubusercontent.com/GokuMohandas/MadeWithML/main/datasets/projects.json" ) projects = utils.load_json_from_url(url=projects_url) df =
pd.DataFrame(projects)
pandas.DataFrame
""" Unit test suite for OLS and PanelOLS classes """ # pylint: disable-msg=W0212 from __future__ import division from datetime import datetime import unittest import nose import numpy as np from pandas import date_range, bdate_range from pandas.core.panel import Panel from pandas import DataFrame, Index, Series, notnull, datetools from pandas.stats.api import ols from pandas.stats.ols import _filter_data from pandas.stats.plm import NonPooledPanelOLS, PanelOLS from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from common import BaseTest _have_statsmodels = True try: import statsmodels.api as sm except ImportError: try: import scikits.statsmodels.api as sm except ImportError: _have_statsmodels = False def _check_repr(obj): repr(obj) str(obj) def _compare_ols_results(model1, model2): assert(type(model1) == type(model2)) if hasattr(model1, '_window_type'): _compare_moving_ols(model1, model2) else: _compare_fullsample_ols(model1, model2) def _compare_fullsample_ols(model1, model2): assert_series_equal(model1.beta, model2.beta) def _compare_moving_ols(model1, model2): assert_frame_equal(model1.beta, model2.beta) class TestOLS(BaseTest): # TODO: Add tests for OLS y predict # TODO: Right now we just check for consistency between full-sample and # rolling/expanding results of the panel OLS. We should also cross-check # with trusted implementations of panel OLS (e.g. R). # TODO: Add tests for non pooled OLS. @classmethod def setUpClass(cls): try: import matplotlib as mpl mpl.use('Agg', warn=False) except ImportError: pass if not _have_statsmodels: raise nose.SkipTest def testOLSWithDatasets(self): self.checkDataSet(sm.datasets.ccard.load(), skip_moving=True) self.checkDataSet(sm.datasets.cpunish.load(), skip_moving=True) self.checkDataSet(sm.datasets.longley.load(), skip_moving=True) self.checkDataSet(sm.datasets.stackloss.load(), skip_moving=True) self.checkDataSet(sm.datasets.copper.load()) self.checkDataSet(sm.datasets.scotland.load()) # degenerate case fails on some platforms # self.checkDataSet(datasets.ccard.load(), 39, 49) # one col in X all 0s def testWLS(self): X = DataFrame(np.random.randn(30, 4), columns=['A', 'B', 'C', 'D']) Y = Series(np.random.randn(30)) weights = X.std(1) self._check_wls(X, Y, weights) weights.ix[[5, 15]] = np.nan Y[[2, 21]] = np.nan self._check_wls(X, Y, weights) def _check_wls(self, x, y, weights): result = ols(y=y, x=x, weights=1/weights) combined = x.copy() combined['__y__'] = y combined['__weights__'] = weights combined = combined.dropna() endog = combined.pop('__y__').values aweights = combined.pop('__weights__').values exog = sm.add_constant(combined.values, prepend=False) sm_result = sm.WLS(endog, exog, weights=1/aweights).fit() assert_almost_equal(sm_result.params, result._beta_raw) assert_almost_equal(sm_result.resid, result._resid_raw) self.checkMovingOLS('rolling', x, y, weights=weights) self.checkMovingOLS('expanding', x, y, weights=weights) def checkDataSet(self, dataset, start=None, end=None, skip_moving=False): exog = dataset.exog[start : end] endog = dataset.endog[start : end] x = DataFrame(exog, index=np.arange(exog.shape[0]), columns=np.arange(exog.shape[1])) y = Series(endog, index=np.arange(len(endog))) self.checkOLS(exog, endog, x, y) if not skip_moving: self.checkMovingOLS('rolling', x, y) self.checkMovingOLS('rolling', x, y, nw_lags=0) self.checkMovingOLS('expanding', x, y, nw_lags=0) self.checkMovingOLS('rolling', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1, nw_overlap=True) def checkOLS(self, exog, endog, x, y): reference = sm.OLS(endog, sm.add_constant(exog, prepend=False)).fit() result = ols(y=y, x=x) # check that sparse version is the same sparse_result = ols(y=y.to_sparse(), x=x.to_sparse()) _compare_ols_results(result, sparse_result) assert_almost_equal(reference.params, result._beta_raw) assert_almost_equal(reference.df_model, result._df_model_raw) assert_almost_equal(reference.df_resid, result._df_resid_raw) assert_almost_equal(reference.fvalue, result._f_stat_raw[0]) assert_almost_equal(reference.pvalues, result._p_value_raw) assert_almost_equal(reference.rsquared, result._r2_raw) assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw) assert_almost_equal(reference.resid, result._resid_raw) assert_almost_equal(reference.bse, result._std_err_raw)
assert_almost_equal(reference.tvalues, result._t_stat_raw)
pandas.util.testing.assert_almost_equal
import pandas as pd import numpy as np fn = '2019_survey/2019 Kubernetes Contributor Experience Survey PUBLIC.csv' contribute_header = "What areas of Kubernetes do you contribute to? Please check all that apply." blockers_header = "Please rate any challenges to the listed steps of the contribution process" agree_header = "Do you agree with the following statements (1 - strongly disagree, 5 - strongly agree):" attend_header = "Which of the below would make you likely to attend more of the Community Meetings? Check all that apply." most_important_proj_header = "Some of the major projects SIG Contributor Experience is working on are listed below, rank the ones that are most important to you (and/or your SIG)" use_freq_header = "Of our various communications channels, please rate which ones you use and/or check most frequently on a 1-5 scale, where 1 is “never”, 3 is “several times a month” and 5 is “every day”." news_header = "Which of these channels is most likely to reach you first for news about decisions, changes, additions, and/or announcements to the contributor process or community matters?" def map_blocker_and_usefreq_vals(val): try: return int(val) except ValueError: return int(val[0]) def process_header(df): columns = list(df.columns) new_columns = [None]*len(columns) for i, col in enumerate(columns): if col[1].startswith("Unnamed") or col[1] == "Response": new_columns[i] = col[0] continue # Find the starting column for the multilabel responses (checkboxes) # that were also in the 2018 survey if col[0] == blockers_header: blockers_i = i elif col[0] == contribute_header: contribute_i = i elif col[0] == news_header: news_i = i elif col[0] == use_freq_header: use_freq_i = i elif col[0] == most_important_proj_header: most_important_proj_i = i elif col[0] == agree_header: # Starting columns for multilabel responses that weren't in the 2018 survey. agree_i = i elif col[0] == attend_header: attend_i = i #elif col[0] == unattendance_header: # unattendance_i = i else: # Handle open ended responses new_columns[i] = col[0] def prefix_cols(header, header_i, prefix): i = header_i while i < len(columns) and (columns[i][0].startswith("Unnamed") or columns[i][0] == header): new_columns[i] = "{} {}".format(prefix, columns[i][1]) i += 1 prefix_cols(contribute_header, contribute_i, "Contribute:") prefix_cols(blockers_header, blockers_i, "Blocker:") prefix_cols(news_header, news_i, "Check for news:") prefix_cols(use_freq_header, use_freq_i, "Use freq:") prefix_cols(most_important_proj_header, most_important_proj_i, "Most Important Project:") prefix_cols(agree_header, agree_i, "Agree:") prefix_cols(attend_header, attend_i, "Would attend if:") df.columns = new_columns def get_df(file_name=None): fn = '2019_survey/2019 Kubernetes Contributor Experience Survey PUBLIC.csv' if file_name: fn = file_name df =
pd.read_csv(fn, header=[0,1], skipinitialspace=True)
pandas.read_csv
import pandas as pd import os from sqlalchemy import create_engine print("Reading csv files") files=[] for r, d, f in os.walk("./data"): for file in f: if (not '.zip' in file) and (not '.db' in file): files.append(os.path.join(r, file)) df = pd.concat([pd.read_csv(f) for f in files],sort=True) df['start_time']=pd.to_datetime(df['start_time']) df['end_time']=pd.to_datetime(df['end_time']) froms=df[['from_station_id','from_station_name']] froms.columns=['id','name'] tos=df[['to_station_id','to_station_name']] tos.columns=['id','name'] all_stations = pd.concat([froms,tos],sort=True).drop_duplicates() starts = df[['from_station_id','start_time']] starts['action']=-1 starts.columns = ['id','time','action'] ends = df[['to_station_id','end_time']] ends['action']=1 ends.columns = ['id','time','action'] availability=
pd.concat([starts,ends],sort=True)
pandas.concat
"""corpkit: multiprocessing of interrogations""" from __future__ import print_function def pmultiquery(corpus, search, show='words', query='any', sort_by='total', save=False, multiprocess='default', root=False, note=False, print_info=True, subcorpora=False, **kwargs ): """ - Parallel process multiple queries or corpora. - This function is used by corpkit.interrogator.interrogator() - for multiprocessing. - There's no reason to call this function yourself. """ import os from pandas import DataFrame, Series import pandas as pd import collections from collections import namedtuple, OrderedDict from time import strftime, localtime import corpkit from corpkit.interrogator import interrogator from corpkit.interrogation import Interrogation, Interrodict from corpkit.process import canpickle try: from joblib import Parallel, delayed except ImportError: pass import multiprocessing locs = locals() for k, v in kwargs.items(): locs[k] = v in_notebook = locs.get('in_notebook') def best_num_parallel(num_cores, num_queries): """decide how many parallel processes to run the idea, more or less, is to balance the load when possible""" import corpkit if num_queries <= num_cores: return num_queries if num_queries > num_cores: if (num_queries / num_cores) == num_cores: return int(num_cores) if num_queries % num_cores == 0: try: return max([int(num_queries / n) for n in range(2, num_cores) \ if int(num_queries / n) <= num_cores]) except ValueError: return num_cores else: import math if (float(math.sqrt(num_queries))).is_integer(): square_root = math.sqrt(num_queries) if square_root <= num_queries / num_cores: return int(square_root) return num_cores num_cores = multiprocessing.cpu_count() # what is our iterable? ... multiple = kwargs.get('multiple', False) mult_corp_are_subs = False if hasattr(corpus, '__iter__'): if all(getattr(x, 'level', False) == 's' for x in corpus): mult_corp_are_subs = True non_first_sub = None if subcorpora: non_first_sub = subcorpora[1:] if isinstance(subcorpora, list) else None subval = subcorpora if not non_first_sub else subcorpora[0] #print(subcorpora, non_first_sub, subval) if subcorpora is True: import re subcorpora = re.compile(r'.*') else: # strange travis error happened here subcorpora = corpus.metadata['fields'][subval] if len(subcorpora) == 0: print('No %s metadata found.' % str(subval)) return mapcores = {'datalist': [corpus, 'corpus'], 'multiplecorpora': [corpus, 'corpus'], 'namedqueriessingle': [query, 'query'], 'namedqueriesmultiple': [search, 'search'], 'subcorpora': [subcorpora, 'subcorpora']} # a is a dummy, just to produce default one toiter, itsname = mapcores.get(multiple, [False, False]) if isinstance(toiter, dict): toiter = toiter.items() denom = len(toiter) num_cores = best_num_parallel(num_cores, denom) # todo: code below makes no sense vals = ['eachspeaker', 'multiplespeaker', 'namedqueriesmultiple'] if multiple == 'multiplecorpora' and any(x is True for x in vals): from corpkit.corpus import Corpus, Corpora if isinstance(corpus, Corpora): multiprocess = False else: corpus = Corpus(corpus) if isinstance(multiprocess, int): num_cores = multiprocess if multiprocess is False: num_cores = 1 # make sure saves are right type if save is True: raise ValueError('save must be string when multiprocessing.') # make a list of dicts to pass to interrogator, # with the iterable unique in every one locs['printstatus'] = False locs['multiprocess'] = False locs['df1_always_df'] = False locs['files_as_subcorpora'] = False locs['corpus'] = corpus if multiple == 'multiplespeaker': locs['multispeaker'] = True if isinstance(non_first_sub, list) and len(non_first_sub) == 1: non_first_sub = non_first_sub[0] # make the default query locs = {k: v for k, v in locs.items() if canpickle(v)} # make a new dict for every iteration ds = [dict(**locs) for i in range(denom)] for index, (d, bit) in enumerate(zip(ds, toiter)): d['paralleling'] = index if multiple in ['namedqueriessingle', 'namedqueriesmultiple']: d[itsname] = bit[1] d['outname'] = bit[0] elif multiple in ['multiplecorpora', 'datalist']: d['outname'] = bit.name.replace('-parsed', '') d[itsname] = bit elif multiple in ['subcorpora']: d[itsname] = bit jmd = {subval: bit} # put this earlier j2 = kwargs.get('just_metadata', False) if not j2: j2 = {} jmd.update(j2) d['just_metadata'] = jmd d['outname'] = bit d['by_metadata'] = False d['subcorpora'] = non_first_sub if non_first_sub: d['print_info'] = False # message printer should be a function... if kwargs.get('conc') is False: message = 'Interrogating' elif kwargs.get('conc') is True: message = 'Interrogating and concordancing' elif kwargs.get('conc').lower() == 'only': message = 'Concordancing' time = strftime("%H:%M:%S", localtime()) from corpkit.process import dictformat if print_info: # proper printing for plurals # in truth this needs to be revised, it's horrible. sformat = dictformat(search, query) if num_cores == 1: add_es = '' else: add_es = 'es' if multiple in ['multiplecorpora', 'datalist']: corplist = "\n ".join([i.name for i in list(corpus)[:20]]) if len(corpus) > 20: corplist += '\n ... and %d more ...\n' % (len(corpus) - 20) print(("\n%s: Beginning %d corpus interrogations (in %d parallel process%s):\n %s" \ "\n Query: %s\n %s corpus ... \n" % (time, len(corpus), num_cores, add_es, corplist, sformat, message))) elif multiple == 'namedqueriessingle': print(("\n%s: Beginning %d corpus interrogations (in %d parallel process%s): %s" \ "\n Queries: %s\n %s corpus ... \n" % (time, len(query), num_cores, add_es, corpus.name, sformat, message) )) elif multiple == 'namedqueriesmultiple': print(("\n%s: Beginning %d corpus interrogations (in %d parallel process%s): %s" \ "\n Queries: %s\n %s corpus ... \n" % (time, len(list(search.keys())), num_cores, add_es, corpus.name, sformat, message))) elif multiple in ['eachspeaker', 'multiplespeaker']: print(("\n%s: Beginning %d parallel corpus interrogation%s: %s" \ "\n Query: %s\n %s corpus ... \n" % (time, num_cores, add_es.lstrip('e'), corpus.name, sformat, message) )) elif multiple in ['subcorpora']: print(("\n%s: Beginning %d parallel corpus interrogation%s: %s" \ "\n Query: %s\n %s corpus ... \n" % (time, num_cores, add_es.lstrip('e'), corpus.name, sformat, message) )) # run in parallel, get either a list of tuples (non-c option) # or a dataframe (c option) #import sys #reload(sys) #stdout=sys.stdout failed = False terminal = False used_joblib = False #ds = ds[::-1] #todo: the number of blank lines to print can be way wrong if not root and print_info: from blessings import Terminal terminal = Terminal() print('\n' * (len(ds) - 2)) for dobj in ds: linenum = dobj['paralleling'] # this try handles nosetest problems in sublime text try: with terminal.location(0, terminal.height - (linenum + 1)): # this is a really bad idea. thetime = strftime("%H:%M:%S", localtime()) num_spaces = 26 - len(dobj['outname']) print('%s: QUEUED: %s' % (thetime, dobj['outname'])) except: pass if not root and multiprocess: try: res = Parallel(n_jobs=num_cores)(delayed(interrogator)(**x) for x in ds) used_joblib = True except: failed = True print('Multiprocessing failed.') raise if not res: failed = True else: res = [] for index, d in enumerate(ds): d['startnum'] = (100 / denom) * index res.append(interrogator(**d)) try: res = sorted([i for i in res if i]) except: pass # remove unpicklable bits from query from types import ModuleType, FunctionType, BuiltinMethodType, BuiltinFunctionType badtypes = (ModuleType, FunctionType, BuiltinFunctionType, BuiltinMethodType) qlocs = {k: v for k, v in locs.items() if not isinstance(v, badtypes)} if hasattr(qlocs.get('corpus', False), 'name'): qlocs['corpus'] = qlocs['corpus'].path else: qlocs['corpus'] = list([i.path for i in qlocs.get('corpus', [])]) # return just a concordance from corpkit.interrogation import Concordance if kwargs.get('conc') == 'only': concs =
pd.concat([x for x in res])
pandas.concat
import datetime import logging import pandas as pd import pytest import awswrangler as wr from awswrangler.s3._merge_upsert_table import _is_data_quality_sufficient, merge_upsert_table logger = logging.getLogger("awswrangler") logger.setLevel(logging.DEBUG) def test_is_data_quality_sufficient_check_column_names(): # Check both table have the same columns existing_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) delta_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) primary_key = ["col_a", "col_b"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) def test_is_data_quality_sufficient_mistmatch_column_names(): # Check both dataframe have the same columns. # In this case they are different thus it should fail existing_df = pd.DataFrame({"c0": [1, 2, 1, 2], "c1": [1, 2, 1, 2], "c2": [2, 1, 2, 1]}) delta_df = pd.DataFrame({"d0": [1, 2, 1, 2], "d1": [1, 2, 1, 2], "c2": [2, 1, 2, 1]}) primary_key = ["c0", "c1"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is False def test_is_data_quality_sufficient_same_column_names_different_row_count(): # Check both table have the same columns and existing_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], columns=["col_a", "col_b", "col_c"]) delta_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) primary_key = ["col_a", "col_b"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is True def test_is_data_quality_sufficient_missing_primary_key(): # Check both tables have the same primary key existing_df = pd.DataFrame({"c0": [1, 2, 1], "c1": [1, 2, 1], "c2": [2, 1, 1]}) delta_df = pd.DataFrame({"c0": [1, 2, 1, 2]}) primary_key = ["c0", "c1"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is False def test_is_data_quality_sufficient_fail_for_duplicate_data(): # Check for duplicate data inside the dataframe existing_df =
pd.DataFrame([[1, 2, 3], [1, 2, 3], [7, 8, 9], [10, 11, 12]], columns=["col_a", "col_b", "col_c"])
pandas.DataFrame
import os import warnings import pandas as pd import numpy as np import sys from rpy2.robjects import r, pandas2ri, numpy2ri from .univariate_statistical_analysis import univariate_analysis from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from sklearn.cluster import FeatureAgglomeration from scipy.cluster.hierarchy import linkage, cut_tree from scipy.spatial.distance import squareform pandas2ri.activate() numpy2ri.activate() class DimensionalityReduction(BaseEstimator): """A general class to handle dimensionality reduction. Parameters ---------- method: str or transform Method used to compute dimensionality reduction. Either str or callable If str inbuild function named as str is called, must be one of following: 'hierarchical_clust_parmar': Consensus Clustering with hierarchical clustering as described in : Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer. Parmar et al., Scientific Reports, 2015 'hierarchical_clust_leger': Hierarchical clustering as described in : A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Leger et al., Scientific Reports, 2017 If transform method must inherit from TransformMixin (like sklearn transformers) or have a fit + a transform method that will be called successively with the latter returning the reduce dataset. Ex : str: method = 'hierarchical_clust_leger' transform: method = sklearn.decomposition.PCA(n_components=0.95, solver='svd_full') corr_metric: str Correlation metric used to compute distance between features threshold: float Correlation threshold used assign clusters to feature. Tree will be cut at a height of 1 - threshold cluster_reduction: str Method used to combine features in the same cluster. Currently implemented : mean and medoid """ dr_methods = ['hierarchical_clust_parmar', 'hierarchical_clust_leger'] cluster_reduction_methods = ['mean', 'medoid'] def __init__(self, method='hierarchical_clust_leger', corr_metric='spearman', threshold=0.9, cluster_reduction='mean'): self.method = method self.corr_metric = corr_metric self.threshold = threshold self.cluster_reduction = cluster_reduction self.is_reduced = False self.is_fitted = True @staticmethod def _check_X_Y(X, y): # Check X if not isinstance(X, (list, tuple, np.ndarray)): if isinstance(X, pd.DataFrame) or isinstance(X, pd.Series): X = X.to_numpy() else: raise TypeError('X array must be an array like or pandas Dataframe/Series') else: X = np.array(X) if len(X.shape) != 2: raise ValueError('X array must 2D') # Check y if y is not None: if not isinstance(y, (list, tuple, np.ndarray)): if isinstance(y, pd.DataFrame) or isinstance(y, pd.Series): y = y.to_numpy() else: raise TypeError('y array must be an array like or pandas Dataframe/Series') else: y = np.array(y) if len(y.shape) != 1: if len(y.shape) == 2 and y.shape[1] == 1: y.reshape(-1) else: raise ValueError('y array must be 1D or 2D with second dimension equal to 1') if len(np.unique(y)) <= 1: raise ValueError('y array must have at least 2 classes') return X, y def _get_dr_func(self): if isinstance(self.method, TransformerMixin) or (hasattr(self.method, 'fit') and hasattr(self.method, 'transform')): return self.method elif isinstance(self.method, str): method_name = self.method.lower() if method_name not in self.dr_methods: raise ValueError('If string method must be one of : {0}. ' '%s was passed'.format(str(self.dr_methods), self.method)) return getattr(self, self.method) else: raise TypeError('method argument must be a callable or a string') @staticmethod def _get_medoid(n_k, distance_matrix, cluster_labels): df_distance_matrix = pd.DataFrame(distance_matrix) cluster_distance_matrix = df_distance_matrix.loc[cluster_labels == n_k, cluster_labels == n_k] return cluster_distance_matrix.sum(axis=0).idxmin() def hierarchical_clust_parmar(self, X, y=None): """ Consensus Clustering with hierarchical clustering as described in : Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer. Parmar et al., Scientific Reports, 2015 """ df = pd.DataFrame(X) r_df = pandas2ri.py2ri(df) cwd = os.path.dirname(sys.argv[0]) r.setwd(cwd) r.source('./Statistical_analysis/R_scripts/hierarchical_clustering_Parmar.R') if self.cluster_reduction in self.cluster_reduction_methods: r_dr_results = r.hierarchical_clustering_parmar(r_df, max_k=20, threshold=1 - self.threshold, corr_metric=self.corr_metric, cluster_reduction=self.cluster_reduction) else: raise ValueError('cluster_reduction must be one of : %s. ' '%s was passed' % (self.cluster_reduction_methods, self.cluster_reduction)) R_object_dict = {} keys = r_dr_results.names for i in range(len(keys)): R_object_dict[keys[i]] = np.array(r_dr_results[i]) dr_results = pd.DataFrame(R_object_dict).to_numpy() self.cluster_labels = dr_results[:, 0] nb_cluster = np.amax(dr_results[:, 0]).astype(int) coefficient_matrix = np.zeros((dr_results.shape[0], nb_cluster)) # Shape of (n_features, nb cluster) for i in range(nb_cluster): coefficient_matrix[:, i] = np.where(dr_results[:, 0] == i + 1, dr_results[:, 1], 0) coefficient_matrix = coefficient_matrix.T return coefficient_matrix def hierarchical_clust_leger(self, X, y=None): """ Hierarchical clustering as described in : A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Leger et al., Scientific Reports, 2017 """ # df = pd.DataFrame(X) # r_df = pandas2ri.py2ri(df) # cwd = os.path.dirname(sys.argv[0]) # r.setwd(cwd) # r.source('./Statistical_analysis/R_scripts/hierarchical_clustering_Leger.R') # r_dr_results = r.hierarchical_clustering_leger(r_df) # R_object_dict = {} # keys = r_dr_results.names # for i in range(len(keys)): # R_object_dict[keys[i]] = np.array(r_dr_results[i]) # dr_results = pd.DataFrame(R_object_dict).to_numpy() # nb_cluster = np.amax(dr_results[:, 0]).astype(int) # coefficient_matrix = np.zeros((dr_results.shape[0], nb_cluster)) # Shape of (n_features, nb cluster) # for i in range(nb_cluster): # coefficient_matrix[:, i] = np.where(dr_results[:, 0] == i + 1, dr_results[:, 1], 0) # coefficient_matrix = coefficient_matrix.T dissimilarity_matrix = 1 - np.abs(
pd.DataFrame(X)
pandas.DataFrame
#!/usr/bin/python ''' Credits: ------- Author: <NAME> (@rahulrajpl) License: MIT License 2020 Reference: ---------- [1] https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python/notebook [2] https://coolsymbol.com/emojis ''' import streamlit as st import pandas as pd import numpy as np import time, os import seaborn as sns import pandas_profiling import webbrowser import codecs from matplotlib import pyplot as plt def main(): st.title('📊WExDA') st.subheader('Web based tool for Exploratory Data Analysis' ) @st.cache(persist=True) def load_data(uploaded_file): df =
pd.read_csv(uploaded_file)
pandas.read_csv
import numpy as np import pandas as pd import pytest from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.feature_selection import ( f_regression, SelectKBest, SelectFromModel, ) from sklearn.linear_model import Lasso from sklearn.datasets import load_boston from feature_engine.wrappers import SklearnTransformerWrapper def test_sklearn_imputer_numeric_with_constant(df_na): variables_to_impute = ["Age", "Marks"] na_variables_left_after_imputation = [ col for col in df_na.loc[:, df_na.isna().any()].columns if col not in variables_to_impute ] transformer = SklearnTransformerWrapper( transformer=SimpleImputer(fill_value=-999, strategy="constant"), variables=variables_to_impute, ) # transformed dataframe ref = df_na.copy() ref[variables_to_impute] = ref[variables_to_impute].fillna(-999) dataframe_na_transformed = transformer.fit_transform(df_na) # init params assert isinstance(transformer.transformer, SimpleImputer) assert transformer.variables == variables_to_impute # fit params assert transformer.input_shape_ == (8, 6) # transformed output assert all( dataframe_na_transformed[na_variables_left_after_imputation].isna().sum() != 0 ) assert all(dataframe_na_transformed[variables_to_impute].isna().sum() == 0) pd.testing.assert_frame_equal(ref, dataframe_na_transformed) def test_sklearn_imputer_object_with_constant(df_na): variables_to_impute = ["Name", "City"] na_variables_left_after_imputation = [ col for col in df_na.loc[:, df_na.isna().any()].columns if col not in variables_to_impute ] transformer = SklearnTransformerWrapper( transformer=SimpleImputer(fill_value="missing", strategy="constant"), variables=variables_to_impute, ) # transformed dataframe ref = df_na.copy() ref[variables_to_impute] = ref[variables_to_impute].fillna("missing") dataframe_na_transformed = transformer.fit_transform(df_na) # init params assert isinstance(transformer.transformer, SimpleImputer) assert transformer.variables == variables_to_impute # fit params assert transformer.input_shape_ == (8, 6) # transformed output assert all( dataframe_na_transformed[na_variables_left_after_imputation].isna().sum() != 0 ) assert all(dataframe_na_transformed[variables_to_impute].isna().sum() == 0) pd.testing.assert_frame_equal(ref, dataframe_na_transformed) def test_sklearn_imputer_allfeatures_with_constant(df_na): transformer = SklearnTransformerWrapper( transformer=SimpleImputer(fill_value="missing", strategy="constant") ) # transformed dataframe ref = df_na.copy() ref = ref.fillna("missing") dataframe_na_transformed = transformer.fit_transform(df_na) # init params assert isinstance(transformer.transformer, SimpleImputer) # fit params assert transformer.input_shape_ == (8, 6) # transformed output assert all(dataframe_na_transformed.isna().sum() == 0) pd.testing.assert_frame_equal(ref, dataframe_na_transformed) def test_sklearn_standardscaler_numeric(df_vartypes): variables_to_scale = ["Age", "Marks"] transformer = SklearnTransformerWrapper( transformer=StandardScaler(), variables=variables_to_scale ) ref = df_vartypes.copy() ref[variables_to_scale] = ( ref[variables_to_scale] - ref[variables_to_scale].mean() ) / ref[variables_to_scale].std(ddof=0) transformed_df = transformer.fit_transform(df_vartypes) # init params assert isinstance(transformer.transformer, StandardScaler) assert transformer.variables == variables_to_scale # fit params assert transformer.input_shape_ == (4, 5) assert (transformer.transformer.mean_.round(6) == np.array([19.5, 0.75])).all() assert all(transformer.transformer.scale_.round(6) == [1.118034, 0.111803])
pd.testing.assert_frame_equal(ref, transformed_df)
pandas.testing.assert_frame_equal
import math import string from typing import Optional, Sequence, Tuple import hypothesis.strategies as st import numpy as np import pandas as pd import pandas.testing as tm import pyarrow as pa import pytest from hypothesis import example, given, settings import fletcher as fr from fletcher.testing import examples try: # Only available in pandas 1.2+ # When this class is defined, we can also use `.str` on fletcher columns. from pandas.core.strings.object_array import ObjectStringArrayMixin # noqa F401 _str_accessors = ["str", "fr_str"] except ImportError: _str_accessors = ["fr_str"] @pytest.fixture(params=_str_accessors, scope="module") def str_accessor(request): return request.param @st.composite def string_patterns_st(draw, max_len=50) -> Tuple[Sequence[Optional[str]], str, int]: ab_charset_st = st.sampled_from("ab") ascii_charset_st = st.sampled_from(string.ascii_letters) charset_st = st.sampled_from((ab_charset_st, ascii_charset_st)) charset = draw(charset_st) fixed_pattern_st = st.sampled_from(["a", "aab", "aabaa"]) generated_pattern_st = st.text(alphabet=charset, max_size=max_len) pattern_st = st.one_of(fixed_pattern_st, generated_pattern_st) pattern = draw(pattern_st) min_str_size = 0 if len(pattern) > 0 else 1 raw_str_st = st.one_of( st.none(), st.lists(charset, min_size=min_str_size, max_size=max_len) ) raw_seq_st = st.lists(raw_str_st, max_size=max_len) raw_seq = draw(raw_seq_st) for s in raw_seq: if s is None: continue """ There seems to be a bug in pandas for this edge case >>> pd.Series(['']).str.replace('', 'abc', n=1) 0 dtype: object But >>> pd.Series(['']).str.replace('', 'abc') 0 abc dtype: object I believe the second result is the correct one and this is what the fletcher implementation returns. """ max_ind = len(s) - len(pattern) if max_ind < 0: continue repl_ind_st = st.integers(min_value=0, max_value=max_ind) repl_ind_list_st = st.lists(repl_ind_st, max_size=math.ceil(max_len / 10)) repl_ind_list = draw(repl_ind_list_st) for j in repl_ind_list: s[j : j + len(pattern)] = pattern seq = ["".join(s) if s is not None else None for s in raw_seq] offset = draw(st.integers(min_value=0, max_value=len(seq))) return (seq, pattern, offset) string_patterns = pytest.mark.parametrize( "data, pat", [ ([], ""), (["a", "b"], ""), (["aa", "ab", "ba"], "a"), (["aa", "ab", "ba", "bb", None], "a"), (["aa", "ab", "ba", "bb", None], "A"), (["aa", "ab", "bA", "bB", None], "a"), (["aa", "AB", "ba", "BB", None], "A"), ], ) def _fr_series_from_data(data, fletcher_variant, dtype=pa.string()): arrow_data = pa.array(data, type=dtype) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) return pd.Series(fr_array) @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_text_cat(data, str_accessor, fletcher_variant, fletcher_variant_2): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) ser_fr = _fr_series_from_data(data, fletcher_variant) ser_fr_other = _fr_series_from_data(data, fletcher_variant_2) result_pd = ser_pd.str.cat(ser_pd) result_fr = getattr(ser_fr, str_accessor).cat(ser_fr_other) result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan tm.assert_series_equal(result_fr, result_pd) def _check_series_equal(result_fr, result_pd): result_fr = result_fr.astype(result_pd.dtype) tm.assert_series_equal(result_fr, result_pd) def _check_str_to_t( t, func, data, str_accessor, fletcher_variant, test_offset=0, *args, **kwargs ): """Check a .str. function that returns a series with type t.""" tail_len = len(data) - test_offset ser_pd = pd.Series(data, dtype=str).tail(tail_len) result_pd = getattr(ser_pd.str, func)(*args, **kwargs) ser_fr = _fr_series_from_data(data, fletcher_variant).tail(tail_len) result_fr = getattr(getattr(ser_fr, str_accessor), func)(*args, **kwargs) _check_series_equal(result_fr, result_pd) def _check_str_to_str(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(str, func, data, str_accessor, fletcher_variant, *args, **kwargs) def _check_str_to_bool(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(bool, func, data, str_accessor, fletcher_variant, *args, **kwargs) @string_patterns def test_text_endswith(data, pat, str_accessor, fletcher_variant): _check_str_to_bool("endswith", data, str_accessor, fletcher_variant, pat=pat) @string_patterns def test_text_startswith(data, pat, str_accessor, fletcher_variant): _check_str_to_bool("startswith", data, str_accessor, fletcher_variant, pat=pat) @string_patterns def test_contains_no_regex(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=False ) @pytest.mark.parametrize( "data, pat, expected", [ ([], "", []), (["a", "b"], "", [True, True]), (["aa", "Ab", "ba", "bb", None], "a", [True, False, True, False, None]), ], ) def test_contains_no_regex_ascii(data, pat, expected, str_accessor, fletcher_variant): if str_accessor == "str": pytest.skip( "return types not stable yet, might sometimes return null instead of bool" ) return fr_series = _fr_series_from_data(data, fletcher_variant) fr_expected = _fr_series_from_data(expected, fletcher_variant, pa.bool_()) # Run over slices to check offset handling code for i in range(len(data)): ser = fr_series.tail(len(data) - i) expected = fr_expected.tail(len(data) - i) result = getattr(ser, str_accessor).contains(pat, regex=False) tm.assert_series_equal(result, expected) @settings(deadline=None) @given(data_tuple=string_patterns_st()) def test_contains_no_regex_case_sensitive(data_tuple, str_accessor, fletcher_variant): data, pat, test_offset = data_tuple _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, test_offset=test_offset, pat=pat, case=True, regex=False, ) @string_patterns def test_contains_no_regex_ignore_case(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=False, case=False, ) regex_patterns = pytest.mark.parametrize( "data, pat", [ ([], ""), (["a", "b"], ""), (["aa", "ab", "ba"], "a"), (["aa", "ab", "ba", None], "a"), (["aa", "ab", "ba", None], "a$"), (["aa", "ab", "ba", None], "^a"), (["Aa", "ab", "ba", None], "A"), (["aa", "AB", "ba", None], "A$"), (["aa", "AB", "ba", None], "^A"), ], ) @regex_patterns def test_contains_regex(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=True ) @regex_patterns def test_contains_regex_ignore_case(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=True, case=False, ) @settings(deadline=None) @given( data_tuple=string_patterns_st(), n=st.integers(min_value=0, max_value=10), repl=st.sampled_from(["len4", "", "z"]), ) @example( data_tuple=(["aababaa"], "aabaa", 0), repl="len4", n=1, fletcher_variant="continuous", ) @example(data_tuple=(["aaa"], "a", 0), repl="len4", n=1, fletcher_variant="continuous") def test_replace_no_regex_case_sensitive( data_tuple, repl, n, str_accessor, fletcher_variant ): data, pat, test_offset = data_tuple _check_str_to_str( "replace", data, str_accessor, fletcher_variant, test_offset=test_offset, pat=pat, repl=repl, n=n, case=True, regex=False, ) @settings(deadline=None) @given(data_tuple=string_patterns_st()) @example(data_tuple=(["a"], "", 0), fletcher_variant="chunked") def test_count_no_regex(data_tuple, str_accessor, fletcher_variant): """Check a .str. function that returns a series with type t.""" data, pat, test_offset = data_tuple tail_len = len(data) - test_offset ser_pd = pd.Series(data, dtype=str).tail(tail_len) result_pd = getattr(ser_pd.str, "count")(pat=pat) ser_fr = _fr_series_from_data(data, fletcher_variant).tail(tail_len) kwargs = {} if str_accessor.startswith("fr_"): kwargs["regex"] = False result_fr = getattr(ser_fr, str_accessor).count(pat=pat, **kwargs) _check_series_equal(result_fr, result_pd) def _optional_len(x: Optional[str]) -> int: if x is not None: return len(x) else: return 0 @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_text_zfill(data, str_accessor, fletcher_variant): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) max_str_len = ser_pd.map(_optional_len).max() if pd.isna(max_str_len): max_str_len = 0 arrow_data = pa.array(data, type=pa.string()) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) ser_fr = pd.Series(fr_array) result_pd = ser_pd.str.zfill(max_str_len + 1) result_fr = getattr(ser_fr, str_accessor).zfill(max_str_len + 1) result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan tm.assert_series_equal(result_fr, result_pd) @settings(deadline=None, max_examples=3) @given(data=st.lists(st.one_of(st.text(), st.none()))) @examples( example_list=[ [ " 000000000000000000000000000000000000000000İࠀࠀࠀࠀ𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐤱000000000000𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀" ], ["\x80 "], [], ], example_kword="data", ) def test_text_strip_offset(str_accessor, fletcher_variant, fletcher_slice_offset, data): _do_test_text_strip(str_accessor, fletcher_variant, fletcher_slice_offset, data) @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) @examples( example_list=[ [], [""], [None], [" "], ["\u2000"], [" a"], ["a "], [" a "], # https://github.com/xhochy/fletcher/issues/174 ["\xa0"], ["\u2000a\u2000"], ["\u2000\u200C\u2000"], ["\n\u200C\r"], ["\u2000\x80\u2000"], ["\t\x80\x0b"], ["\u2000\u10FFFF\u2000"], [" \u10FFFF "], ] + [ [c] for c in " \t\r\n\x1f\x1e\x1d\x1c\x0c\x0b" "\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2000\u2009\u200A\u200B\u2028\u2029\u202F\u205F" ] + [[chr(c)] for c in range(0x32)] + [[chr(c)] for c in range(0x80, 0x85)] + [[chr(c)] for c in range(0x200C, 0x2030)] + [[chr(c)] for c in range(0x2060, 0x2070)] + [[chr(c)] for c in range(0x10FFFE, 0x110000)], example_kword="data", ) def test_text_strip(str_accessor, fletcher_variant, data): _do_test_text_strip(str_accessor, fletcher_variant, 1, data) def _do_test_text_strip(str_accessor, fletcher_variant, fletcher_slice_offset, data): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) arrow_data = pa.array( [None for _ in range(fletcher_slice_offset)] + data, type=pa.string() ) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) ser_fr = pd.Series(fr_array[fletcher_slice_offset:]) result_pd = ser_pd.str.strip() result_fr = getattr(ser_fr, str_accessor).strip() result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan result_pd[result_pd.isna()] = np.nan tm.assert_series_equal(result_fr, result_pd) def test_fr_str_accessor(fletcher_array): data = ["a", "b"] ser_pd = pd.Series(data) # object series is returned s = ser_pd.fr_str.encode("utf8") assert s.dtype == np.dtype("O") # test fletcher functionality and fallback to pandas arrow_data = pa.array(data, type=pa.string()) fr_array = fletcher_array(arrow_data) ser_fr = pd.Series(fr_array) # pandas strings only method s = ser_fr.fr_str.encode("utf8") assert isinstance(s.values, fr.FletcherBaseArray) def test_fr_str_accessor_fail(fletcher_variant): data = [1, 2] ser_pd = pd.Series(data) with pytest.raises(Exception): ser_pd.fr_str.startswith("a") @pytest.mark.parametrize("regex", ["([0-9]+)", "([0-9]+)\\+([a-z]+)*"]) @pytest.mark.parametrize( "data", [["123+"], ["123+a"], ["123+a", "123+"], ["123+", "123+a"]] ) def test_text_extractall(str_accessor, fletcher_variant, data, regex): if str_accessor == "str": pytest.skip("extractall is not yet dispatched to the ExtensionArray") return ser_fr = _fr_series_from_data(data, fletcher_variant) result_fr = getattr(ser_fr, str_accessor).extractall(regex) assert isinstance(result_fr[0].dtype, fr.FletcherBaseDtype) ser_pd = pd.Series(data) result_pd = ser_pd.str.extractall(regex) tm.assert_frame_equal(result_pd, result_fr.astype(object)) @pytest.mark.parametrize("data", [["123"], ["123+"], ["123+a+", "123+"]]) @pytest.mark.parametrize("expand", [True, False]) def test_text_split(str_accessor, fletcher_variant, data, expand): ser_fr = _fr_series_from_data(data, fletcher_variant) result_fr = getattr(ser_fr, str_accessor).split("+", expand=expand) ser_pd = pd.Series(data) result_pd = ser_pd.str.split("+", expand=expand) if expand: tm.assert_frame_equal(result_pd, result_fr.astype(object)) else: tm.assert_series_equal(result_pd, result_fr.astype(object)) @settings(deadline=None) @given( data=st.lists(st.one_of(st.text(), st.none())), slice_=st.tuples(st.integers(-20, 20), st.integers(-20, 20), st.integers(-20, 20)), ) def test_slice(data, slice_, str_accessor, fletcher_variant): if slice_[2] == 0: pytest.raises(ValueError) return if data == [None] or data == [""]: return ser_fr = _fr_series_from_data(data, fletcher_variant) result_fr = getattr(ser_fr, str_accessor).slice(*slice_) result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan ser_pd = pd.Series(data, dtype=object) result_pd = ser_pd.str.slice(*slice_)
tm.assert_series_equal(result_fr, result_pd)
pandas.testing.assert_series_equal
import os, math import _pickle as pickle from datetime import datetime, timedelta import numpy as np import pandas as pd from sklearn import preprocessing import argparse parser = argparse.ArgumentParser() parser.add_argument('--data-folder', default='data', help='Parent dir of the dataset') parser.add_argument('--file-name', default='electricity.csv', help='Directory containing data.csv') parser.add_argument('--pickle-name', default='electricity.pkl', help='Directory containing data.csv') parser.add_argument('--horizon', type=int, default=24, help='Forecast horizon. Default=24') parser.add_argument('--test', action='store_true', help='whenever to use test set only.') parser.add_argument('--hop', action='store_true', help='Whether to use test set for validation') # default=False if __name__ == '__main__': args = parser.parse_args() ### load the data dir_path = args.data_folder # './data' file_name = args.file_name if file_name=='electricity.csv': train_start = '2012-01-01 00:00:00' if args.test: train_end = '2013-10-19 23:00:00' test_start = '2014-05-20 00:00:00' #need additional 7 days as given info test_end = '2014-12-31 23:00:00' elif args.hop: train_end = '2012-04-30 23:00:00' test_start = '2012-04-24 00:00:00' test_end = '2012-05-31 23:00:00' else: train_end = '2013-10-19 23:00:00' test_start = '2013-10-20 00:00:00' #need additional 7 days as given info test_end = '2014-12-31 23:00:00' elif 'europe_power_system' in file_name: train_start = '2015-01-01 00:00:00' if args.test: train_end = '2017-01-15 23:00:00' test_start = '2017-06-17 00:00:00' #need additional 7 days as given info test_end = '2017-11-30 23:00:00' elif args.hop: train_end = '2015-04-30 23:00:00' test_start = '2015-04-24 00:00:00' #need additional 7 days as given info test_end = '2015-05-31 23:00:00' else: train_end = '2017-01-15 23:00:00' test_start = '2017-01-16 00:00:00' #need additional 7 days as given info test_end = '2017-11-30 23:00:00' df = pd.read_csv(os.path.join(dir_path, file_name), sep=",", index_col=0, parse_dates=True, decimal='.') df = df.reset_index() df = df.drop([df.columns[0]], axis=1).transpose() dt = df.rename(columns=df.iloc[0]).values #.drop(df.index[0]) ## The date range date_list = pd.date_range(start=train_start, end=test_end) date_list = pd.to_datetime(date_list) yr = int(date_list.year[0]) hour_list = [] for nDate in date_list: for nHour in range(24): tmp_timestamp = nDate+timedelta(hours=nHour) hour_list.append(tmp_timestamp) hour_list = np.array(hour_list) #print('hour_list', hour_list.shape[0]) #print('dt.shape[0]', dt.shape[0]) station_index = list(range(dt.shape[0])) #if args.horizon ==36: # sliding_window_dis = 24; #else: # sliding_window_dis = args.horizon; #print('sliding_window_dis: ', sliding_window_dis) sliding_window_dis = args.horizon; # 24; input_len = 168; output_len = args.horizon; #24; sample_len = input_len + output_len; #192; #168+24 coef = args.horizon/24; total_n = int((len(date_list) - 8)/coef) #800; ## The total days test_n = int(len(
pd.date_range(start=test_start, end=test_end)
pandas.date_range
# coding: utf-8 # In[ ]: import re import numpy as np import pandas as pd import matplotlib.pyplot as plt import pprint import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess from gensim.models import CoherenceModel import pyLDAvis import pyLDAvis.gensim from nltk.corpus import stopwords from collections import Counter import string from collections import Counter import operator import nltk from nltk.corpus import wordnet as wn from nltk.stem import PorterStemmer import pickle # In[ ]: eudata = pd.read_csv('euData.csv') eudata['date'] = pd.to_datetime(eudata['date']) eudata_early = eudata[eudata.date < '2001-01-01'] rownr = eudata_early.shape[0] rownr # In[ ]: pd.options.mode.chained_assignment = None wordCount = Counter([]) mepDict = {} stopWords = list(nltk.corpus.stopwords.words('english')) for i in range(rownr): if not i%10000: print(i) text = eudata_early['text'].iloc[i] agenda = eudata_early['agenda'].iloc[i] #remove punctuation, digits and lowering case text = (agenda + ' ' + text).translate(str.maketrans('','',(string.punctuation + string.digits + '–'))).lower() #removing unicode text = (text.encode('ascii', 'ignore')).decode('utf-8') #splitting text into word list textList = [x for x in text.split() if x not in stopWords] mep = eudata_early['name'].iloc[i] party = eudata_early['party'].iloc[i] euparty = eudata_early['euparty'].iloc[i] date = eudata_early['date'].iloc[i] speechnr = eudata_early['speechnr'].iloc[i] session = pd.Timestamp(date.year,date.month,1) k = (mep, session) if k in mepDict.keys(): mepDict[k] = mepDict[k] + textList else: mepDict[k] = textList wordCount = wordCount + Counter(textList) # In[ ]: topWords = list(dict(sorted(wordCount.items(), key=operator.itemgetter(1), reverse=True)[:30]).keys()) topWords # In[ ]: len(mepDict) # In[ ]: def get_lemma(word): lemma = wn.morphy(word) if lemma is None: return word else: return lemma def stem(words): stemmer = PorterStemmer() return [stemmer.stem(word) for word in words] # In[ ]: fillWords = ['also', 'behalf', 'commission', 'commissioner', 'committee', 'council', 'debate', 'european', 'gentlemen', 'item', 'ladies', 'like', 'madam', 'make', 'minutes', 'mr', 'mrs', 'next', 'parliament', 'point', 'presidency', 'president', 'proposal', 'question', 'say', 'sitting', 'thank', 'think', 'vote', 'want'] excludeWords = topWords + fillWords + stopWords excludeWords = stem([get_lemma(x) for x in excludeWords]) mepDict_clean = {} i = 0 for k in mepDict.keys(): if not i % 1000: print(i) i += 1 textList = mepDict[k] textList_clean = stem([get_lemma(x) for x in textList]) textList_clean = [x for x in textList_clean if x not in excludeWords and len(x) > 2] if len(textList_clean) > 10: mepDict_clean[k] = textList_clean # In[ ]: len(mepDict_clean) # In[ ]: text_data = [] i = 0 for k in mepDict_clean.keys(): if not i % 1000: print(i) i += 1 text_data.append(mepDict_clean[k]) # In[ ]: dictionary = corpora.Dictionary(text_data) corpus = [dictionary.doc2bow(text) for text in text_data] pickle.dump(corpus, open('Trial_Topics/corpus.pkl', 'wb')) dictionary.save('Trial_Topics/dictionary.gensim') # # performance measurement # In[ ]: def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=3): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns: ------- model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] model_list = [] for num_topics in range(start, limit, step): model = gensim.models.ldamodel.LdaModel(corpus, num_topics = num_topics, id2word=dictionary) model_list.append(model) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) return model_list, coherence_values # In[ ]: model_list, coherence_values = compute_coherence_values(dictionary=dictionary, corpus=corpus, texts=text_data,limit=100,start=20, step=10) # In[ ]: limit=100; start=20; step=10; x = range(start, limit, step) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc='best') plt.show() # In[ ]: for m, cv in zip(x, coherence_values): print("Num Topics =", m, " has Coherence Value of", round(cv, 4)) # In[ ]: ldamodel = model_list[4] ldamodel.save('Trial_Topics/model.gensim') topics = ldamodel.print_topics(num_words=6) for topic in topics: print(topic) # In[ ]: def get_topic(text): if type(text).__name__ == 'str': text = text.split() topics = ldamodel.get_document_topics(dictionary.doc2bow(text)) return topics # In[ ]: topicData = np.array([(k[0], k[1], get_topic(v)) for k, v in mepDict_clean.items()]).reshape((-1,3)) topicData[0,:] # In[ ]: topicDF =
pd.DataFrame(topicData, columns=['name', 'date', 'topic'])
pandas.DataFrame
# -*- coding: utf-8 -*- import re from calendar import monthrange from datetime import datetime from time import sleep import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup from fake_headers import Headers from nordvpn_switcher import initialize_VPN, rotate_VPN, terminate_VPN from Google import Create_Service # import random # import shadow_useragent # from fake_useragent import UserAgent
pd.set_option('display.max_columns', None)
pandas.set_option
""" Clean a DataFrame column containing text data. """ import re import string from functools import partial, update_wrapper from typing import Any, Callable, Dict, List, Optional, Set, Union from unicodedata import normalize import dask.dataframe as dd import numpy as np import pandas as pd from ..assets.english_stopwords import english_stopwords from .utils import NULL_VALUES, to_dask REGEX_BRACKETS = { "angle": re.compile(r"(\<)[^<>]*(\>)"), "curly": re.compile(r"(\{)[^{}]*(\})"), "round": re.compile(r"(\()[^()]*(\))"), "square": re.compile(r"(\[)[^\[\]]*(\])"), } REGEX_DIGITS = re.compile(r"\d+") REGEX_DIGITS_BLOCK = re.compile(r"\b\d+\b") REGEX_HTML = re.compile(r"<[A-Za-z/][^>]*>|&(?:[a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});") REGEX_PUNCTUATION = re.compile(rf"[{re.escape(string.punctuation)}]") REGEX_URL = re.compile(r"(?:https?://|www\.)\S+") REGEX_WHITESPACE = re.compile(r"[\n\t]|[ ]{2,}") def clean_text( df: Union[pd.DataFrame, dd.DataFrame], column: str, pipeline: Optional[List[Dict[str, Any]]] = None, stopwords: Optional[Set[str]] = None, ) -> pd.DataFrame: """ Clean text data in a DataFrame column. Read more in the :ref:`User Guide <clean_text_user_guide>`. Parameters ---------- df A pandas or Dask DataFrame containing the data to be cleaned. column The name of the column containing text data. pipeline A list of cleaning functions to be applied to the column. If None, use the default pipeline. See the :ref:`User Guide <clean_text_custom_pipeline>` for more information on customizing the pipeline. (default: None) stopwords A set of words to be removed from the column. If None, use NLTK's stopwords. (default: None) Examples -------- Clean a column of text data using the default pipeline. >>> df = pd.DataFrame({"text": ["This show was an amazing, fresh & innovative idea in the \ 70's when it first aired."]}) >>> clean_text(df, 'text') text 0 show amazing fresh innovative idea first aired """ df = to_dask(df) pipe = _get_default_pipeline(stopwords) if not pipeline else _get_custom_pipeline(pipeline) for func in pipe: df[column] = df[column].apply(func, meta=object) df = df.compute() return df def default_text_pipeline() -> List[Dict[str, Any]]: """ Return a list of dictionaries representing the functions in the default pipeline. Use as a template for creating a custom pipeline. Read more in the :ref:`User Guide <clean_text_user_guide>`. Examples -------- >>> default_text_pipeline() [{'operator': 'fillna'}, {'operator': 'lowercase'}, {'operator': 'remove_digits'}, {'operator': 'remove_html'}, {'operator': 'remove_urls'}, {'operator': 'remove_punctuation'}, {'operator': 'remove_accents'}, {'operator': 'remove_stopwords', 'parameters': {'stopwords': None}}, {'operator': 'remove_whitespace'}] """ return [ {"operator": "fillna"}, {"operator": "lowercase"}, {"operator": "remove_digits"}, {"operator": "remove_html"}, {"operator": "remove_urls"}, {"operator": "remove_punctuation"}, {"operator": "remove_accents"}, {"operator": "remove_stopwords", "parameters": {"stopwords": None}}, {"operator": "remove_whitespace"}, ] def _get_default_pipeline( stopwords: Optional[Set[str]] = None, ) -> List[Callable[..., Any]]: """ Return a list of functions defining the default pipeline. """ return [ _fillna, _lowercase, _remove_digits, _remove_html, _remove_urls, _remove_punctuation, _remove_accents, lambda x: _remove_stopwords(x, stopwords), _remove_whitespace, ] def _get_custom_pipeline(pipeline: List[Dict[str, Any]]) -> List[Callable[..., Any]]: """ Return a list of functions defining a custom pipeline. """ func_dict = _get_func_dict() custom_pipeline: List[Callable[..., Any]] = [] for component in pipeline: # Check whether function is built in or user defined operator = ( func_dict[component["operator"]] if isinstance(component["operator"], str) else component["operator"] ) # Append the function to the pipeline # If parameters are specified, create a partial function to lock in # the values and prevent them from being overwritten in subsequent loops if "parameters" in component: custom_pipeline.append(_wrapped_partial(operator, component["parameters"])) else: custom_pipeline.append(operator) return custom_pipeline def _get_func_dict() -> Dict[str, Callable[..., Any]]: """ Return a mapping of strings to function names. """ return { "fillna": _fillna, "lowercase": _lowercase, "sentence_case": _sentence_case, "title_case": _title_case, "uppercase": _uppercase, "remove_accents": _remove_accents, "remove_bracketed": _remove_bracketed, "remove_digits": _remove_digits, "remove_html": _remove_html, "remove_prefixed": _remove_prefixed, "remove_punctuation": _remove_punctuation, "remove_stopwords": _remove_stopwords, "remove_urls": _remove_urls, "remove_whitespace": _remove_whitespace, "replace_bracketed": _replace_bracketed, "replace_digits": _replace_digits, "replace_prefixed": _replace_prefixed, "replace_punctuation": _replace_punctuation, "replace_stopwords": _replace_stopwords, "replace_text": _replace_text, "replace_urls": _replace_urls, } def _fillna(text: Any, value: Any = np.nan) -> Any: """ Replace all null values with NaN (default) or the supplied value. """ return value if text in NULL_VALUES else str(text) def _lowercase(text: Any) -> Any: """ Convert all characters to lowercase. """ return str(text).lower() if pd.notna(text) else text def _sentence_case(text: Any) -> Any: """ Convert first character to uppercase and remaining to lowercase. """ return str(text).capitalize() if pd.notna(text) else text def _title_case(text: Any) -> Any: """ Convert first character of each word to uppercase and remaining to lowercase. """ return str(text).title() if pd.notna(text) else text def _uppercase(text: Any) -> Any: """ Convert all characters to uppercase. """ return str(text).upper() if pd.notna(text) else text def _remove_accents(text: Any) -> Any: """ Remove accents (diacritic marks). """ return ( normalize("NFD", str(text)).encode("ascii", "ignore").decode("ascii") if pd.notna(text) else text ) def _remove_bracketed(text: Any, brackets: Union[str, Set[str]], inclusive: bool = True) -> Any: """ Remove text between brackets. Parameters ---------- brackets The bracket style. - "angle": <> - "curly": {} - "round": () - "square": [] inclusive If True (default), remove the brackets along with the text in between. Otherwise, keep the brackets. """ if pd.isna(text): return text text = str(text) value = "" if inclusive else r"\g<1>\g<2>" if isinstance(brackets, set): for bracket in brackets: text = re.sub(REGEX_BRACKETS[bracket], value, text) else: text = re.sub(REGEX_BRACKETS[brackets], value, text) return text def _remove_digits(text: Any) -> Any: """ Remove all digits. """ return re.sub(REGEX_DIGITS, "", str(text)) if pd.notna(text) else text def _remove_html(text: Any) -> Any: """ Remove HTML tags. """ return re.sub(REGEX_HTML, "", str(text)) if pd.notna(text) else text def _remove_prefixed(text: Any, prefix: Union[str, Set[str]]) -> Any: """ Remove substrings that start with the prefix(es). """ if
pd.isna(text)
pandas.isna
from multiprocessing import Pool import cvxpy as cvx from cvxstoc import NormalRandomVariable, prob, expectation from cvxpower import FixedLoad, Generator, Net, Group, Device, Terminal from datetime import timedelta import pandas as pd import numpy as np import dccp import time import os class LossyStorage(Device): r"""Storage device. A storage device either takes or delivers power with charging and discharging rates specified by the constraints .. math:: -D^\max \le p \le C^\max .. where :math:`C^\max` and :math:`D^\max` are the maximum charging and discharging rates. The charge level of the battery is given by .. math:: q(\tau) = q^\mathrm{init} + \sum_{t=1}^\tau p(t), \quad \tau = 1, \ldots, T, .. which is constrained according to the physical limits of the battery .. math:: 0 \le q \le Q^\max. .. :param discharge_max: Maximum discharge rate, :math:`D^\max` :param charge_max: Maximum charge rate, :math:`C^\max` :param energy_init: Initial charge, :math:`q^\mathrm{init}` :param energy_max: Maximum battery capacity, :math:`Q^\max` :param name: (optional) Display name of storage device :type discharge_max: float or sequence of floats :type charge_max: float or sequence of floats :type energy_init: float :type energy_max: float or sequence of floats :type name: string """ def __init__( self, discharge_max=0, charge_max=None, energy_init=0, energy_final=None, energy_max=None, name=None, len_interval=1.0, final_energy_price=None, alpha = 0.0, DoD = 0.9 ): super(LossyStorage, self).__init__([Terminal()], name) self.discharge_max = discharge_max self.charge_max = charge_max self.energy_init = energy_init self.energy_max = energy_max self.energy_min = energy_max * (1 - DoD) self.energy_final = energy_final self.len_interval = len_interval # in hours self.final_energy_price = final_energy_price self.energy = None self.alpha = alpha self.T = int(self.len_interval*24) @property def cost(self): T, S = self.terminals[0].power_var.shape if self.final_energy_price is not None: if self.energy is None: self.energy = cvx.Variable(self.terminals[0].power_var.shape) cost = np.zeros((T - 1, S)) final_cost = cvx.reshape( self.energy[-1, :] * self.final_energy_price[0, 0], (1, S) ) cost = cvx.vstack([cost, final_cost]) else: cost = np.zeros(T, S) return cost @property def constraints(self): P = self.terminals[0].power_var if self.energy is None: self.energy = cvx.Variable(self.terminals[0].power_var.shape) e_init = cvx.reshape(self.energy_init, ()) constr = [ #cvx.diff(self.energy.T) == P[1:, :] * self.len_interval, #self.energy[0, :] - e_init - P[0, :] * self.len_interval == 0, self.energy[0, :] == e_init, self.terminals[0].power_var >= -self.discharge_max, self.terminals[0].power_var <= self.charge_max, self.energy <= self.energy_max, self.energy >= self.energy_min, ] for t in range(0, self.T - 1): constr += [ self.energy[t+1] == (1 - self.alpha) * self.energy[t] + P[t] * self.len_interval ] if self.energy_final is not None: constr += [(1 - self.alpha) * self.energy[-1] + P[-1] * self.len_interval>= self.energy_final] #constr += [self.energy[-1] >= self.energy_final] return constr class Converter(Device): """Storage converter. A loss converter has two terminals with power schedules :math:`p_1` and :math:`p_2`. Conservation of energy across the converter is enforced with the constraint .. math:: p_1 + p_2 = (1-eta)p_1, p_1 + p_2 = (1-eta)p_2, .. and a maximum capacity of :math:`P^\max` with .. math:: |p_1| \le P^\max. .. :param power_max: Maximum capacity of the converter line :param name: (optional) Display name for converter line :type power_max: float or sequence of floats :type name: string """ def __init__(self, eta=0.0, power_max=None, name=None): super(Converter, self).__init__([Terminal(), Terminal()], name) self.power_max = power_max self.eta = eta assert self.eta >= 0 @property def constraints(self): p1 = self.terminals[0].power_var p2 = self.terminals[1].power_var constrs = [] if self.eta > 0: constrs += [p1 + p2 >= (1 - self.eta)*p1] # constrs += [p1 + p2 <= (1 - self.eta)*p2] if self.power_max is not None: constrs += [((2 * self.power_max) * (1 - self.eta)) / (1 + self.eta) >= p1 + p2] # constrs += [((2 * self.power_max) * (self.eta - 1)) / (1 + self.eta) >= p1 + p2] else: constrs += [p1 + p2 == 0] if self.power_max is not None: constrs += [cvx.abs((p1 - p2) / 2) <= self.power_max] return constrs def getConstraints(network): constraints = [] group = network.devices + network.nets [constraints.append(constraint) for x in group for constraint in x.constraints] return constraints def getData(df, day, d_name): idx = df[df.index.dayofyear==day].index return df.loc[idx, d_name].values def process_image(NUM_HOURS_ENS): cov_matrix_load = pd.read_csv('./data/cov_matrix_load.csv').values #cov_matrix_load = np.repeat(np.repeat(pd.read_csv('./cov_matrix_load.csv').values, 2, axis=0), 2, axis=1) #cov_matrix_solar = np.repeat(np.repeat(pd.read_csv('./cov_matrix_solar.csv').values, 2, axis=0), 2, axis=1) cov_matrix_solar = pd.read_csv('./data/cov_matrix_solar.csv').values df_optim = pd.read_csv('./data/lvdc_microgrid_optim_variables_short.csv', index_col=0, infer_datetime_format=True, parse_dates=["index"]) # df_optim = df_optim.append(pd.DataFrame(index=[df_optim.index[-1]+timedelta(hours=1)])) # df_optim = df_optim.resample("30T").ffill().dropna() # resample to 30 minutes df_acc =
pd.read_csv('./data/accuracy_in_clusters_daily_predictions_2013.txt', header=None)
pandas.read_csv
import sys import pandas as pd import sqlite3 import sqlalchemy import numpy as np from sqlalchemy import create_engine def load_data(messages_filepath='disaster_messages.csv', categories_filepath='disaster_categories.csv'): ''' Loads messages and categories from dataset Returns merged dataframe of messages & categories ''' messages =
pd.read_csv(messages_filepath)
pandas.read_csv
import numpy as np import pandas as pd import pytest from woodwork.accessor_utils import ( _is_dask_dataframe, _is_dask_series, _is_dataframe, _is_koalas_dataframe, _is_koalas_series, _is_series, get_invalid_schema_message, init_series, is_schema_valid, ) from woodwork.exceptions import TypeConversionError from woodwork.logical_types import Categorical, Datetime, NaturalLanguage def test_init_series_valid_conversion_specified_ltype(sample_series): if _is_koalas_series(sample_series): sample_series = sample_series.astype("str") else: sample_series = sample_series.astype("object") series = init_series(sample_series, logical_type="categorical") assert series is not sample_series correct_dtype = Categorical._get_valid_dtype(type(sample_series)) assert series.dtype == correct_dtype assert isinstance(series.ww.logical_type, Categorical) assert series.ww.semantic_tags == {"category"} series = init_series(sample_series, logical_type="natural_language") assert series is not sample_series correct_dtype = NaturalLanguage._get_valid_dtype(type(sample_series)) assert series.dtype == correct_dtype assert isinstance(series.ww.logical_type, NaturalLanguage) assert series.ww.semantic_tags == set() def test_init_series_with_pd_extension_array(): extension_categories = pd.Categorical([1, 2, 3]) series = init_series(extension_categories) pd_reference_series = init_series(pd.Series([1, 2, 3], dtype="category")) assert series.equals(pd_reference_series) assert series.ww.logical_type == pd_reference_series.ww.logical_type assert series.ww.semantic_tags == pd_reference_series.ww.semantic_tags extension_ints = pd.array(np.array([1, 2, 3, 4], dtype="int64")) series = init_series(extension_ints) pd_reference_series = init_series(pd.Series([1, 2, 3, 4], dtype="Int64")) assert series.equals(pd_reference_series) assert series.ww.logical_type == pd_reference_series.ww.logical_type assert series.ww.semantic_tags == pd_reference_series.ww.semantic_tags def test_init_series_with_invalid_type(sample_df): inputs = [sample_df, 1, "string", None] for input_ in inputs: error_message = ( f"Input must be of series type. The current input is of type {type(input_)}" ) with pytest.raises(TypeError, match=error_message): init_series(input_) def test_init_series_with_np_array(sample_series_pandas): series = init_series(sample_series_pandas.to_numpy()) series2 = init_series( sample_series_pandas ) # Sample series panda contains ['a','b','c','a'] assert series.equals(series2) assert series.ww.logical_type == series2.ww.logical_type assert series.ww.semantic_tags == series2.ww.semantic_tags def test_init_series_with_multidimensional_np_array(): input_ = np.array([["a", "b"], ["a", "b"]]) error_message = f"np.ndarray input must be 1 dimensional. Current np.ndarray is {input_.ndim} dimensional" with pytest.raises(ValueError, match=error_message): init_series(input_) def test_init_series_valid_conversion_inferred_ltype(sample_series): if _is_koalas_series(sample_series): sample_series = sample_series.astype("str") else: sample_series = sample_series.astype("object") series = init_series(sample_series) assert series is not sample_series correct_dtype = Categorical._get_valid_dtype(type(sample_series)) assert series.dtype == correct_dtype assert isinstance(series.ww.logical_type, Categorical) assert series.ww.semantic_tags == {"category"} def test_init_series_with_datetime(sample_datetime_series): series = init_series(sample_datetime_series, logical_type="datetime") assert series.dtype == "datetime64[ns]" assert isinstance(series.ww.logical_type, Datetime) def test_init_series_all_parameters(sample_series): if _is_koalas_series(sample_series): sample_series = sample_series.astype("str") else: sample_series = sample_series.astype("object") metadata = {"meta_key": "meta_value"} description = "custom description" origin = "base" series = init_series( sample_series, logical_type="categorical", semantic_tags=["custom_tag"], metadata=metadata, description=description, origin=origin, use_standard_tags=False, ) assert series is not sample_series correct_dtype = Categorical._get_valid_dtype(type(sample_series)) assert series.dtype == correct_dtype assert isinstance(series.ww.logical_type, Categorical) assert series.ww.semantic_tags == {"custom_tag"} assert series.ww.metadata == metadata assert series.ww.description == description assert series.ww.origin == origin def test_init_series_error_on_invalid_conversion(sample_series): if _is_dask_series(sample_series): pytest.xfail( "Dask type conversion with astype does not fail until compute is called" ) if _is_koalas_series(sample_series): pytest.xfail( "Koalas allows this conversion, filling values it cannot convert with NaN " "and converting dtype to float." ) error_message = ( "Error converting datatype for sample_series from type category to type Int64. " "Please confirm the underlying data is consistent with logical type IntegerNullable." ) with pytest.raises(TypeConversionError, match=error_message): init_series(sample_series, logical_type="integer_nullable") def test_is_series(sample_df): assert _is_series(sample_df["id"]) assert not _is_series(sample_df) def test_is_dataframe(sample_df): assert _is_dataframe(sample_df) assert not _is_dataframe(sample_df["id"]) def test_get_invalid_schema_message(sample_df): schema_df = sample_df.copy() schema_df.ww.init( name="test_schema", index="id", logical_types={"id": "Double", "full_name": "PersonFullName"}, ) schema = schema_df.ww.schema assert get_invalid_schema_message(schema_df, schema) is None assert ( get_invalid_schema_message(sample_df, schema) == "dtype mismatch for column id between DataFrame dtype, int64, and Double dtype, float64" ) sampled_df = schema_df.sample(frac=0.3) assert get_invalid_schema_message(sampled_df, schema) is None dropped_df = schema_df.drop("id", axis=1) assert ( get_invalid_schema_message(dropped_df, schema) == "The following columns in the typing information were missing from the DataFrame: {'id'}" ) renamed_df = schema_df.rename(columns={"id": "new_col"}) assert ( get_invalid_schema_message(renamed_df, schema) == "The following columns in the DataFrame were missing from the typing information: {'new_col'}" ) def test_get_invalid_schema_message_dtype_mismatch(sample_df): schema_df = sample_df.copy() schema_df.ww.init( logical_types={"age": "Categorical", "full_name": "PersonFullName"} ) schema = schema_df.ww.schema incorrect_int_dtype_df = schema_df.ww.astype({"id": "Int64"}) incorrect_bool_dtype_df = schema_df.ww.astype({"is_registered": "Int64"}) assert ( get_invalid_schema_message(incorrect_int_dtype_df, schema) == "dtype mismatch for column id between DataFrame dtype, Int64, and Integer dtype, int64" ) assert ( get_invalid_schema_message(incorrect_bool_dtype_df, schema) == "dtype mismatch for column is_registered between DataFrame dtype, Int64, and BooleanNullable dtype, boolean" ) # Koalas backup dtypes make these checks not relevant if not _is_koalas_dataframe(sample_df): incorrect_str_dtype_df = schema_df.ww.astype( {"full_name": "object"} ) # wont work for koalas incorrect_categorical_dtype_df = schema_df.ww.astype( {"age": "string"} ) # wont work for koalas assert ( get_invalid_schema_message(incorrect_str_dtype_df, schema) == "dtype mismatch for column full_name between DataFrame dtype, object, and PersonFullName dtype, string" ) assert ( get_invalid_schema_message(incorrect_categorical_dtype_df, schema) == "dtype mismatch for column age between DataFrame dtype, string, and Categorical dtype, category" ) def test_get_invalid_schema_message_index_checks(sample_df): if not isinstance(sample_df, pd.DataFrame): pytest.xfail("Index validation not performed for Dask or Koalas DataFrames") schema_df = sample_df.copy() schema_df.ww.init( name="test_schema", index="id", logical_types={"id": "Double", "full_name": "PersonFullName"}, ) schema = schema_df.ww.schema different_underlying_index_df = schema_df.copy() different_underlying_index_df["id"] = pd.Series([9, 8, 7, 6], dtype="float64") assert ( get_invalid_schema_message(different_underlying_index_df, schema) == "Index mismatch between DataFrame and typing information" ) not_unique_df = schema_df.replace({3: 1}) not_unique_df.index = not_unique_df["id"] not_unique_df.index.name = None assert ( get_invalid_schema_message(not_unique_df, schema) == "Index column is not unique" ) df = pd.DataFrame( { "id": pd.Series([5, 4, 3, 2], dtype="float64"), "col": pd.Series(["b", "b", "b", "d"], dtype="category"), } ) df.ww.init(index="id") df_schema = df.ww.schema nan_df = df.replace({3: None}) nan_df["id"] = nan_df["id"].astype("float64") nan_df = nan_df.set_index("id", drop=False) actual = get_invalid_schema_message(nan_df, df_schema) assert actual == "Index contains null values" def test_is_schema_valid_true(sample_df): sample_df.ww.init(index="id", logical_types={"phone_number": "Categorical"}) copy_df = sample_df.copy() assert copy_df.ww.schema is None assert is_schema_valid(copy_df, sample_df.ww.schema) def test_is_schema_valid_false(sample_df): sample_df.ww.init() schema = sample_df.ww.schema invalid_dtype_df = sample_df.astype({"age": "float64"}) assert not is_schema_valid(invalid_dtype_df, schema) missing_col_df = sample_df.drop(columns={"is_registered"}) assert not is_schema_valid(missing_col_df, schema) def test_is_dask_dataframe(sample_df_dask): assert _is_dask_dataframe(sample_df_dask) assert not _is_dask_dataframe(pd.DataFrame()) def test_is_dask_series(sample_series_dask): assert _is_dask_series(sample_series_dask) assert not _is_dask_series(
pd.Series()
pandas.Series
#!/usr/bin/env python import argparse from subprocess import run import pandas as pd PARAMS = [5, 10, 25, 50, 100, 250, 500, 1000] # PARAMS = [i*i*5 for i in range(1,15)] parser = argparse.ArgumentParser(description='Correlation Evaluation script', usage='Use CV to optimize correlation', epilog='The files must have 2 columns, first for index and second for the values') parser.add_argument('--predictor', metavar='predictor_file_path', default='SetupFiles-indri-5.6/clarity.m-1/Clarity-Fiana', help='path to predictor executable res') parser.add_argument('--parameters', metavar='parameters_file_path', default='clarity/clarityParam.xml', help='path to predictor parameters res') parser.add_argument('--testing', metavar='running_parameter', default='-documents=', choices=['documents', 'fbDocs'], help='The parameter to optimize') parser.add_argument('-q', '--queries', metavar='queries.xml', default='data/ROBUST/queries.xml', help='path to queries xml res') parser.add_argument('-m', '--measure', default='pearson', type=str, help='default correlation measure type is pearson', choices=['pearson', 'spearman', 'kendall'], ) # parser.add_argument("-v", "--verbose", help="increase output verbosity", # action="store_true") def pre_testing(predictor_exe, parameters_xml, test_param, queries): """This function will run the predictor using a shell command for different numbers of documents and save the output files to the dir tmp-testing""" run('mkdir -v tmp-testing', shell=True) pred = 'Fiana' if 'Fiana' in predictor_exe else 'Anna' run('mkdir -v tmp-testing/clarity-{}'.format(pred), shell=True) print('The temporary files will be saved in the directory tmp-testing') for i in PARAMS: print('\n ******** Running for: {} documents ******** \n'.format(i)) output = 'tmp-testing/clarity-{}/predictions-{}'.format(pred, i) run('{} {} -{}={} {} > {}'.format(predictor_exe, parameters_xml, test_param, i, queries, output), shell=True) def calc_cor_files(first_file, second_file, test): first_df = pd.read_table(first_file, delim_whitespace=True, header=None, index_col=0, names=['x']) second_df = pd.read_table(second_file, delim_whitespace=True, header=None, index_col=0, names=['y']) return calc_cor_df(first_df, second_df, test) def calc_cor_df(first_df, second_df, test): merged_df =
pd.merge(first_df, second_df, left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python # coding: utf-8 # In[ ]: # Make sure the following dependencies are installed. #!pip install albumentations --upgrade #!pip install timm #!pip install iterative-stratification __author__ = 'MPWARE: https://www.kaggle.com/mpware' # In[ ]: # Configure HOME and DATA_HOME according to your setup HOME = "./" DATA_HOME = "./data/" TRAIN_HOME = DATA_HOME + "train/" TRAIN_IMAGES_HOME = TRAIN_HOME + "images/" IMAGE_SIZE = 512 # Image size for training RESIZED_IMAGE_SIZE = 384 # For random crop COMPOSE = None # For RGBY support # Set to True for interactive session PT_SCRIPT = True # True # In[ ]: import sys, os, random, math import numpy as np import h5py import cv2 import torch import torch.nn as nn import operator from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler import albumentations as A import torch.nn.functional as F import functools from collections import OrderedDict import torch.nn.functional as F from torch.optim import Adam, SGD import timm import iterstrat # In[ ]: LABEL = "Label" ID = "ID" EID = "EID" IMAGE_WIDTH = "ImageWidth" IMAGE_HEIGHT = "ImageHeight" META = "META" TOTAL = "Total" EXT = "ext" DEFAULT = "default" # 19 class labels. Some rare classes: Mitotic spindle (0.37%), Negative: (0.15%) class_mapping = { 0: 'Nucleoplasm', 1: 'Nuclear membrane', 2: 'Nucleoli', 3: 'Nucleoli fibrillar center', 4: 'Nuclear speckles', 5: 'Nuclear bodies', 6: 'Endoplasmic reticulum', 7: 'Golgi apparatus', 8: 'Intermediate filaments', 9: 'Actin filaments', 10: 'Microtubules', 11: 'Mitotic spindle', 12: 'Centrosome', 13: 'Plasma membrane', 14: 'Mitochondria', 15: 'Aggresome', 16: 'Cytosol', 17: 'Vesicles and punctate cytosolic patterns', 18: 'Negative', } class_mapping_inv = {v:k for k,v in class_mapping.items()} class_labels = [str(k) for k,v in class_mapping.items()] class_names = [str(v) for k,v in class_mapping.items()] LABELS_OHE_START = 3 # In[ ]: def seed_everything(s): random.seed(s) os.environ['PYTHONHASHSEED'] = str(s) np.random.seed(s) # Torch torch.manual_seed(s) torch.cuda.manual_seed(s) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if torch.cuda.is_available(): torch.cuda.manual_seed_all(s) # In[ ]: def l1_loss(A_tensors, B_tensors): return torch.abs(A_tensors - B_tensors) class ComboLoss(nn.Module): def __init__(self, alpha=1.0, beta=1.0, gamma=1.0, from_logits=True, **kwargs): super().__init__(**kwargs) self.alpha = alpha self.beta = beta self.gamma = gamma self.from_logits = from_logits print("alpha:", self.alpha, "beta:", self.beta, "gamma:", self.gamma) self.loss_classification = nn.BCEWithLogitsLoss(reduction='none') def forward(self, y_pred, y_true, features_single=None, y_pred_tiles=None, features_tiles=None, y_pred_tiled_flatten=None): loss_ = self.alpha * self.loss_classification(y_pred, y_true).mean() if features_tiles is not None and self.beta > 0: logits_reconstruction = y_pred_tiles loss_tiles_class_ = self.loss_classification(logits_reconstruction, y_true).mean() loss_ = loss_ + self.beta * loss_tiles_class_ if features_single is not None and features_tiles is not None and self.gamma > 0: loss_reconstruction_ = l1_loss(features_single, features_tiles).mean() loss_ = loss_ + self.gamma * loss_reconstruction_ return loss_ # In[ ]: # Main configuration class raw_conf: def __init__(self, factory): super().__init__() self.inference = False self.compose = COMPOSE self.normalize = False if factory == "HDF5" else True self.norm_value = None if factory == "HDF5" else 65535.0 # Dataset self.image_size = None if factory == "HDF5" else IMAGE_SIZE self.denormalize = 255 # Model self.mtype = "siamese" # "regular" self.backbone = 'seresnext50_32x4d' # 'gluon_seresnext101_32x4d' # 'cspresnext50' 'regnety_064' self.pretrained_weights = "imagenet" self.INPUT_RANGE = [0, 1] self.IMG_MEAN = [0.485, 0.456, 0.406, 0.485] if self.compose is None else [0.485, 0.456, 0.406] self.IMG_STD = [0.229, 0.224, 0.225, 0.229] if self.compose is None else [0.229, 0.224, 0.225] self.num_classes = 19 self.with_cam = True self.puzzle_pieces = 4 self.hpa_classifier_weights = None self.dropout = None # Model output self.post_activation = "sigmoid" self.output_key = "logits" if self.mtype == "regular" else "single_logits" # None self.output_key_extra = "features" if self.mtype == "regular" else "single_features" # None self.output_key_siamese = None if self.mtype == "regular" else "tiled_logits" self.output_key_extra_siamese = None if self.mtype == "regular" else "tiled_features" # Loss self.alpha = 1.0 # Single image classification loss self.beta = 0.0 if self.mtype == "regular" else 1.0 # Reconstructed image classification loss self.gamma = 0.0 if self.mtype == "regular" else 0.5 # 0.25 self.loss = ComboLoss(alpha=self.alpha, beta=self.beta, gamma=self.gamma) self.sampler = "prob" self.sampler_cap = "auto" # None self.fp16 = True self.finetune = False self.optimizer = "Adam" # "SGD" self.scheduler = None if self.finetune is True or self.optimizer != "Adam" else "ReduceLROnPlateau" # "CosineAnnealingWarmRestarts" self.scheduler_factor = 0.3 self.scheduler_patience = 8 self.lr = 0.0003 self.min_lr = 0.00005 self.beta1 = 0.9 self.train_verbose = True self.valid_verbose = True # Train parameters self.L_DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.map_location = self.L_DEVICE self.WORKERS = 0 if PT_SCRIPT is False else 8 self.BATCH_SIZE = 36 if self.mtype == "siamese" else 48 self.ITERATIONS_LOGS = 30 self.CYCLES = 1 self.EPOCHS_PER_CYCLE = 48 # 36 self.EPOCHS = self.CYCLES * self.EPOCHS_PER_CYCLE self.WARMUP = 0 self.FOLDS = 4 self.METRIC_ = "min" # "max" self.pin_memory = True # In[ ]: # Load CSV data, drop duplicates if any def prepare_data(filename, ext_name=None): train_pd = pd.read_csv(DATA_HOME + filename) train_pd[LABEL] = train_pd[LABEL].apply(literal_eval) train_pd[LABEL] = train_pd[LABEL].apply(lambda x: [int(l) for l in x]) if EXT not in train_pd.columns: train_pd.insert(2, EXT, DEFAULT) if ext_name is not None: train_pd[EXT] = ext_name train_pd = train_pd.drop_duplicates(subset=[ID]).reset_index(drop=True) assert(np.argwhere(train_pd.columns.values == EXT)[0][0] == 2) return train_pd # In[ ]: # Use PIL to support 16 bits, normalize=True to return [0-1.0] float32 image def read_image(filename, compose=None, normalize=False, norm_value=65535.0, images_root=TRAIN_IMAGES_HOME): filename = images_root + filename filename = filename + "_red.png" if "_red.png" not in filename else filename mt_, pi_, nu_, er_ = filename, filename.replace('_red', '_green'), filename.replace('_red', '_blue'), filename.replace('_red', '_yellow') if compose is None: mt = np.asarray(Image.open(mt_)).astype(np.uint16) pi = np.asarray(Image.open(pi_)).astype(np.uint16) nu = np.asarray(Image.open(nu_)).astype(np.uint16) er = np.asarray(Image.open(er_)).astype(np.uint16) ret = np.dstack((mt, pi, nu, er)) else: if compose == "RGB": mt = np.asarray(Image.open(mt_)).astype(np.uint16) pi = np.asarray(Image.open(pi_)).astype(np.uint16) nu = np.asarray(Image.open(nu_)).astype(np.uint16) ret = np.dstack((mt, pi, nu)) elif compose == "RYB": mt = np.asarray(Image.open(mt_)).astype(np.uint16) er = np.asarray(Image.open(er_)).astype(np.uint16) nu = np.asarray(Image.open(nu_)).astype(np.uint16) ret = np.dstack((mt, er, nu)) elif compose == "RYGYB": mt = np.asarray(Image.open(mt_)) pi = np.asarray(Image.open(pi_)) nu = np.asarray(Image.open(nu_)) er = np.asarray(Image.open(er_)) ret = np.dstack(((mt + er)/2.0, (pi + er/2)/1.5, nu)) else: raise Exception("Unknown compose:", compose) if normalize is True: # Some images are np.uint16 but from 0-255 range! if ret.max() > 255: ret = (ret/norm_value).astype(np.float32) else: ret = (ret/255).astype(np.float32) return ret # Data available through raw PNG files class DataFactory: def __init__(self, paths, conf=None, verbose=False): super().__init__() self.paths = paths self.conf = conf self.verbose = verbose print("PNGFile factory") if self.verbose is True else None def read_image(self, uid, container=None): images_path = self.paths if container is not None and container != DEFAULT: images_path = images_path.replace("images", container) image = read_image(uid, compose=self.conf.compose, normalize=self.conf.normalize, norm_value=self.conf.norm_value, images_root=images_path) return image def cleanup(self): pass # Data available through HDF5 files class HDF5DataFactory: def __init__(self, paths, conf=None, verbose=False): super().__init__() self.paths = paths self.hdf5_paths = None self.conf = conf self.verbose = verbose self.initialized = False print("HDF5 factory") if self.verbose is True else None def initialize_hdf5(self): if self.initialized is False: self.hdf5_paths = h5py.File(self.paths, 'r') if isinstance(self.paths, str) else {k: h5py.File(v, 'r') for k, v in self.paths.items()} self.initialized = True print("initialize_hdf5", self.hdf5_paths) if self.verbose is True else None def read_image(self, uid, container=DEFAULT): self.initialize_hdf5() hdf5_paths_ = self.hdf5_paths if isinstance(self.hdf5_paths, str) else self.hdf5_paths.get(container) # Image is already resized, normalized 0-1.0 as float32 image = hdf5_paths_[uid][:,:,:] if self.conf.compose is not None: if self.conf.compose == "RGB": image = image[:, :, [0,1,2]] elif self.conf.compose == "RYB": image = image[:, :, [0,3,2]] elif self.conf.compose == "G": image = np.dstack((image[:, :, 1], image[:, :, 1], image[:, :, 1])) elif self.conf.compose == "RYGYB": ret = np.dstack(((image[:, :, 0] + image[:, :, 3])/2.0, (image[:, :, 1] + image[:, :, 3]/2)/1.5, image[:, :, 2])) else: raise Exception("Unknown compose:", self.conf.compose) return image def cleanup(self): if self.hdf5_paths is not None: [v.close() for k, v in self.hdf5_paths.items()] if isinstance(self.hdf5_paths, dict) else self.hdf5_paths.close() print("HDF5 factory cleaned") if self.verbose is True else None # In[ ]: # Dataset with all images def zero(x, y=None): return 0 class HPADataset(Dataset): def __init__(self, df, factory, conf, subset="train", categoricals=None, augment=None, postprocess=None, modelprepare=None, classes=None, weights=False, dump=None, verbose=False): super().__init__() self.df = df self.categoricals = categoricals self.subset = subset self.augment = augment self.postprocess = postprocess self.modelprepare = modelprepare self.classes = classes self.conf = conf self.factory = factory self.dump = dump self.verbose = verbose if subset == 'train': self.get_offset = np.random.randint elif subset == 'valid': self.get_offset = zero elif subset == 'ho': self.get_offset = zero elif subset == 'test': self.get_offset = zero else: raise RuntimeError("Unknown subset") # Compute weights self.weights = self.compute_weights(self.df) if subset == "train" and weights is True else None def prob_from_weight(self, labels_list, weights_dict_, cap=None): labels_weights = np.array([weights_dict_[class_mapping[int(label_)]] for label_ in labels_list]) prob_ = np.nanmean(labels_weights) if cap is not None: prob_ = np.clip(prob_, 0, cap) # Clip to avoid too much single rare labels, for example: 95th percentile cut, or top K return prob_ def compute_weights(self, df_): weights_dict = {label: 1/df_[label].sum() for label in class_names} cap_ = self.conf.sampler_cap if cap_ is not None and cap_ == "auto": top_weights = sorted(weights_dict.items(), key=operator.itemgetter(1), reverse=True)[:3] print("top_weights", top_weights) if self.verbose is True else None cap_ = top_weights[2][1] # Cap to the top 3rd weight df_dist = df_[[ID, LABEL]].copy() df_dist["prob"] = df_dist[LABEL].apply(lambda x: self.prob_from_weight(x, weights_dict, cap=cap_)) if self.verbose is True: print("compute_weights completed, cap:", self.conf.sampler_cap, cap_) for i, (k, v) in enumerate(weights_dict.items()): print(i, k, v) return df_dist[["prob"]] def cleanup(self): self.factory.cleanup() def __len__(self): return len(self.df) def read_image(self, row): uid = row[ID] container = row[EXT] # Load image img = self.factory.read_image(uid, container=container) # Scale image after cropping if self.conf.image_size is not None and self.conf.image_size != img.shape[0]: img = skimage.transform.resize(img, (self.conf.image_size, self.conf.image_size), anti_aliasing=True) # Works with float image if self.conf.denormalize is not None: img = (self.conf.denormalize * img).astype(np.uint8) return img def get_data(self, row, categoricals): # Return image img = self.read_image(row) # Labels (OHE) labels = np.zeros(self.conf.num_classes, dtype=np.uint8) for l in row[LABEL]: labels[l] = 1 sample = { 'image': img, 'label': labels, } if self.dump is not None: sample[ID] = row[ID] if EID in row: sample[META] = np.array([row[EID], int(row[IMAGE_WIDTH]), int(row[IMAGE_HEIGHT])], dtype=np.int32) # Optional augmentation on RGBY image (uint8) if self.augment: tmp = self.augment(image=sample['image']) sample['image'] = tmp["image"] # Apply on full image # Mandatory to feed model if self.modelprepare: # Albumentations to normalize data tmp = self.modelprepare(image=sample['image']) sample['image'] = tmp["image"] # Apply on full image return sample def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() row = self.df.iloc[idx] sample = self.get_data(row, self.categoricals) return sample # In[ ]: # (BS, CLASSES, 12, 12) - Between 0-1.0 # Adapted from: https://github.com/OFRIN/PuzzleCAM/blob/master/core/puzzle_utils.py def make_cam(x, epsilon=1e-5): x = F.relu(x) # (BS, CLASSES, 12, 12) b, c, h, w = x.size() # (BS, CLASSES, 12, 21) flat_x = x.view(b, c, (h * w)) # (BS, CLASSES, 12x12) max_value = flat_x.max(axis=-1)[0].view((b, c, 1, 1)) return F.relu(x - epsilon) / (max_value + epsilon) # (BS, CLASSES, 12, 12) # Input (BS, C, H, W), num_pieces = 4 # Return (BS*4, C, H//4, W//4) # Adapted from: https://github.com/OFRIN/PuzzleCAM/blob/master/core/puzzle_utils.py def tile_features(features, num_pieces): _, _, h, w = features.size() num_pieces_per_line = int(math.sqrt(num_pieces)) h_per_patch = h // num_pieces_per_line w_per_patch = w // num_pieces_per_line """ +-----+-----+ | 1 | 2 | +-----+-----+ | 3 | 4 | +-----+-----+ +-----+-----+-----+-----+ | 1 | 2 | 3 | 4 | +-----+-----+-----+-----+ """ patches = [] for splitted_features in torch.split(features, h_per_patch, dim=2): for patch in torch.split(splitted_features, w_per_patch, dim=3): patches.append(patch) return torch.cat(patches, dim=0) # Adapted from: https://github.com/OFRIN/PuzzleCAM/blob/master/core/puzzle_utils.py def merge_features(features, num_pieces, batch_size): """ +-----+-----+-----+-----+ | 1 | 2 | 3 | 4 | +-----+-----+-----+-----+ +-----+-----+ | 1 | 2 | +-----+-----+ | 3 | 4 | +-----+-----+ """ features_list = list(torch.split(features, batch_size)) num_pieces_per_line = int(math.sqrt(num_pieces)) index = 0 ext_h_list = [] for _ in range(num_pieces_per_line): ext_w_list = [] for _ in range(num_pieces_per_line): ext_w_list.append(features_list[index]) index += 1 ext_h_list.append(torch.cat(ext_w_list, dim=3)) features = torch.cat(ext_h_list, dim=2) return features # In[ ]: # Add 4 channels support def get_4channels_conv(stem_conv2d): stem_conv2d_pretrained_weight = stem_conv2d.weight.clone() stem_conv2d_ = nn.Conv2d(4, stem_conv2d.out_channels, kernel_size=stem_conv2d.kernel_size, stride=stem_conv2d.stride, padding=stem_conv2d.padding, padding_mode=stem_conv2d.padding_mode, dilation=stem_conv2d.dilation, bias=True if stem_conv2d.bias is True else False) stem_conv2d_.weight = nn.Parameter(torch.cat([stem_conv2d_pretrained_weight, nn.Parameter(torch.mean(stem_conv2d_pretrained_weight, axis=1).unsqueeze(1))], axis=1)) return stem_conv2d_ class HPAModel(nn.Module): def __init__(self, cfg): super().__init__() self.num_classes = cfg.num_classes self.backbone = cfg.backbone self.with_cam = cfg.with_cam self.drop_rate = cfg.dropout self.preprocess_input_fn = get_preprocessing_fn(cfg) # Unpooled/NoClassifier (features only) self.mfeatures = timm.create_model(self.backbone, pretrained=True, num_classes=0, global_pool='') # Add one channel more if cfg.compose is None: if "regnet" in self.backbone: self.mfeatures.stem.conv = get_4channels_conv(self.mfeatures.stem.conv) elif "csp" in self.backbone: self.mfeatures.stem[0].conv = get_4channels_conv(self.mfeatures.stem[0].conv) elif "resnest" in self.backbone: self.mfeatures.conv1[0] = get_4channels_conv(self.mfeatures.conv1[0]) elif "seresnext" in self.backbone: self.mfeatures.conv1 = get_4channels_conv(self.mfeatures.conv1) elif "densenet" in self.backbone: self.mfeatures.features.conv0 = get_4channels_conv(self.mfeatures.features.conv0) # Classifier num_chs = self.mfeatures.feature_info[-1]['num_chs'] # 1296 # 2048 self.mclassifier = nn.Conv2d(num_chs, self.num_classes, 1, bias=False) # self.mclassifier = timm.models.layers.linear.Linear(num_chs, self.num_classes, bias=True) # Initialize weights self.initialize([self.mclassifier]) print("Model %s, last channels: %d, classes: %d" % (cfg.backbone, num_chs, self.num_classes)) # Pooling def adaptive_avgmax_pool2d(self, x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return 0.5 * (x_avg + x_max) # Average pooling 2d def global_average_pooling_2d(self, x, keepdims=False): x = torch.mean(x.view(x.size(0), x.size(1), -1), -1) if keepdims: x = x.view(x.size(0), x.size(1), 1, 1) return x def gap(self, x, keepdims=False): return self.global_average_pooling_2d(x, keepdims=keepdims) def initialize(self, modules): for m in modules: if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): # ([BS, C, H, W]) x = self.mfeatures(x) # (BS, num_chs, 12, 12) features = None if self.with_cam is True: if self.drop_rate is not None and self.drop_rate > 0.0: x = F.dropout(x, p=float(self.drop_rate), training=self.training) features = self.mclassifier(x) # (BS, CLASSES, 12, 12) logits = self.gap(features) # (BS, CLASSES) else: x = self.gap(x, keepdims=True) # (BS, num_chs, 1, 1) if self.drop_rate is not None and self.drop_rate > 0.0: x = F.dropout(x, p=float(self.drop_rate), training=self.training) logits = self.mclassifier(x).view(-1, self.num_classes) # (BS, CLASSES) return {"logits": logits, "features": features} # (BS, CLASSES), (BS, CLASSES, 12, 12) class HPASiameseModel(nn.Module): def __init__(self, cfg): super().__init__() self.num_classes = cfg.num_classes self.backbone = cfg.backbone self.with_cam = cfg.with_cam self.puzzle_pieces = cfg.puzzle_pieces self.preprocess_input_fn = get_preprocessing_fn(cfg) self.cnn1 = HPAModel(cfg) if cfg.hpa_classifier_weights is not None: if os.path.exists(cfg.hpa_classifier_weights): print("Load regular HPA weights from: %s" % cfg.hpa_classifier_weights) self.cnn1.load_state_dict(torch.load(cfg.hpa_classifier_weights, map_location=cfg.map_location)) print("Model %s" % (cfg.mtype)) def forward_once(self, x): x = self.cnn1(x) return x # {"logits": logits, "features": features} def forward(self, x): # ([BS, C, H, W]) bs, _, _, _ = x.shape # Full image x1 = self.forward_once(x) single_logits, single_features = x1["logits"], x1["features"] # Tiled image tiled_x = tile_features(x, self.puzzle_pieces) # (BS*puzzle_pieces, C, H//puzzle_pieces, W//puzzle_pieces) # 2x memory x2 = self.forward_once(tiled_x) # Shared weights tiled_logits, tiled_features = x2["logits"], x2["features"] tiled_features = merge_features(tiled_features, self.puzzle_pieces, bs) # (BS, CLASSES, 12, 12) tiled_logits_reconstructed = self.cnn1.gap(tiled_features) # (BS, CLASSES) return { "single_logits": single_logits, "single_features": single_features, "tiled_logits_flatten": tiled_logits, "tiled_features": tiled_features, "tiled_logits": tiled_logits_reconstructed, } # In[ ]: def build_model(cfg, device, encoder_weights=None): if cfg.mtype == "siamese": model = HPASiameseModel(cfg) else: model = HPAModel(cfg) # Load weights if (encoder_weights is not None) and ("imagenet" not in encoder_weights): if os.path.exists(encoder_weights): print("Load weights before optimizer from: %s" % encoder_weights) model.load_state_dict(torch.load(encoder_weights, map_location=cfg.map_location)) model = model.to(device) if cfg.optimizer == "Adam": optimizer = Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.lr, betas=(cfg.beta1, 0.999)) elif cfg.optimizer == "SGD": optimizer = SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.lr, momentum=0.9) # Loss loss = cfg.loss loss = loss.to(device) return model, loss, optimizer # In[ ]: def format_logs(logs): str_logs = ['{} - {:.4}'.format(k, v) for k, v in logs.items()] s = ', '.join(str_logs) return s # Train loop def train_loop_fn(batches, preprocessing, model, optimizer, criterion, tmp_conf, device, stage="Train", verbose=True, scaler=None): model.train() count, train_loss = 0, 0.0 all_predicted_probs, all_target_classes = None, None with tqdm(batches, desc=stage, file=sys.stdout, disable=not(verbose)) as iterator: for x, batch in enumerate(iterator, 1): try: for k, v in batch.items(): batch[k] = v.to(device) samples_data, labels_data = batch.get("image"), batch.get("label") optimizer.zero_grad() # reset gradient # Model with torch.cuda.amp.autocast(enabled=tmp_conf.fp16): # Preprocessing with torch.no_grad(): data = preprocessing(samples_data) if preprocessing is not None else samples_data output = model(data) # forward pass if tmp_conf.mtype == "siamese": loss = criterion(output[tmp_conf.output_key], labels_data.float(), features_single=output[tmp_conf.output_key_extra], y_pred_tiles=output[tmp_conf.output_key_siamese], features_tiles=output[tmp_conf.output_key_extra_siamese], y_pred_tiled_flatten=output["tiled_logits_flatten"]) output = output[tmp_conf.output_key] if tmp_conf.output_key is not None else output else: output = output[tmp_conf.output_key] if tmp_conf.output_key is not None else output # Compute loss loss = criterion(output, labels_data.float()) if (tmp_conf.ITERATIONS_LOGS > 0) and (x % tmp_conf.ITERATIONS_LOGS == 0): loss_value = loss.item() if ~np.isnan(loss_value): train_loss += loss_value else: print("Warning: NaN loss") # backward pass scaler.scale(loss).backward() if scaler is not None else loss.backward() # Update weights if scaler is not None: scaler.step(optimizer) scaler.update() else: optimizer.step() if (tmp_conf.ITERATIONS_LOGS > 0) and (x % tmp_conf.ITERATIONS_LOGS == 0): # Labels predictions predicted_probs = torch.sigmoid(output) if tmp_conf.post_activation == "sigmoid" else output predicted_probs = predicted_probs.detach().cpu().numpy() target_classes = labels_data.detach().cpu().numpy() # Concatenate for all batches all_predicted_probs = np.concatenate([all_predicted_probs, predicted_probs], axis=0) if all_predicted_probs is not None else predicted_probs all_target_classes = np.concatenate([all_target_classes, target_classes], axis=0) if all_target_classes is not None else target_classes count += 1 if verbose: scores_str = {"train_%s" % m.__name__: m(all_target_classes, all_predicted_probs) for m in METRICS_PROBS} scores_str["train_loss"] = (train_loss / count) iterator.set_postfix_str(format_logs(scores_str)) except Exception as ex: print("Training batch error:", ex) scores = {"train_%s" % m.__name__: m(all_target_classes, all_predicted_probs) for m in METRICS_PROBS} scores["train_loss"] = (train_loss / count) return (scores, all_target_classes, all_predicted_probs) # In[ ]: # Valid loop def valid_loop_fn(batches, preprocessing, model, criterion, tmp_conf, device, stage="Valid", verbose=True): model.eval() count, valid_loss = 0, 0.0 all_predicted_probs, all_target_classes = None, None with tqdm(batches, desc=stage, file=sys.stdout, disable=not(verbose)) as iterator: for batch in iterator: try: for k, v in batch.items(): batch[k] = v.to(device) samples_data, labels_data = batch.get("image"), batch.get("label") with torch.no_grad(): # NN model with torch.cuda.amp.autocast(enabled=tmp_conf.fp16): # Preprocessing data = preprocessing(samples_data) if preprocessing is not None else samples_data output = model(data) # forward pass if tmp_conf.mtype == "siamese": loss = criterion(output[tmp_conf.output_key], labels_data.float(), features_single=output[tmp_conf.output_key_extra], y_pred_tiles=output[tmp_conf.output_key_siamese], features_tiles=output[tmp_conf.output_key_extra_siamese], y_pred_tiled_flatten=output["tiled_logits_flatten"]) output = output[tmp_conf.output_key] if tmp_conf.output_key is not None else output else: output = output[tmp_conf.output_key] if tmp_conf.output_key is not None else output # Compute loss loss = criterion(output, labels_data.float()) loss_value = loss.item() if ~np.isnan(loss_value): valid_loss += loss_value else: print("Warning: NaN loss") # Labels predictions predicted_probs = torch.sigmoid(output) if tmp_conf.post_activation == "sigmoid" else output predicted_probs = predicted_probs.detach().cpu().numpy() target_classes = labels_data.detach().cpu().numpy() # Concatenate for all batches all_predicted_probs = np.concatenate([all_predicted_probs, predicted_probs], axis=0) if all_predicted_probs is not None else predicted_probs all_target_classes = np.concatenate([all_target_classes, target_classes], axis=0) if all_target_classes is not None else target_classes count += 1 if verbose: scores_str = {"valid_%s" % m.__name__: m(all_target_classes, all_predicted_probs) for m in METRICS_PROBS} scores_str["valid_loss"] = (valid_loss / count) iterator.set_postfix_str(format_logs(scores_str)) except Exception as ex: print("Validation batch error:", ex) scores = {"valid_%s" % m.__name__: m(all_target_classes, all_predicted_probs) for m in METRICS_PROBS} scores["valid_loss"] = (valid_loss / count) return (scores, all_target_classes, all_predicted_probs) # In[ ]: # Train one fold def run_stage(X_train, X_valid, stage, fold, device): # Build model snapshot_path = "%s/fold%d/%s/snapshots" % (MODEL_PATH, fold, stage) if not os.path.exists(snapshot_path): os.makedirs(snapshot_path) cnn_model, criterion, optimizer = build_model(conf, device, encoder_weights=os.path.join(snapshot_path.replace(stage, PRETRAINED_STAGE), MODEL_BEST) if PRETRAINED_STAGE is not None else None) if RESUME == True: resume_path = os.path.join(snapshot_path, MODEL_BEST) if os.path.exists(resume_path): cnn_model.load_state_dict(torch.load(resume_path, map_location=conf.map_location)) print("Resuming, model weights loaded: %s" % resume_path) factory = DataFactory_(ALL_IMAGES, conf=conf) # Datasets train_dataset = HPADataset(X_train, factory, conf, subset="train", augment=image_augmentation_train, modelprepare=get_preprocessing(cnn_model.preprocess_input_fn), dump=None, weights=True, verbose=True) valid_dataset = HPADataset(X_valid, factory, conf, subset="valid", augment=None, modelprepare=get_preprocessing(cnn_model.preprocess_input_fn), dump=None, verbose=False) if X_valid is not None else None train_sampler = WeightedRandomSampler(weights=train_dataset.weights[conf.sampler].values, replacement=True, num_samples=len(train_dataset)) if conf.sampler is not None else None print("Stage:", stage, "fold:", fold, "on:", device, "workers:", conf.WORKERS, "post_activation:", conf.post_activation, "batch size:", conf.BATCH_SIZE, "metric_:", conf.METRIC_, "train dataset:", len(train_dataset), "valid dataset:", len(valid_dataset) if valid_dataset is not None else None, "num_classes:", conf.num_classes, "fp16:", conf.fp16, "aug:", image_augmentation_train, "sampler:", train_sampler) # Dataloaders train_loader = DataLoader(train_dataset, batch_size=conf.BATCH_SIZE, sampler=train_sampler, num_workers=conf.WORKERS, drop_last = False, pin_memory=conf.pin_memory, shuffle=True if train_sampler is None else False) valid_loader = DataLoader(valid_dataset, batch_size=conf.BATCH_SIZE, shuffle=False, num_workers=conf.WORKERS, drop_last = False, pin_memory=conf.pin_memory) if X_valid is not None else None scheduler = None if conf.scheduler is not None: if conf.scheduler == "ReduceLROnPlateau": scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=conf.METRIC_, factor=conf.scheduler_factor, min_lr=0.000001, patience=conf.scheduler_patience, verbose=True) else: scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, conf.EPOCHS_PER_CYCLE, T_mult=1, eta_min=conf.min_lr) print(criterion, optimizer, scheduler) metric = METRIC_NAME valid_loss_min = np.Inf metric_loss_criterion = np.Inf if conf.METRIC_ == "min" else -np.Inf history = [] scaler = torch.cuda.amp.GradScaler(enabled=conf.fp16) if conf.fp16 is True else None for epoch in tqdm(range(1, conf.EPOCHS + 1)): lr = optimizer.param_groups[0]['lr'] if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau) else scheduler.get_last_lr()[0] if scheduler is not None else optimizer.param_groups[0]['lr'] if isinstance(optimizer, torch.optim.SGD) or isinstance(optimizer, torch.optim.Adam) else optimizer.get_last_lr() info = "[%d], lr=%.7f" % (epoch, lr) # Train loop train_scores, _, _ = train_loop_fn(train_loader, None, cnn_model, optimizer, criterion, conf, device, stage="Train%s" % info, verbose=conf.train_verbose, scaler=scaler) # Validation loop valid_scores, _, all_predicted_probs_ = valid_loop_fn(valid_loader, None, cnn_model, criterion, conf, device, stage="Valid%s" % info, verbose=conf.valid_verbose) if valid_loader is not None else ({"valid_%s" % metric: 0, "valid_loss": 0}, None, None) # Keep track of loss and metrics history.append({"epoch":epoch, "lr": lr, **train_scores, **valid_scores}) if conf.scheduler is not None: scheduler.step(valid_scores["valid_%s" % metric]) if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau) else scheduler.step() metric_loss = valid_scores["valid_%s" % metric] if (conf.METRIC_ == "min" and metric_loss < metric_loss_criterion and epoch > 1) or (conf.METRIC_ == "max" and metric_loss > metric_loss_criterion and epoch > 1): print("Epoch%s, Valid loss from: %.4f to %.4f, Metric improved from %.4f to %.4f, saving model ..." % (info, valid_loss_min, valid_scores["valid_loss"], metric_loss_criterion, metric_loss)) metric_loss_criterion = metric_loss valid_loss_min = valid_scores["valid_loss"] torch.save(cnn_model.state_dict(), os.path.join(snapshot_path, MODEL_BEST)) # Save per image OOF oof_pd = pd.DataFrame(all_predicted_probs_) oof_pd = oof_pd.set_index(X_valid[ID].values) oof_pd.to_csv("%s/oof_%d.csv" % (snapshot_path, fold)) factory.cleanup() if history: # Plot training history history_pd = pd.DataFrame(history[1:]).set_index("epoch") train_history_pd = history_pd[[c for c in history_pd.columns if "train_" in c]] valid_history_pd = history_pd[[c for c in history_pd.columns if "valid_" in c]] lr_history_pd = history_pd[[c for c in history_pd.columns if "lr" in c]] fig, ax = plt.subplots(1,2, figsize=(DEFAULT_FIG_WIDTH, 6)) t_epoch = train_history_pd["train_%s" % metric].argmin() if conf.METRIC_ == "min" else train_history_pd["train_%s" % metric].argmax() v_epoch = valid_history_pd["valid_%s" % metric].argmin() if conf.METRIC_ == "min" else valid_history_pd["valid_%s" % metric].argmax() d = train_history_pd.plot(kind="line", ax=ax[0], title="Epoch: %d, Train: %.3f" % (t_epoch, train_history_pd.iloc[t_epoch,:]["train_%s" % metric])) d = lr_history_pd.plot(kind="line", ax=ax[0], secondary_y=True) d = valid_history_pd.plot(kind="line", ax=ax[1], title="Epoch: %d, Valid: %.3f" % (v_epoch, valid_history_pd.iloc[v_epoch,:]["valid_%s" % metric])) d = lr_history_pd.plot(kind="line", ax=ax[1], secondary_y=True) train_history_pd.to_csv("%s/train.csv" % snapshot_path) valid_history_pd.to_csv("%s/valid.csv" % snapshot_path) plt.savefig("%s/train.png" % snapshot_path, bbox_inches='tight') plt.show() if PT_SCRIPT is False else None return (history) # In[ ]: # Mandatory transform to feed model def to_tensor(x, **kwargs): return x.transpose(2, 0, 1).astype('float32') def aug_custom(x, **kwargs): return x def preprocess_input(x, mean=None, std=None, input_space="RGB", input_range=None, **kwargs): if input_space == "BGR": x = x[..., ::-1].copy() if input_range is not None: if x.max() > 1 and input_range[1] == 1: x = x / 255.0 if mean is not None: mean = np.array(mean) x = x - mean if std is not None: std = np.array(std) x = x / std return x def get_custom(**kwargs): return A.Lambda(name="custom", image=aug_custom, **kwargs) def get_preprocessing_fn(cfg): params = {"mean": cfg.IMG_MEAN, "std": cfg.IMG_STD, "input_range": cfg.INPUT_RANGE} return functools.partial(preprocess_input, **params) def get_preprocessing(preprocessing_fn): return A.Compose([ A.Lambda(image=preprocessing_fn), # Convert uint8 (0-255) in range [0-1.0] and apply Apply Z-Norm that depends on each model, A.Lambda(image=to_tensor), # Convert (H, W, C) to (C, H, W) ]) # In[ ]: # Optional augmentations (Works with C=4 layers) def image_harder_augmentation_train(p=1.0): return A.Compose([ # Crop smaller tile randomly (uint8, float32, H, W, C) A.RandomCrop(RESIZED_IMAGE_SIZE, RESIZED_IMAGE_SIZE, always_apply=True, p=1.0) if RESIZED_IMAGE_SIZE != IMAGE_SIZE else A.NoOp(p=1.0), # Noise A.OneOf([ A.GaussNoise(var_limit=(5.0, 30.0), p=0.5), A.CoarseDropout(max_holes=8, max_height=32, max_width=32, p=0.5), A.IAAAdditiveGaussianNoise(scale=(0.02 * 255, 0.05 * 255), p=0.5), ], p=0.5), # Flips/Rotations A.HorizontalFlip(p=0.5), A.RandomRotate90(p=1.0), # Rotate/Distorsion A.OneOf([ A.GridDistortion(num_steps=5, distort_limit=0.3, p=0.15), A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.1, rotate_limit=30, p=0.75), A.ElasticTransform(alpha=1, sigma=50, alpha_affine=50, p=0.15), A.OpticalDistortion(distort_limit=0.05, shift_limit=0.05, p=0.10), A.IAAAffine(shear=5.0, p=0.5), ], p=0.5), # Blurs A.OneOf([ A.GaussianBlur(blur_limit=(3, 5), p=0.5), # 5 to 7 A.MotionBlur(blur_limit=(3, 5), p=0.5), A.MedianBlur(blur_limit=(3, 7), p=0.5), ], p=0.5), # Stain/colors A.OneOf([ A.RandomGamma(gamma_limit=(80, 120), p=0.5), A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.5), ], p=0.25), ], p=p) # In[ ]: # Display inputs/outputs of the model def check_model(conf): print("Check model") m, _, _ = build_model(conf, "cpu", verbose=True) tmp_factory = DataFactory_(ALL_IMAGES, conf=conf, verbose=True) tmp_dataset = HPADataset(train_pd, tmp_factory, conf, subset="train", verbose=False, augment=image_augmentation_train, modelprepare=get_preprocessing(m.preprocess_input_fn), weights=True) print("tmp_dataset:", len(tmp_dataset)) tmp_sampler = WeightedRandomSampler(weights=tmp_dataset.weights[conf.sampler].values, replacement=True, num_samples=len(tmp_dataset)) if conf.sampler is not None else None # tmp_sampler = torch.utils.data.RandomSampler(tmp_dataset) tmp_loader = DataLoader(tmp_dataset, batch_size=5, num_workers=0, drop_last = False, pin_memory=False, sampler=tmp_sampler, shuffle=False) for tmp_batch in tmp_loader: for key, value in tmp_batch.items(): print(key, value.shape, value.dtype, "min", value.min(), "max", value.max(), "mean", value.float().mean()) tmp_out = m(tmp_batch.get("image")) tmp_out = tmp_out[conf.output_key] if conf.output_key is not None else tmp_out break print("tmp_out", tmp_out.shape, tmp_out.dtype, "min", tmp_out.min(), "max", tmp_out.max(), "mean", tmp_out.mean()) total_params = sum(p.numel() for p in m.parameters() if p.requires_grad) print("Params:", total_params) tmp_loss = conf.loss(tmp_out, tmp_batch["label"].float()) # (BS, seq_len), (BS, seq_len) print("loss", tmp_loss) tmp_probs = torch.sigmoid(tmp_out) if conf.post_activation == "sigmoid" else tmp_out print("tmp_probs", tmp_probs.shape, tmp_probs.dtype, "min", tmp_probs.min(), "max", tmp_probs.max(), "mean", tmp_probs.mean()) tmp_factory.cleanup() # In[ ]: # Some previews with augmentation def display_preview(): tmp_factory = DataFactory_(ALL_IMAGES, conf=conf, verbose=True) tmp_dataset = HPADataset(train_pd, tmp_factory, conf, subset="train", verbose=False, augment=image_augmentation_train) print("tmp_dataset:", len(tmp_dataset)) tmp_loader = DataLoader(tmp_dataset, batch_size=16, num_workers=0, drop_last = False, pin_memory=False, sampler=None, shuffle=False) ROWS = 6 COLS = 8 fig, ax = plt.subplots(ROWS, COLS, figsize=(20, 16)) print("Loading images") i = 0 for tmp_batch in tmp_loader: images = tmp_batch["image"] labels = tmp_batch.get("label") print(images.shape, labels.shape) if i == 0 else None for img, label in zip(images, labels): r = i%ROWS c = i//ROWS d = ax[r, c].imshow(img.numpy()[:,:,[0,1,2]]) d = ax[r, c].grid(None) d = ax[r, c].axis('off') d = ax[r, c].set_title("%s" % [i for i, x in enumerate(label.cpu().numpy()) if x != 0]) i = i + 1 if i >= ROWS*COLS: break if i >= ROWS*COLS: break tmp_factory.cleanup() plt.subplots_adjust(wspace=0.1, hspace=0.1) plt.show() # In[ ]: def check_performances(workers_ = 0): print("Check performances") augment_ = image_augmentation_train m, _, _ = build_model(conf, conf.L_DEVICE, verbose=True) tmp_factory = DataFactory_(ALL_IMAGES, conf=conf, verbose=True) tmp_dataset = HPADataset(train_pd, tmp_factory, conf, subset="train", verbose=False, augment=augment_, modelprepare=get_preprocessing(m.preprocess_input_fn)) print("tmp_dataset:", len(tmp_dataset)) tmp_loader = DataLoader(tmp_dataset, batch_size=16, num_workers=workers_, drop_last = False, pin_memory=False, sampler=None, shuffle=True) i = 0 for tmp_batch in tqdm(tmp_loader): images = tmp_batch["image"] labels = tmp_batch["label"] if i == 0: print(images.shape, images.dtype, images.max(), labels.shape) i = i + 1 tmp_factory.cleanup() # In[ ]: def display_fold(train_pd_, kf_): # Check how well the folds are stratified. print("fold 1 2 3 4 total") print("======================================================================") for label in class_names: label_padded = label + " "*(43-len(label)) dist = ": " for train_idx, valid_idx in kf_.split(train_pd_, train_pd_.iloc[:, LABELS_OHE_START:LABELS_OHE_START+19]): X_train, X_valid = train_pd_.iloc[train_idx], train_pd_.iloc[valid_idx] dist += "{:4d} ".format(X_valid[label].sum()) dist += "{:4d} ".format(train_pd_[label].sum()) print(label_padded + dist) label_padded = "total" + " "*(43-len("total")) # In[ ]: def none_or_str(value): if value == 'None': return None return value def get_argsparser(): parser = argparse.ArgumentParser() parser.add_argument('--factory', default="HDF5", type=none_or_str, help='HDF5 or None') parser.add_argument('--mtype', default='siamese', type=str) parser.add_argument('--backbone', default='seresnext50_32x4d', type=str) parser.add_argument('--gamma', default=0.5, type=float) parser.add_argument('--lr', default=0.0003, type=float) parser.add_argument('--seed', default=2020, type=int) parser.add_argument('--batch_size', default=36, type=int) parser.add_argument('--epochs', default=48, type=int) parser.add_argument('--workers', default=8 if PT_SCRIPT is True else 0, type=int) parser.add_argument('--resume_fold', default=0, type=int) parser.add_argument('--stage', default='stage1', type=str, help='stage to train') parser.add_argument('--pretrained_stage', default=None, type=none_or_str, help='stage to load pretrained weights from') parser.add_argument('--labels_file', default='train_cleaned_default_external.csv', type=str, help='CSV file with labels') parser.add_argument('--additional_labels_file', default=None, type=none_or_str, help='Additional CSV file with labels like train_cleaned_2018.csv') return parser # In[ ]: if __name__ == '__main__': import os, sys, random, math import pandas as pd import timeit, os, gc, psutil if PT_SCRIPT is False: from tqdm.notebook import tqdm else: from tqdm import tqdm import warnings from sklearn import metrics from functools import partial from collections import OrderedDict from iterstrat.ml_stratifiers import MultilabelStratifiedKFold from PIL import Image from ast import literal_eval warnings.filterwarnings('ignore') pd.set_option('display.max_colwidth', None) pd.set_option('display.max_columns', 250) pd.set_option('display.max_rows', 100) import skimage.io import skimage.transform import matplotlib.pyplot as plt import seaborn as sns sns.set() DEFAULT_FIG_WIDTH = 28 sns.set_context("paper", font_scale=1.2) import argparse print('Python : ' + sys.version.split('\n')[0]) print('Numpy : ' + np.__version__) print('Pandas : ' + pd.__version__) print('PyTorch : ' + torch.__version__) print('Albumentations: ' + A.__version__) print('Timm : ' + timm.__version__) print('Iterstrat : ' + iterstrat.__version__) # Parse arguments args = get_argsparser().parse_args() if PT_SCRIPT is True else get_argsparser().parse_args(['--seed', '2020']) # '--additional_labels_file', 'train_cleaned_2018.csv' # Fixed seed for reproducibility seed = args.seed seed_everything(seed) # All data PARTS = ["external"] if args.additional_labels_file is not None: PARTS = PARTS + ["additional"] if args.factory == "HDF5": ALL_IMAGES = { DEFAULT: TRAIN_HOME + 'images_%d.hdf5' % IMAGE_SIZE, } for p in PARTS: ALL_IMAGES[p] = TRAIN_HOME + 'images_%s_%d.hdf5' % (p, IMAGE_SIZE) DataFactory_ = HDF5DataFactory else: ALL_IMAGES = TRAIN_IMAGES_HOME DataFactory_ = DataFactory print("Factory", DataFactory_, ALL_IMAGES) # Override basic configuration conf = raw_conf(args.factory) conf.mtype = args.mtype conf.backbone = args.backbone conf.gamma = args.gamma conf.lr = args.lr conf.BATCH_SIZE = args.batch_size conf.EPOCHS = args.epochs conf.WORKERS = args.workers print('Running on device: {}'.format(conf.L_DEVICE)) MODEL_NAME = "%s_%s_%d_%d_%s_%s%s_v3.0" % (conf.mtype, conf.backbone, IMAGE_SIZE, RESIZED_IMAGE_SIZE if RESIZED_IMAGE_SIZE is not None else IMAGE_SIZE, COMPOSE if COMPOSE is not None else "RGBY", "fp16_" if conf.fp16 is True else "", "CV%d" % conf.FOLDS if conf.FOLDS > 0 else "FULL") MODEL_PATH = HOME + "models/" + MODEL_NAME STAGE = args.stage MODEL_BEST = 'model_best.pt' if not os.path.exists(MODEL_PATH): os.makedirs(MODEL_PATH) TRAIN = True RESUME_FOLD = args.resume_fold RESUME = True PRETRAINED = None PRETRAINED_STAGE = args.pretrained_stage FREEZE_BACKBONE = False PRETRAINED_BACKBONE_STAGE = None USE_AUG = True # Load ID, Labels, ... train_pd = prepare_data(args.labels_file) print("Labels:", args.labels_file, "train_pd:", train_pd.shape) if args.additional_labels_file is not None: FILTER = "additional" train_extra_pd = prepare_data(args.additional_labels_file, ext_name = FILTER) print("Additional labels:", args.labels_file, "train_extra_pd:", train_extra_pd.shape) train_pd =
pd.concat([train_pd, train_extra_pd], axis=0)
pandas.concat
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import lightgbm as lgb import sklearn from sklearn.ensemble import ExtraTreesRegressor from sklearn.externals import joblib from keras import Sequential from keras.layers import LSTM, Dropout, Dense from sklearn.linear_model import LinearRegression, SGDRegressor from sklearn.metrics import mean_squared_error from sklearn import preprocessing from xgboost import XGBRegressor, plot_importance from matplotlib import pyplot # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os data_path = '../input' # data_path = 'data' out_path = '../input' submission_path = '../input' ver = 6 # Any results you write to the current directory are saved as output. def unreasonable_data(data): print("----------Reasonable of Data----------") print("Min Value:", data.min()) print("Max Value:", data.max()) print("Average Value:", data.mean()) print("Center Point of Data:", data.median()) print(data.describe()) def drop_duplicate(data, sub_set): print('Before drop shape:', data.shape) before = data.shape[0] data.drop_duplicates(sub_set, keep='first', inplace=True) data.reset_index(drop=True, inplace=True) print('After drop shape:', data.shape) after = data.shape[0] print('Total Duplicate:', before - after) def pre_process_data_3(): sales = pd.read_csv('%s/train.csv' % data_path, parse_dates=['date'], infer_datetime_format=True,dayfirst=True) val =
pd.read_csv('%s/test.csv' % data_path)
pandas.read_csv
import pandas as pd from datetime import datetime, timedelta spain_c19_casos_url = 'https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_casos_long.csv' spain_c19_muertes_url = 'https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_fallecidos_long.csv' spain_c19_uci_url = 'https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_uci_long.csv' spain_c19_altas_url = 'https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_altas_long.csv' spain_c19_hosp_url = 'https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_hospitalizados_long.csv' usa_c19_url = 'http://covidtracking.com/api/states/daily.csv' world_pop_url = 'https://raw.githubusercontent.com/datasets/population/master/data/population.csv' usa_states_pop = 'https://raw.githubusercontent.com/CivilServiceUSA/us-states/master/data/states.csv' if __name__ == '__main__': df_spain_cases = pd.read_csv(spain_c19_casos_url) df_spain_deceased = pd.read_csv(spain_c19_muertes_url) ######################## # CV ######################## df_cv = df_spain_cases.loc[df_spain_cases['cod_ine'] == 10] df_cv = df_cv.rename(columns={'total': 'cases', 'fecha': 'dateRep'}) df_cv = df_cv.drop(columns=['cod_ine', 'CCAA']) # adds data from 01-01 to 26-2, with num. cases = 0 prev_dates = [str(datetime.strptime('2020-01-01', '%Y-%m-%d') + timedelta(days=d))[:10] for d in range(57)] df_prev_cv =
pd.DataFrame(prev_dates, columns=['dateRep'])
pandas.DataFrame
import pandas as pd from .resources import get def get_table( table_code: str, territorial_level: str, ibge_territorial_code: str, variable: str = None, classification: str = None, categories: str = None, period: str = None, header: str = None, format: str = "pandas", ): data = get( table_code, territorial_level, ibge_territorial_code, variable, classification, categories, period, header, ) if format == "pandas": return
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/python import os import sys import csv import json import pandas import dataLib validYeargroups = ["R","1","2","3","4"] invalidYeargroups = ["5","6","7","8","9","10","11"] def formToYearGroup(theForm): for validYeargroup in validYeargroups: if theForm.startswith(validYeargroup): found = True for invalidYeargroup in invalidYeargroups: if invalidYeargroup in theForm: found = False if found == True: return validYeargroup return None # Load the config file (set by the system administrator). config = dataLib.loadConfig(["dataFolder"]) # Make sure the output folder exists. outputRoot = config["dataFolder"] + os.sep + "Mathletics" os.makedirs(outputRoot, exist_ok=True) # Input data headings: # Pupils: GUID,UserCode,GivenName,FamilyName,DateOfBirth,Gender,Username,YearGroup,Form,Tutor # Staff: GUID,UserCode,Title,GivenName,FamilyName,DateOfBirth,Username,Identifier,Form,JobTitle # Output in Excel spreadsheet: # Student First Name (Mandatory), Student Surname (Mandatory), Student Year (Mandatory), Class Name (Mandatory), Teacher Title (Optional), Teacher First name (Mandatory), Teacher Surname (Mandatory), Teacher Email (Mandatory) mathletics = pandas.DataFrame(columns=["Student First Name (Mandatory)","Student Surname (Mandatory)","Student Year (Mandatory)","Class Name (Mandatory)","Teacher Title (Optional)","Teacher First name (Mandatory)","Teacher Surname (Mandatory)","Teacher Email (Mandatory)"]) pupils =
pandas.read_csv(config["dataFolder"] + os.sep + "pupils.csv", header=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Spyder Editor Este é um arquivo de script temporário. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.api import qqplot import plotly plotly.offline.init_notebook_mode() import plotly.offline as po import plotly.plotly as py import plotly.graph_objs as go import cufflinks as cf import plotly.figure_factory as ff symbols = ['ITUB4', 'ABEV3', 'BBDC4', 'PETR4', 'VALE5'] taxas = ['risk_free', 'ipca'] dados =
pd.DataFrame()
pandas.DataFrame
# RAiSERHD module # <NAME>, 23 Feb 2022 # import packages import h5py import numpy as np import pandas as pd import time as ti import os, warnings from astropy import constants as const from astropy import units as u from astropy.convolution import convolve, Gaussian2DKernel from astropy.cosmology import FlatLambdaCDM from astropy.io import fits from astropy import wcs from copy import copy from matplotlib import pyplot as plt from matplotlib import cm, rc from matplotlib.colors import LogNorm from matplotlib.ticker import FormatStrFormatter, NullFormatter, LogLocator from numba import jit from scipy.optimize import least_squares from scipy.special import gamma, zeta ## Define global variables that can be adjusted to customise model output # basic constants year = 365.2422*24*3600 # average year in seconds maverage = (0.6*const.m_p.value) # kg average particle mass hubble = 0.7 # dimensionless Hubble parameter OmegaM = 0.27 # fraction of matter in the flat universe OmegaD = 0.73 # fraction of dark energy in the flat universe freq_cmb = 5.879e10 # frequency of cosmic microwave background at z = 0 temp_cmb = 2.725 # temperature of cosmic microwave background at z = 0 c_speed = const.c.value # speed of light e_charge = const.e.value # electron charge k_B = const.k_B.value # Boltzmann constant m_e = const.m_e.value # electron mass mu0 = const.mu0.value # vacuum permeability sigma_T = const.sigma_T.value # electron scattering cross-section # model parameters that can be optimised for efficiency nangles = 16 # number of angles to calculate expansion rate along (must be greater than 1) betaRegions = 64 # set maximum number of beta regions limTime = (year) # the FR-II limit must be used before this time stepRatio = 1.01 # ratio to increase time/radius crit_age = 0.95 # fraction of source age for lower end of power law approximations lambda_min = 1e-256 # minimum value of Lambda for computational efficiency # shocked gas and lobe parameters chi = 2*np.pi/3.0 # lobe geometry parameter shockAxisRatio = 0.5875 # exponent relating the cocoon axis ratio to the shocked gas axis ratio shockRadius = 1.072 # fraction of the radius the shocked gas is greater than the lobe gammaX = (5./3) # lorentz factor of external gas gammaJ = (4./3) # lorentz factor of jet plasma # set electron energy distribution constants Lorentzmin = 780. # minimum Lorentz factor of injected electrons AT HOTSPOT for Cygnus A Lorentzmax = 1e6 # effectively infinity # density and temperature profiles rCutoff = 0.01 # minimum radius to match profiles as a fraction of r200 betaMax = 2 # set critical value above which the cocoon expands balistically # average and standard deviation of Vikhlinin model parameters alphaAvg = 1.64 # corrected for removal of second core term alphaStdev = 0.30 betaPrimeAvg = 0.56 betaPrimeStdev = 0.10 gammaPrimeAvg = 3 gammaPrimeStdev = 0 epsilonAvg = 3.23 epsilonStdev = 0 # 1.93; this parameter has little effect on profile rCoreAvg = 0.087 # this is ratio of rc to r200 rCoreStdev = 0.028 rSlopeAvg = 0.73 # this is ratio of rs to r200 rSlopeStdev = 0 # 0.39; this parameter has little effect on profile # temperature parameters TmgConst = (-2.099) TmgSlope = 0.6678 TmgError = 0.0727 # new temperature parameters assuming heating from AGN during expansion TmgAvg = 7.00 TmgStdev = 0.28 # approximate halo to gas fraction conversion # for halo masses between 10^12 and 10^15 and redshifts 0 < z < 5 halogasfracCONST1z0 = (-0.881768418) halogasfracCONST1z1 = (-0.02832004) halogasfracCONST2z0 = (-0.921393448) halogasfracCONST2z1 = 0.00064515 halogasfracSLOPE = 0.053302276 # uncertainties, in dex dhalogasfracz0 = 0.05172769 dhalogasfracz1 = (-0.00177947) # correction to SAGE densities SAGEdensitycorr = (-0.1) ## Define functions for run-time user output def __join(*values): return ";".join(str(v) for v in values) def __color_text(s, c, base=30): template = '\x1b[{0}m{1}\x1b[0m' t = __join(base+8, 2, __join(*c)) return template.format(t, s) class Colors: DogderBlue = (30, 144, 255) Green = (0,200,0) Orange = (255, 165, 0) ## Define main function to run RAiSE HD def RAiSE_run(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5, equipartition=-1.5, spectral_index=0.7, gammaCValue=5./3, lorentz_min=Lorentzmin, brightness=True, angle=0., resolution='standard', seed=None, aj_star=0.231, jet_angle=0.686, axis_exponent=0.343, fill_factor=0.549): # record start time of code start_time = ti.time() # function to test type of inputs and convert type where appropriate if nangles <= 1: raise Exception('Private variable nangles must be greater than 1.') frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons = __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz) # download and pre-process particles from hydrodynamical simulation if not resolution == None: print(__color_text('Reading particle data from file.', Colors.Green)) time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio = __PLUTO_particles('RAiSE_particles.hdf5') # set seed for quasi-random profiles if not seed == None: __set_seed(seed) # create folder for output files if not present if not os.path.exists('LDtracks'): os.mkdir('LDtracks') if not resolution == None: print(__color_text('Running RAiSE dynamics and emissivity.', Colors.Green)) else: print(__color_text('Running RAiSE dynamics.', Colors.Green)) for i in range(0, len(redshift)): for j in range(0, len(axis_ratio)): for k in range(0, len(jet_power)): for l in range(0, nenvirons): for m in range(0, len(active_age)): for n in range(0, len(equipartition)): for o in range(0, len(jet_lorentz)): # set correct data types for halo mass and core density if isinstance(halo_mass, (list, np.ndarray)): new_halo_mass = halo_mass[l] else: new_halo_mass = halo_mass if isinstance(rho0Value, (list, np.ndarray)): new_rho0Value = rho0Value[l] new_temperature = temperature[l] new_betas = betas[l] new_regions = regions[l] else: new_rho0Value = rho0Value new_temperature = temperature new_betas = betas new_regions = regions # calculate dynamical evolution of lobe and shocked shell using RAiSE dynamics lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda = __RAiSE_environment(redshift[i], axis_ratio[j], jet_power[k], source_age, halo_mass=new_halo_mass, rand_profile=rand_profile, rho0Value=new_rho0Value, regions=new_regions, betas=new_betas, temperature=new_temperature, active_age=active_age[m], jet_lorentz=jet_lorentz[o], gammaCValue=gammaCValue, aj_star=aj_star, jet_angle=jet_angle, axis_exponent=axis_exponent, fill_factor=fill_factor) # calculate synchrotron emission from lobe using particles and RAiSE model if not resolution == None: location, luminosity, magnetic_field = __RAiSE_emissivity(frequency, redshift[i], time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, source_age, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, active_age[m], equipartition[n], spectral_index, gammaCValue=gammaCValue, lorentz_min=lorentz_min, resolution=resolution) # create pandas dataframe for integrated emission df = pd.DataFrame() df['Time (yrs)'] = 10**np.asarray(source_age).astype(np.float_) df['Size (kpc)'] = 2*lobe_lengths[0,:]/const.kpc.value df['Pressure (Pa)'] = shock_pressures[0,:] df['Axis Ratio'] = lobe_lengths[0,:]/lobe_lengths[-1,:] if not resolution == None: for q in range(0, len(frequency)): if frequency[q] > 0: df['B{:.2f} (T)'.format(frequency[q])] = magnetic_field[:,q] df['L{:.2f} (W/Hz)'.format(frequency[q])] = np.nansum(luminosity[:,:,q], axis=1) # write data to file if isinstance(rho0Value, (list, np.ndarray)): df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i]), index=False) elif isinstance(halo_mass, (list, np.ndarray)): df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i]), index=False) else: raise Exception('Either the halo mass or full density profile must be provided as model inputs.') # calculate brightness per pixel across the source if brightness == True and not resolution == None: x_values, y_values, brightness_list = __RAiSE_brightness_map(frequency, redshift[i], source_age, lobe_lengths, location, luminosity, angle, resolution=resolution) for p in range(0, len(source_age)): for q in range(0, len(frequency)): # create pandas dataframe for spatially resolved emission if isinstance(x_values[p][q], (list, np.ndarray)): df = pd.DataFrame(index=x_values[p][q]/const.kpc.value, columns=y_values[p][q]/const.kpc.value, data=brightness_list[p][q]) # write surface brightness map to file if isinstance(rho0Value, (list, np.ndarray)): if frequency[q] > 0: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), header=True, index=True) else: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], source_age[p], resolution), header=True, index=True) elif isinstance(halo_mass, (list, np.ndarray)): if frequency[q] > 0: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), header=True, index=True) else: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], source_age[p], resolution), header=True, index=True) else: raise Exception('Either the halo mass or full density profile must be provided as model inputs.') else: if isinstance(rho0Value, (list, np.ndarray)): warnings.warn('The following file was not created as no emission is present: LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), category=UserWarning) elif isinstance(halo_mass, (list, np.ndarray)): warnings.warn('The following file was not created as no emission is present: LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), category=UserWarning) else: raise Exception('Either the halo mass or full density profile must be provided as model inputs.') # print total run time to screen print(__color_text('RAiSE completed running after {:.2f} seconds.'.format(ti.time() - start_time), Colors.Green)) # Define function to test type of inputs and convert type where appropriate def __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz): # convert redshift, axis ratio and jet power to correct data types if not isinstance(frequency, (list, np.ndarray)): frequency = [frequency] for i in range(0, len(frequency)): if not isinstance(frequency[i], (int, float)): raise Exception('Frequency must be provided as a float or list/array of floats in units of log10 Hertz.') else: if frequency[i] <= 0: frequency[i] = -1. warnings.warn('Pressure map will be produced instead of surface brightness image.', category=UserWarning) elif not (5 < frequency[i] and frequency[i] < 20): raise Exception('Frequency must be provided as a float or list/array of floats in units of log10 Hertz.') if not isinstance(redshift, (list, np.ndarray)): redshift = [redshift] for i in range(0, len(redshift)): if not isinstance(redshift[i], (int, float)) or not (0 < redshift[i] and redshift[i] < 20): raise Exception('Redshift must be provided as a float or list/array of floats.') if not isinstance(axis_ratio, (list, np.ndarray)): axis_ratio = [axis_ratio] for i in range(0, len(axis_ratio)): if not isinstance(axis_ratio[i], (int, float)) or not (1 <= axis_ratio[i] and axis_ratio[i] < 20): raise Exception('Axis ratio must be provided as a float or list/array of floats and be greater than 1.') if not isinstance(jet_power, (list, np.ndarray)): jet_power = [jet_power] for i in range(0, len(jet_power)): if not isinstance(jet_power[i], (int, float)) or not (33 < jet_power[i] and jet_power[i] < 46): raise Exception('Jet power must be provided as a float or list/array of floats in units of log10 Watts.') if not isinstance(source_age, (list, np.ndarray)): source_age = [source_age] for i in range(0, len(source_age)): if not isinstance(source_age[i], (int, float)) or not (0 <= source_age[i] and source_age[i] <= 10.14): raise Exception('Source age must be provided as a float or list/array of floats in units of log10 years.') else: source_age[i] = float(source_age[i]) if not isinstance(active_age, (list, np.ndarray)): active_age = [active_age] for i in range(0, len(active_age)): if not isinstance(active_age[i], (int, float)) or not (0 <= active_age[i] and active_age[i] <= 10.14): raise Exception('Active age must be provided as a float or list/array of floats in units of log10 years.') if not isinstance(equipartition, (list, np.ndarray)): equipartition = [equipartition] for i in range(0, len(equipartition)): if not isinstance(equipartition[i], (int, float)) or not (-6 < equipartition[i] and equipartition[i] < 6): raise Exception('Equipartition factor must be provided as a float or list/array of floats in units of log10.') if not isinstance(jet_lorentz, (list, np.ndarray)): jet_lorentz = [jet_lorentz] for i in range(0, len(jet_lorentz)): if not isinstance(jet_lorentz[i], (int, float)) or not (-100 <= jet_lorentz[i] and jet_lorentz[i] < 20): raise Exception('Jet bulk lorentz factor factor must be provided as a float or list/array of floats.') elif (-100 <= jet_lorentz[i] and jet_lorentz[i] <= 1): jet_lorentz[i] = 0 warnings.warn('Jet phase will not be included in this simulation.', category=UserWarning) # convert environment to correct data types if not isinstance(halo_mass, (list, np.ndarray)) and not halo_mass == None: halo_mass = [halo_mass] nenvirons_halo = len(halo_mass) elif not halo_mass == None: nenvirons_halo = len(halo_mass) if isinstance(halo_mass, (list, np.ndarray)): for i in range(0, len(halo_mass)): if not isinstance(halo_mass[i], (int, float)) or not (9 < halo_mass[i] and halo_mass[i] < 17): raise Exception('Dark matter halo mass must be provided as a float or list/array of floats in units of log10 stellar mass.') if not isinstance(rho0Value, (list, np.ndarray)) and not rho0Value == None: rho0Value = [rho0Value] nenvirons_rho = len(rho0Value) elif not rho0Value == None: nenvirons_rho = len(rho0Value) if isinstance(rho0Value, (list, np.ndarray)): if not isinstance(temperature, (list, np.ndarray)) and not temperature == None: temperature = [temperature]*nenvirons_rho elif temperature == None or not len(temperature) == nenvirons_rho: rho0Value = None # full density profile not provided if isinstance(betas, (list, np.ndarray)) and not isinstance(betas[0], (list, np.ndarray)): betas = [betas]*nenvirons_rho elif not isinstance(betas, (list, np.ndarray)) and not betas == None: betas = [[betas]]*nenvirons_rho elif betas == None or not len(betas) == nenvirons_rho: rho0Value = None # full density profile not provided if isinstance(regions, (list, np.ndarray)) and not isinstance(regions[0], (list, np.ndarray)): regions = [regions]*nenvirons_rho elif not isinstance(regions, (list, np.ndarray)) and not betas == None: regions = [[regions]]*nenvirons_rho elif regions == None or not len(regions) == nenvirons_rho: rho0Value = None # full density profile not provided if isinstance(rho0Value, (list, np.ndarray)): nenvirons = nenvirons_rho for i in range(0, len(rho0Value)): if not isinstance(rho0Value[i], (int, float)) or not (1e-30 < rho0Value[i] and rho0Value[i] < 1e-15): raise Exception('Core gas density must be provided as a float or list/array of floats in units of kg/m^3.') for i in range(0, len(temperature)): if not isinstance(temperature[i], (int, float)) or not (0 < temperature[i] and temperature[i] < 1e12): raise Exception('Gas temperature must be provided as a float or list/array of floats in units of Kelvin.') else: nenvirons = nenvirons_halo return frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons # Define random seed function @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __set_seed(value): np.random.seed(value) ## Define functions for analytic modelling of the environment # function to calculate properties of the environment and call RAiSE_evolution def __RAiSE_environment(redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5., gammaCValue=5./3, aj_star=0.231, jet_angle=0.686, axis_exponent=0.343, fill_factor=0.549): # check minimal inputs if halo_mass == None and (not isinstance(betas, (list, np.ndarray)) or not isinstance(regions, (list, np.ndarray))): raise Exception('Either the halo mass or full density profile must be provided as model inputs.') # calculate gas mass and virial radius of halo unless density and temperature profile fully specified gasfraction = 0 if not halo_mass == None: rVir = (10**halo_mass*const.M_sun.value/(100./const.G.value*(100.*hubble*np.sqrt(OmegaM*(1 + redshift)**3 + OmegaD)/const.kpc.value)**2))**(1./3) if rand_profile == False: gasfraction = __HalogasfracFunction(halo_mass, redshift) else: gasfraction = __rand_norm(__HalogasfracFunction(halo_mass, redshift), __dHalogasfracFunction(halo_mass, redshift)) gasMass = 10**(halo_mass + gasfraction)*const.M_sun.value # approximate the gas density profile of Vikhlinin 2006 by multiple density profiles with a simple beta dependence if not isinstance(betas, (list, np.ndarray)) or not isinstance(regions, (list, np.ndarray)): # set maximum number of regions nregions = betaRegions nregions, new_betas, new_regions = __DensityProfiler(rVir, nregions, rand_profile) elif len(betas) == len(regions): # set maximum number of regions nregions = len(betas) new_betas = np.asarray(betas.copy()) new_regions = np.asarray(regions.copy()) else: raise Exception('Variables betas and regions must be arrays of the same length.') # calculate the average temperature of the external medium if temperature == None: if not halo_mass == None: if rand_profile == False: tempFlat = 10**TmgAvg tempCluster = 10**(TmgConst + TmgSlope*halo_mass) else: tempFlat = 10**(__rand_norm(TmgAvg, TmgStdev)) tempCluster = 10**(__rand_norm(TmgConst + TmgSlope*halo_mass, TmgError)) temperature = max(tempFlat, tempCluster) # take the highest temperature out of the flat profile and cluster model else: raise Exception('Either the halo mass or temperature must be provided as model inputs.') # determine initial value of density parameter given gas mass and density profile if not rho0Value == None: # determine density parameter in the core k0Value = rho0Value*new_regions[0]**new_betas[0] # extend first beta region to a radius of zero new_regions[0] = 0 elif not halo_mass == None: # extend first beta region to a radius of zero new_regions[0] = 0 # find relative values (i.e. to 1) of density parameter in each beta region kValues = __DensityParameter(nregions, 1.0, new_betas, new_regions) # determine density parameter in the core k0Value = __k0ValueFinder(rVir, gasMass, nregions, new_betas, new_regions, kValues) else: raise Exception('Either the halo mass or core density must be provided as model inputs.') # find values of density parameter in each beta region kValues = __DensityParameter(nregions, k0Value, new_betas, new_regions) # call RadioSourceEvolution function to calculate Dt tracks return __RAiSE_evolution(redshift, axis_ratio, jet_power, source_age, active_age, gammaCValue, nregions, new_betas, new_regions, kValues, temperature, jet_lorentz, aj_star, jet_angle, axis_exponent, fill_factor) # approximate the gas density profile of Vikhlinin 2006 by multiple density profiles with a simple beta dependence @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __DensityProfiler(rVir, nregions, rand_profile): # instantiate variables betas, regions = np.zeros(nregions), np.zeros(nregions) # set values of Vikhlinin model parameters if rand_profile == False: alpha = alphaAvg betaPrime = betaPrimeAvg gammaPrime = gammaPrimeAvg # this value has no uncertainty epsilon = epsilonAvg rCore = rCoreAvg rSlope = rSlopeAvg else: alpha = __rand_norm(alphaAvg, alphaStdev) betaPrime = __rand_norm(betaPrimeAvg, betaPrimeStdev) gammaPrime = __rand_norm(gammaPrimeAvg, gammaPrimeStdev) # this value has no uncertainty epsilon = __rand_norm(epsilonAvg, epsilonStdev) rCore = __rand_norm(rCoreAvg, rCoreStdev) rSlope = __rand_norm(rSlopeAvg, rSlopeStdev) # set minimum and maximum radius for density profile to be matched rmin = rCutoff*rVir rmax = rVir # use logarithmic radius scale r = rmin ratio = (rmax/rmin)**(1./(nregions)) - 1 for count in range(0, nregions): # set radius at low end of region rlow = r # calculate relative density at rlow, i.e. ignoring rho_0 factor rhoLow = np.sqrt((rlow/(rCore*rVir))**(-alpha)/((1 + rlow**2/(rCore*rVir)**2)**(3*betaPrime - alpha/2.)*(1 + rlow**gammaPrime/(rSlope*rVir)**gammaPrime)**(epsilon/gammaPrime))) # increment radius dr = r*ratio r = r + dr # set radius at high end of region rhigh = r # calculate relative density at rlow, i.e. ignoring rho_0 factor rhoHigh = np.sqrt((rhigh/(rCore*rVir))**(-alpha)/((1 + rhigh**2/(rCore*rVir)**2)**(3*betaPrime - alpha/2.)*(1 + rhigh**gammaPrime/(rSlope*rVir)**gammaPrime)**(epsilon/gammaPrime))) # set value of innermost radius of each beta region if count == 0: # extend first beta region to a radius of zero regions[count] = 0 else: regions[count] = rlow # calculate exponent beta for each region to match density profile, ensuring beta is less than 2 if (-np.log(rhoLow/rhoHigh)/np.log(rlow/rhigh) < betaMax): betas[count] = -np.log(rhoLow/rhoHigh)/np.log(rlow/rhigh) else: # ensure beta is less than (or equal to) 2 betas[count] = betaMax # set this count to be the number of distinct regions nregions = count + 1 break return nregions, betas, regions # find values of density parameter in each beta region @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __DensityParameter(nregions, k0Value, betas, regions): # instantiate variables kValues = np.zeros(nregions) # calculate density parameters in each region for count in range(0, nregions): # match tracks between regions `a' and `b' if count > 0: # find replicating core density in region `b' required to match pressures and times kValues[count] = kValues[count - 1]*regions[count]**(betas[count] - betas[count - 1]) # if first region, set initial value of replicating core density as actual core density else: kValues[count] = k0Value return kValues # determine value of the density parameter at the core given gas mass and density profile @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __k0ValueFinder(rVir, gasMass, nregions, betas, regions, kValues): # set volume to zero initially volume = 0 # calculate weighted volume integral using by analytically integraing the volume in each beta region for count in range(0, nregions): # set lower bound of analytic integral rlow = regions[count] # set upper bound of analytic integral if (count + 1 == nregions): rhigh = rVir else: rhigh = regions[count + 1] # increment total weighted volume by weigthed volume of this region volume = volume + 4*np.pi*(kValues[count]/kValues[0])/(3 - betas[count])*(rhigh**(3 - betas[count]) - rlow**(3 - betas[count])) # calculate density parameter at the core from stellar mass and weighted volume k0Value = gasMass/volume return k0Value # random normal with values truncated to avoid sign changes @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __rand_norm(mean, stdev): rand_number = np.random.normal(mean, stdev) while (mean*rand_number < 0 or np.abs(rand_number - mean) > 2*stdev): rand_number = np.random.normal(mean, stdev) return rand_number # gas fraction-halo mass relationship @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __HalogasfracFunction(halo_mass, redshift): return max(halogasfracCONST1z0 + halogasfracCONST1z1*redshift, halogasfracCONST2z0 + halogasfracCONST2z1*redshift) + halogasfracSLOPE*(halo_mass - 14) + SAGEdensitycorr # in log space # gas fraction-halo mass relationship error @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __dHalogasfracFunction(halo_mass, redshift): return dhalogasfracz0 + dhalogasfracz1*redshift # in log space ## Define functions required for RAiSE dynamical evolution # function to calculate dynamical evolution of lobe and shocked shell def __RAiSE_evolution(redshift, axis_ratio, jet_power, source_age, active_age, gammaCValue, nregions, betas, regions, kValues, temperature, jet_lorentz, aj_star=0.231, jet_angle=0.686, axis_exponent=0.343, fill_factor=0.549): # convert jet power and source age to correct units QavgValue = 10**jet_power/2. # set the power of *each* jet; convert from log space if isinstance(source_age, (list, np.ndarray)): tFinal = np.zeros_like(source_age) for i in range(0, len(source_age)): tFinal[i] = 10**source_age[i]*year # convert from log space years to seconds else: tFinal = np.array([10**source_age*year]) tActive = 10**active_age*year # calculate angle of current radial line angles = np.arange(0, nangles, 1).astype(np.int_) dtheta = (np.pi/2)/nangles theta = dtheta*(angles + 0.5) # calculate opening angle of jet open_angle = (jet_angle*np.pi/180)/(axis_ratio/2.83) # evaluate the translation coefficients eta_c and eta_s eta_c = 1./np.sqrt(axis_ratio**2*(np.sin(theta))**2 + (np.cos(theta))**2) eta_s = 1./np.sqrt(axis_ratio**(2*shockAxisRatio)*(np.sin(theta))**2 + (np.cos(theta))**2) # evaluate the translation coefficient zeta_s/eta_s at t -> infinity zetaeta = np.sqrt(axis_ratio**(2*shockAxisRatio)*(np.sin(theta))**2 + (np.cos(theta))**2)/np.sqrt(axis_ratio**(4*shockAxisRatio)*(np.sin(theta))**2 + (np.cos(theta))**2) eta_c[0], eta_s[0], zetaeta[0] = 1., 1., 1, # calculate the differential volume element coefficient chi dchi = 4*np.pi/3.*np.sin(theta)*np.sin(dtheta/2.) # solve RAiSE dynamics iteratively to find thermal component of lobe pressure if jet_lorentz > 1: # run code in strong-shock limit to calibrate initial velocity x_time = 10**10.14*year _, _, _, _, _, _, _, critical_point_1 = __RAiSE_runge_kutta(QavgValue, np.array([x_time]), x_time, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue, critical_velocity=c_speed, strong_shock=True) # run code for full RAiSE HD dynamical model lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, critical_point_3 = __RAiSE_runge_kutta(QavgValue, tFinal, tActive, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue, critical_velocity=c_speed*critical_point_1[2]/critical_point_1[3]) else: # run code for RAiSE X dynamical model lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, _ = __RAiSE_runge_kutta(QavgValue, tFinal, tActive, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue) return lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda # function to apply Runge-Kutta method and extract values at requested time steps @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_runge_kutta(QavgValue, source_age, active_age, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue, critical_velocity=0., strong_shock=False): # instantiate variables X, P = np.zeros((nangles, 5)), np.zeros((nangles, 4)) critical_point = np.zeros(4) regionPointer = np.zeros(nangles).astype(np.int_) lobe_minor, lambda_crit, alphaP_denv, alpha_lambda = np.zeros(len(source_age)), np.zeros(len(source_age)), np.zeros(len(source_age)), np.zeros(len(source_age)) lobe_lengths, shock_lengths, shock_pressures = np.zeros((nangles, len(source_age))), np.zeros((nangles, len(source_age))), np.zeros((nangles, len(source_age))) # calculate injection ages to derive time-average power-law indices for external pressure and filling factor inject_age = np.zeros(2*len(source_age)) inject_axis_ratios, inject_pressures, inject_lambdas = np.zeros(2*len(source_age)), np.zeros(2*len(source_age)), np.zeros(2*len(source_age)) for timePointer in range(0, len(source_age)): inject_age[2*timePointer:2*(timePointer + 1)] = np.asarray([crit_age*source_age[timePointer], source_age[timePointer]]) inject_index = np.argsort(inject_age) # sort ages in ascending order # calculate the spatially-averaged jet velocity and Lorentz factor if jet_lorentz > 1: bulk_lorentz = np.sqrt(jet_lorentz**2*aj_star**4 - aj_star**4 + 1) bulk_velocity = np.sqrt((jet_lorentz**2*aj_star**4 - aj_star**4)/(jet_lorentz**2*aj_star**4 - aj_star**4 + 1))*c_speed else: bulk_lorentz, bulk_velocity = -1, -1 i = 0 for timePointer in range(0, len(source_age)): # set initial conditions for each volume element if timePointer == 0: # calculate initial time and radius for ODE FR2time = limTime if jet_lorentz > 1: FR2radius = bulk_velocity*limTime FR2velocity = bulk_velocity # eta_R is very large else: FR2radius = np.sqrt(1 - 1./100**2)*c_speed*limTime FR2velocity = np.sqrt(1 - 1./100**2)*c_speed # test if this radius is above start of second region boundary if (regions[1] < FR2radius): FR2radius = regions[1] if jet_lorentz > 1: FR2time = regions[1]/bulk_velocity FR2velocity = bulk_velocity else: FR2time = regions[1]/(np.sqrt(1 - 1./100**2)*c_speed) FR2velocity = np.sqrt(1 - 1./100**2)*c_speed # calculate the initial jet/shock shell radius and velocity for each angle theta X[angles,0] = FR2time X[angles,1] = FR2radius*eta_s X[angles,2] = FR2velocity*eta_s if jet_lorentz > 1: X[0,3], X[angles[1:],3] = bulk_lorentz, 1./np.sqrt(1 - (FR2velocity*eta_s[angles[1:]]/c_speed)**2) else: X[0,3], X[angles[1:],3] = 100, 100*eta_s[angles[1:]] X[angles,4] = -1 # null value # set region pointer to first (non-zero) region if smaller than FR2 radius index = regions[1] < X[angles,1] regionPointer[index] = 1 regionPointer[np.logical_not(index)] = 0 # calculate fraction of jet power injected into each volume element injectFrac = dchi*eta_s**(3 - betas[regionPointer[0]])*zetaeta**2 injectFrac = injectFrac/np.sum(injectFrac) # sum should be equal to unity # solve ODE to find radius and pressue at each time step while (X[0,0] < source_age[timePointer]): while (X[0,0] < inject_age[inject_index[i]]): # calculate the appropriate density profile for each angle theta for anglePointer in range(0, nangles): while (regionPointer[anglePointer] + 1 < nregions and X[anglePointer,1] > regions[regionPointer[anglePointer] + 1]): regionPointer[anglePointer] = regionPointer[anglePointer] + 1 # check if next step passes time point of interest if (X[0,0]*stepRatio > inject_age[inject_index[i]]): step = inject_age[inject_index[i]] - X[0,0] else: step = X[0,0]*(stepRatio - 1) # update estimates of time, radius and velocity __rk4sys(step, X, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) X[:,3] = np.maximum(1, X[:,3]) # find location of jet--lobe transition critical_point[0], critical_point[1], critical_point[2], critical_point[3] = X[0,0], X[0,1], X[0,2]*X[0,3], X[0,4] # record axis ratio, external pressure and filling factor and injection times if P[-1,0] > 0: inject_axis_ratios[inject_index[i]] = 1./(P[0,0]/P[-1,0])**2 # inverted to match alpha_lambda definition else: inject_axis_ratios[inject_index[i]] = 1 inject_pressures[inject_index[i]] = P[0,2] inject_lambdas[inject_index[i]] = P[0,3] # update injection age if not a requested source age if inject_age[inject_index[i]] < source_age[timePointer]: i = i + 1 # calculate the lobe and shocked shell length, shock pressure and total pressure as a function of angle lobe_lengths[angles,timePointer] = P[angles,0] shock_lengths[angles,timePointer] = X[angles,1] shock_pressures[angles,timePointer] = P[angles,1] lambda_crit[timePointer] = P[0,3] # calculate lobe minor axis (associated with dimensions of shocked shell) at this time step lobe_minor[timePointer] = X[-1,1]*eta_c[-1]/(shockRadius*eta_s[-1]) # calculate the slope of external pressure profile at this time step if inject_pressures[inject_index[2*timePointer]] <= 0: alphaP_denv[timePointer] = 0 else: alphaP_denv[timePointer] = np.log(inject_pressures[2*timePointer + 1]/inject_pressures[2*timePointer])/np.log(inject_age[2*timePointer + 1]/inject_age[2*timePointer]) if inject_lambdas[2*timePointer] <= 0: alpha_lambda[timePointer] = 1e9 # no emission from this injection time else: alpha_lambda[timePointer] = np.log(inject_lambdas[2*timePointer + 1]/inject_lambdas[2*timePointer])/np.log(inject_age[2*timePointer + 1]/inject_age[2*timePointer]) + np.log(inject_axis_ratios[2*timePointer + 1]/inject_axis_ratios[2*timePointer])/np.log(inject_age[2*timePointer + 1]/inject_age[2*timePointer]) # filling factor and changing volume/axis ratio return lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, critical_point # Runge-Kutta method to solve ODE in dynamical model @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __rk4sys(step, X, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock): # instantiate variables Y, K1, K2, K3, K4 = np.zeros((len(angles), 5)), np.zeros((len(angles), 5)), np.zeros((len(angles), 5)), np.zeros((len(angles), 5)), np.zeros((len(angles), 5)) # fouth order Runge-Kutta method __xpsys(X, K1, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) Y[:,:] = X[:,:] + 0.5*step*K1[:,:] __xpsys(Y, K2, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) Y[:,:] = X[:,:] + 0.5*step*K2[:,:] __xpsys(Y, K3, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) Y[:,:] = X[:,:] + 0.5*step*K3[:,:] __xpsys(Y, K4, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) X[:,:] = X[:,:] + (step/6.)*(K1[:,:] + 2*K2[:,:] + 2*K3[:,:] + K4[:,:]) # coupled second order differential equations for lobe evolution @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __xpsys(X, f, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock): # Differential equations for X[0,1,2,3,4] = (time, radius, velocity, lorentz_factor, thermal_velocity) # Additional variable for P[0,1,2,3] = (lobe_length, lobe_pressure, external_pressure, lambda_crit) f[angles,0] = 1. f[angles,1] = X[angles,2] # test if the AGN is active at this time-step if (X[0,0] <= active_age): active_jet = 1 else: active_jet = 0 # calculate the spatially-averaged jet velocity and Lorentz factor if jet_lorentz > 1: bulk_lorentz = np.sqrt(jet_lorentz**2*aj_star**4 - aj_star**4 + 1) bulk_velocity = np.sqrt((jet_lorentz**2*aj_star**4 - aj_star**4)/(jet_lorentz**2*aj_star**4 - aj_star**4 + 1))*c_speed else: bulk_lorentz, bulk_velocity = -1, -1 # TWO-PHASE FLUID if jet_lorentz > 1: # calculate the lobe formation scale eta_R = QavgValue*bulk_lorentz**2/(2*np.pi*kValues[regionPointer[0]]*(bulk_lorentz*bulk_velocity)*(bulk_lorentz - 1)*c_speed**2*(1 - np.cos(open_angle))*X[0,1]**(2 - betas[regionPointer[0]])) # calculate lambda_crit #if (eta_R/bulk_lorentz**2) > 1: # lambda_crit = 0 #else: # lambda_crit = 1 lambda_crit = np.exp(-(eta_R/bulk_lorentz**2)/(2*np.log(2))) P[0,3] = lambda_crit else: P[0,3] = 1 # ACCELERATION # update fraction of jet power injected into each volume element injectFrac_new = dchi*eta_s**(3 - betas[regionPointer[0]])*zetaeta**2 injectFrac_new = injectFrac/np.sum(injectFrac) # sum should be equal to unity if jet_lorentz > 1: injectFrac[angles] = (1 - lambda_crit)*injectFrac_new + lambda_crit*injectFrac # keep static at late times else: injectFrac[angles] = injectFrac_new[angles] # acceleration of jet-head if jet_lorentz > 1: jet_acceleration = (betas[regionPointer[0]] - 2)*bulk_velocity*X[0,2]/(2*X[0,1]*(1 + eta_R**(-1./2))**2*eta_R**(1./2)) # acceleration of lobe (supersonic/subsonic) if jet_lorentz > 1 and strong_shock == True: f[angles,2] = np.minimum((gammaCValue - 1)*injectFrac[angles]*(QavgValue*active_jet)*X[angles,1]**(betas[regionPointer[angles]] - 3)/(X[angles,2]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)*dchi[angles]*(X[angles,3]*zetaeta[angles])**2*kValues[regionPointer[angles]]) + (betas[regionPointer[angles]] - 3*gammaCValue)*(X[angles,2])**2/(2*X[angles,1]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)), (betas[regionPointer[angles]] - 2)/(5 - betas[regionPointer[angles]]) * X[angles,2]*X[angles,3]/(X[0,0] + year)) # ensure model doesn't run slower than limit due to numerics elif jet_lorentz > 1: f[angles,2] = (gammaCValue - 1)*injectFrac[angles]*(QavgValue*active_jet)*X[angles,1]**(betas[regionPointer[angles]] - 3)/(X[angles,2]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)*dchi[angles]*(X[angles,3]*zetaeta[angles])**2*kValues[regionPointer[angles]]) + (betas[regionPointer[angles]] - 3*gammaCValue)*(X[angles,2])**2/(2*X[angles,1]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)) - (3*gammaCValue - betas[regionPointer[angles]])*(k_B*temperature/maverage)/(2*X[angles,1]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)*(X[angles,3]*zetaeta[angles])**2) else: sub_angles = (X[angles,2]*X[angles,3]*zetaeta)**2/(gammaX*(k_B*temperature/maverage)) <= 1 super_angles = np.logical_not(sub_angles) f[super_angles,2] = (gammaX + 1)*(gammaCValue - 1)*injectFrac[super_angles]*(QavgValue*active_jet)*X[super_angles,1]**(betas[regionPointer[super_angles]] - 3)/(2*X[super_angles,2]*(1 + (X[super_angles,3]*X[super_angles,2]/c_speed)**2)*dchi[super_angles]*(X[super_angles,3]*zetaeta[super_angles])**2*kValues[regionPointer[super_angles]]) + (betas[regionPointer[super_angles]] - 3*gammaCValue)*(X[super_angles,2])**2/(2*X[super_angles,1]*(1 + (X[super_angles,3]*X[super_angles,2]/c_speed)**2)) + (gammaX - 1)*(3*gammaCValue - betas[regionPointer[super_angles]])*(k_B*temperature/maverage)/(4*X[super_angles,1]*(1 + (X[super_angles,3]*X[super_angles,2]/c_speed)**2)*(X[super_angles,3]*zetaeta[super_angles])**2) f[sub_angles,2] = (betas[regionPointer[sub_angles]] - 2)*(X[sub_angles,2])**2/X[sub_angles,1] # combine acceleration from jet-head and lobe as two-phase fluid if jet_lorentz > 1: if (lambda_crit < lambda_min or X[0,0] < 10*limTime): # improve stability f[0,2], f[angles[1:],2] = jet_acceleration, jet_acceleration*eta_s[angles[1:]] X[angles[1:],2] = X[0,2]*eta_s[angles[1:]] else: f[0,2], f[angles[1:],2] = (1 - lambda_crit)*jet_acceleration + lambda_crit*f[0,2], (1 - lambda_crit)*jet_acceleration*eta_s[angles[1:]] + lambda_crit*f[angles[1:],2] # calculate Lorentz factor of two-phase fluid f[angles,3] = X[angles,3]**3*X[angles,2]*f[angles,2]/c_speed**2 # PRESSURES # external pressure at each volume element P[angles,2] = kValues[regionPointer[angles]]*(k_B*temperature/maverage)*X[angles,1]**(-betas[regionPointer[angles]]) # set velocity associated with thermal component of lobe perssure if jet_lorentz > 1 and critical_velocity > 0: if (lambda_crit < lambda_min or X[0,0] < 10*limTime): # improve stability f[0,4], f[angles[1:],4] = jet_acceleration, jet_acceleration*eta_s[angles[1:]] X[angles[1:],4] = X[0,4]*eta_s[angles[1:]] else: f[angles,4] = (betas[regionPointer[angles]] - 2)/(5 - betas[regionPointer[angles]]) * X[angles,4]/(X[0,0] + year) else: X[angles,4], f[angles,4] = X[angles,2]*X[angles,3], f[angles,2] # jet/lobe pressure at each volume element volume = X[angles,1]**3*dchi[angles] if jet_lorentz > 1: # calculate lobe pressure P[angles,1] = zetaeta[angles]**2*kValues[regionPointer[angles]]*X[angles,1]**(-betas[regionPointer[angles]])*(np.minimum(X[angles,2], X[angles,4]))**2 + kValues[regionPointer[angles]]*(k_B*temperature/maverage)*X[angles,1]**(-betas[regionPointer[angles]]) # calculate average pressure across jet/lobe pressure = np.sum(P[angles,1]*volume)/np.sum(volume) # set average pressure in all of lobe other than hotspot P[angles[1:],1] = pressure else: # calculate lobe pressure P[super_angles,1] = 2./(gammaX + 1)*zetaeta[super_angles]**2*kValues[regionPointer[super_angles]]*X[super_angles,1]**(-betas[regionPointer[super_angles]])*(X[super_angles,2]*X[super_angles,3])**2 - (gammaX - 1)/(gammaX + 1)*kValues[regionPointer[super_angles]]*(k_B*temperature/maverage)*X[super_angles,1]**(-betas[regionPointer[super_angles]]) P[sub_angles,1] = P[sub_angles,2] # calculate average pressure across jet/lobe pressure = np.sum(P[angles,1]*volume)/np.sum(volume) # set average pressure in all of lobe other than hotspot P[angles[1:],1] = pressure # AXIS RATIO if jet_lorentz > 1: # calculate total mass of particles from the jet particle_mass = QavgValue*np.minimum(active_age, X[0,0])/((bulk_lorentz - 1)*c_speed**2) # calculate volume occupied by particles expanding at sound speed and maximum fillable volume within shocked shell jet_sound = c_speed*np.sqrt(gammaJ - 1) particle_volume = particle_mass/(gammaJ*pressure/jet_sound**2) # mass / density shell_volume = np.sum(volume*eta_c/(shockRadius*eta_s)) # calculate (optimal) lobe volume as weighted sum of particle volume and maximum fillable volume (i.e. enable sound speed to reduce as lobe approaches size of shocked shell) lobe_volume = 1./(1./(particle_volume/fill_factor)**axis_exponent + 1./(shell_volume)**axis_exponent)**(1./axis_exponent) # find axis ratio for an ellipsoidal lobe if lobe_volume > 0 and lambda_crit >= lambda_min: lobe_axis_ratio = np.minimum(np.sqrt(2*np.pi*(X[0,1]/shockRadius)**3/(3*lobe_volume)), 1/np.tan(open_angle)) else: lobe_axis_ratio = 1/np.tan(open_angle) # update lobe length along let axis and axis ratio of shocked shell P[0,0] = X[0,1]/shockRadius # calculate geometry of each angular volume element dtheta = (np.pi/2)/len(angles) theta = dtheta*(angles + 0.5) lobe_eta_c = 1./np.sqrt(lobe_axis_ratio**2*(np.sin(theta))**2 + (np.cos(theta))**2) # set length of lobe along each angular volume element P[angles[1:],0] = np.minimum(lobe_eta_c[angles[1:]]*P[0,0], X[angles[1:],1]*eta_c[angles[1:]]/(shockRadius*eta_s[angles[1:]])) # second condition should rarely be met else: # set length of lobe along each angular volume element P[0,0], P[angles[1:],0] = X[0,1]/shockRadius, X[angles[1:],1]*eta_c[angles[1:]]/(shockRadius*eta_s[angles[1:]]) ## Define functions to download and preprocess particles from hydrodynamical simulations def __PLUTO_particles(particle_data_path): # unpack particle data from hydrodynamical simulations particle_dict = h5py.File(os.path.join(os.path.dirname(os.path.realpath(__file__)), particle_data_path), 'r') # store variables at desired resolution time = particle_dict['time'][:].astype(np.float32) shock_time = particle_dict['tinject'][:,:].astype(np.float32) major = particle_dict['major'][:].astype(np.float32) minor = particle_dict['minor'][:].astype(np.float32) x1 = particle_dict['x1'][:,:].astype(np.float32) x2 = particle_dict['x2'][:,:].astype(np.float32) x3 = particle_dict['x3'][:,:].astype(np.float32) tracer = particle_dict['tracer'][:,:].astype(np.float32) vx3 = particle_dict['vx3'][:,:].astype(np.float32) volume = particle_dict['volume'][:,:].astype(np.float32) pressure = particle_dict['pressure'][:,:].astype(np.float32) press_minor = particle_dict['pressminor'][:].astype(np.float32) alphaP_hyd = particle_dict['alphaP'][:,:].astype(np.float32) alphaP_henv = particle_dict['alphaPenv'][:,:].astype(np.float32) hotspot_ratio = particle_dict['hotspotratio'][:].astype(np.float32) return time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio ## Define functions to add emissivity from particles in hydrodynamical simulations on top of dynamics # function to manage orientation and distribution of particles from simulation output def __RAiSE_emissivity(frequency, redshift, time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, source_age, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, active_age, equipartition, spectral_index, gammaCValue=5./3, lorentz_min=Lorentzmin, resolution='standard'): # determine spatial resolution of particles; i.e. overdensity of particles to include in calculations if resolution == 'best': nsamples = 2048 elif resolution == 'high': nsamples = 512 elif resolution == 'standard': nsamples = 128 elif resolution == 'poor': nsamples = 32 else: raise Exception('Unrecognised keyword for particle resolution. The accepted keywords are: best, high, standard and poor.') # randomly generate viewing time in the simulated source age timePointer = np.arange(0, nsamples).astype(np.int_)%len(time) # convert frequency, equipartition factor and spectral index to correct units if isinstance(frequency, (list, np.ndarray)): rest_frequency = np.zeros_like(frequency) inverse_compton = np.zeros_like(frequency).astype(np.int_) for freqPointer in range(0, len(frequency)): rest_frequency[freqPointer] = 10**frequency[freqPointer]*(1 + redshift) if rest_frequency[freqPointer] > 1e12: # assume frequencies greater than 1000 GHz are inverse-Compton inverse_compton[freqPointer] = 1 else: rest_frequency = [10**frequency*(1 + redshift)] if rest_frequency[freqPointer] > 1e12: # assume frequencies greater than 1000 GHz are inverse-Compton inverse_compton = [1] if isinstance(source_age, (list, np.ndarray)): tFinal = np.zeros_like(source_age) for i in range(0, len(source_age)): tFinal[i] = 10**source_age[i]*year # convert from log space years to seconds else: tFinal = [10**source_age*year] tActive = 10**active_age*year equi_factor = 10**float(-np.abs(equipartition)) # ensure sign is correct s_index = 2*float(np.abs(spectral_index)) + 1 # ensure sign is correct # derive redshift dependent ancillary variables used by every analytic model Ks = __RAiSE_Ks(s_index, gammaCValue, lorentz_min) blackbody = __RAiSE_blackbody(s_index) return __RAiSE_particles(timePointer, rest_frequency, inverse_compton, redshift, time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, tFinal, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, tActive, equi_factor, s_index, gammaCValue, lorentz_min, Ks, blackbody) # function to calculate emissivity from each particle using RAiSE model @jit(nopython=True, parallel=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_particles(timePointer, rest_frequency, inverse_compton, redshift, time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, tFinal, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, tActive, equi_factor, s_index, gammaCValue, lorentz_min, Ks, blackbody): # instantiate variables luminosity = np.zeros((len(tFinal), len(timePointer)*len(pressure[:,0]), len(rest_frequency))) magnetic_field = np.zeros((len(tFinal), len(rest_frequency))) magnetic_particle, magnetic_weighting = np.zeros((len(tFinal), len(timePointer), len(rest_frequency))), np.zeros((len(tFinal), len(timePointer), len(rest_frequency))) location = np.zeros((len(tFinal), len(timePointer)*len(pressure[:,0]), 3)) # derive emissivity at each time step for i in range(0, len(tFinal)): # derive emissivity for random variations in particle distribution for j in range(0, len(timePointer)): # SHOCK ACCELERATION TIMES new_shock_time = shock_time[:,timePointer[j]]*(tFinal[i]/time[timePointer[j]])*np.minimum(1., (tActive/tFinal[i])) # scale the last acceleration time to active age if source is a remnant # PRESSURES new_pressure = pressure[:,timePointer[j]]*(shock_pressures[-1,i]/press_minor[timePointer[j]]) # correction factor to match Model A # correct the hotspot/lobe pressure ratio based on the dynamical model new_pressure = new_pressure*((shock_pressures[0,i]/shock_pressures[-1,i])/hotspot_ratio[timePointer[j]] - 1)*(np.abs(x3[:,timePointer[j]])/major[timePointer[j]]) + new_pressure # increase log-space pressure linearly along lobe # correct the evolutionary histories of the particles based on the dynamical model alphaP_dyn = np.maximum(-2, np.minimum(0, alphaP_denv[i] + alphaP_hyd[:,timePointer[j]] - alphaP_henv[:,timePointer[j]])) # VOLUMES volume_fraction = volume[:,timePointer[j]]/(4*np.pi/3.*major[timePointer[j]]*minor[timePointer[j]]**2) #volume_sum = np.nansum(volume_fraction[~np.isinf(volume_fraction)]) # cap the largest volumes at the 95th percentile to outliers in surface brightness map; minimal effect on total luminosity volume_fraction[volume_fraction > np.nanpercentile(volume_fraction, 95)] = np.nanpercentile(volume_fraction, 95) new_volume = volume_fraction*(4*np.pi/3.*lobe_lengths[0,i]*lobe_minor[i]**2)*tracer[:,timePointer[j]] #/volume_sum # RELATIVISTIC BEAMING doppler_factor = np.sqrt(np.maximum(1e-6, 1 - vx3[:,timePointer[j]]**2))**(3 - (s_index - 1)/2.) # Doppler boosting of particles in jet; 1e-6 ensures some very low level emission doppler_factor[np.logical_and(np.abs(x3[:,timePointer[j]])/major[timePointer[j]] < 0.1, np.logical_and(np.abs(x1[:,timePointer[j]])/major[timePointer[j]] < 0.01, np.abs(x2[:,timePointer[j]])/major[timePointer[j]] < 0.01))] = 0 # completely remove very bright particles clumped at start of jet # LOBE PARTICLES # find angle and radius of each particle from core new_angles = np.arctan((np.sqrt(x1[:,timePointer[j]]**2 + x2[:,timePointer[j]]**2)*lobe_minor[i]/minor[timePointer[j]])/(x3[:,timePointer[j]]*lobe_lengths[0,i]/major[timePointer[j]])) # rescale axes to correct axis ratio new_radii = np.sqrt((x1[:,timePointer[j]]**2 + x2[:,timePointer[j]]**2)*(lobe_minor[i]/minor[timePointer[j]])**2 + (x3[:,timePointer[j]]*lobe_lengths[0,i]/major[timePointer[j]])**2)/lobe_lengths[0,i] # find particles within lobe region; particles outside this region will not emit. Particle map is set to axis ratio based on shocked shell to maintain geometry of jet new_eta_c = 1./np.sqrt((lobe_lengths[0,i]/lobe_lengths[-1,i])**2*(np.sin(new_angles))**2 + (np.cos(new_angles))**2) lobe_particles = np.zeros_like(x1[:,timePointer[j]]) lobe_particles[np.abs(vx3[:,timePointer[j]]) > 1./np.sqrt(3)] = 1 # assume sound speed is critical value for relativisitic particles lobe_particles[new_radii < new_eta_c] = 1. # TWO PHASE FLUID # fraction of jet particles that have reached location in lobe two_phase_weighting = np.maximum(0, np.minimum(1, lambda_crit[i]*(new_shock_time/np.minimum(tActive, tFinal[i]))**np.maximum(0, alpha_lambda[i]))) if tActive/tFinal[i] >= 1: # keep jet particles visible at all times two_phase_weighting = np.maximum(two_phase_weighting, np.minimum(1, np.abs(vx3[:,timePointer[j]]*np.sqrt(3)))) # assume sound speed is critical value for relativisitic particles else: # suppress emission from jet particle two_phase_weighting = np.minimum(two_phase_weighting, 1 - np.minimum(1, np.abs(vx3[:,timePointer[j]]*np.sqrt(3)))) # PARTICLE EMISSIVITY for k in range(0, len(rest_frequency)): if rest_frequency[k] > 100: # calculate losses due to adiabatic expansion, and synchrotron/iC radiation lorentz_ratio, pressure_ratio = __RAiSE_loss_mechanisms(rest_frequency[k], inverse_compton[k], redshift, tFinal[i], new_shock_time, new_pressure, alphaP_dyn, equi_factor, gammaCValue) # calculate luminosity associated with each particle temp_luminosity = None if inverse_compton[k] == 1: # inverse-Compton sync_frequency = (3*e_charge*rest_frequency[k]*np.sqrt(2*mu0*( equi_factor*new_pressure/((gammaCValue - 1)*(equi_factor + 1)) ))/(2*np.pi*m_e*(freq_cmb*temp_cmb*(1 + redshift)))) # assuming emission at CMB frequency only temp_luminosity = Ks/blackbody*sync_frequency**((1 - s_index)/2.)*(sync_frequency/rest_frequency[k])*(gammaCValue - 1)*__RAiSE_uC(redshift) * (equi_factor**((s_index + 1)/4. - 1 )/(equi_factor + 1)**((s_index + 5)/4. - 1 ))*new_volume*new_pressure**((s_index + 1 )/4.)*pressure_ratio**(1 - 4./(3*gammaCValue))*lorentz_ratio**(2 - s_index)/len(timePointer) * doppler_factor*lobe_particles*two_phase_weighting else: # synchrotron temp_luminosity = Ks*rest_frequency[k]**((1 - s_index)/2.)*(equi_factor**((s_index + 1)/4.)/(equi_factor + 1)**((s_index + 5)/4.))*new_volume*new_pressure**((s_index + 5)/4.)*pressure_ratio**(1 - 4./(3*gammaCValue))*lorentz_ratio**(2 - s_index)/len(timePointer) * doppler_factor*lobe_particles*two_phase_weighting # remove any infs index = np.isinf(temp_luminosity) temp_luminosity[index] = np.nan luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k] = temp_luminosity # calculate luminosity weighted magnetic field strength magnetic_particle[i,j,k] = np.nansum(np.sqrt(2*mu0*new_pressure*equi_factor/(gammaCValue - 1)*(equi_factor + 1))*luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k]) magnetic_weighting[i,j,k] = np.nansum(luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k]) # PARTICLE PRESSURE else: luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k] = new_pressure*lobe_particles # CARTESIAN LOCATIONS location[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),0] = x1[:,timePointer[j]]*lobe_minor[i]/minor[timePointer[j]] *np.sign(timePointer[j]%8 - 3.5) location[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),1] = x2[:,timePointer[j]]*lobe_minor[i]/minor[timePointer[j]] *np.sign(timePointer[j]%4 - 1.5) location[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),2] = x3[:,timePointer[j]]*lobe_lengths[0,i]/major[timePointer[j]] *np.sign(timePointer[j]%2 - 0.5) # calculate luminosity weighted magnetic field strength for time step for k in range(0, len(rest_frequency)): if np.nansum(magnetic_weighting[i,:,k]) == 0: magnetic_field[i,k] = 0 else: magnetic_field[i,k] = np.nansum(magnetic_particle[i,:,k])/np.nansum(magnetic_weighting[i,:,k]) return location, luminosity, magnetic_field # find ratio of the lorentz factor and the pressure at the time of acceleration to that at the time of emission @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_loss_mechanisms(rest_frequency, inverse_compton, redshift, time, shock_time, pressure, alphaP, equipartition, gammaCValue=5./3): # calculate lorentz factor at time of emission if inverse_compton == 1: # inverse-Compton lorentz_factor = np.sqrt(rest_frequency/(freq_cmb*temp_cmb*(1 + redshift)))*np.ones(len(pressure)) # assuming emission at CMB frequency only else: # synchrotron lorentz_factor = np.sqrt(2*np.pi*m_e*rest_frequency/(3*e_charge*np.sqrt(2*mu0*pressure/(gammaCValue - 1)*(equipartition/(equipartition + 1))))) # assuming emission at Larmor frequency only # calculate pressure and volume at time of acceleration pressure_inject = pressure*(shock_time/time)**alphaP # calculate RAiSE constant a2 a2 = __RAiSE_a2(redshift, time, shock_time, pressure, pressure_inject, equipartition, alphaP, gammaCValue) # calculate lorentz factor at time of acceleration, and remove invalid points lorentz_inject = lorentz_factor*shock_time**(alphaP/(3*gammaCValue))/(time**(alphaP/(3*gammaCValue)) - a2*lorentz_factor) # second time is i becasue is time_high lorentz_inject[lorentz_inject < 1] = np.nan return lorentz_inject/lorentz_factor, pressure_inject/pressure # find RAiSE constant a2 for synchrotron and iC radiative losses @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_a2(redshift, time, shock_time, pressure, pressure_inject, equipartition, alphaP, gammaCValue=5./3): return 4*sigma_T/(3*m_e*c_speed)*(pressure_inject/(gammaCValue - 1)*(equipartition/(equipartition + 1))/(1 + alphaP*(1 + 1./(3*gammaCValue)))*shock_time**(-alphaP)*(time**(1 + alphaP*(1 + 1./(3*gammaCValue))) - shock_time**(1 + alphaP*(1 + 1./(3*gammaCValue)))) + __RAiSE_uC(redshift)/(1 + alphaP/(3*gammaCValue))*(time**(1 + alphaP/(3*gammaCValue)) - shock_time**(1 + alphaP/(3*gammaCValue)))) # array is shorter by one element # find CMB radiation energy density @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_uC(redshift): uC0 = 0.25*1e6*e_charge # J m-3 CMB energy density at z = 0 (Longair, 1981) return uC0*(redshift + 1)**4 # assuming uC prop to (z + 1)^4 as in KDA97 # find RAiSE constant K(s) for the absolute scaling of the emissivity def __RAiSE_Ks(s_index, gammaCValue=5./3, lorentz_min=Lorentzmin): kappa = (gamma(s_index/4. + 19./12)*gamma(s_index/4. - 1./12)*gamma(s_index/4. + 5./4)/gamma(s_index/4. + 7./4)) return kappa/(m_e**((s_index + 3)/2.)*c_speed*(s_index + 1))*(e_charge**2*mu0/(2*(gammaCValue - 1)))**((s_index + 5)/4.)*(3./np.pi)**(s_index/2.)/((lorentz_min**(2 - s_index) - Lorentzmax**(2 - s_index))/(s_index - 2) - (lorentz_min**(1 - s_index) - Lorentzmax**(1 - s_index))/(s_index - 1)) # find RAiSE blackbody constant to convert cosmic microwave background emission from single frequency to blackbody spectrum def __RAiSE_blackbody(s_index): return np.pi**4/(15*gamma((s_index + 5)/2.)*zeta((s_index + 5)/2.)) ## Define functions to produce surface brightness maps of radio lobes # define function to manage the discretisation of particles down to pixels def __RAiSE_brightness_map(frequency, redshift, source_age, lobe_lengths, location, luminosity, angle, resolution='standard'): # determine spatial resolution of particles; i.e. overdensity of particles to include in calculations if resolution == 'best': npixels = 2048/4 elif resolution == 'high': npixels = 512/2 elif resolution == 'standard': npixels = 128/1 elif resolution == 'poor': npixels = 32*2 else: raise Exception('Unrecognised keyword for particle resolution. The accepted keywords are: best, high, standard and poor.') # convert frequency, equipartition factor and spectral index to correct units if isinstance(frequency, (list, np.ndarray)): rest_frequency = np.zeros_like(frequency) for freqPointer in range(0, len(frequency)): rest_frequency[freqPointer] = 10**frequency[freqPointer]*(1 + redshift) else: rest_frequency = [10**frequency*(1 + redshift)] if isinstance(source_age, (list, np.ndarray)): tFinal = np.zeros_like(source_age) for i in range(0, len(source_age)): tFinal[i] = 10**source_age[i]*year # convert from log space years to seconds else: tFinal = [10**source_age*year] return __RAiSE_pixels(rest_frequency, redshift, tFinal, lobe_lengths, location, luminosity, angle, npixels) # define function to discretise particles down to pixels @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_pixels(rest_frequency, redshift, tFinal, lobe_lengths, location, luminosity, angle, npixels): # instantiate variables to store brightness map variables x_list = [] y_list = [] brightness_list = [] for i in range(0, len(tFinal)): x_col = [] y_col = [] brightness_col = [] sim_x, sim_y, sim_z = location[i,:,0], location[i,:,1], location[i,:,2] # x, y, z (i.e. 0, 1, 2) in simulations for j in range(0, len(rest_frequency)): # separate location array into components index = np.logical_and(np.logical_and(np.logical_not(np.isnan(luminosity[i,:,j])), np.logical_not(np.isinf(luminosity[i,:,j]))), np.logical_not(np.isnan(sim_x))) location_x = np.sin(angle*np.pi/180.)*sim_y[index] + np.cos(angle*np.pi/180.)*sim_z[index] location_y = sim_x[index] new_luminosity = luminosity[i,:,j] new_luminosity = new_luminosity[index] if len(location_x) > 0: # discretise particles location_x = np.floor(location_x/lobe_lengths[0,i]*(npixels//2)).astype(np.int_) location_y = np.floor(location_y/lobe_lengths[0,i]*(npixels//2)).astype(np.int_) min_x, min_y = np.min(location_x), np.min(location_y) location_x = location_x - min_x location_y = location_y - min_y # instantiate variables to store discrete particles x_values = np.arange(np.min(location_x), np.max(location_x) + 0.1, 1).astype(np.int_) y_values = np.arange(np.min(location_y), np.max(location_y) + 0.1, 1).astype(np.int_) brightness = np.zeros((len(x_values), len(y_values))) # add luminosity from each particle to correct pixel for k in range(0, len(new_luminosity)): if rest_frequency[j] > 100: brightness[location_x[k],location_y[k]] = brightness[location_x[k],location_y[k]] + new_luminosity[k] else: brightness[location_x[k],location_y[k]] = max(brightness[location_x[k],location_y[k]], new_luminosity[k]) # add x and y pixel values, and brightnesses to arrays x_col.append((x_values + min_x + 0.5)*lobe_lengths[0,i]/(npixels//2)) # add 0.5 to get pixel centres and scale back to physical dimensions y_col.append((y_values + min_y + 0.5)*lobe_lengths[0,i]/(npixels//2)) brightness_col.append(brightness) else: x_col.append(None) y_col.append(None) brightness_col.append(None) x_list.append(x_col) y_list.append(y_col) brightness_list.append(brightness_col) return x_list, y_list, brightness_list # Define functions to plot emissivity maps throughout source evolutionary history def RAiSE_evolution_maps(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5., equipartition=-1.5, spectral_index=0.7, gammaCValue=5./3, lorentz_min=Lorentzmin, seed=None, rerun=False, cmap='RdPu'): # function to test type of inputs and convert type where appropriate frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons = __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz) # set up plot fig, axs = plt.subplots(len(source_age), 1, figsize=(12, 1 + (10/axis_ratio[0] + 0.8)*len(source_age))) if len(source_age) <= 1: # handle case of single image axs = [axs] fig.subplots_adjust(hspace=0) #cmap = cm.get_cmap('binary') colour_scheme = cm.get_cmap(cmap) rc('text', usetex=True) rc('font', size=14) rc('legend', fontsize=14) rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) for i in range(0, len(source_age)): if isinstance(rho0Value, (list, np.ndarray)): if frequency[0] > 0: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), np.abs(np.log10(rho0Value[0])), jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], frequency[0], source_age[i]) else: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), np.abs(np.log10(rho0Value[0])), jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], source_age[i]) elif isinstance(halo_mass, (list, np.ndarray)): if frequency[0] > 0: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), halo_mass[0], jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], frequency[0], source_age[i]) else: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}__t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), halo_mass[0], jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], source_age[i]) # read-in data from file (must be RAiSE output of correct format) if rerun == False: try: dataframe = pd.read_csv(filename+'_best.csv', index_col=0) except: # run RAiSE HD for set of parameters at requested resolution RAiSE_run(frequency[0], redshift[0], axis_ratio[0], jet_power[0], source_age[i], halo_mass=halo_mass, rand_profile=rand_profile, betas=betas, regions=regions, rho0Value=rho0Value, temperature=temperature, active_age=active_age[0], jet_lorentz=jet_lorentz[0], equipartition=equipartition[0], spectral_index=spectral_index, gammaCValue=gammaCValue, lorentz_min=Lorentzmin, brightness=True, resolution='best', seed=seed) dataframe = pd.read_csv(filename+'_best.csv', index_col=0) else: # run RAiSE HD for set of parameters at requested resolution RAiSE_run(frequency[0], redshift[0], axis_ratio[0], jet_power[0], source_age[i], halo_mass=halo_mass, rand_profile=rand_profile, betas=betas, regions=regions, rho0Value=rho0Value, temperature=temperature, active_age=active_age[0], jet_lorentz=jet_lorentz[0], equipartition=equipartition[0], spectral_index=spectral_index, gammaCValue=gammaCValue, lorentz_min=Lorentzmin, brightness=True, resolution='best', seed=seed) dataframe = pd.read_csv(filename+'_best.csv', index_col=0) # assign dataframe contents to variables x, y = (dataframe.index).astype(np.float_), (dataframe.columns).astype(np.float_) #x, y = x/np.max(x), y/np.max(x) Y, X = np.meshgrid(y, x) Z = dataframe.values if frequency[0] > 0: Z = Z/np.nanmax(Z) else: Z = Z*1e12 Z[Z <= 0] = np.nan if frequency[0] > 0: h = axs[i].pcolormesh(X, Y, Z, shading='nearest', cmap=colour_scheme, vmin=0, vmax=1) else: h = axs[i].pcolormesh(X, Y, Z, shading='nearest', cmap=colour_scheme, vmin=np.nanmin(Z[0:len(x)//3,:]), vmax=np.nanmax(Z[0:len(x)//3,:])) axs[i].set_aspect('equal') axs[i].set_xlim([-1.05*np.max(x), 1.05*np.max(x)]) axs[i].set_ylim([-1.05*np.max(x)/axis_ratio, 1.05*np.max(x)/axis_ratio]) axs[i].xaxis.set_major_formatter(FormatStrFormatter('%g')) axs[i].yaxis.set_major_formatter(FormatStrFormatter('%g')) axs[i].plot(np.NaN, np.NaN, '-', color='none', label=str('{:g}'.format(float('{:.2g}'.format(10**source_age[i]/1e6))))+' Myr') axs[i].legend(frameon=False) # add a big axes for labels, hide frame fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axes plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) plt.grid(False) axs[-1].set_xlabel(r'Jet axis (kpc)', fontsize=14.5, labelpad=10) plt.ylabel(r'Transverse axis (kpc)', fontsize=14.5, labelpad=15) if frequency[0] <= 0: if len(axs) == 1: cax = fig.add_axes([axs[0].get_position().x1+0.01,axs[0].get_position().y0,0.02,axs[0].get_position().height]) c = plt.colorbar(h, cax=cax, pad=0.025) else: cax = fig.add_axes([axs.ravel().tolist().get_position().x1+0.01,axs.ravel().tolist().get_position().y0,0.02,axs.ravel().tolist().get_position().height]) # haven't tested this yet c = plt.colorbar(h, cax=cax, pad=0.015) c.set_label(r'Pressure (pPa)', labelpad=12.5) # show plot and return handle to plot plt.show() return fig # Define function to plot Dt and LD tracks def RAiSE_evolution_tracks(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5., equipartition=-1.5, spectral_index=0.7, gammaCValue=5./3, lorentz_min=Lorentzmin, resolution='standard', seed=None, rerun=False, labels=None, colors=None, linestyles=None): # function to test type of inputs and convert type where appropriate frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons = __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz) if len(source_age) <= 1: raise Exception('Evolutionary tracks require more than one source age; provide a list/array of ages.') if len(frequency) > 1: warnings.warn('First frequency in list/array will be plotted for every set of parameters.', category=UserWarning) if not isinstance(colors, (list, np.ndarray)) and not colors == None: colors = [colors] elif colors == None: colors = ['crimson', 'darkorange', 'darkorchid', 'mediumblue'] if not isinstance(linestyles, (list, np.ndarray)) and not linestyles == None: linestyles = [linestyles] elif linestyles == None: linestyles = ['-'] # set up plot if resolution == None: fig, axs = plt.subplots(2, 1, figsize=(6, 10), sharex=True) else: fig, axs = plt.subplots(3, 1, figsize=(6, 14), sharex=True) fig2, axs2 = plt.subplots(1, 1, figsize=(6, 6)) fig.subplots_adjust(hspace=0) rc('text', usetex=True) rc('font', size=14) rc('legend', fontsize=14) rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) if resolution == None: axs[1].set_xlabel(r'Source age (Myr)') else: axs[2].set_xlabel(r'Source age (Myr)') axs[2].set_ylabel(r'Lobe luminosity (W/Hz)') axs2.set_xlabel(r'Lobe length (kpc)') axs2.set_ylabel(r'Lobe luminosity (W/Hz)') axs[0].set_ylabel(r'Lobe length (kpc)') axs[1].set_ylabel(r'Pressure (Pa)') # calculate number of plots nplots = np.max(np.array([len(redshift), len(axis_ratio), len(jet_power), nenvirons, len(active_age), len(equipartition), len(jet_lorentz)])) time, size, pressure, luminosity, y_min, y_max = [], [], [], [], [], [] for i in range(0, nplots): if isinstance(rho0Value, (list, np.ndarray)): filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}'.format(axis_ratio[min(len(axis_ratio) - 1, i)], np.abs(equipartition[min(len(equipartition) - 1, i)]), np.abs(np.log10(rho0Value[min(len(rho0Value) - 1, i)])), jet_power[min(len(jet_power) - 1, i)], 2*np.abs(spectral_index) + 1, active_age[min(len(active_age) - 1, i)], jet_lorentz[min(len(jet_lorentz) - 1, i)], redshift[min(len(redshift) - 1, i)]) elif isinstance(halo_mass, (list, np.ndarray)): filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}'.format(axis_ratio[min(len(axis_ratio) - 1, i)], np.abs(equipartition[min(len(equipartition) - 1, i)]), halo_mass[min(len(halo_mass) - 1, i)], jet_power[min(len(jet_power) - 1, i)], 2*np.abs(spectral_index) + 1, active_age[min(len(active_age) - 1, i)], jet_lorentz[min(len(jet_lorentz) - 1, i)], redshift[min(len(redshift) - 1, i)]) # read-in data from file (must be RAiSE output of correct format) if rerun == False: try: dataframe =
pd.read_csv(filename+'.csv', index_col=None)
pandas.read_csv
import time import numpy as np import pandas as pd import json import matplotlib.pyplot as plt class CFE(): def __init__(self, cfg_file=None): super(CFE, self).__init__() self.cfg_file = cfg_file ############################################################ # ________________________________________________________ # # ________________________________________________________ # # GET VALUES FROM CONFIGURATION FILE. # # self.config_from_json() # # # GET VALUES FROM CONFIGURATION FILE. # # ________________________________________________________ # # ________________________________________________________ # ############################################################ # ________________________________________________ # In order to check mass conservation at any time self.reset_volume_tracking() # ________________________________________________ # initialize simulation constants atm_press_Pa=101325.0 unit_weight_water_N_per_m3=9810.0 # ________________________________________________ # Time control self.time_step_size = 3600 self.timestep_h = self.time_step_size / 3600.0 self.timestep_d = self.timestep_h / 24.0 self.current_time_step = 0 self.current_time = pd.Timestamp(year=1970, month=1, day=1, hour=0) # ________________________________________________ # Inputs self.timestep_rainfall_input_m = 0 self.potential_et_m_per_s = 0 # ________________________________________________ # calculated flux variables self.flux_overland_m = 0 # surface runoff that goes through the GIUH convolution process self.flux_perc_m = 0 # flux from soil to deeper groundwater reservoir self.flux_lat_m = 0 # lateral flux in the subsurface to the Nash cascade self.flux_from_deep_gw_to_chan_m = 0 # flux from the deep reservoir into the channels self.gw_reservoir_storage_deficit_m = 0 # the available space in the conceptual groundwater reservoir self.primary_flux = 0 # temporary vars. self.secondary_flux = 0 # temporary vars. self.total_discharge = 0 # ________________________________________________ # Evapotranspiration self.potential_et_m_per_timestep = 0 self.actual_et_m_per_timestep = 0 # ________________________________________________________ # Set these values now that we have the information from the configuration file. self.runoff_queue_m_per_timestep = np.zeros(len(self.giuh_ordinates)) self.num_giuh_ordinates = len(self.runoff_queue_m_per_timestep) self.num_lateral_flow_nash_reservoirs = len(self.nash_storage) # ________________________________________________ # Local values to be used in setting up soil reservoir trigger_z_m = 0.5 field_capacity_atm_press_fraction = 0.33 H_water_table_m=field_capacity_atm_press_fraction * atm_press_Pa / unit_weight_water_N_per_m3 soil_water_content_at_field_capacity = self.soil_params['smcmax'] * \ np.power(H_water_table_m/self.soil_params['satpsi'],(1.0/self.soil_params['bb'])) Omega = H_water_table_m - trigger_z_m lower_lim = np.power(Omega , (1.0-1.0/self.soil_params['bb']))/(1.0-1.0/self.soil_params['bb']); upper_lim = np.power(Omega+self.soil_params['D'],(1.0-1.0/self.soil_params['bb']))/(1.0-1.0/self.soil_params['bb']) storage_thresh_pow_term = np.power(1.0/self.soil_params['satpsi'],(-1.0/self.soil_params['bb'])) lim_diff = (upper_lim-lower_lim) field_capacity_power = np.power(1.0/self.soil_params['satpsi'],(-1.0/self.soil_params['bb'])) field_capacity_storage_threshold_m = self.soil_params['smcmax'] * field_capacity_power * lim_diff # ________________________________________________ # lateral flow function parameters assumed_near_channel_water_table_slope = 0.01 # [L/L] lateral_flow_threshold_storage_m = field_capacity_storage_threshold_m # lateral_flow_linear_reservoir_constant = 2.0 * assumed_near_channel_water_table_slope * \ # Not used # self.soil_params['mult'] * NWM_soil_params.satdk * \ # Not used # self.soil_params['D'] * drainage_density_km_per_km2 # Not used # lateral_flow_linear_reservoir_constant *= 3600.0 # Not used self.soil_reservoir_storage_deficit_m = 0 # ________________________________________________ # Subsurface reservoirs self.gw_reservoir = {'is_exponential':True, 'storage_max_m':1.0, 'coeff_primary':0.01, 'exponent_primary':6.0, 'storage_threshold_primary_m':0.0, 'storage_threshold_secondary_m':0.0, 'coeff_secondary':0.0, 'exponent_secondary':1.0} self.gw_reservoir['storage_m'] = self.gw_reservoir['storage_max_m'] * 0.01 self.volstart += self.gw_reservoir['storage_m'] self.vol_in_gw_start = self.gw_reservoir['storage_m'] self.soil_reservoir = {'is_exponential':False, 'storage_max_m':self.soil_params['smcmax'] * self.soil_params['D'], 'coeff_primary':self.soil_params['satdk'] * self.soil_params['slop'] * 3600.0, 'exponent_primary':1.0, 'storage_threshold_primary_m':self.soil_params['smcmax'] * storage_thresh_pow_term* (upper_lim-lower_lim), 'coeff_secondary':0.01, 'exponent_secondary':1.0, 'storage_threshold_secondary_m':lateral_flow_threshold_storage_m} self.soil_reservoir['storage_m'] = self.soil_reservoir['storage_max_m'] * 0.667 self.volstart += self.soil_reservoir['storage_m'] self.vol_soil_start = self.soil_reservoir['storage_m'] # ________________________________________________ # Schaake self.refkdt = 3.0 self.Schaake_adjusted_magic_constant_by_soil_type = self.refkdt * self.soil_params['satdk'] / 2.0e-06 self.Schaake_output_runoff_m = 0 self.infiltration_depth_m = 0 # ________________________________________________ # Nash cascade self.K_nash = 0.03 # __________________________________________________________________________________________________________ # MAIN MODEL FUNCTION def run_cfe(self): # ________________________________________________ self.volin += self.timestep_rainfall_input_m # ________________________________________________ self.potential_et_m_per_timestep = self.potential_et_m_per_s * self.time_step_size # ________________________________________________ # timestep_rainfall_input_m = f(timestep_rainfall_input_m, potential_et_m_per_timestep) self.et_from_rainfall() # ________________________________________________ self.soil_reservoir_storage_deficit_m = (self.soil_params['smcmax'] * \ self.soil_params['D'] - \ self.soil_reservoir['storage_m']) # ________________________________________________ # Calculates the value for surface_runoff_depth_m self.Schaake_partitioning_scheme() # ________________________________________________ self.et_from_soil() # ________________________________________________ if self.soil_reservoir_storage_deficit_m < self.infiltration_depth_m: # put won't fit back into runoff self.surface_runoff_depth_m += (self.infiltration_depth_m - soil_reservoir_storage_deficit_m) self.infiltration_depth_m = self.soil_reservoir_storage_deficit_m self.soil_reservoir['storage_m'] = self.soil_reservoir['storage_max_m'] # ________________________________________________ self.vol_sch_runoff += self.surface_runoff_depth_m self.vol_sch_infilt += self.infiltration_depth_m # ________________________________________________ if self.current_time_step == 0: self.previous_flux_perc_m = self.flux_perc_m # ________________________________________________ if self.previous_flux_perc_m > self.soil_reservoir_storage_deficit_m: diff = self.previous_flux_perc_m - self.soil_reservoir_storage_deficit self.infiltration_depth_m = self.soil_reservoir_storage_deficit_m self.vol_sch_runoff += diff self.vol_sch_infilt += diff self.surface_runoff_depth_m += diff # ________________________________________________ self.vol_to_soil += self.infiltration_depth_m self.soil_reservoir['storage_m'] += self.infiltration_depth_m # ________________________________________________ # primary_flux, secondary_flux = f(reservoir) self.conceptual_reservoir_flux_calc( self.soil_reservoir ) # ________________________________________________ self.flux_perc_m = self.primary_flux self.flux_lat_m = self.secondary_flux # ________________________________________________ self.gw_reservoir_storage_deficit_m = self.gw_reservoir['storage_max_m'] - self.gw_reservoir['storage_m'] # ________________________________________________ if self.flux_perc_m > self.gw_reservoir_storage_deficit_m: diff = self.flux_perc_m - self.gw_reservoir_storage_deficit_m self.flux_perc_m = self.gw_reservoir_storage_deficit_m self.vol_sch_runoff+=diff self.vol_sch_infilt-=diff # ________________________________________________ self.vol_to_gw += self.flux_perc_m self.vol_soil_to_gw += self.flux_perc_m self.gw_reservoir['storage_m'] += self.flux_perc_m self.soil_reservoir['storage_m'] -= self.flux_perc_m self.soil_reservoir['storage_m'] -= self.flux_lat_m self.vol_soil_to_lat_flow += self.flux_lat_m #TODO add this to nash cascade as input self.volout = self.volout + self.flux_lat_m; # ________________________________________________ # primary_flux, secondary_flux = f(reservoir) self.conceptual_reservoir_flux_calc( self.gw_reservoir ) # ________________________________________________ self.flux_from_deep_gw_to_chan_m = self.primary_flux self.vol_from_gw += self.flux_from_deep_gw_to_chan_m # ________________________________________________ if not self.is_fabs_less_than_epsilon(self.secondary_flux, 1.0e-09): print("problem with nonzero flux point 1\n") # ________________________________________________ self.gw_reservoir['storage_m'] -= self.flux_from_deep_gw_to_chan_m # ________________________________________________ # giuh_runoff_m = f(Schaake_output, giuh_ordinates, runoff_queue_m_per_timestep) self.convolution_integral() # ________________________________________________ self.vol_out_giuh += self.flux_giuh_runoff_m self.volout += self.flux_giuh_runoff_m self.volout += self.flux_from_deep_gw_to_chan_m # ________________________________________________ self.nash_cascade() # ________________________________________________ self.vol_in_nash += self.flux_lat_m self.vol_out_nash += self.flux_nash_lateral_runoff_m # ________________________________________________ self.flux_Qout_m = self.flux_giuh_runoff_m + self.flux_nash_lateral_runoff_m + self.flux_from_deep_gw_to_chan_m self.total_discharge = self.flux_Qout_m * self.catchment_area_km2 * 1000000.0 / 3600.0 # ________________________________________________ self.current_time_step += 1 self.current_time += pd.Timedelta(value=self.time_step_size, unit='s') return # __________________________________________________________________________________________________________ def nash_cascade(self): """ Solve for the flow through the Nash cascade to delay the arrival of the lateral flow into the channel """ Q = np.zeros(self.num_lateral_flow_nash_reservoirs) for i in range(self.num_lateral_flow_nash_reservoirs): Q[i] = self.K_nash * self.nash_storage[i] self.nash_storage[i] -= Q[i] if i == 0: self.nash_storage[i] += self.flux_lat_m else: self.nash_storage[i] += Q[i-1] self.flux_nash_lateral_runoff_m = Q[self.num_lateral_flow_nash_reservoirs - 1] return # __________________________________________________________________________________________________________ def convolution_integral(self): """ This function solves the convolution integral involving N GIUH ordinates. """ for i in range(self.num_giuh_ordinates - 1): self.runoff_queue_m_per_timestep[i] += self.giuh_ordinates[i] * self.surface_runoff_depth_m self.flux_giuh_runoff_m = self.runoff_queue_m_per_timestep[0] for i in range(self.num_giuh_ordinates - 1): # shift all the entries in preperation ffor the next timestep self.runoff_queue_m_per_timestep[i] = self.runoff_queue_m_per_timestep[i+1] return # __________________________________________________________________________________________________________ def et_from_rainfall(self): """ iff it is raining, take PET from rainfall first. Wet veg. is efficient evaporator. """ if self.timestep_rainfall_input_m >0.0: if self.timestep_rainfall_input_m > self.potential_et_m_per_timestep: self.actual_et_m_per_timestep = self.potential_et_m_per_timestep self.timestep_rainfall_input_m -= self.actual_et_m_per_timestep else: self.potential_et_m_per_timestep -= self.timestep_rainfall_input_m self.timestep_rainfall_input_m=0.0 return # __________________________________________________________________________________________________________ ########## SINGLE OUTLET EXPONENTIAL RESERVOIR ############### ########## -or- ############### ########## TWO OUTLET NONLINEAR RESERVOIR ############### def conceptual_reservoir_flux_calc(self, reservoir): """ This function calculates the flux from a linear, or nonlinear conceptual reservoir with one or two outlets, or from an exponential nonlinear conceptual reservoir with only one outlet. In the non-exponential instance, each outlet can have its own activation storage threshold. Flow from the second outlet is turned off by setting the discharge coeff. to 0.0. """ if reservoir['is_exponential'] == True: flux_exponential = np.exp(reservoir['exponent_primary'] * \ reservoir['storage_m'] / \ reservoir['storage_max_m']) - 1.0 self.primary_flux_m = reservoir['coeff_primary'] * flux_exponential self.secondary_flux_m=0.0 return self.primary_flux_m=0.0 storage_above_threshold_m = reservoir['storage_m'] - reservoir['storage_threshold_primary_m'] if storage_above_threshold_m > 0.0: storage_diff = reservoir['storage_max_m'] - reservoir['storage_threshold_primary_m'] storage_ratio = storage_above_threshold_m / storage_diff storage_power = np.power(storage_ratio, reservoir['exponent_primary']) self.primary_flux_m = reservoir['coeff_primary'] * storage_power if self.primary_flux_m > storage_above_threshold_m: self.primary_flux_m = storage_above_threshold_m self.secondary_flux_m = 0.0; storage_above_threshold_m = reservoir['storage_m'] - reservoir['storage_threshold_secondary_m'] if storage_above_threshold_m > 0.0: storage_diff = reservoir['storage_max_m'] - reservoir['storage_threshold_secondary_m'] storage_ratio = storage_above_threshold_m / storage_diff storage_power = np.power(storage_ratio, reservoir['exponent_secondary']) self.secondary_flux_m = reservoir['coeff_secondary'] * storage_power if self.secondary_flux_m > (storage_above_threshold_m - self.primary_flux_m): self.secondary_flux_m = storage_above_threshold_m - self.primary_flux_m return # __________________________________________________________________________________________________________ # SCHAAKE RUNOFF PARTITIONING SCHEME def Schaake_partitioning_scheme(self): """ This subtroutine takes water_input_depth_m and partitions it into surface_runoff_depth_m and infiltration_depth_m using the scheme from Schaake et al. 1996. !-------------------------------------------------------------------------------- modified by FLO April 2020 to eliminate reference to ice processes, and to de-obfuscate and use descriptive and dimensionally consistent variable names. inputs: timestep_d Schaake_adjusted_magic_constant_by_soil_type = C*Ks(soiltype)/Ks_ref, where C=3, and Ks_ref=2.0E-06 m/s column_total_soil_moisture_deficit_m (soil_reservoir_storage_deficit_m) water_input_depth_m (timestep_rainfall_input_m) amount of water input to soil surface this time step [m] outputs: surface_runoff_depth_m amount of water partitioned to surface water this time step [m] infiltration_depth_m """ if 0 < self.timestep_rainfall_input_m: if 0 > self.soil_reservoir_storage_deficit_m: self.surface_runoff_depth_m = self.timestep_rainfall_input_m self.infiltration_depth_m = 0.0 else: schaake_exp_term = np.exp( - self.Schaake_adjusted_magic_constant_by_soil_type * self.timestep_d) Schaake_parenthetical_term = (1.0 - schaake_exp_term) Ic = self.soil_reservoir_storage_deficit_m * Schaake_parenthetical_term Px = self.timestep_rainfall_input_m self.infiltration_depth_m = (Px * (Ic / (Px + Ic))) if 0.0 < (self.timestep_rainfall_input_m - self.infiltration_depth_m): self.surface_runoff_depth_m = self.timestep_rainfall_input_m - self.infiltration_depth_m else: self.surface_runoff_depth_m = 0.0 self.infiltration_depth_m = self.timestep_rainfall_input_m - self.surface_runoff_depth_m else: self.surface_runoff_depth_m = 0.0 self.infiltration_depth_m = 0.0 return # __________________________________________________________________________________________________________ def et_from_soil(self): """ take AET from soil moisture storage, using Budyko type curve to limit PET if wilting<soilmoist<field_capacity """ if self.potential_et_m_per_timestep > 0: print("this should not happen yet. Still debugging the other functions.") if self.soil_reservoir['storage_m'] >= self.soil_reservoir['storage_threshold_primary_m']: self.actual_et_m_per_timestep = np.min(self.potential_et_m_per_timestep, self.soil_reservoir['storage_m']) self.soil_reservoir['storage_m'] -= self.actual_et_m_per_timestep self.et_struct['potential_et_m_per_timestep'] = 0.0 elif (self.soil_reservoir['storage_m'] > self.soil_reservoir['wilting_point_m'] and self.soil_reservoir['storage_m'] < self.soil_reservoir['storage_threshold_primary_m']): Budyko_numerator = self.soil_reservoir['storage_m'] - self.soil_reservoir['wilting_point_m'] Budyko_denominator = self.soil_reservoir['storage_threshold_primary_m'] - \ self.soil_reservoir['wilting_point_m'] Budyki = Budyko_numerator / Budyko_denominator self.actual_et_m_per_timestep = Budyko * self.potential_et_m_per_timestep self.soil_reservoir['storage_m'] -= self.actual_et_m_per_timestep return # __________________________________________________________________________________________________________ def is_fabs_less_than_epsilon(self,a,epsilon): if np.abs(a) < epsilon: return True else: return False # ________________________________________________ # Mass balance tracking def reset_volume_tracking(self): self.volstart = 0 self.vol_sch_runoff = 0 self.vol_sch_infilt = 0 self.vol_out_giuh = 0 self.vol_end_giuh = 0 self.vol_to_gw = 0 self.vol_to_gw_start = 0 self.vol_to_gw_end = 0 self.vol_from_gw = 0 self.vol_in_nash = 0 self.vol_in_nash_end = 0 self.vol_out_nash = 0 self.vol_soil_start = 0 self.vol_to_soil = 0 self.vol_soil_to_lat_flow = 0 self.vol_soil_to_gw = 0 self.vol_soil_end = 0 self.volin = 0 self.volout = 0 self.volend = 0 return #________________________________________________________ def config_from_json(self): with open(self.cfg_file) as data_file: data_loaded = json.load(data_file) # ___________________________________________________ # MANDATORY CONFIGURATIONS self.forcing_file = data_loaded['forcing_file'] self.catchment_area_km2 = data_loaded['catchment_area_km2'] self.alpha_fc = data_loaded['alpha_fc'] self.soil_params = {} self.soil_params['bb'] = data_loaded['soil_params']['bb'] self.soil_params['D'] = data_loaded['soil_params']['D'] self.soil_params['depth'] = data_loaded['soil_params']['depth'] self.soil_params['mult'] = data_loaded['soil_params']['mult'] self.soil_params['satdk'] = data_loaded['soil_params']['satdk'] self.soil_params['satpsi'] = data_loaded['soil_params']['satpsi'] self.soil_params['slop'] = data_loaded['soil_params']['slop'] self.soil_params['smcmax'] = data_loaded['soil_params']['smcmax'] self.soil_params['wltsmc'] = data_loaded['soil_params']['wltsmc'] self.max_gw_storage = data_loaded['max_gw_storage'] self.Cgw = data_loaded['Cgw'] self.expon = data_loaded['expon'] self.gw_storage = data_loaded['gw_storage'] self.soil_storage = data_loaded['soil_storage'] self.K_lf = data_loaded['K_lf'] self.K_nash = data_loaded['K_nash'] self.nash_storage = data_loaded['nash_storage'] self.giuh_ordinates = data_loaded['giuh_ordinates'] # ___________________________________________________ # OPTIONAL CONFIGURATIONS if 'stand_alone' in data_loaded.keys(): self.stand_alone = data_loaded['stand_alone'] if 'forcing_file' in data_loaded.keys(): self.reads_own_forcing = True self.forcing_file = data_loaded['forcing_file'] if 'unit_test' in data_loaded.keys(): self.unit_test = data_loaded['unit_test'] self.compare_results_file = data_loaded['compare_results_file'] return #________________________________________________________ def finalize_mass_balance(self, verbose=True): self.volend = self.soil_reservoir['storage_m'] + self.gw_reservoir['storage_m'] self.vol_in_gw_end = self.gw_reservoir['storage_m'] self.global_residual = self.volstart + self.volin - self.volout - self.volend self.schaake_residual = self.volin - self.vol_sch_runoff - self.vol_sch_infilt self.giuh_residual = self.vol_out_giuh - self.vol_sch_runoff - self.vol_end_giuh self.soil_residual = self.vol_soil_start + self.vol_sch_infilt - \ self.vol_soil_to_lat_flow - self.vol_soil_end - self.vol_to_gw self.nash_residual = self.vol_in_nash - self.vol_out_nash - self.vol_in_nash_end self.gw_residual = self.vol_in_gw_start + self.vol_to_gw - self.vol_from_gw - self.vol_in_gw_end if verbose: print("\nGLOBAL MASS BALANCE") print(" initial volume: {:8.4f}".format(self.volstart)) print(" volume input: {:8.4f}".format(self.volin)) print(" volume output: {:8.4f}".format(self.volout)) print(" final volume: {:8.4f}".format(self.volend)) print(" residual: {:6.4e}".format(self.global_residual)) print("\nSCHAAKE MASS BALANCE") print(" surface runoff: {:8.4f}".format(self.vol_sch_runoff)) print(" infiltration: {:8.4f}".format(self.vol_sch_infilt)) print("schaake residual: {:6.4e}".format(self.schaake_residual)) print("\nGIUH MASS BALANCE"); print(" vol. into giuh: {:8.4f}".format(self.vol_sch_runoff)) print(" vol. out giuh: {:8.4f}".format(self.vol_out_giuh)) print(" vol. end giuh q: {:8.4f}".format(self.vol_end_giuh)) print(" giuh residual: {:6.4e}".format(self.giuh_residual)) print("\nSOIL WATER CONCEPTUAL RESERVOIR MASS BALANCE") print(" init soil vol: {:8.4f}".format(self.vol_soil_start)) print(" vol. into soil: {:8.4f}".format(self.vol_sch_infilt)) print("vol.soil2latflow: {:8.4f}".format(self.vol_soil_to_lat_flow)) print(" vol. soil to gw: {:8.4f}".format(self.vol_soil_to_gw)) print(" final vol. soil: {:8.4f}".format(self.vol_soil_end)) print("vol. soil resid.: {:6.4e}".format(self.soil_residual)) print("\nNASH CASCADE CONCEPTUAL RESERVOIR MASS BALANCE") print(" vol. to nash: {:8.4f}".format(self.vol_in_nash)) print(" vol. from nash: {:8.4f}".format(self.vol_out_nash)) print(" final vol. nash: {:8.4f}".format(self.vol_in_nash_end)) print("nash casc resid.: {:6.4e}".format(self.nash_residual)) print("\nGROUNDWATER CONCEPTUAL RESERVOIR MASS BALANCE") print("init gw. storage: {:8.4f}".format(self.vol_in_gw_start)) print(" vol to gw: {:8.4f}".format(self.vol_to_gw)) print(" vol from gw: {:8.4f}".format(self.vol_from_gw)) print("final gw.storage: {:8.4f}".format(self.vol_in_gw_end)) print(" gw. residual: {:6.4e}".format(self.gw_residual)) return #________________________________________________________ def load_forcing_file(self): self.forcing_data = pd.read_csv(self.forcing_file) #________________________________________________________ def load_unit_test_data(self): self.unit_test_data = pd.read_csv(self.compare_results_file) self.cfe_output_data = pd.DataFrame().reindex_like(self.unit_test_data) #________________________________________________________ def run_unit_test(self, plot_lims=list(range(490, 550))): self.load_forcing_file() self.load_unit_test_data() self.current_time =
pd.Timestamp(self.forcing_data['time'][0])
pandas.Timestamp
from mega_analysis.crosstab.file_paths import file_paths from mega_analysis.semiology import Semiology, Laterality from mega_analysis.crosstab.mega_analysis.MEGA_ANALYSIS import MEGA_ANALYSIS from mega_analysis.crosstab.mega_analysis.QUERY_SEMIOLOGY import QUERY_SEMIOLOGY from mega_analysis.crosstab.all_localisations import all_localisations from mega_analysis.crosstab.mega_analysis.exclusions import (exclude_ET, exclude_cortical_stimulation, exclude_spontaneous_semiology, exclude_postictals) from mega_analysis.crosstab.lobe_top_level_hierarchy_only import top_level_lobes from mega_analysis.semiology import recursive_items from mega_analysis.Sankey_Functions import normalise_top_level_localisation_cols import pandas as pd from pandas.testing import assert_frame_equal # import os import yaml import copy # os.chdir('C:/Users/ali_m/AnacondaProjects/PhD/Semiology-Visualisation-Tool/') def query_semiology_wrapper_from_scripts(df, semiology_list, semiology_dict_path): """ From scripts/figures.py in kd_figures-v3 branch """ query_results = {} for semiology in semiology_list: query_inspection, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(df, semiology_term=semiology, ignore_case=True, semiology_dict_path=semiology_dict_path, all_columns_wanted=True) # col1=col1, col2=col1) one_query_result = { 'query_inspection': query_inspection, 'num_query_lat': num_query_lat, 'num_query_loc': num_query_loc } query_results[semiology] = one_query_result return query_results def summary_semio_loc_df_from_scripts(normalise=True): """ Lots of copy pasting from scripts/figures.py in kd_figures-v3 branch. returns query_results which is a nested dictionary full spontaneous topology {semiologies} query_inspection num_query_loc num_query_lat """ # Define paths repo_dir, resources_dir, excel_path, semiology_dict_path = file_paths() Semio2Brain_Database = excel_path with open(semiology_dict_path) as f: SemioDict = yaml.load(f, Loader=yaml.FullLoader) region_names = all_localisations() semiology_list = list(recursive_items(SemioDict)) (original_df, df_ground_truth, df_study_type, num_database_articles, num_database_patients, num_database_lat, num_database_loc) = \ MEGA_ANALYSIS(Semio2Brain_Database, exclude_data=True) # ----------------------------------- redistribution_spec = { 'FT': ['FL', 'INSULA', 'Lateral Temporal', 'TL'], 'TO': ['Lateral Temporal', 'TL', 'OL'], 'TP': ['Lateral Temporal', 'TL', 'PL'], 'FTP': ['INSULA', 'Lateral Temporal', 'TL', 'FL', 'PL'], 'TPO Junction': ['Lateral Temporal', 'TL', 'PL', 'OL'], 'PO': ['PL', 'OL'], 'FP': ['FL', 'PL'], 'Perisylvian': ['INSULA', 'Lateral Temporal', 'TL', 'FL', 'PL'], 'Sub-Callosal Cortex': ['Ant Cing (frontal, genu)', 'CING'] } redistributed_df = copy.deepcopy(original_df) # probably not needed as used exclude_data True when calling M_A redistributed_df = exclude_postictals(redistributed_df) for from_region, destination_regions in redistribution_spec.items(): for destination in destination_regions: redistributed_df[destination] = original_df[destination].fillna( 0) + original_df[from_region].fillna(0) redistributed_df = redistributed_df.drop(redistribution_spec.keys(), 'columns') # ----------------------------------- # region_names_re = region_names # region_names_re['top_level'] = ['TL', # 'FL', # 'CING', # 'PL', # 'OL', # 'INSULA', # 'Hypothalamus', # 'Cerebellum', ] # region_names_re['top_level_all_other'] = ['Cerebellum'] df = copy.deepcopy(redistributed_df) df_SS = exclude_ET(df) df_SS = exclude_cortical_stimulation(df_SS) df_TS = exclude_spontaneous_semiology(df) all_dfs = { 'full': df, 'spontaneous': df_SS, 'topology': df_TS, } query_results = {} for key, df in all_dfs.items(): if normalise: df, _ = normalise_top_level_localisation_cols(df, Bayesian=True) query_results[key] = query_semiology_wrapper_from_scripts(df, semiology_list, semiology_dict_path) return query_results def marginal_GIF_probabilities(all_combined_gifs): """ Input the DataFrame of GIF Parcellations and values for all semiologies. all_combined_gifs: GIF values all_combined_gifs is a heatmap df i.e. from patient.get_num_datapoints_dict() # for all data not for single semiology remember the cols of all_combined_gifs are "Gif Parcellations" and "pt #s" Returns the marginal_probabilities (row DataFrame) Future: As sensitivity analyses, should check the variance of marginal prob when using different filters concretely: marginal_p should be using all the data without filters, but then when using filters, see if we had used a filtered df using one of the exclusions (e.g. EZ only or based on age), how much would the marginal_p differ and Bayesian inference vary by? <NAME> 2021 """ all_comb_gifs = all_combined_gifs.copy() # total of gif gif_total = 0 for k,v in all_comb_gifs.items(): gif_total += v # now again for the marginal probabilities for k,v in all_comb_gifs.items(): all_comb_gifs[k] = v/gif_total # make this a DataFrame marginal_GIF_prob = pd.DataFrame.from_dict(all_comb_gifs, orient='index', columns=['probability']) return marginal_GIF_prob.T def wrapper_marginal_L_S(publication_prior, marginal_semio_df, marginal_loc_df, Lobes, normalise=True, skip_L=False): """ wrapper for marginal_Localisation_and_Semiology_probabilities""" query_results = summary_semio_loc_df_from_scripts(normalise=normalise) for semio, v in query_results[publication_prior].items(): # avoid postictals as they are empty dataframes (ictal manifestations only) if semio.startswith('Post'): continue if semio.startswith('No Semiology'): continue # semio marginal_semio_df.loc[semio, 'num_query_loc'] = query_results[publication_prior][semio]['num_query_loc'] # locs: first replace any non existing locs e.g. Hypothalamus for fear-anxiety marginal_loc_df = None if not skip_L: for ind_lobe in Lobes: try: query_inspection = query_results[publication_prior][semio]['query_inspection'] query_inspection[ind_lobe] except: query_inspection.loc[:, ind_lobe] = 0 temp_df = query_inspection[Lobes] temp_df.fillna(0, inplace=True) marginal_loc_df = marginal_loc_df.add(temp_df, fill_value=0) marginal_loc_df.fillna(0, inplace=True) return marginal_semio_df, marginal_loc_df def marginal_Localisation_and_Semiology_probabilities(df=None, normalised=True, global_loc_normalisation=False, publication_prior='full', test=False, skip_L=False): """ Returns the marginal localisation and semiology probabilities > df (optional): preprocessed Semio2Brain DataFrame obtained from MEGA_ANALYSIS after hierarchy reversal. df = MEGA_ANALYSIS() # for all-data also used SemioDict df = hierarchy_reversal() Assume df is the fully cleaned and hierarchy reversed Semio2Brain descriptions (or if not hierarchy reveresed, then top-level regions only) I.e. Use summary_semio_loc_df_from_scripts() to get df of semiology by localisation as uses top-level regions only without hierarchy_reversal. rows: semiologies columns: localisations can be normalised or not normalised > publication_prior: 'full', 'spontaneous', or 'topological' > global normalisation gets all the localisations, then normalises to localising values > normalised (micronormalisation) is the regular normalisation row by row (by semiology) returns: marginal_semio_prob: DataFrame with index of semiologies, and single column of marginal 'probability' (col df) marginal_loc_prob """ # useful for both semio and unnormalised locs: Lobes = top_level_lobes(Bayesian=True) # make the df in the form of semiology/locs marginal_semio_df =
pd.DataFrame()
pandas.DataFrame
from datetime import date, datetime, timedelta from dateutil import tz import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm class TestDatetimeIndex: def test_setitem_with_datetime_tz(self): # 16889 # support .loc with alignment and tz-aware DatetimeIndex mask = np.array([True, False, True, False]) idx = date_range("20010101", periods=4, tz="UTC") df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) idx = date_range("20010101", periods=4) df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df = DataFrame({"A": idx, "B": dr}) df["C"] = idx df.iloc[1, 1] = pd.NaT df.iloc[1, 2] = pd.NaT # indexing result = df.iloc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) result = df.loc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) # indexing - fast_xs df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) result = df.iloc[5] expected = Series( [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5 ) tm.assert_series_equal(result, expected) result = df.loc[5] tm.assert_series_equal(result, expected) # indexing - boolean result = df[df.a > df.a[3]] expected = df.iloc[4:] tm.assert_frame_equal(result, expected) # indexing - setting an element df = DataFrame( data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]), columns=["time"], ) df["new_col"] = ["new", "old"] df.time = df.set_index("time").index.tz_localize("UTC") v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific") # trying to set a single element on a part of a different timezone # this converts to object df2 = df.copy() df2.loc[df2.new_col == "new", "time"] = v expected = Series([v[0], df.loc[1, "time"]], name="time") tm.assert_series_equal(df2.time, expected) v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s") df.loc[df.new_col == "new", "time"] = v tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v) def test_consistency_with_tz_aware_scalar(self): # xef gh-12938 # various ways of indexing the same tz-aware scalar df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() df = pd.concat([df, df]).reset_index(drop=True) expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels") result = df[0][0] assert result == expected result = df.iloc[0, 0] assert result == expected result = df.loc[0, 0] assert result == expected result = df.iat[0, 0] assert result == expected result = df.at[0, 0] assert result == expected result = df[0].loc[0] assert result == expected result = df[0].at[0] assert result == expected def test_indexing_with_datetimeindex_tz(self): # GH 12050 # indexing on a series with a datetimeindex with tz index = date_range("2015-01-01", periods=2, tz="utc") ser = Series(range(2), index=index, dtype="int64") # list-like indexing for sel in (index, list(index)): # getitem tm.assert_series_equal(ser[sel], ser) # setitem result = ser.copy() result[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # .loc getitem tm.assert_series_equal(ser.loc[sel], ser) # .loc setitem result = ser.copy() result.loc[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # single element indexing # getitem assert ser[index[1]] == 1 # setitem result = ser.copy() result[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) # .loc getitem assert ser.loc[index[1]] == 1 # .loc setitem result = ser.copy() result.loc[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) def test_partial_setting_with_datetimelike_dtype(self): # GH9478 # a datetimeindex alignment issue with partial setting df = DataFrame( np.arange(6.0).reshape(3, 2), columns=list("AB"), index=date_range("1/1/2000", periods=3, freq="1H"), ) expected = df.copy() expected["C"] = [expected.index[0]] + [pd.NaT, pd.NaT] mask = df.A < 1 df.loc[mask, "C"] = df.loc[mask].index tm.assert_frame_equal(df, expected) def test_loc_setitem_datetime(self): # GH 9516 dt1 = Timestamp("20130101 09:00:00") dt2 = Timestamp("20130101 10:00:00") for conv in [ lambda x: x, lambda x: x.to_datetime64(), lambda x: x.to_pydatetime(), lambda x: np.datetime64(x), ]: df = DataFrame() df.loc[conv(dt1), "one"] = 100 df.loc[conv(dt2), "one"] = 200 expected = DataFrame({"one": [100.0, 200.0]}, index=[dt1, dt2]) tm.assert_frame_equal(df, expected) def test_series_partial_set_datetime(self): # GH 11497 idx = date_range("2011-01-01", "2011-01-02", freq="D", name="idx") ser = Series([0.1, 0.2], index=idx, name="s") result = ser.loc[[Timestamp("2011-01-01"),
Timestamp("2011-01-02")
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Tue Jan 29 08:35:09 2019 @author: user """ # build first input with noational aggregation # import build_input_national_aggr print('####################') print('BUILDING INPUT DATA FOR DISAGGREGATION OF SWITZERLAND INTO ARCHETYPES') print('####################') import os import itertools import hashlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import grimsel.auxiliary.sqlutils.aux_sql_func as aql import datetime import seaborn as sns from grimsel.auxiliary.aux_general import print_full from grimsel.auxiliary.aux_general import translate_id import config_local as conf from grimsel.auxiliary.aux_general import expand_rows base_dir = conf.BASE_DIR data_path = conf.PATH_CSV data_path_prv = conf.PATH_CSV + '_national_aggr' seed = 2 np.random.seed(seed) db = conf.DATABASE sc = conf.SCHEMA #db = 'grimsel_1' #sc = 'lp_input_ee_dsm' def append_new_rows(df, tb): list_col = list(aql.get_sql_cols(tb, sc, db).keys()) aql.write_sql(df[list_col], db=db, sc=sc, tb=tb, if_exists='append') def del_new_rows(ind, tb, df): del_list = df[ind].drop_duplicates() for i in ind: del_list[i] = '%s = '%i + del_list[i].astype(str) del_str = ' OR '.join(del_list.apply(lambda x: '(' + ' AND '.join(x) + ')', axis=1)) exec_strg = ''' DELETE FROM {sc}.{tb} WHERE {del_str} '''.format(tb=tb, sc=sc, del_str=del_str) aql.exec_sql(exec_strg, db=db) #def replace_table(df, tb): # ## list_col = list(aql.get_sql_cols(tb, sc, db).keys()) # # aql.write_sql(df, db=db, sc=sc, tb=tb, if_exists='replace') def append_new_cols(df, tb): # list_col = list(aql.get_sql_cols(tb, sc, db).keys()) col_new = dict.fromkeys((set(df.columns.tolist()) - set(list_col))) for key, value in col_new.items(): col_new[key] = 'DOUBLE PRECISION' # col_new = dict.fromkeys((set(list_col[0].columns.tolist()) - set(list_col)),1) aql.add_column(df_src=df,tb_tgt=[sc,tb],col_new=col_new,on_cols=list_col, db=db) # exec_strg = ''' # AlTER # DELETE FROM {sc}.{tb} # WHERE {del_str} # '''.format(tb=tb, sc=sc, del_str=del_str) # aql.exec_sql(exec_strg, db=db) # # aql.write_sql(df[list_col], db=db, sc=sc, tb=tb, if_exists='append') # #aql.exec_sql(''' # ALTER TABLE lp_input_archetypes.profdmnd # DROP CONSTRAINT profdmnd_pkey, # DROP CONSTRAINT profdmnd_dmnd_pf_id_fkey; # ''', db=db) #%% dfprop_era_arch = pd.read_csv(base_dir+'/archetype_disaggr/PV/prop_era_arch.csv', sep = ';') #dfpv_arch = pd.read_csv(os.path.join(base_dir,'PV/surf_prod_arch_pv.csv'),sep=';') #dfpv_arch = pd.read_csv(os.path.join(base_dir,'PV/surf_prod_arch_pv_prop_0.csv'),sep=';') dfpv_arch = pd.read_csv(base_dir+'/archetype_disaggr/PV/surf_prod_arch_pv_prop_new.csv',sep=';') # set nd_id to that potential #dfpv_arch['pv_power_pot'] = dfpv_arch['el_prod']/(1000*dfkev['flh'].mean()) dfpv_arch = dfpv_arch.groupby(dfpv_arch.nd_id_new).sum() #dfpv_arch['nd_id_new'] = dfpv_arch.nd_id #dfpv_arch.loc[:,dfpv_arch.nd_id_new.str.contains('OTH')] == 'OTH_TOT' #dfpv_arch['cap_pv'] = 1666*(dfpv_arch['pv_power_pot']/dfpv_arch['pv_power_pot'].sum()) # 1666 MW SFOE 2016 dfpv_arch['cap_pv'] = 1666*(dfpv_arch['pv_power_tot_est']/dfpv_arch['pv_power_tot_est'].sum()) # 1666 MW SFOE 2016 dfpv_arch['cap_st_pwr'] = 0 # #dfpv_arch_CH0 = dfpv_arch.loc['CH0'] #dfpv_arch = dfpv_arch.drop(['CH0'], axis = 0) dfpv_arch = dfpv_arch.reset_index() # %% dfload_arch = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id not in %s'%(['CH0'])).reset_index(drop=True) dfload_arch['DateTime'] = dfload_arch['DateTime'].astype('datetime64[ns]') dfload_arch_res = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id.str.contains("SFH") or nd_id.str.contains("MFH")',engine='python').reset_index(drop=True) dfload_arch_res['DateTime'] = dfload_arch_res['DateTime'].astype('datetime64[ns]') dfload_arch_notres = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id.str.contains("OCO") or nd_id.str.contains("IND")',engine='python').reset_index(drop=True) dfload_arch_notres['DateTime'] = dfload_arch_notres['DateTime'].astype('datetime64[ns]') dfload_arch_CH0 = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id in %s'%(['CH0'])).reset_index(drop=True) dfload_arch_CH0['DateTime'] = dfload_arch_CH0['DateTime'].astype('datetime64[ns]') # dfload_arch = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['CH0'],'!=')]) # dfload_arch_res= aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['SFH%','MFH%'],'LIKE')]) # dfload_arch_notres= aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['OCO%','IND%'],'LIKE')]) # dfload_arch_CH0_1 = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['CH0'])]) #dfload_arch = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes') dfload_dict ={} dfload_dict_new = {} df = dfload_arch_res.copy() df['nd_id_new'] = 0 df['erg_tot_new'] = 0 for i in df.nd_id.unique(): dfload_dict[i] = df.loc[df.nd_id == i] for l in (0,1,2,3): df_1 = dfload_dict[i].copy() df_1['erg_tot_new'] = df_1.loc[:,'erg_tot'] * dfprop_era_arch.loc[dfprop_era_arch.nd_el.str.contains(i+'_'+str(l)),'prop'].reset_index(drop=True).loc[0] df_1['nd_id_new'] = i+'_'+str(l) dfload_dict_new[i+'_'+str(l)] = df_1 dfload_arch_res_new = dfload_arch_notres.head(0) for j in dfload_dict_new: dfload_arch_res_new = dfload_arch_res_new.append(dfload_dict_new[j],ignore_index=True) dfload_arch_notres['nd_id_new'] = dfload_arch_notres[['nd_id']] dfload_arch_notres['erg_tot_new'] = dfload_arch_notres[['erg_tot']] dfload_arch = dfload_arch_res_new.append(dfload_arch_notres,ignore_index=True) dfload_arch = dfload_arch.set_index('DateTime') dfload_arch.index = pd.to_datetime(dfload_arch.index) dfload_arch_CH0 = dfload_arch_CH0.set_index('DateTime') dfload_arch = dfload_arch.drop(columns=['nd_id','erg_tot']).rename(columns={'nd_id_new':'nd_id','erg_tot_new':'erg_tot'}) # %% np.random.seed(3) dferg_arch = dfload_arch.groupby('nd_id')['erg_tot'].sum() dferg_arch = dferg_arch.reset_index() dferg_arch['nd_id_new'] = dferg_arch.nd_id dict_nd = dferg_arch.set_index('nd_id')['nd_id_new'].to_dict() # %% df_solar_canton_raw =
pd.read_csv(base_dir+'/archetype_disaggr/PV/swiss_location_solar.csv')
pandas.read_csv
import pandas as pd import numpy as np from functools import reduce from copy import deepcopy from os.path import join, isdir, isfile from os import listdir import re import os import glob from sys import stdout from nilmtk.utils import get_datastore from nilmtk.datastore import Key from nilmtk.timeframe import TimeFrame from nilmtk.measurement import LEVEL_NAMES from nilmtk.utils import get_module_directory, check_directory_exists from nilm_metadata import convert_yaml_to_hdf5, save_yaml_to_datastore """ TODO: * The bottleneck appears to be CPU. So could be sped up by using multiprocessing module to use multiple CPU cores to load SMART channels in parallel. """ def convert_smart(smart_path, output_filename, format='HDF'): """ Parameters ---------- smart_path : str The root path of the REDD low_freq dataset. output_filename : str The destination filename (including path and suffix). format : str format of output. Either 'HDF' or 'CSV'. Defaults to 'HDF' """ def _smart_measurement_mapping_func(house_id, chan_id): ac_type = 'active' if chan_id <= 2 else 'active' return [('power', ac_type)] # Open DataStore store = get_datastore(output_filename, format, mode='w') # Convert raw data to DataStore _convert(smart_path, store, _smart_measurement_mapping_func, 'US/Eastern') s = join(get_module_directory(), 'dataset_converters', 'smart', 'metadata') # Add metadata save_yaml_to_datastore(join(get_module_directory(), 'dataset_converters', 'smart', 'metadata'), store) store.close() print("Done converting SMART to HDF5!") def _convert(input_path, store, measurement_mapping_func, tz, sort_index=True): """ Parameters ---------- input_path : str The root path of the REDD low_freq dataset. store : DataStore The NILMTK DataStore object. measurement_mapping_func : function Must take these parameters: - house_id - chan_id Function should return a list of tuples e.g. [('power', 'active')] tz : str Timezone e.g. 'US/Eastern' sort_index : bool """ check_directory_exists(input_path) houses = _find_all_houses(input_path) years = [] # Iterating though all Homes b_cnt = 0 for house_id in houses: b_cnt = b_cnt + 1 print('Loading Home:', house_id, end='... ') stdout.flush() years = _find_year(input_path, house_id) meters_paths_csv = [] df_all_years =
pd.DataFrame()
pandas.DataFrame
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_run_if_out_of_bounds(): algo = algos.RunIfOutOfBounds(0.5) dts = pd.date_range('2010-01-01', periods=3) s = bt.Strategy('s') data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.temp['selected'] = ['c1', 'c2'] s.temp['weights'] = {'c1': .5, 'c2':.5} s.update(dts[0]) s.children['c1'] = bt.core.SecurityBase('c1') s.children['c2'] = bt.core.SecurityBase('c2') s.children['c1']._weight = 0.5 s.children['c2']._weight = 0.5 assert not algo(s) s.children['c1']._weight = 0.25 s.children['c2']._weight = 0.75 assert not algo(s) s.children['c1']._weight = 0.24 s.children['c2']._weight = 0.76 assert algo(s) s.children['c1']._weight = 0.75 s.children['c2']._weight = 0.25 assert not algo(s) s.children['c1']._weight = 0.76 s.children['c2']._weight = 0.24 assert algo(s) def test_run_after_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDate('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert algo(target) def test_run_after_days(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDays(3) assert not algo(target) assert not algo(target) assert not algo(target) assert algo(target) def test_set_notional(): algo = algos.SetNotional('notional') s = bt.FixedIncomeStrategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) notional = pd.Series(index=dts[:2], data=[1e6, 5e6]) s.setup( data, notional = notional ) s.update(dts[0]) assert algo(s) assert s.temp['notional_value'] == 1e6 s.update(dts[1]) assert algo(s) assert s.temp['notional_value'] == 5e6 s.update(dts[2]) assert not algo(s) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_rebalance_updatecount(): algo = algos.Rebalance() s = bt.Strategy('s') s.use_integer_positions(False) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4','c5'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) assert s.value == 1000 assert s.capital == 0 # Update is called once when each weighted security is created (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[1]) s.temp['weights'] = {'c1': 0.5, 'c2':0.5} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[2]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (2) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 6 def test_rebalance_fixedincome(): algo = algos.Rebalance() c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') s = bt.FixedIncomeStrategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) coupons = pd.DataFrame(index=dts, columns=['c2'], data=0) s.setup(data, coupons=coupons) s.update(dts[0]) s.temp['notional_value'] = 1000 s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000 c1 = s['c1'] assert c1.value == 1000 assert c1.notional_value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000*100 c2 = s['c2'] assert c1.value == 0 assert c1.notional_value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000*100 assert c2.notional_value == 1000 assert c2.position == 1000 assert c2.weight == 1. def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectAll(include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectAll(include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly_n_none(): algo = algos.SelectRandomly(n=None) # Behaves like SelectAll s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectRandomly(n=None, include_no_data=True) assert algo2(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectRandomly(n=None, include_negative=True) assert algo3(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[0]] = np.nan data['c2'][dts[0]] = 95 data['c3'][dts[0]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectRandomly(n=1) assert algo(s) assert s.temp.pop('selected') == ['c2'] random.seed(1000) algo = algos.SelectRandomly(n=1, include_negative=True) assert algo(s) assert s.temp.pop('selected') == ['c3'] random.seed(1009) algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c1'] random.seed(1009) # If selected already set, it will further filter it s.temp['selected'] = ['c2'] algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c2'] def test_select_these(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected algo = algos.SelectThese( ['c1']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectThese( ['c1', 'c2'], include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectThese(['c1', 'c2'], include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where_all(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) s.setup(data, where = where) s.update(dts[0]) algo = algos.SelectWhere('where') assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectWhere('where', include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectWhere('where', include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere('where') s.setup(data, where=where) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_where_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere(where) s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_regex(): s = bt.Strategy('s') algo = algos.SelectRegex( 'c1' ) s.temp['selected'] = ['a1', 'c1', 'c2', 'c11', 'cc1'] assert algo( s ) assert s.temp['selected'] == ['c1', 'c11', 'cc1'] algo = algos.SelectRegex( '^c1$' ) assert algo( s ) assert s.temp['selected'] == ['c1'] def test_resolve_on_the_run(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'b1'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c2'][dts[2]] = -5 on_the_run = pd.DataFrame(index=dts, columns=['c'], data='c1') on_the_run.loc[dts[2], 'c'] = 'c2' s.setup(data, on_the_run = on_the_run) s.update(dts[0]) s.temp['selected'] = ['c', 'b1'] algo = algos.ResolveOnTheRun( 'on_the_run' ) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # make sure don't keep nan s.update(dts[1]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected # if specify include_no_data then 2 algo2 = algos.ResolveOnTheRun('on_the_run', include_no_data=True) s.temp['selected'] = ['c', 'b1'] assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # behavior on negative prices s.update(dts[2]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected algo3 = algos.ResolveOnTheRun('on_the_run', include_negative=True) s.temp['selected'] = ['c', 'b1'] assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c2' in selected assert 'b1' in selected def test_select_types(): c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') c3 = bt.HedgeSecurity('c3') c4 = bt.CouponPayingHedgeSecurity('c4') c5 = bt.FixedIncomeSecurity('c5') s = bt.Strategy('p', children = [c1, c2, c3, c4, c5]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) algo = algos.SelectTypes(include_types=(bt.Security, bt.HedgeSecurity), exclude_types=()) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3']) algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,), exclude_types=(bt.CouponPayingSecurity,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3', 'c5']) s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c2', 'c3']) def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_scale_weights(): s = bt.Strategy('s') algo = algos.ScaleWeights( -0.5 ) s.temp['weights'] = {'c1': 0.5, 'c2': -0.4, 'c3':0 } assert algo( s ) assert s.temp['weights'] == {'c1':-0.25, 'c2':0.2, 'c3':0} def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_target(): algo = algos.WeighTarget('target') s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) target = pd.DataFrame(index=dts[:2], columns=['c1', 'c2'], data=0.5) target['c1'].loc[dts[1]] = 1.0 target['c2'].loc[dts[1]] = 0.0 s.setup( data, target = target ) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.5 assert weights['c2'] == 0.5 s.update(dts[1]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 1.0 assert weights['c2'] == 0.0 s.update(dts[2]) assert not algo(s) def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data['c1'].loc[dts[1]] = 105 data['c1'].loc[dts[2]] = 95 data['c1'].loc[dts[3]] = 105 data['c1'].loc[dts[4]] = 95 # low vol c2 data['c2'].loc[dts[1]] = 100.1 data['c2'].loc[dts[2]] = 99.9 data['c2'].loc[dts[3]] = 100.1 data['c2'].loc[dts[4]] = 99.9 s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c2'] > weights['c1'] aae(weights['c1'], 0.020, 3) aae(weights['c2'], 0.980, 3) @mock.patch('ffn.calc_mean_var_weights') def test_weigh_mean_var(mock_mv): algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5)) mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_mv.called rets = mock_mv.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_randomly(): s = bt.Strategy('s') s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.WeighRandomly() assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 assert sum( weights.values() ) == 1. algo = algos.WeighRandomly( (0.3,0.5), 0.95) assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 aae( sum( weights.values() ), 0.95 ) for c in s.temp['selected']: assert weights[c] <= 0.5 assert weights[c] >= 0.3 def test_set_stat(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( 'test_stat' ) s.setup(data, test_stat = stat) s.update(dts[0]) print() print(s.get_data('test_stat')) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_set_stat_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( stat ) s.setup(data) s.update(dts[0]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_stat_total_return(): algo = algos.StatTotalReturn(lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) stat = s.temp['stat'] assert len(stat) == 2 assert stat['c1'] == 105.0 / 100 - 1 assert stat['c2'] == 95.0 / 100 - 1 def test_select_n(): algo = algos.SelectN(n=1, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected algo = algos.SelectN(n=1, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # return 2 we have if all_or_none false algo = algos.SelectN(n=3, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # return 0 we have if all_or_none true algo = algos.SelectN(n=3, sort_descending=False, all_or_none=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 def test_select_n_perc(): algo = algos.SelectN(n=0.5, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected def test_select_momentum(): algo = algos.SelectMomentum(n=1, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) actual = s.temp['selected'] assert len(actual) == 1 assert 'c1' in actual def test_limit_weights(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 0.6, 'c2':0.2, 'c3':0.2} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.5 assert w['c2'] == 0.25 assert w['c3'] == 0.25 algo = algos.LimitWeights(0.3) assert algo(s) w = s.temp['weights'] assert w == {} s.temp['weights'] = {'c1': 0.4, 'c2':0.3, 'c3':0.3} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.4 assert w['c2'] == 0.3 assert w['c3'] == 0.3 def test_limit_deltas(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 1} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.1 s.temp['weights'] = {'c1': 0.05} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.05 s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == 0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.5 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1, 'c2': 0.3}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.3 # set exisitng weight s.children['c1'] = bt.core.SecurityBase('c1') s.children['c1']._weight = 0.3 s.children['c2'] = bt.core.SecurityBase('c2') s.children['c2']._weight = -0.7 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.4 assert w['c2'] == -0.6 def test_rebalance_over_time(): target = mock.MagicMock() rb = mock.MagicMock() algo = algos.RebalanceOverTime(n=2) # patch in rb function algo._rb = rb target.temp = {} target.temp['weights'] = {'a': 1, 'b': 0} a = mock.MagicMock() a.weight = 0. b = mock.MagicMock() b.weight = 1. target.children = {'a': a, 'b': b} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 0.5 assert w['b'] == 0.5 assert rb.called called_tgt = rb.call_args[0][0] called_tgt_w = called_tgt.temp['weights'] assert len(called_tgt_w) == 2 assert called_tgt_w['a'] == 0.5 assert called_tgt_w['b'] == 0.5 # update weights for next call a.weight = 0.5 b.weight = 0.5 # clear out temp - same as would Strategy target.temp = {} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 1. assert w['b'] == 0. assert rb.call_count == 2 # update weights for next call # should do nothing now a.weight = 1 b.weight = 0 # clear out temp - same as would Strategy target.temp = {} assert algo(target) # no diff in call_count since last time assert rb.call_count == 2 def test_require(): target = mock.MagicMock() target.temp = {} algo = algos.Require(lambda x: len(x) > 0, 'selected') assert not algo(target) target.temp['selected'] = [] assert not algo(target) target.temp['selected'] = ['a', 'b'] assert algo(target) def test_run_every_n_periods(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=0) target.now = pd.to_datetime('2010-01-01') assert algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert algo(target) target.now = pd.to_datetime('2010-01-05') assert not algo(target) def test_run_every_n_periods_offset(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=1) target.now = pd.to_datetime('2010-01-01') assert not algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert not algo(target) target.now = pd.to_datetime('2010-01-05') assert algo(target) def test_not(): target = mock.MagicMock() target.temp = {} #run except on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) notAlgo = algos.Not(runOnDateAlgo) target.now = pd.to_datetime('2018-01-01') assert notAlgo(target) target.now = pd.to_datetime('2018-01-02') assert not notAlgo(target) def test_or(): target = mock.MagicMock() target.temp = {} #run on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) runOnDateAlgo2 = algos.RunOnDate(pd.to_datetime('2018-01-03')) runOnDateAlgo3 = algos.RunOnDate(pd.to_datetime('2018-01-04')) runOnDateAlgo4 = algos.RunOnDate(pd.to_datetime('2018-01-04')) orAlgo = algos.Or([runOnDateAlgo, runOnDateAlgo2, runOnDateAlgo3, runOnDateAlgo4]) #verify it returns false when neither is true target.now = pd.to_datetime('2018-01-01') assert not orAlgo(target) # verify it returns true when the first is true target.now = pd.to_datetime('2018-01-02') assert orAlgo(target) # verify it returns true when the second is true target.now = pd.to_datetime('2018-01-03') assert orAlgo(target) # verify it returns true when both algos return true target.now = pd.to_datetime('2018-01-04') assert orAlgo(target) def test_TargetVol(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=7) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data.loc[dts[0],'c1'] = 95 data.loc[dts[1],'c1'] = 105 data.loc[dts[2],'c1'] = 95 data.loc[dts[3],'c1'] = 105 data.loc[dts[4],'c1'] = 95 data.loc[dts[5],'c1'] = 105 data.loc[dts[6],'c1'] = 95 # low vol c2 data.loc[dts[0], 'c2'] = 99 data.loc[dts[1], 'c2'] = 101 data.loc[dts[2], 'c2'] = 99 data.loc[dts[3], 'c2'] = 101 data.loc[dts[4], 'c2'] = 99 data.loc[dts[5], 'c2'] = 101 data.loc[dts[6], 'c2'] = 99 targetVolAlgo = algos.TargetVol( 0.1, lookback=pd.DateOffset(days=5), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=1 ) s.setup(data) s.update(dts[6]) s.temp['weights'] = {'c1':0.5, 'c2':0.5} assert targetVolAlgo(s) weights = s.temp['weights'] assert len(weights) == 2 assert np.isclose(weights['c2'],weights['c1']) unannualized_c2_weight = weights['c1'] targetVolAlgo = algos.TargetVol( 0.1*np.sqrt(252), lookback=pd.DateOffset(days=5), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=252 ) s.setup(data) s.update(dts[6]) s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} assert targetVolAlgo(s) weights = s.temp['weights'] assert len(weights) == 2 assert np.isclose(weights['c2'], weights['c1']) assert np.isclose(unannualized_c2_weight, weights['c2']) def test_PTE_Rebalance(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=30*4) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 # low vol c2 for i,dt in enumerate(dts[:-2]): if i % 2 == 0: data.loc[dt,'c1'] = 95 data.loc[dt,'c2'] = 101 else: data.loc[dt, 'c1'] = 105 data.loc[dt, 'c2'] = 99 dt = dts[-2] data.loc[dt,'c1'] = 115 data.loc[dt,'c2'] = 97 s.setup(data) s.update(dts[-2]) s.adjust(1000000) s.rebalance(0.4,'c1') s.rebalance(0.6,'c2') wdf = pd.DataFrame( np.zeros(data.shape), columns=data.columns, index=data.index ) wdf['c1'] = 0.5 wdf['c2'] = 0.5 PTE_rebalance_Algo = bt.algos.PTE_Rebalance( 0.01, wdf, lookback=pd.DateOffset(months=3), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=252 ) assert PTE_rebalance_Algo(s) s.rebalance(0.5, 'c1') s.rebalance(0.5, 'c2') assert not PTE_rebalance_Algo(s) def test_close_positions_after_date(): c1 = bt.Security('c1') c2 = bt.Security('c2') c3 = bt.Security('c3') s = bt.Strategy('s', children = [c1, c2, c3]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] c3 = s['c3'] cutoffs= pd.DataFrame( { 'date' : [ dts[1], dts[2] ] }, index = ['c1','c2'] ) algo = algos.ClosePositionsAfterDates( 'cutoffs' ) s.setup(data, cutoffs=cutoffs) s.update(dts[0]) s.transact( 100, 'c1') s.transact( 100, 'c2') s.transact( 100, 'c3') algo(s) assert c1.position == 100 assert c2.position == 100 assert c3.position == 100 # Don't run anything on dts[1], even though that's when c1 closes s.update( dts[2]) algo(s) assert c1.position == 0 assert c2.position == 0 assert c3.position == 100 assert s.perm['closed'] == set(['c1', 'c2']) def test_roll_positions_after_date(): c1 = bt.Security('c1') c2 = bt.Security('c2') c3 = bt.Security('c3') s = bt.Strategy('s', children = [c1, c2, c3]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] c3 = s['c3'] roll = pd.DataFrame( { 'date' : [ dts[1], dts[2] ], 'target' : [ 'c3', 'c1' ], 'factor' : [ 0.5, 2.0 ] }, index = ['c1','c2'] ) algo = algos.RollPositionsAfterDates( 'roll' ) s.setup(data, roll=roll) s.update(dts[0]) s.transact( 100, 'c1') s.transact( 100, 'c2') s.transact( 100, 'c3') algo(s) assert c1.position == 100 assert c2.position == 100 assert c3.position == 100 # Don't run anything on dts[1], even though that's when c1 closes s.update( dts[2]) algo(s) assert c1.position == 200 # From c2 assert c2.position == 0 assert c3.position == 100 + 50 assert s.perm['rolled'] == set(['c1', 'c2']) def test_replay_transactions(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100) c1 = s['c1'] c2 = s['c2'] transactions = pd.DataFrame( [ ( pd.Timestamp( '2009-12-01 00'), 'c1', 100, 99.5), ( pd.Timestamp( '2010-01-01 10'), 'c1', -100, 101), ( pd.Timestamp( '2010-01-02 00'), 'c2', 50, 103) ], columns = ['Date', 'Security', 'quantity', 'price']) transactions = transactions.set_index( ['Date','Security']) algo = algos.ReplayTransactions( 'transactions' ) s.setup(data, bidoffer={}, transactions=transactions) # Pass bidoffer so it will track bidoffer paid s.adjust(1000) s.update(dts[0]) algo(s) assert c1.position == 100 assert c2.position == 0 assert c1.bidoffer_paid == -50 s.update(dts[1]) algo(s) assert c1.position == 0 assert c2.position == 50 assert c1.bidoffer_paid == -100 assert c2.bidoffer_paid == 150 def test_replay_transactions_consistency(): c1 = bt.Security('c1') c2 = bt.Security('c2') s = bt.Strategy('s', children = [c1, c2]) dts =
pd.date_range('2010-01-01', periods=3)
pandas.date_range
# Data files are too large to include. Download from Kaggle: https://www.kaggle.com/c/home-credit-default-risk/data # Code source: https://www.kaggle.com/jsaguiar/lightgbm-with-simple-features import argparse import pickle import time import warnings from contextlib import contextmanager import numpy as np import pandas as pd import redis from sklearn.model_selection import train_test_split from credit_utils import * from willump.evaluation.willump_executor import willump_execute warnings.simplefilter(action='ignore', category=FutureWarning) base_folder = "tests/test_resources/home_credit_default_risk/" parser = argparse.ArgumentParser() parser.add_argument("-c", "--cascades", action="store_true", help="Cascades?") parser.add_argument("-b", "--debug", help="Debug Mode", action="store_true") parser.add_argument("-k", "--top_k", type=int, help="Top-K to return", required=True) parser.add_argument("-d", "--disable", help="Disable Willump", action="store_true") parser.add_argument("-r", "--redis", help="Redis IP", type=str) args = parser.parse_args() if args.cascades: cascades = pickle.load(open(base_folder + "training_cascades.pk", "rb")) else: cascades = None top_K = args.top_k if args.redis is None: redis_ip = "127.0.0.1" else: redis_ip = args.redis db = redis.StrictRedis(host=redis_ip) @contextmanager def timer(title): t0 = time.time() yield print("{} - done in {:.5f}s".format(title, time.time() - t0)) # One-hot encoding for categorical columns with get_dummies def one_hot_encoder(df, nan_as_category=True): original_columns = list(df.columns) categorical_columns = [col for col in df.columns if df[col].dtype == 'object'] df = pd.get_dummies(df, columns=categorical_columns, dummy_na=nan_as_category) new_columns = [c for c in df.columns if c not in original_columns] return df, new_columns # Preprocess application_train.csv and application_test.csv def application_train_test(num_rows=None, nan_as_category=False): # Read data and merge df = pd.read_csv(base_folder + 'application_train.csv', nrows=num_rows) print("Train samples: {}".format(len(df))) # Optional: Remove 4 applications with XNA CODE_GENDER (train set) df = df[df['CODE_GENDER'] != 'XNA'] # Categorical features with Binary encode (0 or 1; two categories) for bin_feature in ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY']: df[bin_feature], uniques =
pd.factorize(df[bin_feature])
pandas.factorize
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import types import sys from collections import defaultdict from pprint import pformat import math from pyqstrat.evaluator import compute_return_metrics, display_return_metrics, plot_return_metrics from pyqstrat.account import Account from pyqstrat.pq_utils import * from pyqstrat.pq_types import ContractGroup from pyqstrat.plot import TimeSeries, trade_sets_by_reason_code, Subplot, Plot # In[3]: def _get_time_series_list(timestamps, names, values, properties): ts_list = [] for name in names: line_type, color = None, None if properties is not None and name in properties: if 'line_type' in properties[name]: line_type = properties[name]['line_type'] if 'color' in properties[name]: color = properties[name]['color'] y = getattr(values, name) if not len(y): continue if y.dtype.type in [np.str_, np.object_, np.datetime64]: continue ts = TimeSeries(name, timestamps, y, line_type = line_type, color = color) ts_list.append(ts) return ts_list class Strategy: def __init__(self, timestamps, contract_groups, price_function, starting_equity = 1.0e6, pnl_calc_time = 15 * 60 + 1, trade_lag = 0, run_final_calc = True, strategy_context = None): ''' Args: timestamps (np.array of np.datetime64): The "heartbeat" of the strategy. We will evaluate trading rules and simulate the market at these times. price_function: A function that returns the price of a contract at a given timestamp contract_groups (list of :obj:`ContractGroup`): The contract groups we will potentially trade. starting_equity (float, optional): Starting equity in Strategy currency. Default 1.e6 pnl_calc_time (int, optional): Time of day used to calculate PNL. Default 15 * 60 (3 pm) trade_lag (int, optional): Number of bars you want between the order and the trade. For example, if you think it will take 5 seconds to place your order in the market, and your bar size is 1 second, set this to 5. Set this to 0 if you want to execute your trade at the same time as you place the order, for example, if you have daily bars. Default 0. run_final_calc (bool, optional): If set, calculates unrealized pnl and net pnl as well as realized pnl when strategy is done. If you don't need unrealized pnl, turn this off for faster run time. Default True strategy_context (:obj:`types.SimpleNamespace`, optional): A storage class where you can store key / value pairs relevant to this strategy. For example, you may have a pre-computed table of correlations that you use in the indicator or trade rule functions. If not set, the __init__ function will create an empty member strategy_context object that you can access. ''' self.name = None self.timestamps = timestamps assert(len(contract_groups) and isinstance(contract_groups[0], ContractGroup)) self.contract_groups = contract_groups if strategy_context is None: strategy_context = types.SimpleNamespace() self.strategy_context = strategy_context self.account = Account(contract_groups, timestamps, price_function, strategy_context, starting_equity, pnl_calc_time) assert trade_lag >= 0, f'trade_lag cannot be negative: {trade_lag}' self.trade_lag = trade_lag self.run_final_calc = run_final_calc self.indicators = {} self.signals = {} self.signal_values = defaultdict(types.SimpleNamespace) self.rule_names = [] self.rules = {} self.position_filters = {} self.rule_signals = {} self.market_sims = [] self._trades = [] self._orders = [] self._open_orders = defaultdict(list) self.indicator_deps = {} self.indicator_cgroups = {} self.indicator_values = defaultdict(types.SimpleNamespace) self.signal_indicator_deps = {} self.signal_deps = {} self.signal_cgroups = {} self.trades_iter = [[] for x in range(len(timestamps))] # For debugging, we don't really need this as a member variable def add_indicator(self, name, indicator, contract_groups = None, depends_on = None): ''' Args: name: Name of the indicator indicator: A function that takes strategy timestamps and other indicators and returns a numpy array containing indicator values. The return array must have the same length as the timestamps object. Can also be a numpy array or a pandas Series in which case we just store the values. contract_groups (list of :obj:`ContractGroup`, optional): Contract groups that this indicator applies to. If not set, it applies to all contract groups. Default None. depends_on (list of str, optional): Names of other indicators that we need to compute this indicator. Default None. ''' self.indicators[name] = indicator self.indicator_deps[name] = [] if depends_on is None else depends_on if contract_groups is None: contract_groups = self.contract_groups if isinstance(indicator, np.ndarray) or isinstance(indicator, pd.Series): indicator_values = series_to_array(indicator) for contract_group in contract_groups: setattr(self.indicator_values[contract_group], name, indicator_values) self.indicator_cgroups[name] = contract_groups def add_signal(self, name, signal_function, contract_groups = None, depends_on_indicators = None, depends_on_signals = None): ''' Args: name (str): Name of the signal signal_function (function): A function that takes timestamps and a dictionary of indicator value arrays and returns a numpy array containing signal values. The return array must have the same length as the input timestamps contract_groups (list of :obj:`ContractGroup`, optional): Contract groups that this signal applies to. If not set, it applies to all contract groups. Default None. depends_on_indicators (list of str, optional): Names of indicators that we need to compute this signal. Default None. depends_on_signals (list of str, optional): Names of other signals that we need to compute this signal. Default None. ''' self.signals[name] = signal_function self.signal_indicator_deps[name] = [] if depends_on_indicators is None else depends_on_indicators self.signal_deps[name] = [] if depends_on_signals is None else depends_on_signals if contract_groups is None: contract_groups = self.contract_groups self.signal_cgroups[name] = contract_groups def add_rule(self, name, rule_function, signal_name, sig_true_values = None, position_filter = None): '''Add a trading rule. Trading rules are guaranteed to run in the order in which you add them. For example, if you set trade_lag to 0, and want to exit positions and re-enter new ones in the same bar, make sure you add the exit rule before you add the entry rule to the strategy. Args: name (str): Name of the trading rule rule_function (function): A trading rule function that returns a list of Orders signal_name (str): The strategy will call the trading rule function when the signal with this name matches sig_true_values sig_true_values (numpy array, optional): If the signal value at a bar is equal to one of these values, the Strategy will call the trading rule function. Default [TRUE] position_filter (str, optional): Can be "zero", "nonzero" or None. Zero rules are only triggered when the corresponding contract positions are 0 Nonzero rules are only triggered when the corresponding contract positions are non-zero. If not set, we don't look at position before triggering the rule. Default None ''' if sig_true_values is None: sig_true_values = [True] if name in self.rule_names: raise Exception(f'Rule {name} already exists') # Rules should be run in order self.rule_names.append(name) self.rule_signals[name] = (signal_name, sig_true_values) self.rules[name] = rule_function if position_filter is not None: assert(position_filter in ['zero', 'nonzero']) self.position_filters[name] = position_filter def add_market_sim(self, market_sim_function): '''Add a market simulator. A market simulator takes a list of Orders as input and returns a list of Trade objects. Args: market_sim_function (function): A function that takes a list of Orders and Indicators as input and returns a list of Trade objects ''' self.market_sims.append(market_sim_function) def run_indicators(self, indicator_names = None, contract_groups = None, clear_all = False): '''Calculate values of the indicators specified and store them. Args: indicator_names (list of str, optional): List of indicator names. If None (default) run all indicators contract_groups (list of :obj:`ContractGroup`, optional): Contract group to run this indicator for. If None (default), we run it for all contract groups. clear_all (bool, optional): If set, clears all indicator values before running. Default False. ''' if indicator_names is None: indicator_names = self.indicators.keys() if contract_groups is None: contract_groups = self.contract_groups if clear_all: self.indicator_values = defaultdict(types.SimpleNamespace) ind_names = [] for ind_name, cgroup_list in self.indicator_cgroups.items(): if len(set(contract_groups).intersection(cgroup_list)): ind_names.append(ind_name) indicator_names = list(set(ind_names).intersection(indicator_names)) for cgroup in contract_groups: cgroup_ind_namespace = self.indicator_values[cgroup] for indicator_name in indicator_names: # First run all parents parent_names = self.indicator_deps[indicator_name] for parent_name in parent_names: if cgroup in self.indicator_values and hasattr(cgroup_ind_namespace, parent_name): continue self.run_indicators([parent_name], [cgroup]) # Now run the actual indicator if cgroup in self.indicator_values and hasattr(cgroup_ind_namespace, indicator_name): continue indicator_function = self.indicators[indicator_name] parent_values = types.SimpleNamespace() for parent_name in parent_names: setattr(parent_values, parent_name, getattr(cgroup_ind_namespace, parent_name)) if isinstance(indicator_function, np.ndarray) or isinstance(indicator_function, pd.Series): indicator_values = indicator_function else: indicator_values = indicator_function(cgroup, self.timestamps, parent_values, self.strategy_context) setattr(cgroup_ind_namespace, indicator_name, series_to_array(indicator_values)) def run_signals(self, signal_names = None, contract_groups = None, clear_all = False): '''Calculate values of the signals specified and store them. Args: signal_names (list of str, optional): List of signal names. If None (default) run all signals contract_groups (list of :obj:`ContractGroup`, optional): Contract groups to run this signal for. If None (default), we run it for all contract groups. clear_all (bool, optional): If set, clears all signal values before running. Default False. ''' if signal_names is None: signal_names = self.signals.keys() if contract_groups is None: contract_groups = self.contract_groups if clear_all: self.signal_values = defaultdict(types.SimpleNamespace) sig_names = [] for sig_name, cgroup_list in self.signal_cgroups.items(): if len(set(contract_groups).intersection(cgroup_list)): sig_names.append(sig_name) signal_names = list(set(sig_names).intersection(signal_names)) for cgroup in contract_groups: for signal_name in signal_names: if cgroup not in self.signal_cgroups[signal_name]: continue # First run all parent signals parent_names = self.signal_deps[signal_name] for parent_name in parent_names: if cgroup in self.signal_values and hasattr(self.signal_values[cgroup], parent_name): continue self.run_signals([parent_name], [cgroup]) # Now run the actual signal if cgroup in self.signal_values and hasattr(self.signal_values[cgroup], signal_name): continue signal_function = self.signals[signal_name] parent_values = types.SimpleNamespace() for parent_name in parent_names: sig_vals = getattr(self.signal_values[cgroup], parent_name) setattr(parent_values, parent_name, sig_vals) # Get indicators needed for this signal indicator_values = types.SimpleNamespace() for indicator_name in self.signal_indicator_deps[signal_name]: setattr(indicator_values, indicator_name, getattr(self.indicator_values[cgroup], indicator_name)) setattr(self.signal_values[cgroup], signal_name, series_to_array( signal_function(cgroup, self.timestamps, indicator_values, parent_values, self.strategy_context))) def _generate_order_iterations(self, rule_names = None, contract_groups = None, start_date = None, end_date = None): ''' >>> class MockStrat: ... def __init__(self): ... self.timestamps = timestamps ... self.account = self ... self.rules = {'rule_a' : rule_a, 'rule_b' : rule_b} ... self.market_sims = {ibm : market_sim_ibm, aapl : market_sim_aapl} ... self.rule_signals = {'rule_a' : ('sig_a', [1]), 'rule_b' : ('sig_b', [1, -1])} ... self.signal_values = {ibm : types.SimpleNamespace(sig_a = np.array([0., 1., 1.]), ... sig_b = np.array([0., 0., 0.]) ), ... aapl : types.SimpleNamespace(sig_a = np.array([0., 0., 0.]), ... sig_b = np.array([0., -1., -1]) ... )} ... self.signal_cgroups = {'sig_a' : [ibm, aapl], 'sig_b' : [ibm, aapl]} ... self.indicator_values = {ibm : types.SimpleNamespace(), aapl : types.SimpleNamespace()} >>> >>> def market_sim_aapl(): pass >>> def market_sim_ibm(): pass >>> def rule_a(): pass >>> def rule_b(): pass >>> timestamps = np.array(['2018-01-01', '2018-01-02', '2018-01-03'], dtype = 'M8[D]') >>> rule_names = ['rule_a', 'rule_b'] >>> ContractGroup.clear() >>> ibm = ContractGroup.create('IBM') >>> aapl = ContractGroup.create('AAPL') >>> contract_groups = [ibm, aapl] >>> start_date = np.datetime64('2018-01-01') >>> end_date = np.datetime64('2018-02-05') >>> strategy = MockStrat() >>> Strategy._generate_order_iterations(strategy, rule_names, contract_groups, start_date, end_date) >>> orders_iter = strategy.orders_iter >>> assert(len(orders_iter[0]) == 0) >>> assert(len(orders_iter[1]) == 2) >>> assert(orders_iter[1][0][1] == ibm) >>> assert(orders_iter[1][1][1] == aapl) >>> assert(len(orders_iter[2]) == 0) ''' start_date, end_date = str2date(start_date), str2date(end_date) if rule_names is None: rule_names = self.rule_names if contract_groups is None: contract_groups = self.contract_groups num_timestamps = len(self.timestamps) # List of lists, i -> list of orders orders_iter = [[] for x in range(num_timestamps)] for rule_name in rule_names: rule_function = self.rules[rule_name] for cgroup in contract_groups: signal_name, sig_true_values = self.rule_signals[rule_name] if cgroup not in self.signal_cgroups[signal_name]: # We don't need to call this rule for this contract group continue sig_values = getattr(self.signal_values[cgroup], signal_name) timestamps = self.timestamps null_value = False if sig_values.dtype == np.dtype('bool') else np.nan if start_date: sig_values[0:np.searchsorted(timestamps, start_date)] = null_value if end_date: sig_values[np.searchsorted(timestamps, end_date):] = null_value indices = np.nonzero(np.isin(sig_values[:num_timestamps], sig_true_values))[0] # Don't run rules on last index since we cannot fill any orders if len(indices) and indices[-1] == len(sig_values) -1: indices = indices[:-1] indicator_values = self.indicator_values[cgroup] iteration_params = {'indicator_values' : indicator_values, 'signal_values' : sig_values, 'rule_name' : rule_name} for idx in indices: orders_iter[idx].append((rule_function, cgroup, iteration_params)) self.orders_iter = orders_iter def run_rules(self, rule_names = None, contract_groups = None, start_date = None, end_date = None): '''Run trading rules. Args: rule_names: List of rule names. If None (default) run all rules contract_groups (list of :obj:`ContractGroup`, optional): Contract groups to run this rule for. If None (default), we run it for all contract groups. start_date: Run rules starting from this date. Default None end_date: Don't run rules after this date. Default None ''' start_date, end_date = str2date(start_date), str2date(end_date) self._generate_order_iterations(rule_names, contract_groups, start_date, end_date) # Now we know which rules, contract groups need to be applied for each iteration, go through each iteration and apply them # in the same order they were added to the strategy for i in range(len(self.orders_iter)): self._run_iteration(i) if self.run_final_calc: self.account.calc(self.timestamps[-1]) def _run_iteration(self, i): self._sim_market(i) # Treat all orders as IOC, i.e. if the order was not executed, then its cancelled. self._open_orders[i] = [] rules = self.orders_iter[i] for (rule_function, contract_group, params) in rules: orders = self._get_orders(i, rule_function, contract_group, params) self._orders += orders self._open_orders[i + self.trade_lag] += orders # If the lag is 0, then run rules one by one, and after each rule, run market sim to generate trades and update # positions. For example, if we have a rule to exit a position and enter a new one, we should make sure # positions are updated after the first rule before running the second rule. If the lag is not 0, # run all rules and collect the orders, we don't need to run market sim after each rule if self.trade_lag == 0: self._sim_market(i) # If we failed to fully execute any orders in this iteration, add them to the next iteration so we get another chance to execute open_orders = self._open_orders.get(i) if open_orders is not None and len(open_orders): self._open_orders[i + 1] += open_orders def run(self): self.run_indicators() self.run_signals() self.run_rules() def _get_orders(self, idx, rule_function, contract_group, params): try: indicator_values, signal_values, rule_name = (params['indicator_values'], params['signal_values'], params['rule_name']) position_filter = self.position_filters[rule_name] if position_filter is not None: curr_pos = self.account.position(contract_group, self.timestamps[idx]) if position_filter == 'zero' and not math.isclose(curr_pos, 0): return [] if position_filter == 'nonzero' and math.isclose(curr_pos, 0): return [] orders = rule_function(contract_group, idx, self.timestamps, indicator_values, signal_values, self.account, self.strategy_context) except Exception as e: raise type(e)(f'Exception: {str(e)} at rule: {type(rule_function)} contract_group: {contract_group} index: {idx}' ).with_traceback(sys.exc_info()[2]) return orders def _sim_market(self, i): ''' Go through all open orders and run market simulators to generate a list of trades and return any orders that were not filled. ''' open_orders = self._open_orders.get(i) if open_orders is None or len(open_orders) == 0: return [], [] # If there is more than one order for a contract, throw away any but the last one. #seen = set() #seen_add = seen.add #open_orders = list(reversed([order for order in reversed(orders) if not (order.contract in seen or seen_add(order.contract))])) for market_sim_function in self.market_sims: try: trades = market_sim_function(open_orders, i, self.timestamps, self.indicator_values, self.signal_values, self.strategy_context) if len(trades): self.account.add_trades(trades) self._trades += trades except Exception as e: raise type(e)(f'Exception: {str(e)} at index: {i} function: {market_sim_function}').with_traceback(sys.exc_info()[2]) self._open_orders[i] = [order for order in open_orders if order.status != 'filled'] def df_data(self, contract_groups = None, add_pnl = True, start_date = None, end_date = None): ''' Add indicators and signals to end of market data and return as a pandas dataframe. Args: contract_groups (list of :obj:`ContractGroup`, optional): list of contract groups to include. All if set to None (default) add_pnl: If True (default), include P&L columns in dataframe start_date: string or numpy datetime64. Default None end_date: string or numpy datetime64: Default None ''' start_date, end_date = str2date(start_date), str2date(end_date) if contract_groups is None: contract_groups = self.contract_groups timestamps = self.timestamps if start_date: timestamps = timestamps[timestamps >= start_date] if end_date: timestamps = timestamps[timestamps <= end_date] dfs = [] for contract_group in contract_groups: df = pd.DataFrame({'timestamp' : self.timestamps}) if add_pnl: df_pnl = self.df_pnl(contract_group) indicator_values = self.indicator_values[contract_group] for k in sorted(indicator_values.__dict__): name = k # Avoid name collisions if name in df.columns: name = name + '.ind' df.insert(len(df.columns), name, getattr(indicator_values, k)) signal_values = self.signal_values[contract_group] for k in sorted(signal_values.__dict__): name = k if name in df.columns: name = name + '.sig' df.insert(len(df.columns), name, getattr(signal_values, k)) if add_pnl: df = pd.merge(df, df_pnl, on = ['timestamp'], how = 'left') # Add counter column for debugging df.insert(len(df.columns), 'i', np.arange(len(df))) dfs.append(df) return
pd.concat(dfs)
pandas.concat
#z-score = ([current trend] - [average historic trends]) / [standard deviation of historic trends]) import os import pickle import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.style as style from matplotlib.dates import DateFormatter, DayLocator from datetime import datetime style.available style.use('seaborn') import config import warnings warnings.filterwarnings('ignore') def get_score_data(): # Pull in the mention data df = pd.read_csv('data/mentions.csv', parse_dates=['Mention Datetime']) df = df.groupby([pd.Grouper(key='Mention Datetime', freq='D'),'Symbol']).sum().reset_index() df = df.pivot_table(index='Symbol', columns='Mention Datetime', fill_value=0 ).stack().sort_values(by=['Symbol','Mention Datetime']).reset_index() return df def top_symbols(df): # Determines the top symbols based on observations greater than variable "t_post_count" in config.py all_syms = df['Symbol'].unique() top_syms = {} top_syms_list = [] for sym in all_syms: count = df.loc[df['Symbol'] == sym,['Mention']].sum() if count[0] > config.t_post_count: top_syms_list.append(sym) top_syms[sym] = df[df['Symbol'] == sym].reset_index() top_syms[sym].drop(['index'], axis=1, inplace=True) print('The top symbols: ') print(top_syms_list) return top_syms, top_syms_list def is_trending(df, top_syms, top_syms_list): # Uses z score to determine if a stock is trending obs = df['Mention'] trending_stocks = [] for sym in top_syms_list: mn = np.mean(obs) sd = np.std(obs) i = top_syms[sym].loc[0][2] print(i) zscore = (i-mn)/sd print('\n'+sym) print('Z-Score is: '+str(zscore)) if zscore > 1.5: print('Stock is Trending!') trending_stocks.append(sym) else: print('Not Trending') with open('obj/trendingstocks.pkl', 'wb') as fp: #Pickling pickle.dump(trending_stocks, fp) return trending_stocks def new_trending(trending_stocks): if not os.path.exists('data/datetrending.csv'): newtrend = pd.DataFrame(trending_stocks, columns = ['Symbol']) newtrend['First Trending'] = datetime.today().strftime('%Y-%m-%d') newtrend['BuyPrice'] = np.NaN newtrend.set_index('Symbol', inplace=True) newtrend.to_csv('data/datetrending.csv', index=True) print('New trending stocks:') print(newtrend) else: oldtrend =
pd.read_csv('data/datetrending.csv', parse_dates=['First Trending'], index_col='Symbol')
pandas.read_csv
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import integer_op_not_supported from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas._typing import DatetimeLikeScalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas.core import missing, nanops, ops from pandas.core.algorithms import checked_add_with_arr, take, unique1d, value_counts from pandas.core.arrays.base import ExtensionArray, ExtensionOpsMixin import pandas.core.common as com from pandas.core.indexers import check_bool_array_indexer from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison, make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): if isinstance(other, str): try: # GH#18435 strings get a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period return invalid_comparison(self, other, op) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if isna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, type(self))): return invalid_comparison(self, other, op) if is_object_dtype(other): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.astype(object), other ) o_mask = isna(other) elif not type(self)._is_recognized_dtype(other.dtype): return invalid_comparison(self, other, op) else: # For PeriodDType this casting is unnecessary other = type(self)._from_sequence(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._isnan if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatiblity resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._format_native_types(date_format=date_format, na_rep=np.nan) return result.astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) return self._simple_new(result, dtype=self.dtype) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin, ExtensionArray): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ @property def ndim(self) -> int: return self._data.ndim @property def shape(self): return self._data.shape def reshape(self, *args, **kwargs): # Note: we drop any freq data = self._data.reshape(*args, **kwargs) return type(self)(data, dtype=self.dtype) def ravel(self, *args, **kwargs): # Note: we drop any freq data = self._data.ravel(*args, **kwargs) return type(self)(data, dtype=self.dtype) @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") @property def _ndarray_values(self): return self._data # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None) -> np.ndarray: # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ is_int = lib.is_integer(key) if lib.is_scalar(key) and not is_int: raise IndexError( "only integers, slices (`:`), ellipsis (`...`), " "numpy.newaxis (`None`) and integer or boolean " "arrays are valid indices" ) getitem = self._data.__getitem__ if is_int: val = getitem(key) if lib.is_scalar(val): # i.e. self.ndim == 1 return self._box_func(val) return type(self)(val, dtype=self.dtype) if com.is_bool_indexer(key): key = check_bool_array_indexer(self, key) if key.all(): key = slice(0, None, None) else: key = lib.maybe_booleans_to_slice(key.view(np.uint8)) is_period = is_period_dtype(self) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq result = getitem(key) if result.ndim > 1: # To support MPL which performs slicing with 2 dim # even though it only has 1 dim by definition if is_period: return self._simple_new(result, dtype=self.dtype, freq=freq) return result return self._simple_new(result, dtype=self.dtype, freq=freq) def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( f"shape mismatch: value array of length '{len(key)}' " "does not match indexing result of length " f"'{len(value)}'." ) raise ValueError(msg) elif not len(key): return value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value, setitem=True) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value, setitem=True) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( f"'value' should be a '{self._scalar_type.__name__}', 'NaT', " f"or array of those. Got '{type(value).__name__}' instead." ) raise TypeError(msg) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period from pandas import Categorical dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = f"Cannot cast {type(self).__name__} to dtype {dtype}" raise TypeError(msg) elif is_categorical_dtype(dtype): return Categorical(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ if isna(fill_value): fill_value = iNaT elif isinstance(fill_value, self._recognized_scalars): self._check_compatible_with(fill_value) fill_value = self._scalar_type(fill_value) fill_value = self._unbox_scalar(fill_value) else: raise ValueError( f"'fill_value' should be a {self._scalar_type}. Got '{fill_value}'." ) return fill_value def take(self, indices, allow_fill=False, fill_value=None): if allow_fill: fill_value = self._validate_fill_value(fill_value) new_values = take( self.asi8, indices, allow_fill=allow_fill, fill_value=fill_value ) return type(self)(new_values, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat): dtypes = {x.dtype for x in to_concat} assert len(dtypes) == 1 dtype = list(dtypes)[0] values = np.concatenate([x.asi8 for x in to_concat]) return cls(values, dtype=dtype) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ if isinstance(value, str): value = self._scalar_from_string(value) if not (isinstance(value, (self._scalar_type, type(self))) or isna(value)): raise ValueError(f"Unexpected type for 'value': {type(value)}") self._check_compatible_with(value) if isinstance(value, type(self)): value = value.asi8 else: value = self._unbox_scalar(value) return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result.values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ if self.ndim != 1: return None try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( f"Inferred frequency {inferred} from passed values " f"does not conform to passed frequency {freq.freqstr}" ) # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_datetimelike_array_cmp) # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overridden by TimedeltaArray raise TypeError(f"cannot add {type(self).__name__} and {type(other).__name__}") _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError(f"cannot subtract a datelike from a {type(self).__name__}") _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overridden by PeriodArray raise TypeError(f"cannot subtract Period from a {type(self).__name__}") def _add_offset(self, offset): raise AbstractMethodError(self) def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(self.shape, dtype="i8") new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) return new_values.view("i8") def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view("i8") def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( f"Cannot add {type(self).__name__} and {type(NaT).__name__}" ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( f"cannot subtract {other.dtype}-dtype from {type(self).__name__}" ) if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_object_array(self, other: np.ndarray, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : np.ndarray[object] op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " f"{type(self).__name__} not vectorized", PerformanceWarning, ) # For EA self.astype('O') returns a numpy array, not an Index left = self.astype("O") res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs["freq"] = "infer" try: res = type(self)._from_sequence(res_values, **kwargs) except ValueError: # e.g. we've passed a Timestamp to TimedeltaArray res = res_values return res def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) @unpack_zerodim_and_defer("__add__") def __add__(self, other): # scalar others if other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) @unpack_zerodim_and_defer("__sub__") def __sub__(self, other): # scalar others if other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(-other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.sub) else: # Includes ExtensionArrays, float_dtype return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __rsub__(self, other): if is_datetime64_any_dtype(other) and is_timedelta64_dtype(self.dtype): # ndarray[datetime64] cannot be subtracted from self, so # we need to wrap in DatetimeArray/Index and flip the operation if lib.is_scalar(other): # i.e. np.datetime64 object return Timestamp(other) - self if not isinstance(other, DatetimeLikeArrayMixin): # Avoid down-casting DatetimeIndex from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) return other - self elif ( is_datetime64_any_dtype(self.dtype) and hasattr(other, "dtype") and not is_datetime64_any_dtype(other.dtype) ): # GH#19959 datetime - datetime is well-defined as timedelta, # but any other type - datetime is not well-defined. raise TypeError( f"cannot subtract {type(self).__name__} from {type(other).__name__}" ) elif is_period_dtype(self.dtype) and is_timedelta64_dtype(other): # TODO: Can we simplify/generalize these cases at all? raise TypeError(f"cannot subtract {type(self).__name__} from {other.dtype}") elif is_timedelta64_dtype(self.dtype): if lib.is_integer(other) or
is_integer_dtype(other)
pandas.core.dtypes.common.is_integer_dtype
# -*- coding: utf-8 -*- """LOGAN Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1T7zfx1dr0Zw3n1nXqy9dLOQpg2DcpzSo """ #@title Choose type { run: "auto" } particle_options = { "Inclusive": "dp_ana_Inclusive.hdf5", "GMM_ECAL": "Data/dp_ana_GMM_ECAL.hdf5", "GMM_Target": "dp_ana_GMM_Target.hdf5", "PN_ECAL": "dp_ana_PN_ECAL.hdf5", "PN_Target": "dp_ana_PN_Target.hdf5", "Inclusive_4e6": "Inclusive_ana_4e6.tfrecord", "GMM_ECAL_8e5": "GMM_ECAL_ana_8e5.hdf5", "GMM_Target_8e5": "GMM_Target_ana_8e5.hdf5", "PN_ECAL_4e5": "PN_ECAL_ana_4e5.hdf5", "PN_Target_4e5": "PN_Target_ana_4e5.hdf5", "Inclusive_cut_7GeV": "/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/TrainingData/Inclusive_ana_4e6_cut_at_7GeV.hdf5", 'Inclusive_larger_than_7GeV' :'/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/TrainingData/Inclusive_ana_4e6_cut_larger_then_7GeV.tfrecord' } training_data_path = "/lustre/collider/hezhengting/TrainningData" particle_type = "PN_ECAL_4e5" #@param ['Inclusive', 'GMM_ECAL', 'GMM_Target', 'PN_ECAL', 'PN_Target', 'Inclusive_4e6', 'GMM_ECAL_8e5', 'GMM_Target_8e5', 'PN_ECAL_4e5', 'PN_Target_4e5', 'Inclusive_cut_7GeV', 'Inclusive_larger_than_7GeV'] particle_label = {particle_type : training_data_path + particle_options[particle_type]} #Model_to_load = None #d_model_to_load = None model_path = "/lustre/collider/hezhengting/LOGAN/Models/" model_save_time = '2021-07-22_00_49_51' d_model_to_load = model_path + model_save_time + 'LOGANdiscriminator_PN_ECAL_4e5.hdf5' Model_to_load = model_path + model_save_time + 'LOGANgenerator_PN_ECAL_4e5.hdf5' aux_model = None hdf5_dataset = (list(particle_label.values())[0][-4:] == 'hdf5') tfrecord_dataset = (list(particle_label.values())[0][-8:] == 'tfrecord') if tfrecord_dataset: print("Using tfrecords format") if hdf5_dataset: print('Using hdf5 format') """# Hyper-parameters form""" #@title Hyper-parameters form { run: "auto", vertical-output: true, display-mode: "form" } disc_lr = 1e-3#@param {type:"number"} disc_opt = "Adam" #@param ["Adam", "Nadam"] adam_beta_1 = 0.5 #@param {type:"number"} adam_beta_2 = 0.9 #@param {type:"number"} decay_steps = 1000 #@param {type:"slider", min:100, max:2000, step:100} decay_power = 0.5 #@param ["0.5", "1", "2"] {type:"raw"} decay_rate = 0.9 #@param {type:"number"} gen_lr = 1e-3 #@param {type:"number"} gen_opt = "Nadam" #@param ["Adam", "Nadam"] energy_cut = 1e-3 #@param {type:"number"} generator_extra_step = 3#@param {type:"integer"} discriminator_extra_steps = 1#@param {type:"integer"} batch_size = 500 #@param {type:"slider", min:100, max:1000, step:100} BATCH_SIZE=batch_size final_layer_activation = "softplus" #@param ["relu", "softplus"] z_alpha = 0.9#@param {type:"number"} z_beta = 0.1 #@param {type:"number"} g_network_type = "DownSampling" #@param ["UpSampling", "DownSampling"] use_latent_optimization = True #@param ["True", "False"] {type:"raw"} end_learning_rate = 1e-6#@param {type:"number"} lambda_E = 1e2 E_factor = 0 lambda_sparsity = 10 latent_size=1024 g_pfx = 'params_generator_epoch_' d_pfx = 'params_discriminator_epoch_' real_input_energies = 8 """# Configure ## Import """ from tensorflow import keras import tensorflow.keras.backend as K import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam, Nadam import matplotlib.pyplot as plt import matplotlib import numpy as np import os from datetime import datetime from tensorflow.keras.layers import (Input, Dense, Reshape, Conv2D, LeakyReLU, BatchNormalization, LocallyConnected2D, Activation, ZeroPadding2D, Lambda, Flatten, Embedding, ELU, Dropout, UpSampling2D, Cropping2D, LayerNormalization, ) from tensorflow.keras.layers import concatenate import time import h5py ##MBD import #from keras.engine import InputSpec, Layer from tensorflow.keras.layers import Layer, InputSpec from tensorflow.keras import initializers, regularizers, constraints, activations from tensorflow.keras.layers import Lambda, ZeroPadding2D, LocallyConnected2D #from sklearn.preprocessing import LabelEncoder #from sklearn.utils import shuffle import pandas as pd from tqdm import tqdm import deepdish as dd from hep_ml import reweight from hep_ml.metrics_utils import ks_2samp_weighted import uproot3 import uproot from datetime import datetime import pytz import seaborn as sn class Dense3D(Layer): """ A 3D, trainable, dense tensor product layer """ def __init__(self, first_dim, last_dim, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) super(Dense3D, self).__init__(**kwargs) self.first_dim = first_dim self.last_dim = last_dim self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.input_spec = InputSpec(min_ndim=2) self.supports_masking = True def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[-1] self.kernel = self.add_weight( shape=(self.first_dim, input_dim, self.last_dim), initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, ) if self.use_bias: self.bias = self.add_weight( shape=(self.first_dim, self.last_dim), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, ) else: self.bias = None self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim}) self.built = True def call(self, inputs, mask=None): out = tf.reshape(tf.matmul(inputs, self.kernel), (-1, self.first_dim, self.last_dim)) if self.use_bias: out += self.bias return out def compute_output_shape(self, input_shape): assert input_shape and len(input_shape) == 2 return (input_shape[0], self.first_dim, self.last_dim) def get_config(self): config = { 'first_dim': self.first_dim, 'last_dim': self.last_dim, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(Dense, self).get_config() return dict(list(base_config.items()) + list(config.items())) class MinibatchStdev(Layer): def __init__(self, **kwargs): super(MinibatchStdev, self).__init__(**kwargs) # calculate the mean standard deviation across each pixel coord def call(self, inputs): mean = K.mean(inputs, axis=0, keepdims=True) mean_sq_diff = K.mean(K.square(inputs - mean), axis=0, keepdims=True) + 1e-8 mean_pix = K.mean(K.sqrt(mean_sq_diff), keepdims=True) shape = K.shape(inputs) output = K.tile(mean_pix, [shape[0], shape[1], shape[2], 1]) return K.concatenate([inputs, output], axis=-1) # define the output shape of the layer def compute_output_shape(self, input_shape): input_shape = list(input_shape) input_shape[-1] += 1 return tuple(input_shape) class MinibatchVariableStdev(Layer): def __init__(self, **kwargs): super(MinibatchVariableStdev, self).__init__(**kwargs) def call(self, inputs): mean = K.mean(inputs, axis=0, keepdims=True) mean_sq_diff = K.mean(K.square(inputs - mean), axis=0, keepdims=True) mean_pix = K.mean(K.sqrt(mean_sq_diff), keepdims=True) shape = K.shape(inputs) mean_output = K.tile(mean, [shape[0], 1]) output = K.tile(mean_pix, [shape[0], 1]) return K.concatenate([inputs, mean_output, output], axis=-1) # define the output shape of the layer def compute_output_shape(self, input_shape): input_shape = list(input_shape) input_shape[-1] += 2 return tuple(input_shape) """## Read HDF5 file""" def read_file(particle, infile): #h5file = h5py.File(infile, 'r') h5file = dd.io.load(particle_label[particle]) ECAL_centre = h5file['ECAL_centre'] Energy = h5file["Energy"] sizes = ECAL_centre.shape print("There are {} events with {} x {} layout for {}".format(sizes[0], sizes[1], sizes[2],particle)) y = [particle] * ECAL_centre.shape[0] return ECAL_centre, Energy, sizes, y if hdf5_dataset: nb_classes = len(particle_label) print("There {} types of particles".format(nb_classes)) ECAL_centre, Energy, sizes, y = [ np.concatenate(t) for t in [ a for a in zip(*[read_file(p, f) for p, f in particle_label.items()]) ] ] #le = LabelEncoder() #y = le.fit_transform(y) #print(list(le.classes_)) print(list(particle_label.keys())[0]) #ECAL_centre, Energy, y = shuffle(ECAL_centre, Energy, y, random_state=0) sizes = ECAL_centre.shape sizes = np.shape(ECAL_centre) train_images = (ECAL_centre.reshape(sizes[0], 20, 20, 1).astype('float32'))/1000#The scale of eV should be enough #train_images = train_images * (train_images>energy_cut) Energy = (Energy.reshape(sizes[0]).astype('float32'))/1000 print("The shape of tranning data is",train_images.shape) train_dataset = ( tf.data.Dataset.from_tensor_slices({ 'images' :train_images, 'energy' :Energy }) .shuffle(train_images.shape[0], reshuffle_each_iteration=True) .batch(batch_size) #.prefetch(tf.data.AUTOTUNE) ) """## Read tfrecord""" def parse_tfr_element(element): data = { 'images':tf.io.FixedLenFeature([], tf.string), 'energy':tf.io.FixedLenFeature([], tf.float32), } content = tf.io.parse_single_example(element, data) raw_image = content['images'] energy = content['energy'] feature = tf.io.parse_tensor(raw_image, out_type=tf.float32) feature = tf.reshape(feature, shape=[20,20,1])/1000 energy = tf.reshape(energy, shape=[1])/1000 return {'images': feature, 'energy': energy } def get_dataset_small(filename): #create the dataset dataset = tf.data.TFRecordDataset(filename) #pass every single feature through our mapping function dataset = dataset.map(parse_tfr_element,num_parallel_calls=tf.data.AUTOTUNE) return dataset if tfrecord_dataset: tfrecord_file = list(particle_label.values())[0] train_dataset = get_dataset_small(tfrecord_file) test_dataset = get_dataset_small(tfrecord_file) sizes = [] #sizes.append(test_dataset.reduce(np.int64(0), lambda x, _: x + 1).numpy()) sizes.append(4000000) print(sizes) for sample in test_dataset.take(1): print(sample['images'].shape) for i in list(sample['images'].shape): sizes.append(i) print(sample['energy'].shape) print(sizes) train_dataset = train_dataset.shuffle(sizes[0], reshuffle_each_iteration=True) train_dataset = train_dataset.batch(batch_size) train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE) #train_dataset = train_dataset.cache() """# Functions ## Plotting functions """ from matplotlib.colors import LogNorm def plot_2D_image(image, epoch,log=True): fig, ax = plt.subplots(figsize=(5,5)) if np.max(image)>0: energy = ax.imshow( image,norm = LogNorm( vmin=1e-3, vmax=6e3 ) ) else : energy = ax.imshow( image ) colorbar = fig.colorbar(energy) colorbar.set_label(r'Energy (MeV)') colorbar.ax.tick_params() xticks = range(20) yticks = range(20) #Plot real image if epoch == -2: title = 'Real' #Plot fake image elif epoch == -1: title = 'Counterfeit' else: title = '2D plot for epoch{:03d}'.format(epoch) ax.set_title(title) if epoch > -1: plt.savefig('2D_image_at_epoch_{:03d}.png'.format(epoch)) plt.xticks(xticks) plt.yticks(yticks) plt.show() def plot_3D_image(image, epoch): x_gird = np.arange(0, 20, 1) y_gird = np.arange(0, 20, 1) X_gird, Y_gird = np.meshgrid(x_gird, y_gird) fig = plt.figure(figsize=(13, 7)) ax = plt.axes(projection='3d') surf = ax.plot_surface(X_gird, Y_gird, image, rstride=1, cstride=1, cmap='coolwarm', edgecolor='none') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel(r'Energy (MeV)') if epoch == -2: title = 'Real' elif epoch == -1: title = 'Counterfeit' else: title = 'Surface plot for epoch{:04d}'.format(epoch) ax.set_title(title) fig.colorbar(surf, shrink=0.5, aspect=5) # add color bar indicating the energy ax.view_init(60, 35) if epoch > -1: plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) def plot_loss(loss, x_title='Epoch',fig_width=10,fig_height=10, title=None): fig=plt.figure(num=1,figsize=(fig_width,fig_height)) epochs = np.arange(1, len(loss)+1) #"d_loss","d_cost", "gp", "g_loss", "g_cost","E_loss" d_loss = loss.d_loss.values d_cost = loss.d_cost.values gp = loss.gp.values g_loss = loss.g_loss.values g_cost = loss.g_cost.values E_loss = loss.E_loss.values ax1=fig.add_subplot(221) ax1.set_xlabel(x_title) ax1.set_ylabel('loss') ax1.plot(epochs, d_loss, color='blue', marker='o', label='Discriminator loss') ax1.plot(epochs, g_loss, color='red', marker='*',label='Generator loss') ax1.grid(axis='y') ax1.legend() ax2 = fig.add_subplot(222) ax2.set_xlabel(x_title) ax2.set_ylabel('loss') ax2.plot(epochs, d_cost, color='blue', marker='o', label='Discriminator cost') ax2.plot(epochs, g_cost, color='red', marker='*',label='Generator cost') ax2.grid(axis='y') ax2.legend() ax3 = fig.add_subplot(223) ax3.set_xlabel(x_title) ax3.set_ylabel('loss') ax3.plot(epochs, E_loss, color='green', marker='D',label='Energy loss') ax3.legend() ax3.grid(axis='y') ax3.set_yscale('log') ax4 = fig.add_subplot(224) ax4.set_xlabel(x_title) ax4.set_ylabel('loss') ax4.plot(epochs, gp, color='green', marker='D',label='Gradient Panelty') ax4.legend() ax4.grid(axis='y') if title: plt.title() plt.show() plt.savefig() """## OPS functions""" def single_layer_energy(x): shape = x.shape return K.reshape(K.sum(x, axis=list(range(1, len(shape)))), (-1, 1)) def single_layer_energy_output_shape(input_shape): shape = list(input_shape) assert len(shape) == 4 return (shape[0], 1) def calculate_energy(x): return Lambda(single_layer_energy, single_layer_energy_output_shape, name='Output_energy')(x) if final_layer_activation == "relu": energy_cut = 0 def single_layer_sparsity(x): shape = x.shape x = K.cast(x>(energy_cut/1000), #Convert MeV to GeV K.floatx()) return K.reshape(K.sum(x, axis=list(range(1, len(shape)))), (-1, 1))/400 def calculate_sparsity(x): return Lambda(single_layer_sparsity, single_layer_energy_output_shape, name='sparsity')(x) def sparsity_level(x): _shape = x.shape shape = K.shape(x) total = K.cast(K.prod(shape[1:]), K.floatx()) return K.reshape(K.sum( K.cast(x > (energy_cut), K.floatx()), axis=list(range(1, len(_shape))) ), (-1, 1)) / total def sparsity_output_shape(input_shape): shape = list(input_shape) return (shape[0], 1) def minibatch_discriminator(x): """ Computes minibatch discrimination features from input tensor x""" diffs = K.expand_dims(x, 3) - \ K.expand_dims(K.permute_dimensions(x, [1, 2, 0]), 0) l1_norm = K.sum(K.abs(diffs), axis=2) return K.sum(K.exp(-l1_norm), axis=2) def minibatch_output_shape(input_shape): """ Computes output shape for a minibatch discrimination layer""" shape = list(input_shape) assert len(shape) == 3 # only valid for 3D tensors return tuple(shape[:2]) def scale(x, v): return Lambda(lambda _: _ / v)(x) def energy_loss_function(input_energy, output_energy): energy_redundent = output_energy - input_energy energy_gap = input_energy - output_energy energy_difference = lambda_E * energy_redundent * K.cast(energy_redundent>0, K.floatx()) + E_factor * energy_gap * K.cast(energy_gap>0, K.floatx()) loss = K.mean(energy_difference, axis=-1) assert len(loss) == 1 return loss def energy_gap_function(input_energy, output_energy): energy_gap = input_energy - output_energy energy_difference = energy_gap * K.cast(energy_gap>0, K.floatx()) return K.mean(energy_difference, axis=-1) def wasserstein_loss(y_true, y_pred): return K.mean(y_true * y_pred) def cut_image(image, energy_cut): return np.where(image > energy_cut, image, 0) def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = Dense(units, activation=tf.nn.gelu)(x) x = Dropout(dropout_rate)(x) return x """# Generator and discriminator ## Discriminator """ def build_discriminator(): #Input calorimeter = Input(shape=[20,20,1],name='images') input_energy = Input(shape=(1,),name='energy') output_energy = calculate_energy(calorimeter) discriminator_inputs = [calorimeter, input_energy] #CNN x = Conv2D(32, (2, 2), padding='same')(calorimeter) x = LeakyReLU()(x) x = ZeroPadding2D((1, 1))(x) #x = LocallyConnected2D(16, (3, 3), padding='valid', strides=(1, 2))(x) x = LocallyConnected2D(16, (3, 3), padding='valid', strides=(2, 2))(x) x = LeakyReLU()(x) x = BatchNormalization()(x) x = ZeroPadding2D((1, 1))(x) x = LocallyConnected2D(8, (2, 2), padding='valid')(x) x = LeakyReLU()(x) x = BatchNormalization()(x) x = Dropout(0.1)(x) x = ZeroPadding2D((1, 1))(x) #x = LocallyConnected2D(8, (2, 2), padding='valid', strides=(1, 2))(x) x = LocallyConnected2D(8, (2, 2), padding='valid', strides=(2, 2))(x) x = LeakyReLU()(x) x = BatchNormalization()(x) x = LayerNormalization()(x) #x = MinibatchStdev(name='feature_stdev')(x) #Maybe it will be helpful to use LN after CNN, so the feature learned by CNN is not sabotoged. x = Dropout(0.1)(x) #x = MinibatchStdev()(x) x = Flatten()(x) #minibatch_featurizer = Lambda(minibatch_discriminator, output_shape=minibatch_output_shape) nb_features = 24 vspace_dim = 24 #K_features = Dense3D(nb_features, vspace_dim, name='K_features')(x) #mbd_features = Activation('tanh', name='mbd_features')(minibatch_featurizer(K_features)) #features = [x] #features.append(mbd_features) #sparsity_detector = Lambda(sparsity_level, sparsity_output_shape, name='pseudo_sparsity') #empirical_sparsity = sparsity_detector(calorimeter) #features.append(empirical_sparsity) #K_sparsity = Dense3D(nb_features, vspace_dim, name='K_sparsity')(empirical_sparsity) #mbd_sparsity = Activation('tanh', name='mbd_sparsity')(minibatch_featurizer(K_sparsity)) #sparsity = calculate_sparsity(calorimeter) #K_energy = Dense3D(nb_features, vspace_dim, name='K_energy')(output_energy) #energy_too_big = Lambda(lambda x: 20 * K.cast(x > 8, K.floatx()))(output_energy) #mbd_energy = Activation('tanh', name='mbd_energy')(minibatch_featurizer(K_energy)) energy_well = Lambda(lambda x: K.abs(x[0]-x[1]))([output_energy, input_energy]) #well_too_big = Lambda(lambda x: 10 * K.cast(x > 3, K.floatx()))(energy_well) #redundent_energy = Lambda(lambda x: x[0]-x[1])([output_energy, input_energy]) #positive_redundent = Lambda(lambda x: K.cast(x > 0, K.floatx()))(redundent_energy) p = concatenate([ #concatenate(features), x, energy_well, #sparsity, output_energy, #mbd_features, #mbd_energy, #mbd_sparsity, #well_too_big, #redundent_energy, #positive_redundent, #empirical_sparsity, #trans_outputs, ]) p = LayerNormalization()(p) #p = Dense(30)(p) ''' ################################################################################################## #features = [x] sparsity_detector = Lambda(sparsity_level, sparsity_output_shape, name='pseudo_sparsity') empirical_sparsity = sparsity_detector(calorimeter) empirical_sparsity = MinibatchVariableStdev(name='sparsity_stdev')(empirical_sparsity) output_energy_stdev = MinibatchVariableStdev(name='energy_stdev')(output_energy) p = concatenate([ x, empirical_sparsity, output_energy_stdev, ]) ################################################################################################## ''' #p = Dense(20)(p) fake = Dense(1, name='Real_or_fake')(p) #fake = Dense(1, name='Real_or_fake')(x) discriminator_outputs = [fake, output_energy, ] discriminator = Model(discriminator_inputs, discriminator_outputs, name='Discriminator_model') return discriminator print("Building discriminator") d_model = build_discriminator() d_model.summary() keras.utils.plot_model(d_model, show_shapes=True) """## Generator""" def upsample_block( x, filters, activation, kernel_size=(3, 3), strides=(1, 1), up_size=(2, 2), padding="same", use_bn=False, use_bias=True, use_dropout=False, drop_value=0.3, ): x = UpSampling2D(up_size)(x) x = Conv2D( filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias )(x) if use_bn: x = BatchNormalization()(x) if activation: x = activation(x) if use_dropout: x = Dropout(drop_value)(x) return x def build_generator(nb_rows = 20, nb_cols = 20): #Input latent = Input(shape=(latent_size, ), name='z') input_energy = Input(shape=(1, ), dtype='float32', name='energy') generator_inputs = [latent, input_energy] h = Lambda(lambda x: x[0] * x[1])([latent, input_energy]) h = latent #Network if g_network_type == "UpSampling": x = Dense(3 * 3 * 256, use_bias=False)(h) x = BatchNormalization()(x) x = LeakyReLU(0.2)(x) x = Reshape((3, 3, 256))(x) x = upsample_block( x, 128, LeakyReLU(0.2), strides=(1, 1), use_bias=False, use_bn=True, padding="same", use_dropout=False, ) x = upsample_block( x, 64, LeakyReLU(0.2), strides=(1, 1), use_bias=False, use_bn=True, padding="same", use_dropout=False, ) #x = upsample_block(x, 1, Activation("sigmoid"), strides=(1, 1), use_bias=False, use_bn=True) #x = Lambda(lambda x: 8*x)(x) x = upsample_block( x, 1, Activation(final_layer_activation), strides=(1, 1), use_bias=False, use_bn=True ) image = Cropping2D((2, 2))(x) else : x = Dense((nb_rows + 2) * (nb_cols + 2) * 36)(h) x = Reshape((nb_rows + 2, nb_cols + 2, 36))(x) x = Conv2D(16, (2, 2), padding='same', kernel_initializer='he_uniform')(x) x = LeakyReLU(alpha=0.03)(x) x = BatchNormalization()(x) x = LocallyConnected2D(6, (2, 2), kernel_initializer='he_uniform')(x) x = LeakyReLU(alpha=0.03)(x) x = LocallyConnected2D(1, (2, 2), #use_bias=False, kernel_initializer='glorot_normal' #kernel_initializer=initializers.RandomUniform(minval=-0.1, maxval=-0.01, seed=None) #kernel_initializer=initializers.RandomNormal(mean=-10.0, stddev=0.05, seed=None) )(x) #image = Activation("softplus")(x) image = Activation(final_layer_activation)(x) #x = Activation("sigmoid")(x) #image = Lambda(lambda x: 8*x)(x) #Map (0,1) to (0,8) GeV #image = Lambda(lambda x: 8*x)(x) generator = Model(generator_inputs, image, name='Generator_model') return generator print("Building generator") g_model = build_generator() g_model.summary() keras.utils.plot_model(g_model, show_shapes=True) """# WGAN model""" class WGAN(keras.Model): def __init__( self, discriminator, generator, latent_dim, discriminator_extra_steps=1, generator_extra_steps=2, gp_weight=10.0, E_loss_weight = 10.0, #LOGAN z_alpha = z_alpha, beta = z_beta ): super(WGAN, self).__init__() self.discriminator = discriminator self.generator = generator self.latent_dim = latent_size self.d_steps = discriminator_extra_steps self.g_steps = generator_extra_steps self.gp_weight = gp_weight self.E_loss_weight = E_loss_weight #LOGAN self.z_alpha = z_alpha self.beta = beta def compile(self, d_optimizer, g_optimizer, d_loss_fn, g_loss_fn, E_loss_fn): super(WGAN, self).compile() self.d_optimizer = d_optimizer self.g_optimizer = g_optimizer self.d_loss_fn = d_loss_fn self.g_loss_fn = g_loss_fn self.E_loss_fn = E_loss_fn #@<EMAIL> def gradient_penalty(self, batch_size, real_images, fake_images, input_energies): """ Calculates the gradient penalty. This loss is calculated on an interpolated image and added to the discriminator loss. """ # Get the interpolated image alpha = tf.random.normal([batch_size, 1, 1, 1], 0.0, 1.0) diff = fake_images - real_images interpolated = real_images + alpha * diff with tf.GradientTape() as gp_tape: gp_tape.watch(interpolated) # 1. Get the discriminator output for this interpolated image. d_inputs = [interpolated, input_energies] pred, _ = self.discriminator(d_inputs, training=True) # 2. Calculate the gradients w.r.t to this interpolated image. grads = gp_tape.gradient(pred, [interpolated])[0] # 3. Calculate the norm of the gradients. norm = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=[1, 2, 3])) gp = tf.reduce_mean((norm - 1.0) ** 2) return gp def GD(self, z_gradient): delta_z = self.z_alpha * z_gradient return delta_z def NGD(self, z_gradient): norm_sq = tf.reduce_sum(tf.square(z_gradient)) # delta_z = alpha / (beta + ||g||^2) * g delta_z = (self.z_alpha / (self.beta + norm_sq)) * z_gradient return delta_z #<EMAIL> def train_step(self, train_data): real_images = train_data['images'] real_input_energies = train_data['energy'] #if isinstance(real_images, tuple): # real_images = real_images[0] # Get the batch size batch_size = tf.shape(real_images)[0] #random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim)) random_latent_vectors = tf.random.uniform(shape=(batch_size, self.latent_dim), minval=-1, maxval=1) #LOGAN if use_latent_optimization: ################################################ with tf.GradientTape() as tape: tape.watch(random_latent_vectors) # Generate fake images using the generator g_inputs = { 'z':random_latent_vectors, 'energy':real_input_energies} generated_images = self.generator(g_inputs, training=True) # Get the discriminator logits for fake images d_inputs = { 'images':generated_images, 'energy':real_input_energies } gen_img_logits, output_energies = self.discriminator(d_inputs, training=True) z_gradient = tape.gradient(gen_img_logits, random_latent_vectors) #GD #random_latent_vectors -= self.GD(z_gradient) #NGD random_latent_vectors = tf.clip_by_value(random_latent_vectors+self.NGD(z_gradient), clip_value_min=-1, clip_value_max=1) #random_latent_vectors = random_latent_vectors+self.NGD(z_gradient) ################################################ for i in range(self.g_steps): # Train the generator # Get the latent vector with tf.GradientTape() as tape: g_inputs = { 'z':random_latent_vectors, 'energy':real_input_energies} generated_images = self.generator(g_inputs, training=True) # Get the discriminator logits for fake images d_inputs = { 'images':generated_images, 'energy':real_input_energies } gen_img_logits, output_energies = self.discriminator(d_inputs, training=True) # Calculate the generator loss g_cost = self.g_loss_fn(gen_img_logits) E_loss = self.E_loss_fn(real_input_energies, output_energies) g_loss = g_cost + E_loss * self.E_loss_weight # Get the gradients w.r.t the generator loss gen_gradient = tape.gradient(g_loss, self.generator.trainable_variables) # Update the weights of the generator using the generator optimizer self.g_optimizer.apply_gradients( zip(gen_gradient, self.generator.trainable_variables) ) for i in range(self.d_steps): g_inputs = { 'z':random_latent_vectors, 'energy':real_input_energies } with tf.GradientTape() as tape: # Get the logits for the real images #d_inputs = [real_images, real_input_energies] real_logits, _ = self.discriminator(train_data, training=True) # Generate fake images from the latent vector fake_images = self.generator(g_inputs, training=True) # Get the logits for the fake images d_inputs = { 'images': fake_images, 'energy': real_input_energies} fake_logits, _ = self.discriminator(d_inputs, training=True) # Calculate the discriminator loss using the fake and real image logits d_cost = self.d_loss_fn(real_img=real_logits, fake_img=fake_logits) # Calculate the gradient penalty gp = self.gradient_penalty(batch_size, real_images, fake_images, real_input_energies) # Add the gradient penalty to the original discriminator loss d_loss = d_cost + gp * self.gp_weight # Get the gradients w.r.t the discriminator loss d_gradient = tape.gradient(d_loss, self.discriminator.trainable_variables) # Update the weights of the discriminator using the discriminator optimizer self.d_optimizer.apply_gradients( zip(d_gradient, self.discriminator.trainable_variables) ) return {"d_loss": d_loss,"d_cost": d_cost, "gp": gp,"g_loss": g_loss, "g_cost": g_cost,"E_loss": E_loss} class GANMonitor(keras.callbacks.Callback): def __init__(self): self.Event = np.random.randint(sizes[0]) #self.seed_noise = np.random.normal(0, 1, (1, latent_size)) self.seed_noise = np.random.uniform(-1, 1, (1, latent_size)) #self.seed_energy = np.array(Energy[self.Event]).reshape(1,1) self.seed_energy = 8 self.seed = [self.seed_noise, self.seed_energy] self.losses = pd.DataFrame(columns = ["d_loss","d_cost", "gp", "g_loss", "g_cost","E_loss"]) self.losses_iter = pd.DataFrame(columns = ["d_loss","d_cost", "gp", "g_loss", "g_cost","E_loss"]) self.batch_num = 0 def on_train_batch_end(self, batch, logs=None): self.batch_num += 1 ''' if self.batch_num%100 == 1: generated_image = self.model.generator(self.seed) test_generated_image = 1000 * generated_image[0,:,:,0] plot_loss(self.losses) test_generated_image = cut_image(test_generated_image, energy_cut) plot_3D_image(test_generated_image, -1) plot_2D_image(test_generated_image, -1) plot_loss(self.losses_iter,x_title='Train step', fig_width=30, fig_height=10) print("The output energy is ",1000 * single_layer_energy(generated_image)) print(np.max(test_generated_image)) print("Logs of batch {}: ".format(batch),logs) # Get the current learning rate from model's optimizer. #lr = float(K.get_value(wgan.d_optimizer.learning_rate)) #print("The learning rate of discriminator is {}".format(lr)) ''' self.losses_iter.loc[len(self.losses_iter)] = logs def on_epoch_end(self, epoch, logs=None): self.losses.loc[len(self.losses)] = logs self.model.generator.save_weights('{0}{1:03d}.hdf5'.format(g_pfx, len(self.losses)), overwrite=True) self.model.discriminator.save_weights('{0}{1:03d}.hdf5'.format(d_pfx, len(self.losses)), overwrite=True) ''' generated_image = self.model.generator(self.seed) test_generated_image = 1000 * generated_image[0,:,:,0] ''' if np.min(test_generated_image) != 0 : min_non_zero_cell = np.min(test_generated_image[np.nonzero(test_generated_image)]) else : min_non_zero_cell = 0 print("The min is {}".format(min_non_zero_cell)) total_epoch = len(self.losses) ''' plot_loss(self.losses) #test_generated_image = np.where(test_generated_image > energy_cut, test_generated_image, 0) test_generated_image = cut_image(test_generated_image, energy_cut) plot_3D_image(test_generated_image, total_epoch) plot_2D_image(test_generated_image, total_epoch) print("The output energy is ",1000 * single_layer_energy(generated_image)) print(np.max(test_generated_image)) print("Logs of epoch{}: ".format(epoch),logs)p ''' self.batch_num = 0 #Reset the loss for iter per batch plot_loss(self.losses_iter, x_title='Train step', fig_width=30, fig_height=10) self.losses_iter = pd.DataFrame(columns = ["d_loss","d_cost", "gp", "g_loss", "g_cost","E_loss"]) #generator_optimizer = Adam(2e-4, beta_1=0.5, beta_2=0.9) generator_optimizer = Nadam() d_lr_schedule = keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=disc_lr, decay_steps=decay_steps, decay_rate=decay_rate) d_lr_schedule = keras.optimizers.schedules.PolynomialDecay(initial_learning_rate=disc_lr, decay_steps=decay_steps, end_learning_rate=end_learning_rate, power=decay_power,cycle=True, name=None) discriminator_optimizer = Adam(learning_rate=d_lr_schedule, beta_1=adam_beta_1, beta_2=adam_beta_2 ) #discriminator_optimizer = Nadam(learning_rate=disc_lr) # Define the loss functions for the discriminator, # which should be (fake_loss - real_loss). # We will add the gradient penalty later to this loss function. def discriminator_loss(real_img, fake_img): real_loss = tf.reduce_mean(real_img) fake_loss = tf.reduce_mean(fake_img) return fake_loss - real_loss # Define the loss functions for the generator. def generator_loss(fake_img): return -tf.reduce_mean(fake_img) def energy_loss_function(input_energy, output_energy): energy_surplus = output_energy - input_energy energy_gap = input_energy - output_energy loss = tf.reduce_mean(tf.where(energy_surplus>0, energy_surplus, 0)) #+ E_factor * tf.reduce_mean(tf.where(energy_gap>0, energy_gap, 0)) return loss def energy_loss(input_energy, output_energy): return tf.reduce_mean(output_energy - input_energy) # Instantiate the customer `GANMonitor` Keras callback. cbk = GANMonitor() # Instantiate the WGAN model. wgan = WGAN( discriminator=d_model, generator=g_model, latent_dim=latent_size, discriminator_extra_steps=discriminator_extra_steps, generator_extra_steps=generator_extra_step, E_loss_weight = 10.0 ) # Compile the WGAN model. wgan.compile( d_optimizer=discriminator_optimizer, g_optimizer=generator_optimizer, g_loss_fn=generator_loss, d_loss_fn=discriminator_loss, E_loss_fn=energy_loss_function ) """# Train""" if not Model_to_load: epochs = 5 wgan.fit(train_dataset.prefetch(tf.data.AUTOTUNE), #batch_size=BATCH_SIZE, #Somehow this give a warning epochs=epochs, callbacks=[cbk, #tensorboard_callback, #lr_callback ] ) print(wgan.d_optimizer.learning_rate) print(wgan.g_optimizer.learning_rate) """# Load weights""" if Model_to_load: g_model.load_weights(Model_to_load) d_model.load_weights(d_model_to_load) path = "/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/Models/" save_time = '2021-07-22_04:17:29' #d_model_to_load = path+'2021-07-14_21:47:32LOGANdiscriminator_PN_Target_4e5.hdf5' #Model_to_load = path+'2021-07-14_21:47:32LOGANgenerator_PN_Target_4e5.hdf5' g_model.load_weights('params_generator_epoch_015.hdf5') d_model.load_weights('params_discriminator_epoch_015.hdf5') #g_model.load_weights(path+'2021-07-22_04:17:29LOGANgenerator_PN_ECAL_4e5.hdf5') #d_model.load_weights(path+'2021-07-22_04:17:29LOGANdiscriminator_PN_ECAL_4e5.hdf5') """# Test model""" #@title Cut on variables { run: "auto" } use_LO = False #@param ["True", "False"] {type:"raw"} cut_on_variables = False #@param ["True", "False"] {type:"raw"} test_size_1 = 1000000 #@param {type:"integer"} """## Test functions""" def heat_map(Input_energy, Output_energy, xbin=70, ybin=70): fig = plt.figure(num=1, figsize=(10,10)) ax = fig.add_subplot(111) ax.set_xlim(0,9000) ax.set_ylim(0,9000) ax.hist2d(Input_energy, Output_energy, bins=(xbin, ybin), cmap=plt.cm.jet, range=((0,9000),(0,9000))) ax.set_xlabel('Input energy (MeV)') ax.set_ylabel('Layer energy sum (MeV)') plt.show() def plot_hist(image, bin=50): plt.hist(image, bins=bin, alpha=0.75) plt.xlabel('Energy (MeV)') plt.show() def plot_compare_hist(real_images, fake_images, title,y_log_scale = True, x_log_scale=False): colors = matplotlib.cm.gnuplot2(np.linspace(0.2, 0.8, 3)) plt.figure(figsize=(10, 10)) plt.hist(real_images, bins=100,histtype='stepfilled', density=True,linewidth=2, alpha=0.2, color=colors[0], label=r'GEANT4') plt.hist(fake_images, bins=100, histtype='step', density=True,linewidth=3, alpha=1, color=colors[0], label=r'GAN') if y_log_scale: plt.yscale('log') if x_log_scale: plt.xscale('log') plt.legend(loc='upper right', fontsize=20, ncol=2) plt.xlabel(title) plt.show() @tf.function def optimize_latent(random_latent_vectors, generator, discriminator): with tf.GradientTape() as tape: tape.watch(random_latent_vectors) # Generate fake images using the generator g_inputs = { 'z':random_latent_vectors, 'energy':real_input_energies} generated_images = generator(g_inputs, training=False) # Get the discriminator logits for fake images d_inputs = { 'images':generated_images, 'energy':real_input_energies } gen_img_logits, output_energies = discriminator(d_inputs, training=False) z_gradient = tape.gradient(gen_img_logits, random_latent_vectors) delta_z = wgan.NGD(z_gradient) random_latent_vectors = random_latent_vectors + delta_z #random_latent_vectors = tf.clip_by_value(random_latent_vectors+delta_z, clip_value_min=-1, clip_value_max=1) return random_latent_vectors def generate_test_dataset(test_size = 500000, optimize = True): #test_noise = np.random.normal(0, 1, (test_size, latent_size)) #test_noise = tf.random.normal(shape=(test_size, latent_size)) #test_noise = optimize_latent(test_noise, g_model, d_model) if test_size > 1000000: test_noise = tf.concat([ tf.random.uniform(shape=(1000000, latent_size), minval=-1, maxval=1) for i in range(int(test_size/1000000)) ], axis=0) else: test_noise = tf.random.uniform(shape=(test_size, latent_size), minval=-1, maxval=1) if optimize: test_batch_size = batch_size multiple = int(test_size/test_batch_size) test_noise = tf.reshape(test_noise, [multiple, test_batch_size, -1]) #noise_dataset = tf.data.Dataset.from_tensor_slices(test_noise).batch(batch_size) ''' test_noise = tf.concat([optimize_latent( tf.random.uniform(shape=(test_batch_size, latent_size), minval=-1, maxval=1), g_model, d_model ) for i in tqdm(range(multiple))], axis=0) ''' test_noise = tf.concat([optimize_latent( test_noise[i], g_model, d_model ) for i in tqdm(range(multiple))], axis=0) #test_noise = tf.map_fn(fn=lambda z: optimize_latent(z, g_model, d_model), elems=test_noise) #test_noise = tf.reshape(test_noise, [multiple*test_batch_size, -1]) #test_sampled_energies = np.random.choice(Energy, test_size) test_sampled_energies = np.ones(test_size) * 8 plot_hist(np.array(test_noise).flatten()) test_dataset = ( tf.data.Dataset.from_tensor_slices({ 'z' :test_noise, 'energy' :test_sampled_energies }) .batch(batch_size) ) return test_dataset, test_sampled_energies """## Test on 8GeV ### Generate images """ #Use our model to generate image and convert to the scale of MeV #test_size_1 = 498197 #test_size_1 = 4000000 test_dataset_1, test_sampled_energies_1 = generate_test_dataset(test_size = test_size_1, optimize = use_LO #optimize = False ) test_generated_image_1 = 1000 * g_model.predict(test_dataset_1, verbose=1)#GeV -> MeV #aux_model = "/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/Models/2021-05-30_00:59:02WGANgenerator_['Inclusive_cut_7GeV'].hdf5" aux_model = None if aux_model: g_model.load_weights(aux_model) #test_size_2 = 5000 test_size_2 = 1803 test_dataset_2, test_sampled_energies_2 = generate_test_dataset(test_size = test_size_2) test_generated_image_2 = 1000 * g_model.predict(test_dataset_2, verbose=1)#GeV -> MeV test_generated_image = np.concatenate((test_generated_image_1, test_generated_image_2), axis=0) test_sampled_energies = np.concatenate((test_sampled_energies_1, test_sampled_energies_2), axis=0) test_size = test_size_1 + test_size_2 else : test_generated_image = test_generated_image_1 test_sampled_energies = test_sampled_energies_1 test_size = test_size_1 plot_2D_image(cut_image(test_generated_image[0,:,:,0], energy_cut),-1) print(test_sampled_energies[0]) #Calculated the energies test_generated_image = cut_image(test_generated_image, energy_cut) test_generated_image_1.dtype """### Check random image""" print(test_generated_image.shape) for sample in train_dataset.take(1): print(sample['images'].shape) print(sample['energy'].shape) event_num = np.random.randint(len(sample['images'])) real_image = 1000 * sample['images'][event_num,:,:,0] real_image = cut_image(real_image, energy_cut ) plot_2D_image(real_image,-2) print(sizes) event_num = np.random.randint(len(test_generated_image)) fake_image = test_generated_image[event_num,:,:,0] if hdf5_dataset: event_num = np.random.randint(len(ECAL_centre)) real_image = ECAL_centre[event_num] plot_2D_image(real_image,-2) fake_image = cut_image(fake_image, 1e-3 #np.min(np.where(real_image>0,real_image,100)) ) plot_2D_image(fake_image, -1) """### Load variables""" if hdf5_dataset: hdf5_filenames = list(particle_label.values())[0][:-5]+'_variables.hdf5' if tfrecord_dataset: hdf5_filenames = list(particle_label.values())[0][:-9]+'_variables.hdf5' print(hdf5_filenames) variable_data = dd.io.load(hdf5_filenames) x = 25*np.arange(-9.5,10,1) y = x x_coor,y_coor = np.meshgrid(x,y,indexing = 'xy') x_coor = x_coor.reshape(-1) y_coor = y_coor.reshape(-1) def get_total_E(image): return np.sum(image) def get_E_max(image): return np.max(image) def get_frac_n(image, n): top_n = np.sort(image.flatten())[::-1][:n] return np.sum(top_n)/np.sum(image) def get_x_moment(image): return np.average(x_coor,weights=image.reshape(image.size)) def get_y_moment(image): return np.average(y_coor,weights=image.reshape(image.size)) def get_x_sq(image): return np.average(x_coor**2,weights=image.reshape(image.size)) def get_y_sq(image): return np.average(y_coor**2,weights=image.reshape(image.size)) def get_r(image): return np.average(np.sqrt(x_coor**2 + y_coor**2),weights=image.reshape(image.size)) def get_sparsity(image, cut_value): return np.average(np.where(image>cut_value, 1, 0)) functions_of_variables = { 'total energy': get_total_E, 'x_moment': get_x_moment, 'y_moment': get_y_moment, 'x_sq': get_x_sq, 'y_sq': get_y_sq, 'r': get_r, 'E_max': get_E_max, 'pseudo-sparsity': lambda image: get_sparsity(image, energy_cut), 'frac_50': lambda image: get_frac_n(image, 50), 'frac_100': lambda image: get_frac_n(image, 100), 'frac_200': lambda image: get_frac_n(image, 200) } def get_variables(func, images): return np.fromiter((func(x) for x in images), images.dtype) def variable_dict(images, **functions): variables = {} for key, func in functions.items(): variables[key] = get_variables(func, images) return variables generated_variables = variable_dict(test_generated_image, **functions_of_variables) print(generated_variables.keys()) print(variable_data.keys()) print(type(variable_data)) print(type(generated_variables)) print(test_generated_image.shape) selected_variables = ['total energy', 'x_moment', 'y_moment', 'x_sq', 'y_sq', 'r', 'E_max'] #selected_variables = generated_variables.keys() target = pd.DataFrame(data={key:variable_data[key] for key in selected_variables}) original = pd.DataFrame(data={key:generated_variables[key] for key in selected_variables}) if cut_on_variables: for col in target.columns: qualified = (original[col] <= target[col].max()) & (original[col] >= target[col].min()) original = original[qualified] test_generated_image = test_generated_image[qualified] print(target.columns) print(original.columns) print(original.shape) print(test_generated_image.shape) """### Install required package""" """### Function to plot""" columns = original.columns KS_data = pd.DataFrame(columns=columns) def draw_distributions(original, target, new_original_weights, y_log_scale= True, x_log_scale=False): KS_values = {} colors = matplotlib.cm.gnuplot2(np.linspace(0.2, 0.8, 3)) num_row = np.ceil(len(columns)/2) plt.figure(figsize=[20, 7*num_row]) for id, column in enumerate(columns, 1): xlim = np.percentile(np.hstack([target[column]]), [0.01, 99.99]) plt.subplot(num_row, 2, id) plt.hist(target[column], bins=100, histtype='stepfilled', density=True, linewidth=1, range=(np.min(target[column]), np.max(target[column])), alpha=0.2, color=colors[0], label=r'DSS') plt.hist(original[column], weights=new_original_weights, bins=100, histtype='step', density=True, linewidth=2, range=(np.min(target[column]), np.max(target[column])), alpha=1, color=colors[0], label=r'GAN') if y_log_scale: plt.yscale('log') if x_log_scale: plt.xscale('log') plt.legend(loc='upper right', fontsize=20, ncol=2) plt.title(column) print('KS over ', column, ' = ', ks_2samp_weighted(original[column], target[column], weights1=new_original_weights, weights2=np.ones(len(target), dtype=float))) KS_values[column] = ks_2samp_weighted(original[column], target[column], weights1=new_original_weights, weights2=np.ones(len(target), dtype=float)) return KS_values """### Original Distribution""" original_weights = np.ones(len(original)) KS_data.loc['original'] = draw_distributions(original, target, original_weights) _ = draw_distributions(original, target, original_weights, y_log_scale=False) print(np.sum([i for i in _.values()])) """# Reweighter ### Weights dataframa """ weights_data = pd.DataFrame() """### Gradient Boosted Reweighter""" reweighter = reweight.GBReweighter(n_estimators=50, learning_rate=0.1, max_depth=3, min_samples_leaf=1000, gb_args={'subsample': 0.4}) reweighter.fit(original, target) gb_weights_test = reweighter.predict_weights(original) gb_weights_test = reweighter.predict_weights(original) # validate reweighting rule on the test part comparing 1d projections KS_data.loc['Gradient Boosted Reweighter'] = draw_distributions(original, target, gb_weights_test) _ = draw_distributions(original, target, gb_weights_test, y_log_scale=False) weights_data['GB_weights'] = gb_weights_test #plot_2D_image(np.average(test_generated_image, weights=gb_weights_test,axis=0)[:,:,0],-1) #plot_2D_image(np.mean(ECAL_centre,axis=0),-2) """### Bins-based reweighting in n dimensions""" bins_reweighter = reweight.BinsReweighter(n_bins=100, n_neighs=0) bins_reweighter.fit(original[['total energy']], target[['total energy']]) bins_weights_test = bins_reweighter.predict_weights(original[['total energy']]) # validate reweighting rule on the test part comparing 1d projections KS_data.loc['Bins-based: total energy'] = draw_distributions(original, target, bins_weights_test) #plot_2D_image(np.average(test_generated_image, weights=bins_weights_test,axis=0)[:,:,0],-1) #plot_2D_image(np.mean(ECAL_centre,axis=0),-2) weights_data['energy_bin_weights'] = bins_weights_test bins_reweighter = reweight.BinsReweighter(n_bins=100, n_neighs=0) bins_reweighter.fit(original[['total energy','x_sq']], target[['total energy','x_sq']]) bins_weights_test = bins_reweighter.predict_weights(original[['total energy','x_sq']]) KS_data.loc['Bins-based: total energy and x_sq'] = draw_distributions(original, target, bins_weights_test) #plot_2D_image(np.average(test_generated_image, weights=bins_weights_test,axis=0)[:,:,0],-1) #plot_2D_image(np.mean(ECAL_centre,axis=0),-2) weights_data['energy&x_sq_bin_weights'] = bins_weights_test """### Folding reweighter""" reweighter_base = reweight.GBReweighter(n_estimators=70, learning_rate=0.1, max_depth=4, min_samples_leaf=1000, gb_args={'subsample': 0.4}) reweighter = reweight.FoldingReweighter(reweighter_base, n_folds=2) # it is not needed divide data into train/test parts; rewighter can be train on the whole samples reweighter.fit(original, target) # predict method provides unbiased weights prediction for the whole sample # folding reweighter contains two reweighters, each is trained on one half of samples # during predictions each reweighter predicts another half of samples not used in training folding_weights = reweighter.predict_weights(original) KS_data.loc['Folding reweighter'] = draw_distributions(original, target, folding_weights) #plot_2D_image(np.average(test_generated_image, weights=folding_weights,axis=0)[:,:,0],-1) #plot_2D_image(np.mean(ECAL_centre,axis=0),-2) _ = draw_distributions(original, target, folding_weights,y_log_scale=False) weights_data['folding_weights'] = folding_weights """### Results""" ax = KS_data.plot.barh(stacked=True) print(KS_data.apply(lambda x:x.sum(),axis =1)) """# Save model""" from datetime import datetime import pytz tz = pytz.timezone('Asia/Shanghai') #GMT +8 t = datetime.fromtimestamp(int(time.time()), pytz.timezone('Asia/Shanghai')).strftime('%Y-%m-%d_%H:%M:%S') print(t) #save_type = le.inverse_transform(range(nb_classes)) save_type = list(particle_label.keys())[0] print("Type :",save_type) g_model.save_weights('/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/Models/{}LOGANgenerator_{}.hdf5'.format(t,save_type, overwrite=True)) d_model.save_weights('/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/Models/{}LOGANdiscriminator_{}.hdf5'.format(t,save_type, overwrite=True)) saved_model_path = '/content/drive/Shareddrives/desmond.z.he1998.HK(CRN.NGO)/saved_model' #tf.saved_model.save(g_model, saved_model_path) #tf.saved_model.save(d_model, saved_model_path) print(tf.__version__) print(np.__version__) print(pd.__version__) """# Correlation""" corrMatrix = original.corr() mask_matrix = np.triu(corrMatrix) sn.heatmap(corrMatrix, annot=True, cmap="YlGnBu", mask=mask_matrix) plt.show() corrMatrix = target.corr() sn.heatmap(corrMatrix, annot=True, cmap="YlGnBu", mask=mask_matrix) plt.show() sn.pairplot(original,kind="hist") sn.pairplot(target,kind="hist") original['type'] = 'GAN' target['type'] = 'DSS' combined_df =
pd.concat([original,target])
pandas.concat
import streamlit as st import pandas as pd import subprocess import os import base64 import pickle # Molecular descriptor calculator def desc_calc(): # Performs the descriptor calculation bashCommand = "java -Xms2G -Xmx2G -Djava.awt.headless=true -jar ./PaDEL-Descriptor/PaDEL-Descriptor.jar -removesalt -standardizenitro -fingerprints -descriptortypes ./PaDEL-Descriptor/%s -dir ./ -file descriptors_output.csv" % selected_fp process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() # Read in calculated descriptors and display the dataframe st.subheader('Calculated molecular descriptors') desc = pd.read_csv('descriptors_output.csv') st.write(desc) st.markdown(filedownload(desc), unsafe_allow_html=True) # Write the data dimension (number of molecules and descriptors) nmol = desc.shape[0] ndesc = desc.shape[1] st.info('Selected fingerprint: ' + user_fp) st.info('Number of molecules: ' + str(nmol)) st.info('Number of descriptors: ' + str(ndesc-1)) os.remove('molecule.smi') # File download def filedownload(df): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions href = f'<a href="data:file/csv;base64,{b64}" download="descriptor_{user_fp}.csv">Download CSV File</a>' return href # Page title st.markdown(""" # Molecular Descriptor Calculator This app allows you to calculate molecular descriptors that can be used for computational drug discovery. **Credits** - Descriptor calculated using [PaDEL-Descriptor](http://www.yapcwsoft.com/dd/padeldescriptor/) software. - Yap CW. [PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints](https://doi.org/10.1002/jcc.21707). ***J Comput Chem*** 32 (2011) 1466-1474. --- """) # Sidebar with st.sidebar.header('1. Upload your CSV data'): uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"]) with st.sidebar.header('2. Enter column names for 1) Molecule ID and 2) SMILES'): name_mol = st.sidebar.text_input('Enter column name for Molecule ID', 'molecule_chembl_id') name_smiles = st.sidebar.text_input('Enter column name for SMILES', 'canonical_smiles') with st.sidebar.header('3. Set parameters'): # Select fingerprint fp_dict = {'AtomPairs2D':'AtomPairs2DFingerprinter.xml', 'AtomPairs2DCount':'AtomPairs2DFingerprintCount.xml', 'CDK':'Fingerprinter.xml', 'CDKextended':'ExtendedFingerprinter.xml', 'CDKgraphonly':'GraphOnlyFingerprinter.xml', 'EState':'EStateFingerprinter.xml', 'KlekotaRoth':'KlekotaRothFingerprinter.xml', 'KlekotaRothCount':'KlekotaRothFingerprintCount.xml', 'MACCS':'MACCSFingerprinter.xml', 'PubChem':'PubchemFingerprinter.xml', 'Substructure':'SubstructureFingerprinter.xml', 'SubstructureCount':'SubstructureFingerprintCount.xml'} user_fp = st.sidebar.selectbox('Choose fingerprint to calculate', list(fp_dict.keys()) ) selected_fp = fp_dict[user_fp] # Set number of molecules to compute df0 = pd.read_csv('acetylcholinesterase_04_bioactivity_data_3class_pIC50.csv') all_mol = df0.shape[0] number2calc = st.sidebar.slider('How many molecules to compute?', min_value=10, max_value=all_mol, value=10, step=10) if uploaded_file is not None: # Read CSV data @st.cache def load_csv(): csv = pd.read_csv(uploaded_file).iloc[:number2calc,1:] return csv df = load_csv() df2 = pd.concat([df[name_smiles], df[name_mol]], axis=1) # Write CSV data df2.to_csv('molecule.smi', sep = '\t', header = False, index = False) st.subheader('Initial data from CSV file') st.write(df) st.subheader('Formatted as PADEL input file') st.write(df2) with st.spinner("Calculating descriptors..."): desc_calc() else: st.info('Awaiting for CSV file to be uploaded.') if st.button('Press to use Example Dataset'): # Read CSV data @st.cache def load_data(): # number2calc specifies the number of molecules to compute df = pd.read_csv('acetylcholinesterase_04_bioactivity_data_3class_pIC50.csv').iloc[:number2calc,1:] return df df = load_data() df2 =
pd.concat([df[name_smiles], df[name_mol]], axis=1)
pandas.concat
""" Unit and regression test for the remove module of the molsysmt package. """ import molsysmt as msm import numpy as np from pandas import DataFrame def test_remove_1(): molsys = msm.convert(msm.demo['TcTIM']['1tcd.msmpk'], to_form='molsysmt.MolSys') molsys = msm.remove(molsys, selection='chain_index==[1,2,3]') df = msm.info(molsys) true_dict = {'form': {0: 'molsysmt.MolSys'}, 'n_atoms': {0: 1906}, 'n_groups': {0: 248}, 'n_components': {0: 1}, 'n_chains': {0: 1}, 'n_molecules': {0: 1}, 'n_entities': {0: 1}, 'n_proteins': {0: 1}, 'n_frames': {0: 1}} true_df = DataFrame(true_dict) assert df.data.equals(true_df) def test_remove_2(): molsys = msm.demo['Trp-Cage']['1l2y.pdb'] molsys = msm.convert(molsys, to_form='molsysmt.Trajectory') molsys = msm.remove(molsys, frame_indices=range(1,38)) df = msm.info(molsys) true_dict = {'form': {0: 'molsysmt.Trajectory'}, 'n_atoms': {0: 304}, 'n_groups': {0: None}, 'n_components': {0: None}, 'n_chains': {0: None}, 'n_molecules': {0: None}, 'n_entities': {0: None}, 'n_frames': {0: 1}} true_df =
DataFrame(true_dict)
pandas.DataFrame
""" Python module for scripting helper functions """ from glob import glob import configparser import os import re import json import pandas as pd def set_parameter(parameters_filepath, section_name, parameter_name, parameter_value): """ set the specified parameter to the specified value and write back to the *.ini file :param parameters_filepath: filename (absolute path) :param section_name: section name under which parameter is :param parameter_name: parameter name :param parameter_value: target value :return: """ conf_parameters = configparser.ConfigParser() conf_parameters.read(parameters_filepath, encoding="UTF-8") conf_parameters.set(section_name, parameter_name, parameter_value) with open(parameters_filepath, 'w') as config_file: conf_parameters.write(config_file) def df_2_tex(df, filepath): """ writes a df to tex file :param df: dataframe to be converted into tex table :param filepath: tex filepath :return: """ tex_prefix = r"""\documentclass{standalone} \usepackage{booktabs} \begin{document}""" tex_suffix = r"""\end{document}""" with open(filepath, "w") as f: f.write(tex_prefix) f.write(df.to_latex(float_format="%.1f")) f.write(tex_suffix) def file_rank(filename): """ assign a rank to the file can be used for sorting :param filename: :return: """ order = {'natural': 0, 'rfgsm_k': 2, 'dfgsm_k': 1, 'bga_k': 3, 'bca_k': 4, 'grosse': 5} training_method = re.search("\[training:.*\|", filename).group(0)[:-1].split(':')[-1] evasion_method = re.search("\|evasion:.*\]", filename).group(0)[:-1].split(':')[-1] return order[training_method] * 6 + order[evasion_method] def create_tex_tables(filespath="../result_files"): """ Create TeX tables from the results populated under `result_files` which is generated from running `framework.py` The tex file is stored in `result_files` :param filespath: the path where the results in json are stored and the tex files are created :return: """ # read the bscn files bscn_files = sorted(glob(os.path.join(filespath, "*.txt")), key=lambda x: file_rank(x)) # read the results file files = sorted(glob(os.path.join(filespath, "*.json")), key=lambda x: file_rank(x)) # dataframes bscn_df = pd.DataFrame() evasion_df = pd.DataFrame() accuracy_df = pd.DataFrame() afp_df = pd.DataFrame() bon_accuracy_df = pd.DataFrame() mal_accuracy_df = pd.DataFrame() mal_loss_df =
pd.DataFrame()
pandas.DataFrame
# pylint: disable=E1101 from datetime import datetime import datetime as dt import os import warnings import nose import struct import sys from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.core.common import is_categorical_dtype from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) import pandas.util.testing as tm from pandas.tslib import NaT from pandas import compat class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds = DataFrame(columns=['unit']) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path,write_index=False) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) def test_data_method(self): # Minimal testing of legacy data method reader_114 = StataReader(self.dta1_114) with warnings.catch_warnings(record=True) as w: parsed_114_data = reader_114.data() reader_114 = StataReader(self.dta1_114) parsed_114_read = reader_114.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read) def test_read_dta1(self): reader_114 = StataReader(self.dta1_114) parsed_114 = reader_114.read() reader_117 = StataReader(self.dta1_117) parsed_117 = reader_117.read() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta2(self): if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('datetime interp under 2.6 is faulty') expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) expected['yearly_date'] = expected['yearly_date'].astype('O') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta tm.assert_equal(len(w), 3) # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta3(self): parsed_113 = self.read_dta(self.dta3_113) parsed_114 = self.read_dta(self.dta3_114) parsed_115 = self.read_dta(self.dta3_115) parsed_117 = self.read_dta(self.dta3_117) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int16) expected['quarter'] = expected['quarter'].astype(np.int8) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta4(self): parsed_113 = self.read_dta(self.dta4_113) parsed_114 = self.read_dta(self.dta4_114) parsed_115 = self.read_dta(self.dta4_115) parsed_117 = self.read_dta(self.dta4_117) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled']) # these are all categoricals expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=['x', 'y', 'z']) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_write_dta5(self): original = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = 'index' original.index = original.index.astype(np.int32) original['year'] = original['year'].astype(np.int32) original['quarter'] = original['quarter'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_read_write_dta10(self): original = DataFrame(data=[["string", "object", 1, 1.1, np.datetime64('2003-12-25')]], columns=['string', 'object', 'integer', 'floating', 'datetime']) original["object"] = Series(original["object"], dtype=object) original.index.name = 'index' original.index = original.index.astype(np.int32) original['integer'] = original['integer'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {'datetime': 'tc'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = pd.DataFrame(np.random.randn(5,4), columns=list('abcd')) df.ix[2, 'a':'c'] = np.nan df_copy = df.copy() df.to_stata('test.dta', write_index=False) tm.assert_frame_equal(df, df_copy) def test_encoding(self): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding, encoding="latin-1") result = encoded.kreis1849[0] if compat.PY3: expected = raw.kreis1849[0] self.assertEqual(result, expected) self.assertIsInstance(result, compat.string_types) else: expected = raw.kreis1849.str.decode("latin-1")[0] self.assertEqual(result, expected) self.assertIsInstance(result, unicode) with tm.ensure_clean() as path: encoded.to_stata(path,encoding='latin-1', write_index=False) reread_encoded = read_stata(path, encoding='latin-1') tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame([(1, 2, 3, 4)], columns=['good', compat.u('b\u00E4d'), '8number', 'astringwithmorethan32characters______']) formatted = DataFrame([(1, 2, 3, 4)], columns=['good', 'b_d', '_8number', 'astringwithmorethan32characters_']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta12(self): original = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_1', 'astringwithmorethan32characters_2', '+', '-', 'short', 'delete']) formatted = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_', '_0astringwithmorethan32character', '_', '_1_', '_short', '_delete']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) tm.assert_equal(len(w), 1) # should get a warning for that format. written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta13(self): s1 = Series(2**9, dtype=np.int16) s2 = Series(2**17, dtype=np.int32) s3 = Series(2**33, dtype=np.int64) original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3}) original.index.name = 'index' formatted = original formatted['int64'] = formatted['int64'].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_reread_dta14(self): expected = self.read_csv(self.csv14) cols = ['byte_', 'int_', 'long_', 'float_', 'double_'] for col in cols: expected[col] = expected[col].convert_objects(convert_numeric=True) expected['float_'] = expected['float_'].astype(np.float32) expected['date_td'] = pd.to_datetime(expected['date_td'], coerce=True) parsed_113 = self.read_dta(self.dta14_113) parsed_113.index.name = 'index' parsed_114 = self.read_dta(self.dta14_114) parsed_114.index.name = 'index' parsed_115 = self.read_dta(self.dta14_115) parsed_115.index.name = 'index' parsed_117 = self.read_dta(self.dta14_117) parsed_117.index.name = 'index' tm.assert_frame_equal(parsed_114, parsed_113) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) with tm.ensure_clean() as path: parsed_114.to_stata(path, {'date_td': 'td'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), parsed_114) def test_read_write_reread_dta15(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) parsed_113 = self.read_dta(self.dta15_113) parsed_114 = self.read_dta(self.dta15_114) parsed_115 = self.read_dta(self.dta15_115) parsed_117 = self.read_dta(self.dta15_117) tm.assert_frame_equal(expected, parsed_114) tm.assert_frame_equal(parsed_113, parsed_114) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) def test_timestamp_and_label(self): original = DataFrame([(1,)], columns=['var']) time_stamp = datetime(2000, 2, 29, 14, 21) data_label = 'This is a data file.' with tm.ensure_clean() as path: original.to_stata(path, time_stamp=time_stamp, data_label=data_label) reader = StataReader(path) parsed_time_stamp = dt.datetime.strptime(reader.time_stamp, ('%d %b %Y %H:%M')) assert parsed_time_stamp == time_stamp assert reader.data_label == data_label def test_numeric_column_names(self): original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) original.index.name = 'index' with tm.ensure_clean() as path: # should get a warning for that format. with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path), InvalidColumnName) # should produce a single warning tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') columns = list(written_and_read_again.columns) convert_col_name = lambda x: int(x[1]) written_and_read_again.columns = map(convert_col_name, columns) tm.assert_frame_equal(original, written_and_read_again) def test_nan_to_missing_value(self): s1 = Series(np.arange(4.0), dtype=np.float32) s2 = Series(np.arange(4.0), dtype=np.float64) s1[::2] = np.nan s2[1::2] = np.nan original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') tm.assert_frame_equal(written_and_read_again, original) def test_no_index(self): columns = ['x', 'y'] original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) original.index.name = 'index_not_written' with tm.ensure_clean() as path: original.to_stata(path, write_index=False) written_and_read_again = self.read_dta(path) tm.assertRaises(KeyError, lambda: written_and_read_again['index_not_written']) def test_string_no_dates(self): s1 = Series(['a', 'A longer string']) s2 = Series([1.0, 2.0], dtype=np.float64) original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with
tm.ensure_clean()
pandas.util.testing.ensure_clean
#!/usr/bin/env python # -*- coding: utf-8 -*- # Temporal Summation paradigm # # <NAME>, October 2019 from psychopy import core, visual, event, sound, gui import numpy as np import pandas as pd import os import sys # gui information expName = 'TS' mygui = gui.Dlg(title=expName) mygui.addField("Subject ID:") mygui.addField("hand/knee/back:") mygui.addField("Session (pre/post):") mygui.show() # this will present the actual gui to insert stim num and sess num # create output data specifications subj_id = mygui.data[0] bodypart = mygui.data[1] sess = mygui.data[2] pth = "C:/Users/PainLab/Documents/POADOS/TemporalSummation/data/" outFile = pth + expName + "_" + subj_id + "_" + bodypart + "1_" + sess + ".csv" if os.path.exists(outFile): sys.exit("Data path " + outFile + " already exists!") # create a window to display stuff in win = visual.Window(color=[0, 0, 0], monitor='testMonitor', mouseVisible=False, # screen=2, # 1 = display computer while scanning, 0 = control/MRI computer size=[1680, 1050], # either specify size or set fullscr = True fullscr=True) # instructions for rating scale instr = visual.TextStim(win, font='Helvetica Bold', pos=(0, 0), height=0.12, text='Du kommer att få känna stick och skatta hur ont det gör.', color='LightGray', wrapWidth=None) # instructions before first stimulus alertFirst = visual.TextStim(win, font='Helvetica Bold', pos=(0, 0), height=0.12, text='Snart kommer du att känna ett stick.', color='LightGray', wrapWidth=None) # instructions before series of stimuli alertSeries = visual.TextStim(win, font='Helvetica Bold', pos=(0, 0), height=0.12, text='Snart kommer du att känna flera stick.' 'Skatta hur ont det gör hela tiden (klicka inte).', color='LightGray', wrapWidth=None) # fixation cross to be presented before rating starts cross = visual.TextStim(win, font='Helvetica Bold', pos=(0, 0), height=0.25, text='+', color='LightGray') # grey screen grey = visual.TextStim(win, font='Helvetica Bold', pos=(0, 0), height=0.25, text='', color='LightGray') # screen between series intermezzo = visual.TextStim(win, font='Helvetica Bold', pos=(0, 0), height=0.15, text='continue?', color='LightGray') # rating scale vasFirst = visual.RatingScale(win, name='rating', marker='none', # define this here even though it will not be called! precision=1, # will give only whole numbers size=1, # affects the overall rating scale display stretch=2, # affects horizontal direction of the scale pos=[0.0, -0.2], # position of scale on screen tickMarks=[0, 100], tickHeight=1, low=0, # minimum high=100, # maximum textSize=1.1, # applied to all text elements (anchors, scale) labels=['Ingen smärta', 'Värsta tänkbara smärta'], # labels=['0', '100'], textFont='Helvetica Bold', textColor='LightGray', scale='Skatta hur ont det gjorde (klicka inte).', showAccept=False ) # rating scale vasSeries = visual.RatingScale(win, name='rating', marker='circle', # define this here even though it will not be called! precision=1, # will give only whole numbers size=1, # affects the overall rating scale display stretch=2, # affects horizontal direction of the scale pos=[0.0, -0.2], # position of scale on screen tickMarks=[0, 100], tickHeight=1, low=0, # minimum high=100, # maximum textSize=1.1, # applied to all text elements (anchors, scale) labels=['Ingen smärta', 'Värsta tänkbara smärta'], # labels=['0', '100'], textFont='Helvetica Bold', textColor='LightGray', scale='Skatta hur ont det gör (även efter sticken).', # title/instructions of scale showAccept=False ) # sound for first stimulus sound_first = sound.Sound('C:/Users/PainLab/Documents/POADOS/TemporalSummation/sounds/first.wav', volume=1, sampleRate=44100) # sound for series of stimuli sound_TS = sound.Sound('C:/Users/PainLab/Documents/POADOS/TemporalSummation/sounds/ts.wav', volume=1, sampleRate=44100) # marker that will move with the mouse # # size=(0.1, 0.15) # marker size fixSpot = visual.GratingStim(win, tex="none", mask="circle", size=(0.06, 0.1), color='red', autoLog=False) # custom mouse # the reason I introduce two vm is that the start position is not kept if only one vm is used vm = visual.CustomMouse(win, leftLimit=-0.6, rightLimit=0.6, # starts and ends at scale ends topLimit=-0.2, bottomLimit=-0.2, # you can only move mouse on line along scale newPos=[-50, 0], # starting position showLimitBox=False, clickOnUp=True) # clickOnUp does not matter, concerns mouse clicks vmTS = visual.CustomMouse(win, leftLimit=-0.6, rightLimit=0.6, # starts and ends at scale ends topLimit=-0.2, bottomLimit=-0.2, # you can only move mouse on line along scale newPos=[-50, 0], # starting position showLimitBox=False, clickOnUp=True) # clickOnUp does not matter, concerns mouse clicks # mouse to couple to mouse = event.Mouse(win=win, visible=False) # set up clocks clock = core.Clock() TSclock = core.Clock() SpareClock = core.Clock() # other settings recordedMousePos = np.zeros((5000, 2)) dur5s = 5.0 # duration that most instructions will be presented dur10s = 10.0 # tmp files timeData = [] ratingData = [] stimData = [] # # START SERIES 1 clock.reset() while clock.getTime() < dur5s: instr.draw() # display instructions for rating scale (0-100) win.flip() if event.getKeys(['escape']): core.quit() clock.reset() while clock.getTime() < dur5s: alertFirst.draw() # display alert first stim win.flip() if event.getKeys(['escape']): core.quit() # display cross and audio to present first stimulus cross.draw() win.flip() sound_first.play() core.wait(5) # starts the moment the first sound starts # first stim rating and cross afterwards = 10s mouse.setPos(newPos=(0, 0)) vm.pointer = fixSpot # assign the fix spot to the vm pointer ratingTimer = core.CountdownTimer(dur10s) while ratingTimer.getTime() > 0: # until timer is at 0 vasFirst.reset() currentMousePos = vasFirst._getMarkerFromPos(vm.getPos()[0]) # grabs current mouse position (rating) # Do the drawing vasFirst.draw() vm.draw() win.flip() if ratingTimer.getTime() < 0.001: # if time runs out, just grab their rating currentMousePos = round(currentMousePos) # log rating print('First stim rating: ', currentMousePos) # assemble data ratingData.append(currentMousePos) timeData.append("0") stimData.append("first") # data storage data2store = pd.DataFrame({"Cond": stimData, "Time": timeData, "Rating": ratingData}) if event.getKeys(['escape']): core.quit() # display alert for TS series clock.reset() while clock.getTime() < dur5s: alertSeries.draw() win.flip() if event.getKeys(['escape']): core.quit() # display cross and audio to present TS repetitive stimuli (n=15) cross.draw() win.flip() # set mouse and pointer mouse.setPos(newPos=(0, 0)) vmTS.pointer = fixSpot TSclock.reset() for frame in range(1500): # 60 Hz are 60 frames/s, 1500 frames = 25s (previously: 1800 frames = 30s) vasSeries.reset() currentMousePos = vasSeries._getMarkerFromPos(vmTS.getPos()[0]) # grabs current mouse position (rating) currentTime = TSclock.getTime() # grabs time since globalClock was created currentTime = round(currentTime, 3) currentMousePos = round(currentMousePos) # round Rating to integer/whole number, round Time to 3 decimals in terminal window print('Time: {}, Rating: {}'.format(round(currentTime, 3), round(currentMousePos))) timeData.append(currentTime) ratingData.append(currentMousePos) stimData.append("ts") if frame == 180: # after 3s (=180 frames) start play sound sound_TS.play() # print("sound") if frame == 300: # after 5s (=300 frames), 300+120 f, log start stimuli. The sound has 1 extra sec in beginning timeData.append(currentTime) ratingData.append(currentMousePos) stimData.append("startStim") # print("start") if frame == 1140: # ca. after 5s + 15s (passed time + num of stim/time to apply them), log end of stimulation timeData.append(currentTime) ratingData.append(currentMousePos) stimData.append("stopStim") # print("end") elif event.getKeys(['escape']): core.quit() # Do the drawing vasSeries.draw() vmTS.draw() win.flip() # data storage data2store = pd.DataFrame({"Cond": stimData, "Time": timeData, "Rating": ratingData}) data2store.to_csv(outFile, sep="\t", index=False) # or comma-separated "," # pause before continue is possible grey.draw() win.flip() core.wait(2) ### # transition phase from series 1 to 2 entered = False while entered is False: intermezzo.draw() # display intermezzo win.flip() if event.getKeys(keyList=['return', 'c']): # continue paradigm with keyboard buttons "enter/return" or "c" entered = True elif event.getKeys(['escape']): core.quit() ### # name of file for second series outFile = pth + expName + "_" + subj_id + "_" + bodypart + "2_" + sess + ".csv" # other settings recordedMousePos = np.zeros((5000, 2)) # clear tmp files timeData = [] ratingData = [] stimData = [] # START SERIES 2 core.wait(2) clock.reset() while clock.getTime() < dur5s: instr.draw() # display instructions for rating scale (0-100) win.flip() if event.getKeys(['escape']): core.quit() clock.reset() while clock.getTime() < dur5s: alertFirst.draw() # display alert first stim win.flip() if event.getKeys(['escape']): core.quit() # display cross and audio to present first stimulus cross.draw() win.flip() sound_first.play() core.wait(5) # starts the moment the first sound starts # first stim rating and cross afterwards = 10s mouse.setPos(newPos=(0, 0)) vm = visual.CustomMouse(win, leftLimit=-0.6, rightLimit=0.6, # starts and ends at scale ends topLimit=-0.2, bottomLimit=-0.2, # you can only move mouse on line along scale newPos=[-50, 0], # starting position showLimitBox=False, clickOnUp=True) # clickOnUp does not matter, concerns mouse clicks vm.pointer = fixSpot # assign the fix spot to the vm pointer ratingTimer = core.CountdownTimer(dur10s) while ratingTimer.getTime() > 0: # until timer is at 0 vasFirst.reset() # reset scale as it is used several times currentMousePos = vasFirst._getMarkerFromPos(vm.getPos()[0]) # grabs current mouse position (rating) # Do the drawing vasFirst.draw() vm.draw() win.flip() if ratingTimer.getTime() < 0.001: # if time runs out, just grab their rating currentMousePos = round(currentMousePos) # log rating print('First stim rating: ', currentMousePos) # assemble data ratingData.append(currentMousePos) timeData.append("0") stimData.append("first") # data storage data2store = pd.DataFrame({"Cond": stimData, "Time": timeData, "Rating": ratingData}) if event.getKeys(['escape']): core.quit() # display alert for TS series clock.reset() while clock.getTime() < dur5s: alertSeries.draw() win.flip() if event.getKeys(['escape']): core.quit() # display cross and audio to present TS repetitive stimuli (n=15) cross.draw() win.flip() # set mouse and assign circle as pointer mouse.setPos(newPos=(0, 0)) vmTS = visual.CustomMouse(win, leftLimit=-0.6, rightLimit=0.6, # starts and ends at scale ends topLimit=-0.2, bottomLimit=-0.2, # you can only move mouse on line along scale newPos=[-50, 0], # starting position showLimitBox=False, clickOnUp=True) # clickOnUp does not matter, concerns mouse clicks vmTS.pointer = fixSpot TSclock.reset() for frame in range(1500): # 60 Hz are 60 frames/s, 1500 frames = 25s (previously: 1800 frames = 30s) vasSeries.reset() currentMousePos = vasSeries._getMarkerFromPos(vmTS.getPos()[0]) # grabs current mouse position (rating) currentTime = TSclock.getTime() # grabs time since globalClock was created currentTime = round(currentTime, 3) currentMousePos = round(currentMousePos) # round Rating to integer/whole number, round Time to 3 decimals in terminal window print('Time: {}, Rating: {}'.format(round(currentTime, 3), round(currentMousePos))) timeData.append(currentTime) ratingData.append(currentMousePos) stimData.append("ts") if frame == 180: # after 3s (=180 frames) start play sound sound_TS.play() # print("sound") if frame == 300: # after 5s (=300 frames), 300+120 f, log start stimuli. The sound has 1 extra sec in beginning timeData.append(currentTime) ratingData.append(currentMousePos) stimData.append("startStim") # print("start") if frame == 1140: # ca. after 5s + 15s (passed time + num of stim/time to apply them), log end of stimulation timeData.append(currentTime) ratingData.append(currentMousePos) stimData.append("stopStim") # print("end") elif event.getKeys(['escape']): core.quit() # Do the drawing vasSeries.draw() vmTS.draw() win.flip() # data storage data2store = pd.DataFrame({"Cond": stimData, "Time": timeData, "Rating": ratingData}) data2store.to_csv(outFile, sep="\t", index=False) # or comma-separated "," # pause before continue is possible grey.draw() win.flip() core.wait(2) ### # transition phase from series 2 to 3 entered = False while entered is False: intermezzo.draw() # display intermezzo win.flip() if event.getKeys(keyList=['return', 'c']): entered = True elif event.getKeys(['escape']): core.quit() ### # name of file for third series outFile = pth + expName + "_" + subj_id + "_" + bodypart + "3_" + sess + ".csv" # other settings recordedMousePos = np.zeros((5000, 2)) # tmp files timeData = [] ratingData = [] stimData = [] # START PARADIGM 3 core.wait(2) clock.reset() while clock.getTime() < dur5s: instr.draw() # display instructions for rating scale (0-100) win.flip() if event.getKeys(['escape']): core.quit() clock.reset() while clock.getTime() < dur5s: alertFirst.draw() # display alert first stim win.flip() if event.getKeys(['escape']): core.quit() # display cross and audio to present first stimulus cross.draw() win.flip() sound_first.play() core.wait(5) # starts the moment the first sound starts # first stim rating and cross afterwards = 10s mouse.setPos(newPos=(0, 0)) vm = visual.CustomMouse(win, leftLimit=-0.6, rightLimit=0.6, # starts and ends at scale ends topLimit=-0.2, bottomLimit=-0.2, # you can only move mouse on line along scale newPos=[-50, 0], # starting position showLimitBox=False, clickOnUp=True) # clickOnUp does not matter, concerns mouse clicks vm.pointer = fixSpot # assign the fix spot to the vm pointer ratingTimer = core.CountdownTimer(dur10s) while ratingTimer.getTime() > 0: # until timer is at 0 vasFirst.reset() currentMousePos = vasFirst._getMarkerFromPos(vm.getPos()[0]) # grabs current mouse position (rating) # Do the drawing vasFirst.draw() vm.draw() win.flip() if ratingTimer.getTime() < 0.001: # if time runs out, just grab their rating currentMousePos = round(currentMousePos) # log rating print('First stim rating: ', currentMousePos) # assemble data ratingData.append(currentMousePos) timeData.append("0") stimData.append("first") # data storage data2store =
pd.DataFrame({"Cond": stimData, "Time": timeData, "Rating": ratingData})
pandas.DataFrame
import json import os import pickle import tempfile from typing import List, Optional import numpy as np import pandas as pd import pytest import dialogy.constants as const from dialogy.plugins import MergeASROutputPlugin, XLMRMultiClass from dialogy.utils import load_file from dialogy.workflow import Workflow from tests import load_tests class MockClassifier: def __init__( self, model_name, model_dir, num_labels: Optional[int] = None, args=None, **kwargs ): self.model_name = model_name self.model_dir = model_dir self.num_labels = num_labels self.args = args or {} self.kwargs = kwargs if os.path.isdir(self.model_dir): raise OSError("Model directory") def predict(self, texts: List[str]): if texts[0] == "<s> yes </s>": return [1], np.array([[-7.4609375, 7.640625]]) elif texts[0] == "<s> no </s>": return [0], np.array([[7.40625, -7.5546875]]) elif texts[0] == "<s> yes </s> <s> s </s>": return [1], np.array([[-7.47265625, 7.69140625]]) elif texts[0] == "<s> 9 </s> <s> new </s> <s> no </s>": return [0], np.array([[7.41796875, -7.56640625]]) else: return [], np.array([[]]) def train_model(self, training_data: pd.DataFrame): return def write_intent_to_workflow(w, v): w.output[const.INTENTS] = v def update_input(w, v): w.input[const.CLASSIFICATION_INPUT] = v def test_xlmr_plugin_no_module_error(): save_val = const.XLMR_MODULE const.XLMR_MODULE = "this-module-doesn't-exist" with pytest.raises(ModuleNotFoundError): XLMRMultiClass( model_dir=".", access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, ) const.XLMR_MODULE = save_val def test_xlmr_plugin_when_no_labelencoder_saved(): save_module_name = const.XLMR_MODULE save_model_name = const.XLMR_MULTI_CLASS_MODEL const.XLMR_MODULE = "tests.plugin.text.classification.test_xlmr" const.XLMR_MULTI_CLASS_MODEL = "MockClassifier" xlmr_clf = XLMRMultiClass( model_dir=".", access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, ) assert isinstance(xlmr_clf, XLMRMultiClass) assert xlmr_clf.model is None const.XLMR_MODULE = save_module_name const.XLMR_MULTI_CLASS_MODEL = save_model_name def test_xlmr_plugin_when_labelencoder_EOFError(capsys): save_module_name = const.XLMR_MODULE save_model_name = const.XLMR_MULTI_CLASS_MODEL const.XLMR_MODULE = "tests.plugin.text.classification.test_xlmr" const.XLMR_MULTI_CLASS_MODEL = "MockClassifier" _, file_path = tempfile.mkstemp(suffix=".pkl") save_label_encoder_file = const.LABELENCODER_FILE directory, file_name = os.path.split(file_path) const.LABELENCODER_FILE = file_name with capsys.disabled(): xlmr_plugin = XLMRMultiClass( model_dir=directory, access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, debug=True, ) assert xlmr_plugin.model is None os.remove(file_path) const.LABELENCODER_FILE = save_label_encoder_file const.XLMR_MODULE = save_module_name const.XLMR_MULTI_CLASS_MODEL = save_model_name def test_xlmr_init_mock(): save_module_name = const.XLMR_MODULE save_model_name = const.XLMR_MULTI_CLASS_MODEL const.XLMR_MODULE = "tests.plugin.text.classification.test_xlmr" const.XLMR_MULTI_CLASS_MODEL = "MockClassifier" xlmr_clf = XLMRMultiClass( model_dir=".", access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, ) xlmr_clf.init_model(5) assert xlmr_clf.model is not None const.XLMR_MODULE = save_module_name const.XLMR_MULTI_CLASS_MODEL = save_model_name def test_xlmr_init_mock(): save_module_name = const.XLMR_MODULE save_model_name = const.XLMR_MULTI_CLASS_MODEL const.XLMR_MODULE = "tests.plugin.text.classification.test_xlmr" const.XLMR_MULTI_CLASS_MODEL = "MockClassifier" with pytest.raises(ValueError): XLMRMultiClass( model_dir=".", access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, args_map={"invalid": "value"}, ) const.XLMR_MODULE = save_module_name const.XLMR_MULTI_CLASS_MODEL = save_model_name def test_train_xlmr_mock(): save_module_name = const.XLMR_MODULE save_model_name = const.XLMR_MULTI_CLASS_MODEL const.XLMR_MODULE = "tests.plugin.text.classification.test_xlmr" const.XLMR_MULTI_CLASS_MODEL = "MockClassifier" directory = "/tmp" file_path = os.path.join(directory, const.LABELENCODER_FILE) xlmr_clf = XLMRMultiClass( model_dir=directory, access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, ) train_df = pd.DataFrame( [ {"data": "yes", "labels": "_confirm_"}, {"data": "yea", "labels": "_confirm_"}, {"data": "no", "labels": "_cancel_"}, {"data": "nope", "labels": "_cancel_"}, ] ) xlmr_clf.train(train_df) # This copy loads from the same directory that was trained previously. # So this instance would have read the labelencoder saved. xlmr_clf_copy = XLMRMultiClass( model_dir=directory, access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, ) assert len(xlmr_clf_copy.labelencoder.classes_) == 2 os.remove(file_path) const.XLMR_MODULE = save_module_name const.XLMR_MULTI_CLASS_MODEL = save_model_name def test_invalid_operations(): save_module_name = const.XLMR_MODULE save_model_name = const.XLMR_MULTI_CLASS_MODEL const.XLMR_MODULE = "tests.plugin.text.classification.test_xlmr" const.XLMR_MULTI_CLASS_MODEL = "MockClassifier" directory = "/tmp" file_path = os.path.join(directory, const.LABELENCODER_FILE) if os.path.exists(file_path): os.remove(file_path) xlmr_clf = XLMRMultiClass( model_dir=directory, access=lambda w: w.input[const.CLASSIFICATION_INPUT], mutate=write_intent_to_workflow, ) with pytest.raises(ValueError): xlmr_clf.init_model(None) train_df_empty =
pd.DataFrame()
pandas.DataFrame
import pandas import numpy import similaritymeasures def stats_between_series( xaxis_1: pandas.Series, values_1: pandas.Series, xaxis_2: pandas.Series, values_2: pandas.Series, print_: bool = False, ) -> dict: """Dynamic time warping and discret frechet distance for measuring similarity between two temporal sequences Args: xaxis_1 (pandas.Series): index axis of the dataframe 1 values_1 (pandas.Series): value axis of the dataframe 1 xaxis_2 (pandas.Series): index axis of the dataframe 2 values_2 (pandas.Series): value axis of the dataframe 2 Returns: dict: `{"dtw": float, "frechet_dist": float}` """ dataframe_1 = pandas.merge(xaxis_1, values_1, right_index=True, left_index=True) dataframe_2 = pandas.merge(xaxis_2, values_2, right_index=True, left_index=True) dataframe_1.rename( columns={xaxis_1.name: "id", values_1.name: "values_1"}, inplace=True ) dataframe_2.rename( columns={xaxis_2.name: "id", values_2.name: "values_2"}, inplace=True ) dataframe_1.set_index("id", inplace=True) dataframe_2.set_index("id", inplace=True) unified =
pandas.concat([dataframe_1, dataframe_2], axis=1)
pandas.concat
import logging import math import re from collections import Counter import numpy as np import pandas as pd from certa.utils import diff def get_original_prediction(r1, r2, predict_fn): r1r2 = get_row(r1, r2) return predict_fn(r1r2)[['nomatch_score', 'match_score']].values[0] def get_row(r1, r2, lprefix='ltable_', rprefix='rtable_'): r1_df = pd.DataFrame(data=[r1.values], columns=r1.index) r2_df = pd.DataFrame(data=[r2.values], columns=r2.index) r1_df.columns = list(map(lambda col: lprefix + col, r1_df.columns)) r2_df.columns = list(map(lambda col: rprefix + col, r2_df.columns)) r1r2 = pd.concat([r1_df, r2_df], axis=1) return r1r2 def support_predictions(r1: pd.Series, r2: pd.Series, lsource: pd.DataFrame, rsource: pd.DataFrame, predict_fn, lprefix, rprefix, num_triangles: int = 100, class_to_explain: int = None, max_predict: int = -1, use_w: bool = True, use_q: bool = True): ''' generate a pd.DataFrame of support predictions to be used to generate open triangles. :param r1: the "left" record :param r2: the "right" record :param lsource: the "left" data source :param rsource: the "right" data source :param predict_fn: the ER model prediction function :param lprefix: the prefix of attributes from the "left" table :param rprefix: the prefix of attributes from the "right" table :param num_triangles: number of open triangles to be used to generate the explanation :param class_to_explain: the class to be explained :param max_predict: the maximum number of predictions to be performed by the ER model to generate the requested number of open triangles :param use_w: whether to use left open triangles :param use_q: whether to use right open triangles :return: a pd.DataFrame of record pairs with one record from the original prediction and one record yielding an opposite prediction by the ER model ''' r1r2 = get_row(r1, r2) original_prediction = predict_fn(r1r2)[['nomatch_score', 'match_score']].values[0] r1r2['id'] = "0@" + str(r1r2[lprefix + 'id'].values[0]) + "#" + "1@" + str(r1r2[rprefix + 'id'].values[0]) copies, copies_left, copies_right = expand_copies(lprefix, lsource, r1, r2, rprefix, rsource) find_positives, support = get_support(class_to_explain, pd.concat([lsource, copies_left]), max_predict, original_prediction, predict_fn, r1, r2, pd.concat([rsource, copies_right]), use_w, use_q, lprefix, rprefix, num_triangles) if len(support) > 0: if len(support) > num_triangles: support = support.sample(n=num_triangles) else: logging.warning(f'could find {str(len(support))} triangles of the {str(num_triangles)} requested') support['label'] = list(map(lambda predictions: int(round(predictions)), support.match_score.values)) support = support.drop(['match_score', 'nomatch_score'], axis=1) if class_to_explain == None: r1r2['label'] = np.argmax(original_prediction) else: r1r2['label'] = class_to_explain support_pairs = pd.concat([r1r2, support], ignore_index=True) return support_pairs, copies_left, copies_right else: logging.warning('no triangles found') return pd.DataFrame(), pd.DataFrame(), pd.DataFrame() def find_candidates_predict(record, source, find_positives, predict_fn, num_candidates, lj=True, max=-1, lprefix='ltable_', rprefix='rtable_'): if lj: records = pd.DataFrame() records = records.append([record] * len(source), ignore_index=True) copy = source.copy() records.columns = list(map(lambda col: lprefix + col, records.columns)) copy.columns = list(map(lambda col: rprefix + col, copy.columns)) records.index = copy.index samples = pd.concat([records, copy], axis=1) else: copy = source.copy() records = pd.DataFrame() records = records.append([record] * len(source), ignore_index=True) records.index = copy.index copy.columns = list(map(lambda col: lprefix + col, copy.columns)) records.columns = list(map(lambda col: rprefix + col, records.columns)) samples = pd.concat([copy, records], axis=1) if max > 0: samples = samples.sample(frac=1)[:max] record2text = " ".join([str(val) for k, val in record.to_dict().items() if k not in ['id']]) samples['score'] = samples.T.apply(lambda row: cs(record2text, " ".join(row.astype(str)))) samples = samples.sort_values(by='score', ascending=not find_positives) samples = samples.drop(['score'], axis=1) result = pd.DataFrame() batch = num_candidates * 4 splits = min(10, int(len(samples) / batch)) i = 0 while len(result) < num_candidates and i < splits: batch_samples = samples[batch * i:batch * (i + 1)] predicted = predict_fn(batch_samples) if find_positives: out = predicted[predicted["match_score"] > 0.5] else: out = predicted[predicted["match_score"] < 0.5] if len(out) > 0: result = pd.concat([result, out], axis=0) logging.info(f'{i}:{len(out)},{len(result)}') i += 1 return result def generate_subsequences(lsource, rsource, max=-1): new_records_left_df = pd.DataFrame() for i in np.arange(len(lsource[:max])): r = lsource.iloc[i] nr_df = pd.DataFrame(generate_modified(r, start_id=len(new_records_left_df) + len(lsource))) if len(nr_df) > 0: nr_df.columns = lsource.columns new_records_left_df = pd.concat([new_records_left_df, nr_df]) new_records_right_df = pd.DataFrame() for i in np.arange(len(rsource[:max])): r = rsource.iloc[i] nr_df = pd.DataFrame(generate_modified(r, start_id=len(new_records_right_df) + len(rsource))) if len(nr_df) > 0: nr_df.columns = rsource.columns new_records_right_df = pd.concat([new_records_right_df, nr_df]) return new_records_left_df, new_records_right_df def get_support(class_to_explain, lsource, max_predict, original_prediction, predict_fn, r1, r2, rsource, use_w, use_q, lprefix, rprefix, num_triangles): candidates4r1 = pd.DataFrame() candidates4r2 = pd.DataFrame() num_candidates = int(num_triangles / 2) if class_to_explain == None: findPositives = bool(original_prediction[0] > original_prediction[1]) else: findPositives = bool(0 == int(class_to_explain)) if use_q: candidates4r1 = find_candidates_predict(r1, rsource, findPositives, predict_fn, num_candidates, lj=True, max=max_predict, lprefix=lprefix, rprefix=rprefix) if use_w: candidates4r2 = find_candidates_predict(r2, lsource, findPositives, predict_fn, num_candidates, lj=False, max=max_predict, lprefix=lprefix, rprefix=rprefix) neighborhood = pd.DataFrame() candidates = pd.concat([candidates4r1, candidates4r2], ignore_index=True) if len(candidates) > 0: candidates['id'] = "0@" + candidates[lprefix + 'id'].astype(str) + "#" + "1@" + candidates[ rprefix + 'id'].astype(str) if findPositives: neighborhood = candidates[candidates.match_score >= 0.5].copy() else: neighborhood = candidates[candidates.match_score < 0.5].copy() return findPositives, neighborhood def generate_modified(record, start_id: int = 0): new_copies = [] t_len = len(record) copy = record.copy() for t in range(t_len): attr_value = str(copy.get(t)) values = attr_value.split() for cut in range(1, len(values)): for new_val in [" ".join(values[cut:]), " ".join(values[:cut])]: # generate new values with prefix / suffix dropped new_copy = record.copy() new_copy[t] = new_val # substitute the new value with missing prefix / suffix on the target attribute if start_id > 0: new_copy['id'] = len(new_copies) + start_id new_copies.append(new_copy) return new_copies WORD = re.compile(r'\w+') def cs(text1, text2): vec1 = Counter(WORD.findall(text1)) vec2 = Counter(WORD.findall(text2)) intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x] ** 2 for x in vec1.keys()]) sum2 = sum([vec2[x] ** 2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def expand_copies(lprefix, lsource, r1, r2, rprefix, rsource): generated_df = pd.DataFrame() new_copies_left = [] new_copies_right = [] left = True for record in [r1, r2]: r1_df = pd.DataFrame(data=[record.values], columns=record.index) r2_df =
pd.DataFrame(data=[record.values], columns=record.index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ @brief test log(time=4s) """ import os import unittest from io import StringIO import pandas import numpy from pyquickhelper.pycode import ExtTestCase, get_temp_folder from pandas_streaming.data import dummy_streaming_dataframe from pandas_streaming.df import StreamingDataFrame from pandas_streaming.df.dataframe import StreamingDataFrameSchemaError class TestStreamingDataFrame(ExtTestCase): def test_shape(self): sdf = dummy_streaming_dataframe(100) dfs = list(sdf) self.assertEqual(len(dfs), 10) self.assertEqual(len(dfs), 10) shape = sdf.shape self.assertEqual(shape, (100, 2)) def test_init(self): sdf = dummy_streaming_dataframe(100) df1 = sdf.to_df() sdf2 = StreamingDataFrame(sdf) df2 = sdf2.to_df() self.assertEqualDataFrame(df1, df2) def test_to_csv(self): sdf = dummy_streaming_dataframe(100) st = sdf.to_csv() self.assertStartsWith(",cint,cstr\n0,0,s0", st.replace('\r', '')) st = sdf.to_csv() self.assertStartsWith(",cint,cstr\n0,0,s0", st.replace('\r', '')) def test_iterrows(self): sdf = dummy_streaming_dataframe(100) rows = list(sdf.iterrows()) self.assertEqual(sdf.shape[0], len(rows)) rows = list(sdf.iterrows()) self.assertEqual(sdf.shape[0], len(rows)) def test_head(self): sdf = dummy_streaming_dataframe(100) st = sdf.head() self.assertEqual(st.shape, (5, 2)) st = sdf.head(n=20) self.assertEqual(st.shape, (20, 2)) st = sdf.head(n=20) self.assertEqual(st.shape, (20, 2)) def test_tail(self): sdf = dummy_streaming_dataframe(100) st = sdf.tail() self.assertEqual(st.shape, (5, 2)) st = sdf.tail(n=20) self.assertEqual(st.shape, (10, 2)) def test_read_csv(self): temp = get_temp_folder(__file__, "temp_read_csv") df = pandas.DataFrame(data=dict(a=[5, 6], b=["er", "r"])) name = os.path.join(temp, "df.csv") name2 = os.path.join(temp, "df2.csv") name3 = os.path.join(temp, "df3.csv") df.to_csv(name, index=False) df.to_csv(name2, index=True) sdf = StreamingDataFrame.read_csv(name) text = sdf.to_csv(index=False) self.assertRaise( lambda: StreamingDataFrame.read_csv( name2, index_col=0, chunksize=None), ValueError) self.assertRaise( lambda: StreamingDataFrame.read_csv( name2, index_col=0, iterator=False), ValueError) sdf2 = StreamingDataFrame.read_csv(name2, index_col=0) text2 = sdf2.to_csv(index=True) sdf2.to_csv(name3, index=True) with open(name, "r", encoding='utf-8') as f: exp = f.read() with open(name2, "r", encoding='utf-8') as f: exp2 = f.read() with open(name3, "r", encoding='utf-8') as f: text3 = f.read() self.assertEqual(text.replace('\r', ''), exp) sdf2 = StreamingDataFrame.read_df(df) self.assertEqualDataFrame(sdf.to_dataframe(), sdf2.to_dataframe()) self.assertEqual(text2.replace('\r', ''), exp2) self.assertEqual(text3.replace('\r', '').replace('\n\n', '\n'), exp2.replace('\r', '')) def test_where(self): sdf = dummy_streaming_dataframe(100) cols = sdf.columns self.assertEqual(list(cols), ['cint', 'cstr']) dts = sdf.dtypes self.assertEqual(len(dts), 2) res = sdf.where(lambda row: row["cint"] == 1) st = res.to_csv() self.assertStartsWith(",cint,cstr\n0,,\n1,1.0,s1", st.replace('\r', '')) res = sdf.where(lambda row: row["cint"] == 1) st = res.to_csv() self.assertStartsWith(",cint,cstr\n0,,\n1,1.0,s1", st.replace('\r', '')) def test_dataframe(self): sdf = dummy_streaming_dataframe(100) df = sdf.to_dataframe() self.assertEqual(df.shape, (100, 2)) def test_sample(self): sdf = dummy_streaming_dataframe(100) res = sdf.sample(frac=0.1) self.assertLesser(res.shape[0], 30) self.assertRaise(lambda: sdf.sample(n=5), ValueError) res = sdf.sample(frac=0.1) self.assertLesser(res.shape[0], 30) self.assertRaise(lambda: sdf.sample(n=5), ValueError) def test_sample_cache(self): sdf = dummy_streaming_dataframe(100) res = sdf.sample(frac=0.1, cache=True) df1 = res.to_df() df2 = res.to_df() self.assertEqualDataFrame(df1, df2) self.assertTrue(res.is_stable(n=df1.shape[0], do_check=True)) self.assertTrue(res.is_stable(n=df1.shape[0], do_check=False)) res = sdf.sample(frac=0.1, cache=False) self.assertFalse(res.is_stable(n=df1.shape[0], do_check=False)) def test_sample_reservoir_cache(self): sdf = dummy_streaming_dataframe(100) res = sdf.sample(n=10, cache=True, reservoir=True) df1 = res.to_df() df2 = res.to_df() self.assertEqualDataFrame(df1, df2) self.assertEqual(df1.shape, (10, res.shape[1])) self.assertRaise(lambda: sdf.sample(n=10, cache=False, reservoir=True), ValueError) self.assertRaise(lambda: sdf.sample(frac=0.1, cache=True, reservoir=True), ValueError) def test_apply(self): sdf = dummy_streaming_dataframe(100) self.assertNotEmpty(list(sdf)) sdf = sdf.applymap(str) self.assertNotEmpty(list(sdf)) sdf = sdf.apply(lambda row: row[["cint"]] + "r", axis=1) self.assertNotEmpty(list(sdf)) text = sdf.to_csv(header=False) self.assertStartsWith("0,0r\n1,1r\n2,2r\n3,3r", text.replace('\r', '')) def test_train_test_split(self): sdf = dummy_streaming_dataframe(100) tr, te = sdf.train_test_split(index=False, streaming=False) self.assertRaise( lambda: StreamingDataFrame.read_str(tr, chunksize=None), ValueError) self.assertRaise( lambda: StreamingDataFrame.read_str(tr, iterator=False), ValueError) StreamingDataFrame.read_str(tr.encode('utf-8')) trsdf = StreamingDataFrame.read_str(tr) tesdf = StreamingDataFrame.read_str(te) trdf = trsdf.to_dataframe() tedf = tesdf.to_dataframe() df_exp = sdf.to_dataframe() df_val = pandas.concat([trdf, tedf]) self.assertEqual(df_exp.shape, df_val.shape) df_val = df_val.sort_values("cint").reset_index(drop=True) self.assertEqualDataFrame(df_val, df_exp) def test_train_test_split_streaming(self): sdf = dummy_streaming_dataframe(100, asfloat=True) trsdf, tesdf = sdf.train_test_split( streaming=True, unique_rows=True, partitions=[0.7, 0.3]) trdf = trsdf.to_dataframe() tedf = tesdf.to_dataframe() df_exp = sdf.to_dataframe() df_val = pandas.concat([trdf, tedf]) self.assertEqual(df_exp.shape, df_val.shape) df_val = df_val.sort_values("cfloat").reset_index(drop=True) self.assertEqualDataFrame(df_val, df_exp) trdf2 = trsdf.to_dataframe() tedf2 = tesdf.to_dataframe() df_val = pandas.concat([trdf2, tedf2]) self.assertEqual(df_exp.shape, df_val.shape) df_val = df_val.sort_values("cfloat").reset_index(drop=True) self.assertEqualDataFrame(df_val, df_exp) self.assertEqual(trdf.shape, trdf2.shape) self.assertEqual(tedf.shape, tedf2.shape) self.assertGreater(trdf.shape[0], tedf.shape[0]) self.assertGreater(trdf2.shape[0], tedf2.shape[0]) def test_train_test_split_streaming_tiny(self): df = pandas.DataFrame(data=dict(X=[4.5, 6, 7], Y=["a", "b", "c"])) sdf2 = StreamingDataFrame.read_df(pandas.concat([df, df])) sdftr, sdfte = sdf2.train_test_split(test_size=0.5) df1 = sdfte.head() df2 = sdfte.head() if df1 is not None or df2 is not None: self.assertEqualDataFrame(df1, df2) df1 = sdftr.head() df2 = sdftr.head() if df1 is not None or df2 is not None: self.assertEqualDataFrame(df1, df2) sdf = StreamingDataFrame.read_df(df) sdf2 = sdf.concat(sdf, axis=0) sdftr, sdfte = sdf2.train_test_split(test_size=0.5) df1 = sdfte.head() df2 = sdfte.head() if df1 is not None or df2 is not None: self.assertEqualDataFrame(df1, df2) df1 = sdftr.head() df2 = sdftr.head() if df1 is not None or df2 is not None: self.assertEqualDataFrame(df1, df2) def test_train_test_split_streaming_strat(self): sdf = dummy_streaming_dataframe(100, asfloat=True, tify=["t1" if i % 3 else "t0" for i in range(0, 100)]) trsdf, tesdf = sdf.train_test_split( streaming=True, unique_rows=True, stratify="tify") trdf = trsdf.to_dataframe() tedf = tesdf.to_dataframe() df_exp = sdf.to_dataframe() df_val = pandas.concat([trdf, tedf]) self.assertEqual(df_exp.shape, df_val.shape) df_val = df_val.sort_values("cfloat").reset_index(drop=True) self.assertEqualDataFrame(df_val, df_exp) trdf = trsdf.to_dataframe() tedf = tesdf.to_dataframe() df_val = pandas.concat([trdf, tedf]) self.assertEqual(df_exp.shape, df_val.shape) df_val = df_val.sort_values("cfloat").reset_index(drop=True) self.assertEqualDataFrame(df_val, df_exp) trgr = trdf.groupby("tify").count() trgr["part"] = 0 tegr = tedf.groupby("tify").count() tegr["part"] = 1 gr = pandas.concat([trgr, tegr]) self.assertGreater(gr['cfloat'].min(), 4) def test_train_test_split_file(self): temp = get_temp_folder(__file__, "temp_train_test_split_file") names = [os.path.join(temp, "train.txt"), os.path.join(temp, "test.txt")] sdf = dummy_streaming_dataframe(100) sdf.train_test_split(names, index=False, streaming=False) trsdf = StreamingDataFrame.read_csv(names[0]) tesdf = StreamingDataFrame.read_csv(names[1]) self.assertGreater(trsdf.shape[0], 20) self.assertGreater(tesdf.shape[0], 20) trdf = trsdf.to_dataframe() tedf = tesdf.to_dataframe() self.assertGreater(trdf.shape[0], 20) self.assertGreater(tedf.shape[0], 20) df_exp = sdf.to_dataframe() df_val = pandas.concat([trdf, tedf]) self.assertEqual(df_exp.shape, df_val.shape) df_val = df_val.sort_values("cint").reset_index(drop=True) self.assertEqualDataFrame(df_val, df_exp) def test_train_test_split_file_pattern(self): temp = get_temp_folder(__file__, "temp_train_test_split_file_pattern") sdf = dummy_streaming_dataframe(100) names = os.path.join(temp, "spl_{0}.txt") self.assertRaise(lambda: sdf.train_test_split( names, index=False, streaming=False), ValueError) names = os.path.join(temp, "spl_{}.txt") tr, te = sdf.train_test_split(names, index=False, streaming=False) trsdf = StreamingDataFrame.read_csv(tr) tesdf = StreamingDataFrame.read_csv(te) trdf = trsdf.to_dataframe() tedf = tesdf.to_dataframe() df_exp = sdf.to_dataframe() df_val =
pandas.concat([trdf, tedf])
pandas.concat
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- r""" eventcluster module. This module is intended to be used to summarize large numbers of events into clusters of different patterns. High volume repeating events can often make it difficult to see unique and interesting items. The module contains functions to generate clusterable features from string data. For example, an administration command that does some maintenance on thousands of servers with a commandline such as: ``install-update -hostname {host.fqdn} -tmp:/tmp/{GUID}/rollback``\ can be collapsed into a single cluster pattern by ignoring the character values in the string and using delimiters or tokens to group the values. This is an unsupervised learning module implemented using SciKit Learn DBScan. Contains: dbcluster_events: generic clustering method using DBSCAN designed to summarize process events and other similar data by grouping on common features. add_process_features: derives numerical features from text features such as commandline and process path. """ from binascii import crc32 from functools import lru_cache from math import log10, floor import re from typing import List, Any, Tuple, Union import numpy as np import pandas as pd from sklearn.cluster import DBSCAN from sklearn.preprocessing import Normalizer import matplotlib.pyplot as plt from matplotlib import cm from ..nbtools.utility import export from .._version import VERSION __version__ = VERSION __author__ = "<NAME>" # pylint: disable=too-many-arguments, too-many-locals @export def dbcluster_events( data: Any, cluster_columns: List[Any] = None, verbose: bool = False, normalize: bool = True, time_column: str = "TimeCreatedUtc", max_cluster_distance: float = 0.01, min_cluster_samples: int = 2, **kwargs, ) -> Tuple[pd.DataFrame, DBSCAN, np.ndarray]: """ Cluster data set according to cluster_columns features. Parameters ---------- data : Any Input data as a pandas DataFrame or numpy array cluster_columns : List[Any], optional List of columns to use for features - for DataFrame this is a list of column names - for numpy array this is a list of column indexes verbose : bool, optional Print additional information about clustering results (the default is False) normalize : bool, optional Normalize the input data (should probably always be True) time_column : str, optional If there is a time column the output data will be ordered by this (the default is 'TimeCreatedUtc') max_cluster_distance : float, optional DBSCAN eps (max cluster member distance) (the default is 0.01) min_cluster_samples : int, optional DBSCAN min_samples (the minimum cluster size) (the default is 2) Other Parameters ---------------- kwargs: Other arguments are passed to DBSCAN constructor Returns ------- Tuple[pd.DataFrame, DBSCAN, np.ndarray] Output dataframe with clustered rows DBSCAN model Normalized data set """ allowed_types = [np.ndarray, pd.DataFrame] x_input = None if isinstance(data, pd.DataFrame): if cluster_columns is None: x_input = data.values else: x_input = data[cluster_columns].values elif isinstance(data, np.ndarray): if cluster_columns is None: x_input = data else: x_input = data[:, cluster_columns].values if x_input is None: mssg = "Input data not in expected format.\n{} is not one of allowed types {}" type_list = ", ".join([str(t) for t in allowed_types]) mssg = mssg.format(str(type(data)), type_list) raise ValueError(mssg) # Create DBSCAN cluster object db_cluster = DBSCAN( eps=max_cluster_distance, min_samples=min_cluster_samples, **kwargs ) # Normalize the data (most clustering algorithms don't do well with # unnormalized data) if normalize: x_norm = Normalizer().fit_transform(x_input) else: x_norm = x_input # fit the data set db_cluster.fit(x_norm) labels = db_cluster.labels_ cluster_set, counts = np.unique(labels, return_counts=True) if verbose: print( "Clustering for set size ", len(x_norm), " - ", len(cluster_set), " clusters", ) print("Individual cluster sizes: ", ", ".join([str(c) for c in counts])) clustered_events = _merge_clustered_items( cluster_set, labels, data, time_column, counts ) if verbose: print("Cluster output rows: ", len(clustered_events)) return clustered_events, db_cluster, x_norm def _merge_clustered_items( cluster_set: np.array, labels: np.array, data: Union[pd.DataFrame, np.array], time_column: str, counts: np.array, ) -> pd.DataFrame: """ Merge outliers and core clusters into single DataFrame. Parameters ---------- cluster_set : np.array The set of clusters labels : np.array The cluster labels data : Union[pd.DataFrame, np.array] The source data time_column : str Name of the Time column counts : np.array The counts of members in each cluster Returns ------- pd.DataFrame Merged dataframe """ cluster_list = [] # Iterate through clusters, adding exemplar to output frame # pylint: disable=consider-using-enumerate # we need to know the index of the item within the loop for idx in range(len(cluster_set)): cluster_id = cluster_set[idx] class_members = labels == cluster_id if isinstance(data, pd.DataFrame): time_ordered = data[class_members].sort_values(time_column, ascending=True) first_event_time = time_ordered[0:][time_column].iat[0] last_event_time = time_ordered[-1:][time_column].iat[0] else: first_event_time = None last_event_time = None if cluster_id == -1: # 'Noise' events are individual items that could not be assigned # to a cluster and so are unique cluster_list.append( data[class_members] .assign( Clustered=False, ClusterId=cluster_id, ClusterSize=1, TimeGenerated=first_event_time, FirstEventTime=first_event_time, LastEventTime=last_event_time, ) .astype( dtype={ "TimeGenerated": "datetime64[ns]", "FirstEventTime": "datetime64[ns]", "LastEventTime": "datetime64[ns]", } ) ) else: # Otherwise, just choose the first example of the cluster set cluster_list.append( data[class_members] .assign( Clustered=True, ClusterId=cluster_id, ClusterSize=counts[idx], TimeGenerated=first_event_time, FirstEventTime=first_event_time, LastEventTime=last_event_time, )[0:1] .astype( dtype={ "TimeGenerated": "datetime64[ns]", "FirstEventTime": "datetime64[ns]", "LastEventTime": "datetime64[ns]", } ) ) # pylint: enable=consider-using-enumerate return
pd.concat(cluster_list)
pandas.concat